xref: /openbmc/linux/tools/perf/util/machine.c (revision 0d4bb5e4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "path.h"
20 #include "srcline.h"
21 #include "symbol.h"
22 #include "sort.h"
23 #include "strlist.h"
24 #include "target.h"
25 #include "thread.h"
26 #include "util.h"
27 #include "vdso.h"
28 #include <stdbool.h>
29 #include <sys/types.h>
30 #include <sys/stat.h>
31 #include <unistd.h>
32 #include "unwind.h"
33 #include "linux/hash.h"
34 #include "asm/bug.h"
35 #include "bpf-event.h"
36 #include <internal/lib.h> // page_size
37 #include "cgroup.h"
38 #include "arm64-frame-pointer-unwind-support.h"
39 
40 #include <linux/ctype.h>
41 #include <symbol/kallsyms.h>
42 #include <linux/mman.h>
43 #include <linux/string.h>
44 #include <linux/zalloc.h>
45 
46 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47 
48 static struct dso *machine__kernel_dso(struct machine *machine)
49 {
50 	return machine->vmlinux_map->dso;
51 }
52 
53 static void dsos__init(struct dsos *dsos)
54 {
55 	INIT_LIST_HEAD(&dsos->head);
56 	dsos->root = RB_ROOT;
57 	init_rwsem(&dsos->lock);
58 }
59 
60 static void machine__threads_init(struct machine *machine)
61 {
62 	int i;
63 
64 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
65 		struct threads *threads = &machine->threads[i];
66 		threads->entries = RB_ROOT_CACHED;
67 		init_rwsem(&threads->lock);
68 		threads->nr = 0;
69 		INIT_LIST_HEAD(&threads->dead);
70 		threads->last_match = NULL;
71 	}
72 }
73 
74 static int machine__set_mmap_name(struct machine *machine)
75 {
76 	if (machine__is_host(machine))
77 		machine->mmap_name = strdup("[kernel.kallsyms]");
78 	else if (machine__is_default_guest(machine))
79 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
80 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
81 			  machine->pid) < 0)
82 		machine->mmap_name = NULL;
83 
84 	return machine->mmap_name ? 0 : -ENOMEM;
85 }
86 
87 static void thread__set_guest_comm(struct thread *thread, pid_t pid)
88 {
89 	char comm[64];
90 
91 	snprintf(comm, sizeof(comm), "[guest/%d]", pid);
92 	thread__set_comm(thread, comm, 0);
93 }
94 
95 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
96 {
97 	int err = -ENOMEM;
98 
99 	memset(machine, 0, sizeof(*machine));
100 	machine->kmaps = maps__new(machine);
101 	if (machine->kmaps == NULL)
102 		return -ENOMEM;
103 
104 	RB_CLEAR_NODE(&machine->rb_node);
105 	dsos__init(&machine->dsos);
106 
107 	machine__threads_init(machine);
108 
109 	machine->vdso_info = NULL;
110 	machine->env = NULL;
111 
112 	machine->pid = pid;
113 
114 	machine->id_hdr_size = 0;
115 	machine->kptr_restrict_warned = false;
116 	machine->comm_exec = false;
117 	machine->kernel_start = 0;
118 	machine->vmlinux_map = NULL;
119 
120 	machine->root_dir = strdup(root_dir);
121 	if (machine->root_dir == NULL)
122 		goto out;
123 
124 	if (machine__set_mmap_name(machine))
125 		goto out;
126 
127 	if (pid != HOST_KERNEL_ID) {
128 		struct thread *thread = machine__findnew_thread(machine, -1,
129 								pid);
130 
131 		if (thread == NULL)
132 			goto out;
133 
134 		thread__set_guest_comm(thread, pid);
135 		thread__put(thread);
136 	}
137 
138 	machine->current_tid = NULL;
139 	err = 0;
140 
141 out:
142 	if (err) {
143 		zfree(&machine->kmaps);
144 		zfree(&machine->root_dir);
145 		zfree(&machine->mmap_name);
146 	}
147 	return 0;
148 }
149 
150 struct machine *machine__new_host(void)
151 {
152 	struct machine *machine = malloc(sizeof(*machine));
153 
154 	if (machine != NULL) {
155 		machine__init(machine, "", HOST_KERNEL_ID);
156 
157 		if (machine__create_kernel_maps(machine) < 0)
158 			goto out_delete;
159 	}
160 
161 	return machine;
162 out_delete:
163 	free(machine);
164 	return NULL;
165 }
166 
167 struct machine *machine__new_kallsyms(void)
168 {
169 	struct machine *machine = machine__new_host();
170 	/*
171 	 * FIXME:
172 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
173 	 *    ask for not using the kcore parsing code, once this one is fixed
174 	 *    to create a map per module.
175 	 */
176 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
177 		machine__delete(machine);
178 		machine = NULL;
179 	}
180 
181 	return machine;
182 }
183 
184 static void dsos__purge(struct dsos *dsos)
185 {
186 	struct dso *pos, *n;
187 
188 	down_write(&dsos->lock);
189 
190 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
191 		RB_CLEAR_NODE(&pos->rb_node);
192 		pos->root = NULL;
193 		list_del_init(&pos->node);
194 		dso__put(pos);
195 	}
196 
197 	up_write(&dsos->lock);
198 }
199 
200 static void dsos__exit(struct dsos *dsos)
201 {
202 	dsos__purge(dsos);
203 	exit_rwsem(&dsos->lock);
204 }
205 
206 void machine__delete_threads(struct machine *machine)
207 {
208 	struct rb_node *nd;
209 	int i;
210 
211 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
212 		struct threads *threads = &machine->threads[i];
213 		down_write(&threads->lock);
214 		nd = rb_first_cached(&threads->entries);
215 		while (nd) {
216 			struct thread *t = rb_entry(nd, struct thread, rb_node);
217 
218 			nd = rb_next(nd);
219 			__machine__remove_thread(machine, t, false);
220 		}
221 		up_write(&threads->lock);
222 	}
223 }
224 
225 void machine__exit(struct machine *machine)
226 {
227 	int i;
228 
229 	if (machine == NULL)
230 		return;
231 
232 	machine__destroy_kernel_maps(machine);
233 	maps__delete(machine->kmaps);
234 	dsos__exit(&machine->dsos);
235 	machine__exit_vdso(machine);
236 	zfree(&machine->root_dir);
237 	zfree(&machine->mmap_name);
238 	zfree(&machine->current_tid);
239 	zfree(&machine->kallsyms_filename);
240 
241 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
242 		struct threads *threads = &machine->threads[i];
243 		struct thread *thread, *n;
244 		/*
245 		 * Forget about the dead, at this point whatever threads were
246 		 * left in the dead lists better have a reference count taken
247 		 * by who is using them, and then, when they drop those references
248 		 * and it finally hits zero, thread__put() will check and see that
249 		 * its not in the dead threads list and will not try to remove it
250 		 * from there, just calling thread__delete() straight away.
251 		 */
252 		list_for_each_entry_safe(thread, n, &threads->dead, node)
253 			list_del_init(&thread->node);
254 
255 		exit_rwsem(&threads->lock);
256 	}
257 }
258 
259 void machine__delete(struct machine *machine)
260 {
261 	if (machine) {
262 		machine__exit(machine);
263 		free(machine);
264 	}
265 }
266 
267 void machines__init(struct machines *machines)
268 {
269 	machine__init(&machines->host, "", HOST_KERNEL_ID);
270 	machines->guests = RB_ROOT_CACHED;
271 }
272 
273 void machines__exit(struct machines *machines)
274 {
275 	machine__exit(&machines->host);
276 	/* XXX exit guest */
277 }
278 
279 struct machine *machines__add(struct machines *machines, pid_t pid,
280 			      const char *root_dir)
281 {
282 	struct rb_node **p = &machines->guests.rb_root.rb_node;
283 	struct rb_node *parent = NULL;
284 	struct machine *pos, *machine = malloc(sizeof(*machine));
285 	bool leftmost = true;
286 
287 	if (machine == NULL)
288 		return NULL;
289 
290 	if (machine__init(machine, root_dir, pid) != 0) {
291 		free(machine);
292 		return NULL;
293 	}
294 
295 	while (*p != NULL) {
296 		parent = *p;
297 		pos = rb_entry(parent, struct machine, rb_node);
298 		if (pid < pos->pid)
299 			p = &(*p)->rb_left;
300 		else {
301 			p = &(*p)->rb_right;
302 			leftmost = false;
303 		}
304 	}
305 
306 	rb_link_node(&machine->rb_node, parent, p);
307 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
308 
309 	machine->machines = machines;
310 
311 	return machine;
312 }
313 
314 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
315 {
316 	struct rb_node *nd;
317 
318 	machines->host.comm_exec = comm_exec;
319 
320 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
321 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
322 
323 		machine->comm_exec = comm_exec;
324 	}
325 }
326 
327 struct machine *machines__find(struct machines *machines, pid_t pid)
328 {
329 	struct rb_node **p = &machines->guests.rb_root.rb_node;
330 	struct rb_node *parent = NULL;
331 	struct machine *machine;
332 	struct machine *default_machine = NULL;
333 
334 	if (pid == HOST_KERNEL_ID)
335 		return &machines->host;
336 
337 	while (*p != NULL) {
338 		parent = *p;
339 		machine = rb_entry(parent, struct machine, rb_node);
340 		if (pid < machine->pid)
341 			p = &(*p)->rb_left;
342 		else if (pid > machine->pid)
343 			p = &(*p)->rb_right;
344 		else
345 			return machine;
346 		if (!machine->pid)
347 			default_machine = machine;
348 	}
349 
350 	return default_machine;
351 }
352 
353 struct machine *machines__findnew(struct machines *machines, pid_t pid)
354 {
355 	char path[PATH_MAX];
356 	const char *root_dir = "";
357 	struct machine *machine = machines__find(machines, pid);
358 
359 	if (machine && (machine->pid == pid))
360 		goto out;
361 
362 	if ((pid != HOST_KERNEL_ID) &&
363 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
364 	    (symbol_conf.guestmount)) {
365 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
366 		if (access(path, R_OK)) {
367 			static struct strlist *seen;
368 
369 			if (!seen)
370 				seen = strlist__new(NULL, NULL);
371 
372 			if (!strlist__has_entry(seen, path)) {
373 				pr_err("Can't access file %s\n", path);
374 				strlist__add(seen, path);
375 			}
376 			machine = NULL;
377 			goto out;
378 		}
379 		root_dir = path;
380 	}
381 
382 	machine = machines__add(machines, pid, root_dir);
383 out:
384 	return machine;
385 }
386 
387 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
388 {
389 	struct machine *machine = machines__find(machines, pid);
390 
391 	if (!machine)
392 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
393 	return machine;
394 }
395 
396 /*
397  * A common case for KVM test programs is that the test program acts as the
398  * hypervisor, creating, running and destroying the virtual machine, and
399  * providing the guest object code from its own object code. In this case,
400  * the VM is not running an OS, but only the functions loaded into it by the
401  * hypervisor test program, and conveniently, loaded at the same virtual
402  * addresses.
403  *
404  * Normally to resolve addresses, MMAP events are needed to map addresses
405  * back to the object code and debug symbols for that object code.
406  *
407  * Currently, there is no way to get such mapping information from guests
408  * but, in the scenario described above, the guest has the same mappings
409  * as the hypervisor, so support for that scenario can be achieved.
410  *
411  * To support that, copy the host thread's maps to the guest thread's maps.
412  * Note, we do not discover the guest until we encounter a guest event,
413  * which works well because it is not until then that we know that the host
414  * thread's maps have been set up.
415  *
416  * This function returns the guest thread. Apart from keeping the data
417  * structures sane, using a thread belonging to the guest machine, instead
418  * of the host thread, allows it to have its own comm (refer
419  * thread__set_guest_comm()).
420  */
421 static struct thread *findnew_guest_code(struct machine *machine,
422 					 struct machine *host_machine,
423 					 pid_t pid)
424 {
425 	struct thread *host_thread;
426 	struct thread *thread;
427 	int err;
428 
429 	if (!machine)
430 		return NULL;
431 
432 	thread = machine__findnew_thread(machine, -1, pid);
433 	if (!thread)
434 		return NULL;
435 
436 	/* Assume maps are set up if there are any */
437 	if (thread->maps->nr_maps)
438 		return thread;
439 
440 	host_thread = machine__find_thread(host_machine, -1, pid);
441 	if (!host_thread)
442 		goto out_err;
443 
444 	thread__set_guest_comm(thread, pid);
445 
446 	/*
447 	 * Guest code can be found in hypervisor process at the same address
448 	 * so copy host maps.
449 	 */
450 	err = maps__clone(thread, host_thread->maps);
451 	thread__put(host_thread);
452 	if (err)
453 		goto out_err;
454 
455 	return thread;
456 
457 out_err:
458 	thread__zput(thread);
459 	return NULL;
460 }
461 
462 struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
463 {
464 	struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
465 	struct machine *machine = machines__findnew(machines, pid);
466 
467 	return findnew_guest_code(machine, host_machine, pid);
468 }
469 
470 struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
471 {
472 	struct machines *machines = machine->machines;
473 	struct machine *host_machine;
474 
475 	if (!machines)
476 		return NULL;
477 
478 	host_machine = machines__find(machines, HOST_KERNEL_ID);
479 
480 	return findnew_guest_code(machine, host_machine, pid);
481 }
482 
483 void machines__process_guests(struct machines *machines,
484 			      machine__process_t process, void *data)
485 {
486 	struct rb_node *nd;
487 
488 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
489 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
490 		process(pos, data);
491 	}
492 }
493 
494 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
495 {
496 	struct rb_node *node;
497 	struct machine *machine;
498 
499 	machines->host.id_hdr_size = id_hdr_size;
500 
501 	for (node = rb_first_cached(&machines->guests); node;
502 	     node = rb_next(node)) {
503 		machine = rb_entry(node, struct machine, rb_node);
504 		machine->id_hdr_size = id_hdr_size;
505 	}
506 
507 	return;
508 }
509 
510 static void machine__update_thread_pid(struct machine *machine,
511 				       struct thread *th, pid_t pid)
512 {
513 	struct thread *leader;
514 
515 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
516 		return;
517 
518 	th->pid_ = pid;
519 
520 	if (th->pid_ == th->tid)
521 		return;
522 
523 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
524 	if (!leader)
525 		goto out_err;
526 
527 	if (!leader->maps)
528 		leader->maps = maps__new(machine);
529 
530 	if (!leader->maps)
531 		goto out_err;
532 
533 	if (th->maps == leader->maps)
534 		return;
535 
536 	if (th->maps) {
537 		/*
538 		 * Maps are created from MMAP events which provide the pid and
539 		 * tid.  Consequently there never should be any maps on a thread
540 		 * with an unknown pid.  Just print an error if there are.
541 		 */
542 		if (!maps__empty(th->maps))
543 			pr_err("Discarding thread maps for %d:%d\n",
544 			       th->pid_, th->tid);
545 		maps__put(th->maps);
546 	}
547 
548 	th->maps = maps__get(leader->maps);
549 out_put:
550 	thread__put(leader);
551 	return;
552 out_err:
553 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
554 	goto out_put;
555 }
556 
557 /*
558  * Front-end cache - TID lookups come in blocks,
559  * so most of the time we dont have to look up
560  * the full rbtree:
561  */
562 static struct thread*
563 __threads__get_last_match(struct threads *threads, struct machine *machine,
564 			  int pid, int tid)
565 {
566 	struct thread *th;
567 
568 	th = threads->last_match;
569 	if (th != NULL) {
570 		if (th->tid == tid) {
571 			machine__update_thread_pid(machine, th, pid);
572 			return thread__get(th);
573 		}
574 
575 		threads->last_match = NULL;
576 	}
577 
578 	return NULL;
579 }
580 
581 static struct thread*
582 threads__get_last_match(struct threads *threads, struct machine *machine,
583 			int pid, int tid)
584 {
585 	struct thread *th = NULL;
586 
587 	if (perf_singlethreaded)
588 		th = __threads__get_last_match(threads, machine, pid, tid);
589 
590 	return th;
591 }
592 
593 static void
594 __threads__set_last_match(struct threads *threads, struct thread *th)
595 {
596 	threads->last_match = th;
597 }
598 
599 static void
600 threads__set_last_match(struct threads *threads, struct thread *th)
601 {
602 	if (perf_singlethreaded)
603 		__threads__set_last_match(threads, th);
604 }
605 
606 /*
607  * Caller must eventually drop thread->refcnt returned with a successful
608  * lookup/new thread inserted.
609  */
610 static struct thread *____machine__findnew_thread(struct machine *machine,
611 						  struct threads *threads,
612 						  pid_t pid, pid_t tid,
613 						  bool create)
614 {
615 	struct rb_node **p = &threads->entries.rb_root.rb_node;
616 	struct rb_node *parent = NULL;
617 	struct thread *th;
618 	bool leftmost = true;
619 
620 	th = threads__get_last_match(threads, machine, pid, tid);
621 	if (th)
622 		return th;
623 
624 	while (*p != NULL) {
625 		parent = *p;
626 		th = rb_entry(parent, struct thread, rb_node);
627 
628 		if (th->tid == tid) {
629 			threads__set_last_match(threads, th);
630 			machine__update_thread_pid(machine, th, pid);
631 			return thread__get(th);
632 		}
633 
634 		if (tid < th->tid)
635 			p = &(*p)->rb_left;
636 		else {
637 			p = &(*p)->rb_right;
638 			leftmost = false;
639 		}
640 	}
641 
642 	if (!create)
643 		return NULL;
644 
645 	th = thread__new(pid, tid);
646 	if (th != NULL) {
647 		rb_link_node(&th->rb_node, parent, p);
648 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
649 
650 		/*
651 		 * We have to initialize maps separately after rb tree is updated.
652 		 *
653 		 * The reason is that we call machine__findnew_thread
654 		 * within thread__init_maps to find the thread
655 		 * leader and that would screwed the rb tree.
656 		 */
657 		if (thread__init_maps(th, machine)) {
658 			rb_erase_cached(&th->rb_node, &threads->entries);
659 			RB_CLEAR_NODE(&th->rb_node);
660 			thread__put(th);
661 			return NULL;
662 		}
663 		/*
664 		 * It is now in the rbtree, get a ref
665 		 */
666 		thread__get(th);
667 		threads__set_last_match(threads, th);
668 		++threads->nr;
669 	}
670 
671 	return th;
672 }
673 
674 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
675 {
676 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
677 }
678 
679 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
680 				       pid_t tid)
681 {
682 	struct threads *threads = machine__threads(machine, tid);
683 	struct thread *th;
684 
685 	down_write(&threads->lock);
686 	th = __machine__findnew_thread(machine, pid, tid);
687 	up_write(&threads->lock);
688 	return th;
689 }
690 
691 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
692 				    pid_t tid)
693 {
694 	struct threads *threads = machine__threads(machine, tid);
695 	struct thread *th;
696 
697 	down_read(&threads->lock);
698 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
699 	up_read(&threads->lock);
700 	return th;
701 }
702 
703 /*
704  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
705  * So here a single thread is created for that, but actually there is a separate
706  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
707  * is only 1. That causes problems for some tools, requiring workarounds. For
708  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
709  */
710 struct thread *machine__idle_thread(struct machine *machine)
711 {
712 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
713 
714 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
715 	    thread__set_namespaces(thread, 0, NULL))
716 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
717 
718 	return thread;
719 }
720 
721 struct comm *machine__thread_exec_comm(struct machine *machine,
722 				       struct thread *thread)
723 {
724 	if (machine->comm_exec)
725 		return thread__exec_comm(thread);
726 	else
727 		return thread__comm(thread);
728 }
729 
730 int machine__process_comm_event(struct machine *machine, union perf_event *event,
731 				struct perf_sample *sample)
732 {
733 	struct thread *thread = machine__findnew_thread(machine,
734 							event->comm.pid,
735 							event->comm.tid);
736 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
737 	int err = 0;
738 
739 	if (exec)
740 		machine->comm_exec = true;
741 
742 	if (dump_trace)
743 		perf_event__fprintf_comm(event, stdout);
744 
745 	if (thread == NULL ||
746 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
747 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
748 		err = -1;
749 	}
750 
751 	thread__put(thread);
752 
753 	return err;
754 }
755 
756 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
757 				      union perf_event *event,
758 				      struct perf_sample *sample __maybe_unused)
759 {
760 	struct thread *thread = machine__findnew_thread(machine,
761 							event->namespaces.pid,
762 							event->namespaces.tid);
763 	int err = 0;
764 
765 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
766 		  "\nWARNING: kernel seems to support more namespaces than perf"
767 		  " tool.\nTry updating the perf tool..\n\n");
768 
769 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
770 		  "\nWARNING: perf tool seems to support more namespaces than"
771 		  " the kernel.\nTry updating the kernel..\n\n");
772 
773 	if (dump_trace)
774 		perf_event__fprintf_namespaces(event, stdout);
775 
776 	if (thread == NULL ||
777 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
778 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
779 		err = -1;
780 	}
781 
782 	thread__put(thread);
783 
784 	return err;
785 }
786 
787 int machine__process_cgroup_event(struct machine *machine,
788 				  union perf_event *event,
789 				  struct perf_sample *sample __maybe_unused)
790 {
791 	struct cgroup *cgrp;
792 
793 	if (dump_trace)
794 		perf_event__fprintf_cgroup(event, stdout);
795 
796 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
797 	if (cgrp == NULL)
798 		return -ENOMEM;
799 
800 	return 0;
801 }
802 
803 int machine__process_lost_event(struct machine *machine __maybe_unused,
804 				union perf_event *event, struct perf_sample *sample __maybe_unused)
805 {
806 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
807 		    event->lost.id, event->lost.lost);
808 	return 0;
809 }
810 
811 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
812 					union perf_event *event, struct perf_sample *sample)
813 {
814 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
815 		    sample->id, event->lost_samples.lost);
816 	return 0;
817 }
818 
819 static struct dso *machine__findnew_module_dso(struct machine *machine,
820 					       struct kmod_path *m,
821 					       const char *filename)
822 {
823 	struct dso *dso;
824 
825 	down_write(&machine->dsos.lock);
826 
827 	dso = __dsos__find(&machine->dsos, m->name, true);
828 	if (!dso) {
829 		dso = __dsos__addnew(&machine->dsos, m->name);
830 		if (dso == NULL)
831 			goto out_unlock;
832 
833 		dso__set_module_info(dso, m, machine);
834 		dso__set_long_name(dso, strdup(filename), true);
835 		dso->kernel = DSO_SPACE__KERNEL;
836 	}
837 
838 	dso__get(dso);
839 out_unlock:
840 	up_write(&machine->dsos.lock);
841 	return dso;
842 }
843 
844 int machine__process_aux_event(struct machine *machine __maybe_unused,
845 			       union perf_event *event)
846 {
847 	if (dump_trace)
848 		perf_event__fprintf_aux(event, stdout);
849 	return 0;
850 }
851 
852 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
853 					union perf_event *event)
854 {
855 	if (dump_trace)
856 		perf_event__fprintf_itrace_start(event, stdout);
857 	return 0;
858 }
859 
860 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
861 					    union perf_event *event)
862 {
863 	if (dump_trace)
864 		perf_event__fprintf_aux_output_hw_id(event, stdout);
865 	return 0;
866 }
867 
868 int machine__process_switch_event(struct machine *machine __maybe_unused,
869 				  union perf_event *event)
870 {
871 	if (dump_trace)
872 		perf_event__fprintf_switch(event, stdout);
873 	return 0;
874 }
875 
876 static int machine__process_ksymbol_register(struct machine *machine,
877 					     union perf_event *event,
878 					     struct perf_sample *sample __maybe_unused)
879 {
880 	struct symbol *sym;
881 	struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
882 
883 	if (!map) {
884 		struct dso *dso = dso__new(event->ksymbol.name);
885 
886 		if (dso) {
887 			dso->kernel = DSO_SPACE__KERNEL;
888 			map = map__new2(0, dso);
889 			dso__put(dso);
890 		}
891 
892 		if (!dso || !map) {
893 			return -ENOMEM;
894 		}
895 
896 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
897 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
898 			map->dso->data.file_size = event->ksymbol.len;
899 			dso__set_loaded(map->dso);
900 		}
901 
902 		map->start = event->ksymbol.addr;
903 		map->end = map->start + event->ksymbol.len;
904 		maps__insert(machine__kernel_maps(machine), map);
905 		map__put(map);
906 		dso__set_loaded(dso);
907 
908 		if (is_bpf_image(event->ksymbol.name)) {
909 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
910 			dso__set_long_name(dso, "", false);
911 		}
912 	}
913 
914 	sym = symbol__new(map->map_ip(map, map->start),
915 			  event->ksymbol.len,
916 			  0, 0, event->ksymbol.name);
917 	if (!sym)
918 		return -ENOMEM;
919 	dso__insert_symbol(map->dso, sym);
920 	return 0;
921 }
922 
923 static int machine__process_ksymbol_unregister(struct machine *machine,
924 					       union perf_event *event,
925 					       struct perf_sample *sample __maybe_unused)
926 {
927 	struct symbol *sym;
928 	struct map *map;
929 
930 	map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
931 	if (!map)
932 		return 0;
933 
934 	if (map != machine->vmlinux_map)
935 		maps__remove(machine__kernel_maps(machine), map);
936 	else {
937 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
938 		if (sym)
939 			dso__delete_symbol(map->dso, sym);
940 	}
941 
942 	return 0;
943 }
944 
945 int machine__process_ksymbol(struct machine *machine __maybe_unused,
946 			     union perf_event *event,
947 			     struct perf_sample *sample)
948 {
949 	if (dump_trace)
950 		perf_event__fprintf_ksymbol(event, stdout);
951 
952 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
953 		return machine__process_ksymbol_unregister(machine, event,
954 							   sample);
955 	return machine__process_ksymbol_register(machine, event, sample);
956 }
957 
958 int machine__process_text_poke(struct machine *machine, union perf_event *event,
959 			       struct perf_sample *sample __maybe_unused)
960 {
961 	struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
962 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
963 
964 	if (dump_trace)
965 		perf_event__fprintf_text_poke(event, machine, stdout);
966 
967 	if (!event->text_poke.new_len)
968 		return 0;
969 
970 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
971 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
972 		return 0;
973 	}
974 
975 	if (map && map->dso) {
976 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
977 		int ret;
978 
979 		/*
980 		 * Kernel maps might be changed when loading symbols so loading
981 		 * must be done prior to using kernel maps.
982 		 */
983 		map__load(map);
984 		ret = dso__data_write_cache_addr(map->dso, map, machine,
985 						 event->text_poke.addr,
986 						 new_bytes,
987 						 event->text_poke.new_len);
988 		if (ret != event->text_poke.new_len)
989 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
990 				 event->text_poke.addr);
991 	} else {
992 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
993 			 event->text_poke.addr);
994 	}
995 
996 	return 0;
997 }
998 
999 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1000 					      const char *filename)
1001 {
1002 	struct map *map = NULL;
1003 	struct kmod_path m;
1004 	struct dso *dso;
1005 
1006 	if (kmod_path__parse_name(&m, filename))
1007 		return NULL;
1008 
1009 	dso = machine__findnew_module_dso(machine, &m, filename);
1010 	if (dso == NULL)
1011 		goto out;
1012 
1013 	map = map__new2(start, dso);
1014 	if (map == NULL)
1015 		goto out;
1016 
1017 	maps__insert(machine__kernel_maps(machine), map);
1018 
1019 	/* Put the map here because maps__insert already got it */
1020 	map__put(map);
1021 out:
1022 	/* put the dso here, corresponding to  machine__findnew_module_dso */
1023 	dso__put(dso);
1024 	zfree(&m.name);
1025 	return map;
1026 }
1027 
1028 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1029 {
1030 	struct rb_node *nd;
1031 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1032 
1033 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1034 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1035 		ret += __dsos__fprintf(&pos->dsos.head, fp);
1036 	}
1037 
1038 	return ret;
1039 }
1040 
1041 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1042 				     bool (skip)(struct dso *dso, int parm), int parm)
1043 {
1044 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1045 }
1046 
1047 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1048 				     bool (skip)(struct dso *dso, int parm), int parm)
1049 {
1050 	struct rb_node *nd;
1051 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1052 
1053 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1054 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
1055 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1056 	}
1057 	return ret;
1058 }
1059 
1060 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1061 {
1062 	int i;
1063 	size_t printed = 0;
1064 	struct dso *kdso = machine__kernel_dso(machine);
1065 
1066 	if (kdso->has_build_id) {
1067 		char filename[PATH_MAX];
1068 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
1069 					   false))
1070 			printed += fprintf(fp, "[0] %s\n", filename);
1071 	}
1072 
1073 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
1074 		printed += fprintf(fp, "[%d] %s\n",
1075 				   i + kdso->has_build_id, vmlinux_path[i]);
1076 
1077 	return printed;
1078 }
1079 
1080 size_t machine__fprintf(struct machine *machine, FILE *fp)
1081 {
1082 	struct rb_node *nd;
1083 	size_t ret;
1084 	int i;
1085 
1086 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1087 		struct threads *threads = &machine->threads[i];
1088 
1089 		down_read(&threads->lock);
1090 
1091 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
1092 
1093 		for (nd = rb_first_cached(&threads->entries); nd;
1094 		     nd = rb_next(nd)) {
1095 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
1096 
1097 			ret += thread__fprintf(pos, fp);
1098 		}
1099 
1100 		up_read(&threads->lock);
1101 	}
1102 	return ret;
1103 }
1104 
1105 static struct dso *machine__get_kernel(struct machine *machine)
1106 {
1107 	const char *vmlinux_name = machine->mmap_name;
1108 	struct dso *kernel;
1109 
1110 	if (machine__is_host(machine)) {
1111 		if (symbol_conf.vmlinux_name)
1112 			vmlinux_name = symbol_conf.vmlinux_name;
1113 
1114 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1115 						 "[kernel]", DSO_SPACE__KERNEL);
1116 	} else {
1117 		if (symbol_conf.default_guest_vmlinux_name)
1118 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1119 
1120 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1121 						 "[guest.kernel]",
1122 						 DSO_SPACE__KERNEL_GUEST);
1123 	}
1124 
1125 	if (kernel != NULL && (!kernel->has_build_id))
1126 		dso__read_running_kernel_build_id(kernel, machine);
1127 
1128 	return kernel;
1129 }
1130 
1131 struct process_args {
1132 	u64 start;
1133 };
1134 
1135 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1136 				    size_t bufsz)
1137 {
1138 	if (machine__is_default_guest(machine))
1139 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1140 	else
1141 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1142 }
1143 
1144 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1145 
1146 /* Figure out the start address of kernel map from /proc/kallsyms.
1147  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1148  * symbol_name if it's not that important.
1149  */
1150 static int machine__get_running_kernel_start(struct machine *machine,
1151 					     const char **symbol_name,
1152 					     u64 *start, u64 *end)
1153 {
1154 	char filename[PATH_MAX];
1155 	int i, err = -1;
1156 	const char *name;
1157 	u64 addr = 0;
1158 
1159 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1160 
1161 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1162 		return 0;
1163 
1164 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1165 		err = kallsyms__get_function_start(filename, name, &addr);
1166 		if (!err)
1167 			break;
1168 	}
1169 
1170 	if (err)
1171 		return -1;
1172 
1173 	if (symbol_name)
1174 		*symbol_name = name;
1175 
1176 	*start = addr;
1177 
1178 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1179 	if (!err)
1180 		*end = addr;
1181 
1182 	return 0;
1183 }
1184 
1185 int machine__create_extra_kernel_map(struct machine *machine,
1186 				     struct dso *kernel,
1187 				     struct extra_kernel_map *xm)
1188 {
1189 	struct kmap *kmap;
1190 	struct map *map;
1191 
1192 	map = map__new2(xm->start, kernel);
1193 	if (!map)
1194 		return -1;
1195 
1196 	map->end   = xm->end;
1197 	map->pgoff = xm->pgoff;
1198 
1199 	kmap = map__kmap(map);
1200 
1201 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1202 
1203 	maps__insert(machine__kernel_maps(machine), map);
1204 
1205 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1206 		  kmap->name, map->start, map->end);
1207 
1208 	map__put(map);
1209 
1210 	return 0;
1211 }
1212 
1213 static u64 find_entry_trampoline(struct dso *dso)
1214 {
1215 	/* Duplicates are removed so lookup all aliases */
1216 	const char *syms[] = {
1217 		"_entry_trampoline",
1218 		"__entry_trampoline_start",
1219 		"entry_SYSCALL_64_trampoline",
1220 	};
1221 	struct symbol *sym = dso__first_symbol(dso);
1222 	unsigned int i;
1223 
1224 	for (; sym; sym = dso__next_symbol(sym)) {
1225 		if (sym->binding != STB_GLOBAL)
1226 			continue;
1227 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1228 			if (!strcmp(sym->name, syms[i]))
1229 				return sym->start;
1230 		}
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 /*
1237  * These values can be used for kernels that do not have symbols for the entry
1238  * trampolines in kallsyms.
1239  */
1240 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1241 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1242 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1243 
1244 /* Map x86_64 PTI entry trampolines */
1245 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1246 					  struct dso *kernel)
1247 {
1248 	struct maps *kmaps = machine__kernel_maps(machine);
1249 	int nr_cpus_avail, cpu;
1250 	bool found = false;
1251 	struct map *map;
1252 	u64 pgoff;
1253 
1254 	/*
1255 	 * In the vmlinux case, pgoff is a virtual address which must now be
1256 	 * mapped to a vmlinux offset.
1257 	 */
1258 	maps__for_each_entry(kmaps, map) {
1259 		struct kmap *kmap = __map__kmap(map);
1260 		struct map *dest_map;
1261 
1262 		if (!kmap || !is_entry_trampoline(kmap->name))
1263 			continue;
1264 
1265 		dest_map = maps__find(kmaps, map->pgoff);
1266 		if (dest_map != map)
1267 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1268 		found = true;
1269 	}
1270 	if (found || machine->trampolines_mapped)
1271 		return 0;
1272 
1273 	pgoff = find_entry_trampoline(kernel);
1274 	if (!pgoff)
1275 		return 0;
1276 
1277 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1278 
1279 	/* Add a 1 page map for each CPU's entry trampoline */
1280 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1281 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1282 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1283 			 X86_64_ENTRY_TRAMPOLINE;
1284 		struct extra_kernel_map xm = {
1285 			.start = va,
1286 			.end   = va + page_size,
1287 			.pgoff = pgoff,
1288 		};
1289 
1290 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1291 
1292 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1293 			return -1;
1294 	}
1295 
1296 	machine->trampolines_mapped = nr_cpus_avail;
1297 
1298 	return 0;
1299 }
1300 
1301 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1302 					     struct dso *kernel __maybe_unused)
1303 {
1304 	return 0;
1305 }
1306 
1307 static int
1308 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1309 {
1310 	/* In case of renewal the kernel map, destroy previous one */
1311 	machine__destroy_kernel_maps(machine);
1312 
1313 	machine->vmlinux_map = map__new2(0, kernel);
1314 	if (machine->vmlinux_map == NULL)
1315 		return -1;
1316 
1317 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1318 	maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1319 	return 0;
1320 }
1321 
1322 void machine__destroy_kernel_maps(struct machine *machine)
1323 {
1324 	struct kmap *kmap;
1325 	struct map *map = machine__kernel_map(machine);
1326 
1327 	if (map == NULL)
1328 		return;
1329 
1330 	kmap = map__kmap(map);
1331 	maps__remove(machine__kernel_maps(machine), map);
1332 	if (kmap && kmap->ref_reloc_sym) {
1333 		zfree((char **)&kmap->ref_reloc_sym->name);
1334 		zfree(&kmap->ref_reloc_sym);
1335 	}
1336 
1337 	map__zput(machine->vmlinux_map);
1338 }
1339 
1340 int machines__create_guest_kernel_maps(struct machines *machines)
1341 {
1342 	int ret = 0;
1343 	struct dirent **namelist = NULL;
1344 	int i, items = 0;
1345 	char path[PATH_MAX];
1346 	pid_t pid;
1347 	char *endp;
1348 
1349 	if (symbol_conf.default_guest_vmlinux_name ||
1350 	    symbol_conf.default_guest_modules ||
1351 	    symbol_conf.default_guest_kallsyms) {
1352 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1353 	}
1354 
1355 	if (symbol_conf.guestmount) {
1356 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1357 		if (items <= 0)
1358 			return -ENOENT;
1359 		for (i = 0; i < items; i++) {
1360 			if (!isdigit(namelist[i]->d_name[0])) {
1361 				/* Filter out . and .. */
1362 				continue;
1363 			}
1364 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1365 			if ((*endp != '\0') ||
1366 			    (endp == namelist[i]->d_name) ||
1367 			    (errno == ERANGE)) {
1368 				pr_debug("invalid directory (%s). Skipping.\n",
1369 					 namelist[i]->d_name);
1370 				continue;
1371 			}
1372 			sprintf(path, "%s/%s/proc/kallsyms",
1373 				symbol_conf.guestmount,
1374 				namelist[i]->d_name);
1375 			ret = access(path, R_OK);
1376 			if (ret) {
1377 				pr_debug("Can't access file %s\n", path);
1378 				goto failure;
1379 			}
1380 			machines__create_kernel_maps(machines, pid);
1381 		}
1382 failure:
1383 		free(namelist);
1384 	}
1385 
1386 	return ret;
1387 }
1388 
1389 void machines__destroy_kernel_maps(struct machines *machines)
1390 {
1391 	struct rb_node *next = rb_first_cached(&machines->guests);
1392 
1393 	machine__destroy_kernel_maps(&machines->host);
1394 
1395 	while (next) {
1396 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1397 
1398 		next = rb_next(&pos->rb_node);
1399 		rb_erase_cached(&pos->rb_node, &machines->guests);
1400 		machine__delete(pos);
1401 	}
1402 }
1403 
1404 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1405 {
1406 	struct machine *machine = machines__findnew(machines, pid);
1407 
1408 	if (machine == NULL)
1409 		return -1;
1410 
1411 	return machine__create_kernel_maps(machine);
1412 }
1413 
1414 int machine__load_kallsyms(struct machine *machine, const char *filename)
1415 {
1416 	struct map *map = machine__kernel_map(machine);
1417 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1418 
1419 	if (ret > 0) {
1420 		dso__set_loaded(map->dso);
1421 		/*
1422 		 * Since /proc/kallsyms will have multiple sessions for the
1423 		 * kernel, with modules between them, fixup the end of all
1424 		 * sections.
1425 		 */
1426 		maps__fixup_end(machine__kernel_maps(machine));
1427 	}
1428 
1429 	return ret;
1430 }
1431 
1432 int machine__load_vmlinux_path(struct machine *machine)
1433 {
1434 	struct map *map = machine__kernel_map(machine);
1435 	int ret = dso__load_vmlinux_path(map->dso, map);
1436 
1437 	if (ret > 0)
1438 		dso__set_loaded(map->dso);
1439 
1440 	return ret;
1441 }
1442 
1443 static char *get_kernel_version(const char *root_dir)
1444 {
1445 	char version[PATH_MAX];
1446 	FILE *file;
1447 	char *name, *tmp;
1448 	const char *prefix = "Linux version ";
1449 
1450 	sprintf(version, "%s/proc/version", root_dir);
1451 	file = fopen(version, "r");
1452 	if (!file)
1453 		return NULL;
1454 
1455 	tmp = fgets(version, sizeof(version), file);
1456 	fclose(file);
1457 	if (!tmp)
1458 		return NULL;
1459 
1460 	name = strstr(version, prefix);
1461 	if (!name)
1462 		return NULL;
1463 	name += strlen(prefix);
1464 	tmp = strchr(name, ' ');
1465 	if (tmp)
1466 		*tmp = '\0';
1467 
1468 	return strdup(name);
1469 }
1470 
1471 static bool is_kmod_dso(struct dso *dso)
1472 {
1473 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1474 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1475 }
1476 
1477 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1478 {
1479 	char *long_name;
1480 	struct map *map = maps__find_by_name(maps, m->name);
1481 
1482 	if (map == NULL)
1483 		return 0;
1484 
1485 	long_name = strdup(path);
1486 	if (long_name == NULL)
1487 		return -ENOMEM;
1488 
1489 	dso__set_long_name(map->dso, long_name, true);
1490 	dso__kernel_module_get_build_id(map->dso, "");
1491 
1492 	/*
1493 	 * Full name could reveal us kmod compression, so
1494 	 * we need to update the symtab_type if needed.
1495 	 */
1496 	if (m->comp && is_kmod_dso(map->dso)) {
1497 		map->dso->symtab_type++;
1498 		map->dso->comp = m->comp;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1505 {
1506 	struct dirent *dent;
1507 	DIR *dir = opendir(dir_name);
1508 	int ret = 0;
1509 
1510 	if (!dir) {
1511 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1512 		return -1;
1513 	}
1514 
1515 	while ((dent = readdir(dir)) != NULL) {
1516 		char path[PATH_MAX];
1517 		struct stat st;
1518 
1519 		/*sshfs might return bad dent->d_type, so we have to stat*/
1520 		path__join(path, sizeof(path), dir_name, dent->d_name);
1521 		if (stat(path, &st))
1522 			continue;
1523 
1524 		if (S_ISDIR(st.st_mode)) {
1525 			if (!strcmp(dent->d_name, ".") ||
1526 			    !strcmp(dent->d_name, ".."))
1527 				continue;
1528 
1529 			/* Do not follow top-level source and build symlinks */
1530 			if (depth == 0) {
1531 				if (!strcmp(dent->d_name, "source") ||
1532 				    !strcmp(dent->d_name, "build"))
1533 					continue;
1534 			}
1535 
1536 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1537 			if (ret < 0)
1538 				goto out;
1539 		} else {
1540 			struct kmod_path m;
1541 
1542 			ret = kmod_path__parse_name(&m, dent->d_name);
1543 			if (ret)
1544 				goto out;
1545 
1546 			if (m.kmod)
1547 				ret = maps__set_module_path(maps, path, &m);
1548 
1549 			zfree(&m.name);
1550 
1551 			if (ret)
1552 				goto out;
1553 		}
1554 	}
1555 
1556 out:
1557 	closedir(dir);
1558 	return ret;
1559 }
1560 
1561 static int machine__set_modules_path(struct machine *machine)
1562 {
1563 	char *version;
1564 	char modules_path[PATH_MAX];
1565 
1566 	version = get_kernel_version(machine->root_dir);
1567 	if (!version)
1568 		return -1;
1569 
1570 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1571 		 machine->root_dir, version);
1572 	free(version);
1573 
1574 	return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1575 }
1576 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1577 				u64 *size __maybe_unused,
1578 				const char *name __maybe_unused)
1579 {
1580 	return 0;
1581 }
1582 
1583 static int machine__create_module(void *arg, const char *name, u64 start,
1584 				  u64 size)
1585 {
1586 	struct machine *machine = arg;
1587 	struct map *map;
1588 
1589 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1590 		return -1;
1591 
1592 	map = machine__addnew_module_map(machine, start, name);
1593 	if (map == NULL)
1594 		return -1;
1595 	map->end = start + size;
1596 
1597 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1598 
1599 	return 0;
1600 }
1601 
1602 static int machine__create_modules(struct machine *machine)
1603 {
1604 	const char *modules;
1605 	char path[PATH_MAX];
1606 
1607 	if (machine__is_default_guest(machine)) {
1608 		modules = symbol_conf.default_guest_modules;
1609 	} else {
1610 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1611 		modules = path;
1612 	}
1613 
1614 	if (symbol__restricted_filename(modules, "/proc/modules"))
1615 		return -1;
1616 
1617 	if (modules__parse(modules, machine, machine__create_module))
1618 		return -1;
1619 
1620 	if (!machine__set_modules_path(machine))
1621 		return 0;
1622 
1623 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1624 
1625 	return 0;
1626 }
1627 
1628 static void machine__set_kernel_mmap(struct machine *machine,
1629 				     u64 start, u64 end)
1630 {
1631 	machine->vmlinux_map->start = start;
1632 	machine->vmlinux_map->end   = end;
1633 	/*
1634 	 * Be a bit paranoid here, some perf.data file came with
1635 	 * a zero sized synthesized MMAP event for the kernel.
1636 	 */
1637 	if (start == 0 && end == 0)
1638 		machine->vmlinux_map->end = ~0ULL;
1639 }
1640 
1641 static void machine__update_kernel_mmap(struct machine *machine,
1642 				     u64 start, u64 end)
1643 {
1644 	struct map *map = machine__kernel_map(machine);
1645 
1646 	map__get(map);
1647 	maps__remove(machine__kernel_maps(machine), map);
1648 
1649 	machine__set_kernel_mmap(machine, start, end);
1650 
1651 	maps__insert(machine__kernel_maps(machine), map);
1652 	map__put(map);
1653 }
1654 
1655 int machine__create_kernel_maps(struct machine *machine)
1656 {
1657 	struct dso *kernel = machine__get_kernel(machine);
1658 	const char *name = NULL;
1659 	struct map *map;
1660 	u64 start = 0, end = ~0ULL;
1661 	int ret;
1662 
1663 	if (kernel == NULL)
1664 		return -1;
1665 
1666 	ret = __machine__create_kernel_maps(machine, kernel);
1667 	if (ret < 0)
1668 		goto out_put;
1669 
1670 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1671 		if (machine__is_host(machine))
1672 			pr_debug("Problems creating module maps, "
1673 				 "continuing anyway...\n");
1674 		else
1675 			pr_debug("Problems creating module maps for guest %d, "
1676 				 "continuing anyway...\n", machine->pid);
1677 	}
1678 
1679 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1680 		if (name &&
1681 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1682 			machine__destroy_kernel_maps(machine);
1683 			ret = -1;
1684 			goto out_put;
1685 		}
1686 
1687 		/*
1688 		 * we have a real start address now, so re-order the kmaps
1689 		 * assume it's the last in the kmaps
1690 		 */
1691 		machine__update_kernel_mmap(machine, start, end);
1692 	}
1693 
1694 	if (machine__create_extra_kernel_maps(machine, kernel))
1695 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1696 
1697 	if (end == ~0ULL) {
1698 		/* update end address of the kernel map using adjacent module address */
1699 		map = map__next(machine__kernel_map(machine));
1700 		if (map)
1701 			machine__set_kernel_mmap(machine, start, map->start);
1702 	}
1703 
1704 out_put:
1705 	dso__put(kernel);
1706 	return ret;
1707 }
1708 
1709 static bool machine__uses_kcore(struct machine *machine)
1710 {
1711 	struct dso *dso;
1712 
1713 	list_for_each_entry(dso, &machine->dsos.head, node) {
1714 		if (dso__is_kcore(dso))
1715 			return true;
1716 	}
1717 
1718 	return false;
1719 }
1720 
1721 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1722 					     struct extra_kernel_map *xm)
1723 {
1724 	return machine__is(machine, "x86_64") &&
1725 	       is_entry_trampoline(xm->name);
1726 }
1727 
1728 static int machine__process_extra_kernel_map(struct machine *machine,
1729 					     struct extra_kernel_map *xm)
1730 {
1731 	struct dso *kernel = machine__kernel_dso(machine);
1732 
1733 	if (kernel == NULL)
1734 		return -1;
1735 
1736 	return machine__create_extra_kernel_map(machine, kernel, xm);
1737 }
1738 
1739 static int machine__process_kernel_mmap_event(struct machine *machine,
1740 					      struct extra_kernel_map *xm,
1741 					      struct build_id *bid)
1742 {
1743 	struct map *map;
1744 	enum dso_space_type dso_space;
1745 	bool is_kernel_mmap;
1746 	const char *mmap_name = machine->mmap_name;
1747 
1748 	/* If we have maps from kcore then we do not need or want any others */
1749 	if (machine__uses_kcore(machine))
1750 		return 0;
1751 
1752 	if (machine__is_host(machine))
1753 		dso_space = DSO_SPACE__KERNEL;
1754 	else
1755 		dso_space = DSO_SPACE__KERNEL_GUEST;
1756 
1757 	is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1758 	if (!is_kernel_mmap && !machine__is_host(machine)) {
1759 		/*
1760 		 * If the event was recorded inside the guest and injected into
1761 		 * the host perf.data file, then it will match a host mmap_name,
1762 		 * so try that - see machine__set_mmap_name().
1763 		 */
1764 		mmap_name = "[kernel.kallsyms]";
1765 		is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1766 	}
1767 	if (xm->name[0] == '/' ||
1768 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1769 		map = machine__addnew_module_map(machine, xm->start,
1770 						 xm->name);
1771 		if (map == NULL)
1772 			goto out_problem;
1773 
1774 		map->end = map->start + xm->end - xm->start;
1775 
1776 		if (build_id__is_defined(bid))
1777 			dso__set_build_id(map->dso, bid);
1778 
1779 	} else if (is_kernel_mmap) {
1780 		const char *symbol_name = xm->name + strlen(mmap_name);
1781 		/*
1782 		 * Should be there already, from the build-id table in
1783 		 * the header.
1784 		 */
1785 		struct dso *kernel = NULL;
1786 		struct dso *dso;
1787 
1788 		down_read(&machine->dsos.lock);
1789 
1790 		list_for_each_entry(dso, &machine->dsos.head, node) {
1791 
1792 			/*
1793 			 * The cpumode passed to is_kernel_module is not the
1794 			 * cpumode of *this* event. If we insist on passing
1795 			 * correct cpumode to is_kernel_module, we should
1796 			 * record the cpumode when we adding this dso to the
1797 			 * linked list.
1798 			 *
1799 			 * However we don't really need passing correct
1800 			 * cpumode.  We know the correct cpumode must be kernel
1801 			 * mode (if not, we should not link it onto kernel_dsos
1802 			 * list).
1803 			 *
1804 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1805 			 * is_kernel_module() treats it as a kernel cpumode.
1806 			 */
1807 
1808 			if (!dso->kernel ||
1809 			    is_kernel_module(dso->long_name,
1810 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1811 				continue;
1812 
1813 
1814 			kernel = dso;
1815 			break;
1816 		}
1817 
1818 		up_read(&machine->dsos.lock);
1819 
1820 		if (kernel == NULL)
1821 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1822 		if (kernel == NULL)
1823 			goto out_problem;
1824 
1825 		kernel->kernel = dso_space;
1826 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1827 			dso__put(kernel);
1828 			goto out_problem;
1829 		}
1830 
1831 		if (strstr(kernel->long_name, "vmlinux"))
1832 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1833 
1834 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1835 
1836 		if (build_id__is_defined(bid))
1837 			dso__set_build_id(kernel, bid);
1838 
1839 		/*
1840 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1841 		 * symbol. Effectively having zero here means that at record
1842 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1843 		 */
1844 		if (xm->pgoff != 0) {
1845 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1846 							symbol_name,
1847 							xm->pgoff);
1848 		}
1849 
1850 		if (machine__is_default_guest(machine)) {
1851 			/*
1852 			 * preload dso of guest kernel and modules
1853 			 */
1854 			dso__load(kernel, machine__kernel_map(machine));
1855 		}
1856 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1857 		return machine__process_extra_kernel_map(machine, xm);
1858 	}
1859 	return 0;
1860 out_problem:
1861 	return -1;
1862 }
1863 
1864 int machine__process_mmap2_event(struct machine *machine,
1865 				 union perf_event *event,
1866 				 struct perf_sample *sample)
1867 {
1868 	struct thread *thread;
1869 	struct map *map;
1870 	struct dso_id dso_id = {
1871 		.maj = event->mmap2.maj,
1872 		.min = event->mmap2.min,
1873 		.ino = event->mmap2.ino,
1874 		.ino_generation = event->mmap2.ino_generation,
1875 	};
1876 	struct build_id __bid, *bid = NULL;
1877 	int ret = 0;
1878 
1879 	if (dump_trace)
1880 		perf_event__fprintf_mmap2(event, stdout);
1881 
1882 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1883 		bid = &__bid;
1884 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1885 	}
1886 
1887 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1888 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1889 		struct extra_kernel_map xm = {
1890 			.start = event->mmap2.start,
1891 			.end   = event->mmap2.start + event->mmap2.len,
1892 			.pgoff = event->mmap2.pgoff,
1893 		};
1894 
1895 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1896 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1897 		if (ret < 0)
1898 			goto out_problem;
1899 		return 0;
1900 	}
1901 
1902 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1903 					event->mmap2.tid);
1904 	if (thread == NULL)
1905 		goto out_problem;
1906 
1907 	map = map__new(machine, event->mmap2.start,
1908 			event->mmap2.len, event->mmap2.pgoff,
1909 			&dso_id, event->mmap2.prot,
1910 			event->mmap2.flags, bid,
1911 			event->mmap2.filename, thread);
1912 
1913 	if (map == NULL)
1914 		goto out_problem_map;
1915 
1916 	ret = thread__insert_map(thread, map);
1917 	if (ret)
1918 		goto out_problem_insert;
1919 
1920 	thread__put(thread);
1921 	map__put(map);
1922 	return 0;
1923 
1924 out_problem_insert:
1925 	map__put(map);
1926 out_problem_map:
1927 	thread__put(thread);
1928 out_problem:
1929 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1930 	return 0;
1931 }
1932 
1933 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1934 				struct perf_sample *sample)
1935 {
1936 	struct thread *thread;
1937 	struct map *map;
1938 	u32 prot = 0;
1939 	int ret = 0;
1940 
1941 	if (dump_trace)
1942 		perf_event__fprintf_mmap(event, stdout);
1943 
1944 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1945 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1946 		struct extra_kernel_map xm = {
1947 			.start = event->mmap.start,
1948 			.end   = event->mmap.start + event->mmap.len,
1949 			.pgoff = event->mmap.pgoff,
1950 		};
1951 
1952 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1953 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1954 		if (ret < 0)
1955 			goto out_problem;
1956 		return 0;
1957 	}
1958 
1959 	thread = machine__findnew_thread(machine, event->mmap.pid,
1960 					 event->mmap.tid);
1961 	if (thread == NULL)
1962 		goto out_problem;
1963 
1964 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1965 		prot = PROT_EXEC;
1966 
1967 	map = map__new(machine, event->mmap.start,
1968 			event->mmap.len, event->mmap.pgoff,
1969 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1970 
1971 	if (map == NULL)
1972 		goto out_problem_map;
1973 
1974 	ret = thread__insert_map(thread, map);
1975 	if (ret)
1976 		goto out_problem_insert;
1977 
1978 	thread__put(thread);
1979 	map__put(map);
1980 	return 0;
1981 
1982 out_problem_insert:
1983 	map__put(map);
1984 out_problem_map:
1985 	thread__put(thread);
1986 out_problem:
1987 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1988 	return 0;
1989 }
1990 
1991 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1992 {
1993 	struct threads *threads = machine__threads(machine, th->tid);
1994 
1995 	if (threads->last_match == th)
1996 		threads__set_last_match(threads, NULL);
1997 
1998 	if (lock)
1999 		down_write(&threads->lock);
2000 
2001 	BUG_ON(refcount_read(&th->refcnt) == 0);
2002 
2003 	rb_erase_cached(&th->rb_node, &threads->entries);
2004 	RB_CLEAR_NODE(&th->rb_node);
2005 	--threads->nr;
2006 	/*
2007 	 * Move it first to the dead_threads list, then drop the reference,
2008 	 * if this is the last reference, then the thread__delete destructor
2009 	 * will be called and we will remove it from the dead_threads list.
2010 	 */
2011 	list_add_tail(&th->node, &threads->dead);
2012 
2013 	/*
2014 	 * We need to do the put here because if this is the last refcount,
2015 	 * then we will be touching the threads->dead head when removing the
2016 	 * thread.
2017 	 */
2018 	thread__put(th);
2019 
2020 	if (lock)
2021 		up_write(&threads->lock);
2022 }
2023 
2024 void machine__remove_thread(struct machine *machine, struct thread *th)
2025 {
2026 	return __machine__remove_thread(machine, th, true);
2027 }
2028 
2029 int machine__process_fork_event(struct machine *machine, union perf_event *event,
2030 				struct perf_sample *sample)
2031 {
2032 	struct thread *thread = machine__find_thread(machine,
2033 						     event->fork.pid,
2034 						     event->fork.tid);
2035 	struct thread *parent = machine__findnew_thread(machine,
2036 							event->fork.ppid,
2037 							event->fork.ptid);
2038 	bool do_maps_clone = true;
2039 	int err = 0;
2040 
2041 	if (dump_trace)
2042 		perf_event__fprintf_task(event, stdout);
2043 
2044 	/*
2045 	 * There may be an existing thread that is not actually the parent,
2046 	 * either because we are processing events out of order, or because the
2047 	 * (fork) event that would have removed the thread was lost. Assume the
2048 	 * latter case and continue on as best we can.
2049 	 */
2050 	if (parent->pid_ != (pid_t)event->fork.ppid) {
2051 		dump_printf("removing erroneous parent thread %d/%d\n",
2052 			    parent->pid_, parent->tid);
2053 		machine__remove_thread(machine, parent);
2054 		thread__put(parent);
2055 		parent = machine__findnew_thread(machine, event->fork.ppid,
2056 						 event->fork.ptid);
2057 	}
2058 
2059 	/* if a thread currently exists for the thread id remove it */
2060 	if (thread != NULL) {
2061 		machine__remove_thread(machine, thread);
2062 		thread__put(thread);
2063 	}
2064 
2065 	thread = machine__findnew_thread(machine, event->fork.pid,
2066 					 event->fork.tid);
2067 	/*
2068 	 * When synthesizing FORK events, we are trying to create thread
2069 	 * objects for the already running tasks on the machine.
2070 	 *
2071 	 * Normally, for a kernel FORK event, we want to clone the parent's
2072 	 * maps because that is what the kernel just did.
2073 	 *
2074 	 * But when synthesizing, this should not be done.  If we do, we end up
2075 	 * with overlapping maps as we process the synthesized MMAP2 events that
2076 	 * get delivered shortly thereafter.
2077 	 *
2078 	 * Use the FORK event misc flags in an internal way to signal this
2079 	 * situation, so we can elide the map clone when appropriate.
2080 	 */
2081 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2082 		do_maps_clone = false;
2083 
2084 	if (thread == NULL || parent == NULL ||
2085 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2086 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2087 		err = -1;
2088 	}
2089 	thread__put(thread);
2090 	thread__put(parent);
2091 
2092 	return err;
2093 }
2094 
2095 int machine__process_exit_event(struct machine *machine, union perf_event *event,
2096 				struct perf_sample *sample __maybe_unused)
2097 {
2098 	struct thread *thread = machine__find_thread(machine,
2099 						     event->fork.pid,
2100 						     event->fork.tid);
2101 
2102 	if (dump_trace)
2103 		perf_event__fprintf_task(event, stdout);
2104 
2105 	if (thread != NULL) {
2106 		thread__exited(thread);
2107 		thread__put(thread);
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 int machine__process_event(struct machine *machine, union perf_event *event,
2114 			   struct perf_sample *sample)
2115 {
2116 	int ret;
2117 
2118 	switch (event->header.type) {
2119 	case PERF_RECORD_COMM:
2120 		ret = machine__process_comm_event(machine, event, sample); break;
2121 	case PERF_RECORD_MMAP:
2122 		ret = machine__process_mmap_event(machine, event, sample); break;
2123 	case PERF_RECORD_NAMESPACES:
2124 		ret = machine__process_namespaces_event(machine, event, sample); break;
2125 	case PERF_RECORD_CGROUP:
2126 		ret = machine__process_cgroup_event(machine, event, sample); break;
2127 	case PERF_RECORD_MMAP2:
2128 		ret = machine__process_mmap2_event(machine, event, sample); break;
2129 	case PERF_RECORD_FORK:
2130 		ret = machine__process_fork_event(machine, event, sample); break;
2131 	case PERF_RECORD_EXIT:
2132 		ret = machine__process_exit_event(machine, event, sample); break;
2133 	case PERF_RECORD_LOST:
2134 		ret = machine__process_lost_event(machine, event, sample); break;
2135 	case PERF_RECORD_AUX:
2136 		ret = machine__process_aux_event(machine, event); break;
2137 	case PERF_RECORD_ITRACE_START:
2138 		ret = machine__process_itrace_start_event(machine, event); break;
2139 	case PERF_RECORD_LOST_SAMPLES:
2140 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2141 	case PERF_RECORD_SWITCH:
2142 	case PERF_RECORD_SWITCH_CPU_WIDE:
2143 		ret = machine__process_switch_event(machine, event); break;
2144 	case PERF_RECORD_KSYMBOL:
2145 		ret = machine__process_ksymbol(machine, event, sample); break;
2146 	case PERF_RECORD_BPF_EVENT:
2147 		ret = machine__process_bpf(machine, event, sample); break;
2148 	case PERF_RECORD_TEXT_POKE:
2149 		ret = machine__process_text_poke(machine, event, sample); break;
2150 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2151 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2152 	default:
2153 		ret = -1;
2154 		break;
2155 	}
2156 
2157 	return ret;
2158 }
2159 
2160 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2161 {
2162 	if (!regexec(regex, sym->name, 0, NULL, 0))
2163 		return true;
2164 	return false;
2165 }
2166 
2167 static void ip__resolve_ams(struct thread *thread,
2168 			    struct addr_map_symbol *ams,
2169 			    u64 ip)
2170 {
2171 	struct addr_location al;
2172 
2173 	memset(&al, 0, sizeof(al));
2174 	/*
2175 	 * We cannot use the header.misc hint to determine whether a
2176 	 * branch stack address is user, kernel, guest, hypervisor.
2177 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2178 	 * Thus, we have to try consecutively until we find a match
2179 	 * or else, the symbol is unknown
2180 	 */
2181 	thread__find_cpumode_addr_location(thread, ip, &al);
2182 
2183 	ams->addr = ip;
2184 	ams->al_addr = al.addr;
2185 	ams->al_level = al.level;
2186 	ams->ms.maps = al.maps;
2187 	ams->ms.sym = al.sym;
2188 	ams->ms.map = al.map;
2189 	ams->phys_addr = 0;
2190 	ams->data_page_size = 0;
2191 }
2192 
2193 static void ip__resolve_data(struct thread *thread,
2194 			     u8 m, struct addr_map_symbol *ams,
2195 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2196 {
2197 	struct addr_location al;
2198 
2199 	memset(&al, 0, sizeof(al));
2200 
2201 	thread__find_symbol(thread, m, addr, &al);
2202 
2203 	ams->addr = addr;
2204 	ams->al_addr = al.addr;
2205 	ams->al_level = al.level;
2206 	ams->ms.maps = al.maps;
2207 	ams->ms.sym = al.sym;
2208 	ams->ms.map = al.map;
2209 	ams->phys_addr = phys_addr;
2210 	ams->data_page_size = daddr_page_size;
2211 }
2212 
2213 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2214 				     struct addr_location *al)
2215 {
2216 	struct mem_info *mi = mem_info__new();
2217 
2218 	if (!mi)
2219 		return NULL;
2220 
2221 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2222 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2223 			 sample->addr, sample->phys_addr,
2224 			 sample->data_page_size);
2225 	mi->data_src.val = sample->data_src;
2226 
2227 	return mi;
2228 }
2229 
2230 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2231 {
2232 	struct map *map = ms->map;
2233 	char *srcline = NULL;
2234 
2235 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2236 		return srcline;
2237 
2238 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2239 	if (!srcline) {
2240 		bool show_sym = false;
2241 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2242 
2243 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2244 				      ms->sym, show_sym, show_addr, ip);
2245 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2246 	}
2247 
2248 	return srcline;
2249 }
2250 
2251 struct iterations {
2252 	int nr_loop_iter;
2253 	u64 cycles;
2254 };
2255 
2256 static int add_callchain_ip(struct thread *thread,
2257 			    struct callchain_cursor *cursor,
2258 			    struct symbol **parent,
2259 			    struct addr_location *root_al,
2260 			    u8 *cpumode,
2261 			    u64 ip,
2262 			    bool branch,
2263 			    struct branch_flags *flags,
2264 			    struct iterations *iter,
2265 			    u64 branch_from)
2266 {
2267 	struct map_symbol ms;
2268 	struct addr_location al;
2269 	int nr_loop_iter = 0;
2270 	u64 iter_cycles = 0;
2271 	const char *srcline = NULL;
2272 
2273 	al.filtered = 0;
2274 	al.sym = NULL;
2275 	al.srcline = NULL;
2276 	if (!cpumode) {
2277 		thread__find_cpumode_addr_location(thread, ip, &al);
2278 	} else {
2279 		if (ip >= PERF_CONTEXT_MAX) {
2280 			switch (ip) {
2281 			case PERF_CONTEXT_HV:
2282 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2283 				break;
2284 			case PERF_CONTEXT_KERNEL:
2285 				*cpumode = PERF_RECORD_MISC_KERNEL;
2286 				break;
2287 			case PERF_CONTEXT_USER:
2288 				*cpumode = PERF_RECORD_MISC_USER;
2289 				break;
2290 			default:
2291 				pr_debug("invalid callchain context: "
2292 					 "%"PRId64"\n", (s64) ip);
2293 				/*
2294 				 * It seems the callchain is corrupted.
2295 				 * Discard all.
2296 				 */
2297 				callchain_cursor_reset(cursor);
2298 				return 1;
2299 			}
2300 			return 0;
2301 		}
2302 		thread__find_symbol(thread, *cpumode, ip, &al);
2303 	}
2304 
2305 	if (al.sym != NULL) {
2306 		if (perf_hpp_list.parent && !*parent &&
2307 		    symbol__match_regex(al.sym, &parent_regex))
2308 			*parent = al.sym;
2309 		else if (have_ignore_callees && root_al &&
2310 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2311 			/* Treat this symbol as the root,
2312 			   forgetting its callees. */
2313 			*root_al = al;
2314 			callchain_cursor_reset(cursor);
2315 		}
2316 	}
2317 
2318 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2319 		return 0;
2320 
2321 	if (iter) {
2322 		nr_loop_iter = iter->nr_loop_iter;
2323 		iter_cycles = iter->cycles;
2324 	}
2325 
2326 	ms.maps = al.maps;
2327 	ms.map = al.map;
2328 	ms.sym = al.sym;
2329 	srcline = callchain_srcline(&ms, al.addr);
2330 	return callchain_cursor_append(cursor, ip, &ms,
2331 				       branch, flags, nr_loop_iter,
2332 				       iter_cycles, branch_from, srcline);
2333 }
2334 
2335 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2336 					   struct addr_location *al)
2337 {
2338 	unsigned int i;
2339 	const struct branch_stack *bs = sample->branch_stack;
2340 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2341 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2342 
2343 	if (!bi)
2344 		return NULL;
2345 
2346 	for (i = 0; i < bs->nr; i++) {
2347 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2348 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2349 		bi[i].flags = entries[i].flags;
2350 	}
2351 	return bi;
2352 }
2353 
2354 static void save_iterations(struct iterations *iter,
2355 			    struct branch_entry *be, int nr)
2356 {
2357 	int i;
2358 
2359 	iter->nr_loop_iter++;
2360 	iter->cycles = 0;
2361 
2362 	for (i = 0; i < nr; i++)
2363 		iter->cycles += be[i].flags.cycles;
2364 }
2365 
2366 #define CHASHSZ 127
2367 #define CHASHBITS 7
2368 #define NO_ENTRY 0xff
2369 
2370 #define PERF_MAX_BRANCH_DEPTH 127
2371 
2372 /* Remove loops. */
2373 static int remove_loops(struct branch_entry *l, int nr,
2374 			struct iterations *iter)
2375 {
2376 	int i, j, off;
2377 	unsigned char chash[CHASHSZ];
2378 
2379 	memset(chash, NO_ENTRY, sizeof(chash));
2380 
2381 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2382 
2383 	for (i = 0; i < nr; i++) {
2384 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2385 
2386 		/* no collision handling for now */
2387 		if (chash[h] == NO_ENTRY) {
2388 			chash[h] = i;
2389 		} else if (l[chash[h]].from == l[i].from) {
2390 			bool is_loop = true;
2391 			/* check if it is a real loop */
2392 			off = 0;
2393 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2394 				if (l[j].from != l[i + off].from) {
2395 					is_loop = false;
2396 					break;
2397 				}
2398 			if (is_loop) {
2399 				j = nr - (i + off);
2400 				if (j > 0) {
2401 					save_iterations(iter + i + off,
2402 						l + i, off);
2403 
2404 					memmove(iter + i, iter + i + off,
2405 						j * sizeof(*iter));
2406 
2407 					memmove(l + i, l + i + off,
2408 						j * sizeof(*l));
2409 				}
2410 
2411 				nr -= off;
2412 			}
2413 		}
2414 	}
2415 	return nr;
2416 }
2417 
2418 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2419 				       struct callchain_cursor *cursor,
2420 				       struct perf_sample *sample,
2421 				       struct symbol **parent,
2422 				       struct addr_location *root_al,
2423 				       u64 branch_from,
2424 				       bool callee, int end)
2425 {
2426 	struct ip_callchain *chain = sample->callchain;
2427 	u8 cpumode = PERF_RECORD_MISC_USER;
2428 	int err, i;
2429 
2430 	if (callee) {
2431 		for (i = 0; i < end + 1; i++) {
2432 			err = add_callchain_ip(thread, cursor, parent,
2433 					       root_al, &cpumode, chain->ips[i],
2434 					       false, NULL, NULL, branch_from);
2435 			if (err)
2436 				return err;
2437 		}
2438 		return 0;
2439 	}
2440 
2441 	for (i = end; i >= 0; i--) {
2442 		err = add_callchain_ip(thread, cursor, parent,
2443 				       root_al, &cpumode, chain->ips[i],
2444 				       false, NULL, NULL, branch_from);
2445 		if (err)
2446 			return err;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static void save_lbr_cursor_node(struct thread *thread,
2453 				 struct callchain_cursor *cursor,
2454 				 int idx)
2455 {
2456 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2457 
2458 	if (!lbr_stitch)
2459 		return;
2460 
2461 	if (cursor->pos == cursor->nr) {
2462 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2463 		return;
2464 	}
2465 
2466 	if (!cursor->curr)
2467 		cursor->curr = cursor->first;
2468 	else
2469 		cursor->curr = cursor->curr->next;
2470 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2471 	       sizeof(struct callchain_cursor_node));
2472 
2473 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2474 	cursor->pos++;
2475 }
2476 
2477 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2478 				    struct callchain_cursor *cursor,
2479 				    struct perf_sample *sample,
2480 				    struct symbol **parent,
2481 				    struct addr_location *root_al,
2482 				    u64 *branch_from,
2483 				    bool callee)
2484 {
2485 	struct branch_stack *lbr_stack = sample->branch_stack;
2486 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2487 	u8 cpumode = PERF_RECORD_MISC_USER;
2488 	int lbr_nr = lbr_stack->nr;
2489 	struct branch_flags *flags;
2490 	int err, i;
2491 	u64 ip;
2492 
2493 	/*
2494 	 * The curr and pos are not used in writing session. They are cleared
2495 	 * in callchain_cursor_commit() when the writing session is closed.
2496 	 * Using curr and pos to track the current cursor node.
2497 	 */
2498 	if (thread->lbr_stitch) {
2499 		cursor->curr = NULL;
2500 		cursor->pos = cursor->nr;
2501 		if (cursor->nr) {
2502 			cursor->curr = cursor->first;
2503 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2504 				cursor->curr = cursor->curr->next;
2505 		}
2506 	}
2507 
2508 	if (callee) {
2509 		/* Add LBR ip from first entries.to */
2510 		ip = entries[0].to;
2511 		flags = &entries[0].flags;
2512 		*branch_from = entries[0].from;
2513 		err = add_callchain_ip(thread, cursor, parent,
2514 				       root_al, &cpumode, ip,
2515 				       true, flags, NULL,
2516 				       *branch_from);
2517 		if (err)
2518 			return err;
2519 
2520 		/*
2521 		 * The number of cursor node increases.
2522 		 * Move the current cursor node.
2523 		 * But does not need to save current cursor node for entry 0.
2524 		 * It's impossible to stitch the whole LBRs of previous sample.
2525 		 */
2526 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2527 			if (!cursor->curr)
2528 				cursor->curr = cursor->first;
2529 			else
2530 				cursor->curr = cursor->curr->next;
2531 			cursor->pos++;
2532 		}
2533 
2534 		/* Add LBR ip from entries.from one by one. */
2535 		for (i = 0; i < lbr_nr; i++) {
2536 			ip = entries[i].from;
2537 			flags = &entries[i].flags;
2538 			err = add_callchain_ip(thread, cursor, parent,
2539 					       root_al, &cpumode, ip,
2540 					       true, flags, NULL,
2541 					       *branch_from);
2542 			if (err)
2543 				return err;
2544 			save_lbr_cursor_node(thread, cursor, i);
2545 		}
2546 		return 0;
2547 	}
2548 
2549 	/* Add LBR ip from entries.from one by one. */
2550 	for (i = lbr_nr - 1; i >= 0; i--) {
2551 		ip = entries[i].from;
2552 		flags = &entries[i].flags;
2553 		err = add_callchain_ip(thread, cursor, parent,
2554 				       root_al, &cpumode, ip,
2555 				       true, flags, NULL,
2556 				       *branch_from);
2557 		if (err)
2558 			return err;
2559 		save_lbr_cursor_node(thread, cursor, i);
2560 	}
2561 
2562 	/* Add LBR ip from first entries.to */
2563 	ip = entries[0].to;
2564 	flags = &entries[0].flags;
2565 	*branch_from = entries[0].from;
2566 	err = add_callchain_ip(thread, cursor, parent,
2567 			       root_al, &cpumode, ip,
2568 			       true, flags, NULL,
2569 			       *branch_from);
2570 	if (err)
2571 		return err;
2572 
2573 	return 0;
2574 }
2575 
2576 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2577 					     struct callchain_cursor *cursor)
2578 {
2579 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2580 	struct callchain_cursor_node *cnode;
2581 	struct stitch_list *stitch_node;
2582 	int err;
2583 
2584 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2585 		cnode = &stitch_node->cursor;
2586 
2587 		err = callchain_cursor_append(cursor, cnode->ip,
2588 					      &cnode->ms,
2589 					      cnode->branch,
2590 					      &cnode->branch_flags,
2591 					      cnode->nr_loop_iter,
2592 					      cnode->iter_cycles,
2593 					      cnode->branch_from,
2594 					      cnode->srcline);
2595 		if (err)
2596 			return err;
2597 	}
2598 	return 0;
2599 }
2600 
2601 static struct stitch_list *get_stitch_node(struct thread *thread)
2602 {
2603 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2604 	struct stitch_list *stitch_node;
2605 
2606 	if (!list_empty(&lbr_stitch->free_lists)) {
2607 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2608 					       struct stitch_list, node);
2609 		list_del(&stitch_node->node);
2610 
2611 		return stitch_node;
2612 	}
2613 
2614 	return malloc(sizeof(struct stitch_list));
2615 }
2616 
2617 static bool has_stitched_lbr(struct thread *thread,
2618 			     struct perf_sample *cur,
2619 			     struct perf_sample *prev,
2620 			     unsigned int max_lbr,
2621 			     bool callee)
2622 {
2623 	struct branch_stack *cur_stack = cur->branch_stack;
2624 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2625 	struct branch_stack *prev_stack = prev->branch_stack;
2626 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2627 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2628 	int i, j, nr_identical_branches = 0;
2629 	struct stitch_list *stitch_node;
2630 	u64 cur_base, distance;
2631 
2632 	if (!cur_stack || !prev_stack)
2633 		return false;
2634 
2635 	/* Find the physical index of the base-of-stack for current sample. */
2636 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2637 
2638 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2639 						     (max_lbr + prev_stack->hw_idx - cur_base);
2640 	/* Previous sample has shorter stack. Nothing can be stitched. */
2641 	if (distance + 1 > prev_stack->nr)
2642 		return false;
2643 
2644 	/*
2645 	 * Check if there are identical LBRs between two samples.
2646 	 * Identical LBRs must have same from, to and flags values. Also,
2647 	 * they have to be saved in the same LBR registers (same physical
2648 	 * index).
2649 	 *
2650 	 * Starts from the base-of-stack of current sample.
2651 	 */
2652 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2653 		if ((prev_entries[i].from != cur_entries[j].from) ||
2654 		    (prev_entries[i].to != cur_entries[j].to) ||
2655 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2656 			break;
2657 		nr_identical_branches++;
2658 	}
2659 
2660 	if (!nr_identical_branches)
2661 		return false;
2662 
2663 	/*
2664 	 * Save the LBRs between the base-of-stack of previous sample
2665 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2666 	 * These LBRs will be stitched later.
2667 	 */
2668 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2669 
2670 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2671 			continue;
2672 
2673 		stitch_node = get_stitch_node(thread);
2674 		if (!stitch_node)
2675 			return false;
2676 
2677 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2678 		       sizeof(struct callchain_cursor_node));
2679 
2680 		if (callee)
2681 			list_add(&stitch_node->node, &lbr_stitch->lists);
2682 		else
2683 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2684 	}
2685 
2686 	return true;
2687 }
2688 
2689 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2690 {
2691 	if (thread->lbr_stitch)
2692 		return true;
2693 
2694 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2695 	if (!thread->lbr_stitch)
2696 		goto err;
2697 
2698 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2699 	if (!thread->lbr_stitch->prev_lbr_cursor)
2700 		goto free_lbr_stitch;
2701 
2702 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2703 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2704 
2705 	return true;
2706 
2707 free_lbr_stitch:
2708 	zfree(&thread->lbr_stitch);
2709 err:
2710 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2711 	thread->lbr_stitch_enable = false;
2712 	return false;
2713 }
2714 
2715 /*
2716  * Resolve LBR callstack chain sample
2717  * Return:
2718  * 1 on success get LBR callchain information
2719  * 0 no available LBR callchain information, should try fp
2720  * negative error code on other errors.
2721  */
2722 static int resolve_lbr_callchain_sample(struct thread *thread,
2723 					struct callchain_cursor *cursor,
2724 					struct perf_sample *sample,
2725 					struct symbol **parent,
2726 					struct addr_location *root_al,
2727 					int max_stack,
2728 					unsigned int max_lbr)
2729 {
2730 	bool callee = (callchain_param.order == ORDER_CALLEE);
2731 	struct ip_callchain *chain = sample->callchain;
2732 	int chain_nr = min(max_stack, (int)chain->nr), i;
2733 	struct lbr_stitch *lbr_stitch;
2734 	bool stitched_lbr = false;
2735 	u64 branch_from = 0;
2736 	int err;
2737 
2738 	for (i = 0; i < chain_nr; i++) {
2739 		if (chain->ips[i] == PERF_CONTEXT_USER)
2740 			break;
2741 	}
2742 
2743 	/* LBR only affects the user callchain */
2744 	if (i == chain_nr)
2745 		return 0;
2746 
2747 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2748 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2749 		lbr_stitch = thread->lbr_stitch;
2750 
2751 		stitched_lbr = has_stitched_lbr(thread, sample,
2752 						&lbr_stitch->prev_sample,
2753 						max_lbr, callee);
2754 
2755 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2756 			list_replace_init(&lbr_stitch->lists,
2757 					  &lbr_stitch->free_lists);
2758 		}
2759 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2760 	}
2761 
2762 	if (callee) {
2763 		/* Add kernel ip */
2764 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2765 						  parent, root_al, branch_from,
2766 						  true, i);
2767 		if (err)
2768 			goto error;
2769 
2770 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2771 					       root_al, &branch_from, true);
2772 		if (err)
2773 			goto error;
2774 
2775 		if (stitched_lbr) {
2776 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2777 			if (err)
2778 				goto error;
2779 		}
2780 
2781 	} else {
2782 		if (stitched_lbr) {
2783 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2784 			if (err)
2785 				goto error;
2786 		}
2787 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2788 					       root_al, &branch_from, false);
2789 		if (err)
2790 			goto error;
2791 
2792 		/* Add kernel ip */
2793 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2794 						  parent, root_al, branch_from,
2795 						  false, i);
2796 		if (err)
2797 			goto error;
2798 	}
2799 	return 1;
2800 
2801 error:
2802 	return (err < 0) ? err : 0;
2803 }
2804 
2805 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2806 			     struct callchain_cursor *cursor,
2807 			     struct symbol **parent,
2808 			     struct addr_location *root_al,
2809 			     u8 *cpumode, int ent)
2810 {
2811 	int err = 0;
2812 
2813 	while (--ent >= 0) {
2814 		u64 ip = chain->ips[ent];
2815 
2816 		if (ip >= PERF_CONTEXT_MAX) {
2817 			err = add_callchain_ip(thread, cursor, parent,
2818 					       root_al, cpumode, ip,
2819 					       false, NULL, NULL, 0);
2820 			break;
2821 		}
2822 	}
2823 	return err;
2824 }
2825 
2826 static u64 get_leaf_frame_caller(struct perf_sample *sample,
2827 		struct thread *thread, int usr_idx)
2828 {
2829 	if (machine__normalized_is(thread->maps->machine, "arm64"))
2830 		return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2831 	else
2832 		return 0;
2833 }
2834 
2835 static int thread__resolve_callchain_sample(struct thread *thread,
2836 					    struct callchain_cursor *cursor,
2837 					    struct evsel *evsel,
2838 					    struct perf_sample *sample,
2839 					    struct symbol **parent,
2840 					    struct addr_location *root_al,
2841 					    int max_stack)
2842 {
2843 	struct branch_stack *branch = sample->branch_stack;
2844 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2845 	struct ip_callchain *chain = sample->callchain;
2846 	int chain_nr = 0;
2847 	u8 cpumode = PERF_RECORD_MISC_USER;
2848 	int i, j, err, nr_entries, usr_idx;
2849 	int skip_idx = -1;
2850 	int first_call = 0;
2851 	u64 leaf_frame_caller;
2852 
2853 	if (chain)
2854 		chain_nr = chain->nr;
2855 
2856 	if (evsel__has_branch_callstack(evsel)) {
2857 		struct perf_env *env = evsel__env(evsel);
2858 
2859 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2860 						   root_al, max_stack,
2861 						   !env ? 0 : env->max_branches);
2862 		if (err)
2863 			return (err < 0) ? err : 0;
2864 	}
2865 
2866 	/*
2867 	 * Based on DWARF debug information, some architectures skip
2868 	 * a callchain entry saved by the kernel.
2869 	 */
2870 	skip_idx = arch_skip_callchain_idx(thread, chain);
2871 
2872 	/*
2873 	 * Add branches to call stack for easier browsing. This gives
2874 	 * more context for a sample than just the callers.
2875 	 *
2876 	 * This uses individual histograms of paths compared to the
2877 	 * aggregated histograms the normal LBR mode uses.
2878 	 *
2879 	 * Limitations for now:
2880 	 * - No extra filters
2881 	 * - No annotations (should annotate somehow)
2882 	 */
2883 
2884 	if (branch && callchain_param.branch_callstack) {
2885 		int nr = min(max_stack, (int)branch->nr);
2886 		struct branch_entry be[nr];
2887 		struct iterations iter[nr];
2888 
2889 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2890 			pr_warning("corrupted branch chain. skipping...\n");
2891 			goto check_calls;
2892 		}
2893 
2894 		for (i = 0; i < nr; i++) {
2895 			if (callchain_param.order == ORDER_CALLEE) {
2896 				be[i] = entries[i];
2897 
2898 				if (chain == NULL)
2899 					continue;
2900 
2901 				/*
2902 				 * Check for overlap into the callchain.
2903 				 * The return address is one off compared to
2904 				 * the branch entry. To adjust for this
2905 				 * assume the calling instruction is not longer
2906 				 * than 8 bytes.
2907 				 */
2908 				if (i == skip_idx ||
2909 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2910 					first_call++;
2911 				else if (be[i].from < chain->ips[first_call] &&
2912 				    be[i].from >= chain->ips[first_call] - 8)
2913 					first_call++;
2914 			} else
2915 				be[i] = entries[branch->nr - i - 1];
2916 		}
2917 
2918 		memset(iter, 0, sizeof(struct iterations) * nr);
2919 		nr = remove_loops(be, nr, iter);
2920 
2921 		for (i = 0; i < nr; i++) {
2922 			err = add_callchain_ip(thread, cursor, parent,
2923 					       root_al,
2924 					       NULL, be[i].to,
2925 					       true, &be[i].flags,
2926 					       NULL, be[i].from);
2927 
2928 			if (!err)
2929 				err = add_callchain_ip(thread, cursor, parent, root_al,
2930 						       NULL, be[i].from,
2931 						       true, &be[i].flags,
2932 						       &iter[i], 0);
2933 			if (err == -EINVAL)
2934 				break;
2935 			if (err)
2936 				return err;
2937 		}
2938 
2939 		if (chain_nr == 0)
2940 			return 0;
2941 
2942 		chain_nr -= nr;
2943 	}
2944 
2945 check_calls:
2946 	if (chain && callchain_param.order != ORDER_CALLEE) {
2947 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2948 					&cpumode, chain->nr - first_call);
2949 		if (err)
2950 			return (err < 0) ? err : 0;
2951 	}
2952 	for (i = first_call, nr_entries = 0;
2953 	     i < chain_nr && nr_entries < max_stack; i++) {
2954 		u64 ip;
2955 
2956 		if (callchain_param.order == ORDER_CALLEE)
2957 			j = i;
2958 		else
2959 			j = chain->nr - i - 1;
2960 
2961 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2962 		if (j == skip_idx)
2963 			continue;
2964 #endif
2965 		ip = chain->ips[j];
2966 		if (ip < PERF_CONTEXT_MAX)
2967                        ++nr_entries;
2968 		else if (callchain_param.order != ORDER_CALLEE) {
2969 			err = find_prev_cpumode(chain, thread, cursor, parent,
2970 						root_al, &cpumode, j);
2971 			if (err)
2972 				return (err < 0) ? err : 0;
2973 			continue;
2974 		}
2975 
2976 		/*
2977 		 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
2978 		 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
2979 		 * the index will be different in order to add the missing frame
2980 		 * at the right place.
2981 		 */
2982 
2983 		usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
2984 
2985 		if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
2986 
2987 			leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
2988 
2989 			/*
2990 			 * check if leaf_frame_Caller != ip to not add the same
2991 			 * value twice.
2992 			 */
2993 
2994 			if (leaf_frame_caller && leaf_frame_caller != ip) {
2995 
2996 				err = add_callchain_ip(thread, cursor, parent,
2997 					       root_al, &cpumode, leaf_frame_caller,
2998 					       false, NULL, NULL, 0);
2999 				if (err)
3000 					return (err < 0) ? err : 0;
3001 			}
3002 		}
3003 
3004 		err = add_callchain_ip(thread, cursor, parent,
3005 				       root_al, &cpumode, ip,
3006 				       false, NULL, NULL, 0);
3007 
3008 		if (err)
3009 			return (err < 0) ? err : 0;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3016 {
3017 	struct symbol *sym = ms->sym;
3018 	struct map *map = ms->map;
3019 	struct inline_node *inline_node;
3020 	struct inline_list *ilist;
3021 	u64 addr;
3022 	int ret = 1;
3023 
3024 	if (!symbol_conf.inline_name || !map || !sym)
3025 		return ret;
3026 
3027 	addr = map__map_ip(map, ip);
3028 	addr = map__rip_2objdump(map, addr);
3029 
3030 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
3031 	if (!inline_node) {
3032 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
3033 		if (!inline_node)
3034 			return ret;
3035 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
3036 	}
3037 
3038 	list_for_each_entry(ilist, &inline_node->val, list) {
3039 		struct map_symbol ilist_ms = {
3040 			.maps = ms->maps,
3041 			.map = map,
3042 			.sym = ilist->symbol,
3043 		};
3044 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3045 					      NULL, 0, 0, 0, ilist->srcline);
3046 
3047 		if (ret != 0)
3048 			return ret;
3049 	}
3050 
3051 	return ret;
3052 }
3053 
3054 static int unwind_entry(struct unwind_entry *entry, void *arg)
3055 {
3056 	struct callchain_cursor *cursor = arg;
3057 	const char *srcline = NULL;
3058 	u64 addr = entry->ip;
3059 
3060 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3061 		return 0;
3062 
3063 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3064 		return 0;
3065 
3066 	/*
3067 	 * Convert entry->ip from a virtual address to an offset in
3068 	 * its corresponding binary.
3069 	 */
3070 	if (entry->ms.map)
3071 		addr = map__map_ip(entry->ms.map, entry->ip);
3072 
3073 	srcline = callchain_srcline(&entry->ms, addr);
3074 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3075 				       false, NULL, 0, 0, 0, srcline);
3076 }
3077 
3078 static int thread__resolve_callchain_unwind(struct thread *thread,
3079 					    struct callchain_cursor *cursor,
3080 					    struct evsel *evsel,
3081 					    struct perf_sample *sample,
3082 					    int max_stack)
3083 {
3084 	/* Can we do dwarf post unwind? */
3085 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3086 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3087 		return 0;
3088 
3089 	/* Bail out if nothing was captured. */
3090 	if ((!sample->user_regs.regs) ||
3091 	    (!sample->user_stack.size))
3092 		return 0;
3093 
3094 	return unwind__get_entries(unwind_entry, cursor,
3095 				   thread, sample, max_stack, false);
3096 }
3097 
3098 int thread__resolve_callchain(struct thread *thread,
3099 			      struct callchain_cursor *cursor,
3100 			      struct evsel *evsel,
3101 			      struct perf_sample *sample,
3102 			      struct symbol **parent,
3103 			      struct addr_location *root_al,
3104 			      int max_stack)
3105 {
3106 	int ret = 0;
3107 
3108 	callchain_cursor_reset(cursor);
3109 
3110 	if (callchain_param.order == ORDER_CALLEE) {
3111 		ret = thread__resolve_callchain_sample(thread, cursor,
3112 						       evsel, sample,
3113 						       parent, root_al,
3114 						       max_stack);
3115 		if (ret)
3116 			return ret;
3117 		ret = thread__resolve_callchain_unwind(thread, cursor,
3118 						       evsel, sample,
3119 						       max_stack);
3120 	} else {
3121 		ret = thread__resolve_callchain_unwind(thread, cursor,
3122 						       evsel, sample,
3123 						       max_stack);
3124 		if (ret)
3125 			return ret;
3126 		ret = thread__resolve_callchain_sample(thread, cursor,
3127 						       evsel, sample,
3128 						       parent, root_al,
3129 						       max_stack);
3130 	}
3131 
3132 	return ret;
3133 }
3134 
3135 int machine__for_each_thread(struct machine *machine,
3136 			     int (*fn)(struct thread *thread, void *p),
3137 			     void *priv)
3138 {
3139 	struct threads *threads;
3140 	struct rb_node *nd;
3141 	struct thread *thread;
3142 	int rc = 0;
3143 	int i;
3144 
3145 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3146 		threads = &machine->threads[i];
3147 		for (nd = rb_first_cached(&threads->entries); nd;
3148 		     nd = rb_next(nd)) {
3149 			thread = rb_entry(nd, struct thread, rb_node);
3150 			rc = fn(thread, priv);
3151 			if (rc != 0)
3152 				return rc;
3153 		}
3154 
3155 		list_for_each_entry(thread, &threads->dead, node) {
3156 			rc = fn(thread, priv);
3157 			if (rc != 0)
3158 				return rc;
3159 		}
3160 	}
3161 	return rc;
3162 }
3163 
3164 int machines__for_each_thread(struct machines *machines,
3165 			      int (*fn)(struct thread *thread, void *p),
3166 			      void *priv)
3167 {
3168 	struct rb_node *nd;
3169 	int rc = 0;
3170 
3171 	rc = machine__for_each_thread(&machines->host, fn, priv);
3172 	if (rc != 0)
3173 		return rc;
3174 
3175 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3176 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3177 
3178 		rc = machine__for_each_thread(machine, fn, priv);
3179 		if (rc != 0)
3180 			return rc;
3181 	}
3182 	return rc;
3183 }
3184 
3185 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3186 {
3187 	if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3188 		return -1;
3189 
3190 	return machine->current_tid[cpu];
3191 }
3192 
3193 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3194 			     pid_t tid)
3195 {
3196 	struct thread *thread;
3197 	const pid_t init_val = -1;
3198 
3199 	if (cpu < 0)
3200 		return -EINVAL;
3201 
3202 	if (realloc_array_as_needed(machine->current_tid,
3203 				    machine->current_tid_sz,
3204 				    (unsigned int)cpu,
3205 				    &init_val))
3206 		return -ENOMEM;
3207 
3208 	machine->current_tid[cpu] = tid;
3209 
3210 	thread = machine__findnew_thread(machine, pid, tid);
3211 	if (!thread)
3212 		return -ENOMEM;
3213 
3214 	thread->cpu = cpu;
3215 	thread__put(thread);
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Compares the raw arch string. N.B. see instead perf_env__arch() or
3222  * machine__normalized_is() if a normalized arch is needed.
3223  */
3224 bool machine__is(struct machine *machine, const char *arch)
3225 {
3226 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3227 }
3228 
3229 bool machine__normalized_is(struct machine *machine, const char *arch)
3230 {
3231 	return machine && !strcmp(perf_env__arch(machine->env), arch);
3232 }
3233 
3234 int machine__nr_cpus_avail(struct machine *machine)
3235 {
3236 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3237 }
3238 
3239 int machine__get_kernel_start(struct machine *machine)
3240 {
3241 	struct map *map = machine__kernel_map(machine);
3242 	int err = 0;
3243 
3244 	/*
3245 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3246 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3247 	 * all addresses including kernel addresses are less than 2^32.  In
3248 	 * that case (32-bit system), if the kernel mapping is unknown, all
3249 	 * addresses will be assumed to be in user space - see
3250 	 * machine__kernel_ip().
3251 	 */
3252 	machine->kernel_start = 1ULL << 63;
3253 	if (map) {
3254 		err = map__load(map);
3255 		/*
3256 		 * On x86_64, PTI entry trampolines are less than the
3257 		 * start of kernel text, but still above 2^63. So leave
3258 		 * kernel_start = 1ULL << 63 for x86_64.
3259 		 */
3260 		if (!err && !machine__is(machine, "x86_64"))
3261 			machine->kernel_start = map->start;
3262 	}
3263 	return err;
3264 }
3265 
3266 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3267 {
3268 	u8 addr_cpumode = cpumode;
3269 	bool kernel_ip;
3270 
3271 	if (!machine->single_address_space)
3272 		goto out;
3273 
3274 	kernel_ip = machine__kernel_ip(machine, addr);
3275 	switch (cpumode) {
3276 	case PERF_RECORD_MISC_KERNEL:
3277 	case PERF_RECORD_MISC_USER:
3278 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3279 					   PERF_RECORD_MISC_USER;
3280 		break;
3281 	case PERF_RECORD_MISC_GUEST_KERNEL:
3282 	case PERF_RECORD_MISC_GUEST_USER:
3283 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3284 					   PERF_RECORD_MISC_GUEST_USER;
3285 		break;
3286 	default:
3287 		break;
3288 	}
3289 out:
3290 	return addr_cpumode;
3291 }
3292 
3293 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3294 {
3295 	return dsos__findnew_id(&machine->dsos, filename, id);
3296 }
3297 
3298 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3299 {
3300 	return machine__findnew_dso_id(machine, filename, NULL);
3301 }
3302 
3303 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3304 {
3305 	struct machine *machine = vmachine;
3306 	struct map *map;
3307 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3308 
3309 	if (sym == NULL)
3310 		return NULL;
3311 
3312 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3313 	*addrp = map->unmap_ip(map, sym->start);
3314 	return sym->name;
3315 }
3316 
3317 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3318 {
3319 	struct dso *pos;
3320 	int err = 0;
3321 
3322 	list_for_each_entry(pos, &machine->dsos.head, node) {
3323 		if (fn(pos, machine, priv))
3324 			err = -1;
3325 	}
3326 	return err;
3327 }
3328 
3329 int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3330 {
3331 	struct maps *maps = machine__kernel_maps(machine);
3332 	struct map *map;
3333 	int err = 0;
3334 
3335 	for (map = maps__first(maps); map != NULL; map = map__next(map)) {
3336 		err = fn(map, priv);
3337 		if (err != 0) {
3338 			break;
3339 		}
3340 	}
3341 	return err;
3342 }
3343