1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "symbol.h" 14 #include "sort.h" 15 #include "strlist.h" 16 #include "thread.h" 17 #include "vdso.h" 18 #include <stdbool.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <unistd.h> 22 #include "unwind.h" 23 #include "linux/hash.h" 24 #include "asm/bug.h" 25 #include "bpf-event.h" 26 27 #include <linux/ctype.h> 28 #include <symbol/kallsyms.h> 29 #include <linux/mman.h> 30 #include <linux/zalloc.h> 31 32 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 33 34 static void dsos__init(struct dsos *dsos) 35 { 36 INIT_LIST_HEAD(&dsos->head); 37 dsos->root = RB_ROOT; 38 init_rwsem(&dsos->lock); 39 } 40 41 static void machine__threads_init(struct machine *machine) 42 { 43 int i; 44 45 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 46 struct threads *threads = &machine->threads[i]; 47 threads->entries = RB_ROOT_CACHED; 48 init_rwsem(&threads->lock); 49 threads->nr = 0; 50 INIT_LIST_HEAD(&threads->dead); 51 threads->last_match = NULL; 52 } 53 } 54 55 static int machine__set_mmap_name(struct machine *machine) 56 { 57 if (machine__is_host(machine)) 58 machine->mmap_name = strdup("[kernel.kallsyms]"); 59 else if (machine__is_default_guest(machine)) 60 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 61 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 62 machine->pid) < 0) 63 machine->mmap_name = NULL; 64 65 return machine->mmap_name ? 0 : -ENOMEM; 66 } 67 68 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 69 { 70 int err = -ENOMEM; 71 72 memset(machine, 0, sizeof(*machine)); 73 map_groups__init(&machine->kmaps, machine); 74 RB_CLEAR_NODE(&machine->rb_node); 75 dsos__init(&machine->dsos); 76 77 machine__threads_init(machine); 78 79 machine->vdso_info = NULL; 80 machine->env = NULL; 81 82 machine->pid = pid; 83 84 machine->id_hdr_size = 0; 85 machine->kptr_restrict_warned = false; 86 machine->comm_exec = false; 87 machine->kernel_start = 0; 88 machine->vmlinux_map = NULL; 89 90 machine->root_dir = strdup(root_dir); 91 if (machine->root_dir == NULL) 92 return -ENOMEM; 93 94 if (machine__set_mmap_name(machine)) 95 goto out; 96 97 if (pid != HOST_KERNEL_ID) { 98 struct thread *thread = machine__findnew_thread(machine, -1, 99 pid); 100 char comm[64]; 101 102 if (thread == NULL) 103 goto out; 104 105 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 106 thread__set_comm(thread, comm, 0); 107 thread__put(thread); 108 } 109 110 machine->current_tid = NULL; 111 err = 0; 112 113 out: 114 if (err) { 115 zfree(&machine->root_dir); 116 zfree(&machine->mmap_name); 117 } 118 return 0; 119 } 120 121 struct machine *machine__new_host(void) 122 { 123 struct machine *machine = malloc(sizeof(*machine)); 124 125 if (machine != NULL) { 126 machine__init(machine, "", HOST_KERNEL_ID); 127 128 if (machine__create_kernel_maps(machine) < 0) 129 goto out_delete; 130 } 131 132 return machine; 133 out_delete: 134 free(machine); 135 return NULL; 136 } 137 138 struct machine *machine__new_kallsyms(void) 139 { 140 struct machine *machine = machine__new_host(); 141 /* 142 * FIXME: 143 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 144 * ask for not using the kcore parsing code, once this one is fixed 145 * to create a map per module. 146 */ 147 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 148 machine__delete(machine); 149 machine = NULL; 150 } 151 152 return machine; 153 } 154 155 static void dsos__purge(struct dsos *dsos) 156 { 157 struct dso *pos, *n; 158 159 down_write(&dsos->lock); 160 161 list_for_each_entry_safe(pos, n, &dsos->head, node) { 162 RB_CLEAR_NODE(&pos->rb_node); 163 pos->root = NULL; 164 list_del_init(&pos->node); 165 dso__put(pos); 166 } 167 168 up_write(&dsos->lock); 169 } 170 171 static void dsos__exit(struct dsos *dsos) 172 { 173 dsos__purge(dsos); 174 exit_rwsem(&dsos->lock); 175 } 176 177 void machine__delete_threads(struct machine *machine) 178 { 179 struct rb_node *nd; 180 int i; 181 182 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 183 struct threads *threads = &machine->threads[i]; 184 down_write(&threads->lock); 185 nd = rb_first_cached(&threads->entries); 186 while (nd) { 187 struct thread *t = rb_entry(nd, struct thread, rb_node); 188 189 nd = rb_next(nd); 190 __machine__remove_thread(machine, t, false); 191 } 192 up_write(&threads->lock); 193 } 194 } 195 196 void machine__exit(struct machine *machine) 197 { 198 int i; 199 200 if (machine == NULL) 201 return; 202 203 machine__destroy_kernel_maps(machine); 204 map_groups__exit(&machine->kmaps); 205 dsos__exit(&machine->dsos); 206 machine__exit_vdso(machine); 207 zfree(&machine->root_dir); 208 zfree(&machine->mmap_name); 209 zfree(&machine->current_tid); 210 211 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 212 struct threads *threads = &machine->threads[i]; 213 struct thread *thread, *n; 214 /* 215 * Forget about the dead, at this point whatever threads were 216 * left in the dead lists better have a reference count taken 217 * by who is using them, and then, when they drop those references 218 * and it finally hits zero, thread__put() will check and see that 219 * its not in the dead threads list and will not try to remove it 220 * from there, just calling thread__delete() straight away. 221 */ 222 list_for_each_entry_safe(thread, n, &threads->dead, node) 223 list_del_init(&thread->node); 224 225 exit_rwsem(&threads->lock); 226 } 227 } 228 229 void machine__delete(struct machine *machine) 230 { 231 if (machine) { 232 machine__exit(machine); 233 free(machine); 234 } 235 } 236 237 void machines__init(struct machines *machines) 238 { 239 machine__init(&machines->host, "", HOST_KERNEL_ID); 240 machines->guests = RB_ROOT_CACHED; 241 } 242 243 void machines__exit(struct machines *machines) 244 { 245 machine__exit(&machines->host); 246 /* XXX exit guest */ 247 } 248 249 struct machine *machines__add(struct machines *machines, pid_t pid, 250 const char *root_dir) 251 { 252 struct rb_node **p = &machines->guests.rb_root.rb_node; 253 struct rb_node *parent = NULL; 254 struct machine *pos, *machine = malloc(sizeof(*machine)); 255 bool leftmost = true; 256 257 if (machine == NULL) 258 return NULL; 259 260 if (machine__init(machine, root_dir, pid) != 0) { 261 free(machine); 262 return NULL; 263 } 264 265 while (*p != NULL) { 266 parent = *p; 267 pos = rb_entry(parent, struct machine, rb_node); 268 if (pid < pos->pid) 269 p = &(*p)->rb_left; 270 else { 271 p = &(*p)->rb_right; 272 leftmost = false; 273 } 274 } 275 276 rb_link_node(&machine->rb_node, parent, p); 277 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 278 279 return machine; 280 } 281 282 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 283 { 284 struct rb_node *nd; 285 286 machines->host.comm_exec = comm_exec; 287 288 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 289 struct machine *machine = rb_entry(nd, struct machine, rb_node); 290 291 machine->comm_exec = comm_exec; 292 } 293 } 294 295 struct machine *machines__find(struct machines *machines, pid_t pid) 296 { 297 struct rb_node **p = &machines->guests.rb_root.rb_node; 298 struct rb_node *parent = NULL; 299 struct machine *machine; 300 struct machine *default_machine = NULL; 301 302 if (pid == HOST_KERNEL_ID) 303 return &machines->host; 304 305 while (*p != NULL) { 306 parent = *p; 307 machine = rb_entry(parent, struct machine, rb_node); 308 if (pid < machine->pid) 309 p = &(*p)->rb_left; 310 else if (pid > machine->pid) 311 p = &(*p)->rb_right; 312 else 313 return machine; 314 if (!machine->pid) 315 default_machine = machine; 316 } 317 318 return default_machine; 319 } 320 321 struct machine *machines__findnew(struct machines *machines, pid_t pid) 322 { 323 char path[PATH_MAX]; 324 const char *root_dir = ""; 325 struct machine *machine = machines__find(machines, pid); 326 327 if (machine && (machine->pid == pid)) 328 goto out; 329 330 if ((pid != HOST_KERNEL_ID) && 331 (pid != DEFAULT_GUEST_KERNEL_ID) && 332 (symbol_conf.guestmount)) { 333 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 334 if (access(path, R_OK)) { 335 static struct strlist *seen; 336 337 if (!seen) 338 seen = strlist__new(NULL, NULL); 339 340 if (!strlist__has_entry(seen, path)) { 341 pr_err("Can't access file %s\n", path); 342 strlist__add(seen, path); 343 } 344 machine = NULL; 345 goto out; 346 } 347 root_dir = path; 348 } 349 350 machine = machines__add(machines, pid, root_dir); 351 out: 352 return machine; 353 } 354 355 void machines__process_guests(struct machines *machines, 356 machine__process_t process, void *data) 357 { 358 struct rb_node *nd; 359 360 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 361 struct machine *pos = rb_entry(nd, struct machine, rb_node); 362 process(pos, data); 363 } 364 } 365 366 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 367 { 368 struct rb_node *node; 369 struct machine *machine; 370 371 machines->host.id_hdr_size = id_hdr_size; 372 373 for (node = rb_first_cached(&machines->guests); node; 374 node = rb_next(node)) { 375 machine = rb_entry(node, struct machine, rb_node); 376 machine->id_hdr_size = id_hdr_size; 377 } 378 379 return; 380 } 381 382 static void machine__update_thread_pid(struct machine *machine, 383 struct thread *th, pid_t pid) 384 { 385 struct thread *leader; 386 387 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 388 return; 389 390 th->pid_ = pid; 391 392 if (th->pid_ == th->tid) 393 return; 394 395 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 396 if (!leader) 397 goto out_err; 398 399 if (!leader->mg) 400 leader->mg = map_groups__new(machine); 401 402 if (!leader->mg) 403 goto out_err; 404 405 if (th->mg == leader->mg) 406 return; 407 408 if (th->mg) { 409 /* 410 * Maps are created from MMAP events which provide the pid and 411 * tid. Consequently there never should be any maps on a thread 412 * with an unknown pid. Just print an error if there are. 413 */ 414 if (!map_groups__empty(th->mg)) 415 pr_err("Discarding thread maps for %d:%d\n", 416 th->pid_, th->tid); 417 map_groups__put(th->mg); 418 } 419 420 th->mg = map_groups__get(leader->mg); 421 out_put: 422 thread__put(leader); 423 return; 424 out_err: 425 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 426 goto out_put; 427 } 428 429 /* 430 * Front-end cache - TID lookups come in blocks, 431 * so most of the time we dont have to look up 432 * the full rbtree: 433 */ 434 static struct thread* 435 __threads__get_last_match(struct threads *threads, struct machine *machine, 436 int pid, int tid) 437 { 438 struct thread *th; 439 440 th = threads->last_match; 441 if (th != NULL) { 442 if (th->tid == tid) { 443 machine__update_thread_pid(machine, th, pid); 444 return thread__get(th); 445 } 446 447 threads->last_match = NULL; 448 } 449 450 return NULL; 451 } 452 453 static struct thread* 454 threads__get_last_match(struct threads *threads, struct machine *machine, 455 int pid, int tid) 456 { 457 struct thread *th = NULL; 458 459 if (perf_singlethreaded) 460 th = __threads__get_last_match(threads, machine, pid, tid); 461 462 return th; 463 } 464 465 static void 466 __threads__set_last_match(struct threads *threads, struct thread *th) 467 { 468 threads->last_match = th; 469 } 470 471 static void 472 threads__set_last_match(struct threads *threads, struct thread *th) 473 { 474 if (perf_singlethreaded) 475 __threads__set_last_match(threads, th); 476 } 477 478 /* 479 * Caller must eventually drop thread->refcnt returned with a successful 480 * lookup/new thread inserted. 481 */ 482 static struct thread *____machine__findnew_thread(struct machine *machine, 483 struct threads *threads, 484 pid_t pid, pid_t tid, 485 bool create) 486 { 487 struct rb_node **p = &threads->entries.rb_root.rb_node; 488 struct rb_node *parent = NULL; 489 struct thread *th; 490 bool leftmost = true; 491 492 th = threads__get_last_match(threads, machine, pid, tid); 493 if (th) 494 return th; 495 496 while (*p != NULL) { 497 parent = *p; 498 th = rb_entry(parent, struct thread, rb_node); 499 500 if (th->tid == tid) { 501 threads__set_last_match(threads, th); 502 machine__update_thread_pid(machine, th, pid); 503 return thread__get(th); 504 } 505 506 if (tid < th->tid) 507 p = &(*p)->rb_left; 508 else { 509 p = &(*p)->rb_right; 510 leftmost = false; 511 } 512 } 513 514 if (!create) 515 return NULL; 516 517 th = thread__new(pid, tid); 518 if (th != NULL) { 519 rb_link_node(&th->rb_node, parent, p); 520 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 521 522 /* 523 * We have to initialize map_groups separately 524 * after rb tree is updated. 525 * 526 * The reason is that we call machine__findnew_thread 527 * within thread__init_map_groups to find the thread 528 * leader and that would screwed the rb tree. 529 */ 530 if (thread__init_map_groups(th, machine)) { 531 rb_erase_cached(&th->rb_node, &threads->entries); 532 RB_CLEAR_NODE(&th->rb_node); 533 thread__put(th); 534 return NULL; 535 } 536 /* 537 * It is now in the rbtree, get a ref 538 */ 539 thread__get(th); 540 threads__set_last_match(threads, th); 541 ++threads->nr; 542 } 543 544 return th; 545 } 546 547 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 548 { 549 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 550 } 551 552 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 553 pid_t tid) 554 { 555 struct threads *threads = machine__threads(machine, tid); 556 struct thread *th; 557 558 down_write(&threads->lock); 559 th = __machine__findnew_thread(machine, pid, tid); 560 up_write(&threads->lock); 561 return th; 562 } 563 564 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 565 pid_t tid) 566 { 567 struct threads *threads = machine__threads(machine, tid); 568 struct thread *th; 569 570 down_read(&threads->lock); 571 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 572 up_read(&threads->lock); 573 return th; 574 } 575 576 struct comm *machine__thread_exec_comm(struct machine *machine, 577 struct thread *thread) 578 { 579 if (machine->comm_exec) 580 return thread__exec_comm(thread); 581 else 582 return thread__comm(thread); 583 } 584 585 int machine__process_comm_event(struct machine *machine, union perf_event *event, 586 struct perf_sample *sample) 587 { 588 struct thread *thread = machine__findnew_thread(machine, 589 event->comm.pid, 590 event->comm.tid); 591 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 592 int err = 0; 593 594 if (exec) 595 machine->comm_exec = true; 596 597 if (dump_trace) 598 perf_event__fprintf_comm(event, stdout); 599 600 if (thread == NULL || 601 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 602 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 603 err = -1; 604 } 605 606 thread__put(thread); 607 608 return err; 609 } 610 611 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 612 union perf_event *event, 613 struct perf_sample *sample __maybe_unused) 614 { 615 struct thread *thread = machine__findnew_thread(machine, 616 event->namespaces.pid, 617 event->namespaces.tid); 618 int err = 0; 619 620 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 621 "\nWARNING: kernel seems to support more namespaces than perf" 622 " tool.\nTry updating the perf tool..\n\n"); 623 624 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 625 "\nWARNING: perf tool seems to support more namespaces than" 626 " the kernel.\nTry updating the kernel..\n\n"); 627 628 if (dump_trace) 629 perf_event__fprintf_namespaces(event, stdout); 630 631 if (thread == NULL || 632 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 633 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 634 err = -1; 635 } 636 637 thread__put(thread); 638 639 return err; 640 } 641 642 int machine__process_lost_event(struct machine *machine __maybe_unused, 643 union perf_event *event, struct perf_sample *sample __maybe_unused) 644 { 645 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 646 event->lost.id, event->lost.lost); 647 return 0; 648 } 649 650 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 651 union perf_event *event, struct perf_sample *sample) 652 { 653 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 654 sample->id, event->lost_samples.lost); 655 return 0; 656 } 657 658 static struct dso *machine__findnew_module_dso(struct machine *machine, 659 struct kmod_path *m, 660 const char *filename) 661 { 662 struct dso *dso; 663 664 down_write(&machine->dsos.lock); 665 666 dso = __dsos__find(&machine->dsos, m->name, true); 667 if (!dso) { 668 dso = __dsos__addnew(&machine->dsos, m->name); 669 if (dso == NULL) 670 goto out_unlock; 671 672 dso__set_module_info(dso, m, machine); 673 dso__set_long_name(dso, strdup(filename), true); 674 } 675 676 dso__get(dso); 677 out_unlock: 678 up_write(&machine->dsos.lock); 679 return dso; 680 } 681 682 int machine__process_aux_event(struct machine *machine __maybe_unused, 683 union perf_event *event) 684 { 685 if (dump_trace) 686 perf_event__fprintf_aux(event, stdout); 687 return 0; 688 } 689 690 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 691 union perf_event *event) 692 { 693 if (dump_trace) 694 perf_event__fprintf_itrace_start(event, stdout); 695 return 0; 696 } 697 698 int machine__process_switch_event(struct machine *machine __maybe_unused, 699 union perf_event *event) 700 { 701 if (dump_trace) 702 perf_event__fprintf_switch(event, stdout); 703 return 0; 704 } 705 706 static int machine__process_ksymbol_register(struct machine *machine, 707 union perf_event *event, 708 struct perf_sample *sample __maybe_unused) 709 { 710 struct symbol *sym; 711 struct map *map; 712 713 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 714 if (!map) { 715 map = dso__new_map(event->ksymbol_event.name); 716 if (!map) 717 return -ENOMEM; 718 719 map->start = event->ksymbol_event.addr; 720 map->end = map->start + event->ksymbol_event.len; 721 map_groups__insert(&machine->kmaps, map); 722 } 723 724 sym = symbol__new(map->map_ip(map, map->start), 725 event->ksymbol_event.len, 726 0, 0, event->ksymbol_event.name); 727 if (!sym) 728 return -ENOMEM; 729 dso__insert_symbol(map->dso, sym); 730 return 0; 731 } 732 733 static int machine__process_ksymbol_unregister(struct machine *machine, 734 union perf_event *event, 735 struct perf_sample *sample __maybe_unused) 736 { 737 struct map *map; 738 739 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 740 if (map) 741 map_groups__remove(&machine->kmaps, map); 742 743 return 0; 744 } 745 746 int machine__process_ksymbol(struct machine *machine __maybe_unused, 747 union perf_event *event, 748 struct perf_sample *sample) 749 { 750 if (dump_trace) 751 perf_event__fprintf_ksymbol(event, stdout); 752 753 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 754 return machine__process_ksymbol_unregister(machine, event, 755 sample); 756 return machine__process_ksymbol_register(machine, event, sample); 757 } 758 759 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 760 { 761 const char *dup_filename; 762 763 if (!filename || !dso || !dso->long_name) 764 return; 765 if (dso->long_name[0] != '[') 766 return; 767 if (!strchr(filename, '/')) 768 return; 769 770 dup_filename = strdup(filename); 771 if (!dup_filename) 772 return; 773 774 dso__set_long_name(dso, dup_filename, true); 775 } 776 777 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 778 const char *filename) 779 { 780 struct map *map = NULL; 781 struct dso *dso = NULL; 782 struct kmod_path m; 783 784 if (kmod_path__parse_name(&m, filename)) 785 return NULL; 786 787 map = map_groups__find_by_name(&machine->kmaps, m.name); 788 if (map) { 789 /* 790 * If the map's dso is an offline module, give dso__load() 791 * a chance to find the file path of that module by fixing 792 * long_name. 793 */ 794 dso__adjust_kmod_long_name(map->dso, filename); 795 goto out; 796 } 797 798 dso = machine__findnew_module_dso(machine, &m, filename); 799 if (dso == NULL) 800 goto out; 801 802 map = map__new2(start, dso); 803 if (map == NULL) 804 goto out; 805 806 map_groups__insert(&machine->kmaps, map); 807 808 /* Put the map here because map_groups__insert alread got it */ 809 map__put(map); 810 out: 811 /* put the dso here, corresponding to machine__findnew_module_dso */ 812 dso__put(dso); 813 zfree(&m.name); 814 return map; 815 } 816 817 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 818 { 819 struct rb_node *nd; 820 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 821 822 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 823 struct machine *pos = rb_entry(nd, struct machine, rb_node); 824 ret += __dsos__fprintf(&pos->dsos.head, fp); 825 } 826 827 return ret; 828 } 829 830 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 831 bool (skip)(struct dso *dso, int parm), int parm) 832 { 833 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 834 } 835 836 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 837 bool (skip)(struct dso *dso, int parm), int parm) 838 { 839 struct rb_node *nd; 840 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 841 842 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 843 struct machine *pos = rb_entry(nd, struct machine, rb_node); 844 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 845 } 846 return ret; 847 } 848 849 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 850 { 851 int i; 852 size_t printed = 0; 853 struct dso *kdso = machine__kernel_map(machine)->dso; 854 855 if (kdso->has_build_id) { 856 char filename[PATH_MAX]; 857 if (dso__build_id_filename(kdso, filename, sizeof(filename), 858 false)) 859 printed += fprintf(fp, "[0] %s\n", filename); 860 } 861 862 for (i = 0; i < vmlinux_path__nr_entries; ++i) 863 printed += fprintf(fp, "[%d] %s\n", 864 i + kdso->has_build_id, vmlinux_path[i]); 865 866 return printed; 867 } 868 869 size_t machine__fprintf(struct machine *machine, FILE *fp) 870 { 871 struct rb_node *nd; 872 size_t ret; 873 int i; 874 875 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 876 struct threads *threads = &machine->threads[i]; 877 878 down_read(&threads->lock); 879 880 ret = fprintf(fp, "Threads: %u\n", threads->nr); 881 882 for (nd = rb_first_cached(&threads->entries); nd; 883 nd = rb_next(nd)) { 884 struct thread *pos = rb_entry(nd, struct thread, rb_node); 885 886 ret += thread__fprintf(pos, fp); 887 } 888 889 up_read(&threads->lock); 890 } 891 return ret; 892 } 893 894 static struct dso *machine__get_kernel(struct machine *machine) 895 { 896 const char *vmlinux_name = machine->mmap_name; 897 struct dso *kernel; 898 899 if (machine__is_host(machine)) { 900 if (symbol_conf.vmlinux_name) 901 vmlinux_name = symbol_conf.vmlinux_name; 902 903 kernel = machine__findnew_kernel(machine, vmlinux_name, 904 "[kernel]", DSO_TYPE_KERNEL); 905 } else { 906 if (symbol_conf.default_guest_vmlinux_name) 907 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 908 909 kernel = machine__findnew_kernel(machine, vmlinux_name, 910 "[guest.kernel]", 911 DSO_TYPE_GUEST_KERNEL); 912 } 913 914 if (kernel != NULL && (!kernel->has_build_id)) 915 dso__read_running_kernel_build_id(kernel, machine); 916 917 return kernel; 918 } 919 920 struct process_args { 921 u64 start; 922 }; 923 924 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 925 size_t bufsz) 926 { 927 if (machine__is_default_guest(machine)) 928 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 929 else 930 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 931 } 932 933 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 934 935 /* Figure out the start address of kernel map from /proc/kallsyms. 936 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 937 * symbol_name if it's not that important. 938 */ 939 static int machine__get_running_kernel_start(struct machine *machine, 940 const char **symbol_name, 941 u64 *start, u64 *end) 942 { 943 char filename[PATH_MAX]; 944 int i, err = -1; 945 const char *name; 946 u64 addr = 0; 947 948 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 949 950 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 951 return 0; 952 953 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 954 err = kallsyms__get_function_start(filename, name, &addr); 955 if (!err) 956 break; 957 } 958 959 if (err) 960 return -1; 961 962 if (symbol_name) 963 *symbol_name = name; 964 965 *start = addr; 966 967 err = kallsyms__get_function_start(filename, "_etext", &addr); 968 if (!err) 969 *end = addr; 970 971 return 0; 972 } 973 974 int machine__create_extra_kernel_map(struct machine *machine, 975 struct dso *kernel, 976 struct extra_kernel_map *xm) 977 { 978 struct kmap *kmap; 979 struct map *map; 980 981 map = map__new2(xm->start, kernel); 982 if (!map) 983 return -1; 984 985 map->end = xm->end; 986 map->pgoff = xm->pgoff; 987 988 kmap = map__kmap(map); 989 990 kmap->kmaps = &machine->kmaps; 991 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 992 993 map_groups__insert(&machine->kmaps, map); 994 995 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 996 kmap->name, map->start, map->end); 997 998 map__put(map); 999 1000 return 0; 1001 } 1002 1003 static u64 find_entry_trampoline(struct dso *dso) 1004 { 1005 /* Duplicates are removed so lookup all aliases */ 1006 const char *syms[] = { 1007 "_entry_trampoline", 1008 "__entry_trampoline_start", 1009 "entry_SYSCALL_64_trampoline", 1010 }; 1011 struct symbol *sym = dso__first_symbol(dso); 1012 unsigned int i; 1013 1014 for (; sym; sym = dso__next_symbol(sym)) { 1015 if (sym->binding != STB_GLOBAL) 1016 continue; 1017 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1018 if (!strcmp(sym->name, syms[i])) 1019 return sym->start; 1020 } 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * These values can be used for kernels that do not have symbols for the entry 1028 * trampolines in kallsyms. 1029 */ 1030 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1031 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1032 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1033 1034 /* Map x86_64 PTI entry trampolines */ 1035 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1036 struct dso *kernel) 1037 { 1038 struct map_groups *kmaps = &machine->kmaps; 1039 struct maps *maps = &kmaps->maps; 1040 int nr_cpus_avail, cpu; 1041 bool found = false; 1042 struct map *map; 1043 u64 pgoff; 1044 1045 /* 1046 * In the vmlinux case, pgoff is a virtual address which must now be 1047 * mapped to a vmlinux offset. 1048 */ 1049 for (map = maps__first(maps); map; map = map__next(map)) { 1050 struct kmap *kmap = __map__kmap(map); 1051 struct map *dest_map; 1052 1053 if (!kmap || !is_entry_trampoline(kmap->name)) 1054 continue; 1055 1056 dest_map = map_groups__find(kmaps, map->pgoff); 1057 if (dest_map != map) 1058 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1059 found = true; 1060 } 1061 if (found || machine->trampolines_mapped) 1062 return 0; 1063 1064 pgoff = find_entry_trampoline(kernel); 1065 if (!pgoff) 1066 return 0; 1067 1068 nr_cpus_avail = machine__nr_cpus_avail(machine); 1069 1070 /* Add a 1 page map for each CPU's entry trampoline */ 1071 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1072 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1073 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1074 X86_64_ENTRY_TRAMPOLINE; 1075 struct extra_kernel_map xm = { 1076 .start = va, 1077 .end = va + page_size, 1078 .pgoff = pgoff, 1079 }; 1080 1081 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1082 1083 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1084 return -1; 1085 } 1086 1087 machine->trampolines_mapped = nr_cpus_avail; 1088 1089 return 0; 1090 } 1091 1092 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1093 struct dso *kernel __maybe_unused) 1094 { 1095 return 0; 1096 } 1097 1098 static int 1099 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1100 { 1101 struct kmap *kmap; 1102 struct map *map; 1103 1104 /* In case of renewal the kernel map, destroy previous one */ 1105 machine__destroy_kernel_maps(machine); 1106 1107 machine->vmlinux_map = map__new2(0, kernel); 1108 if (machine->vmlinux_map == NULL) 1109 return -1; 1110 1111 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1112 map = machine__kernel_map(machine); 1113 kmap = map__kmap(map); 1114 if (!kmap) 1115 return -1; 1116 1117 kmap->kmaps = &machine->kmaps; 1118 map_groups__insert(&machine->kmaps, map); 1119 1120 return 0; 1121 } 1122 1123 void machine__destroy_kernel_maps(struct machine *machine) 1124 { 1125 struct kmap *kmap; 1126 struct map *map = machine__kernel_map(machine); 1127 1128 if (map == NULL) 1129 return; 1130 1131 kmap = map__kmap(map); 1132 map_groups__remove(&machine->kmaps, map); 1133 if (kmap && kmap->ref_reloc_sym) { 1134 zfree((char **)&kmap->ref_reloc_sym->name); 1135 zfree(&kmap->ref_reloc_sym); 1136 } 1137 1138 map__zput(machine->vmlinux_map); 1139 } 1140 1141 int machines__create_guest_kernel_maps(struct machines *machines) 1142 { 1143 int ret = 0; 1144 struct dirent **namelist = NULL; 1145 int i, items = 0; 1146 char path[PATH_MAX]; 1147 pid_t pid; 1148 char *endp; 1149 1150 if (symbol_conf.default_guest_vmlinux_name || 1151 symbol_conf.default_guest_modules || 1152 symbol_conf.default_guest_kallsyms) { 1153 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1154 } 1155 1156 if (symbol_conf.guestmount) { 1157 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1158 if (items <= 0) 1159 return -ENOENT; 1160 for (i = 0; i < items; i++) { 1161 if (!isdigit(namelist[i]->d_name[0])) { 1162 /* Filter out . and .. */ 1163 continue; 1164 } 1165 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1166 if ((*endp != '\0') || 1167 (endp == namelist[i]->d_name) || 1168 (errno == ERANGE)) { 1169 pr_debug("invalid directory (%s). Skipping.\n", 1170 namelist[i]->d_name); 1171 continue; 1172 } 1173 sprintf(path, "%s/%s/proc/kallsyms", 1174 symbol_conf.guestmount, 1175 namelist[i]->d_name); 1176 ret = access(path, R_OK); 1177 if (ret) { 1178 pr_debug("Can't access file %s\n", path); 1179 goto failure; 1180 } 1181 machines__create_kernel_maps(machines, pid); 1182 } 1183 failure: 1184 free(namelist); 1185 } 1186 1187 return ret; 1188 } 1189 1190 void machines__destroy_kernel_maps(struct machines *machines) 1191 { 1192 struct rb_node *next = rb_first_cached(&machines->guests); 1193 1194 machine__destroy_kernel_maps(&machines->host); 1195 1196 while (next) { 1197 struct machine *pos = rb_entry(next, struct machine, rb_node); 1198 1199 next = rb_next(&pos->rb_node); 1200 rb_erase_cached(&pos->rb_node, &machines->guests); 1201 machine__delete(pos); 1202 } 1203 } 1204 1205 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1206 { 1207 struct machine *machine = machines__findnew(machines, pid); 1208 1209 if (machine == NULL) 1210 return -1; 1211 1212 return machine__create_kernel_maps(machine); 1213 } 1214 1215 int machine__load_kallsyms(struct machine *machine, const char *filename) 1216 { 1217 struct map *map = machine__kernel_map(machine); 1218 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1219 1220 if (ret > 0) { 1221 dso__set_loaded(map->dso); 1222 /* 1223 * Since /proc/kallsyms will have multiple sessions for the 1224 * kernel, with modules between them, fixup the end of all 1225 * sections. 1226 */ 1227 map_groups__fixup_end(&machine->kmaps); 1228 } 1229 1230 return ret; 1231 } 1232 1233 int machine__load_vmlinux_path(struct machine *machine) 1234 { 1235 struct map *map = machine__kernel_map(machine); 1236 int ret = dso__load_vmlinux_path(map->dso, map); 1237 1238 if (ret > 0) 1239 dso__set_loaded(map->dso); 1240 1241 return ret; 1242 } 1243 1244 static char *get_kernel_version(const char *root_dir) 1245 { 1246 char version[PATH_MAX]; 1247 FILE *file; 1248 char *name, *tmp; 1249 const char *prefix = "Linux version "; 1250 1251 sprintf(version, "%s/proc/version", root_dir); 1252 file = fopen(version, "r"); 1253 if (!file) 1254 return NULL; 1255 1256 tmp = fgets(version, sizeof(version), file); 1257 fclose(file); 1258 if (!tmp) 1259 return NULL; 1260 1261 name = strstr(version, prefix); 1262 if (!name) 1263 return NULL; 1264 name += strlen(prefix); 1265 tmp = strchr(name, ' '); 1266 if (tmp) 1267 *tmp = '\0'; 1268 1269 return strdup(name); 1270 } 1271 1272 static bool is_kmod_dso(struct dso *dso) 1273 { 1274 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1275 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1276 } 1277 1278 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1279 struct kmod_path *m) 1280 { 1281 char *long_name; 1282 struct map *map = map_groups__find_by_name(mg, m->name); 1283 1284 if (map == NULL) 1285 return 0; 1286 1287 long_name = strdup(path); 1288 if (long_name == NULL) 1289 return -ENOMEM; 1290 1291 dso__set_long_name(map->dso, long_name, true); 1292 dso__kernel_module_get_build_id(map->dso, ""); 1293 1294 /* 1295 * Full name could reveal us kmod compression, so 1296 * we need to update the symtab_type if needed. 1297 */ 1298 if (m->comp && is_kmod_dso(map->dso)) { 1299 map->dso->symtab_type++; 1300 map->dso->comp = m->comp; 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1307 const char *dir_name, int depth) 1308 { 1309 struct dirent *dent; 1310 DIR *dir = opendir(dir_name); 1311 int ret = 0; 1312 1313 if (!dir) { 1314 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1315 return -1; 1316 } 1317 1318 while ((dent = readdir(dir)) != NULL) { 1319 char path[PATH_MAX]; 1320 struct stat st; 1321 1322 /*sshfs might return bad dent->d_type, so we have to stat*/ 1323 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1324 if (stat(path, &st)) 1325 continue; 1326 1327 if (S_ISDIR(st.st_mode)) { 1328 if (!strcmp(dent->d_name, ".") || 1329 !strcmp(dent->d_name, "..")) 1330 continue; 1331 1332 /* Do not follow top-level source and build symlinks */ 1333 if (depth == 0) { 1334 if (!strcmp(dent->d_name, "source") || 1335 !strcmp(dent->d_name, "build")) 1336 continue; 1337 } 1338 1339 ret = map_groups__set_modules_path_dir(mg, path, 1340 depth + 1); 1341 if (ret < 0) 1342 goto out; 1343 } else { 1344 struct kmod_path m; 1345 1346 ret = kmod_path__parse_name(&m, dent->d_name); 1347 if (ret) 1348 goto out; 1349 1350 if (m.kmod) 1351 ret = map_groups__set_module_path(mg, path, &m); 1352 1353 zfree(&m.name); 1354 1355 if (ret) 1356 goto out; 1357 } 1358 } 1359 1360 out: 1361 closedir(dir); 1362 return ret; 1363 } 1364 1365 static int machine__set_modules_path(struct machine *machine) 1366 { 1367 char *version; 1368 char modules_path[PATH_MAX]; 1369 1370 version = get_kernel_version(machine->root_dir); 1371 if (!version) 1372 return -1; 1373 1374 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1375 machine->root_dir, version); 1376 free(version); 1377 1378 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1379 } 1380 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1381 u64 *size __maybe_unused, 1382 const char *name __maybe_unused) 1383 { 1384 return 0; 1385 } 1386 1387 static int machine__create_module(void *arg, const char *name, u64 start, 1388 u64 size) 1389 { 1390 struct machine *machine = arg; 1391 struct map *map; 1392 1393 if (arch__fix_module_text_start(&start, &size, name) < 0) 1394 return -1; 1395 1396 map = machine__findnew_module_map(machine, start, name); 1397 if (map == NULL) 1398 return -1; 1399 map->end = start + size; 1400 1401 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1402 1403 return 0; 1404 } 1405 1406 static int machine__create_modules(struct machine *machine) 1407 { 1408 const char *modules; 1409 char path[PATH_MAX]; 1410 1411 if (machine__is_default_guest(machine)) { 1412 modules = symbol_conf.default_guest_modules; 1413 } else { 1414 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1415 modules = path; 1416 } 1417 1418 if (symbol__restricted_filename(modules, "/proc/modules")) 1419 return -1; 1420 1421 if (modules__parse(modules, machine, machine__create_module)) 1422 return -1; 1423 1424 if (!machine__set_modules_path(machine)) 1425 return 0; 1426 1427 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1428 1429 return 0; 1430 } 1431 1432 static void machine__set_kernel_mmap(struct machine *machine, 1433 u64 start, u64 end) 1434 { 1435 machine->vmlinux_map->start = start; 1436 machine->vmlinux_map->end = end; 1437 /* 1438 * Be a bit paranoid here, some perf.data file came with 1439 * a zero sized synthesized MMAP event for the kernel. 1440 */ 1441 if (start == 0 && end == 0) 1442 machine->vmlinux_map->end = ~0ULL; 1443 } 1444 1445 static void machine__update_kernel_mmap(struct machine *machine, 1446 u64 start, u64 end) 1447 { 1448 struct map *map = machine__kernel_map(machine); 1449 1450 map__get(map); 1451 map_groups__remove(&machine->kmaps, map); 1452 1453 machine__set_kernel_mmap(machine, start, end); 1454 1455 map_groups__insert(&machine->kmaps, map); 1456 map__put(map); 1457 } 1458 1459 int machine__create_kernel_maps(struct machine *machine) 1460 { 1461 struct dso *kernel = machine__get_kernel(machine); 1462 const char *name = NULL; 1463 struct map *map; 1464 u64 start = 0, end = ~0ULL; 1465 int ret; 1466 1467 if (kernel == NULL) 1468 return -1; 1469 1470 ret = __machine__create_kernel_maps(machine, kernel); 1471 if (ret < 0) 1472 goto out_put; 1473 1474 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1475 if (machine__is_host(machine)) 1476 pr_debug("Problems creating module maps, " 1477 "continuing anyway...\n"); 1478 else 1479 pr_debug("Problems creating module maps for guest %d, " 1480 "continuing anyway...\n", machine->pid); 1481 } 1482 1483 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1484 if (name && 1485 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1486 machine__destroy_kernel_maps(machine); 1487 ret = -1; 1488 goto out_put; 1489 } 1490 1491 /* 1492 * we have a real start address now, so re-order the kmaps 1493 * assume it's the last in the kmaps 1494 */ 1495 machine__update_kernel_mmap(machine, start, end); 1496 } 1497 1498 if (machine__create_extra_kernel_maps(machine, kernel)) 1499 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1500 1501 if (end == ~0ULL) { 1502 /* update end address of the kernel map using adjacent module address */ 1503 map = map__next(machine__kernel_map(machine)); 1504 if (map) 1505 machine__set_kernel_mmap(machine, start, map->start); 1506 } 1507 1508 out_put: 1509 dso__put(kernel); 1510 return ret; 1511 } 1512 1513 static bool machine__uses_kcore(struct machine *machine) 1514 { 1515 struct dso *dso; 1516 1517 list_for_each_entry(dso, &machine->dsos.head, node) { 1518 if (dso__is_kcore(dso)) 1519 return true; 1520 } 1521 1522 return false; 1523 } 1524 1525 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1526 union perf_event *event) 1527 { 1528 return machine__is(machine, "x86_64") && 1529 is_entry_trampoline(event->mmap.filename); 1530 } 1531 1532 static int machine__process_extra_kernel_map(struct machine *machine, 1533 union perf_event *event) 1534 { 1535 struct map *kernel_map = machine__kernel_map(machine); 1536 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1537 struct extra_kernel_map xm = { 1538 .start = event->mmap.start, 1539 .end = event->mmap.start + event->mmap.len, 1540 .pgoff = event->mmap.pgoff, 1541 }; 1542 1543 if (kernel == NULL) 1544 return -1; 1545 1546 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1547 1548 return machine__create_extra_kernel_map(machine, kernel, &xm); 1549 } 1550 1551 static int machine__process_kernel_mmap_event(struct machine *machine, 1552 union perf_event *event) 1553 { 1554 struct map *map; 1555 enum dso_kernel_type kernel_type; 1556 bool is_kernel_mmap; 1557 1558 /* If we have maps from kcore then we do not need or want any others */ 1559 if (machine__uses_kcore(machine)) 1560 return 0; 1561 1562 if (machine__is_host(machine)) 1563 kernel_type = DSO_TYPE_KERNEL; 1564 else 1565 kernel_type = DSO_TYPE_GUEST_KERNEL; 1566 1567 is_kernel_mmap = memcmp(event->mmap.filename, 1568 machine->mmap_name, 1569 strlen(machine->mmap_name) - 1) == 0; 1570 if (event->mmap.filename[0] == '/' || 1571 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1572 map = machine__findnew_module_map(machine, event->mmap.start, 1573 event->mmap.filename); 1574 if (map == NULL) 1575 goto out_problem; 1576 1577 map->end = map->start + event->mmap.len; 1578 } else if (is_kernel_mmap) { 1579 const char *symbol_name = (event->mmap.filename + 1580 strlen(machine->mmap_name)); 1581 /* 1582 * Should be there already, from the build-id table in 1583 * the header. 1584 */ 1585 struct dso *kernel = NULL; 1586 struct dso *dso; 1587 1588 down_read(&machine->dsos.lock); 1589 1590 list_for_each_entry(dso, &machine->dsos.head, node) { 1591 1592 /* 1593 * The cpumode passed to is_kernel_module is not the 1594 * cpumode of *this* event. If we insist on passing 1595 * correct cpumode to is_kernel_module, we should 1596 * record the cpumode when we adding this dso to the 1597 * linked list. 1598 * 1599 * However we don't really need passing correct 1600 * cpumode. We know the correct cpumode must be kernel 1601 * mode (if not, we should not link it onto kernel_dsos 1602 * list). 1603 * 1604 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1605 * is_kernel_module() treats it as a kernel cpumode. 1606 */ 1607 1608 if (!dso->kernel || 1609 is_kernel_module(dso->long_name, 1610 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1611 continue; 1612 1613 1614 kernel = dso; 1615 break; 1616 } 1617 1618 up_read(&machine->dsos.lock); 1619 1620 if (kernel == NULL) 1621 kernel = machine__findnew_dso(machine, machine->mmap_name); 1622 if (kernel == NULL) 1623 goto out_problem; 1624 1625 kernel->kernel = kernel_type; 1626 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1627 dso__put(kernel); 1628 goto out_problem; 1629 } 1630 1631 if (strstr(kernel->long_name, "vmlinux")) 1632 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1633 1634 machine__update_kernel_mmap(machine, event->mmap.start, 1635 event->mmap.start + event->mmap.len); 1636 1637 /* 1638 * Avoid using a zero address (kptr_restrict) for the ref reloc 1639 * symbol. Effectively having zero here means that at record 1640 * time /proc/sys/kernel/kptr_restrict was non zero. 1641 */ 1642 if (event->mmap.pgoff != 0) { 1643 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1644 symbol_name, 1645 event->mmap.pgoff); 1646 } 1647 1648 if (machine__is_default_guest(machine)) { 1649 /* 1650 * preload dso of guest kernel and modules 1651 */ 1652 dso__load(kernel, machine__kernel_map(machine)); 1653 } 1654 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1655 return machine__process_extra_kernel_map(machine, event); 1656 } 1657 return 0; 1658 out_problem: 1659 return -1; 1660 } 1661 1662 int machine__process_mmap2_event(struct machine *machine, 1663 union perf_event *event, 1664 struct perf_sample *sample) 1665 { 1666 struct thread *thread; 1667 struct map *map; 1668 int ret = 0; 1669 1670 if (dump_trace) 1671 perf_event__fprintf_mmap2(event, stdout); 1672 1673 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1674 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1675 ret = machine__process_kernel_mmap_event(machine, event); 1676 if (ret < 0) 1677 goto out_problem; 1678 return 0; 1679 } 1680 1681 thread = machine__findnew_thread(machine, event->mmap2.pid, 1682 event->mmap2.tid); 1683 if (thread == NULL) 1684 goto out_problem; 1685 1686 map = map__new(machine, event->mmap2.start, 1687 event->mmap2.len, event->mmap2.pgoff, 1688 event->mmap2.maj, 1689 event->mmap2.min, event->mmap2.ino, 1690 event->mmap2.ino_generation, 1691 event->mmap2.prot, 1692 event->mmap2.flags, 1693 event->mmap2.filename, thread); 1694 1695 if (map == NULL) 1696 goto out_problem_map; 1697 1698 ret = thread__insert_map(thread, map); 1699 if (ret) 1700 goto out_problem_insert; 1701 1702 thread__put(thread); 1703 map__put(map); 1704 return 0; 1705 1706 out_problem_insert: 1707 map__put(map); 1708 out_problem_map: 1709 thread__put(thread); 1710 out_problem: 1711 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1712 return 0; 1713 } 1714 1715 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1716 struct perf_sample *sample) 1717 { 1718 struct thread *thread; 1719 struct map *map; 1720 u32 prot = 0; 1721 int ret = 0; 1722 1723 if (dump_trace) 1724 perf_event__fprintf_mmap(event, stdout); 1725 1726 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1727 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1728 ret = machine__process_kernel_mmap_event(machine, event); 1729 if (ret < 0) 1730 goto out_problem; 1731 return 0; 1732 } 1733 1734 thread = machine__findnew_thread(machine, event->mmap.pid, 1735 event->mmap.tid); 1736 if (thread == NULL) 1737 goto out_problem; 1738 1739 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1740 prot = PROT_EXEC; 1741 1742 map = map__new(machine, event->mmap.start, 1743 event->mmap.len, event->mmap.pgoff, 1744 0, 0, 0, 0, prot, 0, 1745 event->mmap.filename, 1746 thread); 1747 1748 if (map == NULL) 1749 goto out_problem_map; 1750 1751 ret = thread__insert_map(thread, map); 1752 if (ret) 1753 goto out_problem_insert; 1754 1755 thread__put(thread); 1756 map__put(map); 1757 return 0; 1758 1759 out_problem_insert: 1760 map__put(map); 1761 out_problem_map: 1762 thread__put(thread); 1763 out_problem: 1764 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1765 return 0; 1766 } 1767 1768 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1769 { 1770 struct threads *threads = machine__threads(machine, th->tid); 1771 1772 if (threads->last_match == th) 1773 threads__set_last_match(threads, NULL); 1774 1775 if (lock) 1776 down_write(&threads->lock); 1777 1778 BUG_ON(refcount_read(&th->refcnt) == 0); 1779 1780 rb_erase_cached(&th->rb_node, &threads->entries); 1781 RB_CLEAR_NODE(&th->rb_node); 1782 --threads->nr; 1783 /* 1784 * Move it first to the dead_threads list, then drop the reference, 1785 * if this is the last reference, then the thread__delete destructor 1786 * will be called and we will remove it from the dead_threads list. 1787 */ 1788 list_add_tail(&th->node, &threads->dead); 1789 1790 /* 1791 * We need to do the put here because if this is the last refcount, 1792 * then we will be touching the threads->dead head when removing the 1793 * thread. 1794 */ 1795 thread__put(th); 1796 1797 if (lock) 1798 up_write(&threads->lock); 1799 } 1800 1801 void machine__remove_thread(struct machine *machine, struct thread *th) 1802 { 1803 return __machine__remove_thread(machine, th, true); 1804 } 1805 1806 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1807 struct perf_sample *sample) 1808 { 1809 struct thread *thread = machine__find_thread(machine, 1810 event->fork.pid, 1811 event->fork.tid); 1812 struct thread *parent = machine__findnew_thread(machine, 1813 event->fork.ppid, 1814 event->fork.ptid); 1815 bool do_maps_clone = true; 1816 int err = 0; 1817 1818 if (dump_trace) 1819 perf_event__fprintf_task(event, stdout); 1820 1821 /* 1822 * There may be an existing thread that is not actually the parent, 1823 * either because we are processing events out of order, or because the 1824 * (fork) event that would have removed the thread was lost. Assume the 1825 * latter case and continue on as best we can. 1826 */ 1827 if (parent->pid_ != (pid_t)event->fork.ppid) { 1828 dump_printf("removing erroneous parent thread %d/%d\n", 1829 parent->pid_, parent->tid); 1830 machine__remove_thread(machine, parent); 1831 thread__put(parent); 1832 parent = machine__findnew_thread(machine, event->fork.ppid, 1833 event->fork.ptid); 1834 } 1835 1836 /* if a thread currently exists for the thread id remove it */ 1837 if (thread != NULL) { 1838 machine__remove_thread(machine, thread); 1839 thread__put(thread); 1840 } 1841 1842 thread = machine__findnew_thread(machine, event->fork.pid, 1843 event->fork.tid); 1844 /* 1845 * When synthesizing FORK events, we are trying to create thread 1846 * objects for the already running tasks on the machine. 1847 * 1848 * Normally, for a kernel FORK event, we want to clone the parent's 1849 * maps because that is what the kernel just did. 1850 * 1851 * But when synthesizing, this should not be done. If we do, we end up 1852 * with overlapping maps as we process the sythesized MMAP2 events that 1853 * get delivered shortly thereafter. 1854 * 1855 * Use the FORK event misc flags in an internal way to signal this 1856 * situation, so we can elide the map clone when appropriate. 1857 */ 1858 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1859 do_maps_clone = false; 1860 1861 if (thread == NULL || parent == NULL || 1862 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1863 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1864 err = -1; 1865 } 1866 thread__put(thread); 1867 thread__put(parent); 1868 1869 return err; 1870 } 1871 1872 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1873 struct perf_sample *sample __maybe_unused) 1874 { 1875 struct thread *thread = machine__find_thread(machine, 1876 event->fork.pid, 1877 event->fork.tid); 1878 1879 if (dump_trace) 1880 perf_event__fprintf_task(event, stdout); 1881 1882 if (thread != NULL) { 1883 thread__exited(thread); 1884 thread__put(thread); 1885 } 1886 1887 return 0; 1888 } 1889 1890 int machine__process_event(struct machine *machine, union perf_event *event, 1891 struct perf_sample *sample) 1892 { 1893 int ret; 1894 1895 switch (event->header.type) { 1896 case PERF_RECORD_COMM: 1897 ret = machine__process_comm_event(machine, event, sample); break; 1898 case PERF_RECORD_MMAP: 1899 ret = machine__process_mmap_event(machine, event, sample); break; 1900 case PERF_RECORD_NAMESPACES: 1901 ret = machine__process_namespaces_event(machine, event, sample); break; 1902 case PERF_RECORD_MMAP2: 1903 ret = machine__process_mmap2_event(machine, event, sample); break; 1904 case PERF_RECORD_FORK: 1905 ret = machine__process_fork_event(machine, event, sample); break; 1906 case PERF_RECORD_EXIT: 1907 ret = machine__process_exit_event(machine, event, sample); break; 1908 case PERF_RECORD_LOST: 1909 ret = machine__process_lost_event(machine, event, sample); break; 1910 case PERF_RECORD_AUX: 1911 ret = machine__process_aux_event(machine, event); break; 1912 case PERF_RECORD_ITRACE_START: 1913 ret = machine__process_itrace_start_event(machine, event); break; 1914 case PERF_RECORD_LOST_SAMPLES: 1915 ret = machine__process_lost_samples_event(machine, event, sample); break; 1916 case PERF_RECORD_SWITCH: 1917 case PERF_RECORD_SWITCH_CPU_WIDE: 1918 ret = machine__process_switch_event(machine, event); break; 1919 case PERF_RECORD_KSYMBOL: 1920 ret = machine__process_ksymbol(machine, event, sample); break; 1921 case PERF_RECORD_BPF_EVENT: 1922 ret = machine__process_bpf_event(machine, event, sample); break; 1923 default: 1924 ret = -1; 1925 break; 1926 } 1927 1928 return ret; 1929 } 1930 1931 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1932 { 1933 if (!regexec(regex, sym->name, 0, NULL, 0)) 1934 return 1; 1935 return 0; 1936 } 1937 1938 static void ip__resolve_ams(struct thread *thread, 1939 struct addr_map_symbol *ams, 1940 u64 ip) 1941 { 1942 struct addr_location al; 1943 1944 memset(&al, 0, sizeof(al)); 1945 /* 1946 * We cannot use the header.misc hint to determine whether a 1947 * branch stack address is user, kernel, guest, hypervisor. 1948 * Branches may straddle the kernel/user/hypervisor boundaries. 1949 * Thus, we have to try consecutively until we find a match 1950 * or else, the symbol is unknown 1951 */ 1952 thread__find_cpumode_addr_location(thread, ip, &al); 1953 1954 ams->addr = ip; 1955 ams->al_addr = al.addr; 1956 ams->sym = al.sym; 1957 ams->map = al.map; 1958 ams->phys_addr = 0; 1959 } 1960 1961 static void ip__resolve_data(struct thread *thread, 1962 u8 m, struct addr_map_symbol *ams, 1963 u64 addr, u64 phys_addr) 1964 { 1965 struct addr_location al; 1966 1967 memset(&al, 0, sizeof(al)); 1968 1969 thread__find_symbol(thread, m, addr, &al); 1970 1971 ams->addr = addr; 1972 ams->al_addr = al.addr; 1973 ams->sym = al.sym; 1974 ams->map = al.map; 1975 ams->phys_addr = phys_addr; 1976 } 1977 1978 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1979 struct addr_location *al) 1980 { 1981 struct mem_info *mi = mem_info__new(); 1982 1983 if (!mi) 1984 return NULL; 1985 1986 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1987 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1988 sample->addr, sample->phys_addr); 1989 mi->data_src.val = sample->data_src; 1990 1991 return mi; 1992 } 1993 1994 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1995 { 1996 char *srcline = NULL; 1997 1998 if (!map || callchain_param.key == CCKEY_FUNCTION) 1999 return srcline; 2000 2001 srcline = srcline__tree_find(&map->dso->srclines, ip); 2002 if (!srcline) { 2003 bool show_sym = false; 2004 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2005 2006 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2007 sym, show_sym, show_addr, ip); 2008 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2009 } 2010 2011 return srcline; 2012 } 2013 2014 struct iterations { 2015 int nr_loop_iter; 2016 u64 cycles; 2017 }; 2018 2019 static int add_callchain_ip(struct thread *thread, 2020 struct callchain_cursor *cursor, 2021 struct symbol **parent, 2022 struct addr_location *root_al, 2023 u8 *cpumode, 2024 u64 ip, 2025 bool branch, 2026 struct branch_flags *flags, 2027 struct iterations *iter, 2028 u64 branch_from) 2029 { 2030 struct addr_location al; 2031 int nr_loop_iter = 0; 2032 u64 iter_cycles = 0; 2033 const char *srcline = NULL; 2034 2035 al.filtered = 0; 2036 al.sym = NULL; 2037 if (!cpumode) { 2038 thread__find_cpumode_addr_location(thread, ip, &al); 2039 } else { 2040 if (ip >= PERF_CONTEXT_MAX) { 2041 switch (ip) { 2042 case PERF_CONTEXT_HV: 2043 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2044 break; 2045 case PERF_CONTEXT_KERNEL: 2046 *cpumode = PERF_RECORD_MISC_KERNEL; 2047 break; 2048 case PERF_CONTEXT_USER: 2049 *cpumode = PERF_RECORD_MISC_USER; 2050 break; 2051 default: 2052 pr_debug("invalid callchain context: " 2053 "%"PRId64"\n", (s64) ip); 2054 /* 2055 * It seems the callchain is corrupted. 2056 * Discard all. 2057 */ 2058 callchain_cursor_reset(cursor); 2059 return 1; 2060 } 2061 return 0; 2062 } 2063 thread__find_symbol(thread, *cpumode, ip, &al); 2064 } 2065 2066 if (al.sym != NULL) { 2067 if (perf_hpp_list.parent && !*parent && 2068 symbol__match_regex(al.sym, &parent_regex)) 2069 *parent = al.sym; 2070 else if (have_ignore_callees && root_al && 2071 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2072 /* Treat this symbol as the root, 2073 forgetting its callees. */ 2074 *root_al = al; 2075 callchain_cursor_reset(cursor); 2076 } 2077 } 2078 2079 if (symbol_conf.hide_unresolved && al.sym == NULL) 2080 return 0; 2081 2082 if (iter) { 2083 nr_loop_iter = iter->nr_loop_iter; 2084 iter_cycles = iter->cycles; 2085 } 2086 2087 srcline = callchain_srcline(al.map, al.sym, al.addr); 2088 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2089 branch, flags, nr_loop_iter, 2090 iter_cycles, branch_from, srcline); 2091 } 2092 2093 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2094 struct addr_location *al) 2095 { 2096 unsigned int i; 2097 const struct branch_stack *bs = sample->branch_stack; 2098 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2099 2100 if (!bi) 2101 return NULL; 2102 2103 for (i = 0; i < bs->nr; i++) { 2104 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2105 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2106 bi[i].flags = bs->entries[i].flags; 2107 } 2108 return bi; 2109 } 2110 2111 static void save_iterations(struct iterations *iter, 2112 struct branch_entry *be, int nr) 2113 { 2114 int i; 2115 2116 iter->nr_loop_iter++; 2117 iter->cycles = 0; 2118 2119 for (i = 0; i < nr; i++) 2120 iter->cycles += be[i].flags.cycles; 2121 } 2122 2123 #define CHASHSZ 127 2124 #define CHASHBITS 7 2125 #define NO_ENTRY 0xff 2126 2127 #define PERF_MAX_BRANCH_DEPTH 127 2128 2129 /* Remove loops. */ 2130 static int remove_loops(struct branch_entry *l, int nr, 2131 struct iterations *iter) 2132 { 2133 int i, j, off; 2134 unsigned char chash[CHASHSZ]; 2135 2136 memset(chash, NO_ENTRY, sizeof(chash)); 2137 2138 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2139 2140 for (i = 0; i < nr; i++) { 2141 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2142 2143 /* no collision handling for now */ 2144 if (chash[h] == NO_ENTRY) { 2145 chash[h] = i; 2146 } else if (l[chash[h]].from == l[i].from) { 2147 bool is_loop = true; 2148 /* check if it is a real loop */ 2149 off = 0; 2150 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2151 if (l[j].from != l[i + off].from) { 2152 is_loop = false; 2153 break; 2154 } 2155 if (is_loop) { 2156 j = nr - (i + off); 2157 if (j > 0) { 2158 save_iterations(iter + i + off, 2159 l + i, off); 2160 2161 memmove(iter + i, iter + i + off, 2162 j * sizeof(*iter)); 2163 2164 memmove(l + i, l + i + off, 2165 j * sizeof(*l)); 2166 } 2167 2168 nr -= off; 2169 } 2170 } 2171 } 2172 return nr; 2173 } 2174 2175 /* 2176 * Recolve LBR callstack chain sample 2177 * Return: 2178 * 1 on success get LBR callchain information 2179 * 0 no available LBR callchain information, should try fp 2180 * negative error code on other errors. 2181 */ 2182 static int resolve_lbr_callchain_sample(struct thread *thread, 2183 struct callchain_cursor *cursor, 2184 struct perf_sample *sample, 2185 struct symbol **parent, 2186 struct addr_location *root_al, 2187 int max_stack) 2188 { 2189 struct ip_callchain *chain = sample->callchain; 2190 int chain_nr = min(max_stack, (int)chain->nr), i; 2191 u8 cpumode = PERF_RECORD_MISC_USER; 2192 u64 ip, branch_from = 0; 2193 2194 for (i = 0; i < chain_nr; i++) { 2195 if (chain->ips[i] == PERF_CONTEXT_USER) 2196 break; 2197 } 2198 2199 /* LBR only affects the user callchain */ 2200 if (i != chain_nr) { 2201 struct branch_stack *lbr_stack = sample->branch_stack; 2202 int lbr_nr = lbr_stack->nr, j, k; 2203 bool branch; 2204 struct branch_flags *flags; 2205 /* 2206 * LBR callstack can only get user call chain. 2207 * The mix_chain_nr is kernel call chain 2208 * number plus LBR user call chain number. 2209 * i is kernel call chain number, 2210 * 1 is PERF_CONTEXT_USER, 2211 * lbr_nr + 1 is the user call chain number. 2212 * For details, please refer to the comments 2213 * in callchain__printf 2214 */ 2215 int mix_chain_nr = i + 1 + lbr_nr + 1; 2216 2217 for (j = 0; j < mix_chain_nr; j++) { 2218 int err; 2219 branch = false; 2220 flags = NULL; 2221 2222 if (callchain_param.order == ORDER_CALLEE) { 2223 if (j < i + 1) 2224 ip = chain->ips[j]; 2225 else if (j > i + 1) { 2226 k = j - i - 2; 2227 ip = lbr_stack->entries[k].from; 2228 branch = true; 2229 flags = &lbr_stack->entries[k].flags; 2230 } else { 2231 ip = lbr_stack->entries[0].to; 2232 branch = true; 2233 flags = &lbr_stack->entries[0].flags; 2234 branch_from = 2235 lbr_stack->entries[0].from; 2236 } 2237 } else { 2238 if (j < lbr_nr) { 2239 k = lbr_nr - j - 1; 2240 ip = lbr_stack->entries[k].from; 2241 branch = true; 2242 flags = &lbr_stack->entries[k].flags; 2243 } 2244 else if (j > lbr_nr) 2245 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2246 else { 2247 ip = lbr_stack->entries[0].to; 2248 branch = true; 2249 flags = &lbr_stack->entries[0].flags; 2250 branch_from = 2251 lbr_stack->entries[0].from; 2252 } 2253 } 2254 2255 err = add_callchain_ip(thread, cursor, parent, 2256 root_al, &cpumode, ip, 2257 branch, flags, NULL, 2258 branch_from); 2259 if (err) 2260 return (err < 0) ? err : 0; 2261 } 2262 return 1; 2263 } 2264 2265 return 0; 2266 } 2267 2268 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2269 struct callchain_cursor *cursor, 2270 struct symbol **parent, 2271 struct addr_location *root_al, 2272 u8 *cpumode, int ent) 2273 { 2274 int err = 0; 2275 2276 while (--ent >= 0) { 2277 u64 ip = chain->ips[ent]; 2278 2279 if (ip >= PERF_CONTEXT_MAX) { 2280 err = add_callchain_ip(thread, cursor, parent, 2281 root_al, cpumode, ip, 2282 false, NULL, NULL, 0); 2283 break; 2284 } 2285 } 2286 return err; 2287 } 2288 2289 static int thread__resolve_callchain_sample(struct thread *thread, 2290 struct callchain_cursor *cursor, 2291 struct perf_evsel *evsel, 2292 struct perf_sample *sample, 2293 struct symbol **parent, 2294 struct addr_location *root_al, 2295 int max_stack) 2296 { 2297 struct branch_stack *branch = sample->branch_stack; 2298 struct ip_callchain *chain = sample->callchain; 2299 int chain_nr = 0; 2300 u8 cpumode = PERF_RECORD_MISC_USER; 2301 int i, j, err, nr_entries; 2302 int skip_idx = -1; 2303 int first_call = 0; 2304 2305 if (chain) 2306 chain_nr = chain->nr; 2307 2308 if (perf_evsel__has_branch_callstack(evsel)) { 2309 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2310 root_al, max_stack); 2311 if (err) 2312 return (err < 0) ? err : 0; 2313 } 2314 2315 /* 2316 * Based on DWARF debug information, some architectures skip 2317 * a callchain entry saved by the kernel. 2318 */ 2319 skip_idx = arch_skip_callchain_idx(thread, chain); 2320 2321 /* 2322 * Add branches to call stack for easier browsing. This gives 2323 * more context for a sample than just the callers. 2324 * 2325 * This uses individual histograms of paths compared to the 2326 * aggregated histograms the normal LBR mode uses. 2327 * 2328 * Limitations for now: 2329 * - No extra filters 2330 * - No annotations (should annotate somehow) 2331 */ 2332 2333 if (branch && callchain_param.branch_callstack) { 2334 int nr = min(max_stack, (int)branch->nr); 2335 struct branch_entry be[nr]; 2336 struct iterations iter[nr]; 2337 2338 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2339 pr_warning("corrupted branch chain. skipping...\n"); 2340 goto check_calls; 2341 } 2342 2343 for (i = 0; i < nr; i++) { 2344 if (callchain_param.order == ORDER_CALLEE) { 2345 be[i] = branch->entries[i]; 2346 2347 if (chain == NULL) 2348 continue; 2349 2350 /* 2351 * Check for overlap into the callchain. 2352 * The return address is one off compared to 2353 * the branch entry. To adjust for this 2354 * assume the calling instruction is not longer 2355 * than 8 bytes. 2356 */ 2357 if (i == skip_idx || 2358 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2359 first_call++; 2360 else if (be[i].from < chain->ips[first_call] && 2361 be[i].from >= chain->ips[first_call] - 8) 2362 first_call++; 2363 } else 2364 be[i] = branch->entries[branch->nr - i - 1]; 2365 } 2366 2367 memset(iter, 0, sizeof(struct iterations) * nr); 2368 nr = remove_loops(be, nr, iter); 2369 2370 for (i = 0; i < nr; i++) { 2371 err = add_callchain_ip(thread, cursor, parent, 2372 root_al, 2373 NULL, be[i].to, 2374 true, &be[i].flags, 2375 NULL, be[i].from); 2376 2377 if (!err) 2378 err = add_callchain_ip(thread, cursor, parent, root_al, 2379 NULL, be[i].from, 2380 true, &be[i].flags, 2381 &iter[i], 0); 2382 if (err == -EINVAL) 2383 break; 2384 if (err) 2385 return err; 2386 } 2387 2388 if (chain_nr == 0) 2389 return 0; 2390 2391 chain_nr -= nr; 2392 } 2393 2394 check_calls: 2395 if (callchain_param.order != ORDER_CALLEE) { 2396 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2397 &cpumode, chain->nr - first_call); 2398 if (err) 2399 return (err < 0) ? err : 0; 2400 } 2401 for (i = first_call, nr_entries = 0; 2402 i < chain_nr && nr_entries < max_stack; i++) { 2403 u64 ip; 2404 2405 if (callchain_param.order == ORDER_CALLEE) 2406 j = i; 2407 else 2408 j = chain->nr - i - 1; 2409 2410 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2411 if (j == skip_idx) 2412 continue; 2413 #endif 2414 ip = chain->ips[j]; 2415 if (ip < PERF_CONTEXT_MAX) 2416 ++nr_entries; 2417 else if (callchain_param.order != ORDER_CALLEE) { 2418 err = find_prev_cpumode(chain, thread, cursor, parent, 2419 root_al, &cpumode, j); 2420 if (err) 2421 return (err < 0) ? err : 0; 2422 continue; 2423 } 2424 2425 err = add_callchain_ip(thread, cursor, parent, 2426 root_al, &cpumode, ip, 2427 false, NULL, NULL, 0); 2428 2429 if (err) 2430 return (err < 0) ? err : 0; 2431 } 2432 2433 return 0; 2434 } 2435 2436 static int append_inlines(struct callchain_cursor *cursor, 2437 struct map *map, struct symbol *sym, u64 ip) 2438 { 2439 struct inline_node *inline_node; 2440 struct inline_list *ilist; 2441 u64 addr; 2442 int ret = 1; 2443 2444 if (!symbol_conf.inline_name || !map || !sym) 2445 return ret; 2446 2447 addr = map__map_ip(map, ip); 2448 addr = map__rip_2objdump(map, addr); 2449 2450 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2451 if (!inline_node) { 2452 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2453 if (!inline_node) 2454 return ret; 2455 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2456 } 2457 2458 list_for_each_entry(ilist, &inline_node->val, list) { 2459 ret = callchain_cursor_append(cursor, ip, map, 2460 ilist->symbol, false, 2461 NULL, 0, 0, 0, ilist->srcline); 2462 2463 if (ret != 0) 2464 return ret; 2465 } 2466 2467 return ret; 2468 } 2469 2470 static int unwind_entry(struct unwind_entry *entry, void *arg) 2471 { 2472 struct callchain_cursor *cursor = arg; 2473 const char *srcline = NULL; 2474 u64 addr = entry->ip; 2475 2476 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2477 return 0; 2478 2479 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2480 return 0; 2481 2482 /* 2483 * Convert entry->ip from a virtual address to an offset in 2484 * its corresponding binary. 2485 */ 2486 if (entry->map) 2487 addr = map__map_ip(entry->map, entry->ip); 2488 2489 srcline = callchain_srcline(entry->map, entry->sym, addr); 2490 return callchain_cursor_append(cursor, entry->ip, 2491 entry->map, entry->sym, 2492 false, NULL, 0, 0, 0, srcline); 2493 } 2494 2495 static int thread__resolve_callchain_unwind(struct thread *thread, 2496 struct callchain_cursor *cursor, 2497 struct perf_evsel *evsel, 2498 struct perf_sample *sample, 2499 int max_stack) 2500 { 2501 /* Can we do dwarf post unwind? */ 2502 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2503 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2504 return 0; 2505 2506 /* Bail out if nothing was captured. */ 2507 if ((!sample->user_regs.regs) || 2508 (!sample->user_stack.size)) 2509 return 0; 2510 2511 return unwind__get_entries(unwind_entry, cursor, 2512 thread, sample, max_stack); 2513 } 2514 2515 int thread__resolve_callchain(struct thread *thread, 2516 struct callchain_cursor *cursor, 2517 struct perf_evsel *evsel, 2518 struct perf_sample *sample, 2519 struct symbol **parent, 2520 struct addr_location *root_al, 2521 int max_stack) 2522 { 2523 int ret = 0; 2524 2525 callchain_cursor_reset(cursor); 2526 2527 if (callchain_param.order == ORDER_CALLEE) { 2528 ret = thread__resolve_callchain_sample(thread, cursor, 2529 evsel, sample, 2530 parent, root_al, 2531 max_stack); 2532 if (ret) 2533 return ret; 2534 ret = thread__resolve_callchain_unwind(thread, cursor, 2535 evsel, sample, 2536 max_stack); 2537 } else { 2538 ret = thread__resolve_callchain_unwind(thread, cursor, 2539 evsel, sample, 2540 max_stack); 2541 if (ret) 2542 return ret; 2543 ret = thread__resolve_callchain_sample(thread, cursor, 2544 evsel, sample, 2545 parent, root_al, 2546 max_stack); 2547 } 2548 2549 return ret; 2550 } 2551 2552 int machine__for_each_thread(struct machine *machine, 2553 int (*fn)(struct thread *thread, void *p), 2554 void *priv) 2555 { 2556 struct threads *threads; 2557 struct rb_node *nd; 2558 struct thread *thread; 2559 int rc = 0; 2560 int i; 2561 2562 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2563 threads = &machine->threads[i]; 2564 for (nd = rb_first_cached(&threads->entries); nd; 2565 nd = rb_next(nd)) { 2566 thread = rb_entry(nd, struct thread, rb_node); 2567 rc = fn(thread, priv); 2568 if (rc != 0) 2569 return rc; 2570 } 2571 2572 list_for_each_entry(thread, &threads->dead, node) { 2573 rc = fn(thread, priv); 2574 if (rc != 0) 2575 return rc; 2576 } 2577 } 2578 return rc; 2579 } 2580 2581 int machines__for_each_thread(struct machines *machines, 2582 int (*fn)(struct thread *thread, void *p), 2583 void *priv) 2584 { 2585 struct rb_node *nd; 2586 int rc = 0; 2587 2588 rc = machine__for_each_thread(&machines->host, fn, priv); 2589 if (rc != 0) 2590 return rc; 2591 2592 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2593 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2594 2595 rc = machine__for_each_thread(machine, fn, priv); 2596 if (rc != 0) 2597 return rc; 2598 } 2599 return rc; 2600 } 2601 2602 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2603 struct target *target, struct thread_map *threads, 2604 perf_event__handler_t process, bool data_mmap, 2605 unsigned int nr_threads_synthesize) 2606 { 2607 if (target__has_task(target)) 2608 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2609 else if (target__has_cpu(target)) 2610 return perf_event__synthesize_threads(tool, process, 2611 machine, data_mmap, 2612 nr_threads_synthesize); 2613 /* command specified */ 2614 return 0; 2615 } 2616 2617 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2618 { 2619 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2620 return -1; 2621 2622 return machine->current_tid[cpu]; 2623 } 2624 2625 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2626 pid_t tid) 2627 { 2628 struct thread *thread; 2629 2630 if (cpu < 0) 2631 return -EINVAL; 2632 2633 if (!machine->current_tid) { 2634 int i; 2635 2636 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2637 if (!machine->current_tid) 2638 return -ENOMEM; 2639 for (i = 0; i < MAX_NR_CPUS; i++) 2640 machine->current_tid[i] = -1; 2641 } 2642 2643 if (cpu >= MAX_NR_CPUS) { 2644 pr_err("Requested CPU %d too large. ", cpu); 2645 pr_err("Consider raising MAX_NR_CPUS\n"); 2646 return -EINVAL; 2647 } 2648 2649 machine->current_tid[cpu] = tid; 2650 2651 thread = machine__findnew_thread(machine, pid, tid); 2652 if (!thread) 2653 return -ENOMEM; 2654 2655 thread->cpu = cpu; 2656 thread__put(thread); 2657 2658 return 0; 2659 } 2660 2661 /* 2662 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2663 * normalized arch is needed. 2664 */ 2665 bool machine__is(struct machine *machine, const char *arch) 2666 { 2667 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2668 } 2669 2670 int machine__nr_cpus_avail(struct machine *machine) 2671 { 2672 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2673 } 2674 2675 int machine__get_kernel_start(struct machine *machine) 2676 { 2677 struct map *map = machine__kernel_map(machine); 2678 int err = 0; 2679 2680 /* 2681 * The only addresses above 2^63 are kernel addresses of a 64-bit 2682 * kernel. Note that addresses are unsigned so that on a 32-bit system 2683 * all addresses including kernel addresses are less than 2^32. In 2684 * that case (32-bit system), if the kernel mapping is unknown, all 2685 * addresses will be assumed to be in user space - see 2686 * machine__kernel_ip(). 2687 */ 2688 machine->kernel_start = 1ULL << 63; 2689 if (map) { 2690 err = map__load(map); 2691 /* 2692 * On x86_64, PTI entry trampolines are less than the 2693 * start of kernel text, but still above 2^63. So leave 2694 * kernel_start = 1ULL << 63 for x86_64. 2695 */ 2696 if (!err && !machine__is(machine, "x86_64")) 2697 machine->kernel_start = map->start; 2698 } 2699 return err; 2700 } 2701 2702 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2703 { 2704 u8 addr_cpumode = cpumode; 2705 bool kernel_ip; 2706 2707 if (!machine->single_address_space) 2708 goto out; 2709 2710 kernel_ip = machine__kernel_ip(machine, addr); 2711 switch (cpumode) { 2712 case PERF_RECORD_MISC_KERNEL: 2713 case PERF_RECORD_MISC_USER: 2714 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2715 PERF_RECORD_MISC_USER; 2716 break; 2717 case PERF_RECORD_MISC_GUEST_KERNEL: 2718 case PERF_RECORD_MISC_GUEST_USER: 2719 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2720 PERF_RECORD_MISC_GUEST_USER; 2721 break; 2722 default: 2723 break; 2724 } 2725 out: 2726 return addr_cpumode; 2727 } 2728 2729 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2730 { 2731 return dsos__findnew(&machine->dsos, filename); 2732 } 2733 2734 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2735 { 2736 struct machine *machine = vmachine; 2737 struct map *map; 2738 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2739 2740 if (sym == NULL) 2741 return NULL; 2742 2743 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2744 *addrp = map->unmap_ip(map, sym->start); 2745 return sym->name; 2746 } 2747