xref: /openbmc/linux/tools/perf/util/machine.c (revision 3d75e766)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 
48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 	return machine->vmlinux_map->dso;
51 }
52 
53 static void dsos__init(struct dsos *dsos)
54 {
55 	INIT_LIST_HEAD(&dsos->head);
56 	dsos->root = RB_ROOT;
57 	init_rwsem(&dsos->lock);
58 }
59 
60 static void machine__threads_init(struct machine *machine)
61 {
62 	int i;
63 
64 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 		struct threads *threads = &machine->threads[i];
66 		threads->entries = RB_ROOT_CACHED;
67 		init_rwsem(&threads->lock);
68 		threads->nr = 0;
69 		INIT_LIST_HEAD(&threads->dead);
70 		threads->last_match = NULL;
71 	}
72 }
73 
74 static int machine__set_mmap_name(struct machine *machine)
75 {
76 	if (machine__is_host(machine))
77 		machine->mmap_name = strdup("[kernel.kallsyms]");
78 	else if (machine__is_default_guest(machine))
79 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 			  machine->pid) < 0)
82 		machine->mmap_name = NULL;
83 
84 	return machine->mmap_name ? 0 : -ENOMEM;
85 }
86 
87 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
88 {
89 	char comm[64];
90 
91 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
92 	thread__set_comm(thread, comm, 0);
93 }
94 
95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
96 {
97 	int err = -ENOMEM;
98 
99 	memset(machine, 0, sizeof(*machine));
100 	machine->kmaps = maps__new(machine);
101 	if (machine->kmaps == NULL)
102 		return -ENOMEM;
103 
104 	RB_CLEAR_NODE(&machine->rb_node);
105 	dsos__init(&machine->dsos);
106 
107 	machine__threads_init(machine);
108 
109 	machine->vdso_info = NULL;
110 	machine->env = NULL;
111 
112 	machine->pid = pid;
113 
114 	machine->id_hdr_size = 0;
115 	machine->kptr_restrict_warned = false;
116 	machine->comm_exec = false;
117 	machine->kernel_start = 0;
118 	machine->vmlinux_map = NULL;
119 
120 	machine->root_dir = strdup(root_dir);
121 	if (machine->root_dir == NULL)
122 		goto out;
123 
124 	if (machine__set_mmap_name(machine))
125 		goto out;
126 
127 	if (pid != HOST_KERNEL_ID) {
128 		struct thread *thread = machine__findnew_thread(machine, -1,
129 								pid);
130 
131 		if (thread == NULL)
132 			goto out;
133 
134 		thread__set_guest_comm(thread, pid);
135 		thread__put(thread);
136 	}
137 
138 	machine->current_tid = NULL;
139 	err = 0;
140 
141 out:
142 	if (err) {
143 		zfree(&machine->kmaps);
144 		zfree(&machine->root_dir);
145 		zfree(&machine->mmap_name);
146 	}
147 	return 0;
148 }
149 
150 struct machine *machine__new_host(void)
151 {
152 	struct machine *machine = malloc(sizeof(*machine));
153 
154 	if (machine != NULL) {
155 		machine__init(machine, "", HOST_KERNEL_ID);
156 
157 		if (machine__create_kernel_maps(machine) < 0)
158 			goto out_delete;
159 	}
160 
161 	return machine;
162 out_delete:
163 	free(machine);
164 	return NULL;
165 }
166 
167 struct machine *machine__new_kallsyms(void)
168 {
169 	struct machine *machine = machine__new_host();
170 	/*
171 	 * FIXME:
172 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
173 	 *    ask for not using the kcore parsing code, once this one is fixed
174 	 *    to create a map per module.
175 	 */
176 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
177 		machine__delete(machine);
178 		machine = NULL;
179 	}
180 
181 	return machine;
182 }
183 
184 static void dsos__purge(struct dsos *dsos)
185 {
186 	struct dso *pos, *n;
187 
188 	down_write(&dsos->lock);
189 
190 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
191 		RB_CLEAR_NODE(&pos->rb_node);
192 		pos->root = NULL;
193 		list_del_init(&pos->node);
194 		dso__put(pos);
195 	}
196 
197 	up_write(&dsos->lock);
198 }
199 
200 static void dsos__exit(struct dsos *dsos)
201 {
202 	dsos__purge(dsos);
203 	exit_rwsem(&dsos->lock);
204 }
205 
206 void machine__delete_threads(struct machine *machine)
207 {
208 	struct rb_node *nd;
209 	int i;
210 
211 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 		struct threads *threads = &machine->threads[i];
213 		down_write(&threads->lock);
214 		nd = rb_first_cached(&threads->entries);
215 		while (nd) {
216 			struct thread *t = rb_entry(nd, struct thread, rb_node);
217 
218 			nd = rb_next(nd);
219 			__machine__remove_thread(machine, t, false);
220 		}
221 		up_write(&threads->lock);
222 	}
223 }
224 
225 void machine__exit(struct machine *machine)
226 {
227 	int i;
228 
229 	if (machine == NULL)
230 		return;
231 
232 	machine__destroy_kernel_maps(machine);
233 	maps__delete(machine->kmaps);
234 	dsos__exit(&machine->dsos);
235 	machine__exit_vdso(machine);
236 	zfree(&machine->root_dir);
237 	zfree(&machine->mmap_name);
238 	zfree(&machine->current_tid);
239 	zfree(&machine->kallsyms_filename);
240 
241 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
242 		struct threads *threads = &machine->threads[i];
243 		struct thread *thread, *n;
244 		/*
245 		 * Forget about the dead, at this point whatever threads were
246 		 * left in the dead lists better have a reference count taken
247 		 * by who is using them, and then, when they drop those references
248 		 * and it finally hits zero, thread__put() will check and see that
249 		 * its not in the dead threads list and will not try to remove it
250 		 * from there, just calling thread__delete() straight away.
251 		 */
252 		list_for_each_entry_safe(thread, n, &threads->dead, node)
253 			list_del_init(&thread->node);
254 
255 		exit_rwsem(&threads->lock);
256 	}
257 }
258 
259 void machine__delete(struct machine *machine)
260 {
261 	if (machine) {
262 		machine__exit(machine);
263 		free(machine);
264 	}
265 }
266 
267 void machines__init(struct machines *machines)
268 {
269 	machine__init(&machines->host, "", HOST_KERNEL_ID);
270 	machines->guests = RB_ROOT_CACHED;
271 }
272 
273 void machines__exit(struct machines *machines)
274 {
275 	machine__exit(&machines->host);
276 	/* XXX exit guest */
277 }
278 
279 struct machine *machines__add(struct machines *machines, pid_t pid,
280 			      const char *root_dir)
281 {
282 	struct rb_node **p = &machines->guests.rb_root.rb_node;
283 	struct rb_node *parent = NULL;
284 	struct machine *pos, *machine = malloc(sizeof(*machine));
285 	bool leftmost = true;
286 
287 	if (machine == NULL)
288 		return NULL;
289 
290 	if (machine__init(machine, root_dir, pid) != 0) {
291 		free(machine);
292 		return NULL;
293 	}
294 
295 	while (*p != NULL) {
296 		parent = *p;
297 		pos = rb_entry(parent, struct machine, rb_node);
298 		if (pid < pos->pid)
299 			p = &(*p)->rb_left;
300 		else {
301 			p = &(*p)->rb_right;
302 			leftmost = false;
303 		}
304 	}
305 
306 	rb_link_node(&machine->rb_node, parent, p);
307 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
308 
309 	machine->machines = machines;
310 
311 	return machine;
312 }
313 
314 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
315 {
316 	struct rb_node *nd;
317 
318 	machines->host.comm_exec = comm_exec;
319 
320 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
321 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
322 
323 		machine->comm_exec = comm_exec;
324 	}
325 }
326 
327 struct machine *machines__find(struct machines *machines, pid_t pid)
328 {
329 	struct rb_node **p = &machines->guests.rb_root.rb_node;
330 	struct rb_node *parent = NULL;
331 	struct machine *machine;
332 	struct machine *default_machine = NULL;
333 
334 	if (pid == HOST_KERNEL_ID)
335 		return &machines->host;
336 
337 	while (*p != NULL) {
338 		parent = *p;
339 		machine = rb_entry(parent, struct machine, rb_node);
340 		if (pid < machine->pid)
341 			p = &(*p)->rb_left;
342 		else if (pid > machine->pid)
343 			p = &(*p)->rb_right;
344 		else
345 			return machine;
346 		if (!machine->pid)
347 			default_machine = machine;
348 	}
349 
350 	return default_machine;
351 }
352 
353 struct machine *machines__findnew(struct machines *machines, pid_t pid)
354 {
355 	char path[PATH_MAX];
356 	const char *root_dir = "";
357 	struct machine *machine = machines__find(machines, pid);
358 
359 	if (machine && (machine->pid == pid))
360 		goto out;
361 
362 	if ((pid != HOST_KERNEL_ID) &&
363 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
364 	    (symbol_conf.guestmount)) {
365 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
366 		if (access(path, R_OK)) {
367 			static struct strlist *seen;
368 
369 			if (!seen)
370 				seen = strlist__new(NULL, NULL);
371 
372 			if (!strlist__has_entry(seen, path)) {
373 				pr_err("Can't access file %s\n", path);
374 				strlist__add(seen, path);
375 			}
376 			machine = NULL;
377 			goto out;
378 		}
379 		root_dir = path;
380 	}
381 
382 	machine = machines__add(machines, pid, root_dir);
383 out:
384 	return machine;
385 }
386 
387 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
388 {
389 	struct machine *machine = machines__find(machines, pid);
390 
391 	if (!machine)
392 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
393 	return machine;
394 }
395 
396 /*
397  * A common case for KVM test programs is that the test program acts as the
398  * hypervisor, creating, running and destroying the virtual machine, and
399  * providing the guest object code from its own object code. In this case,
400  * the VM is not running an OS, but only the functions loaded into it by the
401  * hypervisor test program, and conveniently, loaded at the same virtual
402  * addresses.
403  *
404  * Normally to resolve addresses, MMAP events are needed to map addresses
405  * back to the object code and debug symbols for that object code.
406  *
407  * Currently, there is no way to get such mapping information from guests
408  * but, in the scenario described above, the guest has the same mappings
409  * as the hypervisor, so support for that scenario can be achieved.
410  *
411  * To support that, copy the host thread's maps to the guest thread's maps.
412  * Note, we do not discover the guest until we encounter a guest event,
413  * which works well because it is not until then that we know that the host
414  * thread's maps have been set up.
415  *
416  * This function returns the guest thread. Apart from keeping the data
417  * structures sane, using a thread belonging to the guest machine, instead
418  * of the host thread, allows it to have its own comm (refer
419  * thread__set_guest_comm()).
420  */
421 static struct thread *findnew_guest_code(struct machine *machine,
422 					 struct machine *host_machine,
423 					 pid_t pid)
424 {
425 	struct thread *host_thread;
426 	struct thread *thread;
427 	int err;
428 
429 	if (!machine)
430 		return NULL;
431 
432 	thread = machine__findnew_thread(machine, -1, pid);
433 	if (!thread)
434 		return NULL;
435 
436 	/* Assume maps are set up if there are any */
437 	if (thread->maps->nr_maps)
438 		return thread;
439 
440 	host_thread = machine__find_thread(host_machine, -1, pid);
441 	if (!host_thread)
442 		goto out_err;
443 
444 	thread__set_guest_comm(thread, pid);
445 
446 	/*
447 	 * Guest code can be found in hypervisor process at the same address
448 	 * so copy host maps.
449 	 */
450 	err = maps__clone(thread, host_thread->maps);
451 	thread__put(host_thread);
452 	if (err)
453 		goto out_err;
454 
455 	return thread;
456 
457 out_err:
458 	thread__zput(thread);
459 	return NULL;
460 }
461 
462 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
463 {
464 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
465 	struct machine *machine = machines__findnew(machines, pid);
466 
467 	return findnew_guest_code(machine, host_machine, pid);
468 }
469 
470 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
471 {
472 	struct machines *machines = machine->machines;
473 	struct machine *host_machine;
474 
475 	if (!machines)
476 		return NULL;
477 
478 	host_machine = machines__find(machines, HOST_KERNEL_ID);
479 
480 	return findnew_guest_code(machine, host_machine, pid);
481 }
482 
483 void machines__process_guests(struct machines *machines,
484 			      machine__process_t process, void *data)
485 {
486 	struct rb_node *nd;
487 
488 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
489 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
490 		process(pos, data);
491 	}
492 }
493 
494 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
495 {
496 	struct rb_node *node;
497 	struct machine *machine;
498 
499 	machines->host.id_hdr_size = id_hdr_size;
500 
501 	for (node = rb_first_cached(&machines->guests); node;
502 	     node = rb_next(node)) {
503 		machine = rb_entry(node, struct machine, rb_node);
504 		machine->id_hdr_size = id_hdr_size;
505 	}
506 
507 	return;
508 }
509 
510 static void machine__update_thread_pid(struct machine *machine,
511 				       struct thread *th, pid_t pid)
512 {
513 	struct thread *leader;
514 
515 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
516 		return;
517 
518 	th->pid_ = pid;
519 
520 	if (th->pid_ == th->tid)
521 		return;
522 
523 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
524 	if (!leader)
525 		goto out_err;
526 
527 	if (!leader->maps)
528 		leader->maps = maps__new(machine);
529 
530 	if (!leader->maps)
531 		goto out_err;
532 
533 	if (th->maps == leader->maps)
534 		return;
535 
536 	if (th->maps) {
537 		/*
538 		 * Maps are created from MMAP events which provide the pid and
539 		 * tid.  Consequently there never should be any maps on a thread
540 		 * with an unknown pid.  Just print an error if there are.
541 		 */
542 		if (!maps__empty(th->maps))
543 			pr_err("Discarding thread maps for %d:%d\n",
544 			       th->pid_, th->tid);
545 		maps__put(th->maps);
546 	}
547 
548 	th->maps = maps__get(leader->maps);
549 out_put:
550 	thread__put(leader);
551 	return;
552 out_err:
553 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
554 	goto out_put;
555 }
556 
557 /*
558  * Front-end cache - TID lookups come in blocks,
559  * so most of the time we dont have to look up
560  * the full rbtree:
561  */
562 static struct thread*
563 __threads__get_last_match(struct threads *threads, struct machine *machine,
564 			  int pid, int tid)
565 {
566 	struct thread *th;
567 
568 	th = threads->last_match;
569 	if (th != NULL) {
570 		if (th->tid == tid) {
571 			machine__update_thread_pid(machine, th, pid);
572 			return thread__get(th);
573 		}
574 
575 		threads->last_match = NULL;
576 	}
577 
578 	return NULL;
579 }
580 
581 static struct thread*
582 threads__get_last_match(struct threads *threads, struct machine *machine,
583 			int pid, int tid)
584 {
585 	struct thread *th = NULL;
586 
587 	if (perf_singlethreaded)
588 		th = __threads__get_last_match(threads, machine, pid, tid);
589 
590 	return th;
591 }
592 
593 static void
594 __threads__set_last_match(struct threads *threads, struct thread *th)
595 {
596 	threads->last_match = th;
597 }
598 
599 static void
600 threads__set_last_match(struct threads *threads, struct thread *th)
601 {
602 	if (perf_singlethreaded)
603 		__threads__set_last_match(threads, th);
604 }
605 
606 /*
607  * Caller must eventually drop thread->refcnt returned with a successful
608  * lookup/new thread inserted.
609  */
610 static struct thread *____machine__findnew_thread(struct machine *machine,
611 						  struct threads *threads,
612 						  pid_t pid, pid_t tid,
613 						  bool create)
614 {
615 	struct rb_node **p = &threads->entries.rb_root.rb_node;
616 	struct rb_node *parent = NULL;
617 	struct thread *th;
618 	bool leftmost = true;
619 
620 	th = threads__get_last_match(threads, machine, pid, tid);
621 	if (th)
622 		return th;
623 
624 	while (*p != NULL) {
625 		parent = *p;
626 		th = rb_entry(parent, struct thread, rb_node);
627 
628 		if (th->tid == tid) {
629 			threads__set_last_match(threads, th);
630 			machine__update_thread_pid(machine, th, pid);
631 			return thread__get(th);
632 		}
633 
634 		if (tid < th->tid)
635 			p = &(*p)->rb_left;
636 		else {
637 			p = &(*p)->rb_right;
638 			leftmost = false;
639 		}
640 	}
641 
642 	if (!create)
643 		return NULL;
644 
645 	th = thread__new(pid, tid);
646 	if (th != NULL) {
647 		rb_link_node(&th->rb_node, parent, p);
648 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
649 
650 		/*
651 		 * We have to initialize maps separately after rb tree is updated.
652 		 *
653 		 * The reason is that we call machine__findnew_thread
654 		 * within thread__init_maps to find the thread
655 		 * leader and that would screwed the rb tree.
656 		 */
657 		if (thread__init_maps(th, machine)) {
658 			rb_erase_cached(&th->rb_node, &threads->entries);
659 			RB_CLEAR_NODE(&th->rb_node);
660 			thread__put(th);
661 			return NULL;
662 		}
663 		/*
664 		 * It is now in the rbtree, get a ref
665 		 */
666 		thread__get(th);
667 		threads__set_last_match(threads, th);
668 		++threads->nr;
669 	}
670 
671 	return th;
672 }
673 
674 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
675 {
676 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
677 }
678 
679 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
680 				       pid_t tid)
681 {
682 	struct threads *threads = machine__threads(machine, tid);
683 	struct thread *th;
684 
685 	down_write(&threads->lock);
686 	th = __machine__findnew_thread(machine, pid, tid);
687 	up_write(&threads->lock);
688 	return th;
689 }
690 
691 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
692 				    pid_t tid)
693 {
694 	struct threads *threads = machine__threads(machine, tid);
695 	struct thread *th;
696 
697 	down_read(&threads->lock);
698 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
699 	up_read(&threads->lock);
700 	return th;
701 }
702 
703 /*
704  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
705  * So here a single thread is created for that, but actually there is a separate
706  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
707  * is only 1. That causes problems for some tools, requiring workarounds. For
708  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
709  */
710 struct thread *machine__idle_thread(struct machine *machine)
711 {
712 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
713 
714 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
715 	    thread__set_namespaces(thread, 0, NULL))
716 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
717 
718 	return thread;
719 }
720 
721 struct comm *machine__thread_exec_comm(struct machine *machine,
722 				       struct thread *thread)
723 {
724 	if (machine->comm_exec)
725 		return thread__exec_comm(thread);
726 	else
727 		return thread__comm(thread);
728 }
729 
730 int machine__process_comm_event(struct machine *machine, union perf_event *event,
731 				struct perf_sample *sample)
732 {
733 	struct thread *thread = machine__findnew_thread(machine,
734 							event->comm.pid,
735 							event->comm.tid);
736 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
737 	int err = 0;
738 
739 	if (exec)
740 		machine->comm_exec = true;
741 
742 	if (dump_trace)
743 		perf_event__fprintf_comm(event, stdout);
744 
745 	if (thread == NULL ||
746 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
747 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
748 		err = -1;
749 	}
750 
751 	thread__put(thread);
752 
753 	return err;
754 }
755 
756 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
757 				      union perf_event *event,
758 				      struct perf_sample *sample __maybe_unused)
759 {
760 	struct thread *thread = machine__findnew_thread(machine,
761 							event->namespaces.pid,
762 							event->namespaces.tid);
763 	int err = 0;
764 
765 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
766 		  "\nWARNING: kernel seems to support more namespaces than perf"
767 		  " tool.\nTry updating the perf tool..\n\n");
768 
769 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
770 		  "\nWARNING: perf tool seems to support more namespaces than"
771 		  " the kernel.\nTry updating the kernel..\n\n");
772 
773 	if (dump_trace)
774 		perf_event__fprintf_namespaces(event, stdout);
775 
776 	if (thread == NULL ||
777 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
778 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
779 		err = -1;
780 	}
781 
782 	thread__put(thread);
783 
784 	return err;
785 }
786 
787 int machine__process_cgroup_event(struct machine *machine,
788 				  union perf_event *event,
789 				  struct perf_sample *sample __maybe_unused)
790 {
791 	struct cgroup *cgrp;
792 
793 	if (dump_trace)
794 		perf_event__fprintf_cgroup(event, stdout);
795 
796 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
797 	if (cgrp == NULL)
798 		return -ENOMEM;
799 
800 	return 0;
801 }
802 
803 int machine__process_lost_event(struct machine *machine __maybe_unused,
804 				union perf_event *event, struct perf_sample *sample __maybe_unused)
805 {
806 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
807 		    event->lost.id, event->lost.lost);
808 	return 0;
809 }
810 
811 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
812 					union perf_event *event, struct perf_sample *sample)
813 {
814 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
815 		    sample->id, event->lost_samples.lost);
816 	return 0;
817 }
818 
819 static struct dso *machine__findnew_module_dso(struct machine *machine,
820 					       struct kmod_path *m,
821 					       const char *filename)
822 {
823 	struct dso *dso;
824 
825 	down_write(&machine->dsos.lock);
826 
827 	dso = __dsos__find(&machine->dsos, m->name, true);
828 	if (!dso) {
829 		dso = __dsos__addnew(&machine->dsos, m->name);
830 		if (dso == NULL)
831 			goto out_unlock;
832 
833 		dso__set_module_info(dso, m, machine);
834 		dso__set_long_name(dso, strdup(filename), true);
835 		dso->kernel = DSO_SPACE__KERNEL;
836 	}
837 
838 	dso__get(dso);
839 out_unlock:
840 	up_write(&machine->dsos.lock);
841 	return dso;
842 }
843 
844 int machine__process_aux_event(struct machine *machine __maybe_unused,
845 			       union perf_event *event)
846 {
847 	if (dump_trace)
848 		perf_event__fprintf_aux(event, stdout);
849 	return 0;
850 }
851 
852 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
853 					union perf_event *event)
854 {
855 	if (dump_trace)
856 		perf_event__fprintf_itrace_start(event, stdout);
857 	return 0;
858 }
859 
860 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
861 					    union perf_event *event)
862 {
863 	if (dump_trace)
864 		perf_event__fprintf_aux_output_hw_id(event, stdout);
865 	return 0;
866 }
867 
868 int machine__process_switch_event(struct machine *machine __maybe_unused,
869 				  union perf_event *event)
870 {
871 	if (dump_trace)
872 		perf_event__fprintf_switch(event, stdout);
873 	return 0;
874 }
875 
876 static int machine__process_ksymbol_register(struct machine *machine,
877 					     union perf_event *event,
878 					     struct perf_sample *sample __maybe_unused)
879 {
880 	struct symbol *sym;
881 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
882 
883 	if (!map) {
884 		struct dso *dso = dso__new(event->ksymbol.name);
885 
886 		if (dso) {
887 			dso->kernel = DSO_SPACE__KERNEL;
888 			map = map__new2(0, dso);
889 			dso__put(dso);
890 		}
891 
892 		if (!dso || !map) {
893 			return -ENOMEM;
894 		}
895 
896 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
897 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
898 			map->dso->data.file_size = event->ksymbol.len;
899 			dso__set_loaded(map->dso);
900 		}
901 
902 		map->start = event->ksymbol.addr;
903 		map->end = map->start + event->ksymbol.len;
904 		maps__insert(machine__kernel_maps(machine), map);
905 		map__put(map);
906 		dso__set_loaded(dso);
907 
908 		if (is_bpf_image(event->ksymbol.name)) {
909 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
910 			dso__set_long_name(dso, "", false);
911 		}
912 	}
913 
914 	sym = symbol__new(map->map_ip(map, map->start),
915 			  event->ksymbol.len,
916 			  0, 0, event->ksymbol.name);
917 	if (!sym)
918 		return -ENOMEM;
919 	dso__insert_symbol(map->dso, sym);
920 	return 0;
921 }
922 
923 static int machine__process_ksymbol_unregister(struct machine *machine,
924 					       union perf_event *event,
925 					       struct perf_sample *sample __maybe_unused)
926 {
927 	struct symbol *sym;
928 	struct map *map;
929 
930 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
931 	if (!map)
932 		return 0;
933 
934 	if (map != machine->vmlinux_map)
935 		maps__remove(machine__kernel_maps(machine), map);
936 	else {
937 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
938 		if (sym)
939 			dso__delete_symbol(map->dso, sym);
940 	}
941 
942 	return 0;
943 }
944 
945 int machine__process_ksymbol(struct machine *machine __maybe_unused,
946 			     union perf_event *event,
947 			     struct perf_sample *sample)
948 {
949 	if (dump_trace)
950 		perf_event__fprintf_ksymbol(event, stdout);
951 
952 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
953 		return machine__process_ksymbol_unregister(machine, event,
954 							   sample);
955 	return machine__process_ksymbol_register(machine, event, sample);
956 }
957 
958 int machine__process_text_poke(struct machine *machine, union perf_event *event,
959 			       struct perf_sample *sample __maybe_unused)
960 {
961 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
962 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
963 
964 	if (dump_trace)
965 		perf_event__fprintf_text_poke(event, machine, stdout);
966 
967 	if (!event->text_poke.new_len)
968 		return 0;
969 
970 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
971 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
972 		return 0;
973 	}
974 
975 	if (map && map->dso) {
976 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
977 		int ret;
978 
979 		/*
980 		 * Kernel maps might be changed when loading symbols so loading
981 		 * must be done prior to using kernel maps.
982 		 */
983 		map__load(map);
984 		ret = dso__data_write_cache_addr(map->dso, map, machine,
985 						 event->text_poke.addr,
986 						 new_bytes,
987 						 event->text_poke.new_len);
988 		if (ret != event->text_poke.new_len)
989 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
990 				 event->text_poke.addr);
991 	} else {
992 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
993 			 event->text_poke.addr);
994 	}
995 
996 	return 0;
997 }
998 
999 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000 					      const char *filename)
1001 {
1002 	struct map *map = NULL;
1003 	struct kmod_path m;
1004 	struct dso *dso;
1005 
1006 	if (kmod_path__parse_name(&m, filename))
1007 		return NULL;
1008 
1009 	dso = machine__findnew_module_dso(machine, &m, filename);
1010 	if (dso == NULL)
1011 		goto out;
1012 
1013 	map = map__new2(start, dso);
1014 	if (map == NULL)
1015 		goto out;
1016 
1017 	maps__insert(machine__kernel_maps(machine), map);
1018 
1019 	/* Put the map here because maps__insert already got it */
1020 	map__put(map);
1021 out:
1022 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1023 	dso__put(dso);
1024 	zfree(&m.name);
1025 	return map;
1026 }
1027 
1028 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029 {
1030 	struct rb_node *nd;
1031 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032 
1033 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042 				     bool (skip)(struct dso *dso, int parm), int parm)
1043 {
1044 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045 }
1046 
1047 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048 				     bool (skip)(struct dso *dso, int parm), int parm)
1049 {
1050 	struct rb_node *nd;
1051 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052 
1053 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056 	}
1057 	return ret;
1058 }
1059 
1060 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061 {
1062 	int i;
1063 	size_t printed = 0;
1064 	struct dso *kdso = machine__kernel_dso(machine);
1065 
1066 	if (kdso->has_build_id) {
1067 		char filename[PATH_MAX];
1068 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069 					   false))
1070 			printed += fprintf(fp, "[0] %s\n", filename);
1071 	}
1072 
1073 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074 		printed += fprintf(fp, "[%d] %s\n",
1075 				   i + kdso->has_build_id, vmlinux_path[i]);
1076 
1077 	return printed;
1078 }
1079 
1080 size_t machine__fprintf(struct machine *machine, FILE *fp)
1081 {
1082 	struct rb_node *nd;
1083 	size_t ret;
1084 	int i;
1085 
1086 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087 		struct threads *threads = &machine->threads[i];
1088 
1089 		down_read(&threads->lock);
1090 
1091 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1092 
1093 		for (nd = rb_first_cached(&threads->entries); nd;
1094 		     nd = rb_next(nd)) {
1095 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1096 
1097 			ret += thread__fprintf(pos, fp);
1098 		}
1099 
1100 		up_read(&threads->lock);
1101 	}
1102 	return ret;
1103 }
1104 
1105 static struct dso *machine__get_kernel(struct machine *machine)
1106 {
1107 	const char *vmlinux_name = machine->mmap_name;
1108 	struct dso *kernel;
1109 
1110 	if (machine__is_host(machine)) {
1111 		if (symbol_conf.vmlinux_name)
1112 			vmlinux_name = symbol_conf.vmlinux_name;
1113 
1114 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1115 						 "[kernel]", DSO_SPACE__KERNEL);
1116 	} else {
1117 		if (symbol_conf.default_guest_vmlinux_name)
1118 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119 
1120 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1121 						 "[guest.kernel]",
1122 						 DSO_SPACE__KERNEL_GUEST);
1123 	}
1124 
1125 	if (kernel != NULL && (!kernel->has_build_id))
1126 		dso__read_running_kernel_build_id(kernel, machine);
1127 
1128 	return kernel;
1129 }
1130 
1131 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1132 				    size_t bufsz)
1133 {
1134 	if (machine__is_default_guest(machine))
1135 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1136 	else
1137 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1138 }
1139 
1140 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1141 
1142 /* Figure out the start address of kernel map from /proc/kallsyms.
1143  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1144  * symbol_name if it's not that important.
1145  */
1146 static int machine__get_running_kernel_start(struct machine *machine,
1147 					     const char **symbol_name,
1148 					     u64 *start, u64 *end)
1149 {
1150 	char filename[PATH_MAX];
1151 	int i, err = -1;
1152 	const char *name;
1153 	u64 addr = 0;
1154 
1155 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1156 
1157 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1158 		return 0;
1159 
1160 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1161 		err = kallsyms__get_function_start(filename, name, &addr);
1162 		if (!err)
1163 			break;
1164 	}
1165 
1166 	if (err)
1167 		return -1;
1168 
1169 	if (symbol_name)
1170 		*symbol_name = name;
1171 
1172 	*start = addr;
1173 
1174 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1175 	if (!err)
1176 		*end = addr;
1177 
1178 	return 0;
1179 }
1180 
1181 int machine__create_extra_kernel_map(struct machine *machine,
1182 				     struct dso *kernel,
1183 				     struct extra_kernel_map *xm)
1184 {
1185 	struct kmap *kmap;
1186 	struct map *map;
1187 
1188 	map = map__new2(xm->start, kernel);
1189 	if (!map)
1190 		return -1;
1191 
1192 	map->end   = xm->end;
1193 	map->pgoff = xm->pgoff;
1194 
1195 	kmap = map__kmap(map);
1196 
1197 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1198 
1199 	maps__insert(machine__kernel_maps(machine), map);
1200 
1201 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1202 		  kmap->name, map->start, map->end);
1203 
1204 	map__put(map);
1205 
1206 	return 0;
1207 }
1208 
1209 static u64 find_entry_trampoline(struct dso *dso)
1210 {
1211 	/* Duplicates are removed so lookup all aliases */
1212 	const char *syms[] = {
1213 		"_entry_trampoline",
1214 		"__entry_trampoline_start",
1215 		"entry_SYSCALL_64_trampoline",
1216 	};
1217 	struct symbol *sym = dso__first_symbol(dso);
1218 	unsigned int i;
1219 
1220 	for (; sym; sym = dso__next_symbol(sym)) {
1221 		if (sym->binding != STB_GLOBAL)
1222 			continue;
1223 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1224 			if (!strcmp(sym->name, syms[i]))
1225 				return sym->start;
1226 		}
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 /*
1233  * These values can be used for kernels that do not have symbols for the entry
1234  * trampolines in kallsyms.
1235  */
1236 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1237 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1238 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1239 
1240 /* Map x86_64 PTI entry trampolines */
1241 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1242 					  struct dso *kernel)
1243 {
1244 	struct maps *kmaps = machine__kernel_maps(machine);
1245 	int nr_cpus_avail, cpu;
1246 	bool found = false;
1247 	struct map *map;
1248 	u64 pgoff;
1249 
1250 	/*
1251 	 * In the vmlinux case, pgoff is a virtual address which must now be
1252 	 * mapped to a vmlinux offset.
1253 	 */
1254 	maps__for_each_entry(kmaps, map) {
1255 		struct kmap *kmap = __map__kmap(map);
1256 		struct map *dest_map;
1257 
1258 		if (!kmap || !is_entry_trampoline(kmap->name))
1259 			continue;
1260 
1261 		dest_map = maps__find(kmaps, map->pgoff);
1262 		if (dest_map != map)
1263 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1264 		found = true;
1265 	}
1266 	if (found || machine->trampolines_mapped)
1267 		return 0;
1268 
1269 	pgoff = find_entry_trampoline(kernel);
1270 	if (!pgoff)
1271 		return 0;
1272 
1273 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1274 
1275 	/* Add a 1 page map for each CPU's entry trampoline */
1276 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1277 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1278 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1279 			 X86_64_ENTRY_TRAMPOLINE;
1280 		struct extra_kernel_map xm = {
1281 			.start = va,
1282 			.end   = va + page_size,
1283 			.pgoff = pgoff,
1284 		};
1285 
1286 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1287 
1288 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1289 			return -1;
1290 	}
1291 
1292 	machine->trampolines_mapped = nr_cpus_avail;
1293 
1294 	return 0;
1295 }
1296 
1297 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1298 					     struct dso *kernel __maybe_unused)
1299 {
1300 	return 0;
1301 }
1302 
1303 static int
1304 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1305 {
1306 	/* In case of renewal the kernel map, destroy previous one */
1307 	machine__destroy_kernel_maps(machine);
1308 
1309 	machine->vmlinux_map = map__new2(0, kernel);
1310 	if (machine->vmlinux_map == NULL)
1311 		return -1;
1312 
1313 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1314 	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1315 	return 0;
1316 }
1317 
1318 void machine__destroy_kernel_maps(struct machine *machine)
1319 {
1320 	struct kmap *kmap;
1321 	struct map *map = machine__kernel_map(machine);
1322 
1323 	if (map == NULL)
1324 		return;
1325 
1326 	kmap = map__kmap(map);
1327 	maps__remove(machine__kernel_maps(machine), map);
1328 	if (kmap && kmap->ref_reloc_sym) {
1329 		zfree((char **)&kmap->ref_reloc_sym->name);
1330 		zfree(&kmap->ref_reloc_sym);
1331 	}
1332 
1333 	map__zput(machine->vmlinux_map);
1334 }
1335 
1336 int machines__create_guest_kernel_maps(struct machines *machines)
1337 {
1338 	int ret = 0;
1339 	struct dirent **namelist = NULL;
1340 	int i, items = 0;
1341 	char path[PATH_MAX];
1342 	pid_t pid;
1343 	char *endp;
1344 
1345 	if (symbol_conf.default_guest_vmlinux_name ||
1346 	    symbol_conf.default_guest_modules ||
1347 	    symbol_conf.default_guest_kallsyms) {
1348 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1349 	}
1350 
1351 	if (symbol_conf.guestmount) {
1352 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1353 		if (items <= 0)
1354 			return -ENOENT;
1355 		for (i = 0; i < items; i++) {
1356 			if (!isdigit(namelist[i]->d_name[0])) {
1357 				/* Filter out . and .. */
1358 				continue;
1359 			}
1360 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1361 			if ((*endp != '\0') ||
1362 			    (endp == namelist[i]->d_name) ||
1363 			    (errno == ERANGE)) {
1364 				pr_debug("invalid directory (%s). Skipping.\n",
1365 					 namelist[i]->d_name);
1366 				continue;
1367 			}
1368 			sprintf(path, "%s/%s/proc/kallsyms",
1369 				symbol_conf.guestmount,
1370 				namelist[i]->d_name);
1371 			ret = access(path, R_OK);
1372 			if (ret) {
1373 				pr_debug("Can't access file %s\n", path);
1374 				goto failure;
1375 			}
1376 			machines__create_kernel_maps(machines, pid);
1377 		}
1378 failure:
1379 		free(namelist);
1380 	}
1381 
1382 	return ret;
1383 }
1384 
1385 void machines__destroy_kernel_maps(struct machines *machines)
1386 {
1387 	struct rb_node *next = rb_first_cached(&machines->guests);
1388 
1389 	machine__destroy_kernel_maps(&machines->host);
1390 
1391 	while (next) {
1392 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1393 
1394 		next = rb_next(&pos->rb_node);
1395 		rb_erase_cached(&pos->rb_node, &machines->guests);
1396 		machine__delete(pos);
1397 	}
1398 }
1399 
1400 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1401 {
1402 	struct machine *machine = machines__findnew(machines, pid);
1403 
1404 	if (machine == NULL)
1405 		return -1;
1406 
1407 	return machine__create_kernel_maps(machine);
1408 }
1409 
1410 int machine__load_kallsyms(struct machine *machine, const char *filename)
1411 {
1412 	struct map *map = machine__kernel_map(machine);
1413 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1414 
1415 	if (ret > 0) {
1416 		dso__set_loaded(map->dso);
1417 		/*
1418 		 * Since /proc/kallsyms will have multiple sessions for the
1419 		 * kernel, with modules between them, fixup the end of all
1420 		 * sections.
1421 		 */
1422 		maps__fixup_end(machine__kernel_maps(machine));
1423 	}
1424 
1425 	return ret;
1426 }
1427 
1428 int machine__load_vmlinux_path(struct machine *machine)
1429 {
1430 	struct map *map = machine__kernel_map(machine);
1431 	int ret = dso__load_vmlinux_path(map->dso, map);
1432 
1433 	if (ret > 0)
1434 		dso__set_loaded(map->dso);
1435 
1436 	return ret;
1437 }
1438 
1439 static char *get_kernel_version(const char *root_dir)
1440 {
1441 	char version[PATH_MAX];
1442 	FILE *file;
1443 	char *name, *tmp;
1444 	const char *prefix = "Linux version ";
1445 
1446 	sprintf(version, "%s/proc/version", root_dir);
1447 	file = fopen(version, "r");
1448 	if (!file)
1449 		return NULL;
1450 
1451 	tmp = fgets(version, sizeof(version), file);
1452 	fclose(file);
1453 	if (!tmp)
1454 		return NULL;
1455 
1456 	name = strstr(version, prefix);
1457 	if (!name)
1458 		return NULL;
1459 	name += strlen(prefix);
1460 	tmp = strchr(name, ' ');
1461 	if (tmp)
1462 		*tmp = '\0';
1463 
1464 	return strdup(name);
1465 }
1466 
1467 static bool is_kmod_dso(struct dso *dso)
1468 {
1469 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1470 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1471 }
1472 
1473 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1474 {
1475 	char *long_name;
1476 	struct map *map = maps__find_by_name(maps, m->name);
1477 
1478 	if (map == NULL)
1479 		return 0;
1480 
1481 	long_name = strdup(path);
1482 	if (long_name == NULL)
1483 		return -ENOMEM;
1484 
1485 	dso__set_long_name(map->dso, long_name, true);
1486 	dso__kernel_module_get_build_id(map->dso, "");
1487 
1488 	/*
1489 	 * Full name could reveal us kmod compression, so
1490 	 * we need to update the symtab_type if needed.
1491 	 */
1492 	if (m->comp && is_kmod_dso(map->dso)) {
1493 		map->dso->symtab_type++;
1494 		map->dso->comp = m->comp;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1501 {
1502 	struct dirent *dent;
1503 	DIR *dir = opendir(dir_name);
1504 	int ret = 0;
1505 
1506 	if (!dir) {
1507 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1508 		return -1;
1509 	}
1510 
1511 	while ((dent = readdir(dir)) != NULL) {
1512 		char path[PATH_MAX];
1513 		struct stat st;
1514 
1515 		/*sshfs might return bad dent->d_type, so we have to stat*/
1516 		path__join(path, sizeof(path), dir_name, dent->d_name);
1517 		if (stat(path, &st))
1518 			continue;
1519 
1520 		if (S_ISDIR(st.st_mode)) {
1521 			if (!strcmp(dent->d_name, ".") ||
1522 			    !strcmp(dent->d_name, ".."))
1523 				continue;
1524 
1525 			/* Do not follow top-level source and build symlinks */
1526 			if (depth == 0) {
1527 				if (!strcmp(dent->d_name, "source") ||
1528 				    !strcmp(dent->d_name, "build"))
1529 					continue;
1530 			}
1531 
1532 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1533 			if (ret < 0)
1534 				goto out;
1535 		} else {
1536 			struct kmod_path m;
1537 
1538 			ret = kmod_path__parse_name(&m, dent->d_name);
1539 			if (ret)
1540 				goto out;
1541 
1542 			if (m.kmod)
1543 				ret = maps__set_module_path(maps, path, &m);
1544 
1545 			zfree(&m.name);
1546 
1547 			if (ret)
1548 				goto out;
1549 		}
1550 	}
1551 
1552 out:
1553 	closedir(dir);
1554 	return ret;
1555 }
1556 
1557 static int machine__set_modules_path(struct machine *machine)
1558 {
1559 	char *version;
1560 	char modules_path[PATH_MAX];
1561 
1562 	version = get_kernel_version(machine->root_dir);
1563 	if (!version)
1564 		return -1;
1565 
1566 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1567 		 machine->root_dir, version);
1568 	free(version);
1569 
1570 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1571 }
1572 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1573 				u64 *size __maybe_unused,
1574 				const char *name __maybe_unused)
1575 {
1576 	return 0;
1577 }
1578 
1579 static int machine__create_module(void *arg, const char *name, u64 start,
1580 				  u64 size)
1581 {
1582 	struct machine *machine = arg;
1583 	struct map *map;
1584 
1585 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1586 		return -1;
1587 
1588 	map = machine__addnew_module_map(machine, start, name);
1589 	if (map == NULL)
1590 		return -1;
1591 	map->end = start + size;
1592 
1593 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1594 
1595 	return 0;
1596 }
1597 
1598 static int machine__create_modules(struct machine *machine)
1599 {
1600 	const char *modules;
1601 	char path[PATH_MAX];
1602 
1603 	if (machine__is_default_guest(machine)) {
1604 		modules = symbol_conf.default_guest_modules;
1605 	} else {
1606 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1607 		modules = path;
1608 	}
1609 
1610 	if (symbol__restricted_filename(modules, "/proc/modules"))
1611 		return -1;
1612 
1613 	if (modules__parse(modules, machine, machine__create_module))
1614 		return -1;
1615 
1616 	if (!machine__set_modules_path(machine))
1617 		return 0;
1618 
1619 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1620 
1621 	return 0;
1622 }
1623 
1624 static void machine__set_kernel_mmap(struct machine *machine,
1625 				     u64 start, u64 end)
1626 {
1627 	machine->vmlinux_map->start = start;
1628 	machine->vmlinux_map->end   = end;
1629 	/*
1630 	 * Be a bit paranoid here, some perf.data file came with
1631 	 * a zero sized synthesized MMAP event for the kernel.
1632 	 */
1633 	if (start == 0 && end == 0)
1634 		machine->vmlinux_map->end = ~0ULL;
1635 }
1636 
1637 static void machine__update_kernel_mmap(struct machine *machine,
1638 				     u64 start, u64 end)
1639 {
1640 	struct map *map = machine__kernel_map(machine);
1641 
1642 	map__get(map);
1643 	maps__remove(machine__kernel_maps(machine), map);
1644 
1645 	machine__set_kernel_mmap(machine, start, end);
1646 
1647 	maps__insert(machine__kernel_maps(machine), map);
1648 	map__put(map);
1649 }
1650 
1651 int machine__create_kernel_maps(struct machine *machine)
1652 {
1653 	struct dso *kernel = machine__get_kernel(machine);
1654 	const char *name = NULL;
1655 	struct map *map;
1656 	u64 start = 0, end = ~0ULL;
1657 	int ret;
1658 
1659 	if (kernel == NULL)
1660 		return -1;
1661 
1662 	ret = __machine__create_kernel_maps(machine, kernel);
1663 	if (ret < 0)
1664 		goto out_put;
1665 
1666 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1667 		if (machine__is_host(machine))
1668 			pr_debug("Problems creating module maps, "
1669 				 "continuing anyway...\n");
1670 		else
1671 			pr_debug("Problems creating module maps for guest %d, "
1672 				 "continuing anyway...\n", machine->pid);
1673 	}
1674 
1675 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1676 		if (name &&
1677 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1678 			machine__destroy_kernel_maps(machine);
1679 			ret = -1;
1680 			goto out_put;
1681 		}
1682 
1683 		/*
1684 		 * we have a real start address now, so re-order the kmaps
1685 		 * assume it's the last in the kmaps
1686 		 */
1687 		machine__update_kernel_mmap(machine, start, end);
1688 	}
1689 
1690 	if (machine__create_extra_kernel_maps(machine, kernel))
1691 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1692 
1693 	if (end == ~0ULL) {
1694 		/* update end address of the kernel map using adjacent module address */
1695 		map = map__next(machine__kernel_map(machine));
1696 		if (map)
1697 			machine__set_kernel_mmap(machine, start, map->start);
1698 	}
1699 
1700 out_put:
1701 	dso__put(kernel);
1702 	return ret;
1703 }
1704 
1705 static bool machine__uses_kcore(struct machine *machine)
1706 {
1707 	struct dso *dso;
1708 
1709 	list_for_each_entry(dso, &machine->dsos.head, node) {
1710 		if (dso__is_kcore(dso))
1711 			return true;
1712 	}
1713 
1714 	return false;
1715 }
1716 
1717 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1718 					     struct extra_kernel_map *xm)
1719 {
1720 	return machine__is(machine, "x86_64") &&
1721 	       is_entry_trampoline(xm->name);
1722 }
1723 
1724 static int machine__process_extra_kernel_map(struct machine *machine,
1725 					     struct extra_kernel_map *xm)
1726 {
1727 	struct dso *kernel = machine__kernel_dso(machine);
1728 
1729 	if (kernel == NULL)
1730 		return -1;
1731 
1732 	return machine__create_extra_kernel_map(machine, kernel, xm);
1733 }
1734 
1735 static int machine__process_kernel_mmap_event(struct machine *machine,
1736 					      struct extra_kernel_map *xm,
1737 					      struct build_id *bid)
1738 {
1739 	struct map *map;
1740 	enum dso_space_type dso_space;
1741 	bool is_kernel_mmap;
1742 	const char *mmap_name = machine->mmap_name;
1743 
1744 	/* If we have maps from kcore then we do not need or want any others */
1745 	if (machine__uses_kcore(machine))
1746 		return 0;
1747 
1748 	if (machine__is_host(machine))
1749 		dso_space = DSO_SPACE__KERNEL;
1750 	else
1751 		dso_space = DSO_SPACE__KERNEL_GUEST;
1752 
1753 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1754 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1755 		/*
1756 		 * If the event was recorded inside the guest and injected into
1757 		 * the host perf.data file, then it will match a host mmap_name,
1758 		 * so try that - see machine__set_mmap_name().
1759 		 */
1760 		mmap_name = "[kernel.kallsyms]";
1761 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1762 	}
1763 	if (xm->name[0] == '/' ||
1764 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1765 		map = machine__addnew_module_map(machine, xm->start,
1766 						 xm->name);
1767 		if (map == NULL)
1768 			goto out_problem;
1769 
1770 		map->end = map->start + xm->end - xm->start;
1771 
1772 		if (build_id__is_defined(bid))
1773 			dso__set_build_id(map->dso, bid);
1774 
1775 	} else if (is_kernel_mmap) {
1776 		const char *symbol_name = xm->name + strlen(mmap_name);
1777 		/*
1778 		 * Should be there already, from the build-id table in
1779 		 * the header.
1780 		 */
1781 		struct dso *kernel = NULL;
1782 		struct dso *dso;
1783 
1784 		down_read(&machine->dsos.lock);
1785 
1786 		list_for_each_entry(dso, &machine->dsos.head, node) {
1787 
1788 			/*
1789 			 * The cpumode passed to is_kernel_module is not the
1790 			 * cpumode of *this* event. If we insist on passing
1791 			 * correct cpumode to is_kernel_module, we should
1792 			 * record the cpumode when we adding this dso to the
1793 			 * linked list.
1794 			 *
1795 			 * However we don't really need passing correct
1796 			 * cpumode.  We know the correct cpumode must be kernel
1797 			 * mode (if not, we should not link it onto kernel_dsos
1798 			 * list).
1799 			 *
1800 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1801 			 * is_kernel_module() treats it as a kernel cpumode.
1802 			 */
1803 
1804 			if (!dso->kernel ||
1805 			    is_kernel_module(dso->long_name,
1806 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1807 				continue;
1808 
1809 
1810 			kernel = dso;
1811 			break;
1812 		}
1813 
1814 		up_read(&machine->dsos.lock);
1815 
1816 		if (kernel == NULL)
1817 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1818 		if (kernel == NULL)
1819 			goto out_problem;
1820 
1821 		kernel->kernel = dso_space;
1822 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1823 			dso__put(kernel);
1824 			goto out_problem;
1825 		}
1826 
1827 		if (strstr(kernel->long_name, "vmlinux"))
1828 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1829 
1830 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1831 
1832 		if (build_id__is_defined(bid))
1833 			dso__set_build_id(kernel, bid);
1834 
1835 		/*
1836 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1837 		 * symbol. Effectively having zero here means that at record
1838 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1839 		 */
1840 		if (xm->pgoff != 0) {
1841 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1842 							symbol_name,
1843 							xm->pgoff);
1844 		}
1845 
1846 		if (machine__is_default_guest(machine)) {
1847 			/*
1848 			 * preload dso of guest kernel and modules
1849 			 */
1850 			dso__load(kernel, machine__kernel_map(machine));
1851 		}
1852 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1853 		return machine__process_extra_kernel_map(machine, xm);
1854 	}
1855 	return 0;
1856 out_problem:
1857 	return -1;
1858 }
1859 
1860 int machine__process_mmap2_event(struct machine *machine,
1861 				 union perf_event *event,
1862 				 struct perf_sample *sample)
1863 {
1864 	struct thread *thread;
1865 	struct map *map;
1866 	struct dso_id dso_id = {
1867 		.maj = event->mmap2.maj,
1868 		.min = event->mmap2.min,
1869 		.ino = event->mmap2.ino,
1870 		.ino_generation = event->mmap2.ino_generation,
1871 	};
1872 	struct build_id __bid, *bid = NULL;
1873 	int ret = 0;
1874 
1875 	if (dump_trace)
1876 		perf_event__fprintf_mmap2(event, stdout);
1877 
1878 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1879 		bid = &__bid;
1880 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1881 	}
1882 
1883 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1884 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1885 		struct extra_kernel_map xm = {
1886 			.start = event->mmap2.start,
1887 			.end   = event->mmap2.start + event->mmap2.len,
1888 			.pgoff = event->mmap2.pgoff,
1889 		};
1890 
1891 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1892 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1893 		if (ret < 0)
1894 			goto out_problem;
1895 		return 0;
1896 	}
1897 
1898 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1899 					event->mmap2.tid);
1900 	if (thread == NULL)
1901 		goto out_problem;
1902 
1903 	map = map__new(machine, event->mmap2.start,
1904 			event->mmap2.len, event->mmap2.pgoff,
1905 			&dso_id, event->mmap2.prot,
1906 			event->mmap2.flags, bid,
1907 			event->mmap2.filename, thread);
1908 
1909 	if (map == NULL)
1910 		goto out_problem_map;
1911 
1912 	ret = thread__insert_map(thread, map);
1913 	if (ret)
1914 		goto out_problem_insert;
1915 
1916 	thread__put(thread);
1917 	map__put(map);
1918 	return 0;
1919 
1920 out_problem_insert:
1921 	map__put(map);
1922 out_problem_map:
1923 	thread__put(thread);
1924 out_problem:
1925 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1926 	return 0;
1927 }
1928 
1929 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1930 				struct perf_sample *sample)
1931 {
1932 	struct thread *thread;
1933 	struct map *map;
1934 	u32 prot = 0;
1935 	int ret = 0;
1936 
1937 	if (dump_trace)
1938 		perf_event__fprintf_mmap(event, stdout);
1939 
1940 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1941 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1942 		struct extra_kernel_map xm = {
1943 			.start = event->mmap.start,
1944 			.end   = event->mmap.start + event->mmap.len,
1945 			.pgoff = event->mmap.pgoff,
1946 		};
1947 
1948 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1949 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1950 		if (ret < 0)
1951 			goto out_problem;
1952 		return 0;
1953 	}
1954 
1955 	thread = machine__findnew_thread(machine, event->mmap.pid,
1956 					 event->mmap.tid);
1957 	if (thread == NULL)
1958 		goto out_problem;
1959 
1960 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1961 		prot = PROT_EXEC;
1962 
1963 	map = map__new(machine, event->mmap.start,
1964 			event->mmap.len, event->mmap.pgoff,
1965 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1966 
1967 	if (map == NULL)
1968 		goto out_problem_map;
1969 
1970 	ret = thread__insert_map(thread, map);
1971 	if (ret)
1972 		goto out_problem_insert;
1973 
1974 	thread__put(thread);
1975 	map__put(map);
1976 	return 0;
1977 
1978 out_problem_insert:
1979 	map__put(map);
1980 out_problem_map:
1981 	thread__put(thread);
1982 out_problem:
1983 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1984 	return 0;
1985 }
1986 
1987 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1988 {
1989 	struct threads *threads = machine__threads(machine, th->tid);
1990 
1991 	if (threads->last_match == th)
1992 		threads__set_last_match(threads, NULL);
1993 
1994 	if (lock)
1995 		down_write(&threads->lock);
1996 
1997 	BUG_ON(refcount_read(&th->refcnt) == 0);
1998 
1999 	rb_erase_cached(&th->rb_node, &threads->entries);
2000 	RB_CLEAR_NODE(&th->rb_node);
2001 	--threads->nr;
2002 	/*
2003 	 * Move it first to the dead_threads list, then drop the reference,
2004 	 * if this is the last reference, then the thread__delete destructor
2005 	 * will be called and we will remove it from the dead_threads list.
2006 	 */
2007 	list_add_tail(&th->node, &threads->dead);
2008 
2009 	/*
2010 	 * We need to do the put here because if this is the last refcount,
2011 	 * then we will be touching the threads->dead head when removing the
2012 	 * thread.
2013 	 */
2014 	thread__put(th);
2015 
2016 	if (lock)
2017 		up_write(&threads->lock);
2018 }
2019 
2020 void machine__remove_thread(struct machine *machine, struct thread *th)
2021 {
2022 	return __machine__remove_thread(machine, th, true);
2023 }
2024 
2025 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2026 				struct perf_sample *sample)
2027 {
2028 	struct thread *thread = machine__find_thread(machine,
2029 						     event->fork.pid,
2030 						     event->fork.tid);
2031 	struct thread *parent = machine__findnew_thread(machine,
2032 							event->fork.ppid,
2033 							event->fork.ptid);
2034 	bool do_maps_clone = true;
2035 	int err = 0;
2036 
2037 	if (dump_trace)
2038 		perf_event__fprintf_task(event, stdout);
2039 
2040 	/*
2041 	 * There may be an existing thread that is not actually the parent,
2042 	 * either because we are processing events out of order, or because the
2043 	 * (fork) event that would have removed the thread was lost. Assume the
2044 	 * latter case and continue on as best we can.
2045 	 */
2046 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2047 		dump_printf("removing erroneous parent thread %d/%d\n",
2048 			    parent->pid_, parent->tid);
2049 		machine__remove_thread(machine, parent);
2050 		thread__put(parent);
2051 		parent = machine__findnew_thread(machine, event->fork.ppid,
2052 						 event->fork.ptid);
2053 	}
2054 
2055 	/* if a thread currently exists for the thread id remove it */
2056 	if (thread != NULL) {
2057 		machine__remove_thread(machine, thread);
2058 		thread__put(thread);
2059 	}
2060 
2061 	thread = machine__findnew_thread(machine, event->fork.pid,
2062 					 event->fork.tid);
2063 	/*
2064 	 * When synthesizing FORK events, we are trying to create thread
2065 	 * objects for the already running tasks on the machine.
2066 	 *
2067 	 * Normally, for a kernel FORK event, we want to clone the parent's
2068 	 * maps because that is what the kernel just did.
2069 	 *
2070 	 * But when synthesizing, this should not be done.  If we do, we end up
2071 	 * with overlapping maps as we process the synthesized MMAP2 events that
2072 	 * get delivered shortly thereafter.
2073 	 *
2074 	 * Use the FORK event misc flags in an internal way to signal this
2075 	 * situation, so we can elide the map clone when appropriate.
2076 	 */
2077 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2078 		do_maps_clone = false;
2079 
2080 	if (thread == NULL || parent == NULL ||
2081 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2082 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2083 		err = -1;
2084 	}
2085 	thread__put(thread);
2086 	thread__put(parent);
2087 
2088 	return err;
2089 }
2090 
2091 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2092 				struct perf_sample *sample __maybe_unused)
2093 {
2094 	struct thread *thread = machine__find_thread(machine,
2095 						     event->fork.pid,
2096 						     event->fork.tid);
2097 
2098 	if (dump_trace)
2099 		perf_event__fprintf_task(event, stdout);
2100 
2101 	if (thread != NULL) {
2102 		thread__exited(thread);
2103 		thread__put(thread);
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 int machine__process_event(struct machine *machine, union perf_event *event,
2110 			   struct perf_sample *sample)
2111 {
2112 	int ret;
2113 
2114 	switch (event->header.type) {
2115 	case PERF_RECORD_COMM:
2116 		ret = machine__process_comm_event(machine, event, sample); break;
2117 	case PERF_RECORD_MMAP:
2118 		ret = machine__process_mmap_event(machine, event, sample); break;
2119 	case PERF_RECORD_NAMESPACES:
2120 		ret = machine__process_namespaces_event(machine, event, sample); break;
2121 	case PERF_RECORD_CGROUP:
2122 		ret = machine__process_cgroup_event(machine, event, sample); break;
2123 	case PERF_RECORD_MMAP2:
2124 		ret = machine__process_mmap2_event(machine, event, sample); break;
2125 	case PERF_RECORD_FORK:
2126 		ret = machine__process_fork_event(machine, event, sample); break;
2127 	case PERF_RECORD_EXIT:
2128 		ret = machine__process_exit_event(machine, event, sample); break;
2129 	case PERF_RECORD_LOST:
2130 		ret = machine__process_lost_event(machine, event, sample); break;
2131 	case PERF_RECORD_AUX:
2132 		ret = machine__process_aux_event(machine, event); break;
2133 	case PERF_RECORD_ITRACE_START:
2134 		ret = machine__process_itrace_start_event(machine, event); break;
2135 	case PERF_RECORD_LOST_SAMPLES:
2136 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2137 	case PERF_RECORD_SWITCH:
2138 	case PERF_RECORD_SWITCH_CPU_WIDE:
2139 		ret = machine__process_switch_event(machine, event); break;
2140 	case PERF_RECORD_KSYMBOL:
2141 		ret = machine__process_ksymbol(machine, event, sample); break;
2142 	case PERF_RECORD_BPF_EVENT:
2143 		ret = machine__process_bpf(machine, event, sample); break;
2144 	case PERF_RECORD_TEXT_POKE:
2145 		ret = machine__process_text_poke(machine, event, sample); break;
2146 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2147 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2148 	default:
2149 		ret = -1;
2150 		break;
2151 	}
2152 
2153 	return ret;
2154 }
2155 
2156 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2157 {
2158 	if (!regexec(regex, sym->name, 0, NULL, 0))
2159 		return true;
2160 	return false;
2161 }
2162 
2163 static void ip__resolve_ams(struct thread *thread,
2164 			    struct addr_map_symbol *ams,
2165 			    u64 ip)
2166 {
2167 	struct addr_location al;
2168 
2169 	memset(&al, 0, sizeof(al));
2170 	/*
2171 	 * We cannot use the header.misc hint to determine whether a
2172 	 * branch stack address is user, kernel, guest, hypervisor.
2173 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2174 	 * Thus, we have to try consecutively until we find a match
2175 	 * or else, the symbol is unknown
2176 	 */
2177 	thread__find_cpumode_addr_location(thread, ip, &al);
2178 
2179 	ams->addr = ip;
2180 	ams->al_addr = al.addr;
2181 	ams->al_level = al.level;
2182 	ams->ms.maps = al.maps;
2183 	ams->ms.sym = al.sym;
2184 	ams->ms.map = al.map;
2185 	ams->phys_addr = 0;
2186 	ams->data_page_size = 0;
2187 }
2188 
2189 static void ip__resolve_data(struct thread *thread,
2190 			     u8 m, struct addr_map_symbol *ams,
2191 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2192 {
2193 	struct addr_location al;
2194 
2195 	memset(&al, 0, sizeof(al));
2196 
2197 	thread__find_symbol(thread, m, addr, &al);
2198 
2199 	ams->addr = addr;
2200 	ams->al_addr = al.addr;
2201 	ams->al_level = al.level;
2202 	ams->ms.maps = al.maps;
2203 	ams->ms.sym = al.sym;
2204 	ams->ms.map = al.map;
2205 	ams->phys_addr = phys_addr;
2206 	ams->data_page_size = daddr_page_size;
2207 }
2208 
2209 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2210 				     struct addr_location *al)
2211 {
2212 	struct mem_info *mi = mem_info__new();
2213 
2214 	if (!mi)
2215 		return NULL;
2216 
2217 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2218 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2219 			 sample->addr, sample->phys_addr,
2220 			 sample->data_page_size);
2221 	mi->data_src.val = sample->data_src;
2222 
2223 	return mi;
2224 }
2225 
2226 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2227 {
2228 	struct map *map = ms->map;
2229 	char *srcline = NULL;
2230 
2231 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2232 		return srcline;
2233 
2234 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2235 	if (!srcline) {
2236 		bool show_sym = false;
2237 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2238 
2239 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2240 				      ms->sym, show_sym, show_addr, ip);
2241 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2242 	}
2243 
2244 	return srcline;
2245 }
2246 
2247 struct iterations {
2248 	int nr_loop_iter;
2249 	u64 cycles;
2250 };
2251 
2252 static int add_callchain_ip(struct thread *thread,
2253 			    struct callchain_cursor *cursor,
2254 			    struct symbol **parent,
2255 			    struct addr_location *root_al,
2256 			    u8 *cpumode,
2257 			    u64 ip,
2258 			    bool branch,
2259 			    struct branch_flags *flags,
2260 			    struct iterations *iter,
2261 			    u64 branch_from)
2262 {
2263 	struct map_symbol ms;
2264 	struct addr_location al;
2265 	int nr_loop_iter = 0;
2266 	u64 iter_cycles = 0;
2267 	const char *srcline = NULL;
2268 
2269 	al.filtered = 0;
2270 	al.sym = NULL;
2271 	al.srcline = NULL;
2272 	if (!cpumode) {
2273 		thread__find_cpumode_addr_location(thread, ip, &al);
2274 	} else {
2275 		if (ip >= PERF_CONTEXT_MAX) {
2276 			switch (ip) {
2277 			case PERF_CONTEXT_HV:
2278 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2279 				break;
2280 			case PERF_CONTEXT_KERNEL:
2281 				*cpumode = PERF_RECORD_MISC_KERNEL;
2282 				break;
2283 			case PERF_CONTEXT_USER:
2284 				*cpumode = PERF_RECORD_MISC_USER;
2285 				break;
2286 			default:
2287 				pr_debug("invalid callchain context: "
2288 					 "%"PRId64"\n", (s64) ip);
2289 				/*
2290 				 * It seems the callchain is corrupted.
2291 				 * Discard all.
2292 				 */
2293 				callchain_cursor_reset(cursor);
2294 				return 1;
2295 			}
2296 			return 0;
2297 		}
2298 		thread__find_symbol(thread, *cpumode, ip, &al);
2299 	}
2300 
2301 	if (al.sym != NULL) {
2302 		if (perf_hpp_list.parent && !*parent &&
2303 		    symbol__match_regex(al.sym, &parent_regex))
2304 			*parent = al.sym;
2305 		else if (have_ignore_callees && root_al &&
2306 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2307 			/* Treat this symbol as the root,
2308 			   forgetting its callees. */
2309 			*root_al = al;
2310 			callchain_cursor_reset(cursor);
2311 		}
2312 	}
2313 
2314 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2315 		return 0;
2316 
2317 	if (iter) {
2318 		nr_loop_iter = iter->nr_loop_iter;
2319 		iter_cycles = iter->cycles;
2320 	}
2321 
2322 	ms.maps = al.maps;
2323 	ms.map = al.map;
2324 	ms.sym = al.sym;
2325 	srcline = callchain_srcline(&ms, al.addr);
2326 	return callchain_cursor_append(cursor, ip, &ms,
2327 				       branch, flags, nr_loop_iter,
2328 				       iter_cycles, branch_from, srcline);
2329 }
2330 
2331 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2332 					   struct addr_location *al)
2333 {
2334 	unsigned int i;
2335 	const struct branch_stack *bs = sample->branch_stack;
2336 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2337 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2338 
2339 	if (!bi)
2340 		return NULL;
2341 
2342 	for (i = 0; i < bs->nr; i++) {
2343 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2344 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2345 		bi[i].flags = entries[i].flags;
2346 	}
2347 	return bi;
2348 }
2349 
2350 static void save_iterations(struct iterations *iter,
2351 			    struct branch_entry *be, int nr)
2352 {
2353 	int i;
2354 
2355 	iter->nr_loop_iter++;
2356 	iter->cycles = 0;
2357 
2358 	for (i = 0; i < nr; i++)
2359 		iter->cycles += be[i].flags.cycles;
2360 }
2361 
2362 #define CHASHSZ 127
2363 #define CHASHBITS 7
2364 #define NO_ENTRY 0xff
2365 
2366 #define PERF_MAX_BRANCH_DEPTH 127
2367 
2368 /* Remove loops. */
2369 static int remove_loops(struct branch_entry *l, int nr,
2370 			struct iterations *iter)
2371 {
2372 	int i, j, off;
2373 	unsigned char chash[CHASHSZ];
2374 
2375 	memset(chash, NO_ENTRY, sizeof(chash));
2376 
2377 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2378 
2379 	for (i = 0; i < nr; i++) {
2380 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2381 
2382 		/* no collision handling for now */
2383 		if (chash[h] == NO_ENTRY) {
2384 			chash[h] = i;
2385 		} else if (l[chash[h]].from == l[i].from) {
2386 			bool is_loop = true;
2387 			/* check if it is a real loop */
2388 			off = 0;
2389 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2390 				if (l[j].from != l[i + off].from) {
2391 					is_loop = false;
2392 					break;
2393 				}
2394 			if (is_loop) {
2395 				j = nr - (i + off);
2396 				if (j > 0) {
2397 					save_iterations(iter + i + off,
2398 						l + i, off);
2399 
2400 					memmove(iter + i, iter + i + off,
2401 						j * sizeof(*iter));
2402 
2403 					memmove(l + i, l + i + off,
2404 						j * sizeof(*l));
2405 				}
2406 
2407 				nr -= off;
2408 			}
2409 		}
2410 	}
2411 	return nr;
2412 }
2413 
2414 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2415 				       struct callchain_cursor *cursor,
2416 				       struct perf_sample *sample,
2417 				       struct symbol **parent,
2418 				       struct addr_location *root_al,
2419 				       u64 branch_from,
2420 				       bool callee, int end)
2421 {
2422 	struct ip_callchain *chain = sample->callchain;
2423 	u8 cpumode = PERF_RECORD_MISC_USER;
2424 	int err, i;
2425 
2426 	if (callee) {
2427 		for (i = 0; i < end + 1; i++) {
2428 			err = add_callchain_ip(thread, cursor, parent,
2429 					       root_al, &cpumode, chain->ips[i],
2430 					       false, NULL, NULL, branch_from);
2431 			if (err)
2432 				return err;
2433 		}
2434 		return 0;
2435 	}
2436 
2437 	for (i = end; i >= 0; i--) {
2438 		err = add_callchain_ip(thread, cursor, parent,
2439 				       root_al, &cpumode, chain->ips[i],
2440 				       false, NULL, NULL, branch_from);
2441 		if (err)
2442 			return err;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static void save_lbr_cursor_node(struct thread *thread,
2449 				 struct callchain_cursor *cursor,
2450 				 int idx)
2451 {
2452 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2453 
2454 	if (!lbr_stitch)
2455 		return;
2456 
2457 	if (cursor->pos == cursor->nr) {
2458 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2459 		return;
2460 	}
2461 
2462 	if (!cursor->curr)
2463 		cursor->curr = cursor->first;
2464 	else
2465 		cursor->curr = cursor->curr->next;
2466 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2467 	       sizeof(struct callchain_cursor_node));
2468 
2469 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2470 	cursor->pos++;
2471 }
2472 
2473 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2474 				    struct callchain_cursor *cursor,
2475 				    struct perf_sample *sample,
2476 				    struct symbol **parent,
2477 				    struct addr_location *root_al,
2478 				    u64 *branch_from,
2479 				    bool callee)
2480 {
2481 	struct branch_stack *lbr_stack = sample->branch_stack;
2482 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2483 	u8 cpumode = PERF_RECORD_MISC_USER;
2484 	int lbr_nr = lbr_stack->nr;
2485 	struct branch_flags *flags;
2486 	int err, i;
2487 	u64 ip;
2488 
2489 	/*
2490 	 * The curr and pos are not used in writing session. They are cleared
2491 	 * in callchain_cursor_commit() when the writing session is closed.
2492 	 * Using curr and pos to track the current cursor node.
2493 	 */
2494 	if (thread->lbr_stitch) {
2495 		cursor->curr = NULL;
2496 		cursor->pos = cursor->nr;
2497 		if (cursor->nr) {
2498 			cursor->curr = cursor->first;
2499 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2500 				cursor->curr = cursor->curr->next;
2501 		}
2502 	}
2503 
2504 	if (callee) {
2505 		/* Add LBR ip from first entries.to */
2506 		ip = entries[0].to;
2507 		flags = &entries[0].flags;
2508 		*branch_from = entries[0].from;
2509 		err = add_callchain_ip(thread, cursor, parent,
2510 				       root_al, &cpumode, ip,
2511 				       true, flags, NULL,
2512 				       *branch_from);
2513 		if (err)
2514 			return err;
2515 
2516 		/*
2517 		 * The number of cursor node increases.
2518 		 * Move the current cursor node.
2519 		 * But does not need to save current cursor node for entry 0.
2520 		 * It's impossible to stitch the whole LBRs of previous sample.
2521 		 */
2522 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2523 			if (!cursor->curr)
2524 				cursor->curr = cursor->first;
2525 			else
2526 				cursor->curr = cursor->curr->next;
2527 			cursor->pos++;
2528 		}
2529 
2530 		/* Add LBR ip from entries.from one by one. */
2531 		for (i = 0; i < lbr_nr; i++) {
2532 			ip = entries[i].from;
2533 			flags = &entries[i].flags;
2534 			err = add_callchain_ip(thread, cursor, parent,
2535 					       root_al, &cpumode, ip,
2536 					       true, flags, NULL,
2537 					       *branch_from);
2538 			if (err)
2539 				return err;
2540 			save_lbr_cursor_node(thread, cursor, i);
2541 		}
2542 		return 0;
2543 	}
2544 
2545 	/* Add LBR ip from entries.from one by one. */
2546 	for (i = lbr_nr - 1; i >= 0; i--) {
2547 		ip = entries[i].from;
2548 		flags = &entries[i].flags;
2549 		err = add_callchain_ip(thread, cursor, parent,
2550 				       root_al, &cpumode, ip,
2551 				       true, flags, NULL,
2552 				       *branch_from);
2553 		if (err)
2554 			return err;
2555 		save_lbr_cursor_node(thread, cursor, i);
2556 	}
2557 
2558 	/* Add LBR ip from first entries.to */
2559 	ip = entries[0].to;
2560 	flags = &entries[0].flags;
2561 	*branch_from = entries[0].from;
2562 	err = add_callchain_ip(thread, cursor, parent,
2563 			       root_al, &cpumode, ip,
2564 			       true, flags, NULL,
2565 			       *branch_from);
2566 	if (err)
2567 		return err;
2568 
2569 	return 0;
2570 }
2571 
2572 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2573 					     struct callchain_cursor *cursor)
2574 {
2575 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2576 	struct callchain_cursor_node *cnode;
2577 	struct stitch_list *stitch_node;
2578 	int err;
2579 
2580 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2581 		cnode = &stitch_node->cursor;
2582 
2583 		err = callchain_cursor_append(cursor, cnode->ip,
2584 					      &cnode->ms,
2585 					      cnode->branch,
2586 					      &cnode->branch_flags,
2587 					      cnode->nr_loop_iter,
2588 					      cnode->iter_cycles,
2589 					      cnode->branch_from,
2590 					      cnode->srcline);
2591 		if (err)
2592 			return err;
2593 	}
2594 	return 0;
2595 }
2596 
2597 static struct stitch_list *get_stitch_node(struct thread *thread)
2598 {
2599 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2600 	struct stitch_list *stitch_node;
2601 
2602 	if (!list_empty(&lbr_stitch->free_lists)) {
2603 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2604 					       struct stitch_list, node);
2605 		list_del(&stitch_node->node);
2606 
2607 		return stitch_node;
2608 	}
2609 
2610 	return malloc(sizeof(struct stitch_list));
2611 }
2612 
2613 static bool has_stitched_lbr(struct thread *thread,
2614 			     struct perf_sample *cur,
2615 			     struct perf_sample *prev,
2616 			     unsigned int max_lbr,
2617 			     bool callee)
2618 {
2619 	struct branch_stack *cur_stack = cur->branch_stack;
2620 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2621 	struct branch_stack *prev_stack = prev->branch_stack;
2622 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2623 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2624 	int i, j, nr_identical_branches = 0;
2625 	struct stitch_list *stitch_node;
2626 	u64 cur_base, distance;
2627 
2628 	if (!cur_stack || !prev_stack)
2629 		return false;
2630 
2631 	/* Find the physical index of the base-of-stack for current sample. */
2632 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2633 
2634 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2635 						     (max_lbr + prev_stack->hw_idx - cur_base);
2636 	/* Previous sample has shorter stack. Nothing can be stitched. */
2637 	if (distance + 1 > prev_stack->nr)
2638 		return false;
2639 
2640 	/*
2641 	 * Check if there are identical LBRs between two samples.
2642 	 * Identical LBRs must have same from, to and flags values. Also,
2643 	 * they have to be saved in the same LBR registers (same physical
2644 	 * index).
2645 	 *
2646 	 * Starts from the base-of-stack of current sample.
2647 	 */
2648 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2649 		if ((prev_entries[i].from != cur_entries[j].from) ||
2650 		    (prev_entries[i].to != cur_entries[j].to) ||
2651 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2652 			break;
2653 		nr_identical_branches++;
2654 	}
2655 
2656 	if (!nr_identical_branches)
2657 		return false;
2658 
2659 	/*
2660 	 * Save the LBRs between the base-of-stack of previous sample
2661 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2662 	 * These LBRs will be stitched later.
2663 	 */
2664 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2665 
2666 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2667 			continue;
2668 
2669 		stitch_node = get_stitch_node(thread);
2670 		if (!stitch_node)
2671 			return false;
2672 
2673 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2674 		       sizeof(struct callchain_cursor_node));
2675 
2676 		if (callee)
2677 			list_add(&stitch_node->node, &lbr_stitch->lists);
2678 		else
2679 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2680 	}
2681 
2682 	return true;
2683 }
2684 
2685 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2686 {
2687 	if (thread->lbr_stitch)
2688 		return true;
2689 
2690 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2691 	if (!thread->lbr_stitch)
2692 		goto err;
2693 
2694 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2695 	if (!thread->lbr_stitch->prev_lbr_cursor)
2696 		goto free_lbr_stitch;
2697 
2698 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2699 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2700 
2701 	return true;
2702 
2703 free_lbr_stitch:
2704 	zfree(&thread->lbr_stitch);
2705 err:
2706 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2707 	thread->lbr_stitch_enable = false;
2708 	return false;
2709 }
2710 
2711 /*
2712  * Resolve LBR callstack chain sample
2713  * Return:
2714  * 1 on success get LBR callchain information
2715  * 0 no available LBR callchain information, should try fp
2716  * negative error code on other errors.
2717  */
2718 static int resolve_lbr_callchain_sample(struct thread *thread,
2719 					struct callchain_cursor *cursor,
2720 					struct perf_sample *sample,
2721 					struct symbol **parent,
2722 					struct addr_location *root_al,
2723 					int max_stack,
2724 					unsigned int max_lbr)
2725 {
2726 	bool callee = (callchain_param.order == ORDER_CALLEE);
2727 	struct ip_callchain *chain = sample->callchain;
2728 	int chain_nr = min(max_stack, (int)chain->nr), i;
2729 	struct lbr_stitch *lbr_stitch;
2730 	bool stitched_lbr = false;
2731 	u64 branch_from = 0;
2732 	int err;
2733 
2734 	for (i = 0; i < chain_nr; i++) {
2735 		if (chain->ips[i] == PERF_CONTEXT_USER)
2736 			break;
2737 	}
2738 
2739 	/* LBR only affects the user callchain */
2740 	if (i == chain_nr)
2741 		return 0;
2742 
2743 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2744 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2745 		lbr_stitch = thread->lbr_stitch;
2746 
2747 		stitched_lbr = has_stitched_lbr(thread, sample,
2748 						&lbr_stitch->prev_sample,
2749 						max_lbr, callee);
2750 
2751 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2752 			list_replace_init(&lbr_stitch->lists,
2753 					  &lbr_stitch->free_lists);
2754 		}
2755 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2756 	}
2757 
2758 	if (callee) {
2759 		/* Add kernel ip */
2760 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2761 						  parent, root_al, branch_from,
2762 						  true, i);
2763 		if (err)
2764 			goto error;
2765 
2766 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2767 					       root_al, &branch_from, true);
2768 		if (err)
2769 			goto error;
2770 
2771 		if (stitched_lbr) {
2772 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2773 			if (err)
2774 				goto error;
2775 		}
2776 
2777 	} else {
2778 		if (stitched_lbr) {
2779 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2780 			if (err)
2781 				goto error;
2782 		}
2783 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2784 					       root_al, &branch_from, false);
2785 		if (err)
2786 			goto error;
2787 
2788 		/* Add kernel ip */
2789 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2790 						  parent, root_al, branch_from,
2791 						  false, i);
2792 		if (err)
2793 			goto error;
2794 	}
2795 	return 1;
2796 
2797 error:
2798 	return (err < 0) ? err : 0;
2799 }
2800 
2801 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2802 			     struct callchain_cursor *cursor,
2803 			     struct symbol **parent,
2804 			     struct addr_location *root_al,
2805 			     u8 *cpumode, int ent)
2806 {
2807 	int err = 0;
2808 
2809 	while (--ent >= 0) {
2810 		u64 ip = chain->ips[ent];
2811 
2812 		if (ip >= PERF_CONTEXT_MAX) {
2813 			err = add_callchain_ip(thread, cursor, parent,
2814 					       root_al, cpumode, ip,
2815 					       false, NULL, NULL, 0);
2816 			break;
2817 		}
2818 	}
2819 	return err;
2820 }
2821 
2822 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2823 		struct thread *thread, int usr_idx)
2824 {
2825 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2826 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2827 	else
2828 		return 0;
2829 }
2830 
2831 static int thread__resolve_callchain_sample(struct thread *thread,
2832 					    struct callchain_cursor *cursor,
2833 					    struct evsel *evsel,
2834 					    struct perf_sample *sample,
2835 					    struct symbol **parent,
2836 					    struct addr_location *root_al,
2837 					    int max_stack)
2838 {
2839 	struct branch_stack *branch = sample->branch_stack;
2840 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2841 	struct ip_callchain *chain = sample->callchain;
2842 	int chain_nr = 0;
2843 	u8 cpumode = PERF_RECORD_MISC_USER;
2844 	int i, j, err, nr_entries, usr_idx;
2845 	int skip_idx = -1;
2846 	int first_call = 0;
2847 	u64 leaf_frame_caller;
2848 
2849 	if (chain)
2850 		chain_nr = chain->nr;
2851 
2852 	if (evsel__has_branch_callstack(evsel)) {
2853 		struct perf_env *env = evsel__env(evsel);
2854 
2855 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2856 						   root_al, max_stack,
2857 						   !env ? 0 : env->max_branches);
2858 		if (err)
2859 			return (err < 0) ? err : 0;
2860 	}
2861 
2862 	/*
2863 	 * Based on DWARF debug information, some architectures skip
2864 	 * a callchain entry saved by the kernel.
2865 	 */
2866 	skip_idx = arch_skip_callchain_idx(thread, chain);
2867 
2868 	/*
2869 	 * Add branches to call stack for easier browsing. This gives
2870 	 * more context for a sample than just the callers.
2871 	 *
2872 	 * This uses individual histograms of paths compared to the
2873 	 * aggregated histograms the normal LBR mode uses.
2874 	 *
2875 	 * Limitations for now:
2876 	 * - No extra filters
2877 	 * - No annotations (should annotate somehow)
2878 	 */
2879 
2880 	if (branch && callchain_param.branch_callstack) {
2881 		int nr = min(max_stack, (int)branch->nr);
2882 		struct branch_entry be[nr];
2883 		struct iterations iter[nr];
2884 
2885 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2886 			pr_warning("corrupted branch chain. skipping...\n");
2887 			goto check_calls;
2888 		}
2889 
2890 		for (i = 0; i < nr; i++) {
2891 			if (callchain_param.order == ORDER_CALLEE) {
2892 				be[i] = entries[i];
2893 
2894 				if (chain == NULL)
2895 					continue;
2896 
2897 				/*
2898 				 * Check for overlap into the callchain.
2899 				 * The return address is one off compared to
2900 				 * the branch entry. To adjust for this
2901 				 * assume the calling instruction is not longer
2902 				 * than 8 bytes.
2903 				 */
2904 				if (i == skip_idx ||
2905 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2906 					first_call++;
2907 				else if (be[i].from < chain->ips[first_call] &&
2908 				    be[i].from >= chain->ips[first_call] - 8)
2909 					first_call++;
2910 			} else
2911 				be[i] = entries[branch->nr - i - 1];
2912 		}
2913 
2914 		memset(iter, 0, sizeof(struct iterations) * nr);
2915 		nr = remove_loops(be, nr, iter);
2916 
2917 		for (i = 0; i < nr; i++) {
2918 			err = add_callchain_ip(thread, cursor, parent,
2919 					       root_al,
2920 					       NULL, be[i].to,
2921 					       true, &be[i].flags,
2922 					       NULL, be[i].from);
2923 
2924 			if (!err)
2925 				err = add_callchain_ip(thread, cursor, parent, root_al,
2926 						       NULL, be[i].from,
2927 						       true, &be[i].flags,
2928 						       &iter[i], 0);
2929 			if (err == -EINVAL)
2930 				break;
2931 			if (err)
2932 				return err;
2933 		}
2934 
2935 		if (chain_nr == 0)
2936 			return 0;
2937 
2938 		chain_nr -= nr;
2939 	}
2940 
2941 check_calls:
2942 	if (chain && callchain_param.order != ORDER_CALLEE) {
2943 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2944 					&cpumode, chain->nr - first_call);
2945 		if (err)
2946 			return (err < 0) ? err : 0;
2947 	}
2948 	for (i = first_call, nr_entries = 0;
2949 	     i < chain_nr && nr_entries < max_stack; i++) {
2950 		u64 ip;
2951 
2952 		if (callchain_param.order == ORDER_CALLEE)
2953 			j = i;
2954 		else
2955 			j = chain->nr - i - 1;
2956 
2957 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2958 		if (j == skip_idx)
2959 			continue;
2960 #endif
2961 		ip = chain->ips[j];
2962 		if (ip < PERF_CONTEXT_MAX)
2963                        ++nr_entries;
2964 		else if (callchain_param.order != ORDER_CALLEE) {
2965 			err = find_prev_cpumode(chain, thread, cursor, parent,
2966 						root_al, &cpumode, j);
2967 			if (err)
2968 				return (err < 0) ? err : 0;
2969 			continue;
2970 		}
2971 
2972 		/*
2973 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2974 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2975 		 * the index will be different in order to add the missing frame
2976 		 * at the right place.
2977 		 */
2978 
2979 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2980 
2981 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2982 
2983 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2984 
2985 			/*
2986 			 * check if leaf_frame_Caller != ip to not add the same
2987 			 * value twice.
2988 			 */
2989 
2990 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2991 
2992 				err = add_callchain_ip(thread, cursor, parent,
2993 					       root_al, &cpumode, leaf_frame_caller,
2994 					       false, NULL, NULL, 0);
2995 				if (err)
2996 					return (err < 0) ? err : 0;
2997 			}
2998 		}
2999 
3000 		err = add_callchain_ip(thread, cursor, parent,
3001 				       root_al, &cpumode, ip,
3002 				       false, NULL, NULL, 0);
3003 
3004 		if (err)
3005 			return (err < 0) ? err : 0;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3012 {
3013 	struct symbol *sym = ms->sym;
3014 	struct map *map = ms->map;
3015 	struct inline_node *inline_node;
3016 	struct inline_list *ilist;
3017 	u64 addr;
3018 	int ret = 1;
3019 
3020 	if (!symbol_conf.inline_name || !map || !sym)
3021 		return ret;
3022 
3023 	addr = map__map_ip(map, ip);
3024 	addr = map__rip_2objdump(map, addr);
3025 
3026 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3027 	if (!inline_node) {
3028 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3029 		if (!inline_node)
3030 			return ret;
3031 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3032 	}
3033 
3034 	list_for_each_entry(ilist, &inline_node->val, list) {
3035 		struct map_symbol ilist_ms = {
3036 			.maps = ms->maps,
3037 			.map = map,
3038 			.sym = ilist->symbol,
3039 		};
3040 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3041 					      NULL, 0, 0, 0, ilist->srcline);
3042 
3043 		if (ret != 0)
3044 			return ret;
3045 	}
3046 
3047 	return ret;
3048 }
3049 
3050 static int unwind_entry(struct unwind_entry *entry, void *arg)
3051 {
3052 	struct callchain_cursor *cursor = arg;
3053 	const char *srcline = NULL;
3054 	u64 addr = entry->ip;
3055 
3056 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3057 		return 0;
3058 
3059 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3060 		return 0;
3061 
3062 	/*
3063 	 * Convert entry->ip from a virtual address to an offset in
3064 	 * its corresponding binary.
3065 	 */
3066 	if (entry->ms.map)
3067 		addr = map__map_ip(entry->ms.map, entry->ip);
3068 
3069 	srcline = callchain_srcline(&entry->ms, addr);
3070 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3071 				       false, NULL, 0, 0, 0, srcline);
3072 }
3073 
3074 static int thread__resolve_callchain_unwind(struct thread *thread,
3075 					    struct callchain_cursor *cursor,
3076 					    struct evsel *evsel,
3077 					    struct perf_sample *sample,
3078 					    int max_stack)
3079 {
3080 	/* Can we do dwarf post unwind? */
3081 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3082 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3083 		return 0;
3084 
3085 	/* Bail out if nothing was captured. */
3086 	if ((!sample->user_regs.regs) ||
3087 	    (!sample->user_stack.size))
3088 		return 0;
3089 
3090 	return unwind__get_entries(unwind_entry, cursor,
3091 				   thread, sample, max_stack, false);
3092 }
3093 
3094 int thread__resolve_callchain(struct thread *thread,
3095 			      struct callchain_cursor *cursor,
3096 			      struct evsel *evsel,
3097 			      struct perf_sample *sample,
3098 			      struct symbol **parent,
3099 			      struct addr_location *root_al,
3100 			      int max_stack)
3101 {
3102 	int ret = 0;
3103 
3104 	callchain_cursor_reset(cursor);
3105 
3106 	if (callchain_param.order == ORDER_CALLEE) {
3107 		ret = thread__resolve_callchain_sample(thread, cursor,
3108 						       evsel, sample,
3109 						       parent, root_al,
3110 						       max_stack);
3111 		if (ret)
3112 			return ret;
3113 		ret = thread__resolve_callchain_unwind(thread, cursor,
3114 						       evsel, sample,
3115 						       max_stack);
3116 	} else {
3117 		ret = thread__resolve_callchain_unwind(thread, cursor,
3118 						       evsel, sample,
3119 						       max_stack);
3120 		if (ret)
3121 			return ret;
3122 		ret = thread__resolve_callchain_sample(thread, cursor,
3123 						       evsel, sample,
3124 						       parent, root_al,
3125 						       max_stack);
3126 	}
3127 
3128 	return ret;
3129 }
3130 
3131 int machine__for_each_thread(struct machine *machine,
3132 			     int (*fn)(struct thread *thread, void *p),
3133 			     void *priv)
3134 {
3135 	struct threads *threads;
3136 	struct rb_node *nd;
3137 	struct thread *thread;
3138 	int rc = 0;
3139 	int i;
3140 
3141 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3142 		threads = &machine->threads[i];
3143 		for (nd = rb_first_cached(&threads->entries); nd;
3144 		     nd = rb_next(nd)) {
3145 			thread = rb_entry(nd, struct thread, rb_node);
3146 			rc = fn(thread, priv);
3147 			if (rc != 0)
3148 				return rc;
3149 		}
3150 
3151 		list_for_each_entry(thread, &threads->dead, node) {
3152 			rc = fn(thread, priv);
3153 			if (rc != 0)
3154 				return rc;
3155 		}
3156 	}
3157 	return rc;
3158 }
3159 
3160 int machines__for_each_thread(struct machines *machines,
3161 			      int (*fn)(struct thread *thread, void *p),
3162 			      void *priv)
3163 {
3164 	struct rb_node *nd;
3165 	int rc = 0;
3166 
3167 	rc = machine__for_each_thread(&machines->host, fn, priv);
3168 	if (rc != 0)
3169 		return rc;
3170 
3171 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3172 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3173 
3174 		rc = machine__for_each_thread(machine, fn, priv);
3175 		if (rc != 0)
3176 			return rc;
3177 	}
3178 	return rc;
3179 }
3180 
3181 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3182 {
3183 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3184 		return -1;
3185 
3186 	return machine->current_tid[cpu];
3187 }
3188 
3189 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3190 			     pid_t tid)
3191 {
3192 	struct thread *thread;
3193 	const pid_t init_val = -1;
3194 
3195 	if (cpu < 0)
3196 		return -EINVAL;
3197 
3198 	if (realloc_array_as_needed(machine->current_tid,
3199 				    machine->current_tid_sz,
3200 				    (unsigned int)cpu,
3201 				    &init_val))
3202 		return -ENOMEM;
3203 
3204 	machine->current_tid[cpu] = tid;
3205 
3206 	thread = machine__findnew_thread(machine, pid, tid);
3207 	if (!thread)
3208 		return -ENOMEM;
3209 
3210 	thread->cpu = cpu;
3211 	thread__put(thread);
3212 
3213 	return 0;
3214 }
3215 
3216 /*
3217  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3218  * machine__normalized_is() if a normalized arch is needed.
3219  */
3220 bool machine__is(struct machine *machine, const char *arch)
3221 {
3222 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3223 }
3224 
3225 bool machine__normalized_is(struct machine *machine, const char *arch)
3226 {
3227 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3228 }
3229 
3230 int machine__nr_cpus_avail(struct machine *machine)
3231 {
3232 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3233 }
3234 
3235 int machine__get_kernel_start(struct machine *machine)
3236 {
3237 	struct map *map = machine__kernel_map(machine);
3238 	int err = 0;
3239 
3240 	/*
3241 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3242 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3243 	 * all addresses including kernel addresses are less than 2^32.  In
3244 	 * that case (32-bit system), if the kernel mapping is unknown, all
3245 	 * addresses will be assumed to be in user space - see
3246 	 * machine__kernel_ip().
3247 	 */
3248 	machine->kernel_start = 1ULL << 63;
3249 	if (map) {
3250 		err = map__load(map);
3251 		/*
3252 		 * On x86_64, PTI entry trampolines are less than the
3253 		 * start of kernel text, but still above 2^63. So leave
3254 		 * kernel_start = 1ULL << 63 for x86_64.
3255 		 */
3256 		if (!err && !machine__is(machine, "x86_64"))
3257 			machine->kernel_start = map->start;
3258 	}
3259 	return err;
3260 }
3261 
3262 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3263 {
3264 	u8 addr_cpumode = cpumode;
3265 	bool kernel_ip;
3266 
3267 	if (!machine->single_address_space)
3268 		goto out;
3269 
3270 	kernel_ip = machine__kernel_ip(machine, addr);
3271 	switch (cpumode) {
3272 	case PERF_RECORD_MISC_KERNEL:
3273 	case PERF_RECORD_MISC_USER:
3274 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3275 					   PERF_RECORD_MISC_USER;
3276 		break;
3277 	case PERF_RECORD_MISC_GUEST_KERNEL:
3278 	case PERF_RECORD_MISC_GUEST_USER:
3279 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3280 					   PERF_RECORD_MISC_GUEST_USER;
3281 		break;
3282 	default:
3283 		break;
3284 	}
3285 out:
3286 	return addr_cpumode;
3287 }
3288 
3289 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3290 {
3291 	return dsos__findnew_id(&machine->dsos, filename, id);
3292 }
3293 
3294 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3295 {
3296 	return machine__findnew_dso_id(machine, filename, NULL);
3297 }
3298 
3299 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3300 {
3301 	struct machine *machine = vmachine;
3302 	struct map *map;
3303 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3304 
3305 	if (sym == NULL)
3306 		return NULL;
3307 
3308 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3309 	*addrp = map->unmap_ip(map, sym->start);
3310 	return sym->name;
3311 }
3312 
3313 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3314 {
3315 	struct dso *pos;
3316 	int err = 0;
3317 
3318 	list_for_each_entry(pos, &machine->dsos.head, node) {
3319 		if (fn(pos, machine, priv))
3320 			err = -1;
3321 	}
3322 	return err;
3323 }
3324 
3325 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3326 {
3327 	struct maps *maps = machine__kernel_maps(machine);
3328 	struct map *map;
3329 	int err = 0;
3330 
3331 	for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3332 		err = fn(map, priv);
3333 		if (err != 0) {
3334 			break;
3335 		}
3336 	}
3337 	return err;
3338 }
3339