xref: /openbmc/linux/tools/perf/util/machine.c (revision 02b4e275)
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16 
17 static void dsos__init(struct dsos *dsos)
18 {
19 	INIT_LIST_HEAD(&dsos->head);
20 	dsos->root = RB_ROOT;
21 }
22 
23 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
24 {
25 	map_groups__init(&machine->kmaps, machine);
26 	RB_CLEAR_NODE(&machine->rb_node);
27 	dsos__init(&machine->user_dsos);
28 	dsos__init(&machine->kernel_dsos);
29 
30 	machine->threads = RB_ROOT;
31 	INIT_LIST_HEAD(&machine->dead_threads);
32 	machine->last_match = NULL;
33 
34 	machine->vdso_info = NULL;
35 
36 	machine->pid = pid;
37 
38 	machine->symbol_filter = NULL;
39 	machine->id_hdr_size = 0;
40 	machine->comm_exec = false;
41 	machine->kernel_start = 0;
42 
43 	machine->root_dir = strdup(root_dir);
44 	if (machine->root_dir == NULL)
45 		return -ENOMEM;
46 
47 	if (pid != HOST_KERNEL_ID) {
48 		struct thread *thread = machine__findnew_thread(machine, -1,
49 								pid);
50 		char comm[64];
51 
52 		if (thread == NULL)
53 			return -ENOMEM;
54 
55 		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
56 		thread__set_comm(thread, comm, 0);
57 	}
58 
59 	machine->current_tid = NULL;
60 
61 	return 0;
62 }
63 
64 struct machine *machine__new_host(void)
65 {
66 	struct machine *machine = malloc(sizeof(*machine));
67 
68 	if (machine != NULL) {
69 		machine__init(machine, "", HOST_KERNEL_ID);
70 
71 		if (machine__create_kernel_maps(machine) < 0)
72 			goto out_delete;
73 	}
74 
75 	return machine;
76 out_delete:
77 	free(machine);
78 	return NULL;
79 }
80 
81 static void dsos__delete(struct dsos *dsos)
82 {
83 	struct dso *pos, *n;
84 
85 	list_for_each_entry_safe(pos, n, &dsos->head, node) {
86 		RB_CLEAR_NODE(&pos->rb_node);
87 		list_del(&pos->node);
88 		dso__delete(pos);
89 	}
90 }
91 
92 void machine__delete_threads(struct machine *machine)
93 {
94 	struct rb_node *nd = rb_first(&machine->threads);
95 
96 	while (nd) {
97 		struct thread *t = rb_entry(nd, struct thread, rb_node);
98 
99 		nd = rb_next(nd);
100 		machine__remove_thread(machine, t);
101 	}
102 }
103 
104 void machine__exit(struct machine *machine)
105 {
106 	map_groups__exit(&machine->kmaps);
107 	dsos__delete(&machine->user_dsos);
108 	dsos__delete(&machine->kernel_dsos);
109 	vdso__exit(machine);
110 	zfree(&machine->root_dir);
111 	zfree(&machine->current_tid);
112 }
113 
114 void machine__delete(struct machine *machine)
115 {
116 	machine__exit(machine);
117 	free(machine);
118 }
119 
120 void machines__init(struct machines *machines)
121 {
122 	machine__init(&machines->host, "", HOST_KERNEL_ID);
123 	machines->guests = RB_ROOT;
124 	machines->symbol_filter = NULL;
125 }
126 
127 void machines__exit(struct machines *machines)
128 {
129 	machine__exit(&machines->host);
130 	/* XXX exit guest */
131 }
132 
133 struct machine *machines__add(struct machines *machines, pid_t pid,
134 			      const char *root_dir)
135 {
136 	struct rb_node **p = &machines->guests.rb_node;
137 	struct rb_node *parent = NULL;
138 	struct machine *pos, *machine = malloc(sizeof(*machine));
139 
140 	if (machine == NULL)
141 		return NULL;
142 
143 	if (machine__init(machine, root_dir, pid) != 0) {
144 		free(machine);
145 		return NULL;
146 	}
147 
148 	machine->symbol_filter = machines->symbol_filter;
149 
150 	while (*p != NULL) {
151 		parent = *p;
152 		pos = rb_entry(parent, struct machine, rb_node);
153 		if (pid < pos->pid)
154 			p = &(*p)->rb_left;
155 		else
156 			p = &(*p)->rb_right;
157 	}
158 
159 	rb_link_node(&machine->rb_node, parent, p);
160 	rb_insert_color(&machine->rb_node, &machines->guests);
161 
162 	return machine;
163 }
164 
165 void machines__set_symbol_filter(struct machines *machines,
166 				 symbol_filter_t symbol_filter)
167 {
168 	struct rb_node *nd;
169 
170 	machines->symbol_filter = symbol_filter;
171 	machines->host.symbol_filter = symbol_filter;
172 
173 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
174 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
175 
176 		machine->symbol_filter = symbol_filter;
177 	}
178 }
179 
180 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
181 {
182 	struct rb_node *nd;
183 
184 	machines->host.comm_exec = comm_exec;
185 
186 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
187 		struct machine *machine = rb_entry(nd, struct machine, rb_node);
188 
189 		machine->comm_exec = comm_exec;
190 	}
191 }
192 
193 struct machine *machines__find(struct machines *machines, pid_t pid)
194 {
195 	struct rb_node **p = &machines->guests.rb_node;
196 	struct rb_node *parent = NULL;
197 	struct machine *machine;
198 	struct machine *default_machine = NULL;
199 
200 	if (pid == HOST_KERNEL_ID)
201 		return &machines->host;
202 
203 	while (*p != NULL) {
204 		parent = *p;
205 		machine = rb_entry(parent, struct machine, rb_node);
206 		if (pid < machine->pid)
207 			p = &(*p)->rb_left;
208 		else if (pid > machine->pid)
209 			p = &(*p)->rb_right;
210 		else
211 			return machine;
212 		if (!machine->pid)
213 			default_machine = machine;
214 	}
215 
216 	return default_machine;
217 }
218 
219 struct machine *machines__findnew(struct machines *machines, pid_t pid)
220 {
221 	char path[PATH_MAX];
222 	const char *root_dir = "";
223 	struct machine *machine = machines__find(machines, pid);
224 
225 	if (machine && (machine->pid == pid))
226 		goto out;
227 
228 	if ((pid != HOST_KERNEL_ID) &&
229 	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
230 	    (symbol_conf.guestmount)) {
231 		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
232 		if (access(path, R_OK)) {
233 			static struct strlist *seen;
234 
235 			if (!seen)
236 				seen = strlist__new(true, NULL);
237 
238 			if (!strlist__has_entry(seen, path)) {
239 				pr_err("Can't access file %s\n", path);
240 				strlist__add(seen, path);
241 			}
242 			machine = NULL;
243 			goto out;
244 		}
245 		root_dir = path;
246 	}
247 
248 	machine = machines__add(machines, pid, root_dir);
249 out:
250 	return machine;
251 }
252 
253 void machines__process_guests(struct machines *machines,
254 			      machine__process_t process, void *data)
255 {
256 	struct rb_node *nd;
257 
258 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
259 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
260 		process(pos, data);
261 	}
262 }
263 
264 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
265 {
266 	if (machine__is_host(machine))
267 		snprintf(bf, size, "[%s]", "kernel.kallsyms");
268 	else if (machine__is_default_guest(machine))
269 		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
270 	else {
271 		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
272 			 machine->pid);
273 	}
274 
275 	return bf;
276 }
277 
278 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
279 {
280 	struct rb_node *node;
281 	struct machine *machine;
282 
283 	machines->host.id_hdr_size = id_hdr_size;
284 
285 	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
286 		machine = rb_entry(node, struct machine, rb_node);
287 		machine->id_hdr_size = id_hdr_size;
288 	}
289 
290 	return;
291 }
292 
293 static void machine__update_thread_pid(struct machine *machine,
294 				       struct thread *th, pid_t pid)
295 {
296 	struct thread *leader;
297 
298 	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
299 		return;
300 
301 	th->pid_ = pid;
302 
303 	if (th->pid_ == th->tid)
304 		return;
305 
306 	leader = machine__findnew_thread(machine, th->pid_, th->pid_);
307 	if (!leader)
308 		goto out_err;
309 
310 	if (!leader->mg)
311 		leader->mg = map_groups__new(machine);
312 
313 	if (!leader->mg)
314 		goto out_err;
315 
316 	if (th->mg == leader->mg)
317 		return;
318 
319 	if (th->mg) {
320 		/*
321 		 * Maps are created from MMAP events which provide the pid and
322 		 * tid.  Consequently there never should be any maps on a thread
323 		 * with an unknown pid.  Just print an error if there are.
324 		 */
325 		if (!map_groups__empty(th->mg))
326 			pr_err("Discarding thread maps for %d:%d\n",
327 			       th->pid_, th->tid);
328 		map_groups__delete(th->mg);
329 	}
330 
331 	th->mg = map_groups__get(leader->mg);
332 
333 	return;
334 
335 out_err:
336 	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
337 }
338 
339 static struct thread *__machine__findnew_thread(struct machine *machine,
340 						pid_t pid, pid_t tid,
341 						bool create)
342 {
343 	struct rb_node **p = &machine->threads.rb_node;
344 	struct rb_node *parent = NULL;
345 	struct thread *th;
346 
347 	/*
348 	 * Front-end cache - TID lookups come in blocks,
349 	 * so most of the time we dont have to look up
350 	 * the full rbtree:
351 	 */
352 	th = machine->last_match;
353 	if (th != NULL) {
354 		if (th->tid == tid) {
355 			machine__update_thread_pid(machine, th, pid);
356 			return th;
357 		}
358 
359 		thread__zput(machine->last_match);
360 	}
361 
362 	while (*p != NULL) {
363 		parent = *p;
364 		th = rb_entry(parent, struct thread, rb_node);
365 
366 		if (th->tid == tid) {
367 			machine->last_match = thread__get(th);
368 			machine__update_thread_pid(machine, th, pid);
369 			return th;
370 		}
371 
372 		if (tid < th->tid)
373 			p = &(*p)->rb_left;
374 		else
375 			p = &(*p)->rb_right;
376 	}
377 
378 	if (!create)
379 		return NULL;
380 
381 	th = thread__new(pid, tid);
382 	if (th != NULL) {
383 		rb_link_node(&th->rb_node, parent, p);
384 		rb_insert_color(&th->rb_node, &machine->threads);
385 
386 		/*
387 		 * We have to initialize map_groups separately
388 		 * after rb tree is updated.
389 		 *
390 		 * The reason is that we call machine__findnew_thread
391 		 * within thread__init_map_groups to find the thread
392 		 * leader and that would screwed the rb tree.
393 		 */
394 		if (thread__init_map_groups(th, machine)) {
395 			rb_erase(&th->rb_node, &machine->threads);
396 			thread__delete(th);
397 			return NULL;
398 		}
399 		/*
400 		 * It is now in the rbtree, get a ref
401 		 */
402 		thread__get(th);
403 		machine->last_match = thread__get(th);
404 	}
405 
406 	return th;
407 }
408 
409 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
410 				       pid_t tid)
411 {
412 	return __machine__findnew_thread(machine, pid, tid, true);
413 }
414 
415 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
416 				    pid_t tid)
417 {
418 	return __machine__findnew_thread(machine, pid, tid, false);
419 }
420 
421 struct comm *machine__thread_exec_comm(struct machine *machine,
422 				       struct thread *thread)
423 {
424 	if (machine->comm_exec)
425 		return thread__exec_comm(thread);
426 	else
427 		return thread__comm(thread);
428 }
429 
430 int machine__process_comm_event(struct machine *machine, union perf_event *event,
431 				struct perf_sample *sample)
432 {
433 	struct thread *thread = machine__findnew_thread(machine,
434 							event->comm.pid,
435 							event->comm.tid);
436 	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
437 
438 	if (exec)
439 		machine->comm_exec = true;
440 
441 	if (dump_trace)
442 		perf_event__fprintf_comm(event, stdout);
443 
444 	if (thread == NULL ||
445 	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
446 		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
447 		return -1;
448 	}
449 
450 	return 0;
451 }
452 
453 int machine__process_lost_event(struct machine *machine __maybe_unused,
454 				union perf_event *event, struct perf_sample *sample __maybe_unused)
455 {
456 	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
457 		    event->lost.id, event->lost.lost);
458 	return 0;
459 }
460 
461 static struct dso*
462 machine__module_dso(struct machine *machine, struct kmod_path *m,
463 		    const char *filename)
464 {
465 	struct dso *dso;
466 
467 	dso = dsos__find(&machine->kernel_dsos, m->name, true);
468 	if (!dso) {
469 		dso = dsos__addnew(&machine->kernel_dsos, m->name);
470 		if (dso == NULL)
471 			return NULL;
472 
473 		if (machine__is_host(machine))
474 			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
475 		else
476 			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
477 
478 		/* _KMODULE_COMP should be next to _KMODULE */
479 		if (m->kmod && m->comp)
480 			dso->symtab_type++;
481 
482 		dso__set_short_name(dso, strdup(m->name), true);
483 		dso__set_long_name(dso, strdup(filename), true);
484 	}
485 
486 	return dso;
487 }
488 
489 struct map *machine__new_module(struct machine *machine, u64 start,
490 				const char *filename)
491 {
492 	struct map *map = NULL;
493 	struct dso *dso;
494 	struct kmod_path m;
495 
496 	if (kmod_path__parse_name(&m, filename))
497 		return NULL;
498 
499 	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
500 				       m.name);
501 	if (map)
502 		goto out;
503 
504 	dso = machine__module_dso(machine, &m, filename);
505 	if (dso == NULL)
506 		goto out;
507 
508 	map = map__new2(start, dso, MAP__FUNCTION);
509 	if (map == NULL)
510 		goto out;
511 
512 	map_groups__insert(&machine->kmaps, map);
513 
514 out:
515 	free(m.name);
516 	return map;
517 }
518 
519 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
520 {
521 	struct rb_node *nd;
522 	size_t ret = __dsos__fprintf(&machines->host.kernel_dsos.head, fp) +
523 		     __dsos__fprintf(&machines->host.user_dsos.head, fp);
524 
525 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
526 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
527 		ret += __dsos__fprintf(&pos->kernel_dsos.head, fp);
528 		ret += __dsos__fprintf(&pos->user_dsos.head, fp);
529 	}
530 
531 	return ret;
532 }
533 
534 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
535 				     bool (skip)(struct dso *dso, int parm), int parm)
536 {
537 	return __dsos__fprintf_buildid(&m->kernel_dsos.head, fp, skip, parm) +
538 	       __dsos__fprintf_buildid(&m->user_dsos.head, fp, skip, parm);
539 }
540 
541 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
542 				     bool (skip)(struct dso *dso, int parm), int parm)
543 {
544 	struct rb_node *nd;
545 	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
546 
547 	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
548 		struct machine *pos = rb_entry(nd, struct machine, rb_node);
549 		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
550 	}
551 	return ret;
552 }
553 
554 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
555 {
556 	int i;
557 	size_t printed = 0;
558 	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;
559 
560 	if (kdso->has_build_id) {
561 		char filename[PATH_MAX];
562 		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
563 			printed += fprintf(fp, "[0] %s\n", filename);
564 	}
565 
566 	for (i = 0; i < vmlinux_path__nr_entries; ++i)
567 		printed += fprintf(fp, "[%d] %s\n",
568 				   i + kdso->has_build_id, vmlinux_path[i]);
569 
570 	return printed;
571 }
572 
573 size_t machine__fprintf(struct machine *machine, FILE *fp)
574 {
575 	size_t ret = 0;
576 	struct rb_node *nd;
577 
578 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
579 		struct thread *pos = rb_entry(nd, struct thread, rb_node);
580 
581 		ret += thread__fprintf(pos, fp);
582 	}
583 
584 	return ret;
585 }
586 
587 static struct dso *machine__get_kernel(struct machine *machine)
588 {
589 	const char *vmlinux_name = NULL;
590 	struct dso *kernel;
591 
592 	if (machine__is_host(machine)) {
593 		vmlinux_name = symbol_conf.vmlinux_name;
594 		if (!vmlinux_name)
595 			vmlinux_name = "[kernel.kallsyms]";
596 
597 		kernel = dso__kernel_findnew(machine, vmlinux_name,
598 					     "[kernel]",
599 					     DSO_TYPE_KERNEL);
600 	} else {
601 		char bf[PATH_MAX];
602 
603 		if (machine__is_default_guest(machine))
604 			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
605 		if (!vmlinux_name)
606 			vmlinux_name = machine__mmap_name(machine, bf,
607 							  sizeof(bf));
608 
609 		kernel = dso__kernel_findnew(machine, vmlinux_name,
610 					     "[guest.kernel]",
611 					     DSO_TYPE_GUEST_KERNEL);
612 	}
613 
614 	if (kernel != NULL && (!kernel->has_build_id))
615 		dso__read_running_kernel_build_id(kernel, machine);
616 
617 	return kernel;
618 }
619 
620 struct process_args {
621 	u64 start;
622 };
623 
624 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
625 					   size_t bufsz)
626 {
627 	if (machine__is_default_guest(machine))
628 		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
629 	else
630 		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
631 }
632 
633 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
634 
635 /* Figure out the start address of kernel map from /proc/kallsyms.
636  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
637  * symbol_name if it's not that important.
638  */
639 static u64 machine__get_running_kernel_start(struct machine *machine,
640 					     const char **symbol_name)
641 {
642 	char filename[PATH_MAX];
643 	int i;
644 	const char *name;
645 	u64 addr = 0;
646 
647 	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
648 
649 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
650 		return 0;
651 
652 	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
653 		addr = kallsyms__get_function_start(filename, name);
654 		if (addr)
655 			break;
656 	}
657 
658 	if (symbol_name)
659 		*symbol_name = name;
660 
661 	return addr;
662 }
663 
664 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
665 {
666 	enum map_type type;
667 	u64 start = machine__get_running_kernel_start(machine, NULL);
668 
669 	for (type = 0; type < MAP__NR_TYPES; ++type) {
670 		struct kmap *kmap;
671 
672 		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
673 		if (machine->vmlinux_maps[type] == NULL)
674 			return -1;
675 
676 		machine->vmlinux_maps[type]->map_ip =
677 			machine->vmlinux_maps[type]->unmap_ip =
678 				identity__map_ip;
679 		kmap = map__kmap(machine->vmlinux_maps[type]);
680 		if (!kmap)
681 			return -1;
682 
683 		kmap->kmaps = &machine->kmaps;
684 		map_groups__insert(&machine->kmaps,
685 				   machine->vmlinux_maps[type]);
686 	}
687 
688 	return 0;
689 }
690 
691 void machine__destroy_kernel_maps(struct machine *machine)
692 {
693 	enum map_type type;
694 
695 	for (type = 0; type < MAP__NR_TYPES; ++type) {
696 		struct kmap *kmap;
697 
698 		if (machine->vmlinux_maps[type] == NULL)
699 			continue;
700 
701 		kmap = map__kmap(machine->vmlinux_maps[type]);
702 		map_groups__remove(&machine->kmaps,
703 				   machine->vmlinux_maps[type]);
704 		if (kmap && kmap->ref_reloc_sym) {
705 			/*
706 			 * ref_reloc_sym is shared among all maps, so free just
707 			 * on one of them.
708 			 */
709 			if (type == MAP__FUNCTION) {
710 				zfree((char **)&kmap->ref_reloc_sym->name);
711 				zfree(&kmap->ref_reloc_sym);
712 			} else
713 				kmap->ref_reloc_sym = NULL;
714 		}
715 
716 		map__delete(machine->vmlinux_maps[type]);
717 		machine->vmlinux_maps[type] = NULL;
718 	}
719 }
720 
721 int machines__create_guest_kernel_maps(struct machines *machines)
722 {
723 	int ret = 0;
724 	struct dirent **namelist = NULL;
725 	int i, items = 0;
726 	char path[PATH_MAX];
727 	pid_t pid;
728 	char *endp;
729 
730 	if (symbol_conf.default_guest_vmlinux_name ||
731 	    symbol_conf.default_guest_modules ||
732 	    symbol_conf.default_guest_kallsyms) {
733 		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
734 	}
735 
736 	if (symbol_conf.guestmount) {
737 		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
738 		if (items <= 0)
739 			return -ENOENT;
740 		for (i = 0; i < items; i++) {
741 			if (!isdigit(namelist[i]->d_name[0])) {
742 				/* Filter out . and .. */
743 				continue;
744 			}
745 			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
746 			if ((*endp != '\0') ||
747 			    (endp == namelist[i]->d_name) ||
748 			    (errno == ERANGE)) {
749 				pr_debug("invalid directory (%s). Skipping.\n",
750 					 namelist[i]->d_name);
751 				continue;
752 			}
753 			sprintf(path, "%s/%s/proc/kallsyms",
754 				symbol_conf.guestmount,
755 				namelist[i]->d_name);
756 			ret = access(path, R_OK);
757 			if (ret) {
758 				pr_debug("Can't access file %s\n", path);
759 				goto failure;
760 			}
761 			machines__create_kernel_maps(machines, pid);
762 		}
763 failure:
764 		free(namelist);
765 	}
766 
767 	return ret;
768 }
769 
770 void machines__destroy_kernel_maps(struct machines *machines)
771 {
772 	struct rb_node *next = rb_first(&machines->guests);
773 
774 	machine__destroy_kernel_maps(&machines->host);
775 
776 	while (next) {
777 		struct machine *pos = rb_entry(next, struct machine, rb_node);
778 
779 		next = rb_next(&pos->rb_node);
780 		rb_erase(&pos->rb_node, &machines->guests);
781 		machine__delete(pos);
782 	}
783 }
784 
785 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
786 {
787 	struct machine *machine = machines__findnew(machines, pid);
788 
789 	if (machine == NULL)
790 		return -1;
791 
792 	return machine__create_kernel_maps(machine);
793 }
794 
795 int machine__load_kallsyms(struct machine *machine, const char *filename,
796 			   enum map_type type, symbol_filter_t filter)
797 {
798 	struct map *map = machine->vmlinux_maps[type];
799 	int ret = dso__load_kallsyms(map->dso, filename, map, filter);
800 
801 	if (ret > 0) {
802 		dso__set_loaded(map->dso, type);
803 		/*
804 		 * Since /proc/kallsyms will have multiple sessions for the
805 		 * kernel, with modules between them, fixup the end of all
806 		 * sections.
807 		 */
808 		__map_groups__fixup_end(&machine->kmaps, type);
809 	}
810 
811 	return ret;
812 }
813 
814 int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
815 			       symbol_filter_t filter)
816 {
817 	struct map *map = machine->vmlinux_maps[type];
818 	int ret = dso__load_vmlinux_path(map->dso, map, filter);
819 
820 	if (ret > 0)
821 		dso__set_loaded(map->dso, type);
822 
823 	return ret;
824 }
825 
826 static void map_groups__fixup_end(struct map_groups *mg)
827 {
828 	int i;
829 	for (i = 0; i < MAP__NR_TYPES; ++i)
830 		__map_groups__fixup_end(mg, i);
831 }
832 
833 static char *get_kernel_version(const char *root_dir)
834 {
835 	char version[PATH_MAX];
836 	FILE *file;
837 	char *name, *tmp;
838 	const char *prefix = "Linux version ";
839 
840 	sprintf(version, "%s/proc/version", root_dir);
841 	file = fopen(version, "r");
842 	if (!file)
843 		return NULL;
844 
845 	version[0] = '\0';
846 	tmp = fgets(version, sizeof(version), file);
847 	fclose(file);
848 
849 	name = strstr(version, prefix);
850 	if (!name)
851 		return NULL;
852 	name += strlen(prefix);
853 	tmp = strchr(name, ' ');
854 	if (tmp)
855 		*tmp = '\0';
856 
857 	return strdup(name);
858 }
859 
860 static bool is_kmod_dso(struct dso *dso)
861 {
862 	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
863 	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
864 }
865 
866 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
867 				       struct kmod_path *m)
868 {
869 	struct map *map;
870 	char *long_name;
871 
872 	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
873 	if (map == NULL)
874 		return 0;
875 
876 	long_name = strdup(path);
877 	if (long_name == NULL)
878 		return -ENOMEM;
879 
880 	dso__set_long_name(map->dso, long_name, true);
881 	dso__kernel_module_get_build_id(map->dso, "");
882 
883 	/*
884 	 * Full name could reveal us kmod compression, so
885 	 * we need to update the symtab_type if needed.
886 	 */
887 	if (m->comp && is_kmod_dso(map->dso))
888 		map->dso->symtab_type++;
889 
890 	return 0;
891 }
892 
893 static int map_groups__set_modules_path_dir(struct map_groups *mg,
894 				const char *dir_name, int depth)
895 {
896 	struct dirent *dent;
897 	DIR *dir = opendir(dir_name);
898 	int ret = 0;
899 
900 	if (!dir) {
901 		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
902 		return -1;
903 	}
904 
905 	while ((dent = readdir(dir)) != NULL) {
906 		char path[PATH_MAX];
907 		struct stat st;
908 
909 		/*sshfs might return bad dent->d_type, so we have to stat*/
910 		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
911 		if (stat(path, &st))
912 			continue;
913 
914 		if (S_ISDIR(st.st_mode)) {
915 			if (!strcmp(dent->d_name, ".") ||
916 			    !strcmp(dent->d_name, ".."))
917 				continue;
918 
919 			/* Do not follow top-level source and build symlinks */
920 			if (depth == 0) {
921 				if (!strcmp(dent->d_name, "source") ||
922 				    !strcmp(dent->d_name, "build"))
923 					continue;
924 			}
925 
926 			ret = map_groups__set_modules_path_dir(mg, path,
927 							       depth + 1);
928 			if (ret < 0)
929 				goto out;
930 		} else {
931 			struct kmod_path m;
932 
933 			ret = kmod_path__parse_name(&m, dent->d_name);
934 			if (ret)
935 				goto out;
936 
937 			if (m.kmod)
938 				ret = map_groups__set_module_path(mg, path, &m);
939 
940 			free(m.name);
941 
942 			if (ret)
943 				goto out;
944 		}
945 	}
946 
947 out:
948 	closedir(dir);
949 	return ret;
950 }
951 
952 static int machine__set_modules_path(struct machine *machine)
953 {
954 	char *version;
955 	char modules_path[PATH_MAX];
956 
957 	version = get_kernel_version(machine->root_dir);
958 	if (!version)
959 		return -1;
960 
961 	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
962 		 machine->root_dir, version);
963 	free(version);
964 
965 	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
966 }
967 
968 static int machine__create_module(void *arg, const char *name, u64 start)
969 {
970 	struct machine *machine = arg;
971 	struct map *map;
972 
973 	map = machine__new_module(machine, start, name);
974 	if (map == NULL)
975 		return -1;
976 
977 	dso__kernel_module_get_build_id(map->dso, machine->root_dir);
978 
979 	return 0;
980 }
981 
982 static int machine__create_modules(struct machine *machine)
983 {
984 	const char *modules;
985 	char path[PATH_MAX];
986 
987 	if (machine__is_default_guest(machine)) {
988 		modules = symbol_conf.default_guest_modules;
989 	} else {
990 		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
991 		modules = path;
992 	}
993 
994 	if (symbol__restricted_filename(modules, "/proc/modules"))
995 		return -1;
996 
997 	if (modules__parse(modules, machine, machine__create_module))
998 		return -1;
999 
1000 	if (!machine__set_modules_path(machine))
1001 		return 0;
1002 
1003 	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1004 
1005 	return 0;
1006 }
1007 
1008 int machine__create_kernel_maps(struct machine *machine)
1009 {
1010 	struct dso *kernel = machine__get_kernel(machine);
1011 	const char *name;
1012 	u64 addr = machine__get_running_kernel_start(machine, &name);
1013 	if (!addr)
1014 		return -1;
1015 
1016 	if (kernel == NULL ||
1017 	    __machine__create_kernel_maps(machine, kernel) < 0)
1018 		return -1;
1019 
1020 	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1021 		if (machine__is_host(machine))
1022 			pr_debug("Problems creating module maps, "
1023 				 "continuing anyway...\n");
1024 		else
1025 			pr_debug("Problems creating module maps for guest %d, "
1026 				 "continuing anyway...\n", machine->pid);
1027 	}
1028 
1029 	/*
1030 	 * Now that we have all the maps created, just set the ->end of them:
1031 	 */
1032 	map_groups__fixup_end(&machine->kmaps);
1033 
1034 	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
1035 					     addr)) {
1036 		machine__destroy_kernel_maps(machine);
1037 		return -1;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static void machine__set_kernel_mmap_len(struct machine *machine,
1044 					 union perf_event *event)
1045 {
1046 	int i;
1047 
1048 	for (i = 0; i < MAP__NR_TYPES; i++) {
1049 		machine->vmlinux_maps[i]->start = event->mmap.start;
1050 		machine->vmlinux_maps[i]->end   = (event->mmap.start +
1051 						   event->mmap.len);
1052 		/*
1053 		 * Be a bit paranoid here, some perf.data file came with
1054 		 * a zero sized synthesized MMAP event for the kernel.
1055 		 */
1056 		if (machine->vmlinux_maps[i]->end == 0)
1057 			machine->vmlinux_maps[i]->end = ~0ULL;
1058 	}
1059 }
1060 
1061 static bool machine__uses_kcore(struct machine *machine)
1062 {
1063 	struct dso *dso;
1064 
1065 	list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1066 		if (dso__is_kcore(dso))
1067 			return true;
1068 	}
1069 
1070 	return false;
1071 }
1072 
1073 static int machine__process_kernel_mmap_event(struct machine *machine,
1074 					      union perf_event *event)
1075 {
1076 	struct map *map;
1077 	char kmmap_prefix[PATH_MAX];
1078 	enum dso_kernel_type kernel_type;
1079 	bool is_kernel_mmap;
1080 
1081 	/* If we have maps from kcore then we do not need or want any others */
1082 	if (machine__uses_kcore(machine))
1083 		return 0;
1084 
1085 	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1086 	if (machine__is_host(machine))
1087 		kernel_type = DSO_TYPE_KERNEL;
1088 	else
1089 		kernel_type = DSO_TYPE_GUEST_KERNEL;
1090 
1091 	is_kernel_mmap = memcmp(event->mmap.filename,
1092 				kmmap_prefix,
1093 				strlen(kmmap_prefix) - 1) == 0;
1094 	if (event->mmap.filename[0] == '/' ||
1095 	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1096 		map = machine__new_module(machine, event->mmap.start,
1097 					  event->mmap.filename);
1098 		if (map == NULL)
1099 			goto out_problem;
1100 
1101 		map->end = map->start + event->mmap.len;
1102 	} else if (is_kernel_mmap) {
1103 		const char *symbol_name = (event->mmap.filename +
1104 				strlen(kmmap_prefix));
1105 		/*
1106 		 * Should be there already, from the build-id table in
1107 		 * the header.
1108 		 */
1109 		struct dso *kernel = NULL;
1110 		struct dso *dso;
1111 
1112 		list_for_each_entry(dso, &machine->kernel_dsos.head, node) {
1113 			if (is_kernel_module(dso->long_name))
1114 				continue;
1115 
1116 			kernel = dso;
1117 			break;
1118 		}
1119 
1120 		if (kernel == NULL)
1121 			kernel = __dsos__findnew(&machine->kernel_dsos,
1122 						 kmmap_prefix);
1123 		if (kernel == NULL)
1124 			goto out_problem;
1125 
1126 		kernel->kernel = kernel_type;
1127 		if (__machine__create_kernel_maps(machine, kernel) < 0)
1128 			goto out_problem;
1129 
1130 		if (strstr(kernel->long_name, "vmlinux"))
1131 			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1132 
1133 		machine__set_kernel_mmap_len(machine, event);
1134 
1135 		/*
1136 		 * Avoid using a zero address (kptr_restrict) for the ref reloc
1137 		 * symbol. Effectively having zero here means that at record
1138 		 * time /proc/sys/kernel/kptr_restrict was non zero.
1139 		 */
1140 		if (event->mmap.pgoff != 0) {
1141 			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1142 							 symbol_name,
1143 							 event->mmap.pgoff);
1144 		}
1145 
1146 		if (machine__is_default_guest(machine)) {
1147 			/*
1148 			 * preload dso of guest kernel and modules
1149 			 */
1150 			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
1151 				  NULL);
1152 		}
1153 	}
1154 	return 0;
1155 out_problem:
1156 	return -1;
1157 }
1158 
1159 int machine__process_mmap2_event(struct machine *machine,
1160 				 union perf_event *event,
1161 				 struct perf_sample *sample __maybe_unused)
1162 {
1163 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1164 	struct thread *thread;
1165 	struct map *map;
1166 	enum map_type type;
1167 	int ret = 0;
1168 
1169 	if (dump_trace)
1170 		perf_event__fprintf_mmap2(event, stdout);
1171 
1172 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1173 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1174 		ret = machine__process_kernel_mmap_event(machine, event);
1175 		if (ret < 0)
1176 			goto out_problem;
1177 		return 0;
1178 	}
1179 
1180 	thread = machine__findnew_thread(machine, event->mmap2.pid,
1181 					event->mmap2.tid);
1182 	if (thread == NULL)
1183 		goto out_problem;
1184 
1185 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1186 		type = MAP__VARIABLE;
1187 	else
1188 		type = MAP__FUNCTION;
1189 
1190 	map = map__new(machine, event->mmap2.start,
1191 			event->mmap2.len, event->mmap2.pgoff,
1192 			event->mmap2.pid, event->mmap2.maj,
1193 			event->mmap2.min, event->mmap2.ino,
1194 			event->mmap2.ino_generation,
1195 			event->mmap2.prot,
1196 			event->mmap2.flags,
1197 			event->mmap2.filename, type, thread);
1198 
1199 	if (map == NULL)
1200 		goto out_problem;
1201 
1202 	thread__insert_map(thread, map);
1203 	return 0;
1204 
1205 out_problem:
1206 	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1207 	return 0;
1208 }
1209 
1210 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1211 				struct perf_sample *sample __maybe_unused)
1212 {
1213 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1214 	struct thread *thread;
1215 	struct map *map;
1216 	enum map_type type;
1217 	int ret = 0;
1218 
1219 	if (dump_trace)
1220 		perf_event__fprintf_mmap(event, stdout);
1221 
1222 	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1223 	    cpumode == PERF_RECORD_MISC_KERNEL) {
1224 		ret = machine__process_kernel_mmap_event(machine, event);
1225 		if (ret < 0)
1226 			goto out_problem;
1227 		return 0;
1228 	}
1229 
1230 	thread = machine__findnew_thread(machine, event->mmap.pid,
1231 					 event->mmap.tid);
1232 	if (thread == NULL)
1233 		goto out_problem;
1234 
1235 	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1236 		type = MAP__VARIABLE;
1237 	else
1238 		type = MAP__FUNCTION;
1239 
1240 	map = map__new(machine, event->mmap.start,
1241 			event->mmap.len, event->mmap.pgoff,
1242 			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1243 			event->mmap.filename,
1244 			type, thread);
1245 
1246 	if (map == NULL)
1247 		goto out_problem;
1248 
1249 	thread__insert_map(thread, map);
1250 	return 0;
1251 
1252 out_problem:
1253 	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1254 	return 0;
1255 }
1256 
1257 void machine__remove_thread(struct machine *machine, struct thread *th)
1258 {
1259 	if (machine->last_match == th)
1260 		thread__zput(machine->last_match);
1261 
1262 	rb_erase(&th->rb_node, &machine->threads);
1263 	/*
1264 	 * Move it first to the dead_threads list, then drop the reference,
1265 	 * if this is the last reference, then the thread__delete destructor
1266 	 * will be called and we will remove it from the dead_threads list.
1267 	 */
1268 	list_add_tail(&th->node, &machine->dead_threads);
1269 	thread__put(th);
1270 }
1271 
1272 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1273 				struct perf_sample *sample)
1274 {
1275 	struct thread *thread = machine__find_thread(machine,
1276 						     event->fork.pid,
1277 						     event->fork.tid);
1278 	struct thread *parent = machine__findnew_thread(machine,
1279 							event->fork.ppid,
1280 							event->fork.ptid);
1281 
1282 	/* if a thread currently exists for the thread id remove it */
1283 	if (thread != NULL)
1284 		machine__remove_thread(machine, thread);
1285 
1286 	thread = machine__findnew_thread(machine, event->fork.pid,
1287 					 event->fork.tid);
1288 	if (dump_trace)
1289 		perf_event__fprintf_task(event, stdout);
1290 
1291 	if (thread == NULL || parent == NULL ||
1292 	    thread__fork(thread, parent, sample->time) < 0) {
1293 		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1294 		return -1;
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1301 				struct perf_sample *sample __maybe_unused)
1302 {
1303 	struct thread *thread = machine__find_thread(machine,
1304 						     event->fork.pid,
1305 						     event->fork.tid);
1306 
1307 	if (dump_trace)
1308 		perf_event__fprintf_task(event, stdout);
1309 
1310 	if (thread != NULL)
1311 		thread__exited(thread);
1312 
1313 	return 0;
1314 }
1315 
1316 int machine__process_event(struct machine *machine, union perf_event *event,
1317 			   struct perf_sample *sample)
1318 {
1319 	int ret;
1320 
1321 	switch (event->header.type) {
1322 	case PERF_RECORD_COMM:
1323 		ret = machine__process_comm_event(machine, event, sample); break;
1324 	case PERF_RECORD_MMAP:
1325 		ret = machine__process_mmap_event(machine, event, sample); break;
1326 	case PERF_RECORD_MMAP2:
1327 		ret = machine__process_mmap2_event(machine, event, sample); break;
1328 	case PERF_RECORD_FORK:
1329 		ret = machine__process_fork_event(machine, event, sample); break;
1330 	case PERF_RECORD_EXIT:
1331 		ret = machine__process_exit_event(machine, event, sample); break;
1332 	case PERF_RECORD_LOST:
1333 		ret = machine__process_lost_event(machine, event, sample); break;
1334 	default:
1335 		ret = -1;
1336 		break;
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1343 {
1344 	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1345 		return 1;
1346 	return 0;
1347 }
1348 
1349 static void ip__resolve_ams(struct thread *thread,
1350 			    struct addr_map_symbol *ams,
1351 			    u64 ip)
1352 {
1353 	struct addr_location al;
1354 
1355 	memset(&al, 0, sizeof(al));
1356 	/*
1357 	 * We cannot use the header.misc hint to determine whether a
1358 	 * branch stack address is user, kernel, guest, hypervisor.
1359 	 * Branches may straddle the kernel/user/hypervisor boundaries.
1360 	 * Thus, we have to try consecutively until we find a match
1361 	 * or else, the symbol is unknown
1362 	 */
1363 	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1364 
1365 	ams->addr = ip;
1366 	ams->al_addr = al.addr;
1367 	ams->sym = al.sym;
1368 	ams->map = al.map;
1369 }
1370 
1371 static void ip__resolve_data(struct thread *thread,
1372 			     u8 m, struct addr_map_symbol *ams, u64 addr)
1373 {
1374 	struct addr_location al;
1375 
1376 	memset(&al, 0, sizeof(al));
1377 
1378 	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1379 	if (al.map == NULL) {
1380 		/*
1381 		 * some shared data regions have execute bit set which puts
1382 		 * their mapping in the MAP__FUNCTION type array.
1383 		 * Check there as a fallback option before dropping the sample.
1384 		 */
1385 		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1386 	}
1387 
1388 	ams->addr = addr;
1389 	ams->al_addr = al.addr;
1390 	ams->sym = al.sym;
1391 	ams->map = al.map;
1392 }
1393 
1394 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1395 				     struct addr_location *al)
1396 {
1397 	struct mem_info *mi = zalloc(sizeof(*mi));
1398 
1399 	if (!mi)
1400 		return NULL;
1401 
1402 	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1403 	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1404 	mi->data_src.val = sample->data_src;
1405 
1406 	return mi;
1407 }
1408 
1409 static int add_callchain_ip(struct thread *thread,
1410 			    struct symbol **parent,
1411 			    struct addr_location *root_al,
1412 			    u8 *cpumode,
1413 			    u64 ip)
1414 {
1415 	struct addr_location al;
1416 
1417 	al.filtered = 0;
1418 	al.sym = NULL;
1419 	if (!cpumode) {
1420 		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1421 						   ip, &al);
1422 	} else {
1423 		if (ip >= PERF_CONTEXT_MAX) {
1424 			switch (ip) {
1425 			case PERF_CONTEXT_HV:
1426 				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1427 				break;
1428 			case PERF_CONTEXT_KERNEL:
1429 				*cpumode = PERF_RECORD_MISC_KERNEL;
1430 				break;
1431 			case PERF_CONTEXT_USER:
1432 				*cpumode = PERF_RECORD_MISC_USER;
1433 				break;
1434 			default:
1435 				pr_debug("invalid callchain context: "
1436 					 "%"PRId64"\n", (s64) ip);
1437 				/*
1438 				 * It seems the callchain is corrupted.
1439 				 * Discard all.
1440 				 */
1441 				callchain_cursor_reset(&callchain_cursor);
1442 				return 1;
1443 			}
1444 			return 0;
1445 		}
1446 		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1447 					   ip, &al);
1448 	}
1449 
1450 	if (al.sym != NULL) {
1451 		if (sort__has_parent && !*parent &&
1452 		    symbol__match_regex(al.sym, &parent_regex))
1453 			*parent = al.sym;
1454 		else if (have_ignore_callees && root_al &&
1455 		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
1456 			/* Treat this symbol as the root,
1457 			   forgetting its callees. */
1458 			*root_al = al;
1459 			callchain_cursor_reset(&callchain_cursor);
1460 		}
1461 	}
1462 
1463 	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1464 }
1465 
1466 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1467 					   struct addr_location *al)
1468 {
1469 	unsigned int i;
1470 	const struct branch_stack *bs = sample->branch_stack;
1471 	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1472 
1473 	if (!bi)
1474 		return NULL;
1475 
1476 	for (i = 0; i < bs->nr; i++) {
1477 		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1478 		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1479 		bi[i].flags = bs->entries[i].flags;
1480 	}
1481 	return bi;
1482 }
1483 
1484 #define CHASHSZ 127
1485 #define CHASHBITS 7
1486 #define NO_ENTRY 0xff
1487 
1488 #define PERF_MAX_BRANCH_DEPTH 127
1489 
1490 /* Remove loops. */
1491 static int remove_loops(struct branch_entry *l, int nr)
1492 {
1493 	int i, j, off;
1494 	unsigned char chash[CHASHSZ];
1495 
1496 	memset(chash, NO_ENTRY, sizeof(chash));
1497 
1498 	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1499 
1500 	for (i = 0; i < nr; i++) {
1501 		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1502 
1503 		/* no collision handling for now */
1504 		if (chash[h] == NO_ENTRY) {
1505 			chash[h] = i;
1506 		} else if (l[chash[h]].from == l[i].from) {
1507 			bool is_loop = true;
1508 			/* check if it is a real loop */
1509 			off = 0;
1510 			for (j = chash[h]; j < i && i + off < nr; j++, off++)
1511 				if (l[j].from != l[i + off].from) {
1512 					is_loop = false;
1513 					break;
1514 				}
1515 			if (is_loop) {
1516 				memmove(l + i, l + i + off,
1517 					(nr - (i + off)) * sizeof(*l));
1518 				nr -= off;
1519 			}
1520 		}
1521 	}
1522 	return nr;
1523 }
1524 
1525 /*
1526  * Recolve LBR callstack chain sample
1527  * Return:
1528  * 1 on success get LBR callchain information
1529  * 0 no available LBR callchain information, should try fp
1530  * negative error code on other errors.
1531  */
1532 static int resolve_lbr_callchain_sample(struct thread *thread,
1533 					struct perf_sample *sample,
1534 					struct symbol **parent,
1535 					struct addr_location *root_al,
1536 					int max_stack)
1537 {
1538 	struct ip_callchain *chain = sample->callchain;
1539 	int chain_nr = min(max_stack, (int)chain->nr);
1540 	u8 cpumode = PERF_RECORD_MISC_USER;
1541 	int i, j, err;
1542 	u64 ip;
1543 
1544 	for (i = 0; i < chain_nr; i++) {
1545 		if (chain->ips[i] == PERF_CONTEXT_USER)
1546 			break;
1547 	}
1548 
1549 	/* LBR only affects the user callchain */
1550 	if (i != chain_nr) {
1551 		struct branch_stack *lbr_stack = sample->branch_stack;
1552 		int lbr_nr = lbr_stack->nr;
1553 		/*
1554 		 * LBR callstack can only get user call chain.
1555 		 * The mix_chain_nr is kernel call chain
1556 		 * number plus LBR user call chain number.
1557 		 * i is kernel call chain number,
1558 		 * 1 is PERF_CONTEXT_USER,
1559 		 * lbr_nr + 1 is the user call chain number.
1560 		 * For details, please refer to the comments
1561 		 * in callchain__printf
1562 		 */
1563 		int mix_chain_nr = i + 1 + lbr_nr + 1;
1564 
1565 		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
1566 			pr_warning("corrupted callchain. skipping...\n");
1567 			return 0;
1568 		}
1569 
1570 		for (j = 0; j < mix_chain_nr; j++) {
1571 			if (callchain_param.order == ORDER_CALLEE) {
1572 				if (j < i + 1)
1573 					ip = chain->ips[j];
1574 				else if (j > i + 1)
1575 					ip = lbr_stack->entries[j - i - 2].from;
1576 				else
1577 					ip = lbr_stack->entries[0].to;
1578 			} else {
1579 				if (j < lbr_nr)
1580 					ip = lbr_stack->entries[lbr_nr - j - 1].from;
1581 				else if (j > lbr_nr)
1582 					ip = chain->ips[i + 1 - (j - lbr_nr)];
1583 				else
1584 					ip = lbr_stack->entries[0].to;
1585 			}
1586 
1587 			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1588 			if (err)
1589 				return (err < 0) ? err : 0;
1590 		}
1591 		return 1;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static int thread__resolve_callchain_sample(struct thread *thread,
1598 					    struct perf_evsel *evsel,
1599 					    struct perf_sample *sample,
1600 					    struct symbol **parent,
1601 					    struct addr_location *root_al,
1602 					    int max_stack)
1603 {
1604 	struct branch_stack *branch = sample->branch_stack;
1605 	struct ip_callchain *chain = sample->callchain;
1606 	int chain_nr = min(max_stack, (int)chain->nr);
1607 	u8 cpumode = PERF_RECORD_MISC_USER;
1608 	int i, j, err;
1609 	int skip_idx = -1;
1610 	int first_call = 0;
1611 
1612 	callchain_cursor_reset(&callchain_cursor);
1613 
1614 	if (has_branch_callstack(evsel)) {
1615 		err = resolve_lbr_callchain_sample(thread, sample, parent,
1616 						   root_al, max_stack);
1617 		if (err)
1618 			return (err < 0) ? err : 0;
1619 	}
1620 
1621 	/*
1622 	 * Based on DWARF debug information, some architectures skip
1623 	 * a callchain entry saved by the kernel.
1624 	 */
1625 	if (chain->nr < PERF_MAX_STACK_DEPTH)
1626 		skip_idx = arch_skip_callchain_idx(thread, chain);
1627 
1628 	/*
1629 	 * Add branches to call stack for easier browsing. This gives
1630 	 * more context for a sample than just the callers.
1631 	 *
1632 	 * This uses individual histograms of paths compared to the
1633 	 * aggregated histograms the normal LBR mode uses.
1634 	 *
1635 	 * Limitations for now:
1636 	 * - No extra filters
1637 	 * - No annotations (should annotate somehow)
1638 	 */
1639 
1640 	if (branch && callchain_param.branch_callstack) {
1641 		int nr = min(max_stack, (int)branch->nr);
1642 		struct branch_entry be[nr];
1643 
1644 		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1645 			pr_warning("corrupted branch chain. skipping...\n");
1646 			goto check_calls;
1647 		}
1648 
1649 		for (i = 0; i < nr; i++) {
1650 			if (callchain_param.order == ORDER_CALLEE) {
1651 				be[i] = branch->entries[i];
1652 				/*
1653 				 * Check for overlap into the callchain.
1654 				 * The return address is one off compared to
1655 				 * the branch entry. To adjust for this
1656 				 * assume the calling instruction is not longer
1657 				 * than 8 bytes.
1658 				 */
1659 				if (i == skip_idx ||
1660 				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
1661 					first_call++;
1662 				else if (be[i].from < chain->ips[first_call] &&
1663 				    be[i].from >= chain->ips[first_call] - 8)
1664 					first_call++;
1665 			} else
1666 				be[i] = branch->entries[branch->nr - i - 1];
1667 		}
1668 
1669 		nr = remove_loops(be, nr);
1670 
1671 		for (i = 0; i < nr; i++) {
1672 			err = add_callchain_ip(thread, parent, root_al,
1673 					       NULL, be[i].to);
1674 			if (!err)
1675 				err = add_callchain_ip(thread, parent, root_al,
1676 						       NULL, be[i].from);
1677 			if (err == -EINVAL)
1678 				break;
1679 			if (err)
1680 				return err;
1681 		}
1682 		chain_nr -= nr;
1683 	}
1684 
1685 check_calls:
1686 	if (chain->nr > PERF_MAX_STACK_DEPTH) {
1687 		pr_warning("corrupted callchain. skipping...\n");
1688 		return 0;
1689 	}
1690 
1691 	for (i = first_call; i < chain_nr; i++) {
1692 		u64 ip;
1693 
1694 		if (callchain_param.order == ORDER_CALLEE)
1695 			j = i;
1696 		else
1697 			j = chain->nr - i - 1;
1698 
1699 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1700 		if (j == skip_idx)
1701 			continue;
1702 #endif
1703 		ip = chain->ips[j];
1704 
1705 		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1706 
1707 		if (err)
1708 			return (err < 0) ? err : 0;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static int unwind_entry(struct unwind_entry *entry, void *arg)
1715 {
1716 	struct callchain_cursor *cursor = arg;
1717 	return callchain_cursor_append(cursor, entry->ip,
1718 				       entry->map, entry->sym);
1719 }
1720 
1721 int thread__resolve_callchain(struct thread *thread,
1722 			      struct perf_evsel *evsel,
1723 			      struct perf_sample *sample,
1724 			      struct symbol **parent,
1725 			      struct addr_location *root_al,
1726 			      int max_stack)
1727 {
1728 	int ret = thread__resolve_callchain_sample(thread, evsel,
1729 						   sample, parent,
1730 						   root_al, max_stack);
1731 	if (ret)
1732 		return ret;
1733 
1734 	/* Can we do dwarf post unwind? */
1735 	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1736 	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1737 		return 0;
1738 
1739 	/* Bail out if nothing was captured. */
1740 	if ((!sample->user_regs.regs) ||
1741 	    (!sample->user_stack.size))
1742 		return 0;
1743 
1744 	return unwind__get_entries(unwind_entry, &callchain_cursor,
1745 				   thread, sample, max_stack);
1746 
1747 }
1748 
1749 int machine__for_each_thread(struct machine *machine,
1750 			     int (*fn)(struct thread *thread, void *p),
1751 			     void *priv)
1752 {
1753 	struct rb_node *nd;
1754 	struct thread *thread;
1755 	int rc = 0;
1756 
1757 	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
1758 		thread = rb_entry(nd, struct thread, rb_node);
1759 		rc = fn(thread, priv);
1760 		if (rc != 0)
1761 			return rc;
1762 	}
1763 
1764 	list_for_each_entry(thread, &machine->dead_threads, node) {
1765 		rc = fn(thread, priv);
1766 		if (rc != 0)
1767 			return rc;
1768 	}
1769 	return rc;
1770 }
1771 
1772 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1773 				  struct target *target, struct thread_map *threads,
1774 				  perf_event__handler_t process, bool data_mmap)
1775 {
1776 	if (target__has_task(target))
1777 		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
1778 	else if (target__has_cpu(target))
1779 		return perf_event__synthesize_threads(tool, process, machine, data_mmap);
1780 	/* command specified */
1781 	return 0;
1782 }
1783 
1784 pid_t machine__get_current_tid(struct machine *machine, int cpu)
1785 {
1786 	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
1787 		return -1;
1788 
1789 	return machine->current_tid[cpu];
1790 }
1791 
1792 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
1793 			     pid_t tid)
1794 {
1795 	struct thread *thread;
1796 
1797 	if (cpu < 0)
1798 		return -EINVAL;
1799 
1800 	if (!machine->current_tid) {
1801 		int i;
1802 
1803 		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
1804 		if (!machine->current_tid)
1805 			return -ENOMEM;
1806 		for (i = 0; i < MAX_NR_CPUS; i++)
1807 			machine->current_tid[i] = -1;
1808 	}
1809 
1810 	if (cpu >= MAX_NR_CPUS) {
1811 		pr_err("Requested CPU %d too large. ", cpu);
1812 		pr_err("Consider raising MAX_NR_CPUS\n");
1813 		return -EINVAL;
1814 	}
1815 
1816 	machine->current_tid[cpu] = tid;
1817 
1818 	thread = machine__findnew_thread(machine, pid, tid);
1819 	if (!thread)
1820 		return -ENOMEM;
1821 
1822 	thread->cpu = cpu;
1823 
1824 	return 0;
1825 }
1826 
1827 int machine__get_kernel_start(struct machine *machine)
1828 {
1829 	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
1830 	int err = 0;
1831 
1832 	/*
1833 	 * The only addresses above 2^63 are kernel addresses of a 64-bit
1834 	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
1835 	 * all addresses including kernel addresses are less than 2^32.  In
1836 	 * that case (32-bit system), if the kernel mapping is unknown, all
1837 	 * addresses will be assumed to be in user space - see
1838 	 * machine__kernel_ip().
1839 	 */
1840 	machine->kernel_start = 1ULL << 63;
1841 	if (map) {
1842 		err = map__load(map, machine->symbol_filter);
1843 		if (map->start)
1844 			machine->kernel_start = map->start;
1845 	}
1846 	return err;
1847 }
1848