xref: /openbmc/linux/tools/perf/util/machine.c (revision 2d972b6a)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24 
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29 
30 static void dsos__init(struct dsos *dsos)
31 {
32 	INIT_LIST_HEAD(&dsos->head);
33 	dsos->root = RB_ROOT;
34 	init_rwsem(&dsos->lock);
35 }
36 
37 static void machine__threads_init(struct machine *machine)
38 {
39 	int i;
40 
41 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 		struct threads *threads = &machine->threads[i];
43 		threads->entries = RB_ROOT;
44 		init_rwsem(&threads->lock);
45 		threads->nr = 0;
46 		INIT_LIST_HEAD(&threads->dead);
47 		threads->last_match = NULL;
48 	}
49 }
50 
51 static int machine__set_mmap_name(struct machine *machine)
52 {
53 	if (machine__is_host(machine))
54 		machine->mmap_name = strdup("[kernel.kallsyms]");
55 	else if (machine__is_default_guest(machine))
56 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
57 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
58 			  machine->pid) < 0)
59 		machine->mmap_name = NULL;
60 
61 	return machine->mmap_name ? 0 : -ENOMEM;
62 }
63 
64 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
65 {
66 	int err = -ENOMEM;
67 
68 	memset(machine, 0, sizeof(*machine));
69 	map_groups__init(&machine->kmaps, machine);
70 	RB_CLEAR_NODE(&machine->rb_node);
71 	dsos__init(&machine->dsos);
72 
73 	machine__threads_init(machine);
74 
75 	machine->vdso_info = NULL;
76 	machine->env = NULL;
77 
78 	machine->pid = pid;
79 
80 	machine->id_hdr_size = 0;
81 	machine->kptr_restrict_warned = false;
82 	machine->comm_exec = false;
83 	machine->kernel_start = 0;
84 
85 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
86 
87 	machine->root_dir = strdup(root_dir);
88 	if (machine->root_dir == NULL)
89 		return -ENOMEM;
90 
91 	if (machine__set_mmap_name(machine))
92 		goto out;
93 
94 	if (pid != HOST_KERNEL_ID) {
95 		struct thread *thread = machine__findnew_thread(machine, -1,
96 								pid);
97 		char comm[64];
98 
99 		if (thread == NULL)
100 			goto out;
101 
102 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 		thread__set_comm(thread, comm, 0);
104 		thread__put(thread);
105 	}
106 
107 	machine->current_tid = NULL;
108 	err = 0;
109 
110 out:
111 	if (err) {
112 		zfree(&machine->root_dir);
113 		zfree(&machine->mmap_name);
114 	}
115 	return 0;
116 }
117 
118 struct machine *machine__new_host(void)
119 {
120 	struct machine *machine = malloc(sizeof(*machine));
121 
122 	if (machine != NULL) {
123 		machine__init(machine, "", HOST_KERNEL_ID);
124 
125 		if (machine__create_kernel_maps(machine) < 0)
126 			goto out_delete;
127 	}
128 
129 	return machine;
130 out_delete:
131 	free(machine);
132 	return NULL;
133 }
134 
135 struct machine *machine__new_kallsyms(void)
136 {
137 	struct machine *machine = machine__new_host();
138 	/*
139 	 * FIXME:
140 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
141 	 *    functions and data objects.
142 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
143 	 *    ask for not using the kcore parsing code, once this one is fixed
144 	 *    to create a map per module.
145 	 */
146 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION) <= 0) {
147 		machine__delete(machine);
148 		machine = NULL;
149 	}
150 
151 	return machine;
152 }
153 
154 static void dsos__purge(struct dsos *dsos)
155 {
156 	struct dso *pos, *n;
157 
158 	down_write(&dsos->lock);
159 
160 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 		RB_CLEAR_NODE(&pos->rb_node);
162 		pos->root = NULL;
163 		list_del_init(&pos->node);
164 		dso__put(pos);
165 	}
166 
167 	up_write(&dsos->lock);
168 }
169 
170 static void dsos__exit(struct dsos *dsos)
171 {
172 	dsos__purge(dsos);
173 	exit_rwsem(&dsos->lock);
174 }
175 
176 void machine__delete_threads(struct machine *machine)
177 {
178 	struct rb_node *nd;
179 	int i;
180 
181 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 		struct threads *threads = &machine->threads[i];
183 		down_write(&threads->lock);
184 		nd = rb_first(&threads->entries);
185 		while (nd) {
186 			struct thread *t = rb_entry(nd, struct thread, rb_node);
187 
188 			nd = rb_next(nd);
189 			__machine__remove_thread(machine, t, false);
190 		}
191 		up_write(&threads->lock);
192 	}
193 }
194 
195 void machine__exit(struct machine *machine)
196 {
197 	int i;
198 
199 	if (machine == NULL)
200 		return;
201 
202 	machine__destroy_kernel_maps(machine);
203 	map_groups__exit(&machine->kmaps);
204 	dsos__exit(&machine->dsos);
205 	machine__exit_vdso(machine);
206 	zfree(&machine->root_dir);
207 	zfree(&machine->mmap_name);
208 	zfree(&machine->current_tid);
209 
210 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 		struct threads *threads = &machine->threads[i];
212 		exit_rwsem(&threads->lock);
213 	}
214 }
215 
216 void machine__delete(struct machine *machine)
217 {
218 	if (machine) {
219 		machine__exit(machine);
220 		free(machine);
221 	}
222 }
223 
224 void machines__init(struct machines *machines)
225 {
226 	machine__init(&machines->host, "", HOST_KERNEL_ID);
227 	machines->guests = RB_ROOT;
228 }
229 
230 void machines__exit(struct machines *machines)
231 {
232 	machine__exit(&machines->host);
233 	/* XXX exit guest */
234 }
235 
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237 			      const char *root_dir)
238 {
239 	struct rb_node **p = &machines->guests.rb_node;
240 	struct rb_node *parent = NULL;
241 	struct machine *pos, *machine = malloc(sizeof(*machine));
242 
243 	if (machine == NULL)
244 		return NULL;
245 
246 	if (machine__init(machine, root_dir, pid) != 0) {
247 		free(machine);
248 		return NULL;
249 	}
250 
251 	while (*p != NULL) {
252 		parent = *p;
253 		pos = rb_entry(parent, struct machine, rb_node);
254 		if (pid < pos->pid)
255 			p = &(*p)->rb_left;
256 		else
257 			p = &(*p)->rb_right;
258 	}
259 
260 	rb_link_node(&machine->rb_node, parent, p);
261 	rb_insert_color(&machine->rb_node, &machines->guests);
262 
263 	return machine;
264 }
265 
266 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
267 {
268 	struct rb_node *nd;
269 
270 	machines->host.comm_exec = comm_exec;
271 
272 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
273 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
274 
275 		machine->comm_exec = comm_exec;
276 	}
277 }
278 
279 struct machine *machines__find(struct machines *machines, pid_t pid)
280 {
281 	struct rb_node **p = &machines->guests.rb_node;
282 	struct rb_node *parent = NULL;
283 	struct machine *machine;
284 	struct machine *default_machine = NULL;
285 
286 	if (pid == HOST_KERNEL_ID)
287 		return &machines->host;
288 
289 	while (*p != NULL) {
290 		parent = *p;
291 		machine = rb_entry(parent, struct machine, rb_node);
292 		if (pid < machine->pid)
293 			p = &(*p)->rb_left;
294 		else if (pid > machine->pid)
295 			p = &(*p)->rb_right;
296 		else
297 			return machine;
298 		if (!machine->pid)
299 			default_machine = machine;
300 	}
301 
302 	return default_machine;
303 }
304 
305 struct machine *machines__findnew(struct machines *machines, pid_t pid)
306 {
307 	char path[PATH_MAX];
308 	const char *root_dir = "";
309 	struct machine *machine = machines__find(machines, pid);
310 
311 	if (machine && (machine->pid == pid))
312 		goto out;
313 
314 	if ((pid != HOST_KERNEL_ID) &&
315 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
316 	    (symbol_conf.guestmount)) {
317 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
318 		if (access(path, R_OK)) {
319 			static struct strlist *seen;
320 
321 			if (!seen)
322 				seen = strlist__new(NULL, NULL);
323 
324 			if (!strlist__has_entry(seen, path)) {
325 				pr_err("Can't access file %s\n", path);
326 				strlist__add(seen, path);
327 			}
328 			machine = NULL;
329 			goto out;
330 		}
331 		root_dir = path;
332 	}
333 
334 	machine = machines__add(machines, pid, root_dir);
335 out:
336 	return machine;
337 }
338 
339 void machines__process_guests(struct machines *machines,
340 			      machine__process_t process, void *data)
341 {
342 	struct rb_node *nd;
343 
344 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
345 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
346 		process(pos, data);
347 	}
348 }
349 
350 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
351 {
352 	struct rb_node *node;
353 	struct machine *machine;
354 
355 	machines->host.id_hdr_size = id_hdr_size;
356 
357 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
358 		machine = rb_entry(node, struct machine, rb_node);
359 		machine->id_hdr_size = id_hdr_size;
360 	}
361 
362 	return;
363 }
364 
365 static void machine__update_thread_pid(struct machine *machine,
366 				       struct thread *th, pid_t pid)
367 {
368 	struct thread *leader;
369 
370 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
371 		return;
372 
373 	th->pid_ = pid;
374 
375 	if (th->pid_ == th->tid)
376 		return;
377 
378 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
379 	if (!leader)
380 		goto out_err;
381 
382 	if (!leader->mg)
383 		leader->mg = map_groups__new(machine);
384 
385 	if (!leader->mg)
386 		goto out_err;
387 
388 	if (th->mg == leader->mg)
389 		return;
390 
391 	if (th->mg) {
392 		/*
393 		 * Maps are created from MMAP events which provide the pid and
394 		 * tid.  Consequently there never should be any maps on a thread
395 		 * with an unknown pid.  Just print an error if there are.
396 		 */
397 		if (!map_groups__empty(th->mg))
398 			pr_err("Discarding thread maps for %d:%d\n",
399 			       th->pid_, th->tid);
400 		map_groups__put(th->mg);
401 	}
402 
403 	th->mg = map_groups__get(leader->mg);
404 out_put:
405 	thread__put(leader);
406 	return;
407 out_err:
408 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
409 	goto out_put;
410 }
411 
412 /*
413  * Caller must eventually drop thread->refcnt returned with a successful
414  * lookup/new thread inserted.
415  */
416 static struct thread *____machine__findnew_thread(struct machine *machine,
417 						  struct threads *threads,
418 						  pid_t pid, pid_t tid,
419 						  bool create)
420 {
421 	struct rb_node **p = &threads->entries.rb_node;
422 	struct rb_node *parent = NULL;
423 	struct thread *th;
424 
425 	/*
426 	 * Front-end cache - TID lookups come in blocks,
427 	 * so most of the time we dont have to look up
428 	 * the full rbtree:
429 	 */
430 	th = threads->last_match;
431 	if (th != NULL) {
432 		if (th->tid == tid) {
433 			machine__update_thread_pid(machine, th, pid);
434 			return thread__get(th);
435 		}
436 
437 		threads->last_match = NULL;
438 	}
439 
440 	while (*p != NULL) {
441 		parent = *p;
442 		th = rb_entry(parent, struct thread, rb_node);
443 
444 		if (th->tid == tid) {
445 			threads->last_match = th;
446 			machine__update_thread_pid(machine, th, pid);
447 			return thread__get(th);
448 		}
449 
450 		if (tid < th->tid)
451 			p = &(*p)->rb_left;
452 		else
453 			p = &(*p)->rb_right;
454 	}
455 
456 	if (!create)
457 		return NULL;
458 
459 	th = thread__new(pid, tid);
460 	if (th != NULL) {
461 		rb_link_node(&th->rb_node, parent, p);
462 		rb_insert_color(&th->rb_node, &threads->entries);
463 
464 		/*
465 		 * We have to initialize map_groups separately
466 		 * after rb tree is updated.
467 		 *
468 		 * The reason is that we call machine__findnew_thread
469 		 * within thread__init_map_groups to find the thread
470 		 * leader and that would screwed the rb tree.
471 		 */
472 		if (thread__init_map_groups(th, machine)) {
473 			rb_erase_init(&th->rb_node, &threads->entries);
474 			RB_CLEAR_NODE(&th->rb_node);
475 			thread__put(th);
476 			return NULL;
477 		}
478 		/*
479 		 * It is now in the rbtree, get a ref
480 		 */
481 		thread__get(th);
482 		threads->last_match = th;
483 		++threads->nr;
484 	}
485 
486 	return th;
487 }
488 
489 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
490 {
491 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
492 }
493 
494 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
495 				       pid_t tid)
496 {
497 	struct threads *threads = machine__threads(machine, tid);
498 	struct thread *th;
499 
500 	down_write(&threads->lock);
501 	th = __machine__findnew_thread(machine, pid, tid);
502 	up_write(&threads->lock);
503 	return th;
504 }
505 
506 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
507 				    pid_t tid)
508 {
509 	struct threads *threads = machine__threads(machine, tid);
510 	struct thread *th;
511 
512 	down_read(&threads->lock);
513 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
514 	up_read(&threads->lock);
515 	return th;
516 }
517 
518 struct comm *machine__thread_exec_comm(struct machine *machine,
519 				       struct thread *thread)
520 {
521 	if (machine->comm_exec)
522 		return thread__exec_comm(thread);
523 	else
524 		return thread__comm(thread);
525 }
526 
527 int machine__process_comm_event(struct machine *machine, union perf_event *event,
528 				struct perf_sample *sample)
529 {
530 	struct thread *thread = machine__findnew_thread(machine,
531 							event->comm.pid,
532 							event->comm.tid);
533 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
534 	int err = 0;
535 
536 	if (exec)
537 		machine->comm_exec = true;
538 
539 	if (dump_trace)
540 		perf_event__fprintf_comm(event, stdout);
541 
542 	if (thread == NULL ||
543 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
544 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
545 		err = -1;
546 	}
547 
548 	thread__put(thread);
549 
550 	return err;
551 }
552 
553 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
554 				      union perf_event *event,
555 				      struct perf_sample *sample __maybe_unused)
556 {
557 	struct thread *thread = machine__findnew_thread(machine,
558 							event->namespaces.pid,
559 							event->namespaces.tid);
560 	int err = 0;
561 
562 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
563 		  "\nWARNING: kernel seems to support more namespaces than perf"
564 		  " tool.\nTry updating the perf tool..\n\n");
565 
566 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
567 		  "\nWARNING: perf tool seems to support more namespaces than"
568 		  " the kernel.\nTry updating the kernel..\n\n");
569 
570 	if (dump_trace)
571 		perf_event__fprintf_namespaces(event, stdout);
572 
573 	if (thread == NULL ||
574 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
575 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
576 		err = -1;
577 	}
578 
579 	thread__put(thread);
580 
581 	return err;
582 }
583 
584 int machine__process_lost_event(struct machine *machine __maybe_unused,
585 				union perf_event *event, struct perf_sample *sample __maybe_unused)
586 {
587 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
588 		    event->lost.id, event->lost.lost);
589 	return 0;
590 }
591 
592 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
593 					union perf_event *event, struct perf_sample *sample)
594 {
595 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
596 		    sample->id, event->lost_samples.lost);
597 	return 0;
598 }
599 
600 static struct dso *machine__findnew_module_dso(struct machine *machine,
601 					       struct kmod_path *m,
602 					       const char *filename)
603 {
604 	struct dso *dso;
605 
606 	down_write(&machine->dsos.lock);
607 
608 	dso = __dsos__find(&machine->dsos, m->name, true);
609 	if (!dso) {
610 		dso = __dsos__addnew(&machine->dsos, m->name);
611 		if (dso == NULL)
612 			goto out_unlock;
613 
614 		dso__set_module_info(dso, m, machine);
615 		dso__set_long_name(dso, strdup(filename), true);
616 	}
617 
618 	dso__get(dso);
619 out_unlock:
620 	up_write(&machine->dsos.lock);
621 	return dso;
622 }
623 
624 int machine__process_aux_event(struct machine *machine __maybe_unused,
625 			       union perf_event *event)
626 {
627 	if (dump_trace)
628 		perf_event__fprintf_aux(event, stdout);
629 	return 0;
630 }
631 
632 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
633 					union perf_event *event)
634 {
635 	if (dump_trace)
636 		perf_event__fprintf_itrace_start(event, stdout);
637 	return 0;
638 }
639 
640 int machine__process_switch_event(struct machine *machine __maybe_unused,
641 				  union perf_event *event)
642 {
643 	if (dump_trace)
644 		perf_event__fprintf_switch(event, stdout);
645 	return 0;
646 }
647 
648 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
649 {
650 	const char *dup_filename;
651 
652 	if (!filename || !dso || !dso->long_name)
653 		return;
654 	if (dso->long_name[0] != '[')
655 		return;
656 	if (!strchr(filename, '/'))
657 		return;
658 
659 	dup_filename = strdup(filename);
660 	if (!dup_filename)
661 		return;
662 
663 	dso__set_long_name(dso, dup_filename, true);
664 }
665 
666 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
667 					const char *filename)
668 {
669 	struct map *map = NULL;
670 	struct dso *dso = NULL;
671 	struct kmod_path m;
672 
673 	if (kmod_path__parse_name(&m, filename))
674 		return NULL;
675 
676 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
677 				       m.name);
678 	if (map) {
679 		/*
680 		 * If the map's dso is an offline module, give dso__load()
681 		 * a chance to find the file path of that module by fixing
682 		 * long_name.
683 		 */
684 		dso__adjust_kmod_long_name(map->dso, filename);
685 		goto out;
686 	}
687 
688 	dso = machine__findnew_module_dso(machine, &m, filename);
689 	if (dso == NULL)
690 		goto out;
691 
692 	map = map__new2(start, dso, MAP__FUNCTION);
693 	if (map == NULL)
694 		goto out;
695 
696 	map_groups__insert(&machine->kmaps, map);
697 
698 	/* Put the map here because map_groups__insert alread got it */
699 	map__put(map);
700 out:
701 	/* put the dso here, corresponding to  machine__findnew_module_dso */
702 	dso__put(dso);
703 	free(m.name);
704 	return map;
705 }
706 
707 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
708 {
709 	struct rb_node *nd;
710 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
711 
712 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
713 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
714 		ret += __dsos__fprintf(&pos->dsos.head, fp);
715 	}
716 
717 	return ret;
718 }
719 
720 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
721 				     bool (skip)(struct dso *dso, int parm), int parm)
722 {
723 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
724 }
725 
726 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
727 				     bool (skip)(struct dso *dso, int parm), int parm)
728 {
729 	struct rb_node *nd;
730 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
731 
732 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
733 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
734 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
735 	}
736 	return ret;
737 }
738 
739 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
740 {
741 	int i;
742 	size_t printed = 0;
743 	struct dso *kdso = machine__kernel_map(machine)->dso;
744 
745 	if (kdso->has_build_id) {
746 		char filename[PATH_MAX];
747 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
748 					   false))
749 			printed += fprintf(fp, "[0] %s\n", filename);
750 	}
751 
752 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
753 		printed += fprintf(fp, "[%d] %s\n",
754 				   i + kdso->has_build_id, vmlinux_path[i]);
755 
756 	return printed;
757 }
758 
759 size_t machine__fprintf(struct machine *machine, FILE *fp)
760 {
761 	struct rb_node *nd;
762 	size_t ret;
763 	int i;
764 
765 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
766 		struct threads *threads = &machine->threads[i];
767 
768 		down_read(&threads->lock);
769 
770 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
771 
772 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
773 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
774 
775 			ret += thread__fprintf(pos, fp);
776 		}
777 
778 		up_read(&threads->lock);
779 	}
780 	return ret;
781 }
782 
783 static struct dso *machine__get_kernel(struct machine *machine)
784 {
785 	const char *vmlinux_name = machine->mmap_name;
786 	struct dso *kernel;
787 
788 	if (machine__is_host(machine)) {
789 		if (symbol_conf.vmlinux_name)
790 			vmlinux_name = symbol_conf.vmlinux_name;
791 
792 		kernel = machine__findnew_kernel(machine, vmlinux_name,
793 						 "[kernel]", DSO_TYPE_KERNEL);
794 	} else {
795 		if (symbol_conf.default_guest_vmlinux_name)
796 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
797 
798 		kernel = machine__findnew_kernel(machine, vmlinux_name,
799 						 "[guest.kernel]",
800 						 DSO_TYPE_GUEST_KERNEL);
801 	}
802 
803 	if (kernel != NULL && (!kernel->has_build_id))
804 		dso__read_running_kernel_build_id(kernel, machine);
805 
806 	return kernel;
807 }
808 
809 struct process_args {
810 	u64 start;
811 };
812 
813 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
814 					   size_t bufsz)
815 {
816 	if (machine__is_default_guest(machine))
817 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
818 	else
819 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
820 }
821 
822 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
823 
824 /* Figure out the start address of kernel map from /proc/kallsyms.
825  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
826  * symbol_name if it's not that important.
827  */
828 static int machine__get_running_kernel_start(struct machine *machine,
829 					     const char **symbol_name, u64 *start)
830 {
831 	char filename[PATH_MAX];
832 	int i, err = -1;
833 	const char *name;
834 	u64 addr = 0;
835 
836 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
837 
838 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
839 		return 0;
840 
841 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
842 		err = kallsyms__get_function_start(filename, name, &addr);
843 		if (!err)
844 			break;
845 	}
846 
847 	if (err)
848 		return -1;
849 
850 	if (symbol_name)
851 		*symbol_name = name;
852 
853 	*start = addr;
854 	return 0;
855 }
856 
857 static int
858 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
859 {
860 	int type;
861 
862 	/* In case of renewal the kernel map, destroy previous one */
863 	machine__destroy_kernel_maps(machine);
864 
865 	for (type = 0; type < MAP__NR_TYPES; ++type) {
866 		struct kmap *kmap;
867 		struct map *map;
868 
869 		machine->vmlinux_maps[type] = map__new2(0, kernel, type);
870 		if (machine->vmlinux_maps[type] == NULL)
871 			return -1;
872 
873 		machine->vmlinux_maps[type]->map_ip =
874 			machine->vmlinux_maps[type]->unmap_ip =
875 				identity__map_ip;
876 		map = __machine__kernel_map(machine, type);
877 		kmap = map__kmap(map);
878 		if (!kmap)
879 			return -1;
880 
881 		kmap->kmaps = &machine->kmaps;
882 		map_groups__insert(&machine->kmaps, map);
883 	}
884 
885 	return 0;
886 }
887 
888 void machine__destroy_kernel_maps(struct machine *machine)
889 {
890 	int type;
891 
892 	for (type = 0; type < MAP__NR_TYPES; ++type) {
893 		struct kmap *kmap;
894 		struct map *map = __machine__kernel_map(machine, type);
895 
896 		if (map == NULL)
897 			continue;
898 
899 		kmap = map__kmap(map);
900 		map_groups__remove(&machine->kmaps, map);
901 		if (kmap && kmap->ref_reloc_sym) {
902 			/*
903 			 * ref_reloc_sym is shared among all maps, so free just
904 			 * on one of them.
905 			 */
906 			if (type == MAP__FUNCTION) {
907 				zfree((char **)&kmap->ref_reloc_sym->name);
908 				zfree(&kmap->ref_reloc_sym);
909 			} else
910 				kmap->ref_reloc_sym = NULL;
911 		}
912 
913 		map__put(machine->vmlinux_maps[type]);
914 		machine->vmlinux_maps[type] = NULL;
915 	}
916 }
917 
918 int machines__create_guest_kernel_maps(struct machines *machines)
919 {
920 	int ret = 0;
921 	struct dirent **namelist = NULL;
922 	int i, items = 0;
923 	char path[PATH_MAX];
924 	pid_t pid;
925 	char *endp;
926 
927 	if (symbol_conf.default_guest_vmlinux_name ||
928 	    symbol_conf.default_guest_modules ||
929 	    symbol_conf.default_guest_kallsyms) {
930 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
931 	}
932 
933 	if (symbol_conf.guestmount) {
934 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
935 		if (items <= 0)
936 			return -ENOENT;
937 		for (i = 0; i < items; i++) {
938 			if (!isdigit(namelist[i]->d_name[0])) {
939 				/* Filter out . and .. */
940 				continue;
941 			}
942 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
943 			if ((*endp != '\0') ||
944 			    (endp == namelist[i]->d_name) ||
945 			    (errno == ERANGE)) {
946 				pr_debug("invalid directory (%s). Skipping.\n",
947 					 namelist[i]->d_name);
948 				continue;
949 			}
950 			sprintf(path, "%s/%s/proc/kallsyms",
951 				symbol_conf.guestmount,
952 				namelist[i]->d_name);
953 			ret = access(path, R_OK);
954 			if (ret) {
955 				pr_debug("Can't access file %s\n", path);
956 				goto failure;
957 			}
958 			machines__create_kernel_maps(machines, pid);
959 		}
960 failure:
961 		free(namelist);
962 	}
963 
964 	return ret;
965 }
966 
967 void machines__destroy_kernel_maps(struct machines *machines)
968 {
969 	struct rb_node *next = rb_first(&machines->guests);
970 
971 	machine__destroy_kernel_maps(&machines->host);
972 
973 	while (next) {
974 		struct machine *pos = rb_entry(next, struct machine, rb_node);
975 
976 		next = rb_next(&pos->rb_node);
977 		rb_erase(&pos->rb_node, &machines->guests);
978 		machine__delete(pos);
979 	}
980 }
981 
982 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
983 {
984 	struct machine *machine = machines__findnew(machines, pid);
985 
986 	if (machine == NULL)
987 		return -1;
988 
989 	return machine__create_kernel_maps(machine);
990 }
991 
992 int machine__load_kallsyms(struct machine *machine, const char *filename,
993 			     enum map_type type)
994 {
995 	struct map *map = machine__kernel_map(machine);
996 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
997 
998 	if (ret > 0) {
999 		dso__set_loaded(map->dso, type);
1000 		/*
1001 		 * Since /proc/kallsyms will have multiple sessions for the
1002 		 * kernel, with modules between them, fixup the end of all
1003 		 * sections.
1004 		 */
1005 		__map_groups__fixup_end(&machine->kmaps, type);
1006 	}
1007 
1008 	return ret;
1009 }
1010 
1011 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012 {
1013 	struct map *map = machine__kernel_map(machine);
1014 	int ret = dso__load_vmlinux_path(map->dso, map);
1015 
1016 	if (ret > 0)
1017 		dso__set_loaded(map->dso, type);
1018 
1019 	return ret;
1020 }
1021 
1022 static char *get_kernel_version(const char *root_dir)
1023 {
1024 	char version[PATH_MAX];
1025 	FILE *file;
1026 	char *name, *tmp;
1027 	const char *prefix = "Linux version ";
1028 
1029 	sprintf(version, "%s/proc/version", root_dir);
1030 	file = fopen(version, "r");
1031 	if (!file)
1032 		return NULL;
1033 
1034 	version[0] = '\0';
1035 	tmp = fgets(version, sizeof(version), file);
1036 	fclose(file);
1037 
1038 	name = strstr(version, prefix);
1039 	if (!name)
1040 		return NULL;
1041 	name += strlen(prefix);
1042 	tmp = strchr(name, ' ');
1043 	if (tmp)
1044 		*tmp = '\0';
1045 
1046 	return strdup(name);
1047 }
1048 
1049 static bool is_kmod_dso(struct dso *dso)
1050 {
1051 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1052 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1053 }
1054 
1055 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1056 				       struct kmod_path *m)
1057 {
1058 	struct map *map;
1059 	char *long_name;
1060 
1061 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1062 	if (map == NULL)
1063 		return 0;
1064 
1065 	long_name = strdup(path);
1066 	if (long_name == NULL)
1067 		return -ENOMEM;
1068 
1069 	dso__set_long_name(map->dso, long_name, true);
1070 	dso__kernel_module_get_build_id(map->dso, "");
1071 
1072 	/*
1073 	 * Full name could reveal us kmod compression, so
1074 	 * we need to update the symtab_type if needed.
1075 	 */
1076 	if (m->comp && is_kmod_dso(map->dso))
1077 		map->dso->symtab_type++;
1078 
1079 	return 0;
1080 }
1081 
1082 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1083 				const char *dir_name, int depth)
1084 {
1085 	struct dirent *dent;
1086 	DIR *dir = opendir(dir_name);
1087 	int ret = 0;
1088 
1089 	if (!dir) {
1090 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1091 		return -1;
1092 	}
1093 
1094 	while ((dent = readdir(dir)) != NULL) {
1095 		char path[PATH_MAX];
1096 		struct stat st;
1097 
1098 		/*sshfs might return bad dent->d_type, so we have to stat*/
1099 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1100 		if (stat(path, &st))
1101 			continue;
1102 
1103 		if (S_ISDIR(st.st_mode)) {
1104 			if (!strcmp(dent->d_name, ".") ||
1105 			    !strcmp(dent->d_name, ".."))
1106 				continue;
1107 
1108 			/* Do not follow top-level source and build symlinks */
1109 			if (depth == 0) {
1110 				if (!strcmp(dent->d_name, "source") ||
1111 				    !strcmp(dent->d_name, "build"))
1112 					continue;
1113 			}
1114 
1115 			ret = map_groups__set_modules_path_dir(mg, path,
1116 							       depth + 1);
1117 			if (ret < 0)
1118 				goto out;
1119 		} else {
1120 			struct kmod_path m;
1121 
1122 			ret = kmod_path__parse_name(&m, dent->d_name);
1123 			if (ret)
1124 				goto out;
1125 
1126 			if (m.kmod)
1127 				ret = map_groups__set_module_path(mg, path, &m);
1128 
1129 			free(m.name);
1130 
1131 			if (ret)
1132 				goto out;
1133 		}
1134 	}
1135 
1136 out:
1137 	closedir(dir);
1138 	return ret;
1139 }
1140 
1141 static int machine__set_modules_path(struct machine *machine)
1142 {
1143 	char *version;
1144 	char modules_path[PATH_MAX];
1145 
1146 	version = get_kernel_version(machine->root_dir);
1147 	if (!version)
1148 		return -1;
1149 
1150 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1151 		 machine->root_dir, version);
1152 	free(version);
1153 
1154 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1155 }
1156 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1157 				const char *name __maybe_unused)
1158 {
1159 	return 0;
1160 }
1161 
1162 static int machine__create_module(void *arg, const char *name, u64 start,
1163 				  u64 size)
1164 {
1165 	struct machine *machine = arg;
1166 	struct map *map;
1167 
1168 	if (arch__fix_module_text_start(&start, name) < 0)
1169 		return -1;
1170 
1171 	map = machine__findnew_module_map(machine, start, name);
1172 	if (map == NULL)
1173 		return -1;
1174 	map->end = start + size;
1175 
1176 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1177 
1178 	return 0;
1179 }
1180 
1181 static int machine__create_modules(struct machine *machine)
1182 {
1183 	const char *modules;
1184 	char path[PATH_MAX];
1185 
1186 	if (machine__is_default_guest(machine)) {
1187 		modules = symbol_conf.default_guest_modules;
1188 	} else {
1189 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1190 		modules = path;
1191 	}
1192 
1193 	if (symbol__restricted_filename(modules, "/proc/modules"))
1194 		return -1;
1195 
1196 	if (modules__parse(modules, machine, machine__create_module))
1197 		return -1;
1198 
1199 	if (!machine__set_modules_path(machine))
1200 		return 0;
1201 
1202 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1203 
1204 	return 0;
1205 }
1206 
1207 static void machine__set_kernel_mmap(struct machine *machine,
1208 				     u64 start, u64 end)
1209 {
1210 	int i;
1211 
1212 	for (i = 0; i < MAP__NR_TYPES; i++) {
1213 		machine->vmlinux_maps[i]->start = start;
1214 		machine->vmlinux_maps[i]->end   = end;
1215 
1216 		/*
1217 		 * Be a bit paranoid here, some perf.data file came with
1218 		 * a zero sized synthesized MMAP event for the kernel.
1219 		 */
1220 		if (start == 0 && end == 0)
1221 			machine->vmlinux_maps[i]->end = ~0ULL;
1222 	}
1223 }
1224 
1225 int machine__create_kernel_maps(struct machine *machine)
1226 {
1227 	struct dso *kernel = machine__get_kernel(machine);
1228 	const char *name = NULL;
1229 	struct map *map;
1230 	u64 addr = 0;
1231 	int ret;
1232 
1233 	if (kernel == NULL)
1234 		return -1;
1235 
1236 	ret = __machine__create_kernel_maps(machine, kernel);
1237 	dso__put(kernel);
1238 	if (ret < 0)
1239 		return -1;
1240 
1241 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1242 		if (machine__is_host(machine))
1243 			pr_debug("Problems creating module maps, "
1244 				 "continuing anyway...\n");
1245 		else
1246 			pr_debug("Problems creating module maps for guest %d, "
1247 				 "continuing anyway...\n", machine->pid);
1248 	}
1249 
1250 	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1251 		if (name &&
1252 		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1253 			machine__destroy_kernel_maps(machine);
1254 			return -1;
1255 		}
1256 
1257 		/* we have a real start address now, so re-order the kmaps */
1258 		map = machine__kernel_map(machine);
1259 
1260 		map__get(map);
1261 		map_groups__remove(&machine->kmaps, map);
1262 
1263 		/* assume it's the last in the kmaps */
1264 		machine__set_kernel_mmap(machine, addr, ~0ULL);
1265 
1266 		map_groups__insert(&machine->kmaps, map);
1267 		map__put(map);
1268 	}
1269 
1270 	/* update end address of the kernel map using adjacent module address */
1271 	map = map__next(machine__kernel_map(machine));
1272 	if (map)
1273 		machine__set_kernel_mmap(machine, addr, map->start);
1274 
1275 	return 0;
1276 }
1277 
1278 static bool machine__uses_kcore(struct machine *machine)
1279 {
1280 	struct dso *dso;
1281 
1282 	list_for_each_entry(dso, &machine->dsos.head, node) {
1283 		if (dso__is_kcore(dso))
1284 			return true;
1285 	}
1286 
1287 	return false;
1288 }
1289 
1290 static int machine__process_kernel_mmap_event(struct machine *machine,
1291 					      union perf_event *event)
1292 {
1293 	struct map *map;
1294 	enum dso_kernel_type kernel_type;
1295 	bool is_kernel_mmap;
1296 
1297 	/* If we have maps from kcore then we do not need or want any others */
1298 	if (machine__uses_kcore(machine))
1299 		return 0;
1300 
1301 	if (machine__is_host(machine))
1302 		kernel_type = DSO_TYPE_KERNEL;
1303 	else
1304 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1305 
1306 	is_kernel_mmap = memcmp(event->mmap.filename,
1307 				machine->mmap_name,
1308 				strlen(machine->mmap_name) - 1) == 0;
1309 	if (event->mmap.filename[0] == '/' ||
1310 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311 		map = machine__findnew_module_map(machine, event->mmap.start,
1312 						  event->mmap.filename);
1313 		if (map == NULL)
1314 			goto out_problem;
1315 
1316 		map->end = map->start + event->mmap.len;
1317 	} else if (is_kernel_mmap) {
1318 		const char *symbol_name = (event->mmap.filename +
1319 				strlen(machine->mmap_name));
1320 		/*
1321 		 * Should be there already, from the build-id table in
1322 		 * the header.
1323 		 */
1324 		struct dso *kernel = NULL;
1325 		struct dso *dso;
1326 
1327 		down_read(&machine->dsos.lock);
1328 
1329 		list_for_each_entry(dso, &machine->dsos.head, node) {
1330 
1331 			/*
1332 			 * The cpumode passed to is_kernel_module is not the
1333 			 * cpumode of *this* event. If we insist on passing
1334 			 * correct cpumode to is_kernel_module, we should
1335 			 * record the cpumode when we adding this dso to the
1336 			 * linked list.
1337 			 *
1338 			 * However we don't really need passing correct
1339 			 * cpumode.  We know the correct cpumode must be kernel
1340 			 * mode (if not, we should not link it onto kernel_dsos
1341 			 * list).
1342 			 *
1343 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344 			 * is_kernel_module() treats it as a kernel cpumode.
1345 			 */
1346 
1347 			if (!dso->kernel ||
1348 			    is_kernel_module(dso->long_name,
1349 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350 				continue;
1351 
1352 
1353 			kernel = dso;
1354 			break;
1355 		}
1356 
1357 		up_read(&machine->dsos.lock);
1358 
1359 		if (kernel == NULL)
1360 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1361 		if (kernel == NULL)
1362 			goto out_problem;
1363 
1364 		kernel->kernel = kernel_type;
1365 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366 			dso__put(kernel);
1367 			goto out_problem;
1368 		}
1369 
1370 		if (strstr(kernel->long_name, "vmlinux"))
1371 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372 
1373 		machine__set_kernel_mmap(machine, event->mmap.start,
1374 					 event->mmap.start + event->mmap.len);
1375 
1376 		/*
1377 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1378 		 * symbol. Effectively having zero here means that at record
1379 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1380 		 */
1381 		if (event->mmap.pgoff != 0) {
1382 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1383 							 symbol_name,
1384 							 event->mmap.pgoff);
1385 		}
1386 
1387 		if (machine__is_default_guest(machine)) {
1388 			/*
1389 			 * preload dso of guest kernel and modules
1390 			 */
1391 			dso__load(kernel, machine__kernel_map(machine));
1392 		}
1393 	}
1394 	return 0;
1395 out_problem:
1396 	return -1;
1397 }
1398 
1399 int machine__process_mmap2_event(struct machine *machine,
1400 				 union perf_event *event,
1401 				 struct perf_sample *sample)
1402 {
1403 	struct thread *thread;
1404 	struct map *map;
1405 	enum map_type type;
1406 	int ret = 0;
1407 
1408 	if (dump_trace)
1409 		perf_event__fprintf_mmap2(event, stdout);
1410 
1411 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1412 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1413 		ret = machine__process_kernel_mmap_event(machine, event);
1414 		if (ret < 0)
1415 			goto out_problem;
1416 		return 0;
1417 	}
1418 
1419 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1420 					event->mmap2.tid);
1421 	if (thread == NULL)
1422 		goto out_problem;
1423 
1424 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1425 		type = MAP__VARIABLE;
1426 	else
1427 		type = MAP__FUNCTION;
1428 
1429 	map = map__new(machine, event->mmap2.start,
1430 			event->mmap2.len, event->mmap2.pgoff,
1431 			event->mmap2.maj,
1432 			event->mmap2.min, event->mmap2.ino,
1433 			event->mmap2.ino_generation,
1434 			event->mmap2.prot,
1435 			event->mmap2.flags,
1436 			event->mmap2.filename, type, thread);
1437 
1438 	if (map == NULL)
1439 		goto out_problem_map;
1440 
1441 	ret = thread__insert_map(thread, map);
1442 	if (ret)
1443 		goto out_problem_insert;
1444 
1445 	thread__put(thread);
1446 	map__put(map);
1447 	return 0;
1448 
1449 out_problem_insert:
1450 	map__put(map);
1451 out_problem_map:
1452 	thread__put(thread);
1453 out_problem:
1454 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1455 	return 0;
1456 }
1457 
1458 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1459 				struct perf_sample *sample)
1460 {
1461 	struct thread *thread;
1462 	struct map *map;
1463 	enum map_type type;
1464 	int ret = 0;
1465 
1466 	if (dump_trace)
1467 		perf_event__fprintf_mmap(event, stdout);
1468 
1469 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1470 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1471 		ret = machine__process_kernel_mmap_event(machine, event);
1472 		if (ret < 0)
1473 			goto out_problem;
1474 		return 0;
1475 	}
1476 
1477 	thread = machine__findnew_thread(machine, event->mmap.pid,
1478 					 event->mmap.tid);
1479 	if (thread == NULL)
1480 		goto out_problem;
1481 
1482 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1483 		type = MAP__VARIABLE;
1484 	else
1485 		type = MAP__FUNCTION;
1486 
1487 	map = map__new(machine, event->mmap.start,
1488 			event->mmap.len, event->mmap.pgoff,
1489 			0, 0, 0, 0, 0, 0,
1490 			event->mmap.filename,
1491 			type, thread);
1492 
1493 	if (map == NULL)
1494 		goto out_problem_map;
1495 
1496 	ret = thread__insert_map(thread, map);
1497 	if (ret)
1498 		goto out_problem_insert;
1499 
1500 	thread__put(thread);
1501 	map__put(map);
1502 	return 0;
1503 
1504 out_problem_insert:
1505 	map__put(map);
1506 out_problem_map:
1507 	thread__put(thread);
1508 out_problem:
1509 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1510 	return 0;
1511 }
1512 
1513 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1514 {
1515 	struct threads *threads = machine__threads(machine, th->tid);
1516 
1517 	if (threads->last_match == th)
1518 		threads->last_match = NULL;
1519 
1520 	BUG_ON(refcount_read(&th->refcnt) == 0);
1521 	if (lock)
1522 		down_write(&threads->lock);
1523 	rb_erase_init(&th->rb_node, &threads->entries);
1524 	RB_CLEAR_NODE(&th->rb_node);
1525 	--threads->nr;
1526 	/*
1527 	 * Move it first to the dead_threads list, then drop the reference,
1528 	 * if this is the last reference, then the thread__delete destructor
1529 	 * will be called and we will remove it from the dead_threads list.
1530 	 */
1531 	list_add_tail(&th->node, &threads->dead);
1532 	if (lock)
1533 		up_write(&threads->lock);
1534 	thread__put(th);
1535 }
1536 
1537 void machine__remove_thread(struct machine *machine, struct thread *th)
1538 {
1539 	return __machine__remove_thread(machine, th, true);
1540 }
1541 
1542 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1543 				struct perf_sample *sample)
1544 {
1545 	struct thread *thread = machine__find_thread(machine,
1546 						     event->fork.pid,
1547 						     event->fork.tid);
1548 	struct thread *parent = machine__findnew_thread(machine,
1549 							event->fork.ppid,
1550 							event->fork.ptid);
1551 	int err = 0;
1552 
1553 	if (dump_trace)
1554 		perf_event__fprintf_task(event, stdout);
1555 
1556 	/*
1557 	 * There may be an existing thread that is not actually the parent,
1558 	 * either because we are processing events out of order, or because the
1559 	 * (fork) event that would have removed the thread was lost. Assume the
1560 	 * latter case and continue on as best we can.
1561 	 */
1562 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1563 		dump_printf("removing erroneous parent thread %d/%d\n",
1564 			    parent->pid_, parent->tid);
1565 		machine__remove_thread(machine, parent);
1566 		thread__put(parent);
1567 		parent = machine__findnew_thread(machine, event->fork.ppid,
1568 						 event->fork.ptid);
1569 	}
1570 
1571 	/* if a thread currently exists for the thread id remove it */
1572 	if (thread != NULL) {
1573 		machine__remove_thread(machine, thread);
1574 		thread__put(thread);
1575 	}
1576 
1577 	thread = machine__findnew_thread(machine, event->fork.pid,
1578 					 event->fork.tid);
1579 
1580 	if (thread == NULL || parent == NULL ||
1581 	    thread__fork(thread, parent, sample->time) < 0) {
1582 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1583 		err = -1;
1584 	}
1585 	thread__put(thread);
1586 	thread__put(parent);
1587 
1588 	return err;
1589 }
1590 
1591 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1592 				struct perf_sample *sample __maybe_unused)
1593 {
1594 	struct thread *thread = machine__find_thread(machine,
1595 						     event->fork.pid,
1596 						     event->fork.tid);
1597 
1598 	if (dump_trace)
1599 		perf_event__fprintf_task(event, stdout);
1600 
1601 	if (thread != NULL) {
1602 		thread__exited(thread);
1603 		thread__put(thread);
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 int machine__process_event(struct machine *machine, union perf_event *event,
1610 			   struct perf_sample *sample)
1611 {
1612 	int ret;
1613 
1614 	switch (event->header.type) {
1615 	case PERF_RECORD_COMM:
1616 		ret = machine__process_comm_event(machine, event, sample); break;
1617 	case PERF_RECORD_MMAP:
1618 		ret = machine__process_mmap_event(machine, event, sample); break;
1619 	case PERF_RECORD_NAMESPACES:
1620 		ret = machine__process_namespaces_event(machine, event, sample); break;
1621 	case PERF_RECORD_MMAP2:
1622 		ret = machine__process_mmap2_event(machine, event, sample); break;
1623 	case PERF_RECORD_FORK:
1624 		ret = machine__process_fork_event(machine, event, sample); break;
1625 	case PERF_RECORD_EXIT:
1626 		ret = machine__process_exit_event(machine, event, sample); break;
1627 	case PERF_RECORD_LOST:
1628 		ret = machine__process_lost_event(machine, event, sample); break;
1629 	case PERF_RECORD_AUX:
1630 		ret = machine__process_aux_event(machine, event); break;
1631 	case PERF_RECORD_ITRACE_START:
1632 		ret = machine__process_itrace_start_event(machine, event); break;
1633 	case PERF_RECORD_LOST_SAMPLES:
1634 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1635 	case PERF_RECORD_SWITCH:
1636 	case PERF_RECORD_SWITCH_CPU_WIDE:
1637 		ret = machine__process_switch_event(machine, event); break;
1638 	default:
1639 		ret = -1;
1640 		break;
1641 	}
1642 
1643 	return ret;
1644 }
1645 
1646 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1647 {
1648 	if (!regexec(regex, sym->name, 0, NULL, 0))
1649 		return 1;
1650 	return 0;
1651 }
1652 
1653 static void ip__resolve_ams(struct thread *thread,
1654 			    struct addr_map_symbol *ams,
1655 			    u64 ip)
1656 {
1657 	struct addr_location al;
1658 
1659 	memset(&al, 0, sizeof(al));
1660 	/*
1661 	 * We cannot use the header.misc hint to determine whether a
1662 	 * branch stack address is user, kernel, guest, hypervisor.
1663 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1664 	 * Thus, we have to try consecutively until we find a match
1665 	 * or else, the symbol is unknown
1666 	 */
1667 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1668 
1669 	ams->addr = ip;
1670 	ams->al_addr = al.addr;
1671 	ams->sym = al.sym;
1672 	ams->map = al.map;
1673 	ams->phys_addr = 0;
1674 }
1675 
1676 static void ip__resolve_data(struct thread *thread,
1677 			     u8 m, struct addr_map_symbol *ams,
1678 			     u64 addr, u64 phys_addr)
1679 {
1680 	struct addr_location al;
1681 
1682 	memset(&al, 0, sizeof(al));
1683 
1684 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1685 	if (al.map == NULL) {
1686 		/*
1687 		 * some shared data regions have execute bit set which puts
1688 		 * their mapping in the MAP__FUNCTION type array.
1689 		 * Check there as a fallback option before dropping the sample.
1690 		 */
1691 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1692 	}
1693 
1694 	ams->addr = addr;
1695 	ams->al_addr = al.addr;
1696 	ams->sym = al.sym;
1697 	ams->map = al.map;
1698 	ams->phys_addr = phys_addr;
1699 }
1700 
1701 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1702 				     struct addr_location *al)
1703 {
1704 	struct mem_info *mi = mem_info__new();
1705 
1706 	if (!mi)
1707 		return NULL;
1708 
1709 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1710 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1711 			 sample->addr, sample->phys_addr);
1712 	mi->data_src.val = sample->data_src;
1713 
1714 	return mi;
1715 }
1716 
1717 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1718 {
1719 	char *srcline = NULL;
1720 
1721 	if (!map || callchain_param.key == CCKEY_FUNCTION)
1722 		return srcline;
1723 
1724 	srcline = srcline__tree_find(&map->dso->srclines, ip);
1725 	if (!srcline) {
1726 		bool show_sym = false;
1727 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1728 
1729 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1730 				      sym, show_sym, show_addr, ip);
1731 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
1732 	}
1733 
1734 	return srcline;
1735 }
1736 
1737 struct iterations {
1738 	int nr_loop_iter;
1739 	u64 cycles;
1740 };
1741 
1742 static int add_callchain_ip(struct thread *thread,
1743 			    struct callchain_cursor *cursor,
1744 			    struct symbol **parent,
1745 			    struct addr_location *root_al,
1746 			    u8 *cpumode,
1747 			    u64 ip,
1748 			    bool branch,
1749 			    struct branch_flags *flags,
1750 			    struct iterations *iter,
1751 			    u64 branch_from)
1752 {
1753 	struct addr_location al;
1754 	int nr_loop_iter = 0;
1755 	u64 iter_cycles = 0;
1756 	const char *srcline = NULL;
1757 
1758 	al.filtered = 0;
1759 	al.sym = NULL;
1760 	if (!cpumode) {
1761 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1762 						   ip, &al);
1763 	} else {
1764 		if (ip >= PERF_CONTEXT_MAX) {
1765 			switch (ip) {
1766 			case PERF_CONTEXT_HV:
1767 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1768 				break;
1769 			case PERF_CONTEXT_KERNEL:
1770 				*cpumode = PERF_RECORD_MISC_KERNEL;
1771 				break;
1772 			case PERF_CONTEXT_USER:
1773 				*cpumode = PERF_RECORD_MISC_USER;
1774 				break;
1775 			default:
1776 				pr_debug("invalid callchain context: "
1777 					 "%"PRId64"\n", (s64) ip);
1778 				/*
1779 				 * It seems the callchain is corrupted.
1780 				 * Discard all.
1781 				 */
1782 				callchain_cursor_reset(cursor);
1783 				return 1;
1784 			}
1785 			return 0;
1786 		}
1787 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1788 					   ip, &al);
1789 	}
1790 
1791 	if (al.sym != NULL) {
1792 		if (perf_hpp_list.parent && !*parent &&
1793 		    symbol__match_regex(al.sym, &parent_regex))
1794 			*parent = al.sym;
1795 		else if (have_ignore_callees && root_al &&
1796 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1797 			/* Treat this symbol as the root,
1798 			   forgetting its callees. */
1799 			*root_al = al;
1800 			callchain_cursor_reset(cursor);
1801 		}
1802 	}
1803 
1804 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1805 		return 0;
1806 
1807 	if (iter) {
1808 		nr_loop_iter = iter->nr_loop_iter;
1809 		iter_cycles = iter->cycles;
1810 	}
1811 
1812 	srcline = callchain_srcline(al.map, al.sym, al.addr);
1813 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1814 				       branch, flags, nr_loop_iter,
1815 				       iter_cycles, branch_from, srcline);
1816 }
1817 
1818 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1819 					   struct addr_location *al)
1820 {
1821 	unsigned int i;
1822 	const struct branch_stack *bs = sample->branch_stack;
1823 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1824 
1825 	if (!bi)
1826 		return NULL;
1827 
1828 	for (i = 0; i < bs->nr; i++) {
1829 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1830 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1831 		bi[i].flags = bs->entries[i].flags;
1832 	}
1833 	return bi;
1834 }
1835 
1836 static void save_iterations(struct iterations *iter,
1837 			    struct branch_entry *be, int nr)
1838 {
1839 	int i;
1840 
1841 	iter->nr_loop_iter = nr;
1842 	iter->cycles = 0;
1843 
1844 	for (i = 0; i < nr; i++)
1845 		iter->cycles += be[i].flags.cycles;
1846 }
1847 
1848 #define CHASHSZ 127
1849 #define CHASHBITS 7
1850 #define NO_ENTRY 0xff
1851 
1852 #define PERF_MAX_BRANCH_DEPTH 127
1853 
1854 /* Remove loops. */
1855 static int remove_loops(struct branch_entry *l, int nr,
1856 			struct iterations *iter)
1857 {
1858 	int i, j, off;
1859 	unsigned char chash[CHASHSZ];
1860 
1861 	memset(chash, NO_ENTRY, sizeof(chash));
1862 
1863 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1864 
1865 	for (i = 0; i < nr; i++) {
1866 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1867 
1868 		/* no collision handling for now */
1869 		if (chash[h] == NO_ENTRY) {
1870 			chash[h] = i;
1871 		} else if (l[chash[h]].from == l[i].from) {
1872 			bool is_loop = true;
1873 			/* check if it is a real loop */
1874 			off = 0;
1875 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1876 				if (l[j].from != l[i + off].from) {
1877 					is_loop = false;
1878 					break;
1879 				}
1880 			if (is_loop) {
1881 				j = nr - (i + off);
1882 				if (j > 0) {
1883 					save_iterations(iter + i + off,
1884 						l + i, off);
1885 
1886 					memmove(iter + i, iter + i + off,
1887 						j * sizeof(*iter));
1888 
1889 					memmove(l + i, l + i + off,
1890 						j * sizeof(*l));
1891 				}
1892 
1893 				nr -= off;
1894 			}
1895 		}
1896 	}
1897 	return nr;
1898 }
1899 
1900 /*
1901  * Recolve LBR callstack chain sample
1902  * Return:
1903  * 1 on success get LBR callchain information
1904  * 0 no available LBR callchain information, should try fp
1905  * negative error code on other errors.
1906  */
1907 static int resolve_lbr_callchain_sample(struct thread *thread,
1908 					struct callchain_cursor *cursor,
1909 					struct perf_sample *sample,
1910 					struct symbol **parent,
1911 					struct addr_location *root_al,
1912 					int max_stack)
1913 {
1914 	struct ip_callchain *chain = sample->callchain;
1915 	int chain_nr = min(max_stack, (int)chain->nr), i;
1916 	u8 cpumode = PERF_RECORD_MISC_USER;
1917 	u64 ip, branch_from = 0;
1918 
1919 	for (i = 0; i < chain_nr; i++) {
1920 		if (chain->ips[i] == PERF_CONTEXT_USER)
1921 			break;
1922 	}
1923 
1924 	/* LBR only affects the user callchain */
1925 	if (i != chain_nr) {
1926 		struct branch_stack *lbr_stack = sample->branch_stack;
1927 		int lbr_nr = lbr_stack->nr, j, k;
1928 		bool branch;
1929 		struct branch_flags *flags;
1930 		/*
1931 		 * LBR callstack can only get user call chain.
1932 		 * The mix_chain_nr is kernel call chain
1933 		 * number plus LBR user call chain number.
1934 		 * i is kernel call chain number,
1935 		 * 1 is PERF_CONTEXT_USER,
1936 		 * lbr_nr + 1 is the user call chain number.
1937 		 * For details, please refer to the comments
1938 		 * in callchain__printf
1939 		 */
1940 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1941 
1942 		for (j = 0; j < mix_chain_nr; j++) {
1943 			int err;
1944 			branch = false;
1945 			flags = NULL;
1946 
1947 			if (callchain_param.order == ORDER_CALLEE) {
1948 				if (j < i + 1)
1949 					ip = chain->ips[j];
1950 				else if (j > i + 1) {
1951 					k = j - i - 2;
1952 					ip = lbr_stack->entries[k].from;
1953 					branch = true;
1954 					flags = &lbr_stack->entries[k].flags;
1955 				} else {
1956 					ip = lbr_stack->entries[0].to;
1957 					branch = true;
1958 					flags = &lbr_stack->entries[0].flags;
1959 					branch_from =
1960 						lbr_stack->entries[0].from;
1961 				}
1962 			} else {
1963 				if (j < lbr_nr) {
1964 					k = lbr_nr - j - 1;
1965 					ip = lbr_stack->entries[k].from;
1966 					branch = true;
1967 					flags = &lbr_stack->entries[k].flags;
1968 				}
1969 				else if (j > lbr_nr)
1970 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1971 				else {
1972 					ip = lbr_stack->entries[0].to;
1973 					branch = true;
1974 					flags = &lbr_stack->entries[0].flags;
1975 					branch_from =
1976 						lbr_stack->entries[0].from;
1977 				}
1978 			}
1979 
1980 			err = add_callchain_ip(thread, cursor, parent,
1981 					       root_al, &cpumode, ip,
1982 					       branch, flags, NULL,
1983 					       branch_from);
1984 			if (err)
1985 				return (err < 0) ? err : 0;
1986 		}
1987 		return 1;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int thread__resolve_callchain_sample(struct thread *thread,
1994 					    struct callchain_cursor *cursor,
1995 					    struct perf_evsel *evsel,
1996 					    struct perf_sample *sample,
1997 					    struct symbol **parent,
1998 					    struct addr_location *root_al,
1999 					    int max_stack)
2000 {
2001 	struct branch_stack *branch = sample->branch_stack;
2002 	struct ip_callchain *chain = sample->callchain;
2003 	int chain_nr = 0;
2004 	u8 cpumode = PERF_RECORD_MISC_USER;
2005 	int i, j, err, nr_entries;
2006 	int skip_idx = -1;
2007 	int first_call = 0;
2008 
2009 	if (chain)
2010 		chain_nr = chain->nr;
2011 
2012 	if (perf_evsel__has_branch_callstack(evsel)) {
2013 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2014 						   root_al, max_stack);
2015 		if (err)
2016 			return (err < 0) ? err : 0;
2017 	}
2018 
2019 	/*
2020 	 * Based on DWARF debug information, some architectures skip
2021 	 * a callchain entry saved by the kernel.
2022 	 */
2023 	skip_idx = arch_skip_callchain_idx(thread, chain);
2024 
2025 	/*
2026 	 * Add branches to call stack for easier browsing. This gives
2027 	 * more context for a sample than just the callers.
2028 	 *
2029 	 * This uses individual histograms of paths compared to the
2030 	 * aggregated histograms the normal LBR mode uses.
2031 	 *
2032 	 * Limitations for now:
2033 	 * - No extra filters
2034 	 * - No annotations (should annotate somehow)
2035 	 */
2036 
2037 	if (branch && callchain_param.branch_callstack) {
2038 		int nr = min(max_stack, (int)branch->nr);
2039 		struct branch_entry be[nr];
2040 		struct iterations iter[nr];
2041 
2042 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2043 			pr_warning("corrupted branch chain. skipping...\n");
2044 			goto check_calls;
2045 		}
2046 
2047 		for (i = 0; i < nr; i++) {
2048 			if (callchain_param.order == ORDER_CALLEE) {
2049 				be[i] = branch->entries[i];
2050 
2051 				if (chain == NULL)
2052 					continue;
2053 
2054 				/*
2055 				 * Check for overlap into the callchain.
2056 				 * The return address is one off compared to
2057 				 * the branch entry. To adjust for this
2058 				 * assume the calling instruction is not longer
2059 				 * than 8 bytes.
2060 				 */
2061 				if (i == skip_idx ||
2062 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2063 					first_call++;
2064 				else if (be[i].from < chain->ips[first_call] &&
2065 				    be[i].from >= chain->ips[first_call] - 8)
2066 					first_call++;
2067 			} else
2068 				be[i] = branch->entries[branch->nr - i - 1];
2069 		}
2070 
2071 		memset(iter, 0, sizeof(struct iterations) * nr);
2072 		nr = remove_loops(be, nr, iter);
2073 
2074 		for (i = 0; i < nr; i++) {
2075 			err = add_callchain_ip(thread, cursor, parent,
2076 					       root_al,
2077 					       NULL, be[i].to,
2078 					       true, &be[i].flags,
2079 					       NULL, be[i].from);
2080 
2081 			if (!err)
2082 				err = add_callchain_ip(thread, cursor, parent, root_al,
2083 						       NULL, be[i].from,
2084 						       true, &be[i].flags,
2085 						       &iter[i], 0);
2086 			if (err == -EINVAL)
2087 				break;
2088 			if (err)
2089 				return err;
2090 		}
2091 
2092 		if (chain_nr == 0)
2093 			return 0;
2094 
2095 		chain_nr -= nr;
2096 	}
2097 
2098 check_calls:
2099 	for (i = first_call, nr_entries = 0;
2100 	     i < chain_nr && nr_entries < max_stack; i++) {
2101 		u64 ip;
2102 
2103 		if (callchain_param.order == ORDER_CALLEE)
2104 			j = i;
2105 		else
2106 			j = chain->nr - i - 1;
2107 
2108 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2109 		if (j == skip_idx)
2110 			continue;
2111 #endif
2112 		ip = chain->ips[j];
2113 
2114 		if (ip < PERF_CONTEXT_MAX)
2115                        ++nr_entries;
2116 
2117 		err = add_callchain_ip(thread, cursor, parent,
2118 				       root_al, &cpumode, ip,
2119 				       false, NULL, NULL, 0);
2120 
2121 		if (err)
2122 			return (err < 0) ? err : 0;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static int append_inlines(struct callchain_cursor *cursor,
2129 			  struct map *map, struct symbol *sym, u64 ip)
2130 {
2131 	struct inline_node *inline_node;
2132 	struct inline_list *ilist;
2133 	u64 addr;
2134 	int ret = 1;
2135 
2136 	if (!symbol_conf.inline_name || !map || !sym)
2137 		return ret;
2138 
2139 	addr = map__rip_2objdump(map, ip);
2140 
2141 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2142 	if (!inline_node) {
2143 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2144 		if (!inline_node)
2145 			return ret;
2146 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2147 	}
2148 
2149 	list_for_each_entry(ilist, &inline_node->val, list) {
2150 		ret = callchain_cursor_append(cursor, ip, map,
2151 					      ilist->symbol, false,
2152 					      NULL, 0, 0, 0, ilist->srcline);
2153 
2154 		if (ret != 0)
2155 			return ret;
2156 	}
2157 
2158 	return ret;
2159 }
2160 
2161 static int unwind_entry(struct unwind_entry *entry, void *arg)
2162 {
2163 	struct callchain_cursor *cursor = arg;
2164 	const char *srcline = NULL;
2165 
2166 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2167 		return 0;
2168 
2169 	if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2170 		return 0;
2171 
2172 	srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2173 	return callchain_cursor_append(cursor, entry->ip,
2174 				       entry->map, entry->sym,
2175 				       false, NULL, 0, 0, 0, srcline);
2176 }
2177 
2178 static int thread__resolve_callchain_unwind(struct thread *thread,
2179 					    struct callchain_cursor *cursor,
2180 					    struct perf_evsel *evsel,
2181 					    struct perf_sample *sample,
2182 					    int max_stack)
2183 {
2184 	/* Can we do dwarf post unwind? */
2185 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2186 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2187 		return 0;
2188 
2189 	/* Bail out if nothing was captured. */
2190 	if ((!sample->user_regs.regs) ||
2191 	    (!sample->user_stack.size))
2192 		return 0;
2193 
2194 	return unwind__get_entries(unwind_entry, cursor,
2195 				   thread, sample, max_stack);
2196 }
2197 
2198 int thread__resolve_callchain(struct thread *thread,
2199 			      struct callchain_cursor *cursor,
2200 			      struct perf_evsel *evsel,
2201 			      struct perf_sample *sample,
2202 			      struct symbol **parent,
2203 			      struct addr_location *root_al,
2204 			      int max_stack)
2205 {
2206 	int ret = 0;
2207 
2208 	callchain_cursor_reset(cursor);
2209 
2210 	if (callchain_param.order == ORDER_CALLEE) {
2211 		ret = thread__resolve_callchain_sample(thread, cursor,
2212 						       evsel, sample,
2213 						       parent, root_al,
2214 						       max_stack);
2215 		if (ret)
2216 			return ret;
2217 		ret = thread__resolve_callchain_unwind(thread, cursor,
2218 						       evsel, sample,
2219 						       max_stack);
2220 	} else {
2221 		ret = thread__resolve_callchain_unwind(thread, cursor,
2222 						       evsel, sample,
2223 						       max_stack);
2224 		if (ret)
2225 			return ret;
2226 		ret = thread__resolve_callchain_sample(thread, cursor,
2227 						       evsel, sample,
2228 						       parent, root_al,
2229 						       max_stack);
2230 	}
2231 
2232 	return ret;
2233 }
2234 
2235 int machine__for_each_thread(struct machine *machine,
2236 			     int (*fn)(struct thread *thread, void *p),
2237 			     void *priv)
2238 {
2239 	struct threads *threads;
2240 	struct rb_node *nd;
2241 	struct thread *thread;
2242 	int rc = 0;
2243 	int i;
2244 
2245 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2246 		threads = &machine->threads[i];
2247 		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2248 			thread = rb_entry(nd, struct thread, rb_node);
2249 			rc = fn(thread, priv);
2250 			if (rc != 0)
2251 				return rc;
2252 		}
2253 
2254 		list_for_each_entry(thread, &threads->dead, node) {
2255 			rc = fn(thread, priv);
2256 			if (rc != 0)
2257 				return rc;
2258 		}
2259 	}
2260 	return rc;
2261 }
2262 
2263 int machines__for_each_thread(struct machines *machines,
2264 			      int (*fn)(struct thread *thread, void *p),
2265 			      void *priv)
2266 {
2267 	struct rb_node *nd;
2268 	int rc = 0;
2269 
2270 	rc = machine__for_each_thread(&machines->host, fn, priv);
2271 	if (rc != 0)
2272 		return rc;
2273 
2274 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2275 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2276 
2277 		rc = machine__for_each_thread(machine, fn, priv);
2278 		if (rc != 0)
2279 			return rc;
2280 	}
2281 	return rc;
2282 }
2283 
2284 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2285 				  struct target *target, struct thread_map *threads,
2286 				  perf_event__handler_t process, bool data_mmap,
2287 				  unsigned int proc_map_timeout,
2288 				  unsigned int nr_threads_synthesize)
2289 {
2290 	if (target__has_task(target))
2291 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2292 	else if (target__has_cpu(target))
2293 		return perf_event__synthesize_threads(tool, process,
2294 						      machine, data_mmap,
2295 						      proc_map_timeout,
2296 						      nr_threads_synthesize);
2297 	/* command specified */
2298 	return 0;
2299 }
2300 
2301 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2302 {
2303 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2304 		return -1;
2305 
2306 	return machine->current_tid[cpu];
2307 }
2308 
2309 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2310 			     pid_t tid)
2311 {
2312 	struct thread *thread;
2313 
2314 	if (cpu < 0)
2315 		return -EINVAL;
2316 
2317 	if (!machine->current_tid) {
2318 		int i;
2319 
2320 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2321 		if (!machine->current_tid)
2322 			return -ENOMEM;
2323 		for (i = 0; i < MAX_NR_CPUS; i++)
2324 			machine->current_tid[i] = -1;
2325 	}
2326 
2327 	if (cpu >= MAX_NR_CPUS) {
2328 		pr_err("Requested CPU %d too large. ", cpu);
2329 		pr_err("Consider raising MAX_NR_CPUS\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	machine->current_tid[cpu] = tid;
2334 
2335 	thread = machine__findnew_thread(machine, pid, tid);
2336 	if (!thread)
2337 		return -ENOMEM;
2338 
2339 	thread->cpu = cpu;
2340 	thread__put(thread);
2341 
2342 	return 0;
2343 }
2344 
2345 int machine__get_kernel_start(struct machine *machine)
2346 {
2347 	struct map *map = machine__kernel_map(machine);
2348 	int err = 0;
2349 
2350 	/*
2351 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2352 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2353 	 * all addresses including kernel addresses are less than 2^32.  In
2354 	 * that case (32-bit system), if the kernel mapping is unknown, all
2355 	 * addresses will be assumed to be in user space - see
2356 	 * machine__kernel_ip().
2357 	 */
2358 	machine->kernel_start = 1ULL << 63;
2359 	if (map) {
2360 		err = map__load(map);
2361 		if (!err)
2362 			machine->kernel_start = map->start;
2363 	}
2364 	return err;
2365 }
2366 
2367 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2368 {
2369 	return dsos__findnew(&machine->dsos, filename);
2370 }
2371 
2372 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2373 {
2374 	struct machine *machine = vmachine;
2375 	struct map *map;
2376 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2377 
2378 	if (sym == NULL)
2379 		return NULL;
2380 
2381 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2382 	*addrp = map->unmap_ip(map, sym->start);
2383 	return sym->name;
2384 }
2385