xref: /openbmc/linux/tools/perf/util/levenshtein.c (revision f3539c12)
1 #include "levenshtein.h"
2 #include <errno.h>
3 #include <stdlib.h>
4 #include <string.h>
5 
6 /*
7  * This function implements the Damerau-Levenshtein algorithm to
8  * calculate a distance between strings.
9  *
10  * Basically, it says how many letters need to be swapped, substituted,
11  * deleted from, or added to string1, at least, to get string2.
12  *
13  * The idea is to build a distance matrix for the substrings of both
14  * strings.  To avoid a large space complexity, only the last three rows
15  * are kept in memory (if swaps had the same or higher cost as one deletion
16  * plus one insertion, only two rows would be needed).
17  *
18  * At any stage, "i + 1" denotes the length of the current substring of
19  * string1 that the distance is calculated for.
20  *
21  * row2 holds the current row, row1 the previous row (i.e. for the substring
22  * of string1 of length "i"), and row0 the row before that.
23  *
24  * In other words, at the start of the big loop, row2[j + 1] contains the
25  * Damerau-Levenshtein distance between the substring of string1 of length
26  * "i" and the substring of string2 of length "j + 1".
27  *
28  * All the big loop does is determine the partial minimum-cost paths.
29  *
30  * It does so by calculating the costs of the path ending in characters
31  * i (in string1) and j (in string2), respectively, given that the last
32  * operation is a substition, a swap, a deletion, or an insertion.
33  *
34  * This implementation allows the costs to be weighted:
35  *
36  * - w (as in "sWap")
37  * - s (as in "Substitution")
38  * - a (for insertion, AKA "Add")
39  * - d (as in "Deletion")
40  *
41  * Note that this algorithm calculates a distance _iff_ d == a.
42  */
43 int levenshtein(const char *string1, const char *string2,
44 		int w, int s, int a, int d)
45 {
46 	int len1 = strlen(string1), len2 = strlen(string2);
47 	int *row0 = malloc(sizeof(int) * (len2 + 1));
48 	int *row1 = malloc(sizeof(int) * (len2 + 1));
49 	int *row2 = malloc(sizeof(int) * (len2 + 1));
50 	int i, j;
51 
52 	for (j = 0; j <= len2; j++)
53 		row1[j] = j * a;
54 	for (i = 0; i < len1; i++) {
55 		int *dummy;
56 
57 		row2[0] = (i + 1) * d;
58 		for (j = 0; j < len2; j++) {
59 			/* substitution */
60 			row2[j + 1] = row1[j] + s * (string1[i] != string2[j]);
61 			/* swap */
62 			if (i > 0 && j > 0 && string1[i - 1] == string2[j] &&
63 					string1[i] == string2[j - 1] &&
64 					row2[j + 1] > row0[j - 1] + w)
65 				row2[j + 1] = row0[j - 1] + w;
66 			/* deletion */
67 			if (row2[j + 1] > row1[j + 1] + d)
68 				row2[j + 1] = row1[j + 1] + d;
69 			/* insertion */
70 			if (row2[j + 1] > row2[j] + a)
71 				row2[j + 1] = row2[j] + a;
72 		}
73 
74 		dummy = row0;
75 		row0 = row1;
76 		row1 = row2;
77 		row2 = dummy;
78 	}
79 
80 	i = row1[len2];
81 	free(row0);
82 	free(row1);
83 	free(row2);
84 
85 	return i;
86 }
87