1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "symbol.h" 14 #include "sort.h" 15 #include "strlist.h" 16 #include "thread.h" 17 #include "vdso.h" 18 #include <stdbool.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <unistd.h> 22 #include "unwind.h" 23 #include "linux/hash.h" 24 #include "asm/bug.h" 25 #include "bpf-event.h" 26 27 #include "sane_ctype.h" 28 #include <symbol/kallsyms.h> 29 #include <linux/mman.h> 30 31 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 32 33 static void dsos__init(struct dsos *dsos) 34 { 35 INIT_LIST_HEAD(&dsos->head); 36 dsos->root = RB_ROOT; 37 init_rwsem(&dsos->lock); 38 } 39 40 static void machine__threads_init(struct machine *machine) 41 { 42 int i; 43 44 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 45 struct threads *threads = &machine->threads[i]; 46 threads->entries = RB_ROOT_CACHED; 47 init_rwsem(&threads->lock); 48 threads->nr = 0; 49 INIT_LIST_HEAD(&threads->dead); 50 threads->last_match = NULL; 51 } 52 } 53 54 static int machine__set_mmap_name(struct machine *machine) 55 { 56 if (machine__is_host(machine)) 57 machine->mmap_name = strdup("[kernel.kallsyms]"); 58 else if (machine__is_default_guest(machine)) 59 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 61 machine->pid) < 0) 62 machine->mmap_name = NULL; 63 64 return machine->mmap_name ? 0 : -ENOMEM; 65 } 66 67 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 68 { 69 int err = -ENOMEM; 70 71 memset(machine, 0, sizeof(*machine)); 72 map_groups__init(&machine->kmaps, machine); 73 RB_CLEAR_NODE(&machine->rb_node); 74 dsos__init(&machine->dsos); 75 76 machine__threads_init(machine); 77 78 machine->vdso_info = NULL; 79 machine->env = NULL; 80 81 machine->pid = pid; 82 83 machine->id_hdr_size = 0; 84 machine->kptr_restrict_warned = false; 85 machine->comm_exec = false; 86 machine->kernel_start = 0; 87 machine->vmlinux_map = NULL; 88 89 machine->root_dir = strdup(root_dir); 90 if (machine->root_dir == NULL) 91 return -ENOMEM; 92 93 if (machine__set_mmap_name(machine)) 94 goto out; 95 96 if (pid != HOST_KERNEL_ID) { 97 struct thread *thread = machine__findnew_thread(machine, -1, 98 pid); 99 char comm[64]; 100 101 if (thread == NULL) 102 goto out; 103 104 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 105 thread__set_comm(thread, comm, 0); 106 thread__put(thread); 107 } 108 109 machine->current_tid = NULL; 110 err = 0; 111 112 out: 113 if (err) { 114 zfree(&machine->root_dir); 115 zfree(&machine->mmap_name); 116 } 117 return 0; 118 } 119 120 struct machine *machine__new_host(void) 121 { 122 struct machine *machine = malloc(sizeof(*machine)); 123 124 if (machine != NULL) { 125 machine__init(machine, "", HOST_KERNEL_ID); 126 127 if (machine__create_kernel_maps(machine) < 0) 128 goto out_delete; 129 } 130 131 return machine; 132 out_delete: 133 free(machine); 134 return NULL; 135 } 136 137 struct machine *machine__new_kallsyms(void) 138 { 139 struct machine *machine = machine__new_host(); 140 /* 141 * FIXME: 142 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 143 * ask for not using the kcore parsing code, once this one is fixed 144 * to create a map per module. 145 */ 146 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 147 machine__delete(machine); 148 machine = NULL; 149 } 150 151 return machine; 152 } 153 154 static void dsos__purge(struct dsos *dsos) 155 { 156 struct dso *pos, *n; 157 158 down_write(&dsos->lock); 159 160 list_for_each_entry_safe(pos, n, &dsos->head, node) { 161 RB_CLEAR_NODE(&pos->rb_node); 162 pos->root = NULL; 163 list_del_init(&pos->node); 164 dso__put(pos); 165 } 166 167 up_write(&dsos->lock); 168 } 169 170 static void dsos__exit(struct dsos *dsos) 171 { 172 dsos__purge(dsos); 173 exit_rwsem(&dsos->lock); 174 } 175 176 void machine__delete_threads(struct machine *machine) 177 { 178 struct rb_node *nd; 179 int i; 180 181 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 182 struct threads *threads = &machine->threads[i]; 183 down_write(&threads->lock); 184 nd = rb_first_cached(&threads->entries); 185 while (nd) { 186 struct thread *t = rb_entry(nd, struct thread, rb_node); 187 188 nd = rb_next(nd); 189 __machine__remove_thread(machine, t, false); 190 } 191 up_write(&threads->lock); 192 } 193 } 194 195 void machine__exit(struct machine *machine) 196 { 197 int i; 198 199 if (machine == NULL) 200 return; 201 202 machine__destroy_kernel_maps(machine); 203 map_groups__exit(&machine->kmaps); 204 dsos__exit(&machine->dsos); 205 machine__exit_vdso(machine); 206 zfree(&machine->root_dir); 207 zfree(&machine->mmap_name); 208 zfree(&machine->current_tid); 209 210 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 211 struct threads *threads = &machine->threads[i]; 212 exit_rwsem(&threads->lock); 213 } 214 } 215 216 void machine__delete(struct machine *machine) 217 { 218 if (machine) { 219 machine__exit(machine); 220 free(machine); 221 } 222 } 223 224 void machines__init(struct machines *machines) 225 { 226 machine__init(&machines->host, "", HOST_KERNEL_ID); 227 machines->guests = RB_ROOT_CACHED; 228 } 229 230 void machines__exit(struct machines *machines) 231 { 232 machine__exit(&machines->host); 233 /* XXX exit guest */ 234 } 235 236 struct machine *machines__add(struct machines *machines, pid_t pid, 237 const char *root_dir) 238 { 239 struct rb_node **p = &machines->guests.rb_root.rb_node; 240 struct rb_node *parent = NULL; 241 struct machine *pos, *machine = malloc(sizeof(*machine)); 242 bool leftmost = true; 243 244 if (machine == NULL) 245 return NULL; 246 247 if (machine__init(machine, root_dir, pid) != 0) { 248 free(machine); 249 return NULL; 250 } 251 252 while (*p != NULL) { 253 parent = *p; 254 pos = rb_entry(parent, struct machine, rb_node); 255 if (pid < pos->pid) 256 p = &(*p)->rb_left; 257 else { 258 p = &(*p)->rb_right; 259 leftmost = false; 260 } 261 } 262 263 rb_link_node(&machine->rb_node, parent, p); 264 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 265 266 return machine; 267 } 268 269 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 270 { 271 struct rb_node *nd; 272 273 machines->host.comm_exec = comm_exec; 274 275 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 276 struct machine *machine = rb_entry(nd, struct machine, rb_node); 277 278 machine->comm_exec = comm_exec; 279 } 280 } 281 282 struct machine *machines__find(struct machines *machines, pid_t pid) 283 { 284 struct rb_node **p = &machines->guests.rb_root.rb_node; 285 struct rb_node *parent = NULL; 286 struct machine *machine; 287 struct machine *default_machine = NULL; 288 289 if (pid == HOST_KERNEL_ID) 290 return &machines->host; 291 292 while (*p != NULL) { 293 parent = *p; 294 machine = rb_entry(parent, struct machine, rb_node); 295 if (pid < machine->pid) 296 p = &(*p)->rb_left; 297 else if (pid > machine->pid) 298 p = &(*p)->rb_right; 299 else 300 return machine; 301 if (!machine->pid) 302 default_machine = machine; 303 } 304 305 return default_machine; 306 } 307 308 struct machine *machines__findnew(struct machines *machines, pid_t pid) 309 { 310 char path[PATH_MAX]; 311 const char *root_dir = ""; 312 struct machine *machine = machines__find(machines, pid); 313 314 if (machine && (machine->pid == pid)) 315 goto out; 316 317 if ((pid != HOST_KERNEL_ID) && 318 (pid != DEFAULT_GUEST_KERNEL_ID) && 319 (symbol_conf.guestmount)) { 320 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 321 if (access(path, R_OK)) { 322 static struct strlist *seen; 323 324 if (!seen) 325 seen = strlist__new(NULL, NULL); 326 327 if (!strlist__has_entry(seen, path)) { 328 pr_err("Can't access file %s\n", path); 329 strlist__add(seen, path); 330 } 331 machine = NULL; 332 goto out; 333 } 334 root_dir = path; 335 } 336 337 machine = machines__add(machines, pid, root_dir); 338 out: 339 return machine; 340 } 341 342 void machines__process_guests(struct machines *machines, 343 machine__process_t process, void *data) 344 { 345 struct rb_node *nd; 346 347 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 348 struct machine *pos = rb_entry(nd, struct machine, rb_node); 349 process(pos, data); 350 } 351 } 352 353 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 354 { 355 struct rb_node *node; 356 struct machine *machine; 357 358 machines->host.id_hdr_size = id_hdr_size; 359 360 for (node = rb_first_cached(&machines->guests); node; 361 node = rb_next(node)) { 362 machine = rb_entry(node, struct machine, rb_node); 363 machine->id_hdr_size = id_hdr_size; 364 } 365 366 return; 367 } 368 369 static void machine__update_thread_pid(struct machine *machine, 370 struct thread *th, pid_t pid) 371 { 372 struct thread *leader; 373 374 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 375 return; 376 377 th->pid_ = pid; 378 379 if (th->pid_ == th->tid) 380 return; 381 382 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 383 if (!leader) 384 goto out_err; 385 386 if (!leader->mg) 387 leader->mg = map_groups__new(machine); 388 389 if (!leader->mg) 390 goto out_err; 391 392 if (th->mg == leader->mg) 393 return; 394 395 if (th->mg) { 396 /* 397 * Maps are created from MMAP events which provide the pid and 398 * tid. Consequently there never should be any maps on a thread 399 * with an unknown pid. Just print an error if there are. 400 */ 401 if (!map_groups__empty(th->mg)) 402 pr_err("Discarding thread maps for %d:%d\n", 403 th->pid_, th->tid); 404 map_groups__put(th->mg); 405 } 406 407 th->mg = map_groups__get(leader->mg); 408 out_put: 409 thread__put(leader); 410 return; 411 out_err: 412 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 413 goto out_put; 414 } 415 416 /* 417 * Front-end cache - TID lookups come in blocks, 418 * so most of the time we dont have to look up 419 * the full rbtree: 420 */ 421 static struct thread* 422 __threads__get_last_match(struct threads *threads, struct machine *machine, 423 int pid, int tid) 424 { 425 struct thread *th; 426 427 th = threads->last_match; 428 if (th != NULL) { 429 if (th->tid == tid) { 430 machine__update_thread_pid(machine, th, pid); 431 return thread__get(th); 432 } 433 434 threads->last_match = NULL; 435 } 436 437 return NULL; 438 } 439 440 static struct thread* 441 threads__get_last_match(struct threads *threads, struct machine *machine, 442 int pid, int tid) 443 { 444 struct thread *th = NULL; 445 446 if (perf_singlethreaded) 447 th = __threads__get_last_match(threads, machine, pid, tid); 448 449 return th; 450 } 451 452 static void 453 __threads__set_last_match(struct threads *threads, struct thread *th) 454 { 455 threads->last_match = th; 456 } 457 458 static void 459 threads__set_last_match(struct threads *threads, struct thread *th) 460 { 461 if (perf_singlethreaded) 462 __threads__set_last_match(threads, th); 463 } 464 465 /* 466 * Caller must eventually drop thread->refcnt returned with a successful 467 * lookup/new thread inserted. 468 */ 469 static struct thread *____machine__findnew_thread(struct machine *machine, 470 struct threads *threads, 471 pid_t pid, pid_t tid, 472 bool create) 473 { 474 struct rb_node **p = &threads->entries.rb_root.rb_node; 475 struct rb_node *parent = NULL; 476 struct thread *th; 477 bool leftmost = true; 478 479 th = threads__get_last_match(threads, machine, pid, tid); 480 if (th) 481 return th; 482 483 while (*p != NULL) { 484 parent = *p; 485 th = rb_entry(parent, struct thread, rb_node); 486 487 if (th->tid == tid) { 488 threads__set_last_match(threads, th); 489 machine__update_thread_pid(machine, th, pid); 490 return thread__get(th); 491 } 492 493 if (tid < th->tid) 494 p = &(*p)->rb_left; 495 else { 496 p = &(*p)->rb_right; 497 leftmost = false; 498 } 499 } 500 501 if (!create) 502 return NULL; 503 504 th = thread__new(pid, tid); 505 if (th != NULL) { 506 rb_link_node(&th->rb_node, parent, p); 507 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 508 509 /* 510 * We have to initialize map_groups separately 511 * after rb tree is updated. 512 * 513 * The reason is that we call machine__findnew_thread 514 * within thread__init_map_groups to find the thread 515 * leader and that would screwed the rb tree. 516 */ 517 if (thread__init_map_groups(th, machine)) { 518 rb_erase_cached(&th->rb_node, &threads->entries); 519 RB_CLEAR_NODE(&th->rb_node); 520 thread__put(th); 521 return NULL; 522 } 523 /* 524 * It is now in the rbtree, get a ref 525 */ 526 thread__get(th); 527 threads__set_last_match(threads, th); 528 ++threads->nr; 529 } 530 531 return th; 532 } 533 534 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 535 { 536 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 537 } 538 539 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 540 pid_t tid) 541 { 542 struct threads *threads = machine__threads(machine, tid); 543 struct thread *th; 544 545 down_write(&threads->lock); 546 th = __machine__findnew_thread(machine, pid, tid); 547 up_write(&threads->lock); 548 return th; 549 } 550 551 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 552 pid_t tid) 553 { 554 struct threads *threads = machine__threads(machine, tid); 555 struct thread *th; 556 557 down_read(&threads->lock); 558 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 559 up_read(&threads->lock); 560 return th; 561 } 562 563 struct comm *machine__thread_exec_comm(struct machine *machine, 564 struct thread *thread) 565 { 566 if (machine->comm_exec) 567 return thread__exec_comm(thread); 568 else 569 return thread__comm(thread); 570 } 571 572 int machine__process_comm_event(struct machine *machine, union perf_event *event, 573 struct perf_sample *sample) 574 { 575 struct thread *thread = machine__findnew_thread(machine, 576 event->comm.pid, 577 event->comm.tid); 578 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 579 int err = 0; 580 581 if (exec) 582 machine->comm_exec = true; 583 584 if (dump_trace) 585 perf_event__fprintf_comm(event, stdout); 586 587 if (thread == NULL || 588 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 589 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 590 err = -1; 591 } 592 593 thread__put(thread); 594 595 return err; 596 } 597 598 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 599 union perf_event *event, 600 struct perf_sample *sample __maybe_unused) 601 { 602 struct thread *thread = machine__findnew_thread(machine, 603 event->namespaces.pid, 604 event->namespaces.tid); 605 int err = 0; 606 607 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 608 "\nWARNING: kernel seems to support more namespaces than perf" 609 " tool.\nTry updating the perf tool..\n\n"); 610 611 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 612 "\nWARNING: perf tool seems to support more namespaces than" 613 " the kernel.\nTry updating the kernel..\n\n"); 614 615 if (dump_trace) 616 perf_event__fprintf_namespaces(event, stdout); 617 618 if (thread == NULL || 619 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 620 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 621 err = -1; 622 } 623 624 thread__put(thread); 625 626 return err; 627 } 628 629 int machine__process_lost_event(struct machine *machine __maybe_unused, 630 union perf_event *event, struct perf_sample *sample __maybe_unused) 631 { 632 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 633 event->lost.id, event->lost.lost); 634 return 0; 635 } 636 637 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 638 union perf_event *event, struct perf_sample *sample) 639 { 640 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 641 sample->id, event->lost_samples.lost); 642 return 0; 643 } 644 645 static struct dso *machine__findnew_module_dso(struct machine *machine, 646 struct kmod_path *m, 647 const char *filename) 648 { 649 struct dso *dso; 650 651 down_write(&machine->dsos.lock); 652 653 dso = __dsos__find(&machine->dsos, m->name, true); 654 if (!dso) { 655 dso = __dsos__addnew(&machine->dsos, m->name); 656 if (dso == NULL) 657 goto out_unlock; 658 659 dso__set_module_info(dso, m, machine); 660 dso__set_long_name(dso, strdup(filename), true); 661 } 662 663 dso__get(dso); 664 out_unlock: 665 up_write(&machine->dsos.lock); 666 return dso; 667 } 668 669 int machine__process_aux_event(struct machine *machine __maybe_unused, 670 union perf_event *event) 671 { 672 if (dump_trace) 673 perf_event__fprintf_aux(event, stdout); 674 return 0; 675 } 676 677 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 678 union perf_event *event) 679 { 680 if (dump_trace) 681 perf_event__fprintf_itrace_start(event, stdout); 682 return 0; 683 } 684 685 int machine__process_switch_event(struct machine *machine __maybe_unused, 686 union perf_event *event) 687 { 688 if (dump_trace) 689 perf_event__fprintf_switch(event, stdout); 690 return 0; 691 } 692 693 static int machine__process_ksymbol_register(struct machine *machine, 694 union perf_event *event, 695 struct perf_sample *sample __maybe_unused) 696 { 697 struct symbol *sym; 698 struct map *map; 699 700 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 701 if (!map) { 702 map = dso__new_map(event->ksymbol_event.name); 703 if (!map) 704 return -ENOMEM; 705 706 map->start = event->ksymbol_event.addr; 707 map->pgoff = map->start; 708 map->end = map->start + event->ksymbol_event.len; 709 map_groups__insert(&machine->kmaps, map); 710 } 711 712 sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len, 713 0, 0, event->ksymbol_event.name); 714 if (!sym) 715 return -ENOMEM; 716 dso__insert_symbol(map->dso, sym); 717 return 0; 718 } 719 720 static int machine__process_ksymbol_unregister(struct machine *machine, 721 union perf_event *event, 722 struct perf_sample *sample __maybe_unused) 723 { 724 struct map *map; 725 726 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 727 if (map) 728 map_groups__remove(&machine->kmaps, map); 729 730 return 0; 731 } 732 733 int machine__process_ksymbol(struct machine *machine __maybe_unused, 734 union perf_event *event, 735 struct perf_sample *sample) 736 { 737 if (dump_trace) 738 perf_event__fprintf_ksymbol(event, stdout); 739 740 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 741 return machine__process_ksymbol_unregister(machine, event, 742 sample); 743 return machine__process_ksymbol_register(machine, event, sample); 744 } 745 746 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 747 { 748 const char *dup_filename; 749 750 if (!filename || !dso || !dso->long_name) 751 return; 752 if (dso->long_name[0] != '[') 753 return; 754 if (!strchr(filename, '/')) 755 return; 756 757 dup_filename = strdup(filename); 758 if (!dup_filename) 759 return; 760 761 dso__set_long_name(dso, dup_filename, true); 762 } 763 764 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 765 const char *filename) 766 { 767 struct map *map = NULL; 768 struct dso *dso = NULL; 769 struct kmod_path m; 770 771 if (kmod_path__parse_name(&m, filename)) 772 return NULL; 773 774 map = map_groups__find_by_name(&machine->kmaps, m.name); 775 if (map) { 776 /* 777 * If the map's dso is an offline module, give dso__load() 778 * a chance to find the file path of that module by fixing 779 * long_name. 780 */ 781 dso__adjust_kmod_long_name(map->dso, filename); 782 goto out; 783 } 784 785 dso = machine__findnew_module_dso(machine, &m, filename); 786 if (dso == NULL) 787 goto out; 788 789 map = map__new2(start, dso); 790 if (map == NULL) 791 goto out; 792 793 map_groups__insert(&machine->kmaps, map); 794 795 /* Put the map here because map_groups__insert alread got it */ 796 map__put(map); 797 out: 798 /* put the dso here, corresponding to machine__findnew_module_dso */ 799 dso__put(dso); 800 free(m.name); 801 return map; 802 } 803 804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 805 { 806 struct rb_node *nd; 807 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 808 809 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 810 struct machine *pos = rb_entry(nd, struct machine, rb_node); 811 ret += __dsos__fprintf(&pos->dsos.head, fp); 812 } 813 814 return ret; 815 } 816 817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 818 bool (skip)(struct dso *dso, int parm), int parm) 819 { 820 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 821 } 822 823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 824 bool (skip)(struct dso *dso, int parm), int parm) 825 { 826 struct rb_node *nd; 827 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 828 829 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 830 struct machine *pos = rb_entry(nd, struct machine, rb_node); 831 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 832 } 833 return ret; 834 } 835 836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 837 { 838 int i; 839 size_t printed = 0; 840 struct dso *kdso = machine__kernel_map(machine)->dso; 841 842 if (kdso->has_build_id) { 843 char filename[PATH_MAX]; 844 if (dso__build_id_filename(kdso, filename, sizeof(filename), 845 false)) 846 printed += fprintf(fp, "[0] %s\n", filename); 847 } 848 849 for (i = 0; i < vmlinux_path__nr_entries; ++i) 850 printed += fprintf(fp, "[%d] %s\n", 851 i + kdso->has_build_id, vmlinux_path[i]); 852 853 return printed; 854 } 855 856 size_t machine__fprintf(struct machine *machine, FILE *fp) 857 { 858 struct rb_node *nd; 859 size_t ret; 860 int i; 861 862 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 863 struct threads *threads = &machine->threads[i]; 864 865 down_read(&threads->lock); 866 867 ret = fprintf(fp, "Threads: %u\n", threads->nr); 868 869 for (nd = rb_first_cached(&threads->entries); nd; 870 nd = rb_next(nd)) { 871 struct thread *pos = rb_entry(nd, struct thread, rb_node); 872 873 ret += thread__fprintf(pos, fp); 874 } 875 876 up_read(&threads->lock); 877 } 878 return ret; 879 } 880 881 static struct dso *machine__get_kernel(struct machine *machine) 882 { 883 const char *vmlinux_name = machine->mmap_name; 884 struct dso *kernel; 885 886 if (machine__is_host(machine)) { 887 if (symbol_conf.vmlinux_name) 888 vmlinux_name = symbol_conf.vmlinux_name; 889 890 kernel = machine__findnew_kernel(machine, vmlinux_name, 891 "[kernel]", DSO_TYPE_KERNEL); 892 } else { 893 if (symbol_conf.default_guest_vmlinux_name) 894 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 895 896 kernel = machine__findnew_kernel(machine, vmlinux_name, 897 "[guest.kernel]", 898 DSO_TYPE_GUEST_KERNEL); 899 } 900 901 if (kernel != NULL && (!kernel->has_build_id)) 902 dso__read_running_kernel_build_id(kernel, machine); 903 904 return kernel; 905 } 906 907 struct process_args { 908 u64 start; 909 }; 910 911 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 912 size_t bufsz) 913 { 914 if (machine__is_default_guest(machine)) 915 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 916 else 917 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 918 } 919 920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 921 922 /* Figure out the start address of kernel map from /proc/kallsyms. 923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 924 * symbol_name if it's not that important. 925 */ 926 static int machine__get_running_kernel_start(struct machine *machine, 927 const char **symbol_name, u64 *start) 928 { 929 char filename[PATH_MAX]; 930 int i, err = -1; 931 const char *name; 932 u64 addr = 0; 933 934 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 935 936 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 937 return 0; 938 939 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 940 err = kallsyms__get_function_start(filename, name, &addr); 941 if (!err) 942 break; 943 } 944 945 if (err) 946 return -1; 947 948 if (symbol_name) 949 *symbol_name = name; 950 951 *start = addr; 952 return 0; 953 } 954 955 int machine__create_extra_kernel_map(struct machine *machine, 956 struct dso *kernel, 957 struct extra_kernel_map *xm) 958 { 959 struct kmap *kmap; 960 struct map *map; 961 962 map = map__new2(xm->start, kernel); 963 if (!map) 964 return -1; 965 966 map->end = xm->end; 967 map->pgoff = xm->pgoff; 968 969 kmap = map__kmap(map); 970 971 kmap->kmaps = &machine->kmaps; 972 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 973 974 map_groups__insert(&machine->kmaps, map); 975 976 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 977 kmap->name, map->start, map->end); 978 979 map__put(map); 980 981 return 0; 982 } 983 984 static u64 find_entry_trampoline(struct dso *dso) 985 { 986 /* Duplicates are removed so lookup all aliases */ 987 const char *syms[] = { 988 "_entry_trampoline", 989 "__entry_trampoline_start", 990 "entry_SYSCALL_64_trampoline", 991 }; 992 struct symbol *sym = dso__first_symbol(dso); 993 unsigned int i; 994 995 for (; sym; sym = dso__next_symbol(sym)) { 996 if (sym->binding != STB_GLOBAL) 997 continue; 998 for (i = 0; i < ARRAY_SIZE(syms); i++) { 999 if (!strcmp(sym->name, syms[i])) 1000 return sym->start; 1001 } 1002 } 1003 1004 return 0; 1005 } 1006 1007 /* 1008 * These values can be used for kernels that do not have symbols for the entry 1009 * trampolines in kallsyms. 1010 */ 1011 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1012 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1013 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1014 1015 /* Map x86_64 PTI entry trampolines */ 1016 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1017 struct dso *kernel) 1018 { 1019 struct map_groups *kmaps = &machine->kmaps; 1020 struct maps *maps = &kmaps->maps; 1021 int nr_cpus_avail, cpu; 1022 bool found = false; 1023 struct map *map; 1024 u64 pgoff; 1025 1026 /* 1027 * In the vmlinux case, pgoff is a virtual address which must now be 1028 * mapped to a vmlinux offset. 1029 */ 1030 for (map = maps__first(maps); map; map = map__next(map)) { 1031 struct kmap *kmap = __map__kmap(map); 1032 struct map *dest_map; 1033 1034 if (!kmap || !is_entry_trampoline(kmap->name)) 1035 continue; 1036 1037 dest_map = map_groups__find(kmaps, map->pgoff); 1038 if (dest_map != map) 1039 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1040 found = true; 1041 } 1042 if (found || machine->trampolines_mapped) 1043 return 0; 1044 1045 pgoff = find_entry_trampoline(kernel); 1046 if (!pgoff) 1047 return 0; 1048 1049 nr_cpus_avail = machine__nr_cpus_avail(machine); 1050 1051 /* Add a 1 page map for each CPU's entry trampoline */ 1052 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1053 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1054 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1055 X86_64_ENTRY_TRAMPOLINE; 1056 struct extra_kernel_map xm = { 1057 .start = va, 1058 .end = va + page_size, 1059 .pgoff = pgoff, 1060 }; 1061 1062 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1063 1064 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1065 return -1; 1066 } 1067 1068 machine->trampolines_mapped = nr_cpus_avail; 1069 1070 return 0; 1071 } 1072 1073 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1074 struct dso *kernel __maybe_unused) 1075 { 1076 return 0; 1077 } 1078 1079 static int 1080 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1081 { 1082 struct kmap *kmap; 1083 struct map *map; 1084 1085 /* In case of renewal the kernel map, destroy previous one */ 1086 machine__destroy_kernel_maps(machine); 1087 1088 machine->vmlinux_map = map__new2(0, kernel); 1089 if (machine->vmlinux_map == NULL) 1090 return -1; 1091 1092 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1093 map = machine__kernel_map(machine); 1094 kmap = map__kmap(map); 1095 if (!kmap) 1096 return -1; 1097 1098 kmap->kmaps = &machine->kmaps; 1099 map_groups__insert(&machine->kmaps, map); 1100 1101 return 0; 1102 } 1103 1104 void machine__destroy_kernel_maps(struct machine *machine) 1105 { 1106 struct kmap *kmap; 1107 struct map *map = machine__kernel_map(machine); 1108 1109 if (map == NULL) 1110 return; 1111 1112 kmap = map__kmap(map); 1113 map_groups__remove(&machine->kmaps, map); 1114 if (kmap && kmap->ref_reloc_sym) { 1115 zfree((char **)&kmap->ref_reloc_sym->name); 1116 zfree(&kmap->ref_reloc_sym); 1117 } 1118 1119 map__zput(machine->vmlinux_map); 1120 } 1121 1122 int machines__create_guest_kernel_maps(struct machines *machines) 1123 { 1124 int ret = 0; 1125 struct dirent **namelist = NULL; 1126 int i, items = 0; 1127 char path[PATH_MAX]; 1128 pid_t pid; 1129 char *endp; 1130 1131 if (symbol_conf.default_guest_vmlinux_name || 1132 symbol_conf.default_guest_modules || 1133 symbol_conf.default_guest_kallsyms) { 1134 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1135 } 1136 1137 if (symbol_conf.guestmount) { 1138 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1139 if (items <= 0) 1140 return -ENOENT; 1141 for (i = 0; i < items; i++) { 1142 if (!isdigit(namelist[i]->d_name[0])) { 1143 /* Filter out . and .. */ 1144 continue; 1145 } 1146 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1147 if ((*endp != '\0') || 1148 (endp == namelist[i]->d_name) || 1149 (errno == ERANGE)) { 1150 pr_debug("invalid directory (%s). Skipping.\n", 1151 namelist[i]->d_name); 1152 continue; 1153 } 1154 sprintf(path, "%s/%s/proc/kallsyms", 1155 symbol_conf.guestmount, 1156 namelist[i]->d_name); 1157 ret = access(path, R_OK); 1158 if (ret) { 1159 pr_debug("Can't access file %s\n", path); 1160 goto failure; 1161 } 1162 machines__create_kernel_maps(machines, pid); 1163 } 1164 failure: 1165 free(namelist); 1166 } 1167 1168 return ret; 1169 } 1170 1171 void machines__destroy_kernel_maps(struct machines *machines) 1172 { 1173 struct rb_node *next = rb_first_cached(&machines->guests); 1174 1175 machine__destroy_kernel_maps(&machines->host); 1176 1177 while (next) { 1178 struct machine *pos = rb_entry(next, struct machine, rb_node); 1179 1180 next = rb_next(&pos->rb_node); 1181 rb_erase_cached(&pos->rb_node, &machines->guests); 1182 machine__delete(pos); 1183 } 1184 } 1185 1186 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1187 { 1188 struct machine *machine = machines__findnew(machines, pid); 1189 1190 if (machine == NULL) 1191 return -1; 1192 1193 return machine__create_kernel_maps(machine); 1194 } 1195 1196 int machine__load_kallsyms(struct machine *machine, const char *filename) 1197 { 1198 struct map *map = machine__kernel_map(machine); 1199 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1200 1201 if (ret > 0) { 1202 dso__set_loaded(map->dso); 1203 /* 1204 * Since /proc/kallsyms will have multiple sessions for the 1205 * kernel, with modules between them, fixup the end of all 1206 * sections. 1207 */ 1208 map_groups__fixup_end(&machine->kmaps); 1209 } 1210 1211 return ret; 1212 } 1213 1214 int machine__load_vmlinux_path(struct machine *machine) 1215 { 1216 struct map *map = machine__kernel_map(machine); 1217 int ret = dso__load_vmlinux_path(map->dso, map); 1218 1219 if (ret > 0) 1220 dso__set_loaded(map->dso); 1221 1222 return ret; 1223 } 1224 1225 static char *get_kernel_version(const char *root_dir) 1226 { 1227 char version[PATH_MAX]; 1228 FILE *file; 1229 char *name, *tmp; 1230 const char *prefix = "Linux version "; 1231 1232 sprintf(version, "%s/proc/version", root_dir); 1233 file = fopen(version, "r"); 1234 if (!file) 1235 return NULL; 1236 1237 version[0] = '\0'; 1238 tmp = fgets(version, sizeof(version), file); 1239 fclose(file); 1240 1241 name = strstr(version, prefix); 1242 if (!name) 1243 return NULL; 1244 name += strlen(prefix); 1245 tmp = strchr(name, ' '); 1246 if (tmp) 1247 *tmp = '\0'; 1248 1249 return strdup(name); 1250 } 1251 1252 static bool is_kmod_dso(struct dso *dso) 1253 { 1254 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1255 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1256 } 1257 1258 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1259 struct kmod_path *m) 1260 { 1261 char *long_name; 1262 struct map *map = map_groups__find_by_name(mg, m->name); 1263 1264 if (map == NULL) 1265 return 0; 1266 1267 long_name = strdup(path); 1268 if (long_name == NULL) 1269 return -ENOMEM; 1270 1271 dso__set_long_name(map->dso, long_name, true); 1272 dso__kernel_module_get_build_id(map->dso, ""); 1273 1274 /* 1275 * Full name could reveal us kmod compression, so 1276 * we need to update the symtab_type if needed. 1277 */ 1278 if (m->comp && is_kmod_dso(map->dso)) { 1279 map->dso->symtab_type++; 1280 map->dso->comp = m->comp; 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1287 const char *dir_name, int depth) 1288 { 1289 struct dirent *dent; 1290 DIR *dir = opendir(dir_name); 1291 int ret = 0; 1292 1293 if (!dir) { 1294 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1295 return -1; 1296 } 1297 1298 while ((dent = readdir(dir)) != NULL) { 1299 char path[PATH_MAX]; 1300 struct stat st; 1301 1302 /*sshfs might return bad dent->d_type, so we have to stat*/ 1303 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1304 if (stat(path, &st)) 1305 continue; 1306 1307 if (S_ISDIR(st.st_mode)) { 1308 if (!strcmp(dent->d_name, ".") || 1309 !strcmp(dent->d_name, "..")) 1310 continue; 1311 1312 /* Do not follow top-level source and build symlinks */ 1313 if (depth == 0) { 1314 if (!strcmp(dent->d_name, "source") || 1315 !strcmp(dent->d_name, "build")) 1316 continue; 1317 } 1318 1319 ret = map_groups__set_modules_path_dir(mg, path, 1320 depth + 1); 1321 if (ret < 0) 1322 goto out; 1323 } else { 1324 struct kmod_path m; 1325 1326 ret = kmod_path__parse_name(&m, dent->d_name); 1327 if (ret) 1328 goto out; 1329 1330 if (m.kmod) 1331 ret = map_groups__set_module_path(mg, path, &m); 1332 1333 free(m.name); 1334 1335 if (ret) 1336 goto out; 1337 } 1338 } 1339 1340 out: 1341 closedir(dir); 1342 return ret; 1343 } 1344 1345 static int machine__set_modules_path(struct machine *machine) 1346 { 1347 char *version; 1348 char modules_path[PATH_MAX]; 1349 1350 version = get_kernel_version(machine->root_dir); 1351 if (!version) 1352 return -1; 1353 1354 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1355 machine->root_dir, version); 1356 free(version); 1357 1358 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1359 } 1360 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1361 const char *name __maybe_unused) 1362 { 1363 return 0; 1364 } 1365 1366 static int machine__create_module(void *arg, const char *name, u64 start, 1367 u64 size) 1368 { 1369 struct machine *machine = arg; 1370 struct map *map; 1371 1372 if (arch__fix_module_text_start(&start, name) < 0) 1373 return -1; 1374 1375 map = machine__findnew_module_map(machine, start, name); 1376 if (map == NULL) 1377 return -1; 1378 map->end = start + size; 1379 1380 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1381 1382 return 0; 1383 } 1384 1385 static int machine__create_modules(struct machine *machine) 1386 { 1387 const char *modules; 1388 char path[PATH_MAX]; 1389 1390 if (machine__is_default_guest(machine)) { 1391 modules = symbol_conf.default_guest_modules; 1392 } else { 1393 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1394 modules = path; 1395 } 1396 1397 if (symbol__restricted_filename(modules, "/proc/modules")) 1398 return -1; 1399 1400 if (modules__parse(modules, machine, machine__create_module)) 1401 return -1; 1402 1403 if (!machine__set_modules_path(machine)) 1404 return 0; 1405 1406 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1407 1408 return 0; 1409 } 1410 1411 static void machine__set_kernel_mmap(struct machine *machine, 1412 u64 start, u64 end) 1413 { 1414 machine->vmlinux_map->start = start; 1415 machine->vmlinux_map->end = end; 1416 /* 1417 * Be a bit paranoid here, some perf.data file came with 1418 * a zero sized synthesized MMAP event for the kernel. 1419 */ 1420 if (start == 0 && end == 0) 1421 machine->vmlinux_map->end = ~0ULL; 1422 } 1423 1424 static void machine__update_kernel_mmap(struct machine *machine, 1425 u64 start, u64 end) 1426 { 1427 struct map *map = machine__kernel_map(machine); 1428 1429 map__get(map); 1430 map_groups__remove(&machine->kmaps, map); 1431 1432 machine__set_kernel_mmap(machine, start, end); 1433 1434 map_groups__insert(&machine->kmaps, map); 1435 map__put(map); 1436 } 1437 1438 int machine__create_kernel_maps(struct machine *machine) 1439 { 1440 struct dso *kernel = machine__get_kernel(machine); 1441 const char *name = NULL; 1442 struct map *map; 1443 u64 addr = 0; 1444 int ret; 1445 1446 if (kernel == NULL) 1447 return -1; 1448 1449 ret = __machine__create_kernel_maps(machine, kernel); 1450 if (ret < 0) 1451 goto out_put; 1452 1453 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1454 if (machine__is_host(machine)) 1455 pr_debug("Problems creating module maps, " 1456 "continuing anyway...\n"); 1457 else 1458 pr_debug("Problems creating module maps for guest %d, " 1459 "continuing anyway...\n", machine->pid); 1460 } 1461 1462 if (!machine__get_running_kernel_start(machine, &name, &addr)) { 1463 if (name && 1464 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) { 1465 machine__destroy_kernel_maps(machine); 1466 ret = -1; 1467 goto out_put; 1468 } 1469 1470 /* 1471 * we have a real start address now, so re-order the kmaps 1472 * assume it's the last in the kmaps 1473 */ 1474 machine__update_kernel_mmap(machine, addr, ~0ULL); 1475 } 1476 1477 if (machine__create_extra_kernel_maps(machine, kernel)) 1478 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1479 1480 /* update end address of the kernel map using adjacent module address */ 1481 map = map__next(machine__kernel_map(machine)); 1482 if (map) 1483 machine__set_kernel_mmap(machine, addr, map->start); 1484 out_put: 1485 dso__put(kernel); 1486 return ret; 1487 } 1488 1489 static bool machine__uses_kcore(struct machine *machine) 1490 { 1491 struct dso *dso; 1492 1493 list_for_each_entry(dso, &machine->dsos.head, node) { 1494 if (dso__is_kcore(dso)) 1495 return true; 1496 } 1497 1498 return false; 1499 } 1500 1501 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1502 union perf_event *event) 1503 { 1504 return machine__is(machine, "x86_64") && 1505 is_entry_trampoline(event->mmap.filename); 1506 } 1507 1508 static int machine__process_extra_kernel_map(struct machine *machine, 1509 union perf_event *event) 1510 { 1511 struct map *kernel_map = machine__kernel_map(machine); 1512 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1513 struct extra_kernel_map xm = { 1514 .start = event->mmap.start, 1515 .end = event->mmap.start + event->mmap.len, 1516 .pgoff = event->mmap.pgoff, 1517 }; 1518 1519 if (kernel == NULL) 1520 return -1; 1521 1522 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1523 1524 return machine__create_extra_kernel_map(machine, kernel, &xm); 1525 } 1526 1527 static int machine__process_kernel_mmap_event(struct machine *machine, 1528 union perf_event *event) 1529 { 1530 struct map *map; 1531 enum dso_kernel_type kernel_type; 1532 bool is_kernel_mmap; 1533 1534 /* If we have maps from kcore then we do not need or want any others */ 1535 if (machine__uses_kcore(machine)) 1536 return 0; 1537 1538 if (machine__is_host(machine)) 1539 kernel_type = DSO_TYPE_KERNEL; 1540 else 1541 kernel_type = DSO_TYPE_GUEST_KERNEL; 1542 1543 is_kernel_mmap = memcmp(event->mmap.filename, 1544 machine->mmap_name, 1545 strlen(machine->mmap_name) - 1) == 0; 1546 if (event->mmap.filename[0] == '/' || 1547 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1548 map = machine__findnew_module_map(machine, event->mmap.start, 1549 event->mmap.filename); 1550 if (map == NULL) 1551 goto out_problem; 1552 1553 map->end = map->start + event->mmap.len; 1554 } else if (is_kernel_mmap) { 1555 const char *symbol_name = (event->mmap.filename + 1556 strlen(machine->mmap_name)); 1557 /* 1558 * Should be there already, from the build-id table in 1559 * the header. 1560 */ 1561 struct dso *kernel = NULL; 1562 struct dso *dso; 1563 1564 down_read(&machine->dsos.lock); 1565 1566 list_for_each_entry(dso, &machine->dsos.head, node) { 1567 1568 /* 1569 * The cpumode passed to is_kernel_module is not the 1570 * cpumode of *this* event. If we insist on passing 1571 * correct cpumode to is_kernel_module, we should 1572 * record the cpumode when we adding this dso to the 1573 * linked list. 1574 * 1575 * However we don't really need passing correct 1576 * cpumode. We know the correct cpumode must be kernel 1577 * mode (if not, we should not link it onto kernel_dsos 1578 * list). 1579 * 1580 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1581 * is_kernel_module() treats it as a kernel cpumode. 1582 */ 1583 1584 if (!dso->kernel || 1585 is_kernel_module(dso->long_name, 1586 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1587 continue; 1588 1589 1590 kernel = dso; 1591 break; 1592 } 1593 1594 up_read(&machine->dsos.lock); 1595 1596 if (kernel == NULL) 1597 kernel = machine__findnew_dso(machine, machine->mmap_name); 1598 if (kernel == NULL) 1599 goto out_problem; 1600 1601 kernel->kernel = kernel_type; 1602 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1603 dso__put(kernel); 1604 goto out_problem; 1605 } 1606 1607 if (strstr(kernel->long_name, "vmlinux")) 1608 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1609 1610 machine__update_kernel_mmap(machine, event->mmap.start, 1611 event->mmap.start + event->mmap.len); 1612 1613 /* 1614 * Avoid using a zero address (kptr_restrict) for the ref reloc 1615 * symbol. Effectively having zero here means that at record 1616 * time /proc/sys/kernel/kptr_restrict was non zero. 1617 */ 1618 if (event->mmap.pgoff != 0) { 1619 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1620 symbol_name, 1621 event->mmap.pgoff); 1622 } 1623 1624 if (machine__is_default_guest(machine)) { 1625 /* 1626 * preload dso of guest kernel and modules 1627 */ 1628 dso__load(kernel, machine__kernel_map(machine)); 1629 } 1630 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1631 return machine__process_extra_kernel_map(machine, event); 1632 } 1633 return 0; 1634 out_problem: 1635 return -1; 1636 } 1637 1638 int machine__process_mmap2_event(struct machine *machine, 1639 union perf_event *event, 1640 struct perf_sample *sample) 1641 { 1642 struct thread *thread; 1643 struct map *map; 1644 int ret = 0; 1645 1646 if (dump_trace) 1647 perf_event__fprintf_mmap2(event, stdout); 1648 1649 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1650 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1651 ret = machine__process_kernel_mmap_event(machine, event); 1652 if (ret < 0) 1653 goto out_problem; 1654 return 0; 1655 } 1656 1657 thread = machine__findnew_thread(machine, event->mmap2.pid, 1658 event->mmap2.tid); 1659 if (thread == NULL) 1660 goto out_problem; 1661 1662 map = map__new(machine, event->mmap2.start, 1663 event->mmap2.len, event->mmap2.pgoff, 1664 event->mmap2.maj, 1665 event->mmap2.min, event->mmap2.ino, 1666 event->mmap2.ino_generation, 1667 event->mmap2.prot, 1668 event->mmap2.flags, 1669 event->mmap2.filename, thread); 1670 1671 if (map == NULL) 1672 goto out_problem_map; 1673 1674 ret = thread__insert_map(thread, map); 1675 if (ret) 1676 goto out_problem_insert; 1677 1678 thread__put(thread); 1679 map__put(map); 1680 return 0; 1681 1682 out_problem_insert: 1683 map__put(map); 1684 out_problem_map: 1685 thread__put(thread); 1686 out_problem: 1687 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1688 return 0; 1689 } 1690 1691 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1692 struct perf_sample *sample) 1693 { 1694 struct thread *thread; 1695 struct map *map; 1696 u32 prot = 0; 1697 int ret = 0; 1698 1699 if (dump_trace) 1700 perf_event__fprintf_mmap(event, stdout); 1701 1702 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1703 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1704 ret = machine__process_kernel_mmap_event(machine, event); 1705 if (ret < 0) 1706 goto out_problem; 1707 return 0; 1708 } 1709 1710 thread = machine__findnew_thread(machine, event->mmap.pid, 1711 event->mmap.tid); 1712 if (thread == NULL) 1713 goto out_problem; 1714 1715 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1716 prot = PROT_EXEC; 1717 1718 map = map__new(machine, event->mmap.start, 1719 event->mmap.len, event->mmap.pgoff, 1720 0, 0, 0, 0, prot, 0, 1721 event->mmap.filename, 1722 thread); 1723 1724 if (map == NULL) 1725 goto out_problem_map; 1726 1727 ret = thread__insert_map(thread, map); 1728 if (ret) 1729 goto out_problem_insert; 1730 1731 thread__put(thread); 1732 map__put(map); 1733 return 0; 1734 1735 out_problem_insert: 1736 map__put(map); 1737 out_problem_map: 1738 thread__put(thread); 1739 out_problem: 1740 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1741 return 0; 1742 } 1743 1744 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1745 { 1746 struct threads *threads = machine__threads(machine, th->tid); 1747 1748 if (threads->last_match == th) 1749 threads__set_last_match(threads, NULL); 1750 1751 BUG_ON(refcount_read(&th->refcnt) == 0); 1752 if (lock) 1753 down_write(&threads->lock); 1754 rb_erase_cached(&th->rb_node, &threads->entries); 1755 RB_CLEAR_NODE(&th->rb_node); 1756 --threads->nr; 1757 /* 1758 * Move it first to the dead_threads list, then drop the reference, 1759 * if this is the last reference, then the thread__delete destructor 1760 * will be called and we will remove it from the dead_threads list. 1761 */ 1762 list_add_tail(&th->node, &threads->dead); 1763 if (lock) 1764 up_write(&threads->lock); 1765 thread__put(th); 1766 } 1767 1768 void machine__remove_thread(struct machine *machine, struct thread *th) 1769 { 1770 return __machine__remove_thread(machine, th, true); 1771 } 1772 1773 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1774 struct perf_sample *sample) 1775 { 1776 struct thread *thread = machine__find_thread(machine, 1777 event->fork.pid, 1778 event->fork.tid); 1779 struct thread *parent = machine__findnew_thread(machine, 1780 event->fork.ppid, 1781 event->fork.ptid); 1782 bool do_maps_clone = true; 1783 int err = 0; 1784 1785 if (dump_trace) 1786 perf_event__fprintf_task(event, stdout); 1787 1788 /* 1789 * There may be an existing thread that is not actually the parent, 1790 * either because we are processing events out of order, or because the 1791 * (fork) event that would have removed the thread was lost. Assume the 1792 * latter case and continue on as best we can. 1793 */ 1794 if (parent->pid_ != (pid_t)event->fork.ppid) { 1795 dump_printf("removing erroneous parent thread %d/%d\n", 1796 parent->pid_, parent->tid); 1797 machine__remove_thread(machine, parent); 1798 thread__put(parent); 1799 parent = machine__findnew_thread(machine, event->fork.ppid, 1800 event->fork.ptid); 1801 } 1802 1803 /* if a thread currently exists for the thread id remove it */ 1804 if (thread != NULL) { 1805 machine__remove_thread(machine, thread); 1806 thread__put(thread); 1807 } 1808 1809 thread = machine__findnew_thread(machine, event->fork.pid, 1810 event->fork.tid); 1811 /* 1812 * When synthesizing FORK events, we are trying to create thread 1813 * objects for the already running tasks on the machine. 1814 * 1815 * Normally, for a kernel FORK event, we want to clone the parent's 1816 * maps because that is what the kernel just did. 1817 * 1818 * But when synthesizing, this should not be done. If we do, we end up 1819 * with overlapping maps as we process the sythesized MMAP2 events that 1820 * get delivered shortly thereafter. 1821 * 1822 * Use the FORK event misc flags in an internal way to signal this 1823 * situation, so we can elide the map clone when appropriate. 1824 */ 1825 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1826 do_maps_clone = false; 1827 1828 if (thread == NULL || parent == NULL || 1829 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1830 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1831 err = -1; 1832 } 1833 thread__put(thread); 1834 thread__put(parent); 1835 1836 return err; 1837 } 1838 1839 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1840 struct perf_sample *sample __maybe_unused) 1841 { 1842 struct thread *thread = machine__find_thread(machine, 1843 event->fork.pid, 1844 event->fork.tid); 1845 1846 if (dump_trace) 1847 perf_event__fprintf_task(event, stdout); 1848 1849 if (thread != NULL) { 1850 thread__exited(thread); 1851 thread__put(thread); 1852 } 1853 1854 return 0; 1855 } 1856 1857 int machine__process_event(struct machine *machine, union perf_event *event, 1858 struct perf_sample *sample) 1859 { 1860 int ret; 1861 1862 switch (event->header.type) { 1863 case PERF_RECORD_COMM: 1864 ret = machine__process_comm_event(machine, event, sample); break; 1865 case PERF_RECORD_MMAP: 1866 ret = machine__process_mmap_event(machine, event, sample); break; 1867 case PERF_RECORD_NAMESPACES: 1868 ret = machine__process_namespaces_event(machine, event, sample); break; 1869 case PERF_RECORD_MMAP2: 1870 ret = machine__process_mmap2_event(machine, event, sample); break; 1871 case PERF_RECORD_FORK: 1872 ret = machine__process_fork_event(machine, event, sample); break; 1873 case PERF_RECORD_EXIT: 1874 ret = machine__process_exit_event(machine, event, sample); break; 1875 case PERF_RECORD_LOST: 1876 ret = machine__process_lost_event(machine, event, sample); break; 1877 case PERF_RECORD_AUX: 1878 ret = machine__process_aux_event(machine, event); break; 1879 case PERF_RECORD_ITRACE_START: 1880 ret = machine__process_itrace_start_event(machine, event); break; 1881 case PERF_RECORD_LOST_SAMPLES: 1882 ret = machine__process_lost_samples_event(machine, event, sample); break; 1883 case PERF_RECORD_SWITCH: 1884 case PERF_RECORD_SWITCH_CPU_WIDE: 1885 ret = machine__process_switch_event(machine, event); break; 1886 case PERF_RECORD_KSYMBOL: 1887 ret = machine__process_ksymbol(machine, event, sample); break; 1888 case PERF_RECORD_BPF_EVENT: 1889 ret = machine__process_bpf_event(machine, event, sample); break; 1890 default: 1891 ret = -1; 1892 break; 1893 } 1894 1895 return ret; 1896 } 1897 1898 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1899 { 1900 if (!regexec(regex, sym->name, 0, NULL, 0)) 1901 return 1; 1902 return 0; 1903 } 1904 1905 static void ip__resolve_ams(struct thread *thread, 1906 struct addr_map_symbol *ams, 1907 u64 ip) 1908 { 1909 struct addr_location al; 1910 1911 memset(&al, 0, sizeof(al)); 1912 /* 1913 * We cannot use the header.misc hint to determine whether a 1914 * branch stack address is user, kernel, guest, hypervisor. 1915 * Branches may straddle the kernel/user/hypervisor boundaries. 1916 * Thus, we have to try consecutively until we find a match 1917 * or else, the symbol is unknown 1918 */ 1919 thread__find_cpumode_addr_location(thread, ip, &al); 1920 1921 ams->addr = ip; 1922 ams->al_addr = al.addr; 1923 ams->sym = al.sym; 1924 ams->map = al.map; 1925 ams->phys_addr = 0; 1926 } 1927 1928 static void ip__resolve_data(struct thread *thread, 1929 u8 m, struct addr_map_symbol *ams, 1930 u64 addr, u64 phys_addr) 1931 { 1932 struct addr_location al; 1933 1934 memset(&al, 0, sizeof(al)); 1935 1936 thread__find_symbol(thread, m, addr, &al); 1937 1938 ams->addr = addr; 1939 ams->al_addr = al.addr; 1940 ams->sym = al.sym; 1941 ams->map = al.map; 1942 ams->phys_addr = phys_addr; 1943 } 1944 1945 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1946 struct addr_location *al) 1947 { 1948 struct mem_info *mi = mem_info__new(); 1949 1950 if (!mi) 1951 return NULL; 1952 1953 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1954 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1955 sample->addr, sample->phys_addr); 1956 mi->data_src.val = sample->data_src; 1957 1958 return mi; 1959 } 1960 1961 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1962 { 1963 char *srcline = NULL; 1964 1965 if (!map || callchain_param.key == CCKEY_FUNCTION) 1966 return srcline; 1967 1968 srcline = srcline__tree_find(&map->dso->srclines, ip); 1969 if (!srcline) { 1970 bool show_sym = false; 1971 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 1972 1973 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 1974 sym, show_sym, show_addr, ip); 1975 srcline__tree_insert(&map->dso->srclines, ip, srcline); 1976 } 1977 1978 return srcline; 1979 } 1980 1981 struct iterations { 1982 int nr_loop_iter; 1983 u64 cycles; 1984 }; 1985 1986 static int add_callchain_ip(struct thread *thread, 1987 struct callchain_cursor *cursor, 1988 struct symbol **parent, 1989 struct addr_location *root_al, 1990 u8 *cpumode, 1991 u64 ip, 1992 bool branch, 1993 struct branch_flags *flags, 1994 struct iterations *iter, 1995 u64 branch_from) 1996 { 1997 struct addr_location al; 1998 int nr_loop_iter = 0; 1999 u64 iter_cycles = 0; 2000 const char *srcline = NULL; 2001 2002 al.filtered = 0; 2003 al.sym = NULL; 2004 if (!cpumode) { 2005 thread__find_cpumode_addr_location(thread, ip, &al); 2006 } else { 2007 if (ip >= PERF_CONTEXT_MAX) { 2008 switch (ip) { 2009 case PERF_CONTEXT_HV: 2010 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2011 break; 2012 case PERF_CONTEXT_KERNEL: 2013 *cpumode = PERF_RECORD_MISC_KERNEL; 2014 break; 2015 case PERF_CONTEXT_USER: 2016 *cpumode = PERF_RECORD_MISC_USER; 2017 break; 2018 default: 2019 pr_debug("invalid callchain context: " 2020 "%"PRId64"\n", (s64) ip); 2021 /* 2022 * It seems the callchain is corrupted. 2023 * Discard all. 2024 */ 2025 callchain_cursor_reset(cursor); 2026 return 1; 2027 } 2028 return 0; 2029 } 2030 thread__find_symbol(thread, *cpumode, ip, &al); 2031 } 2032 2033 if (al.sym != NULL) { 2034 if (perf_hpp_list.parent && !*parent && 2035 symbol__match_regex(al.sym, &parent_regex)) 2036 *parent = al.sym; 2037 else if (have_ignore_callees && root_al && 2038 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2039 /* Treat this symbol as the root, 2040 forgetting its callees. */ 2041 *root_al = al; 2042 callchain_cursor_reset(cursor); 2043 } 2044 } 2045 2046 if (symbol_conf.hide_unresolved && al.sym == NULL) 2047 return 0; 2048 2049 if (iter) { 2050 nr_loop_iter = iter->nr_loop_iter; 2051 iter_cycles = iter->cycles; 2052 } 2053 2054 srcline = callchain_srcline(al.map, al.sym, al.addr); 2055 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2056 branch, flags, nr_loop_iter, 2057 iter_cycles, branch_from, srcline); 2058 } 2059 2060 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2061 struct addr_location *al) 2062 { 2063 unsigned int i; 2064 const struct branch_stack *bs = sample->branch_stack; 2065 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2066 2067 if (!bi) 2068 return NULL; 2069 2070 for (i = 0; i < bs->nr; i++) { 2071 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2072 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2073 bi[i].flags = bs->entries[i].flags; 2074 } 2075 return bi; 2076 } 2077 2078 static void save_iterations(struct iterations *iter, 2079 struct branch_entry *be, int nr) 2080 { 2081 int i; 2082 2083 iter->nr_loop_iter++; 2084 iter->cycles = 0; 2085 2086 for (i = 0; i < nr; i++) 2087 iter->cycles += be[i].flags.cycles; 2088 } 2089 2090 #define CHASHSZ 127 2091 #define CHASHBITS 7 2092 #define NO_ENTRY 0xff 2093 2094 #define PERF_MAX_BRANCH_DEPTH 127 2095 2096 /* Remove loops. */ 2097 static int remove_loops(struct branch_entry *l, int nr, 2098 struct iterations *iter) 2099 { 2100 int i, j, off; 2101 unsigned char chash[CHASHSZ]; 2102 2103 memset(chash, NO_ENTRY, sizeof(chash)); 2104 2105 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2106 2107 for (i = 0; i < nr; i++) { 2108 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2109 2110 /* no collision handling for now */ 2111 if (chash[h] == NO_ENTRY) { 2112 chash[h] = i; 2113 } else if (l[chash[h]].from == l[i].from) { 2114 bool is_loop = true; 2115 /* check if it is a real loop */ 2116 off = 0; 2117 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2118 if (l[j].from != l[i + off].from) { 2119 is_loop = false; 2120 break; 2121 } 2122 if (is_loop) { 2123 j = nr - (i + off); 2124 if (j > 0) { 2125 save_iterations(iter + i + off, 2126 l + i, off); 2127 2128 memmove(iter + i, iter + i + off, 2129 j * sizeof(*iter)); 2130 2131 memmove(l + i, l + i + off, 2132 j * sizeof(*l)); 2133 } 2134 2135 nr -= off; 2136 } 2137 } 2138 } 2139 return nr; 2140 } 2141 2142 /* 2143 * Recolve LBR callstack chain sample 2144 * Return: 2145 * 1 on success get LBR callchain information 2146 * 0 no available LBR callchain information, should try fp 2147 * negative error code on other errors. 2148 */ 2149 static int resolve_lbr_callchain_sample(struct thread *thread, 2150 struct callchain_cursor *cursor, 2151 struct perf_sample *sample, 2152 struct symbol **parent, 2153 struct addr_location *root_al, 2154 int max_stack) 2155 { 2156 struct ip_callchain *chain = sample->callchain; 2157 int chain_nr = min(max_stack, (int)chain->nr), i; 2158 u8 cpumode = PERF_RECORD_MISC_USER; 2159 u64 ip, branch_from = 0; 2160 2161 for (i = 0; i < chain_nr; i++) { 2162 if (chain->ips[i] == PERF_CONTEXT_USER) 2163 break; 2164 } 2165 2166 /* LBR only affects the user callchain */ 2167 if (i != chain_nr) { 2168 struct branch_stack *lbr_stack = sample->branch_stack; 2169 int lbr_nr = lbr_stack->nr, j, k; 2170 bool branch; 2171 struct branch_flags *flags; 2172 /* 2173 * LBR callstack can only get user call chain. 2174 * The mix_chain_nr is kernel call chain 2175 * number plus LBR user call chain number. 2176 * i is kernel call chain number, 2177 * 1 is PERF_CONTEXT_USER, 2178 * lbr_nr + 1 is the user call chain number. 2179 * For details, please refer to the comments 2180 * in callchain__printf 2181 */ 2182 int mix_chain_nr = i + 1 + lbr_nr + 1; 2183 2184 for (j = 0; j < mix_chain_nr; j++) { 2185 int err; 2186 branch = false; 2187 flags = NULL; 2188 2189 if (callchain_param.order == ORDER_CALLEE) { 2190 if (j < i + 1) 2191 ip = chain->ips[j]; 2192 else if (j > i + 1) { 2193 k = j - i - 2; 2194 ip = lbr_stack->entries[k].from; 2195 branch = true; 2196 flags = &lbr_stack->entries[k].flags; 2197 } else { 2198 ip = lbr_stack->entries[0].to; 2199 branch = true; 2200 flags = &lbr_stack->entries[0].flags; 2201 branch_from = 2202 lbr_stack->entries[0].from; 2203 } 2204 } else { 2205 if (j < lbr_nr) { 2206 k = lbr_nr - j - 1; 2207 ip = lbr_stack->entries[k].from; 2208 branch = true; 2209 flags = &lbr_stack->entries[k].flags; 2210 } 2211 else if (j > lbr_nr) 2212 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2213 else { 2214 ip = lbr_stack->entries[0].to; 2215 branch = true; 2216 flags = &lbr_stack->entries[0].flags; 2217 branch_from = 2218 lbr_stack->entries[0].from; 2219 } 2220 } 2221 2222 err = add_callchain_ip(thread, cursor, parent, 2223 root_al, &cpumode, ip, 2224 branch, flags, NULL, 2225 branch_from); 2226 if (err) 2227 return (err < 0) ? err : 0; 2228 } 2229 return 1; 2230 } 2231 2232 return 0; 2233 } 2234 2235 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2236 struct callchain_cursor *cursor, 2237 struct symbol **parent, 2238 struct addr_location *root_al, 2239 u8 *cpumode, int ent) 2240 { 2241 int err = 0; 2242 2243 while (--ent >= 0) { 2244 u64 ip = chain->ips[ent]; 2245 2246 if (ip >= PERF_CONTEXT_MAX) { 2247 err = add_callchain_ip(thread, cursor, parent, 2248 root_al, cpumode, ip, 2249 false, NULL, NULL, 0); 2250 break; 2251 } 2252 } 2253 return err; 2254 } 2255 2256 static int thread__resolve_callchain_sample(struct thread *thread, 2257 struct callchain_cursor *cursor, 2258 struct perf_evsel *evsel, 2259 struct perf_sample *sample, 2260 struct symbol **parent, 2261 struct addr_location *root_al, 2262 int max_stack) 2263 { 2264 struct branch_stack *branch = sample->branch_stack; 2265 struct ip_callchain *chain = sample->callchain; 2266 int chain_nr = 0; 2267 u8 cpumode = PERF_RECORD_MISC_USER; 2268 int i, j, err, nr_entries; 2269 int skip_idx = -1; 2270 int first_call = 0; 2271 2272 if (chain) 2273 chain_nr = chain->nr; 2274 2275 if (perf_evsel__has_branch_callstack(evsel)) { 2276 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2277 root_al, max_stack); 2278 if (err) 2279 return (err < 0) ? err : 0; 2280 } 2281 2282 /* 2283 * Based on DWARF debug information, some architectures skip 2284 * a callchain entry saved by the kernel. 2285 */ 2286 skip_idx = arch_skip_callchain_idx(thread, chain); 2287 2288 /* 2289 * Add branches to call stack for easier browsing. This gives 2290 * more context for a sample than just the callers. 2291 * 2292 * This uses individual histograms of paths compared to the 2293 * aggregated histograms the normal LBR mode uses. 2294 * 2295 * Limitations for now: 2296 * - No extra filters 2297 * - No annotations (should annotate somehow) 2298 */ 2299 2300 if (branch && callchain_param.branch_callstack) { 2301 int nr = min(max_stack, (int)branch->nr); 2302 struct branch_entry be[nr]; 2303 struct iterations iter[nr]; 2304 2305 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2306 pr_warning("corrupted branch chain. skipping...\n"); 2307 goto check_calls; 2308 } 2309 2310 for (i = 0; i < nr; i++) { 2311 if (callchain_param.order == ORDER_CALLEE) { 2312 be[i] = branch->entries[i]; 2313 2314 if (chain == NULL) 2315 continue; 2316 2317 /* 2318 * Check for overlap into the callchain. 2319 * The return address is one off compared to 2320 * the branch entry. To adjust for this 2321 * assume the calling instruction is not longer 2322 * than 8 bytes. 2323 */ 2324 if (i == skip_idx || 2325 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2326 first_call++; 2327 else if (be[i].from < chain->ips[first_call] && 2328 be[i].from >= chain->ips[first_call] - 8) 2329 first_call++; 2330 } else 2331 be[i] = branch->entries[branch->nr - i - 1]; 2332 } 2333 2334 memset(iter, 0, sizeof(struct iterations) * nr); 2335 nr = remove_loops(be, nr, iter); 2336 2337 for (i = 0; i < nr; i++) { 2338 err = add_callchain_ip(thread, cursor, parent, 2339 root_al, 2340 NULL, be[i].to, 2341 true, &be[i].flags, 2342 NULL, be[i].from); 2343 2344 if (!err) 2345 err = add_callchain_ip(thread, cursor, parent, root_al, 2346 NULL, be[i].from, 2347 true, &be[i].flags, 2348 &iter[i], 0); 2349 if (err == -EINVAL) 2350 break; 2351 if (err) 2352 return err; 2353 } 2354 2355 if (chain_nr == 0) 2356 return 0; 2357 2358 chain_nr -= nr; 2359 } 2360 2361 check_calls: 2362 if (callchain_param.order != ORDER_CALLEE) { 2363 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2364 &cpumode, chain->nr - first_call); 2365 if (err) 2366 return (err < 0) ? err : 0; 2367 } 2368 for (i = first_call, nr_entries = 0; 2369 i < chain_nr && nr_entries < max_stack; i++) { 2370 u64 ip; 2371 2372 if (callchain_param.order == ORDER_CALLEE) 2373 j = i; 2374 else 2375 j = chain->nr - i - 1; 2376 2377 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2378 if (j == skip_idx) 2379 continue; 2380 #endif 2381 ip = chain->ips[j]; 2382 if (ip < PERF_CONTEXT_MAX) 2383 ++nr_entries; 2384 else if (callchain_param.order != ORDER_CALLEE) { 2385 err = find_prev_cpumode(chain, thread, cursor, parent, 2386 root_al, &cpumode, j); 2387 if (err) 2388 return (err < 0) ? err : 0; 2389 continue; 2390 } 2391 2392 err = add_callchain_ip(thread, cursor, parent, 2393 root_al, &cpumode, ip, 2394 false, NULL, NULL, 0); 2395 2396 if (err) 2397 return (err < 0) ? err : 0; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int append_inlines(struct callchain_cursor *cursor, 2404 struct map *map, struct symbol *sym, u64 ip) 2405 { 2406 struct inline_node *inline_node; 2407 struct inline_list *ilist; 2408 u64 addr; 2409 int ret = 1; 2410 2411 if (!symbol_conf.inline_name || !map || !sym) 2412 return ret; 2413 2414 addr = map__map_ip(map, ip); 2415 addr = map__rip_2objdump(map, addr); 2416 2417 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2418 if (!inline_node) { 2419 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2420 if (!inline_node) 2421 return ret; 2422 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2423 } 2424 2425 list_for_each_entry(ilist, &inline_node->val, list) { 2426 ret = callchain_cursor_append(cursor, ip, map, 2427 ilist->symbol, false, 2428 NULL, 0, 0, 0, ilist->srcline); 2429 2430 if (ret != 0) 2431 return ret; 2432 } 2433 2434 return ret; 2435 } 2436 2437 static int unwind_entry(struct unwind_entry *entry, void *arg) 2438 { 2439 struct callchain_cursor *cursor = arg; 2440 const char *srcline = NULL; 2441 u64 addr = entry->ip; 2442 2443 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2444 return 0; 2445 2446 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2447 return 0; 2448 2449 /* 2450 * Convert entry->ip from a virtual address to an offset in 2451 * its corresponding binary. 2452 */ 2453 if (entry->map) 2454 addr = map__map_ip(entry->map, entry->ip); 2455 2456 srcline = callchain_srcline(entry->map, entry->sym, addr); 2457 return callchain_cursor_append(cursor, entry->ip, 2458 entry->map, entry->sym, 2459 false, NULL, 0, 0, 0, srcline); 2460 } 2461 2462 static int thread__resolve_callchain_unwind(struct thread *thread, 2463 struct callchain_cursor *cursor, 2464 struct perf_evsel *evsel, 2465 struct perf_sample *sample, 2466 int max_stack) 2467 { 2468 /* Can we do dwarf post unwind? */ 2469 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2470 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2471 return 0; 2472 2473 /* Bail out if nothing was captured. */ 2474 if ((!sample->user_regs.regs) || 2475 (!sample->user_stack.size)) 2476 return 0; 2477 2478 return unwind__get_entries(unwind_entry, cursor, 2479 thread, sample, max_stack); 2480 } 2481 2482 int thread__resolve_callchain(struct thread *thread, 2483 struct callchain_cursor *cursor, 2484 struct perf_evsel *evsel, 2485 struct perf_sample *sample, 2486 struct symbol **parent, 2487 struct addr_location *root_al, 2488 int max_stack) 2489 { 2490 int ret = 0; 2491 2492 callchain_cursor_reset(cursor); 2493 2494 if (callchain_param.order == ORDER_CALLEE) { 2495 ret = thread__resolve_callchain_sample(thread, cursor, 2496 evsel, sample, 2497 parent, root_al, 2498 max_stack); 2499 if (ret) 2500 return ret; 2501 ret = thread__resolve_callchain_unwind(thread, cursor, 2502 evsel, sample, 2503 max_stack); 2504 } else { 2505 ret = thread__resolve_callchain_unwind(thread, cursor, 2506 evsel, sample, 2507 max_stack); 2508 if (ret) 2509 return ret; 2510 ret = thread__resolve_callchain_sample(thread, cursor, 2511 evsel, sample, 2512 parent, root_al, 2513 max_stack); 2514 } 2515 2516 return ret; 2517 } 2518 2519 int machine__for_each_thread(struct machine *machine, 2520 int (*fn)(struct thread *thread, void *p), 2521 void *priv) 2522 { 2523 struct threads *threads; 2524 struct rb_node *nd; 2525 struct thread *thread; 2526 int rc = 0; 2527 int i; 2528 2529 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2530 threads = &machine->threads[i]; 2531 for (nd = rb_first_cached(&threads->entries); nd; 2532 nd = rb_next(nd)) { 2533 thread = rb_entry(nd, struct thread, rb_node); 2534 rc = fn(thread, priv); 2535 if (rc != 0) 2536 return rc; 2537 } 2538 2539 list_for_each_entry(thread, &threads->dead, node) { 2540 rc = fn(thread, priv); 2541 if (rc != 0) 2542 return rc; 2543 } 2544 } 2545 return rc; 2546 } 2547 2548 int machines__for_each_thread(struct machines *machines, 2549 int (*fn)(struct thread *thread, void *p), 2550 void *priv) 2551 { 2552 struct rb_node *nd; 2553 int rc = 0; 2554 2555 rc = machine__for_each_thread(&machines->host, fn, priv); 2556 if (rc != 0) 2557 return rc; 2558 2559 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2560 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2561 2562 rc = machine__for_each_thread(machine, fn, priv); 2563 if (rc != 0) 2564 return rc; 2565 } 2566 return rc; 2567 } 2568 2569 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2570 struct target *target, struct thread_map *threads, 2571 perf_event__handler_t process, bool data_mmap, 2572 unsigned int nr_threads_synthesize) 2573 { 2574 if (target__has_task(target)) 2575 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2576 else if (target__has_cpu(target)) 2577 return perf_event__synthesize_threads(tool, process, 2578 machine, data_mmap, 2579 nr_threads_synthesize); 2580 /* command specified */ 2581 return 0; 2582 } 2583 2584 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2585 { 2586 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2587 return -1; 2588 2589 return machine->current_tid[cpu]; 2590 } 2591 2592 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2593 pid_t tid) 2594 { 2595 struct thread *thread; 2596 2597 if (cpu < 0) 2598 return -EINVAL; 2599 2600 if (!machine->current_tid) { 2601 int i; 2602 2603 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2604 if (!machine->current_tid) 2605 return -ENOMEM; 2606 for (i = 0; i < MAX_NR_CPUS; i++) 2607 machine->current_tid[i] = -1; 2608 } 2609 2610 if (cpu >= MAX_NR_CPUS) { 2611 pr_err("Requested CPU %d too large. ", cpu); 2612 pr_err("Consider raising MAX_NR_CPUS\n"); 2613 return -EINVAL; 2614 } 2615 2616 machine->current_tid[cpu] = tid; 2617 2618 thread = machine__findnew_thread(machine, pid, tid); 2619 if (!thread) 2620 return -ENOMEM; 2621 2622 thread->cpu = cpu; 2623 thread__put(thread); 2624 2625 return 0; 2626 } 2627 2628 /* 2629 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2630 * normalized arch is needed. 2631 */ 2632 bool machine__is(struct machine *machine, const char *arch) 2633 { 2634 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2635 } 2636 2637 int machine__nr_cpus_avail(struct machine *machine) 2638 { 2639 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2640 } 2641 2642 int machine__get_kernel_start(struct machine *machine) 2643 { 2644 struct map *map = machine__kernel_map(machine); 2645 int err = 0; 2646 2647 /* 2648 * The only addresses above 2^63 are kernel addresses of a 64-bit 2649 * kernel. Note that addresses are unsigned so that on a 32-bit system 2650 * all addresses including kernel addresses are less than 2^32. In 2651 * that case (32-bit system), if the kernel mapping is unknown, all 2652 * addresses will be assumed to be in user space - see 2653 * machine__kernel_ip(). 2654 */ 2655 machine->kernel_start = 1ULL << 63; 2656 if (map) { 2657 err = map__load(map); 2658 /* 2659 * On x86_64, PTI entry trampolines are less than the 2660 * start of kernel text, but still above 2^63. So leave 2661 * kernel_start = 1ULL << 63 for x86_64. 2662 */ 2663 if (!err && !machine__is(machine, "x86_64")) 2664 machine->kernel_start = map->start; 2665 } 2666 return err; 2667 } 2668 2669 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2670 { 2671 u8 addr_cpumode = cpumode; 2672 bool kernel_ip; 2673 2674 if (!machine->single_address_space) 2675 goto out; 2676 2677 kernel_ip = machine__kernel_ip(machine, addr); 2678 switch (cpumode) { 2679 case PERF_RECORD_MISC_KERNEL: 2680 case PERF_RECORD_MISC_USER: 2681 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2682 PERF_RECORD_MISC_USER; 2683 break; 2684 case PERF_RECORD_MISC_GUEST_KERNEL: 2685 case PERF_RECORD_MISC_GUEST_USER: 2686 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2687 PERF_RECORD_MISC_GUEST_USER; 2688 break; 2689 default: 2690 break; 2691 } 2692 out: 2693 return addr_cpumode; 2694 } 2695 2696 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2697 { 2698 return dsos__findnew(&machine->dsos, filename); 2699 } 2700 2701 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2702 { 2703 struct machine *machine = vmachine; 2704 struct map *map; 2705 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2706 2707 if (sym == NULL) 2708 return NULL; 2709 2710 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2711 *addrp = map->unmap_ip(map, sym->start); 2712 return sym->name; 2713 } 2714