xref: /openbmc/linux/tools/perf/util/machine.c (revision 1c2dd16a)
1 #include <dirent.h>
2 #include <errno.h>
3 #include <inttypes.h>
4 #include <regex.h>
5 #include "callchain.h"
6 #include "debug.h"
7 #include "event.h"
8 #include "evsel.h"
9 #include "hist.h"
10 #include "machine.h"
11 #include "map.h"
12 #include "sort.h"
13 #include "strlist.h"
14 #include "thread.h"
15 #include "vdso.h"
16 #include <stdbool.h>
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 #include <unistd.h>
20 #include "unwind.h"
21 #include "linux/hash.h"
22 #include "asm/bug.h"
23 
24 #include "sane_ctype.h"
25 #include <symbol/kallsyms.h>
26 
27 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
28 
29 static void dsos__init(struct dsos *dsos)
30 {
31 	INIT_LIST_HEAD(&dsos->head);
32 	dsos->root = RB_ROOT;
33 	pthread_rwlock_init(&dsos->lock, NULL);
34 }
35 
36 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
37 {
38 	memset(machine, 0, sizeof(*machine));
39 	map_groups__init(&machine->kmaps, machine);
40 	RB_CLEAR_NODE(&machine->rb_node);
41 	dsos__init(&machine->dsos);
42 
43 	machine->threads = RB_ROOT;
44 	pthread_rwlock_init(&machine->threads_lock, NULL);
45 	machine->nr_threads = 0;
46 	INIT_LIST_HEAD(&machine->dead_threads);
47 	machine->last_match = NULL;
48 
49 	machine->vdso_info = NULL;
50 	machine->env = NULL;
51 
52 	machine->pid = pid;
53 
54 	machine->id_hdr_size = 0;
55 	machine->kptr_restrict_warned = false;
56 	machine->comm_exec = false;
57 	machine->kernel_start = 0;
58 
59 	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
60 
61 	machine->root_dir = strdup(root_dir);
62 	if (machine->root_dir == NULL)
63 		return -ENOMEM;
64 
65 	if (pid != HOST_KERNEL_ID) {
66 		struct thread *thread = machine__findnew_thread(machine, -1,
67 								pid);
68 		char comm[64];
69 
70 		if (thread == NULL)
71 			return -ENOMEM;
72 
73 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
74 		thread__set_comm(thread, comm, 0);
75 		thread__put(thread);
76 	}
77 
78 	machine->current_tid = NULL;
79 
80 	return 0;
81 }
82 
83 struct machine *machine__new_host(void)
84 {
85 	struct machine *machine = malloc(sizeof(*machine));
86 
87 	if (machine != NULL) {
88 		machine__init(machine, "", HOST_KERNEL_ID);
89 
90 		if (machine__create_kernel_maps(machine) < 0)
91 			goto out_delete;
92 	}
93 
94 	return machine;
95 out_delete:
96 	free(machine);
97 	return NULL;
98 }
99 
100 struct machine *machine__new_kallsyms(void)
101 {
102 	struct machine *machine = machine__new_host();
103 	/*
104 	 * FIXME:
105 	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
106 	 *    functions and data objects.
107 	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
108 	 *    ask for not using the kcore parsing code, once this one is fixed
109 	 *    to create a map per module.
110 	 */
111 	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
112 		machine__delete(machine);
113 		machine = NULL;
114 	}
115 
116 	return machine;
117 }
118 
119 static void dsos__purge(struct dsos *dsos)
120 {
121 	struct dso *pos, *n;
122 
123 	pthread_rwlock_wrlock(&dsos->lock);
124 
125 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
126 		RB_CLEAR_NODE(&pos->rb_node);
127 		pos->root = NULL;
128 		list_del_init(&pos->node);
129 		dso__put(pos);
130 	}
131 
132 	pthread_rwlock_unlock(&dsos->lock);
133 }
134 
135 static void dsos__exit(struct dsos *dsos)
136 {
137 	dsos__purge(dsos);
138 	pthread_rwlock_destroy(&dsos->lock);
139 }
140 
141 void machine__delete_threads(struct machine *machine)
142 {
143 	struct rb_node *nd;
144 
145 	pthread_rwlock_wrlock(&machine->threads_lock);
146 	nd = rb_first(&machine->threads);
147 	while (nd) {
148 		struct thread *t = rb_entry(nd, struct thread, rb_node);
149 
150 		nd = rb_next(nd);
151 		__machine__remove_thread(machine, t, false);
152 	}
153 	pthread_rwlock_unlock(&machine->threads_lock);
154 }
155 
156 void machine__exit(struct machine *machine)
157 {
158 	machine__destroy_kernel_maps(machine);
159 	map_groups__exit(&machine->kmaps);
160 	dsos__exit(&machine->dsos);
161 	machine__exit_vdso(machine);
162 	zfree(&machine->root_dir);
163 	zfree(&machine->current_tid);
164 	pthread_rwlock_destroy(&machine->threads_lock);
165 }
166 
167 void machine__delete(struct machine *machine)
168 {
169 	if (machine) {
170 		machine__exit(machine);
171 		free(machine);
172 	}
173 }
174 
175 void machines__init(struct machines *machines)
176 {
177 	machine__init(&machines->host, "", HOST_KERNEL_ID);
178 	machines->guests = RB_ROOT;
179 }
180 
181 void machines__exit(struct machines *machines)
182 {
183 	machine__exit(&machines->host);
184 	/* XXX exit guest */
185 }
186 
187 struct machine *machines__add(struct machines *machines, pid_t pid,
188 			      const char *root_dir)
189 {
190 	struct rb_node **p = &machines->guests.rb_node;
191 	struct rb_node *parent = NULL;
192 	struct machine *pos, *machine = malloc(sizeof(*machine));
193 
194 	if (machine == NULL)
195 		return NULL;
196 
197 	if (machine__init(machine, root_dir, pid) != 0) {
198 		free(machine);
199 		return NULL;
200 	}
201 
202 	while (*p != NULL) {
203 		parent = *p;
204 		pos = rb_entry(parent, struct machine, rb_node);
205 		if (pid < pos->pid)
206 			p = &(*p)->rb_left;
207 		else
208 			p = &(*p)->rb_right;
209 	}
210 
211 	rb_link_node(&machine->rb_node, parent, p);
212 	rb_insert_color(&machine->rb_node, &machines->guests);
213 
214 	return machine;
215 }
216 
217 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
218 {
219 	struct rb_node *nd;
220 
221 	machines->host.comm_exec = comm_exec;
222 
223 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
224 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
225 
226 		machine->comm_exec = comm_exec;
227 	}
228 }
229 
230 struct machine *machines__find(struct machines *machines, pid_t pid)
231 {
232 	struct rb_node **p = &machines->guests.rb_node;
233 	struct rb_node *parent = NULL;
234 	struct machine *machine;
235 	struct machine *default_machine = NULL;
236 
237 	if (pid == HOST_KERNEL_ID)
238 		return &machines->host;
239 
240 	while (*p != NULL) {
241 		parent = *p;
242 		machine = rb_entry(parent, struct machine, rb_node);
243 		if (pid < machine->pid)
244 			p = &(*p)->rb_left;
245 		else if (pid > machine->pid)
246 			p = &(*p)->rb_right;
247 		else
248 			return machine;
249 		if (!machine->pid)
250 			default_machine = machine;
251 	}
252 
253 	return default_machine;
254 }
255 
256 struct machine *machines__findnew(struct machines *machines, pid_t pid)
257 {
258 	char path[PATH_MAX];
259 	const char *root_dir = "";
260 	struct machine *machine = machines__find(machines, pid);
261 
262 	if (machine && (machine->pid == pid))
263 		goto out;
264 
265 	if ((pid != HOST_KERNEL_ID) &&
266 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
267 	    (symbol_conf.guestmount)) {
268 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
269 		if (access(path, R_OK)) {
270 			static struct strlist *seen;
271 
272 			if (!seen)
273 				seen = strlist__new(NULL, NULL);
274 
275 			if (!strlist__has_entry(seen, path)) {
276 				pr_err("Can't access file %s\n", path);
277 				strlist__add(seen, path);
278 			}
279 			machine = NULL;
280 			goto out;
281 		}
282 		root_dir = path;
283 	}
284 
285 	machine = machines__add(machines, pid, root_dir);
286 out:
287 	return machine;
288 }
289 
290 void machines__process_guests(struct machines *machines,
291 			      machine__process_t process, void *data)
292 {
293 	struct rb_node *nd;
294 
295 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
296 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
297 		process(pos, data);
298 	}
299 }
300 
301 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
302 {
303 	if (machine__is_host(machine))
304 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
305 	else if (machine__is_default_guest(machine))
306 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
307 	else {
308 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
309 			 machine->pid);
310 	}
311 
312 	return bf;
313 }
314 
315 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
316 {
317 	struct rb_node *node;
318 	struct machine *machine;
319 
320 	machines->host.id_hdr_size = id_hdr_size;
321 
322 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
323 		machine = rb_entry(node, struct machine, rb_node);
324 		machine->id_hdr_size = id_hdr_size;
325 	}
326 
327 	return;
328 }
329 
330 static void machine__update_thread_pid(struct machine *machine,
331 				       struct thread *th, pid_t pid)
332 {
333 	struct thread *leader;
334 
335 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
336 		return;
337 
338 	th->pid_ = pid;
339 
340 	if (th->pid_ == th->tid)
341 		return;
342 
343 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
344 	if (!leader)
345 		goto out_err;
346 
347 	if (!leader->mg)
348 		leader->mg = map_groups__new(machine);
349 
350 	if (!leader->mg)
351 		goto out_err;
352 
353 	if (th->mg == leader->mg)
354 		return;
355 
356 	if (th->mg) {
357 		/*
358 		 * Maps are created from MMAP events which provide the pid and
359 		 * tid.  Consequently there never should be any maps on a thread
360 		 * with an unknown pid.  Just print an error if there are.
361 		 */
362 		if (!map_groups__empty(th->mg))
363 			pr_err("Discarding thread maps for %d:%d\n",
364 			       th->pid_, th->tid);
365 		map_groups__put(th->mg);
366 	}
367 
368 	th->mg = map_groups__get(leader->mg);
369 out_put:
370 	thread__put(leader);
371 	return;
372 out_err:
373 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
374 	goto out_put;
375 }
376 
377 /*
378  * Caller must eventually drop thread->refcnt returned with a successful
379  * lookup/new thread inserted.
380  */
381 static struct thread *____machine__findnew_thread(struct machine *machine,
382 						  pid_t pid, pid_t tid,
383 						  bool create)
384 {
385 	struct rb_node **p = &machine->threads.rb_node;
386 	struct rb_node *parent = NULL;
387 	struct thread *th;
388 
389 	/*
390 	 * Front-end cache - TID lookups come in blocks,
391 	 * so most of the time we dont have to look up
392 	 * the full rbtree:
393 	 */
394 	th = machine->last_match;
395 	if (th != NULL) {
396 		if (th->tid == tid) {
397 			machine__update_thread_pid(machine, th, pid);
398 			return thread__get(th);
399 		}
400 
401 		machine->last_match = NULL;
402 	}
403 
404 	while (*p != NULL) {
405 		parent = *p;
406 		th = rb_entry(parent, struct thread, rb_node);
407 
408 		if (th->tid == tid) {
409 			machine->last_match = th;
410 			machine__update_thread_pid(machine, th, pid);
411 			return thread__get(th);
412 		}
413 
414 		if (tid < th->tid)
415 			p = &(*p)->rb_left;
416 		else
417 			p = &(*p)->rb_right;
418 	}
419 
420 	if (!create)
421 		return NULL;
422 
423 	th = thread__new(pid, tid);
424 	if (th != NULL) {
425 		rb_link_node(&th->rb_node, parent, p);
426 		rb_insert_color(&th->rb_node, &machine->threads);
427 
428 		/*
429 		 * We have to initialize map_groups separately
430 		 * after rb tree is updated.
431 		 *
432 		 * The reason is that we call machine__findnew_thread
433 		 * within thread__init_map_groups to find the thread
434 		 * leader and that would screwed the rb tree.
435 		 */
436 		if (thread__init_map_groups(th, machine)) {
437 			rb_erase_init(&th->rb_node, &machine->threads);
438 			RB_CLEAR_NODE(&th->rb_node);
439 			thread__put(th);
440 			return NULL;
441 		}
442 		/*
443 		 * It is now in the rbtree, get a ref
444 		 */
445 		thread__get(th);
446 		machine->last_match = th;
447 		++machine->nr_threads;
448 	}
449 
450 	return th;
451 }
452 
453 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
454 {
455 	return ____machine__findnew_thread(machine, pid, tid, true);
456 }
457 
458 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
459 				       pid_t tid)
460 {
461 	struct thread *th;
462 
463 	pthread_rwlock_wrlock(&machine->threads_lock);
464 	th = __machine__findnew_thread(machine, pid, tid);
465 	pthread_rwlock_unlock(&machine->threads_lock);
466 	return th;
467 }
468 
469 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
470 				    pid_t tid)
471 {
472 	struct thread *th;
473 	pthread_rwlock_rdlock(&machine->threads_lock);
474 	th =  ____machine__findnew_thread(machine, pid, tid, false);
475 	pthread_rwlock_unlock(&machine->threads_lock);
476 	return th;
477 }
478 
479 struct comm *machine__thread_exec_comm(struct machine *machine,
480 				       struct thread *thread)
481 {
482 	if (machine->comm_exec)
483 		return thread__exec_comm(thread);
484 	else
485 		return thread__comm(thread);
486 }
487 
488 int machine__process_comm_event(struct machine *machine, union perf_event *event,
489 				struct perf_sample *sample)
490 {
491 	struct thread *thread = machine__findnew_thread(machine,
492 							event->comm.pid,
493 							event->comm.tid);
494 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
495 	int err = 0;
496 
497 	if (exec)
498 		machine->comm_exec = true;
499 
500 	if (dump_trace)
501 		perf_event__fprintf_comm(event, stdout);
502 
503 	if (thread == NULL ||
504 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
505 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
506 		err = -1;
507 	}
508 
509 	thread__put(thread);
510 
511 	return err;
512 }
513 
514 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
515 				      union perf_event *event,
516 				      struct perf_sample *sample __maybe_unused)
517 {
518 	struct thread *thread = machine__findnew_thread(machine,
519 							event->namespaces.pid,
520 							event->namespaces.tid);
521 	int err = 0;
522 
523 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
524 		  "\nWARNING: kernel seems to support more namespaces than perf"
525 		  " tool.\nTry updating the perf tool..\n\n");
526 
527 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
528 		  "\nWARNING: perf tool seems to support more namespaces than"
529 		  " the kernel.\nTry updating the kernel..\n\n");
530 
531 	if (dump_trace)
532 		perf_event__fprintf_namespaces(event, stdout);
533 
534 	if (thread == NULL ||
535 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
536 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
537 		err = -1;
538 	}
539 
540 	thread__put(thread);
541 
542 	return err;
543 }
544 
545 int machine__process_lost_event(struct machine *machine __maybe_unused,
546 				union perf_event *event, struct perf_sample *sample __maybe_unused)
547 {
548 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
549 		    event->lost.id, event->lost.lost);
550 	return 0;
551 }
552 
553 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
554 					union perf_event *event, struct perf_sample *sample)
555 {
556 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
557 		    sample->id, event->lost_samples.lost);
558 	return 0;
559 }
560 
561 static struct dso *machine__findnew_module_dso(struct machine *machine,
562 					       struct kmod_path *m,
563 					       const char *filename)
564 {
565 	struct dso *dso;
566 
567 	pthread_rwlock_wrlock(&machine->dsos.lock);
568 
569 	dso = __dsos__find(&machine->dsos, m->name, true);
570 	if (!dso) {
571 		dso = __dsos__addnew(&machine->dsos, m->name);
572 		if (dso == NULL)
573 			goto out_unlock;
574 
575 		if (machine__is_host(machine))
576 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
577 		else
578 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
579 
580 		/* _KMODULE_COMP should be next to _KMODULE */
581 		if (m->kmod && m->comp)
582 			dso->symtab_type++;
583 
584 		dso__set_short_name(dso, strdup(m->name), true);
585 		dso__set_long_name(dso, strdup(filename), true);
586 	}
587 
588 	dso__get(dso);
589 out_unlock:
590 	pthread_rwlock_unlock(&machine->dsos.lock);
591 	return dso;
592 }
593 
594 int machine__process_aux_event(struct machine *machine __maybe_unused,
595 			       union perf_event *event)
596 {
597 	if (dump_trace)
598 		perf_event__fprintf_aux(event, stdout);
599 	return 0;
600 }
601 
602 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
603 					union perf_event *event)
604 {
605 	if (dump_trace)
606 		perf_event__fprintf_itrace_start(event, stdout);
607 	return 0;
608 }
609 
610 int machine__process_switch_event(struct machine *machine __maybe_unused,
611 				  union perf_event *event)
612 {
613 	if (dump_trace)
614 		perf_event__fprintf_switch(event, stdout);
615 	return 0;
616 }
617 
618 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
619 {
620 	const char *dup_filename;
621 
622 	if (!filename || !dso || !dso->long_name)
623 		return;
624 	if (dso->long_name[0] != '[')
625 		return;
626 	if (!strchr(filename, '/'))
627 		return;
628 
629 	dup_filename = strdup(filename);
630 	if (!dup_filename)
631 		return;
632 
633 	dso__set_long_name(dso, dup_filename, true);
634 }
635 
636 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
637 					const char *filename)
638 {
639 	struct map *map = NULL;
640 	struct dso *dso = NULL;
641 	struct kmod_path m;
642 
643 	if (kmod_path__parse_name(&m, filename))
644 		return NULL;
645 
646 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
647 				       m.name);
648 	if (map) {
649 		/*
650 		 * If the map's dso is an offline module, give dso__load()
651 		 * a chance to find the file path of that module by fixing
652 		 * long_name.
653 		 */
654 		dso__adjust_kmod_long_name(map->dso, filename);
655 		goto out;
656 	}
657 
658 	dso = machine__findnew_module_dso(machine, &m, filename);
659 	if (dso == NULL)
660 		goto out;
661 
662 	map = map__new2(start, dso, MAP__FUNCTION);
663 	if (map == NULL)
664 		goto out;
665 
666 	map_groups__insert(&machine->kmaps, map);
667 
668 	/* Put the map here because map_groups__insert alread got it */
669 	map__put(map);
670 out:
671 	/* put the dso here, corresponding to  machine__findnew_module_dso */
672 	dso__put(dso);
673 	free(m.name);
674 	return map;
675 }
676 
677 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
678 {
679 	struct rb_node *nd;
680 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
681 
682 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
683 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
684 		ret += __dsos__fprintf(&pos->dsos.head, fp);
685 	}
686 
687 	return ret;
688 }
689 
690 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
691 				     bool (skip)(struct dso *dso, int parm), int parm)
692 {
693 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
694 }
695 
696 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
697 				     bool (skip)(struct dso *dso, int parm), int parm)
698 {
699 	struct rb_node *nd;
700 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
701 
702 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
703 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
704 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
705 	}
706 	return ret;
707 }
708 
709 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
710 {
711 	int i;
712 	size_t printed = 0;
713 	struct dso *kdso = machine__kernel_map(machine)->dso;
714 
715 	if (kdso->has_build_id) {
716 		char filename[PATH_MAX];
717 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
718 			printed += fprintf(fp, "[0] %s\n", filename);
719 	}
720 
721 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
722 		printed += fprintf(fp, "[%d] %s\n",
723 				   i + kdso->has_build_id, vmlinux_path[i]);
724 
725 	return printed;
726 }
727 
728 size_t machine__fprintf(struct machine *machine, FILE *fp)
729 {
730 	size_t ret;
731 	struct rb_node *nd;
732 
733 	pthread_rwlock_rdlock(&machine->threads_lock);
734 
735 	ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
736 
737 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
738 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
739 
740 		ret += thread__fprintf(pos, fp);
741 	}
742 
743 	pthread_rwlock_unlock(&machine->threads_lock);
744 
745 	return ret;
746 }
747 
748 static struct dso *machine__get_kernel(struct machine *machine)
749 {
750 	const char *vmlinux_name = NULL;
751 	struct dso *kernel;
752 
753 	if (machine__is_host(machine)) {
754 		vmlinux_name = symbol_conf.vmlinux_name;
755 		if (!vmlinux_name)
756 			vmlinux_name = DSO__NAME_KALLSYMS;
757 
758 		kernel = machine__findnew_kernel(machine, vmlinux_name,
759 						 "[kernel]", DSO_TYPE_KERNEL);
760 	} else {
761 		char bf[PATH_MAX];
762 
763 		if (machine__is_default_guest(machine))
764 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
765 		if (!vmlinux_name)
766 			vmlinux_name = machine__mmap_name(machine, bf,
767 							  sizeof(bf));
768 
769 		kernel = machine__findnew_kernel(machine, vmlinux_name,
770 						 "[guest.kernel]",
771 						 DSO_TYPE_GUEST_KERNEL);
772 	}
773 
774 	if (kernel != NULL && (!kernel->has_build_id))
775 		dso__read_running_kernel_build_id(kernel, machine);
776 
777 	return kernel;
778 }
779 
780 struct process_args {
781 	u64 start;
782 };
783 
784 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
785 					   size_t bufsz)
786 {
787 	if (machine__is_default_guest(machine))
788 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
789 	else
790 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
791 }
792 
793 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
794 
795 /* Figure out the start address of kernel map from /proc/kallsyms.
796  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
797  * symbol_name if it's not that important.
798  */
799 static u64 machine__get_running_kernel_start(struct machine *machine,
800 					     const char **symbol_name)
801 {
802 	char filename[PATH_MAX];
803 	int i;
804 	const char *name;
805 	u64 addr = 0;
806 
807 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
808 
809 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
810 		return 0;
811 
812 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
813 		addr = kallsyms__get_function_start(filename, name);
814 		if (addr)
815 			break;
816 	}
817 
818 	if (symbol_name)
819 		*symbol_name = name;
820 
821 	return addr;
822 }
823 
824 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
825 {
826 	int type;
827 	u64 start = machine__get_running_kernel_start(machine, NULL);
828 
829 	/* In case of renewal the kernel map, destroy previous one */
830 	machine__destroy_kernel_maps(machine);
831 
832 	for (type = 0; type < MAP__NR_TYPES; ++type) {
833 		struct kmap *kmap;
834 		struct map *map;
835 
836 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
837 		if (machine->vmlinux_maps[type] == NULL)
838 			return -1;
839 
840 		machine->vmlinux_maps[type]->map_ip =
841 			machine->vmlinux_maps[type]->unmap_ip =
842 				identity__map_ip;
843 		map = __machine__kernel_map(machine, type);
844 		kmap = map__kmap(map);
845 		if (!kmap)
846 			return -1;
847 
848 		kmap->kmaps = &machine->kmaps;
849 		map_groups__insert(&machine->kmaps, map);
850 	}
851 
852 	return 0;
853 }
854 
855 void machine__destroy_kernel_maps(struct machine *machine)
856 {
857 	int type;
858 
859 	for (type = 0; type < MAP__NR_TYPES; ++type) {
860 		struct kmap *kmap;
861 		struct map *map = __machine__kernel_map(machine, type);
862 
863 		if (map == NULL)
864 			continue;
865 
866 		kmap = map__kmap(map);
867 		map_groups__remove(&machine->kmaps, map);
868 		if (kmap && kmap->ref_reloc_sym) {
869 			/*
870 			 * ref_reloc_sym is shared among all maps, so free just
871 			 * on one of them.
872 			 */
873 			if (type == MAP__FUNCTION) {
874 				zfree((char **)&kmap->ref_reloc_sym->name);
875 				zfree(&kmap->ref_reloc_sym);
876 			} else
877 				kmap->ref_reloc_sym = NULL;
878 		}
879 
880 		map__put(machine->vmlinux_maps[type]);
881 		machine->vmlinux_maps[type] = NULL;
882 	}
883 }
884 
885 int machines__create_guest_kernel_maps(struct machines *machines)
886 {
887 	int ret = 0;
888 	struct dirent **namelist = NULL;
889 	int i, items = 0;
890 	char path[PATH_MAX];
891 	pid_t pid;
892 	char *endp;
893 
894 	if (symbol_conf.default_guest_vmlinux_name ||
895 	    symbol_conf.default_guest_modules ||
896 	    symbol_conf.default_guest_kallsyms) {
897 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
898 	}
899 
900 	if (symbol_conf.guestmount) {
901 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
902 		if (items <= 0)
903 			return -ENOENT;
904 		for (i = 0; i < items; i++) {
905 			if (!isdigit(namelist[i]->d_name[0])) {
906 				/* Filter out . and .. */
907 				continue;
908 			}
909 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
910 			if ((*endp != '\0') ||
911 			    (endp == namelist[i]->d_name) ||
912 			    (errno == ERANGE)) {
913 				pr_debug("invalid directory (%s). Skipping.\n",
914 					 namelist[i]->d_name);
915 				continue;
916 			}
917 			sprintf(path, "%s/%s/proc/kallsyms",
918 				symbol_conf.guestmount,
919 				namelist[i]->d_name);
920 			ret = access(path, R_OK);
921 			if (ret) {
922 				pr_debug("Can't access file %s\n", path);
923 				goto failure;
924 			}
925 			machines__create_kernel_maps(machines, pid);
926 		}
927 failure:
928 		free(namelist);
929 	}
930 
931 	return ret;
932 }
933 
934 void machines__destroy_kernel_maps(struct machines *machines)
935 {
936 	struct rb_node *next = rb_first(&machines->guests);
937 
938 	machine__destroy_kernel_maps(&machines->host);
939 
940 	while (next) {
941 		struct machine *pos = rb_entry(next, struct machine, rb_node);
942 
943 		next = rb_next(&pos->rb_node);
944 		rb_erase(&pos->rb_node, &machines->guests);
945 		machine__delete(pos);
946 	}
947 }
948 
949 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
950 {
951 	struct machine *machine = machines__findnew(machines, pid);
952 
953 	if (machine == NULL)
954 		return -1;
955 
956 	return machine__create_kernel_maps(machine);
957 }
958 
959 int __machine__load_kallsyms(struct machine *machine, const char *filename,
960 			     enum map_type type, bool no_kcore)
961 {
962 	struct map *map = machine__kernel_map(machine);
963 	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
964 
965 	if (ret > 0) {
966 		dso__set_loaded(map->dso, type);
967 		/*
968 		 * Since /proc/kallsyms will have multiple sessions for the
969 		 * kernel, with modules between them, fixup the end of all
970 		 * sections.
971 		 */
972 		__map_groups__fixup_end(&machine->kmaps, type);
973 	}
974 
975 	return ret;
976 }
977 
978 int machine__load_kallsyms(struct machine *machine, const char *filename,
979 			   enum map_type type)
980 {
981 	return __machine__load_kallsyms(machine, filename, type, false);
982 }
983 
984 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
985 {
986 	struct map *map = machine__kernel_map(machine);
987 	int ret = dso__load_vmlinux_path(map->dso, map);
988 
989 	if (ret > 0)
990 		dso__set_loaded(map->dso, type);
991 
992 	return ret;
993 }
994 
995 static void map_groups__fixup_end(struct map_groups *mg)
996 {
997 	int i;
998 	for (i = 0; i < MAP__NR_TYPES; ++i)
999 		__map_groups__fixup_end(mg, i);
1000 }
1001 
1002 static char *get_kernel_version(const char *root_dir)
1003 {
1004 	char version[PATH_MAX];
1005 	FILE *file;
1006 	char *name, *tmp;
1007 	const char *prefix = "Linux version ";
1008 
1009 	sprintf(version, "%s/proc/version", root_dir);
1010 	file = fopen(version, "r");
1011 	if (!file)
1012 		return NULL;
1013 
1014 	version[0] = '\0';
1015 	tmp = fgets(version, sizeof(version), file);
1016 	fclose(file);
1017 
1018 	name = strstr(version, prefix);
1019 	if (!name)
1020 		return NULL;
1021 	name += strlen(prefix);
1022 	tmp = strchr(name, ' ');
1023 	if (tmp)
1024 		*tmp = '\0';
1025 
1026 	return strdup(name);
1027 }
1028 
1029 static bool is_kmod_dso(struct dso *dso)
1030 {
1031 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1032 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1033 }
1034 
1035 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1036 				       struct kmod_path *m)
1037 {
1038 	struct map *map;
1039 	char *long_name;
1040 
1041 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1042 	if (map == NULL)
1043 		return 0;
1044 
1045 	long_name = strdup(path);
1046 	if (long_name == NULL)
1047 		return -ENOMEM;
1048 
1049 	dso__set_long_name(map->dso, long_name, true);
1050 	dso__kernel_module_get_build_id(map->dso, "");
1051 
1052 	/*
1053 	 * Full name could reveal us kmod compression, so
1054 	 * we need to update the symtab_type if needed.
1055 	 */
1056 	if (m->comp && is_kmod_dso(map->dso))
1057 		map->dso->symtab_type++;
1058 
1059 	return 0;
1060 }
1061 
1062 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1063 				const char *dir_name, int depth)
1064 {
1065 	struct dirent *dent;
1066 	DIR *dir = opendir(dir_name);
1067 	int ret = 0;
1068 
1069 	if (!dir) {
1070 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1071 		return -1;
1072 	}
1073 
1074 	while ((dent = readdir(dir)) != NULL) {
1075 		char path[PATH_MAX];
1076 		struct stat st;
1077 
1078 		/*sshfs might return bad dent->d_type, so we have to stat*/
1079 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1080 		if (stat(path, &st))
1081 			continue;
1082 
1083 		if (S_ISDIR(st.st_mode)) {
1084 			if (!strcmp(dent->d_name, ".") ||
1085 			    !strcmp(dent->d_name, ".."))
1086 				continue;
1087 
1088 			/* Do not follow top-level source and build symlinks */
1089 			if (depth == 0) {
1090 				if (!strcmp(dent->d_name, "source") ||
1091 				    !strcmp(dent->d_name, "build"))
1092 					continue;
1093 			}
1094 
1095 			ret = map_groups__set_modules_path_dir(mg, path,
1096 							       depth + 1);
1097 			if (ret < 0)
1098 				goto out;
1099 		} else {
1100 			struct kmod_path m;
1101 
1102 			ret = kmod_path__parse_name(&m, dent->d_name);
1103 			if (ret)
1104 				goto out;
1105 
1106 			if (m.kmod)
1107 				ret = map_groups__set_module_path(mg, path, &m);
1108 
1109 			free(m.name);
1110 
1111 			if (ret)
1112 				goto out;
1113 		}
1114 	}
1115 
1116 out:
1117 	closedir(dir);
1118 	return ret;
1119 }
1120 
1121 static int machine__set_modules_path(struct machine *machine)
1122 {
1123 	char *version;
1124 	char modules_path[PATH_MAX];
1125 
1126 	version = get_kernel_version(machine->root_dir);
1127 	if (!version)
1128 		return -1;
1129 
1130 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1131 		 machine->root_dir, version);
1132 	free(version);
1133 
1134 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1135 }
1136 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1137 				const char *name __maybe_unused)
1138 {
1139 	return 0;
1140 }
1141 
1142 static int machine__create_module(void *arg, const char *name, u64 start)
1143 {
1144 	struct machine *machine = arg;
1145 	struct map *map;
1146 
1147 	if (arch__fix_module_text_start(&start, name) < 0)
1148 		return -1;
1149 
1150 	map = machine__findnew_module_map(machine, start, name);
1151 	if (map == NULL)
1152 		return -1;
1153 
1154 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1155 
1156 	return 0;
1157 }
1158 
1159 static int machine__create_modules(struct machine *machine)
1160 {
1161 	const char *modules;
1162 	char path[PATH_MAX];
1163 
1164 	if (machine__is_default_guest(machine)) {
1165 		modules = symbol_conf.default_guest_modules;
1166 	} else {
1167 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1168 		modules = path;
1169 	}
1170 
1171 	if (symbol__restricted_filename(modules, "/proc/modules"))
1172 		return -1;
1173 
1174 	if (modules__parse(modules, machine, machine__create_module))
1175 		return -1;
1176 
1177 	if (!machine__set_modules_path(machine))
1178 		return 0;
1179 
1180 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1181 
1182 	return 0;
1183 }
1184 
1185 int machine__create_kernel_maps(struct machine *machine)
1186 {
1187 	struct dso *kernel = machine__get_kernel(machine);
1188 	const char *name;
1189 	u64 addr;
1190 	int ret;
1191 
1192 	if (kernel == NULL)
1193 		return -1;
1194 
1195 	ret = __machine__create_kernel_maps(machine, kernel);
1196 	dso__put(kernel);
1197 	if (ret < 0)
1198 		return -1;
1199 
1200 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1201 		if (machine__is_host(machine))
1202 			pr_debug("Problems creating module maps, "
1203 				 "continuing anyway...\n");
1204 		else
1205 			pr_debug("Problems creating module maps for guest %d, "
1206 				 "continuing anyway...\n", machine->pid);
1207 	}
1208 
1209 	/*
1210 	 * Now that we have all the maps created, just set the ->end of them:
1211 	 */
1212 	map_groups__fixup_end(&machine->kmaps);
1213 
1214 	addr = machine__get_running_kernel_start(machine, &name);
1215 	if (!addr) {
1216 	} else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1217 		machine__destroy_kernel_maps(machine);
1218 		return -1;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 static void machine__set_kernel_mmap_len(struct machine *machine,
1225 					 union perf_event *event)
1226 {
1227 	int i;
1228 
1229 	for (i = 0; i < MAP__NR_TYPES; i++) {
1230 		machine->vmlinux_maps[i]->start = event->mmap.start;
1231 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1232 						   event->mmap.len);
1233 		/*
1234 		 * Be a bit paranoid here, some perf.data file came with
1235 		 * a zero sized synthesized MMAP event for the kernel.
1236 		 */
1237 		if (machine->vmlinux_maps[i]->end == 0)
1238 			machine->vmlinux_maps[i]->end = ~0ULL;
1239 	}
1240 }
1241 
1242 static bool machine__uses_kcore(struct machine *machine)
1243 {
1244 	struct dso *dso;
1245 
1246 	list_for_each_entry(dso, &machine->dsos.head, node) {
1247 		if (dso__is_kcore(dso))
1248 			return true;
1249 	}
1250 
1251 	return false;
1252 }
1253 
1254 static int machine__process_kernel_mmap_event(struct machine *machine,
1255 					      union perf_event *event)
1256 {
1257 	struct map *map;
1258 	char kmmap_prefix[PATH_MAX];
1259 	enum dso_kernel_type kernel_type;
1260 	bool is_kernel_mmap;
1261 
1262 	/* If we have maps from kcore then we do not need or want any others */
1263 	if (machine__uses_kcore(machine))
1264 		return 0;
1265 
1266 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1267 	if (machine__is_host(machine))
1268 		kernel_type = DSO_TYPE_KERNEL;
1269 	else
1270 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1271 
1272 	is_kernel_mmap = memcmp(event->mmap.filename,
1273 				kmmap_prefix,
1274 				strlen(kmmap_prefix) - 1) == 0;
1275 	if (event->mmap.filename[0] == '/' ||
1276 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1277 		map = machine__findnew_module_map(machine, event->mmap.start,
1278 						  event->mmap.filename);
1279 		if (map == NULL)
1280 			goto out_problem;
1281 
1282 		map->end = map->start + event->mmap.len;
1283 	} else if (is_kernel_mmap) {
1284 		const char *symbol_name = (event->mmap.filename +
1285 				strlen(kmmap_prefix));
1286 		/*
1287 		 * Should be there already, from the build-id table in
1288 		 * the header.
1289 		 */
1290 		struct dso *kernel = NULL;
1291 		struct dso *dso;
1292 
1293 		pthread_rwlock_rdlock(&machine->dsos.lock);
1294 
1295 		list_for_each_entry(dso, &machine->dsos.head, node) {
1296 
1297 			/*
1298 			 * The cpumode passed to is_kernel_module is not the
1299 			 * cpumode of *this* event. If we insist on passing
1300 			 * correct cpumode to is_kernel_module, we should
1301 			 * record the cpumode when we adding this dso to the
1302 			 * linked list.
1303 			 *
1304 			 * However we don't really need passing correct
1305 			 * cpumode.  We know the correct cpumode must be kernel
1306 			 * mode (if not, we should not link it onto kernel_dsos
1307 			 * list).
1308 			 *
1309 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1310 			 * is_kernel_module() treats it as a kernel cpumode.
1311 			 */
1312 
1313 			if (!dso->kernel ||
1314 			    is_kernel_module(dso->long_name,
1315 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1316 				continue;
1317 
1318 
1319 			kernel = dso;
1320 			break;
1321 		}
1322 
1323 		pthread_rwlock_unlock(&machine->dsos.lock);
1324 
1325 		if (kernel == NULL)
1326 			kernel = machine__findnew_dso(machine, kmmap_prefix);
1327 		if (kernel == NULL)
1328 			goto out_problem;
1329 
1330 		kernel->kernel = kernel_type;
1331 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1332 			dso__put(kernel);
1333 			goto out_problem;
1334 		}
1335 
1336 		if (strstr(kernel->long_name, "vmlinux"))
1337 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1338 
1339 		machine__set_kernel_mmap_len(machine, event);
1340 
1341 		/*
1342 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1343 		 * symbol. Effectively having zero here means that at record
1344 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1345 		 */
1346 		if (event->mmap.pgoff != 0) {
1347 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1348 							 symbol_name,
1349 							 event->mmap.pgoff);
1350 		}
1351 
1352 		if (machine__is_default_guest(machine)) {
1353 			/*
1354 			 * preload dso of guest kernel and modules
1355 			 */
1356 			dso__load(kernel, machine__kernel_map(machine));
1357 		}
1358 	}
1359 	return 0;
1360 out_problem:
1361 	return -1;
1362 }
1363 
1364 int machine__process_mmap2_event(struct machine *machine,
1365 				 union perf_event *event,
1366 				 struct perf_sample *sample)
1367 {
1368 	struct thread *thread;
1369 	struct map *map;
1370 	enum map_type type;
1371 	int ret = 0;
1372 
1373 	if (dump_trace)
1374 		perf_event__fprintf_mmap2(event, stdout);
1375 
1376 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1377 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1378 		ret = machine__process_kernel_mmap_event(machine, event);
1379 		if (ret < 0)
1380 			goto out_problem;
1381 		return 0;
1382 	}
1383 
1384 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1385 					event->mmap2.tid);
1386 	if (thread == NULL)
1387 		goto out_problem;
1388 
1389 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1390 		type = MAP__VARIABLE;
1391 	else
1392 		type = MAP__FUNCTION;
1393 
1394 	map = map__new(machine, event->mmap2.start,
1395 			event->mmap2.len, event->mmap2.pgoff,
1396 			event->mmap2.pid, event->mmap2.maj,
1397 			event->mmap2.min, event->mmap2.ino,
1398 			event->mmap2.ino_generation,
1399 			event->mmap2.prot,
1400 			event->mmap2.flags,
1401 			event->mmap2.filename, type, thread);
1402 
1403 	if (map == NULL)
1404 		goto out_problem_map;
1405 
1406 	ret = thread__insert_map(thread, map);
1407 	if (ret)
1408 		goto out_problem_insert;
1409 
1410 	thread__put(thread);
1411 	map__put(map);
1412 	return 0;
1413 
1414 out_problem_insert:
1415 	map__put(map);
1416 out_problem_map:
1417 	thread__put(thread);
1418 out_problem:
1419 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1420 	return 0;
1421 }
1422 
1423 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1424 				struct perf_sample *sample)
1425 {
1426 	struct thread *thread;
1427 	struct map *map;
1428 	enum map_type type;
1429 	int ret = 0;
1430 
1431 	if (dump_trace)
1432 		perf_event__fprintf_mmap(event, stdout);
1433 
1434 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1435 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1436 		ret = machine__process_kernel_mmap_event(machine, event);
1437 		if (ret < 0)
1438 			goto out_problem;
1439 		return 0;
1440 	}
1441 
1442 	thread = machine__findnew_thread(machine, event->mmap.pid,
1443 					 event->mmap.tid);
1444 	if (thread == NULL)
1445 		goto out_problem;
1446 
1447 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1448 		type = MAP__VARIABLE;
1449 	else
1450 		type = MAP__FUNCTION;
1451 
1452 	map = map__new(machine, event->mmap.start,
1453 			event->mmap.len, event->mmap.pgoff,
1454 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1455 			event->mmap.filename,
1456 			type, thread);
1457 
1458 	if (map == NULL)
1459 		goto out_problem_map;
1460 
1461 	ret = thread__insert_map(thread, map);
1462 	if (ret)
1463 		goto out_problem_insert;
1464 
1465 	thread__put(thread);
1466 	map__put(map);
1467 	return 0;
1468 
1469 out_problem_insert:
1470 	map__put(map);
1471 out_problem_map:
1472 	thread__put(thread);
1473 out_problem:
1474 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1475 	return 0;
1476 }
1477 
1478 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1479 {
1480 	if (machine->last_match == th)
1481 		machine->last_match = NULL;
1482 
1483 	BUG_ON(refcount_read(&th->refcnt) == 0);
1484 	if (lock)
1485 		pthread_rwlock_wrlock(&machine->threads_lock);
1486 	rb_erase_init(&th->rb_node, &machine->threads);
1487 	RB_CLEAR_NODE(&th->rb_node);
1488 	--machine->nr_threads;
1489 	/*
1490 	 * Move it first to the dead_threads list, then drop the reference,
1491 	 * if this is the last reference, then the thread__delete destructor
1492 	 * will be called and we will remove it from the dead_threads list.
1493 	 */
1494 	list_add_tail(&th->node, &machine->dead_threads);
1495 	if (lock)
1496 		pthread_rwlock_unlock(&machine->threads_lock);
1497 	thread__put(th);
1498 }
1499 
1500 void machine__remove_thread(struct machine *machine, struct thread *th)
1501 {
1502 	return __machine__remove_thread(machine, th, true);
1503 }
1504 
1505 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1506 				struct perf_sample *sample)
1507 {
1508 	struct thread *thread = machine__find_thread(machine,
1509 						     event->fork.pid,
1510 						     event->fork.tid);
1511 	struct thread *parent = machine__findnew_thread(machine,
1512 							event->fork.ppid,
1513 							event->fork.ptid);
1514 	int err = 0;
1515 
1516 	if (dump_trace)
1517 		perf_event__fprintf_task(event, stdout);
1518 
1519 	/*
1520 	 * There may be an existing thread that is not actually the parent,
1521 	 * either because we are processing events out of order, or because the
1522 	 * (fork) event that would have removed the thread was lost. Assume the
1523 	 * latter case and continue on as best we can.
1524 	 */
1525 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1526 		dump_printf("removing erroneous parent thread %d/%d\n",
1527 			    parent->pid_, parent->tid);
1528 		machine__remove_thread(machine, parent);
1529 		thread__put(parent);
1530 		parent = machine__findnew_thread(machine, event->fork.ppid,
1531 						 event->fork.ptid);
1532 	}
1533 
1534 	/* if a thread currently exists for the thread id remove it */
1535 	if (thread != NULL) {
1536 		machine__remove_thread(machine, thread);
1537 		thread__put(thread);
1538 	}
1539 
1540 	thread = machine__findnew_thread(machine, event->fork.pid,
1541 					 event->fork.tid);
1542 
1543 	if (thread == NULL || parent == NULL ||
1544 	    thread__fork(thread, parent, sample->time) < 0) {
1545 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1546 		err = -1;
1547 	}
1548 	thread__put(thread);
1549 	thread__put(parent);
1550 
1551 	return err;
1552 }
1553 
1554 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1555 				struct perf_sample *sample __maybe_unused)
1556 {
1557 	struct thread *thread = machine__find_thread(machine,
1558 						     event->fork.pid,
1559 						     event->fork.tid);
1560 
1561 	if (dump_trace)
1562 		perf_event__fprintf_task(event, stdout);
1563 
1564 	if (thread != NULL) {
1565 		thread__exited(thread);
1566 		thread__put(thread);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 int machine__process_event(struct machine *machine, union perf_event *event,
1573 			   struct perf_sample *sample)
1574 {
1575 	int ret;
1576 
1577 	switch (event->header.type) {
1578 	case PERF_RECORD_COMM:
1579 		ret = machine__process_comm_event(machine, event, sample); break;
1580 	case PERF_RECORD_MMAP:
1581 		ret = machine__process_mmap_event(machine, event, sample); break;
1582 	case PERF_RECORD_NAMESPACES:
1583 		ret = machine__process_namespaces_event(machine, event, sample); break;
1584 	case PERF_RECORD_MMAP2:
1585 		ret = machine__process_mmap2_event(machine, event, sample); break;
1586 	case PERF_RECORD_FORK:
1587 		ret = machine__process_fork_event(machine, event, sample); break;
1588 	case PERF_RECORD_EXIT:
1589 		ret = machine__process_exit_event(machine, event, sample); break;
1590 	case PERF_RECORD_LOST:
1591 		ret = machine__process_lost_event(machine, event, sample); break;
1592 	case PERF_RECORD_AUX:
1593 		ret = machine__process_aux_event(machine, event); break;
1594 	case PERF_RECORD_ITRACE_START:
1595 		ret = machine__process_itrace_start_event(machine, event); break;
1596 	case PERF_RECORD_LOST_SAMPLES:
1597 		ret = machine__process_lost_samples_event(machine, event, sample); break;
1598 	case PERF_RECORD_SWITCH:
1599 	case PERF_RECORD_SWITCH_CPU_WIDE:
1600 		ret = machine__process_switch_event(machine, event); break;
1601 	default:
1602 		ret = -1;
1603 		break;
1604 	}
1605 
1606 	return ret;
1607 }
1608 
1609 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1610 {
1611 	if (!regexec(regex, sym->name, 0, NULL, 0))
1612 		return 1;
1613 	return 0;
1614 }
1615 
1616 static void ip__resolve_ams(struct thread *thread,
1617 			    struct addr_map_symbol *ams,
1618 			    u64 ip)
1619 {
1620 	struct addr_location al;
1621 
1622 	memset(&al, 0, sizeof(al));
1623 	/*
1624 	 * We cannot use the header.misc hint to determine whether a
1625 	 * branch stack address is user, kernel, guest, hypervisor.
1626 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1627 	 * Thus, we have to try consecutively until we find a match
1628 	 * or else, the symbol is unknown
1629 	 */
1630 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1631 
1632 	ams->addr = ip;
1633 	ams->al_addr = al.addr;
1634 	ams->sym = al.sym;
1635 	ams->map = al.map;
1636 }
1637 
1638 static void ip__resolve_data(struct thread *thread,
1639 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1640 {
1641 	struct addr_location al;
1642 
1643 	memset(&al, 0, sizeof(al));
1644 
1645 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1646 	if (al.map == NULL) {
1647 		/*
1648 		 * some shared data regions have execute bit set which puts
1649 		 * their mapping in the MAP__FUNCTION type array.
1650 		 * Check there as a fallback option before dropping the sample.
1651 		 */
1652 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1653 	}
1654 
1655 	ams->addr = addr;
1656 	ams->al_addr = al.addr;
1657 	ams->sym = al.sym;
1658 	ams->map = al.map;
1659 }
1660 
1661 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1662 				     struct addr_location *al)
1663 {
1664 	struct mem_info *mi = zalloc(sizeof(*mi));
1665 
1666 	if (!mi)
1667 		return NULL;
1668 
1669 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1670 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1671 	mi->data_src.val = sample->data_src;
1672 
1673 	return mi;
1674 }
1675 
1676 static int add_callchain_ip(struct thread *thread,
1677 			    struct callchain_cursor *cursor,
1678 			    struct symbol **parent,
1679 			    struct addr_location *root_al,
1680 			    u8 *cpumode,
1681 			    u64 ip,
1682 			    bool branch,
1683 			    struct branch_flags *flags,
1684 			    int nr_loop_iter,
1685 			    int samples)
1686 {
1687 	struct addr_location al;
1688 
1689 	al.filtered = 0;
1690 	al.sym = NULL;
1691 	if (!cpumode) {
1692 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1693 						   ip, &al);
1694 	} else {
1695 		if (ip >= PERF_CONTEXT_MAX) {
1696 			switch (ip) {
1697 			case PERF_CONTEXT_HV:
1698 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1699 				break;
1700 			case PERF_CONTEXT_KERNEL:
1701 				*cpumode = PERF_RECORD_MISC_KERNEL;
1702 				break;
1703 			case PERF_CONTEXT_USER:
1704 				*cpumode = PERF_RECORD_MISC_USER;
1705 				break;
1706 			default:
1707 				pr_debug("invalid callchain context: "
1708 					 "%"PRId64"\n", (s64) ip);
1709 				/*
1710 				 * It seems the callchain is corrupted.
1711 				 * Discard all.
1712 				 */
1713 				callchain_cursor_reset(cursor);
1714 				return 1;
1715 			}
1716 			return 0;
1717 		}
1718 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1719 					   ip, &al);
1720 	}
1721 
1722 	if (al.sym != NULL) {
1723 		if (perf_hpp_list.parent && !*parent &&
1724 		    symbol__match_regex(al.sym, &parent_regex))
1725 			*parent = al.sym;
1726 		else if (have_ignore_callees && root_al &&
1727 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1728 			/* Treat this symbol as the root,
1729 			   forgetting its callees. */
1730 			*root_al = al;
1731 			callchain_cursor_reset(cursor);
1732 		}
1733 	}
1734 
1735 	if (symbol_conf.hide_unresolved && al.sym == NULL)
1736 		return 0;
1737 	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1738 				       branch, flags, nr_loop_iter, samples);
1739 }
1740 
1741 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1742 					   struct addr_location *al)
1743 {
1744 	unsigned int i;
1745 	const struct branch_stack *bs = sample->branch_stack;
1746 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1747 
1748 	if (!bi)
1749 		return NULL;
1750 
1751 	for (i = 0; i < bs->nr; i++) {
1752 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1753 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1754 		bi[i].flags = bs->entries[i].flags;
1755 	}
1756 	return bi;
1757 }
1758 
1759 #define CHASHSZ 127
1760 #define CHASHBITS 7
1761 #define NO_ENTRY 0xff
1762 
1763 #define PERF_MAX_BRANCH_DEPTH 127
1764 
1765 /* Remove loops. */
1766 static int remove_loops(struct branch_entry *l, int nr)
1767 {
1768 	int i, j, off;
1769 	unsigned char chash[CHASHSZ];
1770 
1771 	memset(chash, NO_ENTRY, sizeof(chash));
1772 
1773 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1774 
1775 	for (i = 0; i < nr; i++) {
1776 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1777 
1778 		/* no collision handling for now */
1779 		if (chash[h] == NO_ENTRY) {
1780 			chash[h] = i;
1781 		} else if (l[chash[h]].from == l[i].from) {
1782 			bool is_loop = true;
1783 			/* check if it is a real loop */
1784 			off = 0;
1785 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1786 				if (l[j].from != l[i + off].from) {
1787 					is_loop = false;
1788 					break;
1789 				}
1790 			if (is_loop) {
1791 				memmove(l + i, l + i + off,
1792 					(nr - (i + off)) * sizeof(*l));
1793 				nr -= off;
1794 			}
1795 		}
1796 	}
1797 	return nr;
1798 }
1799 
1800 /*
1801  * Recolve LBR callstack chain sample
1802  * Return:
1803  * 1 on success get LBR callchain information
1804  * 0 no available LBR callchain information, should try fp
1805  * negative error code on other errors.
1806  */
1807 static int resolve_lbr_callchain_sample(struct thread *thread,
1808 					struct callchain_cursor *cursor,
1809 					struct perf_sample *sample,
1810 					struct symbol **parent,
1811 					struct addr_location *root_al,
1812 					int max_stack)
1813 {
1814 	struct ip_callchain *chain = sample->callchain;
1815 	int chain_nr = min(max_stack, (int)chain->nr), i;
1816 	u8 cpumode = PERF_RECORD_MISC_USER;
1817 	u64 ip;
1818 
1819 	for (i = 0; i < chain_nr; i++) {
1820 		if (chain->ips[i] == PERF_CONTEXT_USER)
1821 			break;
1822 	}
1823 
1824 	/* LBR only affects the user callchain */
1825 	if (i != chain_nr) {
1826 		struct branch_stack *lbr_stack = sample->branch_stack;
1827 		int lbr_nr = lbr_stack->nr, j, k;
1828 		bool branch;
1829 		struct branch_flags *flags;
1830 		/*
1831 		 * LBR callstack can only get user call chain.
1832 		 * The mix_chain_nr is kernel call chain
1833 		 * number plus LBR user call chain number.
1834 		 * i is kernel call chain number,
1835 		 * 1 is PERF_CONTEXT_USER,
1836 		 * lbr_nr + 1 is the user call chain number.
1837 		 * For details, please refer to the comments
1838 		 * in callchain__printf
1839 		 */
1840 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1841 
1842 		for (j = 0; j < mix_chain_nr; j++) {
1843 			int err;
1844 			branch = false;
1845 			flags = NULL;
1846 
1847 			if (callchain_param.order == ORDER_CALLEE) {
1848 				if (j < i + 1)
1849 					ip = chain->ips[j];
1850 				else if (j > i + 1) {
1851 					k = j - i - 2;
1852 					ip = lbr_stack->entries[k].from;
1853 					branch = true;
1854 					flags = &lbr_stack->entries[k].flags;
1855 				} else {
1856 					ip = lbr_stack->entries[0].to;
1857 					branch = true;
1858 					flags = &lbr_stack->entries[0].flags;
1859 				}
1860 			} else {
1861 				if (j < lbr_nr) {
1862 					k = lbr_nr - j - 1;
1863 					ip = lbr_stack->entries[k].from;
1864 					branch = true;
1865 					flags = &lbr_stack->entries[k].flags;
1866 				}
1867 				else if (j > lbr_nr)
1868 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1869 				else {
1870 					ip = lbr_stack->entries[0].to;
1871 					branch = true;
1872 					flags = &lbr_stack->entries[0].flags;
1873 				}
1874 			}
1875 
1876 			err = add_callchain_ip(thread, cursor, parent,
1877 					       root_al, &cpumode, ip,
1878 					       branch, flags, 0, 0);
1879 			if (err)
1880 				return (err < 0) ? err : 0;
1881 		}
1882 		return 1;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static int thread__resolve_callchain_sample(struct thread *thread,
1889 					    struct callchain_cursor *cursor,
1890 					    struct perf_evsel *evsel,
1891 					    struct perf_sample *sample,
1892 					    struct symbol **parent,
1893 					    struct addr_location *root_al,
1894 					    int max_stack)
1895 {
1896 	struct branch_stack *branch = sample->branch_stack;
1897 	struct ip_callchain *chain = sample->callchain;
1898 	int chain_nr = chain->nr;
1899 	u8 cpumode = PERF_RECORD_MISC_USER;
1900 	int i, j, err, nr_entries;
1901 	int skip_idx = -1;
1902 	int first_call = 0;
1903 	int nr_loop_iter;
1904 
1905 	if (perf_evsel__has_branch_callstack(evsel)) {
1906 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1907 						   root_al, max_stack);
1908 		if (err)
1909 			return (err < 0) ? err : 0;
1910 	}
1911 
1912 	/*
1913 	 * Based on DWARF debug information, some architectures skip
1914 	 * a callchain entry saved by the kernel.
1915 	 */
1916 	skip_idx = arch_skip_callchain_idx(thread, chain);
1917 
1918 	/*
1919 	 * Add branches to call stack for easier browsing. This gives
1920 	 * more context for a sample than just the callers.
1921 	 *
1922 	 * This uses individual histograms of paths compared to the
1923 	 * aggregated histograms the normal LBR mode uses.
1924 	 *
1925 	 * Limitations for now:
1926 	 * - No extra filters
1927 	 * - No annotations (should annotate somehow)
1928 	 */
1929 
1930 	if (branch && callchain_param.branch_callstack) {
1931 		int nr = min(max_stack, (int)branch->nr);
1932 		struct branch_entry be[nr];
1933 
1934 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1935 			pr_warning("corrupted branch chain. skipping...\n");
1936 			goto check_calls;
1937 		}
1938 
1939 		for (i = 0; i < nr; i++) {
1940 			if (callchain_param.order == ORDER_CALLEE) {
1941 				be[i] = branch->entries[i];
1942 				/*
1943 				 * Check for overlap into the callchain.
1944 				 * The return address is one off compared to
1945 				 * the branch entry. To adjust for this
1946 				 * assume the calling instruction is not longer
1947 				 * than 8 bytes.
1948 				 */
1949 				if (i == skip_idx ||
1950 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1951 					first_call++;
1952 				else if (be[i].from < chain->ips[first_call] &&
1953 				    be[i].from >= chain->ips[first_call] - 8)
1954 					first_call++;
1955 			} else
1956 				be[i] = branch->entries[branch->nr - i - 1];
1957 		}
1958 
1959 		nr_loop_iter = nr;
1960 		nr = remove_loops(be, nr);
1961 
1962 		/*
1963 		 * Get the number of iterations.
1964 		 * It's only approximation, but good enough in practice.
1965 		 */
1966 		if (nr_loop_iter > nr)
1967 			nr_loop_iter = nr_loop_iter - nr + 1;
1968 		else
1969 			nr_loop_iter = 0;
1970 
1971 		for (i = 0; i < nr; i++) {
1972 			if (i == nr - 1)
1973 				err = add_callchain_ip(thread, cursor, parent,
1974 						       root_al,
1975 						       NULL, be[i].to,
1976 						       true, &be[i].flags,
1977 						       nr_loop_iter, 1);
1978 			else
1979 				err = add_callchain_ip(thread, cursor, parent,
1980 						       root_al,
1981 						       NULL, be[i].to,
1982 						       true, &be[i].flags,
1983 						       0, 0);
1984 
1985 			if (!err)
1986 				err = add_callchain_ip(thread, cursor, parent, root_al,
1987 						       NULL, be[i].from,
1988 						       true, &be[i].flags,
1989 						       0, 0);
1990 			if (err == -EINVAL)
1991 				break;
1992 			if (err)
1993 				return err;
1994 		}
1995 		chain_nr -= nr;
1996 	}
1997 
1998 check_calls:
1999 	for (i = first_call, nr_entries = 0;
2000 	     i < chain_nr && nr_entries < max_stack; i++) {
2001 		u64 ip;
2002 
2003 		if (callchain_param.order == ORDER_CALLEE)
2004 			j = i;
2005 		else
2006 			j = chain->nr - i - 1;
2007 
2008 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2009 		if (j == skip_idx)
2010 			continue;
2011 #endif
2012 		ip = chain->ips[j];
2013 
2014 		if (ip < PERF_CONTEXT_MAX)
2015                        ++nr_entries;
2016 
2017 		err = add_callchain_ip(thread, cursor, parent,
2018 				       root_al, &cpumode, ip,
2019 				       false, NULL, 0, 0);
2020 
2021 		if (err)
2022 			return (err < 0) ? err : 0;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static int unwind_entry(struct unwind_entry *entry, void *arg)
2029 {
2030 	struct callchain_cursor *cursor = arg;
2031 
2032 	if (symbol_conf.hide_unresolved && entry->sym == NULL)
2033 		return 0;
2034 	return callchain_cursor_append(cursor, entry->ip,
2035 				       entry->map, entry->sym,
2036 				       false, NULL, 0, 0);
2037 }
2038 
2039 static int thread__resolve_callchain_unwind(struct thread *thread,
2040 					    struct callchain_cursor *cursor,
2041 					    struct perf_evsel *evsel,
2042 					    struct perf_sample *sample,
2043 					    int max_stack)
2044 {
2045 	/* Can we do dwarf post unwind? */
2046 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2047 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2048 		return 0;
2049 
2050 	/* Bail out if nothing was captured. */
2051 	if ((!sample->user_regs.regs) ||
2052 	    (!sample->user_stack.size))
2053 		return 0;
2054 
2055 	return unwind__get_entries(unwind_entry, cursor,
2056 				   thread, sample, max_stack);
2057 }
2058 
2059 int thread__resolve_callchain(struct thread *thread,
2060 			      struct callchain_cursor *cursor,
2061 			      struct perf_evsel *evsel,
2062 			      struct perf_sample *sample,
2063 			      struct symbol **parent,
2064 			      struct addr_location *root_al,
2065 			      int max_stack)
2066 {
2067 	int ret = 0;
2068 
2069 	callchain_cursor_reset(&callchain_cursor);
2070 
2071 	if (callchain_param.order == ORDER_CALLEE) {
2072 		ret = thread__resolve_callchain_sample(thread, cursor,
2073 						       evsel, sample,
2074 						       parent, root_al,
2075 						       max_stack);
2076 		if (ret)
2077 			return ret;
2078 		ret = thread__resolve_callchain_unwind(thread, cursor,
2079 						       evsel, sample,
2080 						       max_stack);
2081 	} else {
2082 		ret = thread__resolve_callchain_unwind(thread, cursor,
2083 						       evsel, sample,
2084 						       max_stack);
2085 		if (ret)
2086 			return ret;
2087 		ret = thread__resolve_callchain_sample(thread, cursor,
2088 						       evsel, sample,
2089 						       parent, root_al,
2090 						       max_stack);
2091 	}
2092 
2093 	return ret;
2094 }
2095 
2096 int machine__for_each_thread(struct machine *machine,
2097 			     int (*fn)(struct thread *thread, void *p),
2098 			     void *priv)
2099 {
2100 	struct rb_node *nd;
2101 	struct thread *thread;
2102 	int rc = 0;
2103 
2104 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2105 		thread = rb_entry(nd, struct thread, rb_node);
2106 		rc = fn(thread, priv);
2107 		if (rc != 0)
2108 			return rc;
2109 	}
2110 
2111 	list_for_each_entry(thread, &machine->dead_threads, node) {
2112 		rc = fn(thread, priv);
2113 		if (rc != 0)
2114 			return rc;
2115 	}
2116 	return rc;
2117 }
2118 
2119 int machines__for_each_thread(struct machines *machines,
2120 			      int (*fn)(struct thread *thread, void *p),
2121 			      void *priv)
2122 {
2123 	struct rb_node *nd;
2124 	int rc = 0;
2125 
2126 	rc = machine__for_each_thread(&machines->host, fn, priv);
2127 	if (rc != 0)
2128 		return rc;
2129 
2130 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2131 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
2132 
2133 		rc = machine__for_each_thread(machine, fn, priv);
2134 		if (rc != 0)
2135 			return rc;
2136 	}
2137 	return rc;
2138 }
2139 
2140 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2141 				  struct target *target, struct thread_map *threads,
2142 				  perf_event__handler_t process, bool data_mmap,
2143 				  unsigned int proc_map_timeout)
2144 {
2145 	if (target__has_task(target))
2146 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2147 	else if (target__has_cpu(target))
2148 		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2149 	/* command specified */
2150 	return 0;
2151 }
2152 
2153 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2154 {
2155 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2156 		return -1;
2157 
2158 	return machine->current_tid[cpu];
2159 }
2160 
2161 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2162 			     pid_t tid)
2163 {
2164 	struct thread *thread;
2165 
2166 	if (cpu < 0)
2167 		return -EINVAL;
2168 
2169 	if (!machine->current_tid) {
2170 		int i;
2171 
2172 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2173 		if (!machine->current_tid)
2174 			return -ENOMEM;
2175 		for (i = 0; i < MAX_NR_CPUS; i++)
2176 			machine->current_tid[i] = -1;
2177 	}
2178 
2179 	if (cpu >= MAX_NR_CPUS) {
2180 		pr_err("Requested CPU %d too large. ", cpu);
2181 		pr_err("Consider raising MAX_NR_CPUS\n");
2182 		return -EINVAL;
2183 	}
2184 
2185 	machine->current_tid[cpu] = tid;
2186 
2187 	thread = machine__findnew_thread(machine, pid, tid);
2188 	if (!thread)
2189 		return -ENOMEM;
2190 
2191 	thread->cpu = cpu;
2192 	thread__put(thread);
2193 
2194 	return 0;
2195 }
2196 
2197 int machine__get_kernel_start(struct machine *machine)
2198 {
2199 	struct map *map = machine__kernel_map(machine);
2200 	int err = 0;
2201 
2202 	/*
2203 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
2204 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
2205 	 * all addresses including kernel addresses are less than 2^32.  In
2206 	 * that case (32-bit system), if the kernel mapping is unknown, all
2207 	 * addresses will be assumed to be in user space - see
2208 	 * machine__kernel_ip().
2209 	 */
2210 	machine->kernel_start = 1ULL << 63;
2211 	if (map) {
2212 		err = map__load(map);
2213 		if (map->start)
2214 			machine->kernel_start = map->start;
2215 	}
2216 	return err;
2217 }
2218 
2219 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2220 {
2221 	return dsos__findnew(&machine->dsos, filename);
2222 }
2223 
2224 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2225 {
2226 	struct machine *machine = vmachine;
2227 	struct map *map;
2228 	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2229 
2230 	if (sym == NULL)
2231 		return NULL;
2232 
2233 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2234 	*addrp = map->unmap_ip(map, sym->start);
2235 	return sym->name;
2236 }
2237