1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <inttypes.h> 5 #include <regex.h> 6 #include "callchain.h" 7 #include "debug.h" 8 #include "event.h" 9 #include "evsel.h" 10 #include "hist.h" 11 #include "machine.h" 12 #include "map.h" 13 #include "symbol.h" 14 #include "sort.h" 15 #include "strlist.h" 16 #include "thread.h" 17 #include "vdso.h" 18 #include <stdbool.h> 19 #include <sys/types.h> 20 #include <sys/stat.h> 21 #include <unistd.h> 22 #include "unwind.h" 23 #include "linux/hash.h" 24 #include "asm/bug.h" 25 #include "bpf-event.h" 26 27 #include <linux/ctype.h> 28 #include <symbol/kallsyms.h> 29 #include <linux/mman.h> 30 #include <linux/zalloc.h> 31 32 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock); 33 34 static void dsos__init(struct dsos *dsos) 35 { 36 INIT_LIST_HEAD(&dsos->head); 37 dsos->root = RB_ROOT; 38 init_rwsem(&dsos->lock); 39 } 40 41 static void machine__threads_init(struct machine *machine) 42 { 43 int i; 44 45 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 46 struct threads *threads = &machine->threads[i]; 47 threads->entries = RB_ROOT_CACHED; 48 init_rwsem(&threads->lock); 49 threads->nr = 0; 50 INIT_LIST_HEAD(&threads->dead); 51 threads->last_match = NULL; 52 } 53 } 54 55 static int machine__set_mmap_name(struct machine *machine) 56 { 57 if (machine__is_host(machine)) 58 machine->mmap_name = strdup("[kernel.kallsyms]"); 59 else if (machine__is_default_guest(machine)) 60 machine->mmap_name = strdup("[guest.kernel.kallsyms]"); 61 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]", 62 machine->pid) < 0) 63 machine->mmap_name = NULL; 64 65 return machine->mmap_name ? 0 : -ENOMEM; 66 } 67 68 int machine__init(struct machine *machine, const char *root_dir, pid_t pid) 69 { 70 int err = -ENOMEM; 71 72 memset(machine, 0, sizeof(*machine)); 73 map_groups__init(&machine->kmaps, machine); 74 RB_CLEAR_NODE(&machine->rb_node); 75 dsos__init(&machine->dsos); 76 77 machine__threads_init(machine); 78 79 machine->vdso_info = NULL; 80 machine->env = NULL; 81 82 machine->pid = pid; 83 84 machine->id_hdr_size = 0; 85 machine->kptr_restrict_warned = false; 86 machine->comm_exec = false; 87 machine->kernel_start = 0; 88 machine->vmlinux_map = NULL; 89 90 machine->root_dir = strdup(root_dir); 91 if (machine->root_dir == NULL) 92 return -ENOMEM; 93 94 if (machine__set_mmap_name(machine)) 95 goto out; 96 97 if (pid != HOST_KERNEL_ID) { 98 struct thread *thread = machine__findnew_thread(machine, -1, 99 pid); 100 char comm[64]; 101 102 if (thread == NULL) 103 goto out; 104 105 snprintf(comm, sizeof(comm), "[guest/%d]", pid); 106 thread__set_comm(thread, comm, 0); 107 thread__put(thread); 108 } 109 110 machine->current_tid = NULL; 111 err = 0; 112 113 out: 114 if (err) { 115 zfree(&machine->root_dir); 116 zfree(&machine->mmap_name); 117 } 118 return 0; 119 } 120 121 struct machine *machine__new_host(void) 122 { 123 struct machine *machine = malloc(sizeof(*machine)); 124 125 if (machine != NULL) { 126 machine__init(machine, "", HOST_KERNEL_ID); 127 128 if (machine__create_kernel_maps(machine) < 0) 129 goto out_delete; 130 } 131 132 return machine; 133 out_delete: 134 free(machine); 135 return NULL; 136 } 137 138 struct machine *machine__new_kallsyms(void) 139 { 140 struct machine *machine = machine__new_host(); 141 /* 142 * FIXME: 143 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly 144 * ask for not using the kcore parsing code, once this one is fixed 145 * to create a map per module. 146 */ 147 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) { 148 machine__delete(machine); 149 machine = NULL; 150 } 151 152 return machine; 153 } 154 155 static void dsos__purge(struct dsos *dsos) 156 { 157 struct dso *pos, *n; 158 159 down_write(&dsos->lock); 160 161 list_for_each_entry_safe(pos, n, &dsos->head, node) { 162 RB_CLEAR_NODE(&pos->rb_node); 163 pos->root = NULL; 164 list_del_init(&pos->node); 165 dso__put(pos); 166 } 167 168 up_write(&dsos->lock); 169 } 170 171 static void dsos__exit(struct dsos *dsos) 172 { 173 dsos__purge(dsos); 174 exit_rwsem(&dsos->lock); 175 } 176 177 void machine__delete_threads(struct machine *machine) 178 { 179 struct rb_node *nd; 180 int i; 181 182 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 183 struct threads *threads = &machine->threads[i]; 184 down_write(&threads->lock); 185 nd = rb_first_cached(&threads->entries); 186 while (nd) { 187 struct thread *t = rb_entry(nd, struct thread, rb_node); 188 189 nd = rb_next(nd); 190 __machine__remove_thread(machine, t, false); 191 } 192 up_write(&threads->lock); 193 } 194 } 195 196 void machine__exit(struct machine *machine) 197 { 198 int i; 199 200 if (machine == NULL) 201 return; 202 203 machine__destroy_kernel_maps(machine); 204 map_groups__exit(&machine->kmaps); 205 dsos__exit(&machine->dsos); 206 machine__exit_vdso(machine); 207 zfree(&machine->root_dir); 208 zfree(&machine->mmap_name); 209 zfree(&machine->current_tid); 210 211 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 212 struct threads *threads = &machine->threads[i]; 213 struct thread *thread, *n; 214 /* 215 * Forget about the dead, at this point whatever threads were 216 * left in the dead lists better have a reference count taken 217 * by who is using them, and then, when they drop those references 218 * and it finally hits zero, thread__put() will check and see that 219 * its not in the dead threads list and will not try to remove it 220 * from there, just calling thread__delete() straight away. 221 */ 222 list_for_each_entry_safe(thread, n, &threads->dead, node) 223 list_del_init(&thread->node); 224 225 exit_rwsem(&threads->lock); 226 } 227 } 228 229 void machine__delete(struct machine *machine) 230 { 231 if (machine) { 232 machine__exit(machine); 233 free(machine); 234 } 235 } 236 237 void machines__init(struct machines *machines) 238 { 239 machine__init(&machines->host, "", HOST_KERNEL_ID); 240 machines->guests = RB_ROOT_CACHED; 241 } 242 243 void machines__exit(struct machines *machines) 244 { 245 machine__exit(&machines->host); 246 /* XXX exit guest */ 247 } 248 249 struct machine *machines__add(struct machines *machines, pid_t pid, 250 const char *root_dir) 251 { 252 struct rb_node **p = &machines->guests.rb_root.rb_node; 253 struct rb_node *parent = NULL; 254 struct machine *pos, *machine = malloc(sizeof(*machine)); 255 bool leftmost = true; 256 257 if (machine == NULL) 258 return NULL; 259 260 if (machine__init(machine, root_dir, pid) != 0) { 261 free(machine); 262 return NULL; 263 } 264 265 while (*p != NULL) { 266 parent = *p; 267 pos = rb_entry(parent, struct machine, rb_node); 268 if (pid < pos->pid) 269 p = &(*p)->rb_left; 270 else { 271 p = &(*p)->rb_right; 272 leftmost = false; 273 } 274 } 275 276 rb_link_node(&machine->rb_node, parent, p); 277 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost); 278 279 return machine; 280 } 281 282 void machines__set_comm_exec(struct machines *machines, bool comm_exec) 283 { 284 struct rb_node *nd; 285 286 machines->host.comm_exec = comm_exec; 287 288 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 289 struct machine *machine = rb_entry(nd, struct machine, rb_node); 290 291 machine->comm_exec = comm_exec; 292 } 293 } 294 295 struct machine *machines__find(struct machines *machines, pid_t pid) 296 { 297 struct rb_node **p = &machines->guests.rb_root.rb_node; 298 struct rb_node *parent = NULL; 299 struct machine *machine; 300 struct machine *default_machine = NULL; 301 302 if (pid == HOST_KERNEL_ID) 303 return &machines->host; 304 305 while (*p != NULL) { 306 parent = *p; 307 machine = rb_entry(parent, struct machine, rb_node); 308 if (pid < machine->pid) 309 p = &(*p)->rb_left; 310 else if (pid > machine->pid) 311 p = &(*p)->rb_right; 312 else 313 return machine; 314 if (!machine->pid) 315 default_machine = machine; 316 } 317 318 return default_machine; 319 } 320 321 struct machine *machines__findnew(struct machines *machines, pid_t pid) 322 { 323 char path[PATH_MAX]; 324 const char *root_dir = ""; 325 struct machine *machine = machines__find(machines, pid); 326 327 if (machine && (machine->pid == pid)) 328 goto out; 329 330 if ((pid != HOST_KERNEL_ID) && 331 (pid != DEFAULT_GUEST_KERNEL_ID) && 332 (symbol_conf.guestmount)) { 333 sprintf(path, "%s/%d", symbol_conf.guestmount, pid); 334 if (access(path, R_OK)) { 335 static struct strlist *seen; 336 337 if (!seen) 338 seen = strlist__new(NULL, NULL); 339 340 if (!strlist__has_entry(seen, path)) { 341 pr_err("Can't access file %s\n", path); 342 strlist__add(seen, path); 343 } 344 machine = NULL; 345 goto out; 346 } 347 root_dir = path; 348 } 349 350 machine = machines__add(machines, pid, root_dir); 351 out: 352 return machine; 353 } 354 355 void machines__process_guests(struct machines *machines, 356 machine__process_t process, void *data) 357 { 358 struct rb_node *nd; 359 360 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 361 struct machine *pos = rb_entry(nd, struct machine, rb_node); 362 process(pos, data); 363 } 364 } 365 366 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size) 367 { 368 struct rb_node *node; 369 struct machine *machine; 370 371 machines->host.id_hdr_size = id_hdr_size; 372 373 for (node = rb_first_cached(&machines->guests); node; 374 node = rb_next(node)) { 375 machine = rb_entry(node, struct machine, rb_node); 376 machine->id_hdr_size = id_hdr_size; 377 } 378 379 return; 380 } 381 382 static void machine__update_thread_pid(struct machine *machine, 383 struct thread *th, pid_t pid) 384 { 385 struct thread *leader; 386 387 if (pid == th->pid_ || pid == -1 || th->pid_ != -1) 388 return; 389 390 th->pid_ = pid; 391 392 if (th->pid_ == th->tid) 393 return; 394 395 leader = __machine__findnew_thread(machine, th->pid_, th->pid_); 396 if (!leader) 397 goto out_err; 398 399 if (!leader->mg) 400 leader->mg = map_groups__new(machine); 401 402 if (!leader->mg) 403 goto out_err; 404 405 if (th->mg == leader->mg) 406 return; 407 408 if (th->mg) { 409 /* 410 * Maps are created from MMAP events which provide the pid and 411 * tid. Consequently there never should be any maps on a thread 412 * with an unknown pid. Just print an error if there are. 413 */ 414 if (!map_groups__empty(th->mg)) 415 pr_err("Discarding thread maps for %d:%d\n", 416 th->pid_, th->tid); 417 map_groups__put(th->mg); 418 } 419 420 th->mg = map_groups__get(leader->mg); 421 out_put: 422 thread__put(leader); 423 return; 424 out_err: 425 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid); 426 goto out_put; 427 } 428 429 /* 430 * Front-end cache - TID lookups come in blocks, 431 * so most of the time we dont have to look up 432 * the full rbtree: 433 */ 434 static struct thread* 435 __threads__get_last_match(struct threads *threads, struct machine *machine, 436 int pid, int tid) 437 { 438 struct thread *th; 439 440 th = threads->last_match; 441 if (th != NULL) { 442 if (th->tid == tid) { 443 machine__update_thread_pid(machine, th, pid); 444 return thread__get(th); 445 } 446 447 threads->last_match = NULL; 448 } 449 450 return NULL; 451 } 452 453 static struct thread* 454 threads__get_last_match(struct threads *threads, struct machine *machine, 455 int pid, int tid) 456 { 457 struct thread *th = NULL; 458 459 if (perf_singlethreaded) 460 th = __threads__get_last_match(threads, machine, pid, tid); 461 462 return th; 463 } 464 465 static void 466 __threads__set_last_match(struct threads *threads, struct thread *th) 467 { 468 threads->last_match = th; 469 } 470 471 static void 472 threads__set_last_match(struct threads *threads, struct thread *th) 473 { 474 if (perf_singlethreaded) 475 __threads__set_last_match(threads, th); 476 } 477 478 /* 479 * Caller must eventually drop thread->refcnt returned with a successful 480 * lookup/new thread inserted. 481 */ 482 static struct thread *____machine__findnew_thread(struct machine *machine, 483 struct threads *threads, 484 pid_t pid, pid_t tid, 485 bool create) 486 { 487 struct rb_node **p = &threads->entries.rb_root.rb_node; 488 struct rb_node *parent = NULL; 489 struct thread *th; 490 bool leftmost = true; 491 492 th = threads__get_last_match(threads, machine, pid, tid); 493 if (th) 494 return th; 495 496 while (*p != NULL) { 497 parent = *p; 498 th = rb_entry(parent, struct thread, rb_node); 499 500 if (th->tid == tid) { 501 threads__set_last_match(threads, th); 502 machine__update_thread_pid(machine, th, pid); 503 return thread__get(th); 504 } 505 506 if (tid < th->tid) 507 p = &(*p)->rb_left; 508 else { 509 p = &(*p)->rb_right; 510 leftmost = false; 511 } 512 } 513 514 if (!create) 515 return NULL; 516 517 th = thread__new(pid, tid); 518 if (th != NULL) { 519 rb_link_node(&th->rb_node, parent, p); 520 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost); 521 522 /* 523 * We have to initialize map_groups separately 524 * after rb tree is updated. 525 * 526 * The reason is that we call machine__findnew_thread 527 * within thread__init_map_groups to find the thread 528 * leader and that would screwed the rb tree. 529 */ 530 if (thread__init_map_groups(th, machine)) { 531 rb_erase_cached(&th->rb_node, &threads->entries); 532 RB_CLEAR_NODE(&th->rb_node); 533 thread__put(th); 534 return NULL; 535 } 536 /* 537 * It is now in the rbtree, get a ref 538 */ 539 thread__get(th); 540 threads__set_last_match(threads, th); 541 ++threads->nr; 542 } 543 544 return th; 545 } 546 547 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid) 548 { 549 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true); 550 } 551 552 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid, 553 pid_t tid) 554 { 555 struct threads *threads = machine__threads(machine, tid); 556 struct thread *th; 557 558 down_write(&threads->lock); 559 th = __machine__findnew_thread(machine, pid, tid); 560 up_write(&threads->lock); 561 return th; 562 } 563 564 struct thread *machine__find_thread(struct machine *machine, pid_t pid, 565 pid_t tid) 566 { 567 struct threads *threads = machine__threads(machine, tid); 568 struct thread *th; 569 570 down_read(&threads->lock); 571 th = ____machine__findnew_thread(machine, threads, pid, tid, false); 572 up_read(&threads->lock); 573 return th; 574 } 575 576 struct comm *machine__thread_exec_comm(struct machine *machine, 577 struct thread *thread) 578 { 579 if (machine->comm_exec) 580 return thread__exec_comm(thread); 581 else 582 return thread__comm(thread); 583 } 584 585 int machine__process_comm_event(struct machine *machine, union perf_event *event, 586 struct perf_sample *sample) 587 { 588 struct thread *thread = machine__findnew_thread(machine, 589 event->comm.pid, 590 event->comm.tid); 591 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC; 592 int err = 0; 593 594 if (exec) 595 machine->comm_exec = true; 596 597 if (dump_trace) 598 perf_event__fprintf_comm(event, stdout); 599 600 if (thread == NULL || 601 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) { 602 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n"); 603 err = -1; 604 } 605 606 thread__put(thread); 607 608 return err; 609 } 610 611 int machine__process_namespaces_event(struct machine *machine __maybe_unused, 612 union perf_event *event, 613 struct perf_sample *sample __maybe_unused) 614 { 615 struct thread *thread = machine__findnew_thread(machine, 616 event->namespaces.pid, 617 event->namespaces.tid); 618 int err = 0; 619 620 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES, 621 "\nWARNING: kernel seems to support more namespaces than perf" 622 " tool.\nTry updating the perf tool..\n\n"); 623 624 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES, 625 "\nWARNING: perf tool seems to support more namespaces than" 626 " the kernel.\nTry updating the kernel..\n\n"); 627 628 if (dump_trace) 629 perf_event__fprintf_namespaces(event, stdout); 630 631 if (thread == NULL || 632 thread__set_namespaces(thread, sample->time, &event->namespaces)) { 633 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n"); 634 err = -1; 635 } 636 637 thread__put(thread); 638 639 return err; 640 } 641 642 int machine__process_lost_event(struct machine *machine __maybe_unused, 643 union perf_event *event, struct perf_sample *sample __maybe_unused) 644 { 645 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n", 646 event->lost.id, event->lost.lost); 647 return 0; 648 } 649 650 int machine__process_lost_samples_event(struct machine *machine __maybe_unused, 651 union perf_event *event, struct perf_sample *sample) 652 { 653 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n", 654 sample->id, event->lost_samples.lost); 655 return 0; 656 } 657 658 static struct dso *machine__findnew_module_dso(struct machine *machine, 659 struct kmod_path *m, 660 const char *filename) 661 { 662 struct dso *dso; 663 664 down_write(&machine->dsos.lock); 665 666 dso = __dsos__find(&machine->dsos, m->name, true); 667 if (!dso) { 668 dso = __dsos__addnew(&machine->dsos, m->name); 669 if (dso == NULL) 670 goto out_unlock; 671 672 dso__set_module_info(dso, m, machine); 673 dso__set_long_name(dso, strdup(filename), true); 674 } 675 676 dso__get(dso); 677 out_unlock: 678 up_write(&machine->dsos.lock); 679 return dso; 680 } 681 682 int machine__process_aux_event(struct machine *machine __maybe_unused, 683 union perf_event *event) 684 { 685 if (dump_trace) 686 perf_event__fprintf_aux(event, stdout); 687 return 0; 688 } 689 690 int machine__process_itrace_start_event(struct machine *machine __maybe_unused, 691 union perf_event *event) 692 { 693 if (dump_trace) 694 perf_event__fprintf_itrace_start(event, stdout); 695 return 0; 696 } 697 698 int machine__process_switch_event(struct machine *machine __maybe_unused, 699 union perf_event *event) 700 { 701 if (dump_trace) 702 perf_event__fprintf_switch(event, stdout); 703 return 0; 704 } 705 706 static int machine__process_ksymbol_register(struct machine *machine, 707 union perf_event *event, 708 struct perf_sample *sample __maybe_unused) 709 { 710 struct symbol *sym; 711 struct map *map; 712 713 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 714 if (!map) { 715 map = dso__new_map(event->ksymbol_event.name); 716 if (!map) 717 return -ENOMEM; 718 719 map->start = event->ksymbol_event.addr; 720 map->end = map->start + event->ksymbol_event.len; 721 map_groups__insert(&machine->kmaps, map); 722 } 723 724 sym = symbol__new(map->map_ip(map, map->start), 725 event->ksymbol_event.len, 726 0, 0, event->ksymbol_event.name); 727 if (!sym) 728 return -ENOMEM; 729 dso__insert_symbol(map->dso, sym); 730 return 0; 731 } 732 733 static int machine__process_ksymbol_unregister(struct machine *machine, 734 union perf_event *event, 735 struct perf_sample *sample __maybe_unused) 736 { 737 struct map *map; 738 739 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr); 740 if (map) 741 map_groups__remove(&machine->kmaps, map); 742 743 return 0; 744 } 745 746 int machine__process_ksymbol(struct machine *machine __maybe_unused, 747 union perf_event *event, 748 struct perf_sample *sample) 749 { 750 if (dump_trace) 751 perf_event__fprintf_ksymbol(event, stdout); 752 753 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER) 754 return machine__process_ksymbol_unregister(machine, event, 755 sample); 756 return machine__process_ksymbol_register(machine, event, sample); 757 } 758 759 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename) 760 { 761 const char *dup_filename; 762 763 if (!filename || !dso || !dso->long_name) 764 return; 765 if (dso->long_name[0] != '[') 766 return; 767 if (!strchr(filename, '/')) 768 return; 769 770 dup_filename = strdup(filename); 771 if (!dup_filename) 772 return; 773 774 dso__set_long_name(dso, dup_filename, true); 775 } 776 777 struct map *machine__findnew_module_map(struct machine *machine, u64 start, 778 const char *filename) 779 { 780 struct map *map = NULL; 781 struct dso *dso = NULL; 782 struct kmod_path m; 783 784 if (kmod_path__parse_name(&m, filename)) 785 return NULL; 786 787 map = map_groups__find_by_name(&machine->kmaps, m.name); 788 if (map) { 789 /* 790 * If the map's dso is an offline module, give dso__load() 791 * a chance to find the file path of that module by fixing 792 * long_name. 793 */ 794 dso__adjust_kmod_long_name(map->dso, filename); 795 goto out; 796 } 797 798 dso = machine__findnew_module_dso(machine, &m, filename); 799 if (dso == NULL) 800 goto out; 801 802 map = map__new2(start, dso); 803 if (map == NULL) 804 goto out; 805 806 map_groups__insert(&machine->kmaps, map); 807 808 /* Put the map here because map_groups__insert alread got it */ 809 map__put(map); 810 out: 811 /* put the dso here, corresponding to machine__findnew_module_dso */ 812 dso__put(dso); 813 zfree(&m.name); 814 return map; 815 } 816 817 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp) 818 { 819 struct rb_node *nd; 820 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp); 821 822 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 823 struct machine *pos = rb_entry(nd, struct machine, rb_node); 824 ret += __dsos__fprintf(&pos->dsos.head, fp); 825 } 826 827 return ret; 828 } 829 830 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp, 831 bool (skip)(struct dso *dso, int parm), int parm) 832 { 833 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm); 834 } 835 836 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp, 837 bool (skip)(struct dso *dso, int parm), int parm) 838 { 839 struct rb_node *nd; 840 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm); 841 842 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 843 struct machine *pos = rb_entry(nd, struct machine, rb_node); 844 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm); 845 } 846 return ret; 847 } 848 849 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp) 850 { 851 int i; 852 size_t printed = 0; 853 struct dso *kdso = machine__kernel_map(machine)->dso; 854 855 if (kdso->has_build_id) { 856 char filename[PATH_MAX]; 857 if (dso__build_id_filename(kdso, filename, sizeof(filename), 858 false)) 859 printed += fprintf(fp, "[0] %s\n", filename); 860 } 861 862 for (i = 0; i < vmlinux_path__nr_entries; ++i) 863 printed += fprintf(fp, "[%d] %s\n", 864 i + kdso->has_build_id, vmlinux_path[i]); 865 866 return printed; 867 } 868 869 size_t machine__fprintf(struct machine *machine, FILE *fp) 870 { 871 struct rb_node *nd; 872 size_t ret; 873 int i; 874 875 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 876 struct threads *threads = &machine->threads[i]; 877 878 down_read(&threads->lock); 879 880 ret = fprintf(fp, "Threads: %u\n", threads->nr); 881 882 for (nd = rb_first_cached(&threads->entries); nd; 883 nd = rb_next(nd)) { 884 struct thread *pos = rb_entry(nd, struct thread, rb_node); 885 886 ret += thread__fprintf(pos, fp); 887 } 888 889 up_read(&threads->lock); 890 } 891 return ret; 892 } 893 894 static struct dso *machine__get_kernel(struct machine *machine) 895 { 896 const char *vmlinux_name = machine->mmap_name; 897 struct dso *kernel; 898 899 if (machine__is_host(machine)) { 900 if (symbol_conf.vmlinux_name) 901 vmlinux_name = symbol_conf.vmlinux_name; 902 903 kernel = machine__findnew_kernel(machine, vmlinux_name, 904 "[kernel]", DSO_TYPE_KERNEL); 905 } else { 906 if (symbol_conf.default_guest_vmlinux_name) 907 vmlinux_name = symbol_conf.default_guest_vmlinux_name; 908 909 kernel = machine__findnew_kernel(machine, vmlinux_name, 910 "[guest.kernel]", 911 DSO_TYPE_GUEST_KERNEL); 912 } 913 914 if (kernel != NULL && (!kernel->has_build_id)) 915 dso__read_running_kernel_build_id(kernel, machine); 916 917 return kernel; 918 } 919 920 struct process_args { 921 u64 start; 922 }; 923 924 void machine__get_kallsyms_filename(struct machine *machine, char *buf, 925 size_t bufsz) 926 { 927 if (machine__is_default_guest(machine)) 928 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms); 929 else 930 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir); 931 } 932 933 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL}; 934 935 /* Figure out the start address of kernel map from /proc/kallsyms. 936 * Returns the name of the start symbol in *symbol_name. Pass in NULL as 937 * symbol_name if it's not that important. 938 */ 939 static int machine__get_running_kernel_start(struct machine *machine, 940 const char **symbol_name, 941 u64 *start, u64 *end) 942 { 943 char filename[PATH_MAX]; 944 int i, err = -1; 945 const char *name; 946 u64 addr = 0; 947 948 machine__get_kallsyms_filename(machine, filename, PATH_MAX); 949 950 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 951 return 0; 952 953 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) { 954 err = kallsyms__get_function_start(filename, name, &addr); 955 if (!err) 956 break; 957 } 958 959 if (err) 960 return -1; 961 962 if (symbol_name) 963 *symbol_name = name; 964 965 *start = addr; 966 967 err = kallsyms__get_function_start(filename, "_etext", &addr); 968 if (!err) 969 *end = addr; 970 971 return 0; 972 } 973 974 int machine__create_extra_kernel_map(struct machine *machine, 975 struct dso *kernel, 976 struct extra_kernel_map *xm) 977 { 978 struct kmap *kmap; 979 struct map *map; 980 981 map = map__new2(xm->start, kernel); 982 if (!map) 983 return -1; 984 985 map->end = xm->end; 986 map->pgoff = xm->pgoff; 987 988 kmap = map__kmap(map); 989 990 kmap->kmaps = &machine->kmaps; 991 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN); 992 993 map_groups__insert(&machine->kmaps, map); 994 995 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n", 996 kmap->name, map->start, map->end); 997 998 map__put(map); 999 1000 return 0; 1001 } 1002 1003 static u64 find_entry_trampoline(struct dso *dso) 1004 { 1005 /* Duplicates are removed so lookup all aliases */ 1006 const char *syms[] = { 1007 "_entry_trampoline", 1008 "__entry_trampoline_start", 1009 "entry_SYSCALL_64_trampoline", 1010 }; 1011 struct symbol *sym = dso__first_symbol(dso); 1012 unsigned int i; 1013 1014 for (; sym; sym = dso__next_symbol(sym)) { 1015 if (sym->binding != STB_GLOBAL) 1016 continue; 1017 for (i = 0; i < ARRAY_SIZE(syms); i++) { 1018 if (!strcmp(sym->name, syms[i])) 1019 return sym->start; 1020 } 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* 1027 * These values can be used for kernels that do not have symbols for the entry 1028 * trampolines in kallsyms. 1029 */ 1030 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL 1031 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000 1032 #define X86_64_ENTRY_TRAMPOLINE 0x6000 1033 1034 /* Map x86_64 PTI entry trampolines */ 1035 int machine__map_x86_64_entry_trampolines(struct machine *machine, 1036 struct dso *kernel) 1037 { 1038 struct map_groups *kmaps = &machine->kmaps; 1039 struct maps *maps = &kmaps->maps; 1040 int nr_cpus_avail, cpu; 1041 bool found = false; 1042 struct map *map; 1043 u64 pgoff; 1044 1045 /* 1046 * In the vmlinux case, pgoff is a virtual address which must now be 1047 * mapped to a vmlinux offset. 1048 */ 1049 for (map = maps__first(maps); map; map = map__next(map)) { 1050 struct kmap *kmap = __map__kmap(map); 1051 struct map *dest_map; 1052 1053 if (!kmap || !is_entry_trampoline(kmap->name)) 1054 continue; 1055 1056 dest_map = map_groups__find(kmaps, map->pgoff); 1057 if (dest_map != map) 1058 map->pgoff = dest_map->map_ip(dest_map, map->pgoff); 1059 found = true; 1060 } 1061 if (found || machine->trampolines_mapped) 1062 return 0; 1063 1064 pgoff = find_entry_trampoline(kernel); 1065 if (!pgoff) 1066 return 0; 1067 1068 nr_cpus_avail = machine__nr_cpus_avail(machine); 1069 1070 /* Add a 1 page map for each CPU's entry trampoline */ 1071 for (cpu = 0; cpu < nr_cpus_avail; cpu++) { 1072 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU + 1073 cpu * X86_64_CPU_ENTRY_AREA_SIZE + 1074 X86_64_ENTRY_TRAMPOLINE; 1075 struct extra_kernel_map xm = { 1076 .start = va, 1077 .end = va + page_size, 1078 .pgoff = pgoff, 1079 }; 1080 1081 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN); 1082 1083 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0) 1084 return -1; 1085 } 1086 1087 machine->trampolines_mapped = nr_cpus_avail; 1088 1089 return 0; 1090 } 1091 1092 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused, 1093 struct dso *kernel __maybe_unused) 1094 { 1095 return 0; 1096 } 1097 1098 static int 1099 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel) 1100 { 1101 struct kmap *kmap; 1102 struct map *map; 1103 1104 /* In case of renewal the kernel map, destroy previous one */ 1105 machine__destroy_kernel_maps(machine); 1106 1107 machine->vmlinux_map = map__new2(0, kernel); 1108 if (machine->vmlinux_map == NULL) 1109 return -1; 1110 1111 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip; 1112 map = machine__kernel_map(machine); 1113 kmap = map__kmap(map); 1114 if (!kmap) 1115 return -1; 1116 1117 kmap->kmaps = &machine->kmaps; 1118 map_groups__insert(&machine->kmaps, map); 1119 1120 return 0; 1121 } 1122 1123 void machine__destroy_kernel_maps(struct machine *machine) 1124 { 1125 struct kmap *kmap; 1126 struct map *map = machine__kernel_map(machine); 1127 1128 if (map == NULL) 1129 return; 1130 1131 kmap = map__kmap(map); 1132 map_groups__remove(&machine->kmaps, map); 1133 if (kmap && kmap->ref_reloc_sym) { 1134 zfree((char **)&kmap->ref_reloc_sym->name); 1135 zfree(&kmap->ref_reloc_sym); 1136 } 1137 1138 map__zput(machine->vmlinux_map); 1139 } 1140 1141 int machines__create_guest_kernel_maps(struct machines *machines) 1142 { 1143 int ret = 0; 1144 struct dirent **namelist = NULL; 1145 int i, items = 0; 1146 char path[PATH_MAX]; 1147 pid_t pid; 1148 char *endp; 1149 1150 if (symbol_conf.default_guest_vmlinux_name || 1151 symbol_conf.default_guest_modules || 1152 symbol_conf.default_guest_kallsyms) { 1153 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID); 1154 } 1155 1156 if (symbol_conf.guestmount) { 1157 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL); 1158 if (items <= 0) 1159 return -ENOENT; 1160 for (i = 0; i < items; i++) { 1161 if (!isdigit(namelist[i]->d_name[0])) { 1162 /* Filter out . and .. */ 1163 continue; 1164 } 1165 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10); 1166 if ((*endp != '\0') || 1167 (endp == namelist[i]->d_name) || 1168 (errno == ERANGE)) { 1169 pr_debug("invalid directory (%s). Skipping.\n", 1170 namelist[i]->d_name); 1171 continue; 1172 } 1173 sprintf(path, "%s/%s/proc/kallsyms", 1174 symbol_conf.guestmount, 1175 namelist[i]->d_name); 1176 ret = access(path, R_OK); 1177 if (ret) { 1178 pr_debug("Can't access file %s\n", path); 1179 goto failure; 1180 } 1181 machines__create_kernel_maps(machines, pid); 1182 } 1183 failure: 1184 free(namelist); 1185 } 1186 1187 return ret; 1188 } 1189 1190 void machines__destroy_kernel_maps(struct machines *machines) 1191 { 1192 struct rb_node *next = rb_first_cached(&machines->guests); 1193 1194 machine__destroy_kernel_maps(&machines->host); 1195 1196 while (next) { 1197 struct machine *pos = rb_entry(next, struct machine, rb_node); 1198 1199 next = rb_next(&pos->rb_node); 1200 rb_erase_cached(&pos->rb_node, &machines->guests); 1201 machine__delete(pos); 1202 } 1203 } 1204 1205 int machines__create_kernel_maps(struct machines *machines, pid_t pid) 1206 { 1207 struct machine *machine = machines__findnew(machines, pid); 1208 1209 if (machine == NULL) 1210 return -1; 1211 1212 return machine__create_kernel_maps(machine); 1213 } 1214 1215 int machine__load_kallsyms(struct machine *machine, const char *filename) 1216 { 1217 struct map *map = machine__kernel_map(machine); 1218 int ret = __dso__load_kallsyms(map->dso, filename, map, true); 1219 1220 if (ret > 0) { 1221 dso__set_loaded(map->dso); 1222 /* 1223 * Since /proc/kallsyms will have multiple sessions for the 1224 * kernel, with modules between them, fixup the end of all 1225 * sections. 1226 */ 1227 map_groups__fixup_end(&machine->kmaps); 1228 } 1229 1230 return ret; 1231 } 1232 1233 int machine__load_vmlinux_path(struct machine *machine) 1234 { 1235 struct map *map = machine__kernel_map(machine); 1236 int ret = dso__load_vmlinux_path(map->dso, map); 1237 1238 if (ret > 0) 1239 dso__set_loaded(map->dso); 1240 1241 return ret; 1242 } 1243 1244 static char *get_kernel_version(const char *root_dir) 1245 { 1246 char version[PATH_MAX]; 1247 FILE *file; 1248 char *name, *tmp; 1249 const char *prefix = "Linux version "; 1250 1251 sprintf(version, "%s/proc/version", root_dir); 1252 file = fopen(version, "r"); 1253 if (!file) 1254 return NULL; 1255 1256 tmp = fgets(version, sizeof(version), file); 1257 fclose(file); 1258 if (!tmp) 1259 return NULL; 1260 1261 name = strstr(version, prefix); 1262 if (!name) 1263 return NULL; 1264 name += strlen(prefix); 1265 tmp = strchr(name, ' '); 1266 if (tmp) 1267 *tmp = '\0'; 1268 1269 return strdup(name); 1270 } 1271 1272 static bool is_kmod_dso(struct dso *dso) 1273 { 1274 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1275 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE; 1276 } 1277 1278 static int map_groups__set_module_path(struct map_groups *mg, const char *path, 1279 struct kmod_path *m) 1280 { 1281 char *long_name; 1282 struct map *map = map_groups__find_by_name(mg, m->name); 1283 1284 if (map == NULL) 1285 return 0; 1286 1287 long_name = strdup(path); 1288 if (long_name == NULL) 1289 return -ENOMEM; 1290 1291 dso__set_long_name(map->dso, long_name, true); 1292 dso__kernel_module_get_build_id(map->dso, ""); 1293 1294 /* 1295 * Full name could reveal us kmod compression, so 1296 * we need to update the symtab_type if needed. 1297 */ 1298 if (m->comp && is_kmod_dso(map->dso)) { 1299 map->dso->symtab_type++; 1300 map->dso->comp = m->comp; 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int map_groups__set_modules_path_dir(struct map_groups *mg, 1307 const char *dir_name, int depth) 1308 { 1309 struct dirent *dent; 1310 DIR *dir = opendir(dir_name); 1311 int ret = 0; 1312 1313 if (!dir) { 1314 pr_debug("%s: cannot open %s dir\n", __func__, dir_name); 1315 return -1; 1316 } 1317 1318 while ((dent = readdir(dir)) != NULL) { 1319 char path[PATH_MAX]; 1320 struct stat st; 1321 1322 /*sshfs might return bad dent->d_type, so we have to stat*/ 1323 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name); 1324 if (stat(path, &st)) 1325 continue; 1326 1327 if (S_ISDIR(st.st_mode)) { 1328 if (!strcmp(dent->d_name, ".") || 1329 !strcmp(dent->d_name, "..")) 1330 continue; 1331 1332 /* Do not follow top-level source and build symlinks */ 1333 if (depth == 0) { 1334 if (!strcmp(dent->d_name, "source") || 1335 !strcmp(dent->d_name, "build")) 1336 continue; 1337 } 1338 1339 ret = map_groups__set_modules_path_dir(mg, path, 1340 depth + 1); 1341 if (ret < 0) 1342 goto out; 1343 } else { 1344 struct kmod_path m; 1345 1346 ret = kmod_path__parse_name(&m, dent->d_name); 1347 if (ret) 1348 goto out; 1349 1350 if (m.kmod) 1351 ret = map_groups__set_module_path(mg, path, &m); 1352 1353 zfree(&m.name); 1354 1355 if (ret) 1356 goto out; 1357 } 1358 } 1359 1360 out: 1361 closedir(dir); 1362 return ret; 1363 } 1364 1365 static int machine__set_modules_path(struct machine *machine) 1366 { 1367 char *version; 1368 char modules_path[PATH_MAX]; 1369 1370 version = get_kernel_version(machine->root_dir); 1371 if (!version) 1372 return -1; 1373 1374 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s", 1375 machine->root_dir, version); 1376 free(version); 1377 1378 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0); 1379 } 1380 int __weak arch__fix_module_text_start(u64 *start __maybe_unused, 1381 const char *name __maybe_unused) 1382 { 1383 return 0; 1384 } 1385 1386 static int machine__create_module(void *arg, const char *name, u64 start, 1387 u64 size) 1388 { 1389 struct machine *machine = arg; 1390 struct map *map; 1391 1392 if (arch__fix_module_text_start(&start, name) < 0) 1393 return -1; 1394 1395 map = machine__findnew_module_map(machine, start, name); 1396 if (map == NULL) 1397 return -1; 1398 map->end = start + size; 1399 1400 dso__kernel_module_get_build_id(map->dso, machine->root_dir); 1401 1402 return 0; 1403 } 1404 1405 static int machine__create_modules(struct machine *machine) 1406 { 1407 const char *modules; 1408 char path[PATH_MAX]; 1409 1410 if (machine__is_default_guest(machine)) { 1411 modules = symbol_conf.default_guest_modules; 1412 } else { 1413 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir); 1414 modules = path; 1415 } 1416 1417 if (symbol__restricted_filename(modules, "/proc/modules")) 1418 return -1; 1419 1420 if (modules__parse(modules, machine, machine__create_module)) 1421 return -1; 1422 1423 if (!machine__set_modules_path(machine)) 1424 return 0; 1425 1426 pr_debug("Problems setting modules path maps, continuing anyway...\n"); 1427 1428 return 0; 1429 } 1430 1431 static void machine__set_kernel_mmap(struct machine *machine, 1432 u64 start, u64 end) 1433 { 1434 machine->vmlinux_map->start = start; 1435 machine->vmlinux_map->end = end; 1436 /* 1437 * Be a bit paranoid here, some perf.data file came with 1438 * a zero sized synthesized MMAP event for the kernel. 1439 */ 1440 if (start == 0 && end == 0) 1441 machine->vmlinux_map->end = ~0ULL; 1442 } 1443 1444 static void machine__update_kernel_mmap(struct machine *machine, 1445 u64 start, u64 end) 1446 { 1447 struct map *map = machine__kernel_map(machine); 1448 1449 map__get(map); 1450 map_groups__remove(&machine->kmaps, map); 1451 1452 machine__set_kernel_mmap(machine, start, end); 1453 1454 map_groups__insert(&machine->kmaps, map); 1455 map__put(map); 1456 } 1457 1458 int machine__create_kernel_maps(struct machine *machine) 1459 { 1460 struct dso *kernel = machine__get_kernel(machine); 1461 const char *name = NULL; 1462 struct map *map; 1463 u64 start = 0, end = ~0ULL; 1464 int ret; 1465 1466 if (kernel == NULL) 1467 return -1; 1468 1469 ret = __machine__create_kernel_maps(machine, kernel); 1470 if (ret < 0) 1471 goto out_put; 1472 1473 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) { 1474 if (machine__is_host(machine)) 1475 pr_debug("Problems creating module maps, " 1476 "continuing anyway...\n"); 1477 else 1478 pr_debug("Problems creating module maps for guest %d, " 1479 "continuing anyway...\n", machine->pid); 1480 } 1481 1482 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) { 1483 if (name && 1484 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) { 1485 machine__destroy_kernel_maps(machine); 1486 ret = -1; 1487 goto out_put; 1488 } 1489 1490 /* 1491 * we have a real start address now, so re-order the kmaps 1492 * assume it's the last in the kmaps 1493 */ 1494 machine__update_kernel_mmap(machine, start, end); 1495 } 1496 1497 if (machine__create_extra_kernel_maps(machine, kernel)) 1498 pr_debug("Problems creating extra kernel maps, continuing anyway...\n"); 1499 1500 if (end == ~0ULL) { 1501 /* update end address of the kernel map using adjacent module address */ 1502 map = map__next(machine__kernel_map(machine)); 1503 if (map) 1504 machine__set_kernel_mmap(machine, start, map->start); 1505 } 1506 1507 out_put: 1508 dso__put(kernel); 1509 return ret; 1510 } 1511 1512 static bool machine__uses_kcore(struct machine *machine) 1513 { 1514 struct dso *dso; 1515 1516 list_for_each_entry(dso, &machine->dsos.head, node) { 1517 if (dso__is_kcore(dso)) 1518 return true; 1519 } 1520 1521 return false; 1522 } 1523 1524 static bool perf_event__is_extra_kernel_mmap(struct machine *machine, 1525 union perf_event *event) 1526 { 1527 return machine__is(machine, "x86_64") && 1528 is_entry_trampoline(event->mmap.filename); 1529 } 1530 1531 static int machine__process_extra_kernel_map(struct machine *machine, 1532 union perf_event *event) 1533 { 1534 struct map *kernel_map = machine__kernel_map(machine); 1535 struct dso *kernel = kernel_map ? kernel_map->dso : NULL; 1536 struct extra_kernel_map xm = { 1537 .start = event->mmap.start, 1538 .end = event->mmap.start + event->mmap.len, 1539 .pgoff = event->mmap.pgoff, 1540 }; 1541 1542 if (kernel == NULL) 1543 return -1; 1544 1545 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN); 1546 1547 return machine__create_extra_kernel_map(machine, kernel, &xm); 1548 } 1549 1550 static int machine__process_kernel_mmap_event(struct machine *machine, 1551 union perf_event *event) 1552 { 1553 struct map *map; 1554 enum dso_kernel_type kernel_type; 1555 bool is_kernel_mmap; 1556 1557 /* If we have maps from kcore then we do not need or want any others */ 1558 if (machine__uses_kcore(machine)) 1559 return 0; 1560 1561 if (machine__is_host(machine)) 1562 kernel_type = DSO_TYPE_KERNEL; 1563 else 1564 kernel_type = DSO_TYPE_GUEST_KERNEL; 1565 1566 is_kernel_mmap = memcmp(event->mmap.filename, 1567 machine->mmap_name, 1568 strlen(machine->mmap_name) - 1) == 0; 1569 if (event->mmap.filename[0] == '/' || 1570 (!is_kernel_mmap && event->mmap.filename[0] == '[')) { 1571 map = machine__findnew_module_map(machine, event->mmap.start, 1572 event->mmap.filename); 1573 if (map == NULL) 1574 goto out_problem; 1575 1576 map->end = map->start + event->mmap.len; 1577 } else if (is_kernel_mmap) { 1578 const char *symbol_name = (event->mmap.filename + 1579 strlen(machine->mmap_name)); 1580 /* 1581 * Should be there already, from the build-id table in 1582 * the header. 1583 */ 1584 struct dso *kernel = NULL; 1585 struct dso *dso; 1586 1587 down_read(&machine->dsos.lock); 1588 1589 list_for_each_entry(dso, &machine->dsos.head, node) { 1590 1591 /* 1592 * The cpumode passed to is_kernel_module is not the 1593 * cpumode of *this* event. If we insist on passing 1594 * correct cpumode to is_kernel_module, we should 1595 * record the cpumode when we adding this dso to the 1596 * linked list. 1597 * 1598 * However we don't really need passing correct 1599 * cpumode. We know the correct cpumode must be kernel 1600 * mode (if not, we should not link it onto kernel_dsos 1601 * list). 1602 * 1603 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN. 1604 * is_kernel_module() treats it as a kernel cpumode. 1605 */ 1606 1607 if (!dso->kernel || 1608 is_kernel_module(dso->long_name, 1609 PERF_RECORD_MISC_CPUMODE_UNKNOWN)) 1610 continue; 1611 1612 1613 kernel = dso; 1614 break; 1615 } 1616 1617 up_read(&machine->dsos.lock); 1618 1619 if (kernel == NULL) 1620 kernel = machine__findnew_dso(machine, machine->mmap_name); 1621 if (kernel == NULL) 1622 goto out_problem; 1623 1624 kernel->kernel = kernel_type; 1625 if (__machine__create_kernel_maps(machine, kernel) < 0) { 1626 dso__put(kernel); 1627 goto out_problem; 1628 } 1629 1630 if (strstr(kernel->long_name, "vmlinux")) 1631 dso__set_short_name(kernel, "[kernel.vmlinux]", false); 1632 1633 machine__update_kernel_mmap(machine, event->mmap.start, 1634 event->mmap.start + event->mmap.len); 1635 1636 /* 1637 * Avoid using a zero address (kptr_restrict) for the ref reloc 1638 * symbol. Effectively having zero here means that at record 1639 * time /proc/sys/kernel/kptr_restrict was non zero. 1640 */ 1641 if (event->mmap.pgoff != 0) { 1642 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, 1643 symbol_name, 1644 event->mmap.pgoff); 1645 } 1646 1647 if (machine__is_default_guest(machine)) { 1648 /* 1649 * preload dso of guest kernel and modules 1650 */ 1651 dso__load(kernel, machine__kernel_map(machine)); 1652 } 1653 } else if (perf_event__is_extra_kernel_mmap(machine, event)) { 1654 return machine__process_extra_kernel_map(machine, event); 1655 } 1656 return 0; 1657 out_problem: 1658 return -1; 1659 } 1660 1661 int machine__process_mmap2_event(struct machine *machine, 1662 union perf_event *event, 1663 struct perf_sample *sample) 1664 { 1665 struct thread *thread; 1666 struct map *map; 1667 int ret = 0; 1668 1669 if (dump_trace) 1670 perf_event__fprintf_mmap2(event, stdout); 1671 1672 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1673 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1674 ret = machine__process_kernel_mmap_event(machine, event); 1675 if (ret < 0) 1676 goto out_problem; 1677 return 0; 1678 } 1679 1680 thread = machine__findnew_thread(machine, event->mmap2.pid, 1681 event->mmap2.tid); 1682 if (thread == NULL) 1683 goto out_problem; 1684 1685 map = map__new(machine, event->mmap2.start, 1686 event->mmap2.len, event->mmap2.pgoff, 1687 event->mmap2.maj, 1688 event->mmap2.min, event->mmap2.ino, 1689 event->mmap2.ino_generation, 1690 event->mmap2.prot, 1691 event->mmap2.flags, 1692 event->mmap2.filename, thread); 1693 1694 if (map == NULL) 1695 goto out_problem_map; 1696 1697 ret = thread__insert_map(thread, map); 1698 if (ret) 1699 goto out_problem_insert; 1700 1701 thread__put(thread); 1702 map__put(map); 1703 return 0; 1704 1705 out_problem_insert: 1706 map__put(map); 1707 out_problem_map: 1708 thread__put(thread); 1709 out_problem: 1710 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n"); 1711 return 0; 1712 } 1713 1714 int machine__process_mmap_event(struct machine *machine, union perf_event *event, 1715 struct perf_sample *sample) 1716 { 1717 struct thread *thread; 1718 struct map *map; 1719 u32 prot = 0; 1720 int ret = 0; 1721 1722 if (dump_trace) 1723 perf_event__fprintf_mmap(event, stdout); 1724 1725 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL || 1726 sample->cpumode == PERF_RECORD_MISC_KERNEL) { 1727 ret = machine__process_kernel_mmap_event(machine, event); 1728 if (ret < 0) 1729 goto out_problem; 1730 return 0; 1731 } 1732 1733 thread = machine__findnew_thread(machine, event->mmap.pid, 1734 event->mmap.tid); 1735 if (thread == NULL) 1736 goto out_problem; 1737 1738 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA)) 1739 prot = PROT_EXEC; 1740 1741 map = map__new(machine, event->mmap.start, 1742 event->mmap.len, event->mmap.pgoff, 1743 0, 0, 0, 0, prot, 0, 1744 event->mmap.filename, 1745 thread); 1746 1747 if (map == NULL) 1748 goto out_problem_map; 1749 1750 ret = thread__insert_map(thread, map); 1751 if (ret) 1752 goto out_problem_insert; 1753 1754 thread__put(thread); 1755 map__put(map); 1756 return 0; 1757 1758 out_problem_insert: 1759 map__put(map); 1760 out_problem_map: 1761 thread__put(thread); 1762 out_problem: 1763 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n"); 1764 return 0; 1765 } 1766 1767 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock) 1768 { 1769 struct threads *threads = machine__threads(machine, th->tid); 1770 1771 if (threads->last_match == th) 1772 threads__set_last_match(threads, NULL); 1773 1774 if (lock) 1775 down_write(&threads->lock); 1776 1777 BUG_ON(refcount_read(&th->refcnt) == 0); 1778 1779 rb_erase_cached(&th->rb_node, &threads->entries); 1780 RB_CLEAR_NODE(&th->rb_node); 1781 --threads->nr; 1782 /* 1783 * Move it first to the dead_threads list, then drop the reference, 1784 * if this is the last reference, then the thread__delete destructor 1785 * will be called and we will remove it from the dead_threads list. 1786 */ 1787 list_add_tail(&th->node, &threads->dead); 1788 1789 /* 1790 * We need to do the put here because if this is the last refcount, 1791 * then we will be touching the threads->dead head when removing the 1792 * thread. 1793 */ 1794 thread__put(th); 1795 1796 if (lock) 1797 up_write(&threads->lock); 1798 } 1799 1800 void machine__remove_thread(struct machine *machine, struct thread *th) 1801 { 1802 return __machine__remove_thread(machine, th, true); 1803 } 1804 1805 int machine__process_fork_event(struct machine *machine, union perf_event *event, 1806 struct perf_sample *sample) 1807 { 1808 struct thread *thread = machine__find_thread(machine, 1809 event->fork.pid, 1810 event->fork.tid); 1811 struct thread *parent = machine__findnew_thread(machine, 1812 event->fork.ppid, 1813 event->fork.ptid); 1814 bool do_maps_clone = true; 1815 int err = 0; 1816 1817 if (dump_trace) 1818 perf_event__fprintf_task(event, stdout); 1819 1820 /* 1821 * There may be an existing thread that is not actually the parent, 1822 * either because we are processing events out of order, or because the 1823 * (fork) event that would have removed the thread was lost. Assume the 1824 * latter case and continue on as best we can. 1825 */ 1826 if (parent->pid_ != (pid_t)event->fork.ppid) { 1827 dump_printf("removing erroneous parent thread %d/%d\n", 1828 parent->pid_, parent->tid); 1829 machine__remove_thread(machine, parent); 1830 thread__put(parent); 1831 parent = machine__findnew_thread(machine, event->fork.ppid, 1832 event->fork.ptid); 1833 } 1834 1835 /* if a thread currently exists for the thread id remove it */ 1836 if (thread != NULL) { 1837 machine__remove_thread(machine, thread); 1838 thread__put(thread); 1839 } 1840 1841 thread = machine__findnew_thread(machine, event->fork.pid, 1842 event->fork.tid); 1843 /* 1844 * When synthesizing FORK events, we are trying to create thread 1845 * objects for the already running tasks on the machine. 1846 * 1847 * Normally, for a kernel FORK event, we want to clone the parent's 1848 * maps because that is what the kernel just did. 1849 * 1850 * But when synthesizing, this should not be done. If we do, we end up 1851 * with overlapping maps as we process the sythesized MMAP2 events that 1852 * get delivered shortly thereafter. 1853 * 1854 * Use the FORK event misc flags in an internal way to signal this 1855 * situation, so we can elide the map clone when appropriate. 1856 */ 1857 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC) 1858 do_maps_clone = false; 1859 1860 if (thread == NULL || parent == NULL || 1861 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) { 1862 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n"); 1863 err = -1; 1864 } 1865 thread__put(thread); 1866 thread__put(parent); 1867 1868 return err; 1869 } 1870 1871 int machine__process_exit_event(struct machine *machine, union perf_event *event, 1872 struct perf_sample *sample __maybe_unused) 1873 { 1874 struct thread *thread = machine__find_thread(machine, 1875 event->fork.pid, 1876 event->fork.tid); 1877 1878 if (dump_trace) 1879 perf_event__fprintf_task(event, stdout); 1880 1881 if (thread != NULL) { 1882 thread__exited(thread); 1883 thread__put(thread); 1884 } 1885 1886 return 0; 1887 } 1888 1889 int machine__process_event(struct machine *machine, union perf_event *event, 1890 struct perf_sample *sample) 1891 { 1892 int ret; 1893 1894 switch (event->header.type) { 1895 case PERF_RECORD_COMM: 1896 ret = machine__process_comm_event(machine, event, sample); break; 1897 case PERF_RECORD_MMAP: 1898 ret = machine__process_mmap_event(machine, event, sample); break; 1899 case PERF_RECORD_NAMESPACES: 1900 ret = machine__process_namespaces_event(machine, event, sample); break; 1901 case PERF_RECORD_MMAP2: 1902 ret = machine__process_mmap2_event(machine, event, sample); break; 1903 case PERF_RECORD_FORK: 1904 ret = machine__process_fork_event(machine, event, sample); break; 1905 case PERF_RECORD_EXIT: 1906 ret = machine__process_exit_event(machine, event, sample); break; 1907 case PERF_RECORD_LOST: 1908 ret = machine__process_lost_event(machine, event, sample); break; 1909 case PERF_RECORD_AUX: 1910 ret = machine__process_aux_event(machine, event); break; 1911 case PERF_RECORD_ITRACE_START: 1912 ret = machine__process_itrace_start_event(machine, event); break; 1913 case PERF_RECORD_LOST_SAMPLES: 1914 ret = machine__process_lost_samples_event(machine, event, sample); break; 1915 case PERF_RECORD_SWITCH: 1916 case PERF_RECORD_SWITCH_CPU_WIDE: 1917 ret = machine__process_switch_event(machine, event); break; 1918 case PERF_RECORD_KSYMBOL: 1919 ret = machine__process_ksymbol(machine, event, sample); break; 1920 case PERF_RECORD_BPF_EVENT: 1921 ret = machine__process_bpf_event(machine, event, sample); break; 1922 default: 1923 ret = -1; 1924 break; 1925 } 1926 1927 return ret; 1928 } 1929 1930 static bool symbol__match_regex(struct symbol *sym, regex_t *regex) 1931 { 1932 if (!regexec(regex, sym->name, 0, NULL, 0)) 1933 return 1; 1934 return 0; 1935 } 1936 1937 static void ip__resolve_ams(struct thread *thread, 1938 struct addr_map_symbol *ams, 1939 u64 ip) 1940 { 1941 struct addr_location al; 1942 1943 memset(&al, 0, sizeof(al)); 1944 /* 1945 * We cannot use the header.misc hint to determine whether a 1946 * branch stack address is user, kernel, guest, hypervisor. 1947 * Branches may straddle the kernel/user/hypervisor boundaries. 1948 * Thus, we have to try consecutively until we find a match 1949 * or else, the symbol is unknown 1950 */ 1951 thread__find_cpumode_addr_location(thread, ip, &al); 1952 1953 ams->addr = ip; 1954 ams->al_addr = al.addr; 1955 ams->sym = al.sym; 1956 ams->map = al.map; 1957 ams->phys_addr = 0; 1958 } 1959 1960 static void ip__resolve_data(struct thread *thread, 1961 u8 m, struct addr_map_symbol *ams, 1962 u64 addr, u64 phys_addr) 1963 { 1964 struct addr_location al; 1965 1966 memset(&al, 0, sizeof(al)); 1967 1968 thread__find_symbol(thread, m, addr, &al); 1969 1970 ams->addr = addr; 1971 ams->al_addr = al.addr; 1972 ams->sym = al.sym; 1973 ams->map = al.map; 1974 ams->phys_addr = phys_addr; 1975 } 1976 1977 struct mem_info *sample__resolve_mem(struct perf_sample *sample, 1978 struct addr_location *al) 1979 { 1980 struct mem_info *mi = mem_info__new(); 1981 1982 if (!mi) 1983 return NULL; 1984 1985 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip); 1986 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, 1987 sample->addr, sample->phys_addr); 1988 mi->data_src.val = sample->data_src; 1989 1990 return mi; 1991 } 1992 1993 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip) 1994 { 1995 char *srcline = NULL; 1996 1997 if (!map || callchain_param.key == CCKEY_FUNCTION) 1998 return srcline; 1999 2000 srcline = srcline__tree_find(&map->dso->srclines, ip); 2001 if (!srcline) { 2002 bool show_sym = false; 2003 bool show_addr = callchain_param.key == CCKEY_ADDRESS; 2004 2005 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip), 2006 sym, show_sym, show_addr, ip); 2007 srcline__tree_insert(&map->dso->srclines, ip, srcline); 2008 } 2009 2010 return srcline; 2011 } 2012 2013 struct iterations { 2014 int nr_loop_iter; 2015 u64 cycles; 2016 }; 2017 2018 static int add_callchain_ip(struct thread *thread, 2019 struct callchain_cursor *cursor, 2020 struct symbol **parent, 2021 struct addr_location *root_al, 2022 u8 *cpumode, 2023 u64 ip, 2024 bool branch, 2025 struct branch_flags *flags, 2026 struct iterations *iter, 2027 u64 branch_from) 2028 { 2029 struct addr_location al; 2030 int nr_loop_iter = 0; 2031 u64 iter_cycles = 0; 2032 const char *srcline = NULL; 2033 2034 al.filtered = 0; 2035 al.sym = NULL; 2036 if (!cpumode) { 2037 thread__find_cpumode_addr_location(thread, ip, &al); 2038 } else { 2039 if (ip >= PERF_CONTEXT_MAX) { 2040 switch (ip) { 2041 case PERF_CONTEXT_HV: 2042 *cpumode = PERF_RECORD_MISC_HYPERVISOR; 2043 break; 2044 case PERF_CONTEXT_KERNEL: 2045 *cpumode = PERF_RECORD_MISC_KERNEL; 2046 break; 2047 case PERF_CONTEXT_USER: 2048 *cpumode = PERF_RECORD_MISC_USER; 2049 break; 2050 default: 2051 pr_debug("invalid callchain context: " 2052 "%"PRId64"\n", (s64) ip); 2053 /* 2054 * It seems the callchain is corrupted. 2055 * Discard all. 2056 */ 2057 callchain_cursor_reset(cursor); 2058 return 1; 2059 } 2060 return 0; 2061 } 2062 thread__find_symbol(thread, *cpumode, ip, &al); 2063 } 2064 2065 if (al.sym != NULL) { 2066 if (perf_hpp_list.parent && !*parent && 2067 symbol__match_regex(al.sym, &parent_regex)) 2068 *parent = al.sym; 2069 else if (have_ignore_callees && root_al && 2070 symbol__match_regex(al.sym, &ignore_callees_regex)) { 2071 /* Treat this symbol as the root, 2072 forgetting its callees. */ 2073 *root_al = al; 2074 callchain_cursor_reset(cursor); 2075 } 2076 } 2077 2078 if (symbol_conf.hide_unresolved && al.sym == NULL) 2079 return 0; 2080 2081 if (iter) { 2082 nr_loop_iter = iter->nr_loop_iter; 2083 iter_cycles = iter->cycles; 2084 } 2085 2086 srcline = callchain_srcline(al.map, al.sym, al.addr); 2087 return callchain_cursor_append(cursor, ip, al.map, al.sym, 2088 branch, flags, nr_loop_iter, 2089 iter_cycles, branch_from, srcline); 2090 } 2091 2092 struct branch_info *sample__resolve_bstack(struct perf_sample *sample, 2093 struct addr_location *al) 2094 { 2095 unsigned int i; 2096 const struct branch_stack *bs = sample->branch_stack; 2097 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info)); 2098 2099 if (!bi) 2100 return NULL; 2101 2102 for (i = 0; i < bs->nr; i++) { 2103 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to); 2104 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from); 2105 bi[i].flags = bs->entries[i].flags; 2106 } 2107 return bi; 2108 } 2109 2110 static void save_iterations(struct iterations *iter, 2111 struct branch_entry *be, int nr) 2112 { 2113 int i; 2114 2115 iter->nr_loop_iter++; 2116 iter->cycles = 0; 2117 2118 for (i = 0; i < nr; i++) 2119 iter->cycles += be[i].flags.cycles; 2120 } 2121 2122 #define CHASHSZ 127 2123 #define CHASHBITS 7 2124 #define NO_ENTRY 0xff 2125 2126 #define PERF_MAX_BRANCH_DEPTH 127 2127 2128 /* Remove loops. */ 2129 static int remove_loops(struct branch_entry *l, int nr, 2130 struct iterations *iter) 2131 { 2132 int i, j, off; 2133 unsigned char chash[CHASHSZ]; 2134 2135 memset(chash, NO_ENTRY, sizeof(chash)); 2136 2137 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255); 2138 2139 for (i = 0; i < nr; i++) { 2140 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ; 2141 2142 /* no collision handling for now */ 2143 if (chash[h] == NO_ENTRY) { 2144 chash[h] = i; 2145 } else if (l[chash[h]].from == l[i].from) { 2146 bool is_loop = true; 2147 /* check if it is a real loop */ 2148 off = 0; 2149 for (j = chash[h]; j < i && i + off < nr; j++, off++) 2150 if (l[j].from != l[i + off].from) { 2151 is_loop = false; 2152 break; 2153 } 2154 if (is_loop) { 2155 j = nr - (i + off); 2156 if (j > 0) { 2157 save_iterations(iter + i + off, 2158 l + i, off); 2159 2160 memmove(iter + i, iter + i + off, 2161 j * sizeof(*iter)); 2162 2163 memmove(l + i, l + i + off, 2164 j * sizeof(*l)); 2165 } 2166 2167 nr -= off; 2168 } 2169 } 2170 } 2171 return nr; 2172 } 2173 2174 /* 2175 * Recolve LBR callstack chain sample 2176 * Return: 2177 * 1 on success get LBR callchain information 2178 * 0 no available LBR callchain information, should try fp 2179 * negative error code on other errors. 2180 */ 2181 static int resolve_lbr_callchain_sample(struct thread *thread, 2182 struct callchain_cursor *cursor, 2183 struct perf_sample *sample, 2184 struct symbol **parent, 2185 struct addr_location *root_al, 2186 int max_stack) 2187 { 2188 struct ip_callchain *chain = sample->callchain; 2189 int chain_nr = min(max_stack, (int)chain->nr), i; 2190 u8 cpumode = PERF_RECORD_MISC_USER; 2191 u64 ip, branch_from = 0; 2192 2193 for (i = 0; i < chain_nr; i++) { 2194 if (chain->ips[i] == PERF_CONTEXT_USER) 2195 break; 2196 } 2197 2198 /* LBR only affects the user callchain */ 2199 if (i != chain_nr) { 2200 struct branch_stack *lbr_stack = sample->branch_stack; 2201 int lbr_nr = lbr_stack->nr, j, k; 2202 bool branch; 2203 struct branch_flags *flags; 2204 /* 2205 * LBR callstack can only get user call chain. 2206 * The mix_chain_nr is kernel call chain 2207 * number plus LBR user call chain number. 2208 * i is kernel call chain number, 2209 * 1 is PERF_CONTEXT_USER, 2210 * lbr_nr + 1 is the user call chain number. 2211 * For details, please refer to the comments 2212 * in callchain__printf 2213 */ 2214 int mix_chain_nr = i + 1 + lbr_nr + 1; 2215 2216 for (j = 0; j < mix_chain_nr; j++) { 2217 int err; 2218 branch = false; 2219 flags = NULL; 2220 2221 if (callchain_param.order == ORDER_CALLEE) { 2222 if (j < i + 1) 2223 ip = chain->ips[j]; 2224 else if (j > i + 1) { 2225 k = j - i - 2; 2226 ip = lbr_stack->entries[k].from; 2227 branch = true; 2228 flags = &lbr_stack->entries[k].flags; 2229 } else { 2230 ip = lbr_stack->entries[0].to; 2231 branch = true; 2232 flags = &lbr_stack->entries[0].flags; 2233 branch_from = 2234 lbr_stack->entries[0].from; 2235 } 2236 } else { 2237 if (j < lbr_nr) { 2238 k = lbr_nr - j - 1; 2239 ip = lbr_stack->entries[k].from; 2240 branch = true; 2241 flags = &lbr_stack->entries[k].flags; 2242 } 2243 else if (j > lbr_nr) 2244 ip = chain->ips[i + 1 - (j - lbr_nr)]; 2245 else { 2246 ip = lbr_stack->entries[0].to; 2247 branch = true; 2248 flags = &lbr_stack->entries[0].flags; 2249 branch_from = 2250 lbr_stack->entries[0].from; 2251 } 2252 } 2253 2254 err = add_callchain_ip(thread, cursor, parent, 2255 root_al, &cpumode, ip, 2256 branch, flags, NULL, 2257 branch_from); 2258 if (err) 2259 return (err < 0) ? err : 0; 2260 } 2261 return 1; 2262 } 2263 2264 return 0; 2265 } 2266 2267 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread, 2268 struct callchain_cursor *cursor, 2269 struct symbol **parent, 2270 struct addr_location *root_al, 2271 u8 *cpumode, int ent) 2272 { 2273 int err = 0; 2274 2275 while (--ent >= 0) { 2276 u64 ip = chain->ips[ent]; 2277 2278 if (ip >= PERF_CONTEXT_MAX) { 2279 err = add_callchain_ip(thread, cursor, parent, 2280 root_al, cpumode, ip, 2281 false, NULL, NULL, 0); 2282 break; 2283 } 2284 } 2285 return err; 2286 } 2287 2288 static int thread__resolve_callchain_sample(struct thread *thread, 2289 struct callchain_cursor *cursor, 2290 struct perf_evsel *evsel, 2291 struct perf_sample *sample, 2292 struct symbol **parent, 2293 struct addr_location *root_al, 2294 int max_stack) 2295 { 2296 struct branch_stack *branch = sample->branch_stack; 2297 struct ip_callchain *chain = sample->callchain; 2298 int chain_nr = 0; 2299 u8 cpumode = PERF_RECORD_MISC_USER; 2300 int i, j, err, nr_entries; 2301 int skip_idx = -1; 2302 int first_call = 0; 2303 2304 if (chain) 2305 chain_nr = chain->nr; 2306 2307 if (perf_evsel__has_branch_callstack(evsel)) { 2308 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent, 2309 root_al, max_stack); 2310 if (err) 2311 return (err < 0) ? err : 0; 2312 } 2313 2314 /* 2315 * Based on DWARF debug information, some architectures skip 2316 * a callchain entry saved by the kernel. 2317 */ 2318 skip_idx = arch_skip_callchain_idx(thread, chain); 2319 2320 /* 2321 * Add branches to call stack for easier browsing. This gives 2322 * more context for a sample than just the callers. 2323 * 2324 * This uses individual histograms of paths compared to the 2325 * aggregated histograms the normal LBR mode uses. 2326 * 2327 * Limitations for now: 2328 * - No extra filters 2329 * - No annotations (should annotate somehow) 2330 */ 2331 2332 if (branch && callchain_param.branch_callstack) { 2333 int nr = min(max_stack, (int)branch->nr); 2334 struct branch_entry be[nr]; 2335 struct iterations iter[nr]; 2336 2337 if (branch->nr > PERF_MAX_BRANCH_DEPTH) { 2338 pr_warning("corrupted branch chain. skipping...\n"); 2339 goto check_calls; 2340 } 2341 2342 for (i = 0; i < nr; i++) { 2343 if (callchain_param.order == ORDER_CALLEE) { 2344 be[i] = branch->entries[i]; 2345 2346 if (chain == NULL) 2347 continue; 2348 2349 /* 2350 * Check for overlap into the callchain. 2351 * The return address is one off compared to 2352 * the branch entry. To adjust for this 2353 * assume the calling instruction is not longer 2354 * than 8 bytes. 2355 */ 2356 if (i == skip_idx || 2357 chain->ips[first_call] >= PERF_CONTEXT_MAX) 2358 first_call++; 2359 else if (be[i].from < chain->ips[first_call] && 2360 be[i].from >= chain->ips[first_call] - 8) 2361 first_call++; 2362 } else 2363 be[i] = branch->entries[branch->nr - i - 1]; 2364 } 2365 2366 memset(iter, 0, sizeof(struct iterations) * nr); 2367 nr = remove_loops(be, nr, iter); 2368 2369 for (i = 0; i < nr; i++) { 2370 err = add_callchain_ip(thread, cursor, parent, 2371 root_al, 2372 NULL, be[i].to, 2373 true, &be[i].flags, 2374 NULL, be[i].from); 2375 2376 if (!err) 2377 err = add_callchain_ip(thread, cursor, parent, root_al, 2378 NULL, be[i].from, 2379 true, &be[i].flags, 2380 &iter[i], 0); 2381 if (err == -EINVAL) 2382 break; 2383 if (err) 2384 return err; 2385 } 2386 2387 if (chain_nr == 0) 2388 return 0; 2389 2390 chain_nr -= nr; 2391 } 2392 2393 check_calls: 2394 if (callchain_param.order != ORDER_CALLEE) { 2395 err = find_prev_cpumode(chain, thread, cursor, parent, root_al, 2396 &cpumode, chain->nr - first_call); 2397 if (err) 2398 return (err < 0) ? err : 0; 2399 } 2400 for (i = first_call, nr_entries = 0; 2401 i < chain_nr && nr_entries < max_stack; i++) { 2402 u64 ip; 2403 2404 if (callchain_param.order == ORDER_CALLEE) 2405 j = i; 2406 else 2407 j = chain->nr - i - 1; 2408 2409 #ifdef HAVE_SKIP_CALLCHAIN_IDX 2410 if (j == skip_idx) 2411 continue; 2412 #endif 2413 ip = chain->ips[j]; 2414 if (ip < PERF_CONTEXT_MAX) 2415 ++nr_entries; 2416 else if (callchain_param.order != ORDER_CALLEE) { 2417 err = find_prev_cpumode(chain, thread, cursor, parent, 2418 root_al, &cpumode, j); 2419 if (err) 2420 return (err < 0) ? err : 0; 2421 continue; 2422 } 2423 2424 err = add_callchain_ip(thread, cursor, parent, 2425 root_al, &cpumode, ip, 2426 false, NULL, NULL, 0); 2427 2428 if (err) 2429 return (err < 0) ? err : 0; 2430 } 2431 2432 return 0; 2433 } 2434 2435 static int append_inlines(struct callchain_cursor *cursor, 2436 struct map *map, struct symbol *sym, u64 ip) 2437 { 2438 struct inline_node *inline_node; 2439 struct inline_list *ilist; 2440 u64 addr; 2441 int ret = 1; 2442 2443 if (!symbol_conf.inline_name || !map || !sym) 2444 return ret; 2445 2446 addr = map__map_ip(map, ip); 2447 addr = map__rip_2objdump(map, addr); 2448 2449 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr); 2450 if (!inline_node) { 2451 inline_node = dso__parse_addr_inlines(map->dso, addr, sym); 2452 if (!inline_node) 2453 return ret; 2454 inlines__tree_insert(&map->dso->inlined_nodes, inline_node); 2455 } 2456 2457 list_for_each_entry(ilist, &inline_node->val, list) { 2458 ret = callchain_cursor_append(cursor, ip, map, 2459 ilist->symbol, false, 2460 NULL, 0, 0, 0, ilist->srcline); 2461 2462 if (ret != 0) 2463 return ret; 2464 } 2465 2466 return ret; 2467 } 2468 2469 static int unwind_entry(struct unwind_entry *entry, void *arg) 2470 { 2471 struct callchain_cursor *cursor = arg; 2472 const char *srcline = NULL; 2473 u64 addr = entry->ip; 2474 2475 if (symbol_conf.hide_unresolved && entry->sym == NULL) 2476 return 0; 2477 2478 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0) 2479 return 0; 2480 2481 /* 2482 * Convert entry->ip from a virtual address to an offset in 2483 * its corresponding binary. 2484 */ 2485 if (entry->map) 2486 addr = map__map_ip(entry->map, entry->ip); 2487 2488 srcline = callchain_srcline(entry->map, entry->sym, addr); 2489 return callchain_cursor_append(cursor, entry->ip, 2490 entry->map, entry->sym, 2491 false, NULL, 0, 0, 0, srcline); 2492 } 2493 2494 static int thread__resolve_callchain_unwind(struct thread *thread, 2495 struct callchain_cursor *cursor, 2496 struct perf_evsel *evsel, 2497 struct perf_sample *sample, 2498 int max_stack) 2499 { 2500 /* Can we do dwarf post unwind? */ 2501 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) && 2502 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER))) 2503 return 0; 2504 2505 /* Bail out if nothing was captured. */ 2506 if ((!sample->user_regs.regs) || 2507 (!sample->user_stack.size)) 2508 return 0; 2509 2510 return unwind__get_entries(unwind_entry, cursor, 2511 thread, sample, max_stack); 2512 } 2513 2514 int thread__resolve_callchain(struct thread *thread, 2515 struct callchain_cursor *cursor, 2516 struct perf_evsel *evsel, 2517 struct perf_sample *sample, 2518 struct symbol **parent, 2519 struct addr_location *root_al, 2520 int max_stack) 2521 { 2522 int ret = 0; 2523 2524 callchain_cursor_reset(cursor); 2525 2526 if (callchain_param.order == ORDER_CALLEE) { 2527 ret = thread__resolve_callchain_sample(thread, cursor, 2528 evsel, sample, 2529 parent, root_al, 2530 max_stack); 2531 if (ret) 2532 return ret; 2533 ret = thread__resolve_callchain_unwind(thread, cursor, 2534 evsel, sample, 2535 max_stack); 2536 } else { 2537 ret = thread__resolve_callchain_unwind(thread, cursor, 2538 evsel, sample, 2539 max_stack); 2540 if (ret) 2541 return ret; 2542 ret = thread__resolve_callchain_sample(thread, cursor, 2543 evsel, sample, 2544 parent, root_al, 2545 max_stack); 2546 } 2547 2548 return ret; 2549 } 2550 2551 int machine__for_each_thread(struct machine *machine, 2552 int (*fn)(struct thread *thread, void *p), 2553 void *priv) 2554 { 2555 struct threads *threads; 2556 struct rb_node *nd; 2557 struct thread *thread; 2558 int rc = 0; 2559 int i; 2560 2561 for (i = 0; i < THREADS__TABLE_SIZE; i++) { 2562 threads = &machine->threads[i]; 2563 for (nd = rb_first_cached(&threads->entries); nd; 2564 nd = rb_next(nd)) { 2565 thread = rb_entry(nd, struct thread, rb_node); 2566 rc = fn(thread, priv); 2567 if (rc != 0) 2568 return rc; 2569 } 2570 2571 list_for_each_entry(thread, &threads->dead, node) { 2572 rc = fn(thread, priv); 2573 if (rc != 0) 2574 return rc; 2575 } 2576 } 2577 return rc; 2578 } 2579 2580 int machines__for_each_thread(struct machines *machines, 2581 int (*fn)(struct thread *thread, void *p), 2582 void *priv) 2583 { 2584 struct rb_node *nd; 2585 int rc = 0; 2586 2587 rc = machine__for_each_thread(&machines->host, fn, priv); 2588 if (rc != 0) 2589 return rc; 2590 2591 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) { 2592 struct machine *machine = rb_entry(nd, struct machine, rb_node); 2593 2594 rc = machine__for_each_thread(machine, fn, priv); 2595 if (rc != 0) 2596 return rc; 2597 } 2598 return rc; 2599 } 2600 2601 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool, 2602 struct target *target, struct thread_map *threads, 2603 perf_event__handler_t process, bool data_mmap, 2604 unsigned int nr_threads_synthesize) 2605 { 2606 if (target__has_task(target)) 2607 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap); 2608 else if (target__has_cpu(target)) 2609 return perf_event__synthesize_threads(tool, process, 2610 machine, data_mmap, 2611 nr_threads_synthesize); 2612 /* command specified */ 2613 return 0; 2614 } 2615 2616 pid_t machine__get_current_tid(struct machine *machine, int cpu) 2617 { 2618 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid) 2619 return -1; 2620 2621 return machine->current_tid[cpu]; 2622 } 2623 2624 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid, 2625 pid_t tid) 2626 { 2627 struct thread *thread; 2628 2629 if (cpu < 0) 2630 return -EINVAL; 2631 2632 if (!machine->current_tid) { 2633 int i; 2634 2635 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t)); 2636 if (!machine->current_tid) 2637 return -ENOMEM; 2638 for (i = 0; i < MAX_NR_CPUS; i++) 2639 machine->current_tid[i] = -1; 2640 } 2641 2642 if (cpu >= MAX_NR_CPUS) { 2643 pr_err("Requested CPU %d too large. ", cpu); 2644 pr_err("Consider raising MAX_NR_CPUS\n"); 2645 return -EINVAL; 2646 } 2647 2648 machine->current_tid[cpu] = tid; 2649 2650 thread = machine__findnew_thread(machine, pid, tid); 2651 if (!thread) 2652 return -ENOMEM; 2653 2654 thread->cpu = cpu; 2655 thread__put(thread); 2656 2657 return 0; 2658 } 2659 2660 /* 2661 * Compares the raw arch string. N.B. see instead perf_env__arch() if a 2662 * normalized arch is needed. 2663 */ 2664 bool machine__is(struct machine *machine, const char *arch) 2665 { 2666 return machine && !strcmp(perf_env__raw_arch(machine->env), arch); 2667 } 2668 2669 int machine__nr_cpus_avail(struct machine *machine) 2670 { 2671 return machine ? perf_env__nr_cpus_avail(machine->env) : 0; 2672 } 2673 2674 int machine__get_kernel_start(struct machine *machine) 2675 { 2676 struct map *map = machine__kernel_map(machine); 2677 int err = 0; 2678 2679 /* 2680 * The only addresses above 2^63 are kernel addresses of a 64-bit 2681 * kernel. Note that addresses are unsigned so that on a 32-bit system 2682 * all addresses including kernel addresses are less than 2^32. In 2683 * that case (32-bit system), if the kernel mapping is unknown, all 2684 * addresses will be assumed to be in user space - see 2685 * machine__kernel_ip(). 2686 */ 2687 machine->kernel_start = 1ULL << 63; 2688 if (map) { 2689 err = map__load(map); 2690 /* 2691 * On x86_64, PTI entry trampolines are less than the 2692 * start of kernel text, but still above 2^63. So leave 2693 * kernel_start = 1ULL << 63 for x86_64. 2694 */ 2695 if (!err && !machine__is(machine, "x86_64")) 2696 machine->kernel_start = map->start; 2697 } 2698 return err; 2699 } 2700 2701 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr) 2702 { 2703 u8 addr_cpumode = cpumode; 2704 bool kernel_ip; 2705 2706 if (!machine->single_address_space) 2707 goto out; 2708 2709 kernel_ip = machine__kernel_ip(machine, addr); 2710 switch (cpumode) { 2711 case PERF_RECORD_MISC_KERNEL: 2712 case PERF_RECORD_MISC_USER: 2713 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL : 2714 PERF_RECORD_MISC_USER; 2715 break; 2716 case PERF_RECORD_MISC_GUEST_KERNEL: 2717 case PERF_RECORD_MISC_GUEST_USER: 2718 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL : 2719 PERF_RECORD_MISC_GUEST_USER; 2720 break; 2721 default: 2722 break; 2723 } 2724 out: 2725 return addr_cpumode; 2726 } 2727 2728 struct dso *machine__findnew_dso(struct machine *machine, const char *filename) 2729 { 2730 return dsos__findnew(&machine->dsos, filename); 2731 } 2732 2733 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) 2734 { 2735 struct machine *machine = vmachine; 2736 struct map *map; 2737 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map); 2738 2739 if (sym == NULL) 2740 return NULL; 2741 2742 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL; 2743 *addrp = map->unmap_ip(map, sym->start); 2744 return sym->name; 2745 } 2746