xref: /openbmc/linux/tools/perf/util/machine.c (revision 0d375d61)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37 
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43 
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45 
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 	return machine->vmlinux_map->dso;
49 }
50 
51 static void dsos__init(struct dsos *dsos)
52 {
53 	INIT_LIST_HEAD(&dsos->head);
54 	dsos->root = RB_ROOT;
55 	init_rwsem(&dsos->lock);
56 }
57 
58 static void machine__threads_init(struct machine *machine)
59 {
60 	int i;
61 
62 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 		struct threads *threads = &machine->threads[i];
64 		threads->entries = RB_ROOT_CACHED;
65 		init_rwsem(&threads->lock);
66 		threads->nr = 0;
67 		INIT_LIST_HEAD(&threads->dead);
68 		threads->last_match = NULL;
69 	}
70 }
71 
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 	if (machine__is_host(machine))
75 		machine->mmap_name = strdup("[kernel.kallsyms]");
76 	else if (machine__is_default_guest(machine))
77 		machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 	else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 			  machine->pid) < 0)
80 		machine->mmap_name = NULL;
81 
82 	return machine->mmap_name ? 0 : -ENOMEM;
83 }
84 
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 	int err = -ENOMEM;
88 
89 	memset(machine, 0, sizeof(*machine));
90 	maps__init(&machine->kmaps, machine);
91 	RB_CLEAR_NODE(&machine->rb_node);
92 	dsos__init(&machine->dsos);
93 
94 	machine__threads_init(machine);
95 
96 	machine->vdso_info = NULL;
97 	machine->env = NULL;
98 
99 	machine->pid = pid;
100 
101 	machine->id_hdr_size = 0;
102 	machine->kptr_restrict_warned = false;
103 	machine->comm_exec = false;
104 	machine->kernel_start = 0;
105 	machine->vmlinux_map = NULL;
106 
107 	machine->root_dir = strdup(root_dir);
108 	if (machine->root_dir == NULL)
109 		return -ENOMEM;
110 
111 	if (machine__set_mmap_name(machine))
112 		goto out;
113 
114 	if (pid != HOST_KERNEL_ID) {
115 		struct thread *thread = machine__findnew_thread(machine, -1,
116 								pid);
117 		char comm[64];
118 
119 		if (thread == NULL)
120 			goto out;
121 
122 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 		thread__set_comm(thread, comm, 0);
124 		thread__put(thread);
125 	}
126 
127 	machine->current_tid = NULL;
128 	err = 0;
129 
130 out:
131 	if (err) {
132 		zfree(&machine->root_dir);
133 		zfree(&machine->mmap_name);
134 	}
135 	return 0;
136 }
137 
138 struct machine *machine__new_host(void)
139 {
140 	struct machine *machine = malloc(sizeof(*machine));
141 
142 	if (machine != NULL) {
143 		machine__init(machine, "", HOST_KERNEL_ID);
144 
145 		if (machine__create_kernel_maps(machine) < 0)
146 			goto out_delete;
147 	}
148 
149 	return machine;
150 out_delete:
151 	free(machine);
152 	return NULL;
153 }
154 
155 struct machine *machine__new_kallsyms(void)
156 {
157 	struct machine *machine = machine__new_host();
158 	/*
159 	 * FIXME:
160 	 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 	 *    ask for not using the kcore parsing code, once this one is fixed
162 	 *    to create a map per module.
163 	 */
164 	if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 		machine__delete(machine);
166 		machine = NULL;
167 	}
168 
169 	return machine;
170 }
171 
172 static void dsos__purge(struct dsos *dsos)
173 {
174 	struct dso *pos, *n;
175 
176 	down_write(&dsos->lock);
177 
178 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 		RB_CLEAR_NODE(&pos->rb_node);
180 		pos->root = NULL;
181 		list_del_init(&pos->node);
182 		dso__put(pos);
183 	}
184 
185 	up_write(&dsos->lock);
186 }
187 
188 static void dsos__exit(struct dsos *dsos)
189 {
190 	dsos__purge(dsos);
191 	exit_rwsem(&dsos->lock);
192 }
193 
194 void machine__delete_threads(struct machine *machine)
195 {
196 	struct rb_node *nd;
197 	int i;
198 
199 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 		struct threads *threads = &machine->threads[i];
201 		down_write(&threads->lock);
202 		nd = rb_first_cached(&threads->entries);
203 		while (nd) {
204 			struct thread *t = rb_entry(nd, struct thread, rb_node);
205 
206 			nd = rb_next(nd);
207 			__machine__remove_thread(machine, t, false);
208 		}
209 		up_write(&threads->lock);
210 	}
211 }
212 
213 void machine__exit(struct machine *machine)
214 {
215 	int i;
216 
217 	if (machine == NULL)
218 		return;
219 
220 	machine__destroy_kernel_maps(machine);
221 	maps__exit(&machine->kmaps);
222 	dsos__exit(&machine->dsos);
223 	machine__exit_vdso(machine);
224 	zfree(&machine->root_dir);
225 	zfree(&machine->mmap_name);
226 	zfree(&machine->current_tid);
227 
228 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 		struct threads *threads = &machine->threads[i];
230 		struct thread *thread, *n;
231 		/*
232 		 * Forget about the dead, at this point whatever threads were
233 		 * left in the dead lists better have a reference count taken
234 		 * by who is using them, and then, when they drop those references
235 		 * and it finally hits zero, thread__put() will check and see that
236 		 * its not in the dead threads list and will not try to remove it
237 		 * from there, just calling thread__delete() straight away.
238 		 */
239 		list_for_each_entry_safe(thread, n, &threads->dead, node)
240 			list_del_init(&thread->node);
241 
242 		exit_rwsem(&threads->lock);
243 	}
244 }
245 
246 void machine__delete(struct machine *machine)
247 {
248 	if (machine) {
249 		machine__exit(machine);
250 		free(machine);
251 	}
252 }
253 
254 void machines__init(struct machines *machines)
255 {
256 	machine__init(&machines->host, "", HOST_KERNEL_ID);
257 	machines->guests = RB_ROOT_CACHED;
258 }
259 
260 void machines__exit(struct machines *machines)
261 {
262 	machine__exit(&machines->host);
263 	/* XXX exit guest */
264 }
265 
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 			      const char *root_dir)
268 {
269 	struct rb_node **p = &machines->guests.rb_root.rb_node;
270 	struct rb_node *parent = NULL;
271 	struct machine *pos, *machine = malloc(sizeof(*machine));
272 	bool leftmost = true;
273 
274 	if (machine == NULL)
275 		return NULL;
276 
277 	if (machine__init(machine, root_dir, pid) != 0) {
278 		free(machine);
279 		return NULL;
280 	}
281 
282 	while (*p != NULL) {
283 		parent = *p;
284 		pos = rb_entry(parent, struct machine, rb_node);
285 		if (pid < pos->pid)
286 			p = &(*p)->rb_left;
287 		else {
288 			p = &(*p)->rb_right;
289 			leftmost = false;
290 		}
291 	}
292 
293 	rb_link_node(&machine->rb_node, parent, p);
294 	rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295 
296 	return machine;
297 }
298 
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 	struct rb_node *nd;
302 
303 	machines->host.comm_exec = comm_exec;
304 
305 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
307 
308 		machine->comm_exec = comm_exec;
309 	}
310 }
311 
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 	struct rb_node **p = &machines->guests.rb_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct machine *machine;
317 	struct machine *default_machine = NULL;
318 
319 	if (pid == HOST_KERNEL_ID)
320 		return &machines->host;
321 
322 	while (*p != NULL) {
323 		parent = *p;
324 		machine = rb_entry(parent, struct machine, rb_node);
325 		if (pid < machine->pid)
326 			p = &(*p)->rb_left;
327 		else if (pid > machine->pid)
328 			p = &(*p)->rb_right;
329 		else
330 			return machine;
331 		if (!machine->pid)
332 			default_machine = machine;
333 	}
334 
335 	return default_machine;
336 }
337 
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 	char path[PATH_MAX];
341 	const char *root_dir = "";
342 	struct machine *machine = machines__find(machines, pid);
343 
344 	if (machine && (machine->pid == pid))
345 		goto out;
346 
347 	if ((pid != HOST_KERNEL_ID) &&
348 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 	    (symbol_conf.guestmount)) {
350 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 		if (access(path, R_OK)) {
352 			static struct strlist *seen;
353 
354 			if (!seen)
355 				seen = strlist__new(NULL, NULL);
356 
357 			if (!strlist__has_entry(seen, path)) {
358 				pr_err("Can't access file %s\n", path);
359 				strlist__add(seen, path);
360 			}
361 			machine = NULL;
362 			goto out;
363 		}
364 		root_dir = path;
365 	}
366 
367 	machine = machines__add(machines, pid, root_dir);
368 out:
369 	return machine;
370 }
371 
372 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
373 {
374 	struct machine *machine = machines__find(machines, pid);
375 
376 	if (!machine)
377 		machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
378 	return machine;
379 }
380 
381 void machines__process_guests(struct machines *machines,
382 			      machine__process_t process, void *data)
383 {
384 	struct rb_node *nd;
385 
386 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
387 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
388 		process(pos, data);
389 	}
390 }
391 
392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
393 {
394 	struct rb_node *node;
395 	struct machine *machine;
396 
397 	machines->host.id_hdr_size = id_hdr_size;
398 
399 	for (node = rb_first_cached(&machines->guests); node;
400 	     node = rb_next(node)) {
401 		machine = rb_entry(node, struct machine, rb_node);
402 		machine->id_hdr_size = id_hdr_size;
403 	}
404 
405 	return;
406 }
407 
408 static void machine__update_thread_pid(struct machine *machine,
409 				       struct thread *th, pid_t pid)
410 {
411 	struct thread *leader;
412 
413 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
414 		return;
415 
416 	th->pid_ = pid;
417 
418 	if (th->pid_ == th->tid)
419 		return;
420 
421 	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
422 	if (!leader)
423 		goto out_err;
424 
425 	if (!leader->maps)
426 		leader->maps = maps__new(machine);
427 
428 	if (!leader->maps)
429 		goto out_err;
430 
431 	if (th->maps == leader->maps)
432 		return;
433 
434 	if (th->maps) {
435 		/*
436 		 * Maps are created from MMAP events which provide the pid and
437 		 * tid.  Consequently there never should be any maps on a thread
438 		 * with an unknown pid.  Just print an error if there are.
439 		 */
440 		if (!maps__empty(th->maps))
441 			pr_err("Discarding thread maps for %d:%d\n",
442 			       th->pid_, th->tid);
443 		maps__put(th->maps);
444 	}
445 
446 	th->maps = maps__get(leader->maps);
447 out_put:
448 	thread__put(leader);
449 	return;
450 out_err:
451 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
452 	goto out_put;
453 }
454 
455 /*
456  * Front-end cache - TID lookups come in blocks,
457  * so most of the time we dont have to look up
458  * the full rbtree:
459  */
460 static struct thread*
461 __threads__get_last_match(struct threads *threads, struct machine *machine,
462 			  int pid, int tid)
463 {
464 	struct thread *th;
465 
466 	th = threads->last_match;
467 	if (th != NULL) {
468 		if (th->tid == tid) {
469 			machine__update_thread_pid(machine, th, pid);
470 			return thread__get(th);
471 		}
472 
473 		threads->last_match = NULL;
474 	}
475 
476 	return NULL;
477 }
478 
479 static struct thread*
480 threads__get_last_match(struct threads *threads, struct machine *machine,
481 			int pid, int tid)
482 {
483 	struct thread *th = NULL;
484 
485 	if (perf_singlethreaded)
486 		th = __threads__get_last_match(threads, machine, pid, tid);
487 
488 	return th;
489 }
490 
491 static void
492 __threads__set_last_match(struct threads *threads, struct thread *th)
493 {
494 	threads->last_match = th;
495 }
496 
497 static void
498 threads__set_last_match(struct threads *threads, struct thread *th)
499 {
500 	if (perf_singlethreaded)
501 		__threads__set_last_match(threads, th);
502 }
503 
504 /*
505  * Caller must eventually drop thread->refcnt returned with a successful
506  * lookup/new thread inserted.
507  */
508 static struct thread *____machine__findnew_thread(struct machine *machine,
509 						  struct threads *threads,
510 						  pid_t pid, pid_t tid,
511 						  bool create)
512 {
513 	struct rb_node **p = &threads->entries.rb_root.rb_node;
514 	struct rb_node *parent = NULL;
515 	struct thread *th;
516 	bool leftmost = true;
517 
518 	th = threads__get_last_match(threads, machine, pid, tid);
519 	if (th)
520 		return th;
521 
522 	while (*p != NULL) {
523 		parent = *p;
524 		th = rb_entry(parent, struct thread, rb_node);
525 
526 		if (th->tid == tid) {
527 			threads__set_last_match(threads, th);
528 			machine__update_thread_pid(machine, th, pid);
529 			return thread__get(th);
530 		}
531 
532 		if (tid < th->tid)
533 			p = &(*p)->rb_left;
534 		else {
535 			p = &(*p)->rb_right;
536 			leftmost = false;
537 		}
538 	}
539 
540 	if (!create)
541 		return NULL;
542 
543 	th = thread__new(pid, tid);
544 	if (th != NULL) {
545 		rb_link_node(&th->rb_node, parent, p);
546 		rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
547 
548 		/*
549 		 * We have to initialize maps separately after rb tree is updated.
550 		 *
551 		 * The reason is that we call machine__findnew_thread
552 		 * within thread__init_maps to find the thread
553 		 * leader and that would screwed the rb tree.
554 		 */
555 		if (thread__init_maps(th, machine)) {
556 			rb_erase_cached(&th->rb_node, &threads->entries);
557 			RB_CLEAR_NODE(&th->rb_node);
558 			thread__put(th);
559 			return NULL;
560 		}
561 		/*
562 		 * It is now in the rbtree, get a ref
563 		 */
564 		thread__get(th);
565 		threads__set_last_match(threads, th);
566 		++threads->nr;
567 	}
568 
569 	return th;
570 }
571 
572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
573 {
574 	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
575 }
576 
577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
578 				       pid_t tid)
579 {
580 	struct threads *threads = machine__threads(machine, tid);
581 	struct thread *th;
582 
583 	down_write(&threads->lock);
584 	th = __machine__findnew_thread(machine, pid, tid);
585 	up_write(&threads->lock);
586 	return th;
587 }
588 
589 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
590 				    pid_t tid)
591 {
592 	struct threads *threads = machine__threads(machine, tid);
593 	struct thread *th;
594 
595 	down_read(&threads->lock);
596 	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
597 	up_read(&threads->lock);
598 	return th;
599 }
600 
601 /*
602  * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
603  * So here a single thread is created for that, but actually there is a separate
604  * idle task per cpu, so there should be one 'struct thread' per cpu, but there
605  * is only 1. That causes problems for some tools, requiring workarounds. For
606  * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
607  */
608 struct thread *machine__idle_thread(struct machine *machine)
609 {
610 	struct thread *thread = machine__findnew_thread(machine, 0, 0);
611 
612 	if (!thread || thread__set_comm(thread, "swapper", 0) ||
613 	    thread__set_namespaces(thread, 0, NULL))
614 		pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
615 
616 	return thread;
617 }
618 
619 struct comm *machine__thread_exec_comm(struct machine *machine,
620 				       struct thread *thread)
621 {
622 	if (machine->comm_exec)
623 		return thread__exec_comm(thread);
624 	else
625 		return thread__comm(thread);
626 }
627 
628 int machine__process_comm_event(struct machine *machine, union perf_event *event,
629 				struct perf_sample *sample)
630 {
631 	struct thread *thread = machine__findnew_thread(machine,
632 							event->comm.pid,
633 							event->comm.tid);
634 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
635 	int err = 0;
636 
637 	if (exec)
638 		machine->comm_exec = true;
639 
640 	if (dump_trace)
641 		perf_event__fprintf_comm(event, stdout);
642 
643 	if (thread == NULL ||
644 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
645 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
646 		err = -1;
647 	}
648 
649 	thread__put(thread);
650 
651 	return err;
652 }
653 
654 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
655 				      union perf_event *event,
656 				      struct perf_sample *sample __maybe_unused)
657 {
658 	struct thread *thread = machine__findnew_thread(machine,
659 							event->namespaces.pid,
660 							event->namespaces.tid);
661 	int err = 0;
662 
663 	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
664 		  "\nWARNING: kernel seems to support more namespaces than perf"
665 		  " tool.\nTry updating the perf tool..\n\n");
666 
667 	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
668 		  "\nWARNING: perf tool seems to support more namespaces than"
669 		  " the kernel.\nTry updating the kernel..\n\n");
670 
671 	if (dump_trace)
672 		perf_event__fprintf_namespaces(event, stdout);
673 
674 	if (thread == NULL ||
675 	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
676 		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
677 		err = -1;
678 	}
679 
680 	thread__put(thread);
681 
682 	return err;
683 }
684 
685 int machine__process_cgroup_event(struct machine *machine,
686 				  union perf_event *event,
687 				  struct perf_sample *sample __maybe_unused)
688 {
689 	struct cgroup *cgrp;
690 
691 	if (dump_trace)
692 		perf_event__fprintf_cgroup(event, stdout);
693 
694 	cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
695 	if (cgrp == NULL)
696 		return -ENOMEM;
697 
698 	return 0;
699 }
700 
701 int machine__process_lost_event(struct machine *machine __maybe_unused,
702 				union perf_event *event, struct perf_sample *sample __maybe_unused)
703 {
704 	dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
705 		    event->lost.id, event->lost.lost);
706 	return 0;
707 }
708 
709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
710 					union perf_event *event, struct perf_sample *sample)
711 {
712 	dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
713 		    sample->id, event->lost_samples.lost);
714 	return 0;
715 }
716 
717 static struct dso *machine__findnew_module_dso(struct machine *machine,
718 					       struct kmod_path *m,
719 					       const char *filename)
720 {
721 	struct dso *dso;
722 
723 	down_write(&machine->dsos.lock);
724 
725 	dso = __dsos__find(&machine->dsos, m->name, true);
726 	if (!dso) {
727 		dso = __dsos__addnew(&machine->dsos, m->name);
728 		if (dso == NULL)
729 			goto out_unlock;
730 
731 		dso__set_module_info(dso, m, machine);
732 		dso__set_long_name(dso, strdup(filename), true);
733 		dso->kernel = DSO_SPACE__KERNEL;
734 	}
735 
736 	dso__get(dso);
737 out_unlock:
738 	up_write(&machine->dsos.lock);
739 	return dso;
740 }
741 
742 int machine__process_aux_event(struct machine *machine __maybe_unused,
743 			       union perf_event *event)
744 {
745 	if (dump_trace)
746 		perf_event__fprintf_aux(event, stdout);
747 	return 0;
748 }
749 
750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
751 					union perf_event *event)
752 {
753 	if (dump_trace)
754 		perf_event__fprintf_itrace_start(event, stdout);
755 	return 0;
756 }
757 
758 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
759 					    union perf_event *event)
760 {
761 	if (dump_trace)
762 		perf_event__fprintf_aux_output_hw_id(event, stdout);
763 	return 0;
764 }
765 
766 int machine__process_switch_event(struct machine *machine __maybe_unused,
767 				  union perf_event *event)
768 {
769 	if (dump_trace)
770 		perf_event__fprintf_switch(event, stdout);
771 	return 0;
772 }
773 
774 static int machine__process_ksymbol_register(struct machine *machine,
775 					     union perf_event *event,
776 					     struct perf_sample *sample __maybe_unused)
777 {
778 	struct symbol *sym;
779 	struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
780 
781 	if (!map) {
782 		struct dso *dso = dso__new(event->ksymbol.name);
783 
784 		if (dso) {
785 			dso->kernel = DSO_SPACE__KERNEL;
786 			map = map__new2(0, dso);
787 			dso__put(dso);
788 		}
789 
790 		if (!dso || !map) {
791 			return -ENOMEM;
792 		}
793 
794 		if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
795 			map->dso->binary_type = DSO_BINARY_TYPE__OOL;
796 			map->dso->data.file_size = event->ksymbol.len;
797 			dso__set_loaded(map->dso);
798 		}
799 
800 		map->start = event->ksymbol.addr;
801 		map->end = map->start + event->ksymbol.len;
802 		maps__insert(&machine->kmaps, map);
803 		map__put(map);
804 		dso__set_loaded(dso);
805 
806 		if (is_bpf_image(event->ksymbol.name)) {
807 			dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
808 			dso__set_long_name(dso, "", false);
809 		}
810 	}
811 
812 	sym = symbol__new(map->map_ip(map, map->start),
813 			  event->ksymbol.len,
814 			  0, 0, event->ksymbol.name);
815 	if (!sym)
816 		return -ENOMEM;
817 	dso__insert_symbol(map->dso, sym);
818 	return 0;
819 }
820 
821 static int machine__process_ksymbol_unregister(struct machine *machine,
822 					       union perf_event *event,
823 					       struct perf_sample *sample __maybe_unused)
824 {
825 	struct symbol *sym;
826 	struct map *map;
827 
828 	map = maps__find(&machine->kmaps, event->ksymbol.addr);
829 	if (!map)
830 		return 0;
831 
832 	if (map != machine->vmlinux_map)
833 		maps__remove(&machine->kmaps, map);
834 	else {
835 		sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
836 		if (sym)
837 			dso__delete_symbol(map->dso, sym);
838 	}
839 
840 	return 0;
841 }
842 
843 int machine__process_ksymbol(struct machine *machine __maybe_unused,
844 			     union perf_event *event,
845 			     struct perf_sample *sample)
846 {
847 	if (dump_trace)
848 		perf_event__fprintf_ksymbol(event, stdout);
849 
850 	if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
851 		return machine__process_ksymbol_unregister(machine, event,
852 							   sample);
853 	return machine__process_ksymbol_register(machine, event, sample);
854 }
855 
856 int machine__process_text_poke(struct machine *machine, union perf_event *event,
857 			       struct perf_sample *sample __maybe_unused)
858 {
859 	struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
860 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
861 
862 	if (dump_trace)
863 		perf_event__fprintf_text_poke(event, machine, stdout);
864 
865 	if (!event->text_poke.new_len)
866 		return 0;
867 
868 	if (cpumode != PERF_RECORD_MISC_KERNEL) {
869 		pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
870 		return 0;
871 	}
872 
873 	if (map && map->dso) {
874 		u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
875 		int ret;
876 
877 		/*
878 		 * Kernel maps might be changed when loading symbols so loading
879 		 * must be done prior to using kernel maps.
880 		 */
881 		map__load(map);
882 		ret = dso__data_write_cache_addr(map->dso, map, machine,
883 						 event->text_poke.addr,
884 						 new_bytes,
885 						 event->text_poke.new_len);
886 		if (ret != event->text_poke.new_len)
887 			pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
888 				 event->text_poke.addr);
889 	} else {
890 		pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
891 			 event->text_poke.addr);
892 	}
893 
894 	return 0;
895 }
896 
897 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
898 					      const char *filename)
899 {
900 	struct map *map = NULL;
901 	struct kmod_path m;
902 	struct dso *dso;
903 
904 	if (kmod_path__parse_name(&m, filename))
905 		return NULL;
906 
907 	dso = machine__findnew_module_dso(machine, &m, filename);
908 	if (dso == NULL)
909 		goto out;
910 
911 	map = map__new2(start, dso);
912 	if (map == NULL)
913 		goto out;
914 
915 	maps__insert(&machine->kmaps, map);
916 
917 	/* Put the map here because maps__insert already got it */
918 	map__put(map);
919 out:
920 	/* put the dso here, corresponding to  machine__findnew_module_dso */
921 	dso__put(dso);
922 	zfree(&m.name);
923 	return map;
924 }
925 
926 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
927 {
928 	struct rb_node *nd;
929 	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
930 
931 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
932 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
933 		ret += __dsos__fprintf(&pos->dsos.head, fp);
934 	}
935 
936 	return ret;
937 }
938 
939 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
940 				     bool (skip)(struct dso *dso, int parm), int parm)
941 {
942 	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
943 }
944 
945 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
946 				     bool (skip)(struct dso *dso, int parm), int parm)
947 {
948 	struct rb_node *nd;
949 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
950 
951 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
952 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
953 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
954 	}
955 	return ret;
956 }
957 
958 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
959 {
960 	int i;
961 	size_t printed = 0;
962 	struct dso *kdso = machine__kernel_dso(machine);
963 
964 	if (kdso->has_build_id) {
965 		char filename[PATH_MAX];
966 		if (dso__build_id_filename(kdso, filename, sizeof(filename),
967 					   false))
968 			printed += fprintf(fp, "[0] %s\n", filename);
969 	}
970 
971 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
972 		printed += fprintf(fp, "[%d] %s\n",
973 				   i + kdso->has_build_id, vmlinux_path[i]);
974 
975 	return printed;
976 }
977 
978 size_t machine__fprintf(struct machine *machine, FILE *fp)
979 {
980 	struct rb_node *nd;
981 	size_t ret;
982 	int i;
983 
984 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
985 		struct threads *threads = &machine->threads[i];
986 
987 		down_read(&threads->lock);
988 
989 		ret = fprintf(fp, "Threads: %u\n", threads->nr);
990 
991 		for (nd = rb_first_cached(&threads->entries); nd;
992 		     nd = rb_next(nd)) {
993 			struct thread *pos = rb_entry(nd, struct thread, rb_node);
994 
995 			ret += thread__fprintf(pos, fp);
996 		}
997 
998 		up_read(&threads->lock);
999 	}
1000 	return ret;
1001 }
1002 
1003 static struct dso *machine__get_kernel(struct machine *machine)
1004 {
1005 	const char *vmlinux_name = machine->mmap_name;
1006 	struct dso *kernel;
1007 
1008 	if (machine__is_host(machine)) {
1009 		if (symbol_conf.vmlinux_name)
1010 			vmlinux_name = symbol_conf.vmlinux_name;
1011 
1012 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1013 						 "[kernel]", DSO_SPACE__KERNEL);
1014 	} else {
1015 		if (symbol_conf.default_guest_vmlinux_name)
1016 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1017 
1018 		kernel = machine__findnew_kernel(machine, vmlinux_name,
1019 						 "[guest.kernel]",
1020 						 DSO_SPACE__KERNEL_GUEST);
1021 	}
1022 
1023 	if (kernel != NULL && (!kernel->has_build_id))
1024 		dso__read_running_kernel_build_id(kernel, machine);
1025 
1026 	return kernel;
1027 }
1028 
1029 struct process_args {
1030 	u64 start;
1031 };
1032 
1033 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1034 				    size_t bufsz)
1035 {
1036 	if (machine__is_default_guest(machine))
1037 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1038 	else
1039 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1040 }
1041 
1042 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1043 
1044 /* Figure out the start address of kernel map from /proc/kallsyms.
1045  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1046  * symbol_name if it's not that important.
1047  */
1048 static int machine__get_running_kernel_start(struct machine *machine,
1049 					     const char **symbol_name,
1050 					     u64 *start, u64 *end)
1051 {
1052 	char filename[PATH_MAX];
1053 	int i, err = -1;
1054 	const char *name;
1055 	u64 addr = 0;
1056 
1057 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1058 
1059 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1060 		return 0;
1061 
1062 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1063 		err = kallsyms__get_function_start(filename, name, &addr);
1064 		if (!err)
1065 			break;
1066 	}
1067 
1068 	if (err)
1069 		return -1;
1070 
1071 	if (symbol_name)
1072 		*symbol_name = name;
1073 
1074 	*start = addr;
1075 
1076 	err = kallsyms__get_function_start(filename, "_etext", &addr);
1077 	if (!err)
1078 		*end = addr;
1079 
1080 	return 0;
1081 }
1082 
1083 int machine__create_extra_kernel_map(struct machine *machine,
1084 				     struct dso *kernel,
1085 				     struct extra_kernel_map *xm)
1086 {
1087 	struct kmap *kmap;
1088 	struct map *map;
1089 
1090 	map = map__new2(xm->start, kernel);
1091 	if (!map)
1092 		return -1;
1093 
1094 	map->end   = xm->end;
1095 	map->pgoff = xm->pgoff;
1096 
1097 	kmap = map__kmap(map);
1098 
1099 	strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1100 
1101 	maps__insert(&machine->kmaps, map);
1102 
1103 	pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1104 		  kmap->name, map->start, map->end);
1105 
1106 	map__put(map);
1107 
1108 	return 0;
1109 }
1110 
1111 static u64 find_entry_trampoline(struct dso *dso)
1112 {
1113 	/* Duplicates are removed so lookup all aliases */
1114 	const char *syms[] = {
1115 		"_entry_trampoline",
1116 		"__entry_trampoline_start",
1117 		"entry_SYSCALL_64_trampoline",
1118 	};
1119 	struct symbol *sym = dso__first_symbol(dso);
1120 	unsigned int i;
1121 
1122 	for (; sym; sym = dso__next_symbol(sym)) {
1123 		if (sym->binding != STB_GLOBAL)
1124 			continue;
1125 		for (i = 0; i < ARRAY_SIZE(syms); i++) {
1126 			if (!strcmp(sym->name, syms[i]))
1127 				return sym->start;
1128 		}
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * These values can be used for kernels that do not have symbols for the entry
1136  * trampolines in kallsyms.
1137  */
1138 #define X86_64_CPU_ENTRY_AREA_PER_CPU	0xfffffe0000000000ULL
1139 #define X86_64_CPU_ENTRY_AREA_SIZE	0x2c000
1140 #define X86_64_ENTRY_TRAMPOLINE		0x6000
1141 
1142 /* Map x86_64 PTI entry trampolines */
1143 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1144 					  struct dso *kernel)
1145 {
1146 	struct maps *kmaps = &machine->kmaps;
1147 	int nr_cpus_avail, cpu;
1148 	bool found = false;
1149 	struct map *map;
1150 	u64 pgoff;
1151 
1152 	/*
1153 	 * In the vmlinux case, pgoff is a virtual address which must now be
1154 	 * mapped to a vmlinux offset.
1155 	 */
1156 	maps__for_each_entry(kmaps, map) {
1157 		struct kmap *kmap = __map__kmap(map);
1158 		struct map *dest_map;
1159 
1160 		if (!kmap || !is_entry_trampoline(kmap->name))
1161 			continue;
1162 
1163 		dest_map = maps__find(kmaps, map->pgoff);
1164 		if (dest_map != map)
1165 			map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1166 		found = true;
1167 	}
1168 	if (found || machine->trampolines_mapped)
1169 		return 0;
1170 
1171 	pgoff = find_entry_trampoline(kernel);
1172 	if (!pgoff)
1173 		return 0;
1174 
1175 	nr_cpus_avail = machine__nr_cpus_avail(machine);
1176 
1177 	/* Add a 1 page map for each CPU's entry trampoline */
1178 	for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1179 		u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1180 			 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1181 			 X86_64_ENTRY_TRAMPOLINE;
1182 		struct extra_kernel_map xm = {
1183 			.start = va,
1184 			.end   = va + page_size,
1185 			.pgoff = pgoff,
1186 		};
1187 
1188 		strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1189 
1190 		if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1191 			return -1;
1192 	}
1193 
1194 	machine->trampolines_mapped = nr_cpus_avail;
1195 
1196 	return 0;
1197 }
1198 
1199 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1200 					     struct dso *kernel __maybe_unused)
1201 {
1202 	return 0;
1203 }
1204 
1205 static int
1206 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1207 {
1208 	/* In case of renewal the kernel map, destroy previous one */
1209 	machine__destroy_kernel_maps(machine);
1210 
1211 	machine->vmlinux_map = map__new2(0, kernel);
1212 	if (machine->vmlinux_map == NULL)
1213 		return -1;
1214 
1215 	machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1216 	maps__insert(&machine->kmaps, machine->vmlinux_map);
1217 	return 0;
1218 }
1219 
1220 void machine__destroy_kernel_maps(struct machine *machine)
1221 {
1222 	struct kmap *kmap;
1223 	struct map *map = machine__kernel_map(machine);
1224 
1225 	if (map == NULL)
1226 		return;
1227 
1228 	kmap = map__kmap(map);
1229 	maps__remove(&machine->kmaps, map);
1230 	if (kmap && kmap->ref_reloc_sym) {
1231 		zfree((char **)&kmap->ref_reloc_sym->name);
1232 		zfree(&kmap->ref_reloc_sym);
1233 	}
1234 
1235 	map__zput(machine->vmlinux_map);
1236 }
1237 
1238 int machines__create_guest_kernel_maps(struct machines *machines)
1239 {
1240 	int ret = 0;
1241 	struct dirent **namelist = NULL;
1242 	int i, items = 0;
1243 	char path[PATH_MAX];
1244 	pid_t pid;
1245 	char *endp;
1246 
1247 	if (symbol_conf.default_guest_vmlinux_name ||
1248 	    symbol_conf.default_guest_modules ||
1249 	    symbol_conf.default_guest_kallsyms) {
1250 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1251 	}
1252 
1253 	if (symbol_conf.guestmount) {
1254 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1255 		if (items <= 0)
1256 			return -ENOENT;
1257 		for (i = 0; i < items; i++) {
1258 			if (!isdigit(namelist[i]->d_name[0])) {
1259 				/* Filter out . and .. */
1260 				continue;
1261 			}
1262 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1263 			if ((*endp != '\0') ||
1264 			    (endp == namelist[i]->d_name) ||
1265 			    (errno == ERANGE)) {
1266 				pr_debug("invalid directory (%s). Skipping.\n",
1267 					 namelist[i]->d_name);
1268 				continue;
1269 			}
1270 			sprintf(path, "%s/%s/proc/kallsyms",
1271 				symbol_conf.guestmount,
1272 				namelist[i]->d_name);
1273 			ret = access(path, R_OK);
1274 			if (ret) {
1275 				pr_debug("Can't access file %s\n", path);
1276 				goto failure;
1277 			}
1278 			machines__create_kernel_maps(machines, pid);
1279 		}
1280 failure:
1281 		free(namelist);
1282 	}
1283 
1284 	return ret;
1285 }
1286 
1287 void machines__destroy_kernel_maps(struct machines *machines)
1288 {
1289 	struct rb_node *next = rb_first_cached(&machines->guests);
1290 
1291 	machine__destroy_kernel_maps(&machines->host);
1292 
1293 	while (next) {
1294 		struct machine *pos = rb_entry(next, struct machine, rb_node);
1295 
1296 		next = rb_next(&pos->rb_node);
1297 		rb_erase_cached(&pos->rb_node, &machines->guests);
1298 		machine__delete(pos);
1299 	}
1300 }
1301 
1302 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1303 {
1304 	struct machine *machine = machines__findnew(machines, pid);
1305 
1306 	if (machine == NULL)
1307 		return -1;
1308 
1309 	return machine__create_kernel_maps(machine);
1310 }
1311 
1312 int machine__load_kallsyms(struct machine *machine, const char *filename)
1313 {
1314 	struct map *map = machine__kernel_map(machine);
1315 	int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1316 
1317 	if (ret > 0) {
1318 		dso__set_loaded(map->dso);
1319 		/*
1320 		 * Since /proc/kallsyms will have multiple sessions for the
1321 		 * kernel, with modules between them, fixup the end of all
1322 		 * sections.
1323 		 */
1324 		maps__fixup_end(&machine->kmaps);
1325 	}
1326 
1327 	return ret;
1328 }
1329 
1330 int machine__load_vmlinux_path(struct machine *machine)
1331 {
1332 	struct map *map = machine__kernel_map(machine);
1333 	int ret = dso__load_vmlinux_path(map->dso, map);
1334 
1335 	if (ret > 0)
1336 		dso__set_loaded(map->dso);
1337 
1338 	return ret;
1339 }
1340 
1341 static char *get_kernel_version(const char *root_dir)
1342 {
1343 	char version[PATH_MAX];
1344 	FILE *file;
1345 	char *name, *tmp;
1346 	const char *prefix = "Linux version ";
1347 
1348 	sprintf(version, "%s/proc/version", root_dir);
1349 	file = fopen(version, "r");
1350 	if (!file)
1351 		return NULL;
1352 
1353 	tmp = fgets(version, sizeof(version), file);
1354 	fclose(file);
1355 	if (!tmp)
1356 		return NULL;
1357 
1358 	name = strstr(version, prefix);
1359 	if (!name)
1360 		return NULL;
1361 	name += strlen(prefix);
1362 	tmp = strchr(name, ' ');
1363 	if (tmp)
1364 		*tmp = '\0';
1365 
1366 	return strdup(name);
1367 }
1368 
1369 static bool is_kmod_dso(struct dso *dso)
1370 {
1371 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1372 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1373 }
1374 
1375 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1376 {
1377 	char *long_name;
1378 	struct map *map = maps__find_by_name(maps, m->name);
1379 
1380 	if (map == NULL)
1381 		return 0;
1382 
1383 	long_name = strdup(path);
1384 	if (long_name == NULL)
1385 		return -ENOMEM;
1386 
1387 	dso__set_long_name(map->dso, long_name, true);
1388 	dso__kernel_module_get_build_id(map->dso, "");
1389 
1390 	/*
1391 	 * Full name could reveal us kmod compression, so
1392 	 * we need to update the symtab_type if needed.
1393 	 */
1394 	if (m->comp && is_kmod_dso(map->dso)) {
1395 		map->dso->symtab_type++;
1396 		map->dso->comp = m->comp;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1403 {
1404 	struct dirent *dent;
1405 	DIR *dir = opendir(dir_name);
1406 	int ret = 0;
1407 
1408 	if (!dir) {
1409 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1410 		return -1;
1411 	}
1412 
1413 	while ((dent = readdir(dir)) != NULL) {
1414 		char path[PATH_MAX];
1415 		struct stat st;
1416 
1417 		/*sshfs might return bad dent->d_type, so we have to stat*/
1418 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1419 		if (stat(path, &st))
1420 			continue;
1421 
1422 		if (S_ISDIR(st.st_mode)) {
1423 			if (!strcmp(dent->d_name, ".") ||
1424 			    !strcmp(dent->d_name, ".."))
1425 				continue;
1426 
1427 			/* Do not follow top-level source and build symlinks */
1428 			if (depth == 0) {
1429 				if (!strcmp(dent->d_name, "source") ||
1430 				    !strcmp(dent->d_name, "build"))
1431 					continue;
1432 			}
1433 
1434 			ret = maps__set_modules_path_dir(maps, path, depth + 1);
1435 			if (ret < 0)
1436 				goto out;
1437 		} else {
1438 			struct kmod_path m;
1439 
1440 			ret = kmod_path__parse_name(&m, dent->d_name);
1441 			if (ret)
1442 				goto out;
1443 
1444 			if (m.kmod)
1445 				ret = maps__set_module_path(maps, path, &m);
1446 
1447 			zfree(&m.name);
1448 
1449 			if (ret)
1450 				goto out;
1451 		}
1452 	}
1453 
1454 out:
1455 	closedir(dir);
1456 	return ret;
1457 }
1458 
1459 static int machine__set_modules_path(struct machine *machine)
1460 {
1461 	char *version;
1462 	char modules_path[PATH_MAX];
1463 
1464 	version = get_kernel_version(machine->root_dir);
1465 	if (!version)
1466 		return -1;
1467 
1468 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1469 		 machine->root_dir, version);
1470 	free(version);
1471 
1472 	return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1473 }
1474 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1475 				u64 *size __maybe_unused,
1476 				const char *name __maybe_unused)
1477 {
1478 	return 0;
1479 }
1480 
1481 static int machine__create_module(void *arg, const char *name, u64 start,
1482 				  u64 size)
1483 {
1484 	struct machine *machine = arg;
1485 	struct map *map;
1486 
1487 	if (arch__fix_module_text_start(&start, &size, name) < 0)
1488 		return -1;
1489 
1490 	map = machine__addnew_module_map(machine, start, name);
1491 	if (map == NULL)
1492 		return -1;
1493 	map->end = start + size;
1494 
1495 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1496 
1497 	return 0;
1498 }
1499 
1500 static int machine__create_modules(struct machine *machine)
1501 {
1502 	const char *modules;
1503 	char path[PATH_MAX];
1504 
1505 	if (machine__is_default_guest(machine)) {
1506 		modules = symbol_conf.default_guest_modules;
1507 	} else {
1508 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1509 		modules = path;
1510 	}
1511 
1512 	if (symbol__restricted_filename(modules, "/proc/modules"))
1513 		return -1;
1514 
1515 	if (modules__parse(modules, machine, machine__create_module))
1516 		return -1;
1517 
1518 	if (!machine__set_modules_path(machine))
1519 		return 0;
1520 
1521 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1522 
1523 	return 0;
1524 }
1525 
1526 static void machine__set_kernel_mmap(struct machine *machine,
1527 				     u64 start, u64 end)
1528 {
1529 	machine->vmlinux_map->start = start;
1530 	machine->vmlinux_map->end   = end;
1531 	/*
1532 	 * Be a bit paranoid here, some perf.data file came with
1533 	 * a zero sized synthesized MMAP event for the kernel.
1534 	 */
1535 	if (start == 0 && end == 0)
1536 		machine->vmlinux_map->end = ~0ULL;
1537 }
1538 
1539 static void machine__update_kernel_mmap(struct machine *machine,
1540 				     u64 start, u64 end)
1541 {
1542 	struct map *map = machine__kernel_map(machine);
1543 
1544 	map__get(map);
1545 	maps__remove(&machine->kmaps, map);
1546 
1547 	machine__set_kernel_mmap(machine, start, end);
1548 
1549 	maps__insert(&machine->kmaps, map);
1550 	map__put(map);
1551 }
1552 
1553 int machine__create_kernel_maps(struct machine *machine)
1554 {
1555 	struct dso *kernel = machine__get_kernel(machine);
1556 	const char *name = NULL;
1557 	struct map *map;
1558 	u64 start = 0, end = ~0ULL;
1559 	int ret;
1560 
1561 	if (kernel == NULL)
1562 		return -1;
1563 
1564 	ret = __machine__create_kernel_maps(machine, kernel);
1565 	if (ret < 0)
1566 		goto out_put;
1567 
1568 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1569 		if (machine__is_host(machine))
1570 			pr_debug("Problems creating module maps, "
1571 				 "continuing anyway...\n");
1572 		else
1573 			pr_debug("Problems creating module maps for guest %d, "
1574 				 "continuing anyway...\n", machine->pid);
1575 	}
1576 
1577 	if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1578 		if (name &&
1579 		    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1580 			machine__destroy_kernel_maps(machine);
1581 			ret = -1;
1582 			goto out_put;
1583 		}
1584 
1585 		/*
1586 		 * we have a real start address now, so re-order the kmaps
1587 		 * assume it's the last in the kmaps
1588 		 */
1589 		machine__update_kernel_mmap(machine, start, end);
1590 	}
1591 
1592 	if (machine__create_extra_kernel_maps(machine, kernel))
1593 		pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1594 
1595 	if (end == ~0ULL) {
1596 		/* update end address of the kernel map using adjacent module address */
1597 		map = map__next(machine__kernel_map(machine));
1598 		if (map)
1599 			machine__set_kernel_mmap(machine, start, map->start);
1600 	}
1601 
1602 out_put:
1603 	dso__put(kernel);
1604 	return ret;
1605 }
1606 
1607 static bool machine__uses_kcore(struct machine *machine)
1608 {
1609 	struct dso *dso;
1610 
1611 	list_for_each_entry(dso, &machine->dsos.head, node) {
1612 		if (dso__is_kcore(dso))
1613 			return true;
1614 	}
1615 
1616 	return false;
1617 }
1618 
1619 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1620 					     struct extra_kernel_map *xm)
1621 {
1622 	return machine__is(machine, "x86_64") &&
1623 	       is_entry_trampoline(xm->name);
1624 }
1625 
1626 static int machine__process_extra_kernel_map(struct machine *machine,
1627 					     struct extra_kernel_map *xm)
1628 {
1629 	struct dso *kernel = machine__kernel_dso(machine);
1630 
1631 	if (kernel == NULL)
1632 		return -1;
1633 
1634 	return machine__create_extra_kernel_map(machine, kernel, xm);
1635 }
1636 
1637 static int machine__process_kernel_mmap_event(struct machine *machine,
1638 					      struct extra_kernel_map *xm,
1639 					      struct build_id *bid)
1640 {
1641 	struct map *map;
1642 	enum dso_space_type dso_space;
1643 	bool is_kernel_mmap;
1644 
1645 	/* If we have maps from kcore then we do not need or want any others */
1646 	if (machine__uses_kcore(machine))
1647 		return 0;
1648 
1649 	if (machine__is_host(machine))
1650 		dso_space = DSO_SPACE__KERNEL;
1651 	else
1652 		dso_space = DSO_SPACE__KERNEL_GUEST;
1653 
1654 	is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1655 				strlen(machine->mmap_name) - 1) == 0;
1656 	if (xm->name[0] == '/' ||
1657 	    (!is_kernel_mmap && xm->name[0] == '[')) {
1658 		map = machine__addnew_module_map(machine, xm->start,
1659 						 xm->name);
1660 		if (map == NULL)
1661 			goto out_problem;
1662 
1663 		map->end = map->start + xm->end - xm->start;
1664 
1665 		if (build_id__is_defined(bid))
1666 			dso__set_build_id(map->dso, bid);
1667 
1668 	} else if (is_kernel_mmap) {
1669 		const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1670 		/*
1671 		 * Should be there already, from the build-id table in
1672 		 * the header.
1673 		 */
1674 		struct dso *kernel = NULL;
1675 		struct dso *dso;
1676 
1677 		down_read(&machine->dsos.lock);
1678 
1679 		list_for_each_entry(dso, &machine->dsos.head, node) {
1680 
1681 			/*
1682 			 * The cpumode passed to is_kernel_module is not the
1683 			 * cpumode of *this* event. If we insist on passing
1684 			 * correct cpumode to is_kernel_module, we should
1685 			 * record the cpumode when we adding this dso to the
1686 			 * linked list.
1687 			 *
1688 			 * However we don't really need passing correct
1689 			 * cpumode.  We know the correct cpumode must be kernel
1690 			 * mode (if not, we should not link it onto kernel_dsos
1691 			 * list).
1692 			 *
1693 			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1694 			 * is_kernel_module() treats it as a kernel cpumode.
1695 			 */
1696 
1697 			if (!dso->kernel ||
1698 			    is_kernel_module(dso->long_name,
1699 					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1700 				continue;
1701 
1702 
1703 			kernel = dso;
1704 			break;
1705 		}
1706 
1707 		up_read(&machine->dsos.lock);
1708 
1709 		if (kernel == NULL)
1710 			kernel = machine__findnew_dso(machine, machine->mmap_name);
1711 		if (kernel == NULL)
1712 			goto out_problem;
1713 
1714 		kernel->kernel = dso_space;
1715 		if (__machine__create_kernel_maps(machine, kernel) < 0) {
1716 			dso__put(kernel);
1717 			goto out_problem;
1718 		}
1719 
1720 		if (strstr(kernel->long_name, "vmlinux"))
1721 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1722 
1723 		machine__update_kernel_mmap(machine, xm->start, xm->end);
1724 
1725 		if (build_id__is_defined(bid))
1726 			dso__set_build_id(kernel, bid);
1727 
1728 		/*
1729 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1730 		 * symbol. Effectively having zero here means that at record
1731 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1732 		 */
1733 		if (xm->pgoff != 0) {
1734 			map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1735 							symbol_name,
1736 							xm->pgoff);
1737 		}
1738 
1739 		if (machine__is_default_guest(machine)) {
1740 			/*
1741 			 * preload dso of guest kernel and modules
1742 			 */
1743 			dso__load(kernel, machine__kernel_map(machine));
1744 		}
1745 	} else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1746 		return machine__process_extra_kernel_map(machine, xm);
1747 	}
1748 	return 0;
1749 out_problem:
1750 	return -1;
1751 }
1752 
1753 int machine__process_mmap2_event(struct machine *machine,
1754 				 union perf_event *event,
1755 				 struct perf_sample *sample)
1756 {
1757 	struct thread *thread;
1758 	struct map *map;
1759 	struct dso_id dso_id = {
1760 		.maj = event->mmap2.maj,
1761 		.min = event->mmap2.min,
1762 		.ino = event->mmap2.ino,
1763 		.ino_generation = event->mmap2.ino_generation,
1764 	};
1765 	struct build_id __bid, *bid = NULL;
1766 	int ret = 0;
1767 
1768 	if (dump_trace)
1769 		perf_event__fprintf_mmap2(event, stdout);
1770 
1771 	if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1772 		bid = &__bid;
1773 		build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1774 	}
1775 
1776 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1777 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1778 		struct extra_kernel_map xm = {
1779 			.start = event->mmap2.start,
1780 			.end   = event->mmap2.start + event->mmap2.len,
1781 			.pgoff = event->mmap2.pgoff,
1782 		};
1783 
1784 		strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1785 		ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1786 		if (ret < 0)
1787 			goto out_problem;
1788 		return 0;
1789 	}
1790 
1791 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1792 					event->mmap2.tid);
1793 	if (thread == NULL)
1794 		goto out_problem;
1795 
1796 	map = map__new(machine, event->mmap2.start,
1797 			event->mmap2.len, event->mmap2.pgoff,
1798 			&dso_id, event->mmap2.prot,
1799 			event->mmap2.flags, bid,
1800 			event->mmap2.filename, thread);
1801 
1802 	if (map == NULL)
1803 		goto out_problem_map;
1804 
1805 	ret = thread__insert_map(thread, map);
1806 	if (ret)
1807 		goto out_problem_insert;
1808 
1809 	thread__put(thread);
1810 	map__put(map);
1811 	return 0;
1812 
1813 out_problem_insert:
1814 	map__put(map);
1815 out_problem_map:
1816 	thread__put(thread);
1817 out_problem:
1818 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1819 	return 0;
1820 }
1821 
1822 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1823 				struct perf_sample *sample)
1824 {
1825 	struct thread *thread;
1826 	struct map *map;
1827 	u32 prot = 0;
1828 	int ret = 0;
1829 
1830 	if (dump_trace)
1831 		perf_event__fprintf_mmap(event, stdout);
1832 
1833 	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1834 	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1835 		struct extra_kernel_map xm = {
1836 			.start = event->mmap.start,
1837 			.end   = event->mmap.start + event->mmap.len,
1838 			.pgoff = event->mmap.pgoff,
1839 		};
1840 
1841 		strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1842 		ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1843 		if (ret < 0)
1844 			goto out_problem;
1845 		return 0;
1846 	}
1847 
1848 	thread = machine__findnew_thread(machine, event->mmap.pid,
1849 					 event->mmap.tid);
1850 	if (thread == NULL)
1851 		goto out_problem;
1852 
1853 	if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1854 		prot = PROT_EXEC;
1855 
1856 	map = map__new(machine, event->mmap.start,
1857 			event->mmap.len, event->mmap.pgoff,
1858 			NULL, prot, 0, NULL, event->mmap.filename, thread);
1859 
1860 	if (map == NULL)
1861 		goto out_problem_map;
1862 
1863 	ret = thread__insert_map(thread, map);
1864 	if (ret)
1865 		goto out_problem_insert;
1866 
1867 	thread__put(thread);
1868 	map__put(map);
1869 	return 0;
1870 
1871 out_problem_insert:
1872 	map__put(map);
1873 out_problem_map:
1874 	thread__put(thread);
1875 out_problem:
1876 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1877 	return 0;
1878 }
1879 
1880 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1881 {
1882 	struct threads *threads = machine__threads(machine, th->tid);
1883 
1884 	if (threads->last_match == th)
1885 		threads__set_last_match(threads, NULL);
1886 
1887 	if (lock)
1888 		down_write(&threads->lock);
1889 
1890 	BUG_ON(refcount_read(&th->refcnt) == 0);
1891 
1892 	rb_erase_cached(&th->rb_node, &threads->entries);
1893 	RB_CLEAR_NODE(&th->rb_node);
1894 	--threads->nr;
1895 	/*
1896 	 * Move it first to the dead_threads list, then drop the reference,
1897 	 * if this is the last reference, then the thread__delete destructor
1898 	 * will be called and we will remove it from the dead_threads list.
1899 	 */
1900 	list_add_tail(&th->node, &threads->dead);
1901 
1902 	/*
1903 	 * We need to do the put here because if this is the last refcount,
1904 	 * then we will be touching the threads->dead head when removing the
1905 	 * thread.
1906 	 */
1907 	thread__put(th);
1908 
1909 	if (lock)
1910 		up_write(&threads->lock);
1911 }
1912 
1913 void machine__remove_thread(struct machine *machine, struct thread *th)
1914 {
1915 	return __machine__remove_thread(machine, th, true);
1916 }
1917 
1918 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1919 				struct perf_sample *sample)
1920 {
1921 	struct thread *thread = machine__find_thread(machine,
1922 						     event->fork.pid,
1923 						     event->fork.tid);
1924 	struct thread *parent = machine__findnew_thread(machine,
1925 							event->fork.ppid,
1926 							event->fork.ptid);
1927 	bool do_maps_clone = true;
1928 	int err = 0;
1929 
1930 	if (dump_trace)
1931 		perf_event__fprintf_task(event, stdout);
1932 
1933 	/*
1934 	 * There may be an existing thread that is not actually the parent,
1935 	 * either because we are processing events out of order, or because the
1936 	 * (fork) event that would have removed the thread was lost. Assume the
1937 	 * latter case and continue on as best we can.
1938 	 */
1939 	if (parent->pid_ != (pid_t)event->fork.ppid) {
1940 		dump_printf("removing erroneous parent thread %d/%d\n",
1941 			    parent->pid_, parent->tid);
1942 		machine__remove_thread(machine, parent);
1943 		thread__put(parent);
1944 		parent = machine__findnew_thread(machine, event->fork.ppid,
1945 						 event->fork.ptid);
1946 	}
1947 
1948 	/* if a thread currently exists for the thread id remove it */
1949 	if (thread != NULL) {
1950 		machine__remove_thread(machine, thread);
1951 		thread__put(thread);
1952 	}
1953 
1954 	thread = machine__findnew_thread(machine, event->fork.pid,
1955 					 event->fork.tid);
1956 	/*
1957 	 * When synthesizing FORK events, we are trying to create thread
1958 	 * objects for the already running tasks on the machine.
1959 	 *
1960 	 * Normally, for a kernel FORK event, we want to clone the parent's
1961 	 * maps because that is what the kernel just did.
1962 	 *
1963 	 * But when synthesizing, this should not be done.  If we do, we end up
1964 	 * with overlapping maps as we process the synthesized MMAP2 events that
1965 	 * get delivered shortly thereafter.
1966 	 *
1967 	 * Use the FORK event misc flags in an internal way to signal this
1968 	 * situation, so we can elide the map clone when appropriate.
1969 	 */
1970 	if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1971 		do_maps_clone = false;
1972 
1973 	if (thread == NULL || parent == NULL ||
1974 	    thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1975 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1976 		err = -1;
1977 	}
1978 	thread__put(thread);
1979 	thread__put(parent);
1980 
1981 	return err;
1982 }
1983 
1984 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1985 				struct perf_sample *sample __maybe_unused)
1986 {
1987 	struct thread *thread = machine__find_thread(machine,
1988 						     event->fork.pid,
1989 						     event->fork.tid);
1990 
1991 	if (dump_trace)
1992 		perf_event__fprintf_task(event, stdout);
1993 
1994 	if (thread != NULL) {
1995 		thread__exited(thread);
1996 		thread__put(thread);
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 int machine__process_event(struct machine *machine, union perf_event *event,
2003 			   struct perf_sample *sample)
2004 {
2005 	int ret;
2006 
2007 	switch (event->header.type) {
2008 	case PERF_RECORD_COMM:
2009 		ret = machine__process_comm_event(machine, event, sample); break;
2010 	case PERF_RECORD_MMAP:
2011 		ret = machine__process_mmap_event(machine, event, sample); break;
2012 	case PERF_RECORD_NAMESPACES:
2013 		ret = machine__process_namespaces_event(machine, event, sample); break;
2014 	case PERF_RECORD_CGROUP:
2015 		ret = machine__process_cgroup_event(machine, event, sample); break;
2016 	case PERF_RECORD_MMAP2:
2017 		ret = machine__process_mmap2_event(machine, event, sample); break;
2018 	case PERF_RECORD_FORK:
2019 		ret = machine__process_fork_event(machine, event, sample); break;
2020 	case PERF_RECORD_EXIT:
2021 		ret = machine__process_exit_event(machine, event, sample); break;
2022 	case PERF_RECORD_LOST:
2023 		ret = machine__process_lost_event(machine, event, sample); break;
2024 	case PERF_RECORD_AUX:
2025 		ret = machine__process_aux_event(machine, event); break;
2026 	case PERF_RECORD_ITRACE_START:
2027 		ret = machine__process_itrace_start_event(machine, event); break;
2028 	case PERF_RECORD_LOST_SAMPLES:
2029 		ret = machine__process_lost_samples_event(machine, event, sample); break;
2030 	case PERF_RECORD_SWITCH:
2031 	case PERF_RECORD_SWITCH_CPU_WIDE:
2032 		ret = machine__process_switch_event(machine, event); break;
2033 	case PERF_RECORD_KSYMBOL:
2034 		ret = machine__process_ksymbol(machine, event, sample); break;
2035 	case PERF_RECORD_BPF_EVENT:
2036 		ret = machine__process_bpf(machine, event, sample); break;
2037 	case PERF_RECORD_TEXT_POKE:
2038 		ret = machine__process_text_poke(machine, event, sample); break;
2039 	case PERF_RECORD_AUX_OUTPUT_HW_ID:
2040 		ret = machine__process_aux_output_hw_id_event(machine, event); break;
2041 	default:
2042 		ret = -1;
2043 		break;
2044 	}
2045 
2046 	return ret;
2047 }
2048 
2049 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2050 {
2051 	if (!regexec(regex, sym->name, 0, NULL, 0))
2052 		return true;
2053 	return false;
2054 }
2055 
2056 static void ip__resolve_ams(struct thread *thread,
2057 			    struct addr_map_symbol *ams,
2058 			    u64 ip)
2059 {
2060 	struct addr_location al;
2061 
2062 	memset(&al, 0, sizeof(al));
2063 	/*
2064 	 * We cannot use the header.misc hint to determine whether a
2065 	 * branch stack address is user, kernel, guest, hypervisor.
2066 	 * Branches may straddle the kernel/user/hypervisor boundaries.
2067 	 * Thus, we have to try consecutively until we find a match
2068 	 * or else, the symbol is unknown
2069 	 */
2070 	thread__find_cpumode_addr_location(thread, ip, &al);
2071 
2072 	ams->addr = ip;
2073 	ams->al_addr = al.addr;
2074 	ams->ms.maps = al.maps;
2075 	ams->ms.sym = al.sym;
2076 	ams->ms.map = al.map;
2077 	ams->phys_addr = 0;
2078 	ams->data_page_size = 0;
2079 }
2080 
2081 static void ip__resolve_data(struct thread *thread,
2082 			     u8 m, struct addr_map_symbol *ams,
2083 			     u64 addr, u64 phys_addr, u64 daddr_page_size)
2084 {
2085 	struct addr_location al;
2086 
2087 	memset(&al, 0, sizeof(al));
2088 
2089 	thread__find_symbol(thread, m, addr, &al);
2090 
2091 	ams->addr = addr;
2092 	ams->al_addr = al.addr;
2093 	ams->ms.maps = al.maps;
2094 	ams->ms.sym = al.sym;
2095 	ams->ms.map = al.map;
2096 	ams->phys_addr = phys_addr;
2097 	ams->data_page_size = daddr_page_size;
2098 }
2099 
2100 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2101 				     struct addr_location *al)
2102 {
2103 	struct mem_info *mi = mem_info__new();
2104 
2105 	if (!mi)
2106 		return NULL;
2107 
2108 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2109 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2110 			 sample->addr, sample->phys_addr,
2111 			 sample->data_page_size);
2112 	mi->data_src.val = sample->data_src;
2113 
2114 	return mi;
2115 }
2116 
2117 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2118 {
2119 	struct map *map = ms->map;
2120 	char *srcline = NULL;
2121 
2122 	if (!map || callchain_param.key == CCKEY_FUNCTION)
2123 		return srcline;
2124 
2125 	srcline = srcline__tree_find(&map->dso->srclines, ip);
2126 	if (!srcline) {
2127 		bool show_sym = false;
2128 		bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2129 
2130 		srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2131 				      ms->sym, show_sym, show_addr, ip);
2132 		srcline__tree_insert(&map->dso->srclines, ip, srcline);
2133 	}
2134 
2135 	return srcline;
2136 }
2137 
2138 struct iterations {
2139 	int nr_loop_iter;
2140 	u64 cycles;
2141 };
2142 
2143 static int add_callchain_ip(struct thread *thread,
2144 			    struct callchain_cursor *cursor,
2145 			    struct symbol **parent,
2146 			    struct addr_location *root_al,
2147 			    u8 *cpumode,
2148 			    u64 ip,
2149 			    bool branch,
2150 			    struct branch_flags *flags,
2151 			    struct iterations *iter,
2152 			    u64 branch_from)
2153 {
2154 	struct map_symbol ms;
2155 	struct addr_location al;
2156 	int nr_loop_iter = 0;
2157 	u64 iter_cycles = 0;
2158 	const char *srcline = NULL;
2159 
2160 	al.filtered = 0;
2161 	al.sym = NULL;
2162 	al.srcline = NULL;
2163 	if (!cpumode) {
2164 		thread__find_cpumode_addr_location(thread, ip, &al);
2165 	} else {
2166 		if (ip >= PERF_CONTEXT_MAX) {
2167 			switch (ip) {
2168 			case PERF_CONTEXT_HV:
2169 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
2170 				break;
2171 			case PERF_CONTEXT_KERNEL:
2172 				*cpumode = PERF_RECORD_MISC_KERNEL;
2173 				break;
2174 			case PERF_CONTEXT_USER:
2175 				*cpumode = PERF_RECORD_MISC_USER;
2176 				break;
2177 			default:
2178 				pr_debug("invalid callchain context: "
2179 					 "%"PRId64"\n", (s64) ip);
2180 				/*
2181 				 * It seems the callchain is corrupted.
2182 				 * Discard all.
2183 				 */
2184 				callchain_cursor_reset(cursor);
2185 				return 1;
2186 			}
2187 			return 0;
2188 		}
2189 		thread__find_symbol(thread, *cpumode, ip, &al);
2190 	}
2191 
2192 	if (al.sym != NULL) {
2193 		if (perf_hpp_list.parent && !*parent &&
2194 		    symbol__match_regex(al.sym, &parent_regex))
2195 			*parent = al.sym;
2196 		else if (have_ignore_callees && root_al &&
2197 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198 			/* Treat this symbol as the root,
2199 			   forgetting its callees. */
2200 			*root_al = al;
2201 			callchain_cursor_reset(cursor);
2202 		}
2203 	}
2204 
2205 	if (symbol_conf.hide_unresolved && al.sym == NULL)
2206 		return 0;
2207 
2208 	if (iter) {
2209 		nr_loop_iter = iter->nr_loop_iter;
2210 		iter_cycles = iter->cycles;
2211 	}
2212 
2213 	ms.maps = al.maps;
2214 	ms.map = al.map;
2215 	ms.sym = al.sym;
2216 	srcline = callchain_srcline(&ms, al.addr);
2217 	return callchain_cursor_append(cursor, ip, &ms,
2218 				       branch, flags, nr_loop_iter,
2219 				       iter_cycles, branch_from, srcline);
2220 }
2221 
2222 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2223 					   struct addr_location *al)
2224 {
2225 	unsigned int i;
2226 	const struct branch_stack *bs = sample->branch_stack;
2227 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2228 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2229 
2230 	if (!bi)
2231 		return NULL;
2232 
2233 	for (i = 0; i < bs->nr; i++) {
2234 		ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2235 		ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2236 		bi[i].flags = entries[i].flags;
2237 	}
2238 	return bi;
2239 }
2240 
2241 static void save_iterations(struct iterations *iter,
2242 			    struct branch_entry *be, int nr)
2243 {
2244 	int i;
2245 
2246 	iter->nr_loop_iter++;
2247 	iter->cycles = 0;
2248 
2249 	for (i = 0; i < nr; i++)
2250 		iter->cycles += be[i].flags.cycles;
2251 }
2252 
2253 #define CHASHSZ 127
2254 #define CHASHBITS 7
2255 #define NO_ENTRY 0xff
2256 
2257 #define PERF_MAX_BRANCH_DEPTH 127
2258 
2259 /* Remove loops. */
2260 static int remove_loops(struct branch_entry *l, int nr,
2261 			struct iterations *iter)
2262 {
2263 	int i, j, off;
2264 	unsigned char chash[CHASHSZ];
2265 
2266 	memset(chash, NO_ENTRY, sizeof(chash));
2267 
2268 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2269 
2270 	for (i = 0; i < nr; i++) {
2271 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2272 
2273 		/* no collision handling for now */
2274 		if (chash[h] == NO_ENTRY) {
2275 			chash[h] = i;
2276 		} else if (l[chash[h]].from == l[i].from) {
2277 			bool is_loop = true;
2278 			/* check if it is a real loop */
2279 			off = 0;
2280 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
2281 				if (l[j].from != l[i + off].from) {
2282 					is_loop = false;
2283 					break;
2284 				}
2285 			if (is_loop) {
2286 				j = nr - (i + off);
2287 				if (j > 0) {
2288 					save_iterations(iter + i + off,
2289 						l + i, off);
2290 
2291 					memmove(iter + i, iter + i + off,
2292 						j * sizeof(*iter));
2293 
2294 					memmove(l + i, l + i + off,
2295 						j * sizeof(*l));
2296 				}
2297 
2298 				nr -= off;
2299 			}
2300 		}
2301 	}
2302 	return nr;
2303 }
2304 
2305 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2306 				       struct callchain_cursor *cursor,
2307 				       struct perf_sample *sample,
2308 				       struct symbol **parent,
2309 				       struct addr_location *root_al,
2310 				       u64 branch_from,
2311 				       bool callee, int end)
2312 {
2313 	struct ip_callchain *chain = sample->callchain;
2314 	u8 cpumode = PERF_RECORD_MISC_USER;
2315 	int err, i;
2316 
2317 	if (callee) {
2318 		for (i = 0; i < end + 1; i++) {
2319 			err = add_callchain_ip(thread, cursor, parent,
2320 					       root_al, &cpumode, chain->ips[i],
2321 					       false, NULL, NULL, branch_from);
2322 			if (err)
2323 				return err;
2324 		}
2325 		return 0;
2326 	}
2327 
2328 	for (i = end; i >= 0; i--) {
2329 		err = add_callchain_ip(thread, cursor, parent,
2330 				       root_al, &cpumode, chain->ips[i],
2331 				       false, NULL, NULL, branch_from);
2332 		if (err)
2333 			return err;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static void save_lbr_cursor_node(struct thread *thread,
2340 				 struct callchain_cursor *cursor,
2341 				 int idx)
2342 {
2343 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2344 
2345 	if (!lbr_stitch)
2346 		return;
2347 
2348 	if (cursor->pos == cursor->nr) {
2349 		lbr_stitch->prev_lbr_cursor[idx].valid = false;
2350 		return;
2351 	}
2352 
2353 	if (!cursor->curr)
2354 		cursor->curr = cursor->first;
2355 	else
2356 		cursor->curr = cursor->curr->next;
2357 	memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2358 	       sizeof(struct callchain_cursor_node));
2359 
2360 	lbr_stitch->prev_lbr_cursor[idx].valid = true;
2361 	cursor->pos++;
2362 }
2363 
2364 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2365 				    struct callchain_cursor *cursor,
2366 				    struct perf_sample *sample,
2367 				    struct symbol **parent,
2368 				    struct addr_location *root_al,
2369 				    u64 *branch_from,
2370 				    bool callee)
2371 {
2372 	struct branch_stack *lbr_stack = sample->branch_stack;
2373 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2374 	u8 cpumode = PERF_RECORD_MISC_USER;
2375 	int lbr_nr = lbr_stack->nr;
2376 	struct branch_flags *flags;
2377 	int err, i;
2378 	u64 ip;
2379 
2380 	/*
2381 	 * The curr and pos are not used in writing session. They are cleared
2382 	 * in callchain_cursor_commit() when the writing session is closed.
2383 	 * Using curr and pos to track the current cursor node.
2384 	 */
2385 	if (thread->lbr_stitch) {
2386 		cursor->curr = NULL;
2387 		cursor->pos = cursor->nr;
2388 		if (cursor->nr) {
2389 			cursor->curr = cursor->first;
2390 			for (i = 0; i < (int)(cursor->nr - 1); i++)
2391 				cursor->curr = cursor->curr->next;
2392 		}
2393 	}
2394 
2395 	if (callee) {
2396 		/* Add LBR ip from first entries.to */
2397 		ip = entries[0].to;
2398 		flags = &entries[0].flags;
2399 		*branch_from = entries[0].from;
2400 		err = add_callchain_ip(thread, cursor, parent,
2401 				       root_al, &cpumode, ip,
2402 				       true, flags, NULL,
2403 				       *branch_from);
2404 		if (err)
2405 			return err;
2406 
2407 		/*
2408 		 * The number of cursor node increases.
2409 		 * Move the current cursor node.
2410 		 * But does not need to save current cursor node for entry 0.
2411 		 * It's impossible to stitch the whole LBRs of previous sample.
2412 		 */
2413 		if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2414 			if (!cursor->curr)
2415 				cursor->curr = cursor->first;
2416 			else
2417 				cursor->curr = cursor->curr->next;
2418 			cursor->pos++;
2419 		}
2420 
2421 		/* Add LBR ip from entries.from one by one. */
2422 		for (i = 0; i < lbr_nr; i++) {
2423 			ip = entries[i].from;
2424 			flags = &entries[i].flags;
2425 			err = add_callchain_ip(thread, cursor, parent,
2426 					       root_al, &cpumode, ip,
2427 					       true, flags, NULL,
2428 					       *branch_from);
2429 			if (err)
2430 				return err;
2431 			save_lbr_cursor_node(thread, cursor, i);
2432 		}
2433 		return 0;
2434 	}
2435 
2436 	/* Add LBR ip from entries.from one by one. */
2437 	for (i = lbr_nr - 1; i >= 0; i--) {
2438 		ip = entries[i].from;
2439 		flags = &entries[i].flags;
2440 		err = add_callchain_ip(thread, cursor, parent,
2441 				       root_al, &cpumode, ip,
2442 				       true, flags, NULL,
2443 				       *branch_from);
2444 		if (err)
2445 			return err;
2446 		save_lbr_cursor_node(thread, cursor, i);
2447 	}
2448 
2449 	/* Add LBR ip from first entries.to */
2450 	ip = entries[0].to;
2451 	flags = &entries[0].flags;
2452 	*branch_from = entries[0].from;
2453 	err = add_callchain_ip(thread, cursor, parent,
2454 			       root_al, &cpumode, ip,
2455 			       true, flags, NULL,
2456 			       *branch_from);
2457 	if (err)
2458 		return err;
2459 
2460 	return 0;
2461 }
2462 
2463 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2464 					     struct callchain_cursor *cursor)
2465 {
2466 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2467 	struct callchain_cursor_node *cnode;
2468 	struct stitch_list *stitch_node;
2469 	int err;
2470 
2471 	list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2472 		cnode = &stitch_node->cursor;
2473 
2474 		err = callchain_cursor_append(cursor, cnode->ip,
2475 					      &cnode->ms,
2476 					      cnode->branch,
2477 					      &cnode->branch_flags,
2478 					      cnode->nr_loop_iter,
2479 					      cnode->iter_cycles,
2480 					      cnode->branch_from,
2481 					      cnode->srcline);
2482 		if (err)
2483 			return err;
2484 	}
2485 	return 0;
2486 }
2487 
2488 static struct stitch_list *get_stitch_node(struct thread *thread)
2489 {
2490 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2491 	struct stitch_list *stitch_node;
2492 
2493 	if (!list_empty(&lbr_stitch->free_lists)) {
2494 		stitch_node = list_first_entry(&lbr_stitch->free_lists,
2495 					       struct stitch_list, node);
2496 		list_del(&stitch_node->node);
2497 
2498 		return stitch_node;
2499 	}
2500 
2501 	return malloc(sizeof(struct stitch_list));
2502 }
2503 
2504 static bool has_stitched_lbr(struct thread *thread,
2505 			     struct perf_sample *cur,
2506 			     struct perf_sample *prev,
2507 			     unsigned int max_lbr,
2508 			     bool callee)
2509 {
2510 	struct branch_stack *cur_stack = cur->branch_stack;
2511 	struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2512 	struct branch_stack *prev_stack = prev->branch_stack;
2513 	struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2514 	struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2515 	int i, j, nr_identical_branches = 0;
2516 	struct stitch_list *stitch_node;
2517 	u64 cur_base, distance;
2518 
2519 	if (!cur_stack || !prev_stack)
2520 		return false;
2521 
2522 	/* Find the physical index of the base-of-stack for current sample. */
2523 	cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2524 
2525 	distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2526 						     (max_lbr + prev_stack->hw_idx - cur_base);
2527 	/* Previous sample has shorter stack. Nothing can be stitched. */
2528 	if (distance + 1 > prev_stack->nr)
2529 		return false;
2530 
2531 	/*
2532 	 * Check if there are identical LBRs between two samples.
2533 	 * Identical LBRs must have same from, to and flags values. Also,
2534 	 * they have to be saved in the same LBR registers (same physical
2535 	 * index).
2536 	 *
2537 	 * Starts from the base-of-stack of current sample.
2538 	 */
2539 	for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2540 		if ((prev_entries[i].from != cur_entries[j].from) ||
2541 		    (prev_entries[i].to != cur_entries[j].to) ||
2542 		    (prev_entries[i].flags.value != cur_entries[j].flags.value))
2543 			break;
2544 		nr_identical_branches++;
2545 	}
2546 
2547 	if (!nr_identical_branches)
2548 		return false;
2549 
2550 	/*
2551 	 * Save the LBRs between the base-of-stack of previous sample
2552 	 * and the base-of-stack of current sample into lbr_stitch->lists.
2553 	 * These LBRs will be stitched later.
2554 	 */
2555 	for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2556 
2557 		if (!lbr_stitch->prev_lbr_cursor[i].valid)
2558 			continue;
2559 
2560 		stitch_node = get_stitch_node(thread);
2561 		if (!stitch_node)
2562 			return false;
2563 
2564 		memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2565 		       sizeof(struct callchain_cursor_node));
2566 
2567 		if (callee)
2568 			list_add(&stitch_node->node, &lbr_stitch->lists);
2569 		else
2570 			list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2571 	}
2572 
2573 	return true;
2574 }
2575 
2576 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2577 {
2578 	if (thread->lbr_stitch)
2579 		return true;
2580 
2581 	thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2582 	if (!thread->lbr_stitch)
2583 		goto err;
2584 
2585 	thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2586 	if (!thread->lbr_stitch->prev_lbr_cursor)
2587 		goto free_lbr_stitch;
2588 
2589 	INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2590 	INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2591 
2592 	return true;
2593 
2594 free_lbr_stitch:
2595 	zfree(&thread->lbr_stitch);
2596 err:
2597 	pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2598 	thread->lbr_stitch_enable = false;
2599 	return false;
2600 }
2601 
2602 /*
2603  * Resolve LBR callstack chain sample
2604  * Return:
2605  * 1 on success get LBR callchain information
2606  * 0 no available LBR callchain information, should try fp
2607  * negative error code on other errors.
2608  */
2609 static int resolve_lbr_callchain_sample(struct thread *thread,
2610 					struct callchain_cursor *cursor,
2611 					struct perf_sample *sample,
2612 					struct symbol **parent,
2613 					struct addr_location *root_al,
2614 					int max_stack,
2615 					unsigned int max_lbr)
2616 {
2617 	bool callee = (callchain_param.order == ORDER_CALLEE);
2618 	struct ip_callchain *chain = sample->callchain;
2619 	int chain_nr = min(max_stack, (int)chain->nr), i;
2620 	struct lbr_stitch *lbr_stitch;
2621 	bool stitched_lbr = false;
2622 	u64 branch_from = 0;
2623 	int err;
2624 
2625 	for (i = 0; i < chain_nr; i++) {
2626 		if (chain->ips[i] == PERF_CONTEXT_USER)
2627 			break;
2628 	}
2629 
2630 	/* LBR only affects the user callchain */
2631 	if (i == chain_nr)
2632 		return 0;
2633 
2634 	if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2635 	    (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2636 		lbr_stitch = thread->lbr_stitch;
2637 
2638 		stitched_lbr = has_stitched_lbr(thread, sample,
2639 						&lbr_stitch->prev_sample,
2640 						max_lbr, callee);
2641 
2642 		if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2643 			list_replace_init(&lbr_stitch->lists,
2644 					  &lbr_stitch->free_lists);
2645 		}
2646 		memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2647 	}
2648 
2649 	if (callee) {
2650 		/* Add kernel ip */
2651 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2652 						  parent, root_al, branch_from,
2653 						  true, i);
2654 		if (err)
2655 			goto error;
2656 
2657 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2658 					       root_al, &branch_from, true);
2659 		if (err)
2660 			goto error;
2661 
2662 		if (stitched_lbr) {
2663 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2664 			if (err)
2665 				goto error;
2666 		}
2667 
2668 	} else {
2669 		if (stitched_lbr) {
2670 			err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2671 			if (err)
2672 				goto error;
2673 		}
2674 		err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2675 					       root_al, &branch_from, false);
2676 		if (err)
2677 			goto error;
2678 
2679 		/* Add kernel ip */
2680 		err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2681 						  parent, root_al, branch_from,
2682 						  false, i);
2683 		if (err)
2684 			goto error;
2685 	}
2686 	return 1;
2687 
2688 error:
2689 	return (err < 0) ? err : 0;
2690 }
2691 
2692 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2693 			     struct callchain_cursor *cursor,
2694 			     struct symbol **parent,
2695 			     struct addr_location *root_al,
2696 			     u8 *cpumode, int ent)
2697 {
2698 	int err = 0;
2699 
2700 	while (--ent >= 0) {
2701 		u64 ip = chain->ips[ent];
2702 
2703 		if (ip >= PERF_CONTEXT_MAX) {
2704 			err = add_callchain_ip(thread, cursor, parent,
2705 					       root_al, cpumode, ip,
2706 					       false, NULL, NULL, 0);
2707 			break;
2708 		}
2709 	}
2710 	return err;
2711 }
2712 
2713 static int thread__resolve_callchain_sample(struct thread *thread,
2714 					    struct callchain_cursor *cursor,
2715 					    struct evsel *evsel,
2716 					    struct perf_sample *sample,
2717 					    struct symbol **parent,
2718 					    struct addr_location *root_al,
2719 					    int max_stack)
2720 {
2721 	struct branch_stack *branch = sample->branch_stack;
2722 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2723 	struct ip_callchain *chain = sample->callchain;
2724 	int chain_nr = 0;
2725 	u8 cpumode = PERF_RECORD_MISC_USER;
2726 	int i, j, err, nr_entries;
2727 	int skip_idx = -1;
2728 	int first_call = 0;
2729 
2730 	if (chain)
2731 		chain_nr = chain->nr;
2732 
2733 	if (evsel__has_branch_callstack(evsel)) {
2734 		struct perf_env *env = evsel__env(evsel);
2735 
2736 		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2737 						   root_al, max_stack,
2738 						   !env ? 0 : env->max_branches);
2739 		if (err)
2740 			return (err < 0) ? err : 0;
2741 	}
2742 
2743 	/*
2744 	 * Based on DWARF debug information, some architectures skip
2745 	 * a callchain entry saved by the kernel.
2746 	 */
2747 	skip_idx = arch_skip_callchain_idx(thread, chain);
2748 
2749 	/*
2750 	 * Add branches to call stack for easier browsing. This gives
2751 	 * more context for a sample than just the callers.
2752 	 *
2753 	 * This uses individual histograms of paths compared to the
2754 	 * aggregated histograms the normal LBR mode uses.
2755 	 *
2756 	 * Limitations for now:
2757 	 * - No extra filters
2758 	 * - No annotations (should annotate somehow)
2759 	 */
2760 
2761 	if (branch && callchain_param.branch_callstack) {
2762 		int nr = min(max_stack, (int)branch->nr);
2763 		struct branch_entry be[nr];
2764 		struct iterations iter[nr];
2765 
2766 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2767 			pr_warning("corrupted branch chain. skipping...\n");
2768 			goto check_calls;
2769 		}
2770 
2771 		for (i = 0; i < nr; i++) {
2772 			if (callchain_param.order == ORDER_CALLEE) {
2773 				be[i] = entries[i];
2774 
2775 				if (chain == NULL)
2776 					continue;
2777 
2778 				/*
2779 				 * Check for overlap into the callchain.
2780 				 * The return address is one off compared to
2781 				 * the branch entry. To adjust for this
2782 				 * assume the calling instruction is not longer
2783 				 * than 8 bytes.
2784 				 */
2785 				if (i == skip_idx ||
2786 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2787 					first_call++;
2788 				else if (be[i].from < chain->ips[first_call] &&
2789 				    be[i].from >= chain->ips[first_call] - 8)
2790 					first_call++;
2791 			} else
2792 				be[i] = entries[branch->nr - i - 1];
2793 		}
2794 
2795 		memset(iter, 0, sizeof(struct iterations) * nr);
2796 		nr = remove_loops(be, nr, iter);
2797 
2798 		for (i = 0; i < nr; i++) {
2799 			err = add_callchain_ip(thread, cursor, parent,
2800 					       root_al,
2801 					       NULL, be[i].to,
2802 					       true, &be[i].flags,
2803 					       NULL, be[i].from);
2804 
2805 			if (!err)
2806 				err = add_callchain_ip(thread, cursor, parent, root_al,
2807 						       NULL, be[i].from,
2808 						       true, &be[i].flags,
2809 						       &iter[i], 0);
2810 			if (err == -EINVAL)
2811 				break;
2812 			if (err)
2813 				return err;
2814 		}
2815 
2816 		if (chain_nr == 0)
2817 			return 0;
2818 
2819 		chain_nr -= nr;
2820 	}
2821 
2822 check_calls:
2823 	if (chain && callchain_param.order != ORDER_CALLEE) {
2824 		err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2825 					&cpumode, chain->nr - first_call);
2826 		if (err)
2827 			return (err < 0) ? err : 0;
2828 	}
2829 	for (i = first_call, nr_entries = 0;
2830 	     i < chain_nr && nr_entries < max_stack; i++) {
2831 		u64 ip;
2832 
2833 		if (callchain_param.order == ORDER_CALLEE)
2834 			j = i;
2835 		else
2836 			j = chain->nr - i - 1;
2837 
2838 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2839 		if (j == skip_idx)
2840 			continue;
2841 #endif
2842 		ip = chain->ips[j];
2843 		if (ip < PERF_CONTEXT_MAX)
2844                        ++nr_entries;
2845 		else if (callchain_param.order != ORDER_CALLEE) {
2846 			err = find_prev_cpumode(chain, thread, cursor, parent,
2847 						root_al, &cpumode, j);
2848 			if (err)
2849 				return (err < 0) ? err : 0;
2850 			continue;
2851 		}
2852 
2853 		err = add_callchain_ip(thread, cursor, parent,
2854 				       root_al, &cpumode, ip,
2855 				       false, NULL, NULL, 0);
2856 
2857 		if (err)
2858 			return (err < 0) ? err : 0;
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2865 {
2866 	struct symbol *sym = ms->sym;
2867 	struct map *map = ms->map;
2868 	struct inline_node *inline_node;
2869 	struct inline_list *ilist;
2870 	u64 addr;
2871 	int ret = 1;
2872 
2873 	if (!symbol_conf.inline_name || !map || !sym)
2874 		return ret;
2875 
2876 	addr = map__map_ip(map, ip);
2877 	addr = map__rip_2objdump(map, addr);
2878 
2879 	inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2880 	if (!inline_node) {
2881 		inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2882 		if (!inline_node)
2883 			return ret;
2884 		inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2885 	}
2886 
2887 	list_for_each_entry(ilist, &inline_node->val, list) {
2888 		struct map_symbol ilist_ms = {
2889 			.maps = ms->maps,
2890 			.map = map,
2891 			.sym = ilist->symbol,
2892 		};
2893 		ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2894 					      NULL, 0, 0, 0, ilist->srcline);
2895 
2896 		if (ret != 0)
2897 			return ret;
2898 	}
2899 
2900 	return ret;
2901 }
2902 
2903 static int unwind_entry(struct unwind_entry *entry, void *arg)
2904 {
2905 	struct callchain_cursor *cursor = arg;
2906 	const char *srcline = NULL;
2907 	u64 addr = entry->ip;
2908 
2909 	if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2910 		return 0;
2911 
2912 	if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2913 		return 0;
2914 
2915 	/*
2916 	 * Convert entry->ip from a virtual address to an offset in
2917 	 * its corresponding binary.
2918 	 */
2919 	if (entry->ms.map)
2920 		addr = map__map_ip(entry->ms.map, entry->ip);
2921 
2922 	srcline = callchain_srcline(&entry->ms, addr);
2923 	return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2924 				       false, NULL, 0, 0, 0, srcline);
2925 }
2926 
2927 static int thread__resolve_callchain_unwind(struct thread *thread,
2928 					    struct callchain_cursor *cursor,
2929 					    struct evsel *evsel,
2930 					    struct perf_sample *sample,
2931 					    int max_stack)
2932 {
2933 	/* Can we do dwarf post unwind? */
2934 	if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2935 	      (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2936 		return 0;
2937 
2938 	/* Bail out if nothing was captured. */
2939 	if ((!sample->user_regs.regs) ||
2940 	    (!sample->user_stack.size))
2941 		return 0;
2942 
2943 	return unwind__get_entries(unwind_entry, cursor,
2944 				   thread, sample, max_stack);
2945 }
2946 
2947 int thread__resolve_callchain(struct thread *thread,
2948 			      struct callchain_cursor *cursor,
2949 			      struct evsel *evsel,
2950 			      struct perf_sample *sample,
2951 			      struct symbol **parent,
2952 			      struct addr_location *root_al,
2953 			      int max_stack)
2954 {
2955 	int ret = 0;
2956 
2957 	callchain_cursor_reset(cursor);
2958 
2959 	if (callchain_param.order == ORDER_CALLEE) {
2960 		ret = thread__resolve_callchain_sample(thread, cursor,
2961 						       evsel, sample,
2962 						       parent, root_al,
2963 						       max_stack);
2964 		if (ret)
2965 			return ret;
2966 		ret = thread__resolve_callchain_unwind(thread, cursor,
2967 						       evsel, sample,
2968 						       max_stack);
2969 	} else {
2970 		ret = thread__resolve_callchain_unwind(thread, cursor,
2971 						       evsel, sample,
2972 						       max_stack);
2973 		if (ret)
2974 			return ret;
2975 		ret = thread__resolve_callchain_sample(thread, cursor,
2976 						       evsel, sample,
2977 						       parent, root_al,
2978 						       max_stack);
2979 	}
2980 
2981 	return ret;
2982 }
2983 
2984 int machine__for_each_thread(struct machine *machine,
2985 			     int (*fn)(struct thread *thread, void *p),
2986 			     void *priv)
2987 {
2988 	struct threads *threads;
2989 	struct rb_node *nd;
2990 	struct thread *thread;
2991 	int rc = 0;
2992 	int i;
2993 
2994 	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2995 		threads = &machine->threads[i];
2996 		for (nd = rb_first_cached(&threads->entries); nd;
2997 		     nd = rb_next(nd)) {
2998 			thread = rb_entry(nd, struct thread, rb_node);
2999 			rc = fn(thread, priv);
3000 			if (rc != 0)
3001 				return rc;
3002 		}
3003 
3004 		list_for_each_entry(thread, &threads->dead, node) {
3005 			rc = fn(thread, priv);
3006 			if (rc != 0)
3007 				return rc;
3008 		}
3009 	}
3010 	return rc;
3011 }
3012 
3013 int machines__for_each_thread(struct machines *machines,
3014 			      int (*fn)(struct thread *thread, void *p),
3015 			      void *priv)
3016 {
3017 	struct rb_node *nd;
3018 	int rc = 0;
3019 
3020 	rc = machine__for_each_thread(&machines->host, fn, priv);
3021 	if (rc != 0)
3022 		return rc;
3023 
3024 	for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3025 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
3026 
3027 		rc = machine__for_each_thread(machine, fn, priv);
3028 		if (rc != 0)
3029 			return rc;
3030 	}
3031 	return rc;
3032 }
3033 
3034 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3035 {
3036 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3037 
3038 	if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3039 		return -1;
3040 
3041 	return machine->current_tid[cpu];
3042 }
3043 
3044 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3045 			     pid_t tid)
3046 {
3047 	struct thread *thread;
3048 	int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3049 
3050 	if (cpu < 0)
3051 		return -EINVAL;
3052 
3053 	if (!machine->current_tid) {
3054 		int i;
3055 
3056 		machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3057 		if (!machine->current_tid)
3058 			return -ENOMEM;
3059 		for (i = 0; i < nr_cpus; i++)
3060 			machine->current_tid[i] = -1;
3061 	}
3062 
3063 	if (cpu >= nr_cpus) {
3064 		pr_err("Requested CPU %d too large. ", cpu);
3065 		pr_err("Consider raising MAX_NR_CPUS\n");
3066 		return -EINVAL;
3067 	}
3068 
3069 	machine->current_tid[cpu] = tid;
3070 
3071 	thread = machine__findnew_thread(machine, pid, tid);
3072 	if (!thread)
3073 		return -ENOMEM;
3074 
3075 	thread->cpu = cpu;
3076 	thread__put(thread);
3077 
3078 	return 0;
3079 }
3080 
3081 /*
3082  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3083  * normalized arch is needed.
3084  */
3085 bool machine__is(struct machine *machine, const char *arch)
3086 {
3087 	return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3088 }
3089 
3090 int machine__nr_cpus_avail(struct machine *machine)
3091 {
3092 	return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3093 }
3094 
3095 int machine__get_kernel_start(struct machine *machine)
3096 {
3097 	struct map *map = machine__kernel_map(machine);
3098 	int err = 0;
3099 
3100 	/*
3101 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
3102 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
3103 	 * all addresses including kernel addresses are less than 2^32.  In
3104 	 * that case (32-bit system), if the kernel mapping is unknown, all
3105 	 * addresses will be assumed to be in user space - see
3106 	 * machine__kernel_ip().
3107 	 */
3108 	machine->kernel_start = 1ULL << 63;
3109 	if (map) {
3110 		err = map__load(map);
3111 		/*
3112 		 * On x86_64, PTI entry trampolines are less than the
3113 		 * start of kernel text, but still above 2^63. So leave
3114 		 * kernel_start = 1ULL << 63 for x86_64.
3115 		 */
3116 		if (!err && !machine__is(machine, "x86_64"))
3117 			machine->kernel_start = map->start;
3118 	}
3119 	return err;
3120 }
3121 
3122 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3123 {
3124 	u8 addr_cpumode = cpumode;
3125 	bool kernel_ip;
3126 
3127 	if (!machine->single_address_space)
3128 		goto out;
3129 
3130 	kernel_ip = machine__kernel_ip(machine, addr);
3131 	switch (cpumode) {
3132 	case PERF_RECORD_MISC_KERNEL:
3133 	case PERF_RECORD_MISC_USER:
3134 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3135 					   PERF_RECORD_MISC_USER;
3136 		break;
3137 	case PERF_RECORD_MISC_GUEST_KERNEL:
3138 	case PERF_RECORD_MISC_GUEST_USER:
3139 		addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3140 					   PERF_RECORD_MISC_GUEST_USER;
3141 		break;
3142 	default:
3143 		break;
3144 	}
3145 out:
3146 	return addr_cpumode;
3147 }
3148 
3149 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3150 {
3151 	return dsos__findnew_id(&machine->dsos, filename, id);
3152 }
3153 
3154 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3155 {
3156 	return machine__findnew_dso_id(machine, filename, NULL);
3157 }
3158 
3159 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3160 {
3161 	struct machine *machine = vmachine;
3162 	struct map *map;
3163 	struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3164 
3165 	if (sym == NULL)
3166 		return NULL;
3167 
3168 	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3169 	*addrp = map->unmap_ip(map, sym->start);
3170 	return sym->name;
3171 }
3172 
3173 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3174 {
3175 	struct dso *pos;
3176 	int err = 0;
3177 
3178 	list_for_each_entry(pos, &machine->dsos.head, node) {
3179 		if (fn(pos, machine, priv))
3180 			err = -1;
3181 	}
3182 	return err;
3183 }
3184