1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include <stdlib.h> 7 #include "callchain.h" 8 #include "debug.h" 9 #include "dso.h" 10 #include "env.h" 11 #include "event.h" 12 #include "evsel.h" 13 #include "hist.h" 14 #include "machine.h" 15 #include "map.h" 16 #include "map_symbol.h" 17 #include "branch.h" 18 #include "mem-events.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "sort.h" 22 #include "strlist.h" 23 #include "target.h" 24 #include "thread.h" 25 #include "util.h" 26 #include "vdso.h" 27 #include <stdbool.h> 28 #include <sys/types.h> 29 #include <sys/stat.h> 30 #include <unistd.h> 31 #include "unwind.h" 32 #include "linux/hash.h" 33 #include "asm/bug.h" 34 #include "bpf-event.h" 35 #include <internal/lib.h> // page_size 36 #include "cgroup.h" 37 38 #include <linux/ctype.h> 39 #include <symbol/kallsyms.h> 40 #include <linux/mman.h> 41 #include <linux/string.h> 42 #include <linux/zalloc.h> 43 44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 45 46 static struct dso *machine__kernel_dso(struct machine *machine) 47 { 48 return machine->vmlinux_map->dso; 49 } 50 51 static void dsos__init(struct dsos *dsos) 52 { 53 INIT_LIST_HEAD(&dsos->head); 54 dsos->root = RB_ROOT; 55 init_rwsem(&dsos->lock); 56 } 57 58 static void machine__threads_init(struct machine *machine) 59 { 60 int i; 61 62 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 63 struct threads *threads = &machine->threads[i]; 64 threads->entries = RB_ROOT_CACHED; 65 init_rwsem(&threads->lock); 66 threads->nr = 0; 67 INIT_LIST_HEAD(&threads->dead); 68 threads->last_match = NULL; 69 } 70 } 71 72 static int machine__set_mmap_name(struct machine *machine) 73 { 74 if (machine__is_host(machine)) 75 machine->mmap_name = strdup("[kernel.kallsyms]"); 76 else if (machine__is_default_guest(machine)) 77 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 79 machine->pid) < 0) 80 machine->mmap_name = NULL; 81 82 return machine->mmap_name ? 0 : -ENOMEM; 83 } 84 85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 86 { 87 int err = -ENOMEM; 88 89 memset(machine, 0, sizeof(*machine)); 90 maps__init(&machine->kmaps, machine); 91 RB_CLEAR_NODE(&machine->rb_node); 92 dsos__init(&machine->dsos); 93 94 machine__threads_init(machine); 95 96 machine->vdso_info = NULL; 97 machine->env = NULL; 98 99 machine->pid = pid; 100 101 machine->id_hdr_size = 0; 102 machine->kptr_restrict_warned = false; 103 machine->comm_exec = false; 104 machine->kernel_start = 0; 105 machine->vmlinux_map = NULL; 106 107 machine->root_dir = strdup(root_dir); 108 if (machine->root_dir == NULL) 109 return -ENOMEM; 110 111 if (machine__set_mmap_name(machine)) 112 goto out; 113 114 if (pid != HOST_KERNEL_ID) { 115 struct thread *thread = machine__findnew_thread(machine, -1, 116 pid); 117 char comm[64]; 118 119 if (thread == NULL) 120 goto out; 121 122 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 123 thread__set_comm(thread, comm, 0); 124 thread__put(thread); 125 } 126 127 machine->current_tid = NULL; 128 err = 0; 129 130 out: 131 if (err) { 132 zfree(&machine->root_dir); 133 zfree(&machine->mmap_name); 134 } 135 return 0; 136 } 137 138 struct machine *machine__new_host(void) 139 { 140 struct machine *machine = malloc(sizeof(*machine)); 141 142 if (machine != NULL) { 143 machine__init(machine, "", HOST_KERNEL_ID); 144 145 if (machine__create_kernel_maps(machine) < 0) 146 goto out_delete; 147 } 148 149 return machine; 150 out_delete: 151 free(machine); 152 return NULL; 153 } 154 155 struct machine *machine__new_kallsyms(void) 156 { 157 struct machine *machine = machine__new_host(); 158 /* 159 * FIXME: 160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 161 * ask for not using the kcore parsing code, once this one is fixed 162 * to create a map per module. 163 */ 164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 165 machine__delete(machine); 166 machine = NULL; 167 } 168 169 return machine; 170 } 171 172 static void dsos__purge(struct dsos *dsos) 173 { 174 struct dso *pos, *n; 175 176 down_write(&dsos->lock); 177 178 list_for_each_entry_safe(pos, n, &dsos->head, node) { 179 RB_CLEAR_NODE(&pos->rb_node); 180 pos->root = NULL; 181 list_del_init(&pos->node); 182 dso__put(pos); 183 } 184 185 up_write(&dsos->lock); 186 } 187 188 static void dsos__exit(struct dsos *dsos) 189 { 190 dsos__purge(dsos); 191 exit_rwsem(&dsos->lock); 192 } 193 194 void machine__delete_threads(struct machine *machine) 195 { 196 struct rb_node *nd; 197 int i; 198 199 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 200 struct threads *threads = &machine->threads[i]; 201 down_write(&threads->lock); 202 nd = rb_first_cached(&threads->entries); 203 while (nd) { 204 struct thread *t = rb_entry(nd, struct thread, rb_node); 205 206 nd = rb_next(nd); 207 __machine__remove_thread(machine, t, false); 208 } 209 up_write(&threads->lock); 210 } 211 } 212 213 void machine__exit(struct machine *machine) 214 { 215 int i; 216 217 if (machine == NULL) 218 return; 219 220 machine__destroy_kernel_maps(machine); 221 maps__exit(&machine->kmaps); 222 dsos__exit(&machine->dsos); 223 machine__exit_vdso(machine); 224 zfree(&machine->root_dir); 225 zfree(&machine->mmap_name); 226 zfree(&machine->current_tid); 227 228 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 229 struct threads *threads = &machine->threads[i]; 230 struct thread *thread, *n; 231 /* 232 * Forget about the dead, at this point whatever threads were 233 * left in the dead lists better have a reference count taken 234 * by who is using them, and then, when they drop those references 235 * and it finally hits zero, thread__put() will check and see that 236 * its not in the dead threads list and will not try to remove it 237 * from there, just calling thread__delete() straight away. 238 */ 239 list_for_each_entry_safe(thread, n, &threads->dead, node) 240 list_del_init(&thread->node); 241 242 exit_rwsem(&threads->lock); 243 } 244 } 245 246 void machine__delete(struct machine *machine) 247 { 248 if (machine) { 249 machine__exit(machine); 250 free(machine); 251 } 252 } 253 254 void machines__init(struct machines *machines) 255 { 256 machine__init(&machines->host, "", HOST_KERNEL_ID); 257 machines->guests = RB_ROOT_CACHED; 258 } 259 260 void machines__exit(struct machines *machines) 261 { 262 machine__exit(&machines->host); 263 /* XXX exit guest */ 264 } 265 266 struct machine *machines__add(struct machines *machines, pid_t pid, 267 const char *root_dir) 268 { 269 struct rb_node **p = &machines->guests.rb_root.rb_node; 270 struct rb_node *parent = NULL; 271 struct machine *pos, *machine = malloc(sizeof(*machine)); 272 bool leftmost = true; 273 274 if (machine == NULL) 275 return NULL; 276 277 if (machine__init(machine, root_dir, pid) != 0) { 278 free(machine); 279 return NULL; 280 } 281 282 while (*p != NULL) { 283 parent = *p; 284 pos = rb_entry(parent, struct machine, rb_node); 285 if (pid < pos->pid) 286 p = &(*p)->rb_left; 287 else { 288 p = &(*p)->rb_right; 289 leftmost = false; 290 } 291 } 292 293 rb_link_node(&machine->rb_node, parent, p); 294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 295 296 return machine; 297 } 298 299 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 300 { 301 struct rb_node *nd; 302 303 machines->host.comm_exec = comm_exec; 304 305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 306 struct machine *machine = rb_entry(nd, struct machine, rb_node); 307 308 machine->comm_exec = comm_exec; 309 } 310 } 311 312 struct machine *machines__find(struct machines *machines, pid_t pid) 313 { 314 struct rb_node **p = &machines->guests.rb_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct machine *machine; 317 struct machine *default_machine = NULL; 318 319 if (pid == HOST_KERNEL_ID) 320 return &machines->host; 321 322 while (*p != NULL) { 323 parent = *p; 324 machine = rb_entry(parent, struct machine, rb_node); 325 if (pid < machine->pid) 326 p = &(*p)->rb_left; 327 else if (pid > machine->pid) 328 p = &(*p)->rb_right; 329 else 330 return machine; 331 if (!machine->pid) 332 default_machine = machine; 333 } 334 335 return default_machine; 336 } 337 338 struct machine *machines__findnew(struct machines *machines, pid_t pid) 339 { 340 char path[PATH_MAX]; 341 const char *root_dir = ""; 342 struct machine *machine = machines__find(machines, pid); 343 344 if (machine && (machine->pid == pid)) 345 goto out; 346 347 if ((pid != HOST_KERNEL_ID) && 348 (pid != DEFAULT_GUEST_KERNEL_ID) && 349 (symbol_conf.guestmount)) { 350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 351 if (access(path, R_OK)) { 352 static struct strlist *seen; 353 354 if (!seen) 355 seen = strlist__new(NULL, NULL); 356 357 if (!strlist__has_entry(seen, path)) { 358 pr_err("Can't access file %s\n", path); 359 strlist__add(seen, path); 360 } 361 machine = NULL; 362 goto out; 363 } 364 root_dir = path; 365 } 366 367 machine = machines__add(machines, pid, root_dir); 368 out: 369 return machine; 370 } 371 372 void machines__process_guests(struct machines *machines, 373 machine__process_t process, void *data) 374 { 375 struct rb_node *nd; 376 377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 378 struct machine *pos = rb_entry(nd, struct machine, rb_node); 379 process(pos, data); 380 } 381 } 382 383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 384 { 385 struct rb_node *node; 386 struct machine *machine; 387 388 machines->host.id_hdr_size = id_hdr_size; 389 390 for (node = rb_first_cached(&machines->guests); node; 391 node = rb_next(node)) { 392 machine = rb_entry(node, struct machine, rb_node); 393 machine->id_hdr_size = id_hdr_size; 394 } 395 396 return; 397 } 398 399 static void machine__update_thread_pid(struct machine *machine, 400 struct thread *th, pid_t pid) 401 { 402 struct thread *leader; 403 404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 405 return; 406 407 th->pid_ = pid; 408 409 if (th->pid_ == th->tid) 410 return; 411 412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 413 if (!leader) 414 goto out_err; 415 416 if (!leader->maps) 417 leader->maps = maps__new(machine); 418 419 if (!leader->maps) 420 goto out_err; 421 422 if (th->maps == leader->maps) 423 return; 424 425 if (th->maps) { 426 /* 427 * Maps are created from MMAP events which provide the pid and 428 * tid. Consequently there never should be any maps on a thread 429 * with an unknown pid. Just print an error if there are. 430 */ 431 if (!maps__empty(th->maps)) 432 pr_err("Discarding thread maps for %d:%d\n", 433 th->pid_, th->tid); 434 maps__put(th->maps); 435 } 436 437 th->maps = maps__get(leader->maps); 438 out_put: 439 thread__put(leader); 440 return; 441 out_err: 442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 443 goto out_put; 444 } 445 446 /* 447 * Front-end cache - TID lookups come in blocks, 448 * so most of the time we dont have to look up 449 * the full rbtree: 450 */ 451 static struct thread* 452 __threads__get_last_match(struct threads *threads, struct machine *machine, 453 int pid, int tid) 454 { 455 struct thread *th; 456 457 th = threads->last_match; 458 if (th != NULL) { 459 if (th->tid == tid) { 460 machine__update_thread_pid(machine, th, pid); 461 return thread__get(th); 462 } 463 464 threads->last_match = NULL; 465 } 466 467 return NULL; 468 } 469 470 static struct thread* 471 threads__get_last_match(struct threads *threads, struct machine *machine, 472 int pid, int tid) 473 { 474 struct thread *th = NULL; 475 476 if (perf_singlethreaded) 477 th = __threads__get_last_match(threads, machine, pid, tid); 478 479 return th; 480 } 481 482 static void 483 __threads__set_last_match(struct threads *threads, struct thread *th) 484 { 485 threads->last_match = th; 486 } 487 488 static void 489 threads__set_last_match(struct threads *threads, struct thread *th) 490 { 491 if (perf_singlethreaded) 492 __threads__set_last_match(threads, th); 493 } 494 495 /* 496 * Caller must eventually drop thread->refcnt returned with a successful 497 * lookup/new thread inserted. 498 */ 499 static struct thread *____machine__findnew_thread(struct machine *machine, 500 struct threads *threads, 501 pid_t pid, pid_t tid, 502 bool create) 503 { 504 struct rb_node **p = &threads->entries.rb_root.rb_node; 505 struct rb_node *parent = NULL; 506 struct thread *th; 507 bool leftmost = true; 508 509 th = threads__get_last_match(threads, machine, pid, tid); 510 if (th) 511 return th; 512 513 while (*p != NULL) { 514 parent = *p; 515 th = rb_entry(parent, struct thread, rb_node); 516 517 if (th->tid == tid) { 518 threads__set_last_match(threads, th); 519 machine__update_thread_pid(machine, th, pid); 520 return thread__get(th); 521 } 522 523 if (tid < th->tid) 524 p = &(*p)->rb_left; 525 else { 526 p = &(*p)->rb_right; 527 leftmost = false; 528 } 529 } 530 531 if (!create) 532 return NULL; 533 534 th = thread__new(pid, tid); 535 if (th != NULL) { 536 rb_link_node(&th->rb_node, parent, p); 537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 538 539 /* 540 * We have to initialize maps separately after rb tree is updated. 541 * 542 * The reason is that we call machine__findnew_thread 543 * within thread__init_maps to find the thread 544 * leader and that would screwed the rb tree. 545 */ 546 if (thread__init_maps(th, machine)) { 547 rb_erase_cached(&th->rb_node, &threads->entries); 548 RB_CLEAR_NODE(&th->rb_node); 549 thread__put(th); 550 return NULL; 551 } 552 /* 553 * It is now in the rbtree, get a ref 554 */ 555 thread__get(th); 556 threads__set_last_match(threads, th); 557 ++threads->nr; 558 } 559 560 return th; 561 } 562 563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 564 { 565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 566 } 567 568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 569 pid_t tid) 570 { 571 struct threads *threads = machine__threads(machine, tid); 572 struct thread *th; 573 574 down_write(&threads->lock); 575 th = __machine__findnew_thread(machine, pid, tid); 576 up_write(&threads->lock); 577 return th; 578 } 579 580 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 581 pid_t tid) 582 { 583 struct threads *threads = machine__threads(machine, tid); 584 struct thread *th; 585 586 down_read(&threads->lock); 587 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 588 up_read(&threads->lock); 589 return th; 590 } 591 592 struct comm *machine__thread_exec_comm(struct machine *machine, 593 struct thread *thread) 594 { 595 if (machine->comm_exec) 596 return thread__exec_comm(thread); 597 else 598 return thread__comm(thread); 599 } 600 601 int machine__process_comm_event(struct machine *machine, union perf_event *event, 602 struct perf_sample *sample) 603 { 604 struct thread *thread = machine__findnew_thread(machine, 605 event->comm.pid, 606 event->comm.tid); 607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 608 int err = 0; 609 610 if (exec) 611 machine->comm_exec = true; 612 613 if (dump_trace) 614 perf_event__fprintf_comm(event, stdout); 615 616 if (thread == NULL || 617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 619 err = -1; 620 } 621 622 thread__put(thread); 623 624 return err; 625 } 626 627 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 628 union perf_event *event, 629 struct perf_sample *sample __maybe_unused) 630 { 631 struct thread *thread = machine__findnew_thread(machine, 632 event->namespaces.pid, 633 event->namespaces.tid); 634 int err = 0; 635 636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 637 "\nWARNING: kernel seems to support more namespaces than perf" 638 " tool.\nTry updating the perf tool..\n\n"); 639 640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 641 "\nWARNING: perf tool seems to support more namespaces than" 642 " the kernel.\nTry updating the kernel..\n\n"); 643 644 if (dump_trace) 645 perf_event__fprintf_namespaces(event, stdout); 646 647 if (thread == NULL || 648 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 650 err = -1; 651 } 652 653 thread__put(thread); 654 655 return err; 656 } 657 658 int machine__process_cgroup_event(struct machine *machine, 659 union perf_event *event, 660 struct perf_sample *sample __maybe_unused) 661 { 662 struct cgroup *cgrp; 663 664 if (dump_trace) 665 perf_event__fprintf_cgroup(event, stdout); 666 667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path); 668 if (cgrp == NULL) 669 return -ENOMEM; 670 671 return 0; 672 } 673 674 int machine__process_lost_event(struct machine *machine __maybe_unused, 675 union perf_event *event, struct perf_sample *sample __maybe_unused) 676 { 677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n", 678 event->lost.id, event->lost.lost); 679 return 0; 680 } 681 682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 683 union perf_event *event, struct perf_sample *sample) 684 { 685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n", 686 sample->id, event->lost_samples.lost); 687 return 0; 688 } 689 690 static struct dso *machine__findnew_module_dso(struct machine *machine, 691 struct kmod_path *m, 692 const char *filename) 693 { 694 struct dso *dso; 695 696 down_write(&machine->dsos.lock); 697 698 dso = __dsos__find(&machine->dsos, m->name, true); 699 if (!dso) { 700 dso = __dsos__addnew(&machine->dsos, m->name); 701 if (dso == NULL) 702 goto out_unlock; 703 704 dso__set_module_info(dso, m, machine); 705 dso__set_long_name(dso, strdup(filename), true); 706 dso->kernel = DSO_SPACE__KERNEL; 707 } 708 709 dso__get(dso); 710 out_unlock: 711 up_write(&machine->dsos.lock); 712 return dso; 713 } 714 715 int machine__process_aux_event(struct machine *machine __maybe_unused, 716 union perf_event *event) 717 { 718 if (dump_trace) 719 perf_event__fprintf_aux(event, stdout); 720 return 0; 721 } 722 723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 724 union perf_event *event) 725 { 726 if (dump_trace) 727 perf_event__fprintf_itrace_start(event, stdout); 728 return 0; 729 } 730 731 int machine__process_switch_event(struct machine *machine __maybe_unused, 732 union perf_event *event) 733 { 734 if (dump_trace) 735 perf_event__fprintf_switch(event, stdout); 736 return 0; 737 } 738 739 static int machine__process_ksymbol_register(struct machine *machine, 740 union perf_event *event, 741 struct perf_sample *sample __maybe_unused) 742 { 743 struct symbol *sym; 744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr); 745 746 if (!map) { 747 struct dso *dso = dso__new(event->ksymbol.name); 748 749 if (dso) { 750 dso->kernel = DSO_SPACE__KERNEL; 751 map = map__new2(0, dso); 752 } 753 754 if (!dso || !map) { 755 dso__put(dso); 756 return -ENOMEM; 757 } 758 759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) { 760 map->dso->binary_type = DSO_BINARY_TYPE__OOL; 761 map->dso->data.file_size = event->ksymbol.len; 762 dso__set_loaded(map->dso); 763 } 764 765 map->start = event->ksymbol.addr; 766 map->end = map->start + event->ksymbol.len; 767 maps__insert(&machine->kmaps, map); 768 dso__set_loaded(dso); 769 770 if (is_bpf_image(event->ksymbol.name)) { 771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE; 772 dso__set_long_name(dso, "", false); 773 } 774 } 775 776 sym = symbol__new(map->map_ip(map, map->start), 777 event->ksymbol.len, 778 0, 0, event->ksymbol.name); 779 if (!sym) 780 return -ENOMEM; 781 dso__insert_symbol(map->dso, sym); 782 return 0; 783 } 784 785 static int machine__process_ksymbol_unregister(struct machine *machine, 786 union perf_event *event, 787 struct perf_sample *sample __maybe_unused) 788 { 789 struct symbol *sym; 790 struct map *map; 791 792 map = maps__find(&machine->kmaps, event->ksymbol.addr); 793 if (!map) 794 return 0; 795 796 if (map != machine->vmlinux_map) 797 maps__remove(&machine->kmaps, map); 798 else { 799 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start)); 800 if (sym) 801 dso__delete_symbol(map->dso, sym); 802 } 803 804 return 0; 805 } 806 807 int machine__process_ksymbol(struct machine *machine __maybe_unused, 808 union perf_event *event, 809 struct perf_sample *sample) 810 { 811 if (dump_trace) 812 perf_event__fprintf_ksymbol(event, stdout); 813 814 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 815 return machine__process_ksymbol_unregister(machine, event, 816 sample); 817 return machine__process_ksymbol_register(machine, event, sample); 818 } 819 820 int machine__process_text_poke(struct machine *machine, union perf_event *event, 821 struct perf_sample *sample __maybe_unused) 822 { 823 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr); 824 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 825 826 if (dump_trace) 827 perf_event__fprintf_text_poke(event, machine, stdout); 828 829 if (!event->text_poke.new_len) 830 return 0; 831 832 if (cpumode != PERF_RECORD_MISC_KERNEL) { 833 pr_debug("%s: unsupported cpumode - ignoring\n", __func__); 834 return 0; 835 } 836 837 if (map && map->dso) { 838 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len; 839 int ret; 840 841 /* 842 * Kernel maps might be changed when loading symbols so loading 843 * must be done prior to using kernel maps. 844 */ 845 map__load(map); 846 ret = dso__data_write_cache_addr(map->dso, map, machine, 847 event->text_poke.addr, 848 new_bytes, 849 event->text_poke.new_len); 850 if (ret != event->text_poke.new_len) 851 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n", 852 event->text_poke.addr); 853 } else { 854 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n", 855 event->text_poke.addr); 856 } 857 858 return 0; 859 } 860 861 static struct map *machine__addnew_module_map(struct machine *machine, u64 start, 862 const char *filename) 863 { 864 struct map *map = NULL; 865 struct kmod_path m; 866 struct dso *dso; 867 868 if (kmod_path__parse_name(&m, filename)) 869 return NULL; 870 871 dso = machine__findnew_module_dso(machine, &m, filename); 872 if (dso == NULL) 873 goto out; 874 875 map = map__new2(start, dso); 876 if (map == NULL) 877 goto out; 878 879 maps__insert(&machine->kmaps, map); 880 881 /* Put the map here because maps__insert alread got it */ 882 map__put(map); 883 out: 884 /* put the dso here, corresponding to machine__findnew_module_dso */ 885 dso__put(dso); 886 zfree(&m.name); 887 return map; 888 } 889 890 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 891 { 892 struct rb_node *nd; 893 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 894 895 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 896 struct machine *pos = rb_entry(nd, struct machine, rb_node); 897 ret += __dsos__fprintf(&pos->dsos.head, fp); 898 } 899 900 return ret; 901 } 902 903 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 904 bool (skip)(struct dso *dso, int parm), int parm) 905 { 906 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 907 } 908 909 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 910 bool (skip)(struct dso *dso, int parm), int parm) 911 { 912 struct rb_node *nd; 913 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 914 915 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 916 struct machine *pos = rb_entry(nd, struct machine, rb_node); 917 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 918 } 919 return ret; 920 } 921 922 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 923 { 924 int i; 925 size_t printed = 0; 926 struct dso *kdso = machine__kernel_dso(machine); 927 928 if (kdso->has_build_id) { 929 char filename[PATH_MAX]; 930 if (dso__build_id_filename(kdso, filename, sizeof(filename), 931 false)) 932 printed += fprintf(fp, "[0] %s\n", filename); 933 } 934 935 for (i = 0; i < vmlinux_path__nr_entries; ++i) 936 printed += fprintf(fp, "[%d] %s\n", 937 i + kdso->has_build_id, vmlinux_path[i]); 938 939 return printed; 940 } 941 942 size_t machine__fprintf(struct machine *machine, FILE *fp) 943 { 944 struct rb_node *nd; 945 size_t ret; 946 int i; 947 948 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 949 struct threads *threads = &machine->threads[i]; 950 951 down_read(&threads->lock); 952 953 ret = fprintf(fp, "Threads: %u\n", threads->nr); 954 955 for (nd = rb_first_cached(&threads->entries); nd; 956 nd = rb_next(nd)) { 957 struct thread *pos = rb_entry(nd, struct thread, rb_node); 958 959 ret += thread__fprintf(pos, fp); 960 } 961 962 up_read(&threads->lock); 963 } 964 return ret; 965 } 966 967 static struct dso *machine__get_kernel(struct machine *machine) 968 { 969 const char *vmlinux_name = machine->mmap_name; 970 struct dso *kernel; 971 972 if (machine__is_host(machine)) { 973 if (symbol_conf.vmlinux_name) 974 vmlinux_name = symbol_conf.vmlinux_name; 975 976 kernel = machine__findnew_kernel(machine, vmlinux_name, 977 "[kernel]", DSO_SPACE__KERNEL); 978 } else { 979 if (symbol_conf.default_guest_vmlinux_name) 980 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 981 982 kernel = machine__findnew_kernel(machine, vmlinux_name, 983 "[guest.kernel]", 984 DSO_SPACE__KERNEL_GUEST); 985 } 986 987 if (kernel != NULL && (!kernel->has_build_id)) 988 dso__read_running_kernel_build_id(kernel, machine); 989 990 return kernel; 991 } 992 993 struct process_args { 994 u64 start; 995 }; 996 997 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 998 size_t bufsz) 999 { 1000 if (machine__is_default_guest(machine)) 1001 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 1002 else 1003 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 1004 } 1005 1006 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 1007 1008 /* Figure out the start address of kernel map from /proc/kallsyms. 1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 1010 * symbol_name if it's not that important. 1011 */ 1012 static int machine__get_running_kernel_start(struct machine *machine, 1013 const char **symbol_name, 1014 u64 *start, u64 *end) 1015 { 1016 char filename[PATH_MAX]; 1017 int i, err = -1; 1018 const char *name; 1019 u64 addr = 0; 1020 1021 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 1022 1023 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1024 return 0; 1025 1026 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 1027 err = kallsyms__get_function_start(filename, name, &addr); 1028 if (!err) 1029 break; 1030 } 1031 1032 if (err) 1033 return -1; 1034 1035 if (symbol_name) 1036 *symbol_name = name; 1037 1038 *start = addr; 1039 1040 err = kallsyms__get_function_start(filename, "_etext", &addr); 1041 if (!err) 1042 *end = addr; 1043 1044 return 0; 1045 } 1046 1047 int machine__create_extra_kernel_map(struct machine *machine, 1048 struct dso *kernel, 1049 struct extra_kernel_map *xm) 1050 { 1051 struct kmap *kmap; 1052 struct map *map; 1053 1054 map = map__new2(xm->start, kernel); 1055 if (!map) 1056 return -1; 1057 1058 map->end = xm->end; 1059 map->pgoff = xm->pgoff; 1060 1061 kmap = map__kmap(map); 1062 1063 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 1064 1065 maps__insert(&machine->kmaps, map); 1066 1067 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 1068 kmap->name, map->start, map->end); 1069 1070 map__put(map); 1071 1072 return 0; 1073 } 1074 1075 static u64 find_entry_trampoline(struct dso *dso) 1076 { 1077 /* Duplicates are removed so lookup all aliases */ 1078 const char *syms[] = { 1079 "_entry_trampoline", 1080 "__entry_trampoline_start", 1081 "entry_SYSCALL_64_trampoline", 1082 }; 1083 struct symbol *sym = dso__first_symbol(dso); 1084 unsigned int i; 1085 1086 for (; sym; sym = dso__next_symbol(sym)) { 1087 if (sym->binding != STB_GLOBAL) 1088 continue; 1089 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1090 if (!strcmp(sym->name, syms[i])) 1091 return sym->start; 1092 } 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * These values can be used for kernels that do not have symbols for the entry 1100 * trampolines in kallsyms. 1101 */ 1102 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1103 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1104 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1105 1106 /* Map x86_64 PTI entry trampolines */ 1107 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1108 struct dso *kernel) 1109 { 1110 struct maps *kmaps = &machine->kmaps; 1111 int nr_cpus_avail, cpu; 1112 bool found = false; 1113 struct map *map; 1114 u64 pgoff; 1115 1116 /* 1117 * In the vmlinux case, pgoff is a virtual address which must now be 1118 * mapped to a vmlinux offset. 1119 */ 1120 maps__for_each_entry(kmaps, map) { 1121 struct kmap *kmap = __map__kmap(map); 1122 struct map *dest_map; 1123 1124 if (!kmap || !is_entry_trampoline(kmap->name)) 1125 continue; 1126 1127 dest_map = maps__find(kmaps, map->pgoff); 1128 if (dest_map != map) 1129 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1130 found = true; 1131 } 1132 if (found || machine->trampolines_mapped) 1133 return 0; 1134 1135 pgoff = find_entry_trampoline(kernel); 1136 if (!pgoff) 1137 return 0; 1138 1139 nr_cpus_avail = machine__nr_cpus_avail(machine); 1140 1141 /* Add a 1 page map for each CPU's entry trampoline */ 1142 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1143 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1144 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1145 X86_64_ENTRY_TRAMPOLINE; 1146 struct extra_kernel_map xm = { 1147 .start = va, 1148 .end = va + page_size, 1149 .pgoff = pgoff, 1150 }; 1151 1152 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1153 1154 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1155 return -1; 1156 } 1157 1158 machine->trampolines_mapped = nr_cpus_avail; 1159 1160 return 0; 1161 } 1162 1163 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1164 struct dso *kernel __maybe_unused) 1165 { 1166 return 0; 1167 } 1168 1169 static int 1170 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1171 { 1172 /* In case of renewal the kernel map, destroy previous one */ 1173 machine__destroy_kernel_maps(machine); 1174 1175 machine->vmlinux_map = map__new2(0, kernel); 1176 if (machine->vmlinux_map == NULL) 1177 return -1; 1178 1179 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1180 maps__insert(&machine->kmaps, machine->vmlinux_map); 1181 return 0; 1182 } 1183 1184 void machine__destroy_kernel_maps(struct machine *machine) 1185 { 1186 struct kmap *kmap; 1187 struct map *map = machine__kernel_map(machine); 1188 1189 if (map == NULL) 1190 return; 1191 1192 kmap = map__kmap(map); 1193 maps__remove(&machine->kmaps, map); 1194 if (kmap && kmap->ref_reloc_sym) { 1195 zfree((char **)&kmap->ref_reloc_sym->name); 1196 zfree(&kmap->ref_reloc_sym); 1197 } 1198 1199 map__zput(machine->vmlinux_map); 1200 } 1201 1202 int machines__create_guest_kernel_maps(struct machines *machines) 1203 { 1204 int ret = 0; 1205 struct dirent **namelist = NULL; 1206 int i, items = 0; 1207 char path[PATH_MAX]; 1208 pid_t pid; 1209 char *endp; 1210 1211 if (symbol_conf.default_guest_vmlinux_name || 1212 symbol_conf.default_guest_modules || 1213 symbol_conf.default_guest_kallsyms) { 1214 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1215 } 1216 1217 if (symbol_conf.guestmount) { 1218 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1219 if (items <= 0) 1220 return -ENOENT; 1221 for (i = 0; i < items; i++) { 1222 if (!isdigit(namelist[i]->d_name[0])) { 1223 /* Filter out . and .. */ 1224 continue; 1225 } 1226 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1227 if ((*endp != '\0') || 1228 (endp == namelist[i]->d_name) || 1229 (errno == ERANGE)) { 1230 pr_debug("invalid directory (%s). Skipping.\n", 1231 namelist[i]->d_name); 1232 continue; 1233 } 1234 sprintf(path, "%s/%s/proc/kallsyms", 1235 symbol_conf.guestmount, 1236 namelist[i]->d_name); 1237 ret = access(path, R_OK); 1238 if (ret) { 1239 pr_debug("Can't access file %s\n", path); 1240 goto failure; 1241 } 1242 machines__create_kernel_maps(machines, pid); 1243 } 1244 failure: 1245 free(namelist); 1246 } 1247 1248 return ret; 1249 } 1250 1251 void machines__destroy_kernel_maps(struct machines *machines) 1252 { 1253 struct rb_node *next = rb_first_cached(&machines->guests); 1254 1255 machine__destroy_kernel_maps(&machines->host); 1256 1257 while (next) { 1258 struct machine *pos = rb_entry(next, struct machine, rb_node); 1259 1260 next = rb_next(&pos->rb_node); 1261 rb_erase_cached(&pos->rb_node, &machines->guests); 1262 machine__delete(pos); 1263 } 1264 } 1265 1266 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1267 { 1268 struct machine *machine = machines__findnew(machines, pid); 1269 1270 if (machine == NULL) 1271 return -1; 1272 1273 return machine__create_kernel_maps(machine); 1274 } 1275 1276 int machine__load_kallsyms(struct machine *machine, const char *filename) 1277 { 1278 struct map *map = machine__kernel_map(machine); 1279 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1280 1281 if (ret > 0) { 1282 dso__set_loaded(map->dso); 1283 /* 1284 * Since /proc/kallsyms will have multiple sessions for the 1285 * kernel, with modules between them, fixup the end of all 1286 * sections. 1287 */ 1288 maps__fixup_end(&machine->kmaps); 1289 } 1290 1291 return ret; 1292 } 1293 1294 int machine__load_vmlinux_path(struct machine *machine) 1295 { 1296 struct map *map = machine__kernel_map(machine); 1297 int ret = dso__load_vmlinux_path(map->dso, map); 1298 1299 if (ret > 0) 1300 dso__set_loaded(map->dso); 1301 1302 return ret; 1303 } 1304 1305 static char *get_kernel_version(const char *root_dir) 1306 { 1307 char version[PATH_MAX]; 1308 FILE *file; 1309 char *name, *tmp; 1310 const char *prefix = "Linux version "; 1311 1312 sprintf(version, "%s/proc/version", root_dir); 1313 file = fopen(version, "r"); 1314 if (!file) 1315 return NULL; 1316 1317 tmp = fgets(version, sizeof(version), file); 1318 fclose(file); 1319 if (!tmp) 1320 return NULL; 1321 1322 name = strstr(version, prefix); 1323 if (!name) 1324 return NULL; 1325 name += strlen(prefix); 1326 tmp = strchr(name, ' '); 1327 if (tmp) 1328 *tmp = '\0'; 1329 1330 return strdup(name); 1331 } 1332 1333 static bool is_kmod_dso(struct dso *dso) 1334 { 1335 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1336 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1337 } 1338 1339 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m) 1340 { 1341 char *long_name; 1342 struct map *map = maps__find_by_name(maps, m->name); 1343 1344 if (map == NULL) 1345 return 0; 1346 1347 long_name = strdup(path); 1348 if (long_name == NULL) 1349 return -ENOMEM; 1350 1351 dso__set_long_name(map->dso, long_name, true); 1352 dso__kernel_module_get_build_id(map->dso, ""); 1353 1354 /* 1355 * Full name could reveal us kmod compression, so 1356 * we need to update the symtab_type if needed. 1357 */ 1358 if (m->comp && is_kmod_dso(map->dso)) { 1359 map->dso->symtab_type++; 1360 map->dso->comp = m->comp; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth) 1367 { 1368 struct dirent *dent; 1369 DIR *dir = opendir(dir_name); 1370 int ret = 0; 1371 1372 if (!dir) { 1373 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1374 return -1; 1375 } 1376 1377 while ((dent = readdir(dir)) != NULL) { 1378 char path[PATH_MAX]; 1379 struct stat st; 1380 1381 /*sshfs might return bad dent->d_type, so we have to stat*/ 1382 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1383 if (stat(path, &st)) 1384 continue; 1385 1386 if (S_ISDIR(st.st_mode)) { 1387 if (!strcmp(dent->d_name, ".") || 1388 !strcmp(dent->d_name, "..")) 1389 continue; 1390 1391 /* Do not follow top-level source and build symlinks */ 1392 if (depth == 0) { 1393 if (!strcmp(dent->d_name, "source") || 1394 !strcmp(dent->d_name, "build")) 1395 continue; 1396 } 1397 1398 ret = maps__set_modules_path_dir(maps, path, depth + 1); 1399 if (ret < 0) 1400 goto out; 1401 } else { 1402 struct kmod_path m; 1403 1404 ret = kmod_path__parse_name(&m, dent->d_name); 1405 if (ret) 1406 goto out; 1407 1408 if (m.kmod) 1409 ret = maps__set_module_path(maps, path, &m); 1410 1411 zfree(&m.name); 1412 1413 if (ret) 1414 goto out; 1415 } 1416 } 1417 1418 out: 1419 closedir(dir); 1420 return ret; 1421 } 1422 1423 static int machine__set_modules_path(struct machine *machine) 1424 { 1425 char *version; 1426 char modules_path[PATH_MAX]; 1427 1428 version = get_kernel_version(machine->root_dir); 1429 if (!version) 1430 return -1; 1431 1432 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1433 machine->root_dir, version); 1434 free(version); 1435 1436 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1437 } 1438 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1439 u64 *size __maybe_unused, 1440 const char *name __maybe_unused) 1441 { 1442 return 0; 1443 } 1444 1445 static int machine__create_module(void *arg, const char *name, u64 start, 1446 u64 size) 1447 { 1448 struct machine *machine = arg; 1449 struct map *map; 1450 1451 if (arch__fix_module_text_start(&start, &size, name) < 0) 1452 return -1; 1453 1454 map = machine__addnew_module_map(machine, start, name); 1455 if (map == NULL) 1456 return -1; 1457 map->end = start + size; 1458 1459 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1460 1461 return 0; 1462 } 1463 1464 static int machine__create_modules(struct machine *machine) 1465 { 1466 const char *modules; 1467 char path[PATH_MAX]; 1468 1469 if (machine__is_default_guest(machine)) { 1470 modules = symbol_conf.default_guest_modules; 1471 } else { 1472 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1473 modules = path; 1474 } 1475 1476 if (symbol__restricted_filename(modules, "/proc/modules")) 1477 return -1; 1478 1479 if (modules__parse(modules, machine, machine__create_module)) 1480 return -1; 1481 1482 if (!machine__set_modules_path(machine)) 1483 return 0; 1484 1485 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1486 1487 return 0; 1488 } 1489 1490 static void machine__set_kernel_mmap(struct machine *machine, 1491 u64 start, u64 end) 1492 { 1493 machine->vmlinux_map->start = start; 1494 machine->vmlinux_map->end = end; 1495 /* 1496 * Be a bit paranoid here, some perf.data file came with 1497 * a zero sized synthesized MMAP event for the kernel. 1498 */ 1499 if (start == 0 && end == 0) 1500 machine->vmlinux_map->end = ~0ULL; 1501 } 1502 1503 static void machine__update_kernel_mmap(struct machine *machine, 1504 u64 start, u64 end) 1505 { 1506 struct map *map = machine__kernel_map(machine); 1507 1508 map__get(map); 1509 maps__remove(&machine->kmaps, map); 1510 1511 machine__set_kernel_mmap(machine, start, end); 1512 1513 maps__insert(&machine->kmaps, map); 1514 map__put(map); 1515 } 1516 1517 int machine__create_kernel_maps(struct machine *machine) 1518 { 1519 struct dso *kernel = machine__get_kernel(machine); 1520 const char *name = NULL; 1521 struct map *map; 1522 u64 start = 0, end = ~0ULL; 1523 int ret; 1524 1525 if (kernel == NULL) 1526 return -1; 1527 1528 ret = __machine__create_kernel_maps(machine, kernel); 1529 if (ret < 0) 1530 goto out_put; 1531 1532 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1533 if (machine__is_host(machine)) 1534 pr_debug("Problems creating module maps, " 1535 "continuing anyway...\n"); 1536 else 1537 pr_debug("Problems creating module maps for guest %d, " 1538 "continuing anyway...\n", machine->pid); 1539 } 1540 1541 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1542 if (name && 1543 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1544 machine__destroy_kernel_maps(machine); 1545 ret = -1; 1546 goto out_put; 1547 } 1548 1549 /* 1550 * we have a real start address now, so re-order the kmaps 1551 * assume it's the last in the kmaps 1552 */ 1553 machine__update_kernel_mmap(machine, start, end); 1554 } 1555 1556 if (machine__create_extra_kernel_maps(machine, kernel)) 1557 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1558 1559 if (end == ~0ULL) { 1560 /* update end address of the kernel map using adjacent module address */ 1561 map = map__next(machine__kernel_map(machine)); 1562 if (map) 1563 machine__set_kernel_mmap(machine, start, map->start); 1564 } 1565 1566 out_put: 1567 dso__put(kernel); 1568 return ret; 1569 } 1570 1571 static bool machine__uses_kcore(struct machine *machine) 1572 { 1573 struct dso *dso; 1574 1575 list_for_each_entry(dso, &machine->dsos.head, node) { 1576 if (dso__is_kcore(dso)) 1577 return true; 1578 } 1579 1580 return false; 1581 } 1582 1583 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1584 struct extra_kernel_map *xm) 1585 { 1586 return machine__is(machine, "x86_64") && 1587 is_entry_trampoline(xm->name); 1588 } 1589 1590 static int machine__process_extra_kernel_map(struct machine *machine, 1591 struct extra_kernel_map *xm) 1592 { 1593 struct dso *kernel = machine__kernel_dso(machine); 1594 1595 if (kernel == NULL) 1596 return -1; 1597 1598 return machine__create_extra_kernel_map(machine, kernel, xm); 1599 } 1600 1601 static int machine__process_kernel_mmap_event(struct machine *machine, 1602 struct extra_kernel_map *xm, 1603 struct build_id *bid) 1604 { 1605 struct map *map; 1606 enum dso_space_type dso_space; 1607 bool is_kernel_mmap; 1608 1609 /* If we have maps from kcore then we do not need or want any others */ 1610 if (machine__uses_kcore(machine)) 1611 return 0; 1612 1613 if (machine__is_host(machine)) 1614 dso_space = DSO_SPACE__KERNEL; 1615 else 1616 dso_space = DSO_SPACE__KERNEL_GUEST; 1617 1618 is_kernel_mmap = memcmp(xm->name, machine->mmap_name, 1619 strlen(machine->mmap_name) - 1) == 0; 1620 if (xm->name[0] == '/' || 1621 (!is_kernel_mmap && xm->name[0] == '[')) { 1622 map = machine__addnew_module_map(machine, xm->start, 1623 xm->name); 1624 if (map == NULL) 1625 goto out_problem; 1626 1627 map->end = map->start + xm->end - xm->start; 1628 1629 if (build_id__is_defined(bid)) 1630 dso__set_build_id(map->dso, bid); 1631 1632 } else if (is_kernel_mmap) { 1633 const char *symbol_name = (xm->name + strlen(machine->mmap_name)); 1634 /* 1635 * Should be there already, from the build-id table in 1636 * the header. 1637 */ 1638 struct dso *kernel = NULL; 1639 struct dso *dso; 1640 1641 down_read(&machine->dsos.lock); 1642 1643 list_for_each_entry(dso, &machine->dsos.head, node) { 1644 1645 /* 1646 * The cpumode passed to is_kernel_module is not the 1647 * cpumode of *this* event. If we insist on passing 1648 * correct cpumode to is_kernel_module, we should 1649 * record the cpumode when we adding this dso to the 1650 * linked list. 1651 * 1652 * However we don't really need passing correct 1653 * cpumode. We know the correct cpumode must be kernel 1654 * mode (if not, we should not link it onto kernel_dsos 1655 * list). 1656 * 1657 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1658 * is_kernel_module() treats it as a kernel cpumode. 1659 */ 1660 1661 if (!dso->kernel || 1662 is_kernel_module(dso->long_name, 1663 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1664 continue; 1665 1666 1667 kernel = dso; 1668 break; 1669 } 1670 1671 up_read(&machine->dsos.lock); 1672 1673 if (kernel == NULL) 1674 kernel = machine__findnew_dso(machine, machine->mmap_name); 1675 if (kernel == NULL) 1676 goto out_problem; 1677 1678 kernel->kernel = dso_space; 1679 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1680 dso__put(kernel); 1681 goto out_problem; 1682 } 1683 1684 if (strstr(kernel->long_name, "vmlinux")) 1685 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1686 1687 machine__update_kernel_mmap(machine, xm->start, xm->end); 1688 1689 if (build_id__is_defined(bid)) 1690 dso__set_build_id(kernel, bid); 1691 1692 /* 1693 * Avoid using a zero address (kptr_restrict) for the ref reloc 1694 * symbol. Effectively having zero here means that at record 1695 * time /proc/sys/kernel/kptr_restrict was non zero. 1696 */ 1697 if (xm->pgoff != 0) { 1698 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1699 symbol_name, 1700 xm->pgoff); 1701 } 1702 1703 if (machine__is_default_guest(machine)) { 1704 /* 1705 * preload dso of guest kernel and modules 1706 */ 1707 dso__load(kernel, machine__kernel_map(machine)); 1708 } 1709 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) { 1710 return machine__process_extra_kernel_map(machine, xm); 1711 } 1712 return 0; 1713 out_problem: 1714 return -1; 1715 } 1716 1717 int machine__process_mmap2_event(struct machine *machine, 1718 union perf_event *event, 1719 struct perf_sample *sample) 1720 { 1721 struct thread *thread; 1722 struct map *map; 1723 struct dso_id dso_id = { 1724 .maj = event->mmap2.maj, 1725 .min = event->mmap2.min, 1726 .ino = event->mmap2.ino, 1727 .ino_generation = event->mmap2.ino_generation, 1728 }; 1729 struct build_id __bid, *bid = NULL; 1730 int ret = 0; 1731 1732 if (dump_trace) 1733 perf_event__fprintf_mmap2(event, stdout); 1734 1735 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) { 1736 bid = &__bid; 1737 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size); 1738 } 1739 1740 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1741 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1742 struct extra_kernel_map xm = { 1743 .start = event->mmap2.start, 1744 .end = event->mmap2.start + event->mmap2.len, 1745 .pgoff = event->mmap2.pgoff, 1746 }; 1747 1748 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN); 1749 ret = machine__process_kernel_mmap_event(machine, &xm, bid); 1750 if (ret < 0) 1751 goto out_problem; 1752 return 0; 1753 } 1754 1755 thread = machine__findnew_thread(machine, event->mmap2.pid, 1756 event->mmap2.tid); 1757 if (thread == NULL) 1758 goto out_problem; 1759 1760 map = map__new(machine, event->mmap2.start, 1761 event->mmap2.len, event->mmap2.pgoff, 1762 &dso_id, event->mmap2.prot, 1763 event->mmap2.flags, bid, 1764 event->mmap2.filename, thread); 1765 1766 if (map == NULL) 1767 goto out_problem_map; 1768 1769 ret = thread__insert_map(thread, map); 1770 if (ret) 1771 goto out_problem_insert; 1772 1773 thread__put(thread); 1774 map__put(map); 1775 return 0; 1776 1777 out_problem_insert: 1778 map__put(map); 1779 out_problem_map: 1780 thread__put(thread); 1781 out_problem: 1782 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1783 return 0; 1784 } 1785 1786 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1787 struct perf_sample *sample) 1788 { 1789 struct thread *thread; 1790 struct map *map; 1791 u32 prot = 0; 1792 int ret = 0; 1793 1794 if (dump_trace) 1795 perf_event__fprintf_mmap(event, stdout); 1796 1797 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1798 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1799 struct extra_kernel_map xm = { 1800 .start = event->mmap.start, 1801 .end = event->mmap.start + event->mmap.len, 1802 .pgoff = event->mmap.pgoff, 1803 }; 1804 1805 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1806 ret = machine__process_kernel_mmap_event(machine, &xm, NULL); 1807 if (ret < 0) 1808 goto out_problem; 1809 return 0; 1810 } 1811 1812 thread = machine__findnew_thread(machine, event->mmap.pid, 1813 event->mmap.tid); 1814 if (thread == NULL) 1815 goto out_problem; 1816 1817 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1818 prot = PROT_EXEC; 1819 1820 map = map__new(machine, event->mmap.start, 1821 event->mmap.len, event->mmap.pgoff, 1822 NULL, prot, 0, NULL, event->mmap.filename, thread); 1823 1824 if (map == NULL) 1825 goto out_problem_map; 1826 1827 ret = thread__insert_map(thread, map); 1828 if (ret) 1829 goto out_problem_insert; 1830 1831 thread__put(thread); 1832 map__put(map); 1833 return 0; 1834 1835 out_problem_insert: 1836 map__put(map); 1837 out_problem_map: 1838 thread__put(thread); 1839 out_problem: 1840 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1841 return 0; 1842 } 1843 1844 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1845 { 1846 struct threads *threads = machine__threads(machine, th->tid); 1847 1848 if (threads->last_match == th) 1849 threads__set_last_match(threads, NULL); 1850 1851 if (lock) 1852 down_write(&threads->lock); 1853 1854 BUG_ON(refcount_read(&th->refcnt) == 0); 1855 1856 rb_erase_cached(&th->rb_node, &threads->entries); 1857 RB_CLEAR_NODE(&th->rb_node); 1858 --threads->nr; 1859 /* 1860 * Move it first to the dead_threads list, then drop the reference, 1861 * if this is the last reference, then the thread__delete destructor 1862 * will be called and we will remove it from the dead_threads list. 1863 */ 1864 list_add_tail(&th->node, &threads->dead); 1865 1866 /* 1867 * We need to do the put here because if this is the last refcount, 1868 * then we will be touching the threads->dead head when removing the 1869 * thread. 1870 */ 1871 thread__put(th); 1872 1873 if (lock) 1874 up_write(&threads->lock); 1875 } 1876 1877 void machine__remove_thread(struct machine *machine, struct thread *th) 1878 { 1879 return __machine__remove_thread(machine, th, true); 1880 } 1881 1882 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1883 struct perf_sample *sample) 1884 { 1885 struct thread *thread = machine__find_thread(machine, 1886 event->fork.pid, 1887 event->fork.tid); 1888 struct thread *parent = machine__findnew_thread(machine, 1889 event->fork.ppid, 1890 event->fork.ptid); 1891 bool do_maps_clone = true; 1892 int err = 0; 1893 1894 if (dump_trace) 1895 perf_event__fprintf_task(event, stdout); 1896 1897 /* 1898 * There may be an existing thread that is not actually the parent, 1899 * either because we are processing events out of order, or because the 1900 * (fork) event that would have removed the thread was lost. Assume the 1901 * latter case and continue on as best we can. 1902 */ 1903 if (parent->pid_ != (pid_t)event->fork.ppid) { 1904 dump_printf("removing erroneous parent thread %d/%d\n", 1905 parent->pid_, parent->tid); 1906 machine__remove_thread(machine, parent); 1907 thread__put(parent); 1908 parent = machine__findnew_thread(machine, event->fork.ppid, 1909 event->fork.ptid); 1910 } 1911 1912 /* if a thread currently exists for the thread id remove it */ 1913 if (thread != NULL) { 1914 machine__remove_thread(machine, thread); 1915 thread__put(thread); 1916 } 1917 1918 thread = machine__findnew_thread(machine, event->fork.pid, 1919 event->fork.tid); 1920 /* 1921 * When synthesizing FORK events, we are trying to create thread 1922 * objects for the already running tasks on the machine. 1923 * 1924 * Normally, for a kernel FORK event, we want to clone the parent's 1925 * maps because that is what the kernel just did. 1926 * 1927 * But when synthesizing, this should not be done. If we do, we end up 1928 * with overlapping maps as we process the sythesized MMAP2 events that 1929 * get delivered shortly thereafter. 1930 * 1931 * Use the FORK event misc flags in an internal way to signal this 1932 * situation, so we can elide the map clone when appropriate. 1933 */ 1934 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1935 do_maps_clone = false; 1936 1937 if (thread == NULL || parent == NULL || 1938 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1939 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1940 err = -1; 1941 } 1942 thread__put(thread); 1943 thread__put(parent); 1944 1945 return err; 1946 } 1947 1948 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1949 struct perf_sample *sample __maybe_unused) 1950 { 1951 struct thread *thread = machine__find_thread(machine, 1952 event->fork.pid, 1953 event->fork.tid); 1954 1955 if (dump_trace) 1956 perf_event__fprintf_task(event, stdout); 1957 1958 if (thread != NULL) { 1959 thread__exited(thread); 1960 thread__put(thread); 1961 } 1962 1963 return 0; 1964 } 1965 1966 int machine__process_event(struct machine *machine, union perf_event *event, 1967 struct perf_sample *sample) 1968 { 1969 int ret; 1970 1971 switch (event->header.type) { 1972 case PERF_RECORD_COMM: 1973 ret = machine__process_comm_event(machine, event, sample); break; 1974 case PERF_RECORD_MMAP: 1975 ret = machine__process_mmap_event(machine, event, sample); break; 1976 case PERF_RECORD_NAMESPACES: 1977 ret = machine__process_namespaces_event(machine, event, sample); break; 1978 case PERF_RECORD_CGROUP: 1979 ret = machine__process_cgroup_event(machine, event, sample); break; 1980 case PERF_RECORD_MMAP2: 1981 ret = machine__process_mmap2_event(machine, event, sample); break; 1982 case PERF_RECORD_FORK: 1983 ret = machine__process_fork_event(machine, event, sample); break; 1984 case PERF_RECORD_EXIT: 1985 ret = machine__process_exit_event(machine, event, sample); break; 1986 case PERF_RECORD_LOST: 1987 ret = machine__process_lost_event(machine, event, sample); break; 1988 case PERF_RECORD_AUX: 1989 ret = machine__process_aux_event(machine, event); break; 1990 case PERF_RECORD_ITRACE_START: 1991 ret = machine__process_itrace_start_event(machine, event); break; 1992 case PERF_RECORD_LOST_SAMPLES: 1993 ret = machine__process_lost_samples_event(machine, event, sample); break; 1994 case PERF_RECORD_SWITCH: 1995 case PERF_RECORD_SWITCH_CPU_WIDE: 1996 ret = machine__process_switch_event(machine, event); break; 1997 case PERF_RECORD_KSYMBOL: 1998 ret = machine__process_ksymbol(machine, event, sample); break; 1999 case PERF_RECORD_BPF_EVENT: 2000 ret = machine__process_bpf(machine, event, sample); break; 2001 case PERF_RECORD_TEXT_POKE: 2002 ret = machine__process_text_poke(machine, event, sample); break; 2003 default: 2004 ret = -1; 2005 break; 2006 } 2007 2008 return ret; 2009 } 2010 2011 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 2012 { 2013 if (!regexec(regex, sym->name, 0, NULL, 0)) 2014 return 1; 2015 return 0; 2016 } 2017 2018 static void ip__resolve_ams(struct thread *thread, 2019 struct addr_map_symbol *ams, 2020 u64 ip) 2021 { 2022 struct addr_location al; 2023 2024 memset(&al, 0, sizeof(al)); 2025 /* 2026 * We cannot use the header.misc hint to determine whether a 2027 * branch stack address is user, kernel, guest, hypervisor. 2028 * Branches may straddle the kernel/user/hypervisor boundaries. 2029 * Thus, we have to try consecutively until we find a match 2030 * or else, the symbol is unknown 2031 */ 2032 thread__find_cpumode_addr_location(thread, ip, &al); 2033 2034 ams->addr = ip; 2035 ams->al_addr = al.addr; 2036 ams->ms.maps = al.maps; 2037 ams->ms.sym = al.sym; 2038 ams->ms.map = al.map; 2039 ams->phys_addr = 0; 2040 ams->data_page_size = 0; 2041 } 2042 2043 static void ip__resolve_data(struct thread *thread, 2044 u8 m, struct addr_map_symbol *ams, 2045 u64 addr, u64 phys_addr, u64 daddr_page_size) 2046 { 2047 struct addr_location al; 2048 2049 memset(&al, 0, sizeof(al)); 2050 2051 thread__find_symbol(thread, m, addr, &al); 2052 2053 ams->addr = addr; 2054 ams->al_addr = al.addr; 2055 ams->ms.maps = al.maps; 2056 ams->ms.sym = al.sym; 2057 ams->ms.map = al.map; 2058 ams->phys_addr = phys_addr; 2059 ams->data_page_size = daddr_page_size; 2060 } 2061 2062 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 2063 struct addr_location *al) 2064 { 2065 struct mem_info *mi = mem_info__new(); 2066 2067 if (!mi) 2068 return NULL; 2069 2070 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 2071 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 2072 sample->addr, sample->phys_addr, 2073 sample->data_page_size); 2074 mi->data_src.val = sample->data_src; 2075 2076 return mi; 2077 } 2078 2079 static char *callchain_srcline(struct map_symbol *ms, u64 ip) 2080 { 2081 struct map *map = ms->map; 2082 char *srcline = NULL; 2083 2084 if (!map || callchain_param.key == CCKEY_FUNCTION) 2085 return srcline; 2086 2087 srcline = srcline__tree_find(&map->dso->srclines, ip); 2088 if (!srcline) { 2089 bool show_sym = false; 2090 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2091 2092 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2093 ms->sym, show_sym, show_addr, ip); 2094 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2095 } 2096 2097 return srcline; 2098 } 2099 2100 struct iterations { 2101 int nr_loop_iter; 2102 u64 cycles; 2103 }; 2104 2105 static int add_callchain_ip(struct thread *thread, 2106 struct callchain_cursor *cursor, 2107 struct symbol **parent, 2108 struct addr_location *root_al, 2109 u8 *cpumode, 2110 u64 ip, 2111 bool branch, 2112 struct branch_flags *flags, 2113 struct iterations *iter, 2114 u64 branch_from) 2115 { 2116 struct map_symbol ms; 2117 struct addr_location al; 2118 int nr_loop_iter = 0; 2119 u64 iter_cycles = 0; 2120 const char *srcline = NULL; 2121 2122 al.filtered = 0; 2123 al.sym = NULL; 2124 if (!cpumode) { 2125 thread__find_cpumode_addr_location(thread, ip, &al); 2126 } else { 2127 if (ip >= PERF_CONTEXT_MAX) { 2128 switch (ip) { 2129 case PERF_CONTEXT_HV: 2130 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2131 break; 2132 case PERF_CONTEXT_KERNEL: 2133 *cpumode = PERF_RECORD_MISC_KERNEL; 2134 break; 2135 case PERF_CONTEXT_USER: 2136 *cpumode = PERF_RECORD_MISC_USER; 2137 break; 2138 default: 2139 pr_debug("invalid callchain context: " 2140 "%"PRId64"\n", (s64) ip); 2141 /* 2142 * It seems the callchain is corrupted. 2143 * Discard all. 2144 */ 2145 callchain_cursor_reset(cursor); 2146 return 1; 2147 } 2148 return 0; 2149 } 2150 thread__find_symbol(thread, *cpumode, ip, &al); 2151 } 2152 2153 if (al.sym != NULL) { 2154 if (perf_hpp_list.parent && !*parent && 2155 symbol__match_regex(al.sym, &parent_regex)) 2156 *parent = al.sym; 2157 else if (have_ignore_callees && root_al && 2158 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2159 /* Treat this symbol as the root, 2160 forgetting its callees. */ 2161 *root_al = al; 2162 callchain_cursor_reset(cursor); 2163 } 2164 } 2165 2166 if (symbol_conf.hide_unresolved && al.sym == NULL) 2167 return 0; 2168 2169 if (iter) { 2170 nr_loop_iter = iter->nr_loop_iter; 2171 iter_cycles = iter->cycles; 2172 } 2173 2174 ms.maps = al.maps; 2175 ms.map = al.map; 2176 ms.sym = al.sym; 2177 srcline = callchain_srcline(&ms, al.addr); 2178 return callchain_cursor_append(cursor, ip, &ms, 2179 branch, flags, nr_loop_iter, 2180 iter_cycles, branch_from, srcline); 2181 } 2182 2183 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2184 struct addr_location *al) 2185 { 2186 unsigned int i; 2187 const struct branch_stack *bs = sample->branch_stack; 2188 struct branch_entry *entries = perf_sample__branch_entries(sample); 2189 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2190 2191 if (!bi) 2192 return NULL; 2193 2194 for (i = 0; i < bs->nr; i++) { 2195 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to); 2196 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from); 2197 bi[i].flags = entries[i].flags; 2198 } 2199 return bi; 2200 } 2201 2202 static void save_iterations(struct iterations *iter, 2203 struct branch_entry *be, int nr) 2204 { 2205 int i; 2206 2207 iter->nr_loop_iter++; 2208 iter->cycles = 0; 2209 2210 for (i = 0; i < nr; i++) 2211 iter->cycles += be[i].flags.cycles; 2212 } 2213 2214 #define CHASHSZ 127 2215 #define CHASHBITS 7 2216 #define NO_ENTRY 0xff 2217 2218 #define PERF_MAX_BRANCH_DEPTH 127 2219 2220 /* Remove loops. */ 2221 static int remove_loops(struct branch_entry *l, int nr, 2222 struct iterations *iter) 2223 { 2224 int i, j, off; 2225 unsigned char chash[CHASHSZ]; 2226 2227 memset(chash, NO_ENTRY, sizeof(chash)); 2228 2229 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2230 2231 for (i = 0; i < nr; i++) { 2232 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2233 2234 /* no collision handling for now */ 2235 if (chash[h] == NO_ENTRY) { 2236 chash[h] = i; 2237 } else if (l[chash[h]].from == l[i].from) { 2238 bool is_loop = true; 2239 /* check if it is a real loop */ 2240 off = 0; 2241 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2242 if (l[j].from != l[i + off].from) { 2243 is_loop = false; 2244 break; 2245 } 2246 if (is_loop) { 2247 j = nr - (i + off); 2248 if (j > 0) { 2249 save_iterations(iter + i + off, 2250 l + i, off); 2251 2252 memmove(iter + i, iter + i + off, 2253 j * sizeof(*iter)); 2254 2255 memmove(l + i, l + i + off, 2256 j * sizeof(*l)); 2257 } 2258 2259 nr -= off; 2260 } 2261 } 2262 } 2263 return nr; 2264 } 2265 2266 static int lbr_callchain_add_kernel_ip(struct thread *thread, 2267 struct callchain_cursor *cursor, 2268 struct perf_sample *sample, 2269 struct symbol **parent, 2270 struct addr_location *root_al, 2271 u64 branch_from, 2272 bool callee, int end) 2273 { 2274 struct ip_callchain *chain = sample->callchain; 2275 u8 cpumode = PERF_RECORD_MISC_USER; 2276 int err, i; 2277 2278 if (callee) { 2279 for (i = 0; i < end + 1; i++) { 2280 err = add_callchain_ip(thread, cursor, parent, 2281 root_al, &cpumode, chain->ips[i], 2282 false, NULL, NULL, branch_from); 2283 if (err) 2284 return err; 2285 } 2286 return 0; 2287 } 2288 2289 for (i = end; i >= 0; i--) { 2290 err = add_callchain_ip(thread, cursor, parent, 2291 root_al, &cpumode, chain->ips[i], 2292 false, NULL, NULL, branch_from); 2293 if (err) 2294 return err; 2295 } 2296 2297 return 0; 2298 } 2299 2300 static void save_lbr_cursor_node(struct thread *thread, 2301 struct callchain_cursor *cursor, 2302 int idx) 2303 { 2304 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2305 2306 if (!lbr_stitch) 2307 return; 2308 2309 if (cursor->pos == cursor->nr) { 2310 lbr_stitch->prev_lbr_cursor[idx].valid = false; 2311 return; 2312 } 2313 2314 if (!cursor->curr) 2315 cursor->curr = cursor->first; 2316 else 2317 cursor->curr = cursor->curr->next; 2318 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr, 2319 sizeof(struct callchain_cursor_node)); 2320 2321 lbr_stitch->prev_lbr_cursor[idx].valid = true; 2322 cursor->pos++; 2323 } 2324 2325 static int lbr_callchain_add_lbr_ip(struct thread *thread, 2326 struct callchain_cursor *cursor, 2327 struct perf_sample *sample, 2328 struct symbol **parent, 2329 struct addr_location *root_al, 2330 u64 *branch_from, 2331 bool callee) 2332 { 2333 struct branch_stack *lbr_stack = sample->branch_stack; 2334 struct branch_entry *entries = perf_sample__branch_entries(sample); 2335 u8 cpumode = PERF_RECORD_MISC_USER; 2336 int lbr_nr = lbr_stack->nr; 2337 struct branch_flags *flags; 2338 int err, i; 2339 u64 ip; 2340 2341 /* 2342 * The curr and pos are not used in writing session. They are cleared 2343 * in callchain_cursor_commit() when the writing session is closed. 2344 * Using curr and pos to track the current cursor node. 2345 */ 2346 if (thread->lbr_stitch) { 2347 cursor->curr = NULL; 2348 cursor->pos = cursor->nr; 2349 if (cursor->nr) { 2350 cursor->curr = cursor->first; 2351 for (i = 0; i < (int)(cursor->nr - 1); i++) 2352 cursor->curr = cursor->curr->next; 2353 } 2354 } 2355 2356 if (callee) { 2357 /* Add LBR ip from first entries.to */ 2358 ip = entries[0].to; 2359 flags = &entries[0].flags; 2360 *branch_from = entries[0].from; 2361 err = add_callchain_ip(thread, cursor, parent, 2362 root_al, &cpumode, ip, 2363 true, flags, NULL, 2364 *branch_from); 2365 if (err) 2366 return err; 2367 2368 /* 2369 * The number of cursor node increases. 2370 * Move the current cursor node. 2371 * But does not need to save current cursor node for entry 0. 2372 * It's impossible to stitch the whole LBRs of previous sample. 2373 */ 2374 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) { 2375 if (!cursor->curr) 2376 cursor->curr = cursor->first; 2377 else 2378 cursor->curr = cursor->curr->next; 2379 cursor->pos++; 2380 } 2381 2382 /* Add LBR ip from entries.from one by one. */ 2383 for (i = 0; i < lbr_nr; i++) { 2384 ip = entries[i].from; 2385 flags = &entries[i].flags; 2386 err = add_callchain_ip(thread, cursor, parent, 2387 root_al, &cpumode, ip, 2388 true, flags, NULL, 2389 *branch_from); 2390 if (err) 2391 return err; 2392 save_lbr_cursor_node(thread, cursor, i); 2393 } 2394 return 0; 2395 } 2396 2397 /* Add LBR ip from entries.from one by one. */ 2398 for (i = lbr_nr - 1; i >= 0; i--) { 2399 ip = entries[i].from; 2400 flags = &entries[i].flags; 2401 err = add_callchain_ip(thread, cursor, parent, 2402 root_al, &cpumode, ip, 2403 true, flags, NULL, 2404 *branch_from); 2405 if (err) 2406 return err; 2407 save_lbr_cursor_node(thread, cursor, i); 2408 } 2409 2410 /* Add LBR ip from first entries.to */ 2411 ip = entries[0].to; 2412 flags = &entries[0].flags; 2413 *branch_from = entries[0].from; 2414 err = add_callchain_ip(thread, cursor, parent, 2415 root_al, &cpumode, ip, 2416 true, flags, NULL, 2417 *branch_from); 2418 if (err) 2419 return err; 2420 2421 return 0; 2422 } 2423 2424 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread, 2425 struct callchain_cursor *cursor) 2426 { 2427 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2428 struct callchain_cursor_node *cnode; 2429 struct stitch_list *stitch_node; 2430 int err; 2431 2432 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) { 2433 cnode = &stitch_node->cursor; 2434 2435 err = callchain_cursor_append(cursor, cnode->ip, 2436 &cnode->ms, 2437 cnode->branch, 2438 &cnode->branch_flags, 2439 cnode->nr_loop_iter, 2440 cnode->iter_cycles, 2441 cnode->branch_from, 2442 cnode->srcline); 2443 if (err) 2444 return err; 2445 } 2446 return 0; 2447 } 2448 2449 static struct stitch_list *get_stitch_node(struct thread *thread) 2450 { 2451 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2452 struct stitch_list *stitch_node; 2453 2454 if (!list_empty(&lbr_stitch->free_lists)) { 2455 stitch_node = list_first_entry(&lbr_stitch->free_lists, 2456 struct stitch_list, node); 2457 list_del(&stitch_node->node); 2458 2459 return stitch_node; 2460 } 2461 2462 return malloc(sizeof(struct stitch_list)); 2463 } 2464 2465 static bool has_stitched_lbr(struct thread *thread, 2466 struct perf_sample *cur, 2467 struct perf_sample *prev, 2468 unsigned int max_lbr, 2469 bool callee) 2470 { 2471 struct branch_stack *cur_stack = cur->branch_stack; 2472 struct branch_entry *cur_entries = perf_sample__branch_entries(cur); 2473 struct branch_stack *prev_stack = prev->branch_stack; 2474 struct branch_entry *prev_entries = perf_sample__branch_entries(prev); 2475 struct lbr_stitch *lbr_stitch = thread->lbr_stitch; 2476 int i, j, nr_identical_branches = 0; 2477 struct stitch_list *stitch_node; 2478 u64 cur_base, distance; 2479 2480 if (!cur_stack || !prev_stack) 2481 return false; 2482 2483 /* Find the physical index of the base-of-stack for current sample. */ 2484 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1; 2485 2486 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) : 2487 (max_lbr + prev_stack->hw_idx - cur_base); 2488 /* Previous sample has shorter stack. Nothing can be stitched. */ 2489 if (distance + 1 > prev_stack->nr) 2490 return false; 2491 2492 /* 2493 * Check if there are identical LBRs between two samples. 2494 * Identicall LBRs must have same from, to and flags values. Also, 2495 * they have to be saved in the same LBR registers (same physical 2496 * index). 2497 * 2498 * Starts from the base-of-stack of current sample. 2499 */ 2500 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) { 2501 if ((prev_entries[i].from != cur_entries[j].from) || 2502 (prev_entries[i].to != cur_entries[j].to) || 2503 (prev_entries[i].flags.value != cur_entries[j].flags.value)) 2504 break; 2505 nr_identical_branches++; 2506 } 2507 2508 if (!nr_identical_branches) 2509 return false; 2510 2511 /* 2512 * Save the LBRs between the base-of-stack of previous sample 2513 * and the base-of-stack of current sample into lbr_stitch->lists. 2514 * These LBRs will be stitched later. 2515 */ 2516 for (i = prev_stack->nr - 1; i > (int)distance; i--) { 2517 2518 if (!lbr_stitch->prev_lbr_cursor[i].valid) 2519 continue; 2520 2521 stitch_node = get_stitch_node(thread); 2522 if (!stitch_node) 2523 return false; 2524 2525 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i], 2526 sizeof(struct callchain_cursor_node)); 2527 2528 if (callee) 2529 list_add(&stitch_node->node, &lbr_stitch->lists); 2530 else 2531 list_add_tail(&stitch_node->node, &lbr_stitch->lists); 2532 } 2533 2534 return true; 2535 } 2536 2537 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr) 2538 { 2539 if (thread->lbr_stitch) 2540 return true; 2541 2542 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch)); 2543 if (!thread->lbr_stitch) 2544 goto err; 2545 2546 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node)); 2547 if (!thread->lbr_stitch->prev_lbr_cursor) 2548 goto free_lbr_stitch; 2549 2550 INIT_LIST_HEAD(&thread->lbr_stitch->lists); 2551 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists); 2552 2553 return true; 2554 2555 free_lbr_stitch: 2556 zfree(&thread->lbr_stitch); 2557 err: 2558 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n"); 2559 thread->lbr_stitch_enable = false; 2560 return false; 2561 } 2562 2563 /* 2564 * Recolve LBR callstack chain sample 2565 * Return: 2566 * 1 on success get LBR callchain information 2567 * 0 no available LBR callchain information, should try fp 2568 * negative error code on other errors. 2569 */ 2570 static int resolve_lbr_callchain_sample(struct thread *thread, 2571 struct callchain_cursor *cursor, 2572 struct perf_sample *sample, 2573 struct symbol **parent, 2574 struct addr_location *root_al, 2575 int max_stack, 2576 unsigned int max_lbr) 2577 { 2578 bool callee = (callchain_param.order == ORDER_CALLEE); 2579 struct ip_callchain *chain = sample->callchain; 2580 int chain_nr = min(max_stack, (int)chain->nr), i; 2581 struct lbr_stitch *lbr_stitch; 2582 bool stitched_lbr = false; 2583 u64 branch_from = 0; 2584 int err; 2585 2586 for (i = 0; i < chain_nr; i++) { 2587 if (chain->ips[i] == PERF_CONTEXT_USER) 2588 break; 2589 } 2590 2591 /* LBR only affects the user callchain */ 2592 if (i == chain_nr) 2593 return 0; 2594 2595 if (thread->lbr_stitch_enable && !sample->no_hw_idx && 2596 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) { 2597 lbr_stitch = thread->lbr_stitch; 2598 2599 stitched_lbr = has_stitched_lbr(thread, sample, 2600 &lbr_stitch->prev_sample, 2601 max_lbr, callee); 2602 2603 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) { 2604 list_replace_init(&lbr_stitch->lists, 2605 &lbr_stitch->free_lists); 2606 } 2607 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample)); 2608 } 2609 2610 if (callee) { 2611 /* Add kernel ip */ 2612 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2613 parent, root_al, branch_from, 2614 true, i); 2615 if (err) 2616 goto error; 2617 2618 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2619 root_al, &branch_from, true); 2620 if (err) 2621 goto error; 2622 2623 if (stitched_lbr) { 2624 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2625 if (err) 2626 goto error; 2627 } 2628 2629 } else { 2630 if (stitched_lbr) { 2631 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor); 2632 if (err) 2633 goto error; 2634 } 2635 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent, 2636 root_al, &branch_from, false); 2637 if (err) 2638 goto error; 2639 2640 /* Add kernel ip */ 2641 err = lbr_callchain_add_kernel_ip(thread, cursor, sample, 2642 parent, root_al, branch_from, 2643 false, i); 2644 if (err) 2645 goto error; 2646 } 2647 return 1; 2648 2649 error: 2650 return (err < 0) ? err : 0; 2651 } 2652 2653 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2654 struct callchain_cursor *cursor, 2655 struct symbol **parent, 2656 struct addr_location *root_al, 2657 u8 *cpumode, int ent) 2658 { 2659 int err = 0; 2660 2661 while (--ent >= 0) { 2662 u64 ip = chain->ips[ent]; 2663 2664 if (ip >= PERF_CONTEXT_MAX) { 2665 err = add_callchain_ip(thread, cursor, parent, 2666 root_al, cpumode, ip, 2667 false, NULL, NULL, 0); 2668 break; 2669 } 2670 } 2671 return err; 2672 } 2673 2674 static int thread__resolve_callchain_sample(struct thread *thread, 2675 struct callchain_cursor *cursor, 2676 struct evsel *evsel, 2677 struct perf_sample *sample, 2678 struct symbol **parent, 2679 struct addr_location *root_al, 2680 int max_stack) 2681 { 2682 struct branch_stack *branch = sample->branch_stack; 2683 struct branch_entry *entries = perf_sample__branch_entries(sample); 2684 struct ip_callchain *chain = sample->callchain; 2685 int chain_nr = 0; 2686 u8 cpumode = PERF_RECORD_MISC_USER; 2687 int i, j, err, nr_entries; 2688 int skip_idx = -1; 2689 int first_call = 0; 2690 2691 if (chain) 2692 chain_nr = chain->nr; 2693 2694 if (evsel__has_branch_callstack(evsel)) { 2695 struct perf_env *env = evsel__env(evsel); 2696 2697 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2698 root_al, max_stack, 2699 !env ? 0 : env->max_branches); 2700 if (err) 2701 return (err < 0) ? err : 0; 2702 } 2703 2704 /* 2705 * Based on DWARF debug information, some architectures skip 2706 * a callchain entry saved by the kernel. 2707 */ 2708 skip_idx = arch_skip_callchain_idx(thread, chain); 2709 2710 /* 2711 * Add branches to call stack for easier browsing. This gives 2712 * more context for a sample than just the callers. 2713 * 2714 * This uses individual histograms of paths compared to the 2715 * aggregated histograms the normal LBR mode uses. 2716 * 2717 * Limitations for now: 2718 * - No extra filters 2719 * - No annotations (should annotate somehow) 2720 */ 2721 2722 if (branch && callchain_param.branch_callstack) { 2723 int nr = min(max_stack, (int)branch->nr); 2724 struct branch_entry be[nr]; 2725 struct iterations iter[nr]; 2726 2727 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2728 pr_warning("corrupted branch chain. skipping...\n"); 2729 goto check_calls; 2730 } 2731 2732 for (i = 0; i < nr; i++) { 2733 if (callchain_param.order == ORDER_CALLEE) { 2734 be[i] = entries[i]; 2735 2736 if (chain == NULL) 2737 continue; 2738 2739 /* 2740 * Check for overlap into the callchain. 2741 * The return address is one off compared to 2742 * the branch entry. To adjust for this 2743 * assume the calling instruction is not longer 2744 * than 8 bytes. 2745 */ 2746 if (i == skip_idx || 2747 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2748 first_call++; 2749 else if (be[i].from < chain->ips[first_call] && 2750 be[i].from >= chain->ips[first_call] - 8) 2751 first_call++; 2752 } else 2753 be[i] = entries[branch->nr - i - 1]; 2754 } 2755 2756 memset(iter, 0, sizeof(struct iterations) * nr); 2757 nr = remove_loops(be, nr, iter); 2758 2759 for (i = 0; i < nr; i++) { 2760 err = add_callchain_ip(thread, cursor, parent, 2761 root_al, 2762 NULL, be[i].to, 2763 true, &be[i].flags, 2764 NULL, be[i].from); 2765 2766 if (!err) 2767 err = add_callchain_ip(thread, cursor, parent, root_al, 2768 NULL, be[i].from, 2769 true, &be[i].flags, 2770 &iter[i], 0); 2771 if (err == -EINVAL) 2772 break; 2773 if (err) 2774 return err; 2775 } 2776 2777 if (chain_nr == 0) 2778 return 0; 2779 2780 chain_nr -= nr; 2781 } 2782 2783 check_calls: 2784 if (chain && callchain_param.order != ORDER_CALLEE) { 2785 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2786 &cpumode, chain->nr - first_call); 2787 if (err) 2788 return (err < 0) ? err : 0; 2789 } 2790 for (i = first_call, nr_entries = 0; 2791 i < chain_nr && nr_entries < max_stack; i++) { 2792 u64 ip; 2793 2794 if (callchain_param.order == ORDER_CALLEE) 2795 j = i; 2796 else 2797 j = chain->nr - i - 1; 2798 2799 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2800 if (j == skip_idx) 2801 continue; 2802 #endif 2803 ip = chain->ips[j]; 2804 if (ip < PERF_CONTEXT_MAX) 2805 ++nr_entries; 2806 else if (callchain_param.order != ORDER_CALLEE) { 2807 err = find_prev_cpumode(chain, thread, cursor, parent, 2808 root_al, &cpumode, j); 2809 if (err) 2810 return (err < 0) ? err : 0; 2811 continue; 2812 } 2813 2814 err = add_callchain_ip(thread, cursor, parent, 2815 root_al, &cpumode, ip, 2816 false, NULL, NULL, 0); 2817 2818 if (err) 2819 return (err < 0) ? err : 0; 2820 } 2821 2822 return 0; 2823 } 2824 2825 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip) 2826 { 2827 struct symbol *sym = ms->sym; 2828 struct map *map = ms->map; 2829 struct inline_node *inline_node; 2830 struct inline_list *ilist; 2831 u64 addr; 2832 int ret = 1; 2833 2834 if (!symbol_conf.inline_name || !map || !sym) 2835 return ret; 2836 2837 addr = map__map_ip(map, ip); 2838 addr = map__rip_2objdump(map, addr); 2839 2840 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2841 if (!inline_node) { 2842 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2843 if (!inline_node) 2844 return ret; 2845 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2846 } 2847 2848 list_for_each_entry(ilist, &inline_node->val, list) { 2849 struct map_symbol ilist_ms = { 2850 .maps = ms->maps, 2851 .map = map, 2852 .sym = ilist->symbol, 2853 }; 2854 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false, 2855 NULL, 0, 0, 0, ilist->srcline); 2856 2857 if (ret != 0) 2858 return ret; 2859 } 2860 2861 return ret; 2862 } 2863 2864 static int unwind_entry(struct unwind_entry *entry, void *arg) 2865 { 2866 struct callchain_cursor *cursor = arg; 2867 const char *srcline = NULL; 2868 u64 addr = entry->ip; 2869 2870 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL) 2871 return 0; 2872 2873 if (append_inlines(cursor, &entry->ms, entry->ip) == 0) 2874 return 0; 2875 2876 /* 2877 * Convert entry->ip from a virtual address to an offset in 2878 * its corresponding binary. 2879 */ 2880 if (entry->ms.map) 2881 addr = map__map_ip(entry->ms.map, entry->ip); 2882 2883 srcline = callchain_srcline(&entry->ms, addr); 2884 return callchain_cursor_append(cursor, entry->ip, &entry->ms, 2885 false, NULL, 0, 0, 0, srcline); 2886 } 2887 2888 static int thread__resolve_callchain_unwind(struct thread *thread, 2889 struct callchain_cursor *cursor, 2890 struct evsel *evsel, 2891 struct perf_sample *sample, 2892 int max_stack) 2893 { 2894 /* Can we do dwarf post unwind? */ 2895 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) && 2896 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER))) 2897 return 0; 2898 2899 /* Bail out if nothing was captured. */ 2900 if ((!sample->user_regs.regs) || 2901 (!sample->user_stack.size)) 2902 return 0; 2903 2904 return unwind__get_entries(unwind_entry, cursor, 2905 thread, sample, max_stack); 2906 } 2907 2908 int thread__resolve_callchain(struct thread *thread, 2909 struct callchain_cursor *cursor, 2910 struct evsel *evsel, 2911 struct perf_sample *sample, 2912 struct symbol **parent, 2913 struct addr_location *root_al, 2914 int max_stack) 2915 { 2916 int ret = 0; 2917 2918 callchain_cursor_reset(cursor); 2919 2920 if (callchain_param.order == ORDER_CALLEE) { 2921 ret = thread__resolve_callchain_sample(thread, cursor, 2922 evsel, sample, 2923 parent, root_al, 2924 max_stack); 2925 if (ret) 2926 return ret; 2927 ret = thread__resolve_callchain_unwind(thread, cursor, 2928 evsel, sample, 2929 max_stack); 2930 } else { 2931 ret = thread__resolve_callchain_unwind(thread, cursor, 2932 evsel, sample, 2933 max_stack); 2934 if (ret) 2935 return ret; 2936 ret = thread__resolve_callchain_sample(thread, cursor, 2937 evsel, sample, 2938 parent, root_al, 2939 max_stack); 2940 } 2941 2942 return ret; 2943 } 2944 2945 int machine__for_each_thread(struct machine *machine, 2946 int (*fn)(struct thread *thread, void *p), 2947 void *priv) 2948 { 2949 struct threads *threads; 2950 struct rb_node *nd; 2951 struct thread *thread; 2952 int rc = 0; 2953 int i; 2954 2955 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2956 threads = &machine->threads[i]; 2957 for (nd = rb_first_cached(&threads->entries); nd; 2958 nd = rb_next(nd)) { 2959 thread = rb_entry(nd, struct thread, rb_node); 2960 rc = fn(thread, priv); 2961 if (rc != 0) 2962 return rc; 2963 } 2964 2965 list_for_each_entry(thread, &threads->dead, node) { 2966 rc = fn(thread, priv); 2967 if (rc != 0) 2968 return rc; 2969 } 2970 } 2971 return rc; 2972 } 2973 2974 int machines__for_each_thread(struct machines *machines, 2975 int (*fn)(struct thread *thread, void *p), 2976 void *priv) 2977 { 2978 struct rb_node *nd; 2979 int rc = 0; 2980 2981 rc = machine__for_each_thread(&machines->host, fn, priv); 2982 if (rc != 0) 2983 return rc; 2984 2985 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2986 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2987 2988 rc = machine__for_each_thread(machine, fn, priv); 2989 if (rc != 0) 2990 return rc; 2991 } 2992 return rc; 2993 } 2994 2995 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2996 { 2997 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 2998 2999 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid) 3000 return -1; 3001 3002 return machine->current_tid[cpu]; 3003 } 3004 3005 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 3006 pid_t tid) 3007 { 3008 struct thread *thread; 3009 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS); 3010 3011 if (cpu < 0) 3012 return -EINVAL; 3013 3014 if (!machine->current_tid) { 3015 int i; 3016 3017 machine->current_tid = calloc(nr_cpus, sizeof(pid_t)); 3018 if (!machine->current_tid) 3019 return -ENOMEM; 3020 for (i = 0; i < nr_cpus; i++) 3021 machine->current_tid[i] = -1; 3022 } 3023 3024 if (cpu >= nr_cpus) { 3025 pr_err("Requested CPU %d too large. ", cpu); 3026 pr_err("Consider raising MAX_NR_CPUS\n"); 3027 return -EINVAL; 3028 } 3029 3030 machine->current_tid[cpu] = tid; 3031 3032 thread = machine__findnew_thread(machine, pid, tid); 3033 if (!thread) 3034 return -ENOMEM; 3035 3036 thread->cpu = cpu; 3037 thread__put(thread); 3038 3039 return 0; 3040 } 3041 3042 /* 3043 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 3044 * normalized arch is needed. 3045 */ 3046 bool machine__is(struct machine *machine, const char *arch) 3047 { 3048 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 3049 } 3050 3051 int machine__nr_cpus_avail(struct machine *machine) 3052 { 3053 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 3054 } 3055 3056 int machine__get_kernel_start(struct machine *machine) 3057 { 3058 struct map *map = machine__kernel_map(machine); 3059 int err = 0; 3060 3061 /* 3062 * The only addresses above 2^63 are kernel addresses of a 64-bit 3063 * kernel. Note that addresses are unsigned so that on a 32-bit system 3064 * all addresses including kernel addresses are less than 2^32. In 3065 * that case (32-bit system), if the kernel mapping is unknown, all 3066 * addresses will be assumed to be in user space - see 3067 * machine__kernel_ip(). 3068 */ 3069 machine->kernel_start = 1ULL << 63; 3070 if (map) { 3071 err = map__load(map); 3072 /* 3073 * On x86_64, PTI entry trampolines are less than the 3074 * start of kernel text, but still above 2^63. So leave 3075 * kernel_start = 1ULL << 63 for x86_64. 3076 */ 3077 if (!err && !machine__is(machine, "x86_64")) 3078 machine->kernel_start = map->start; 3079 } 3080 return err; 3081 } 3082 3083 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 3084 { 3085 u8 addr_cpumode = cpumode; 3086 bool kernel_ip; 3087 3088 if (!machine->single_address_space) 3089 goto out; 3090 3091 kernel_ip = machine__kernel_ip(machine, addr); 3092 switch (cpumode) { 3093 case PERF_RECORD_MISC_KERNEL: 3094 case PERF_RECORD_MISC_USER: 3095 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 3096 PERF_RECORD_MISC_USER; 3097 break; 3098 case PERF_RECORD_MISC_GUEST_KERNEL: 3099 case PERF_RECORD_MISC_GUEST_USER: 3100 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 3101 PERF_RECORD_MISC_GUEST_USER; 3102 break; 3103 default: 3104 break; 3105 } 3106 out: 3107 return addr_cpumode; 3108 } 3109 3110 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id) 3111 { 3112 return dsos__findnew_id(&machine->dsos, filename, id); 3113 } 3114 3115 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 3116 { 3117 return machine__findnew_dso_id(machine, filename, NULL); 3118 } 3119 3120 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 3121 { 3122 struct machine *machine = vmachine; 3123 struct map *map; 3124 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 3125 3126 if (sym == NULL) 3127 return NULL; 3128 3129 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 3130 *addrp = map->unmap_ip(map, sym->start); 3131 return sym->name; 3132 } 3133 3134 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv) 3135 { 3136 struct dso *pos; 3137 int err = 0; 3138 3139 list_for_each_entry(pos, &machine->dsos.head, node) { 3140 if (fn(pos, machine, priv)) 3141 err = -1; 3142 } 3143 return err; 3144 } 3145