1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0) 50 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4) 51 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13) 52 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31) 53 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55) 54 55 struct range { 56 u64 start; 57 u64 end; 58 }; 59 60 struct intel_pt { 61 struct auxtrace auxtrace; 62 struct auxtrace_queues queues; 63 struct auxtrace_heap heap; 64 u32 auxtrace_type; 65 struct perf_session *session; 66 struct machine *machine; 67 struct evsel *switch_evsel; 68 struct thread *unknown_thread; 69 bool timeless_decoding; 70 bool sampling_mode; 71 bool snapshot_mode; 72 bool per_cpu_mmaps; 73 bool have_tsc; 74 bool data_queued; 75 bool est_tsc; 76 bool sync_switch; 77 bool mispred_all; 78 bool use_thread_stack; 79 bool callstack; 80 bool cap_event_trace; 81 unsigned int br_stack_sz; 82 unsigned int br_stack_sz_plus; 83 int have_sched_switch; 84 u32 pmu_type; 85 u64 kernel_start; 86 u64 switch_ip; 87 u64 ptss_ip; 88 u64 first_timestamp; 89 90 struct perf_tsc_conversion tc; 91 bool cap_user_time_zero; 92 93 struct itrace_synth_opts synth_opts; 94 95 bool sample_instructions; 96 u64 instructions_sample_type; 97 u64 instructions_id; 98 99 bool sample_branches; 100 u32 branches_filter; 101 u64 branches_sample_type; 102 u64 branches_id; 103 104 bool sample_transactions; 105 u64 transactions_sample_type; 106 u64 transactions_id; 107 108 bool sample_ptwrites; 109 u64 ptwrites_sample_type; 110 u64 ptwrites_id; 111 112 bool sample_pwr_events; 113 u64 pwr_events_sample_type; 114 u64 mwait_id; 115 u64 pwre_id; 116 u64 exstop_id; 117 u64 pwrx_id; 118 u64 cbr_id; 119 u64 psb_id; 120 121 bool single_pebs; 122 bool sample_pebs; 123 struct evsel *pebs_evsel; 124 125 u64 evt_sample_type; 126 u64 evt_id; 127 128 u64 iflag_chg_sample_type; 129 u64 iflag_chg_id; 130 131 u64 tsc_bit; 132 u64 mtc_bit; 133 u64 mtc_freq_bits; 134 u32 tsc_ctc_ratio_n; 135 u32 tsc_ctc_ratio_d; 136 u64 cyc_bit; 137 u64 noretcomp_bit; 138 unsigned max_non_turbo_ratio; 139 unsigned cbr2khz; 140 int max_loops; 141 142 unsigned long num_events; 143 144 char *filter; 145 struct addr_filters filts; 146 147 struct range *time_ranges; 148 unsigned int range_cnt; 149 150 struct ip_callchain *chain; 151 struct branch_stack *br_stack; 152 153 u64 dflt_tsc_offset; 154 struct rb_root vmcs_info; 155 }; 156 157 enum switch_state { 158 INTEL_PT_SS_NOT_TRACING, 159 INTEL_PT_SS_UNKNOWN, 160 INTEL_PT_SS_TRACING, 161 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 162 INTEL_PT_SS_EXPECTING_SWITCH_IP, 163 }; 164 165 /* applicable_counters is 64-bits */ 166 #define INTEL_PT_MAX_PEBS 64 167 168 struct intel_pt_pebs_event { 169 struct evsel *evsel; 170 u64 id; 171 }; 172 173 struct intel_pt_queue { 174 struct intel_pt *pt; 175 unsigned int queue_nr; 176 struct auxtrace_buffer *buffer; 177 struct auxtrace_buffer *old_buffer; 178 void *decoder; 179 const struct intel_pt_state *state; 180 struct ip_callchain *chain; 181 struct branch_stack *last_branch; 182 union perf_event *event_buf; 183 bool on_heap; 184 bool stop; 185 bool step_through_buffers; 186 bool use_buffer_pid_tid; 187 bool sync_switch; 188 bool sample_ipc; 189 pid_t pid, tid; 190 int cpu; 191 int switch_state; 192 pid_t next_tid; 193 struct thread *thread; 194 struct machine *guest_machine; 195 struct thread *unknown_guest_thread; 196 pid_t guest_machine_pid; 197 bool exclude_kernel; 198 bool have_sample; 199 u64 time; 200 u64 timestamp; 201 u64 sel_timestamp; 202 bool sel_start; 203 unsigned int sel_idx; 204 u32 flags; 205 u16 insn_len; 206 u64 last_insn_cnt; 207 u64 ipc_insn_cnt; 208 u64 ipc_cyc_cnt; 209 u64 last_in_insn_cnt; 210 u64 last_in_cyc_cnt; 211 u64 last_br_insn_cnt; 212 u64 last_br_cyc_cnt; 213 unsigned int cbr_seen; 214 char insn[INTEL_PT_INSN_BUF_SZ]; 215 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS]; 216 }; 217 218 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 219 unsigned char *buf, size_t len) 220 { 221 struct intel_pt_pkt packet; 222 size_t pos = 0; 223 int ret, pkt_len, i; 224 char desc[INTEL_PT_PKT_DESC_MAX]; 225 const char *color = PERF_COLOR_BLUE; 226 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 227 228 color_fprintf(stdout, color, 229 ". ... Intel Processor Trace data: size %zu bytes\n", 230 len); 231 232 while (len) { 233 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 234 if (ret > 0) 235 pkt_len = ret; 236 else 237 pkt_len = 1; 238 printf("."); 239 color_fprintf(stdout, color, " %08x: ", pos); 240 for (i = 0; i < pkt_len; i++) 241 color_fprintf(stdout, color, " %02x", buf[i]); 242 for (; i < 16; i++) 243 color_fprintf(stdout, color, " "); 244 if (ret > 0) { 245 ret = intel_pt_pkt_desc(&packet, desc, 246 INTEL_PT_PKT_DESC_MAX); 247 if (ret > 0) 248 color_fprintf(stdout, color, " %s\n", desc); 249 } else { 250 color_fprintf(stdout, color, " Bad packet!\n"); 251 } 252 pos += pkt_len; 253 buf += pkt_len; 254 len -= pkt_len; 255 } 256 } 257 258 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 259 size_t len) 260 { 261 printf(".\n"); 262 intel_pt_dump(pt, buf, len); 263 } 264 265 static void intel_pt_log_event(union perf_event *event) 266 { 267 FILE *f = intel_pt_log_fp(); 268 269 if (!intel_pt_enable_logging || !f) 270 return; 271 272 perf_event__fprintf(event, NULL, f); 273 } 274 275 static void intel_pt_dump_sample(struct perf_session *session, 276 struct perf_sample *sample) 277 { 278 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 279 auxtrace); 280 281 printf("\n"); 282 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 283 } 284 285 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 286 { 287 struct perf_time_interval *range = pt->synth_opts.ptime_range; 288 int n = pt->synth_opts.range_num; 289 290 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 291 return true; 292 293 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 294 return false; 295 296 /* perf_time__ranges_skip_sample does not work if time is zero */ 297 if (!tm) 298 tm = 1; 299 300 return !n || !perf_time__ranges_skip_sample(range, n, tm); 301 } 302 303 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, 304 u64 vmcs, 305 u64 dflt_tsc_offset) 306 { 307 struct rb_node **p = &rb_root->rb_node; 308 struct rb_node *parent = NULL; 309 struct intel_pt_vmcs_info *v; 310 311 while (*p) { 312 parent = *p; 313 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); 314 315 if (v->vmcs == vmcs) 316 return v; 317 318 if (vmcs < v->vmcs) 319 p = &(*p)->rb_left; 320 else 321 p = &(*p)->rb_right; 322 } 323 324 v = zalloc(sizeof(*v)); 325 if (v) { 326 v->vmcs = vmcs; 327 v->tsc_offset = dflt_tsc_offset; 328 v->reliable = dflt_tsc_offset; 329 330 rb_link_node(&v->rb_node, parent, p); 331 rb_insert_color(&v->rb_node, rb_root); 332 } 333 334 return v; 335 } 336 337 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) 338 { 339 struct intel_pt_queue *ptq = data; 340 struct intel_pt *pt = ptq->pt; 341 342 if (!vmcs && !pt->dflt_tsc_offset) 343 return NULL; 344 345 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); 346 } 347 348 static void intel_pt_free_vmcs_info(struct intel_pt *pt) 349 { 350 struct intel_pt_vmcs_info *v; 351 struct rb_node *n; 352 353 n = rb_first(&pt->vmcs_info); 354 while (n) { 355 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); 356 n = rb_next(n); 357 rb_erase(&v->rb_node, &pt->vmcs_info); 358 free(v); 359 } 360 } 361 362 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 363 struct auxtrace_buffer *b) 364 { 365 bool consecutive = false; 366 void *start; 367 368 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 369 pt->have_tsc, &consecutive, 370 pt->synth_opts.vm_time_correlation); 371 if (!start) 372 return -EINVAL; 373 /* 374 * In the case of vm_time_correlation, the overlap might contain TSC 375 * packets that will not be fixed, and that will then no longer work for 376 * overlap detection. Avoid that by zeroing out the overlap. 377 */ 378 if (pt->synth_opts.vm_time_correlation) 379 memset(b->data, 0, start - b->data); 380 b->use_size = b->data + b->size - start; 381 b->use_data = start; 382 if (b->use_size && consecutive) 383 b->consecutive = true; 384 return 0; 385 } 386 387 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 388 struct auxtrace_buffer *buffer, 389 struct auxtrace_buffer *old_buffer, 390 struct intel_pt_buffer *b) 391 { 392 bool might_overlap; 393 394 if (!buffer->data) { 395 int fd = perf_data__fd(ptq->pt->session->data); 396 397 buffer->data = auxtrace_buffer__get_data(buffer, fd); 398 if (!buffer->data) 399 return -ENOMEM; 400 } 401 402 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 403 if (might_overlap && !buffer->consecutive && old_buffer && 404 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 405 return -ENOMEM; 406 407 if (buffer->use_data) { 408 b->len = buffer->use_size; 409 b->buf = buffer->use_data; 410 } else { 411 b->len = buffer->size; 412 b->buf = buffer->data; 413 } 414 b->ref_timestamp = buffer->reference; 415 416 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 417 b->consecutive = false; 418 b->trace_nr = buffer->buffer_nr + 1; 419 } else { 420 b->consecutive = true; 421 } 422 423 return 0; 424 } 425 426 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 427 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 428 struct auxtrace_buffer *buffer) 429 { 430 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 431 return; 432 433 auxtrace_buffer__drop_data(buffer); 434 } 435 436 /* Must be serialized with respect to intel_pt_get_trace() */ 437 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 438 void *cb_data) 439 { 440 struct intel_pt_queue *ptq = data; 441 struct auxtrace_buffer *buffer = ptq->buffer; 442 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 443 struct auxtrace_queue *queue; 444 int err = 0; 445 446 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 447 448 while (1) { 449 struct intel_pt_buffer b = { .len = 0 }; 450 451 buffer = auxtrace_buffer__next(queue, buffer); 452 if (!buffer) 453 break; 454 455 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 456 if (err) 457 break; 458 459 if (b.len) { 460 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 461 old_buffer = buffer; 462 } else { 463 intel_pt_lookahead_drop_buffer(ptq, buffer); 464 continue; 465 } 466 467 err = cb(&b, cb_data); 468 if (err) 469 break; 470 } 471 472 if (buffer != old_buffer) 473 intel_pt_lookahead_drop_buffer(ptq, buffer); 474 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 475 476 return err; 477 } 478 479 /* 480 * This function assumes data is processed sequentially only. 481 * Must be serialized with respect to intel_pt_lookahead() 482 */ 483 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 484 { 485 struct intel_pt_queue *ptq = data; 486 struct auxtrace_buffer *buffer = ptq->buffer; 487 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 488 struct auxtrace_queue *queue; 489 int err; 490 491 if (ptq->stop) { 492 b->len = 0; 493 return 0; 494 } 495 496 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 497 498 buffer = auxtrace_buffer__next(queue, buffer); 499 if (!buffer) { 500 if (old_buffer) 501 auxtrace_buffer__drop_data(old_buffer); 502 b->len = 0; 503 return 0; 504 } 505 506 ptq->buffer = buffer; 507 508 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 509 if (err) 510 return err; 511 512 if (ptq->step_through_buffers) 513 ptq->stop = true; 514 515 if (b->len) { 516 if (old_buffer) 517 auxtrace_buffer__drop_data(old_buffer); 518 ptq->old_buffer = buffer; 519 } else { 520 auxtrace_buffer__drop_data(buffer); 521 return intel_pt_get_trace(b, data); 522 } 523 524 return 0; 525 } 526 527 struct intel_pt_cache_entry { 528 struct auxtrace_cache_entry entry; 529 u64 insn_cnt; 530 u64 byte_cnt; 531 enum intel_pt_insn_op op; 532 enum intel_pt_insn_branch branch; 533 int length; 534 int32_t rel; 535 char insn[INTEL_PT_INSN_BUF_SZ]; 536 }; 537 538 static int intel_pt_config_div(const char *var, const char *value, void *data) 539 { 540 int *d = data; 541 long val; 542 543 if (!strcmp(var, "intel-pt.cache-divisor")) { 544 val = strtol(value, NULL, 0); 545 if (val > 0 && val <= INT_MAX) 546 *d = val; 547 } 548 549 return 0; 550 } 551 552 static int intel_pt_cache_divisor(void) 553 { 554 static int d; 555 556 if (d) 557 return d; 558 559 perf_config(intel_pt_config_div, &d); 560 561 if (!d) 562 d = 64; 563 564 return d; 565 } 566 567 static unsigned int intel_pt_cache_size(struct dso *dso, 568 struct machine *machine) 569 { 570 off_t size; 571 572 size = dso__data_size(dso, machine); 573 size /= intel_pt_cache_divisor(); 574 if (size < 1000) 575 return 10; 576 if (size > (1 << 21)) 577 return 21; 578 return 32 - __builtin_clz(size); 579 } 580 581 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 582 struct machine *machine) 583 { 584 struct auxtrace_cache *c; 585 unsigned int bits; 586 587 if (dso->auxtrace_cache) 588 return dso->auxtrace_cache; 589 590 bits = intel_pt_cache_size(dso, machine); 591 592 /* Ignoring cache creation failure */ 593 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 594 595 dso->auxtrace_cache = c; 596 597 return c; 598 } 599 600 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 601 u64 offset, u64 insn_cnt, u64 byte_cnt, 602 struct intel_pt_insn *intel_pt_insn) 603 { 604 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 605 struct intel_pt_cache_entry *e; 606 int err; 607 608 if (!c) 609 return -ENOMEM; 610 611 e = auxtrace_cache__alloc_entry(c); 612 if (!e) 613 return -ENOMEM; 614 615 e->insn_cnt = insn_cnt; 616 e->byte_cnt = byte_cnt; 617 e->op = intel_pt_insn->op; 618 e->branch = intel_pt_insn->branch; 619 e->length = intel_pt_insn->length; 620 e->rel = intel_pt_insn->rel; 621 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 622 623 err = auxtrace_cache__add(c, offset, &e->entry); 624 if (err) 625 auxtrace_cache__free_entry(c, e); 626 627 return err; 628 } 629 630 static struct intel_pt_cache_entry * 631 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 632 { 633 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 634 635 if (!c) 636 return NULL; 637 638 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 639 } 640 641 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 642 u64 offset) 643 { 644 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 645 646 if (!c) 647 return; 648 649 auxtrace_cache__remove(dso->auxtrace_cache, offset); 650 } 651 652 static inline bool intel_pt_guest_kernel_ip(uint64_t ip) 653 { 654 /* Assumes 64-bit kernel */ 655 return ip & (1ULL << 63); 656 } 657 658 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) 659 { 660 if (nr) { 661 return intel_pt_guest_kernel_ip(ip) ? 662 PERF_RECORD_MISC_GUEST_KERNEL : 663 PERF_RECORD_MISC_GUEST_USER; 664 } 665 666 return ip >= ptq->pt->kernel_start ? 667 PERF_RECORD_MISC_KERNEL : 668 PERF_RECORD_MISC_USER; 669 } 670 671 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) 672 { 673 /* No support for non-zero CS base */ 674 if (from_ip) 675 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); 676 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); 677 } 678 679 static int intel_pt_get_guest(struct intel_pt_queue *ptq) 680 { 681 struct machines *machines = &ptq->pt->session->machines; 682 struct machine *machine; 683 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; 684 685 if (ptq->guest_machine && pid == ptq->guest_machine_pid) 686 return 0; 687 688 ptq->guest_machine = NULL; 689 thread__zput(ptq->unknown_guest_thread); 690 691 machine = machines__find_guest(machines, pid); 692 if (!machine) 693 return -1; 694 695 ptq->unknown_guest_thread = machine__idle_thread(machine); 696 if (!ptq->unknown_guest_thread) 697 return -1; 698 699 ptq->guest_machine = machine; 700 ptq->guest_machine_pid = pid; 701 702 return 0; 703 } 704 705 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 706 uint64_t *insn_cnt_ptr, uint64_t *ip, 707 uint64_t to_ip, uint64_t max_insn_cnt, 708 void *data) 709 { 710 struct intel_pt_queue *ptq = data; 711 struct machine *machine = ptq->pt->machine; 712 struct thread *thread; 713 struct addr_location al; 714 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 715 ssize_t len; 716 int x86_64; 717 u8 cpumode; 718 u64 offset, start_offset, start_ip; 719 u64 insn_cnt = 0; 720 bool one_map = true; 721 bool nr; 722 723 intel_pt_insn->length = 0; 724 725 if (to_ip && *ip == to_ip) 726 goto out_no_cache; 727 728 nr = ptq->state->to_nr; 729 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); 730 731 if (nr) { 732 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL || 733 intel_pt_get_guest(ptq)) 734 return -EINVAL; 735 machine = ptq->guest_machine; 736 thread = ptq->unknown_guest_thread; 737 } else { 738 thread = ptq->thread; 739 if (!thread) { 740 if (cpumode != PERF_RECORD_MISC_KERNEL) 741 return -EINVAL; 742 thread = ptq->pt->unknown_thread; 743 } 744 } 745 746 while (1) { 747 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 748 return -EINVAL; 749 750 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 751 dso__data_status_seen(al.map->dso, 752 DSO_DATA_STATUS_SEEN_ITRACE)) 753 return -ENOENT; 754 755 offset = al.map->map_ip(al.map, *ip); 756 757 if (!to_ip && one_map) { 758 struct intel_pt_cache_entry *e; 759 760 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 761 if (e && 762 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 763 *insn_cnt_ptr = e->insn_cnt; 764 *ip += e->byte_cnt; 765 intel_pt_insn->op = e->op; 766 intel_pt_insn->branch = e->branch; 767 intel_pt_insn->length = e->length; 768 intel_pt_insn->rel = e->rel; 769 memcpy(intel_pt_insn->buf, e->insn, 770 INTEL_PT_INSN_BUF_SZ); 771 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 772 return 0; 773 } 774 } 775 776 start_offset = offset; 777 start_ip = *ip; 778 779 /* Load maps to ensure dso->is_64_bit has been updated */ 780 map__load(al.map); 781 782 x86_64 = al.map->dso->is_64_bit; 783 784 while (1) { 785 len = dso__data_read_offset(al.map->dso, machine, 786 offset, buf, 787 INTEL_PT_INSN_BUF_SZ); 788 if (len <= 0) 789 return -EINVAL; 790 791 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 792 return -EINVAL; 793 794 intel_pt_log_insn(intel_pt_insn, *ip); 795 796 insn_cnt += 1; 797 798 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 799 goto out; 800 801 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 802 goto out_no_cache; 803 804 *ip += intel_pt_insn->length; 805 806 if (to_ip && *ip == to_ip) { 807 intel_pt_insn->length = 0; 808 goto out_no_cache; 809 } 810 811 if (*ip >= al.map->end) 812 break; 813 814 offset += intel_pt_insn->length; 815 } 816 one_map = false; 817 } 818 out: 819 *insn_cnt_ptr = insn_cnt; 820 821 if (!one_map) 822 goto out_no_cache; 823 824 /* 825 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 826 * entries. 827 */ 828 if (to_ip) { 829 struct intel_pt_cache_entry *e; 830 831 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 832 if (e) 833 return 0; 834 } 835 836 /* Ignore cache errors */ 837 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 838 *ip - start_ip, intel_pt_insn); 839 840 return 0; 841 842 out_no_cache: 843 *insn_cnt_ptr = insn_cnt; 844 return 0; 845 } 846 847 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 848 uint64_t offset, const char *filename) 849 { 850 struct addr_filter *filt; 851 bool have_filter = false; 852 bool hit_tracestop = false; 853 bool hit_filter = false; 854 855 list_for_each_entry(filt, &pt->filts.head, list) { 856 if (filt->start) 857 have_filter = true; 858 859 if ((filename && !filt->filename) || 860 (!filename && filt->filename) || 861 (filename && strcmp(filename, filt->filename))) 862 continue; 863 864 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 865 continue; 866 867 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 868 ip, offset, filename ? filename : "[kernel]", 869 filt->start ? "filter" : "stop", 870 filt->addr, filt->size); 871 872 if (filt->start) 873 hit_filter = true; 874 else 875 hit_tracestop = true; 876 } 877 878 if (!hit_tracestop && !hit_filter) 879 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 880 ip, offset, filename ? filename : "[kernel]"); 881 882 return hit_tracestop || (have_filter && !hit_filter); 883 } 884 885 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 886 { 887 struct intel_pt_queue *ptq = data; 888 struct thread *thread; 889 struct addr_location al; 890 u8 cpumode; 891 u64 offset; 892 893 if (ptq->state->to_nr) { 894 if (intel_pt_guest_kernel_ip(ip)) 895 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 896 /* No support for decoding guest user space */ 897 return -EINVAL; 898 } else if (ip >= ptq->pt->kernel_start) { 899 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 900 } 901 902 cpumode = PERF_RECORD_MISC_USER; 903 904 thread = ptq->thread; 905 if (!thread) 906 return -EINVAL; 907 908 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 909 return -EINVAL; 910 911 offset = al.map->map_ip(al.map, ip); 912 913 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 914 al.map->dso->long_name); 915 } 916 917 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 918 { 919 return __intel_pt_pgd_ip(ip, data) > 0; 920 } 921 922 static bool intel_pt_get_config(struct intel_pt *pt, 923 struct perf_event_attr *attr, u64 *config) 924 { 925 if (attr->type == pt->pmu_type) { 926 if (config) 927 *config = attr->config; 928 return true; 929 } 930 931 return false; 932 } 933 934 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 935 { 936 struct evsel *evsel; 937 938 evlist__for_each_entry(pt->session->evlist, evsel) { 939 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 940 !evsel->core.attr.exclude_kernel) 941 return false; 942 } 943 return true; 944 } 945 946 static bool intel_pt_return_compression(struct intel_pt *pt) 947 { 948 struct evsel *evsel; 949 u64 config; 950 951 if (!pt->noretcomp_bit) 952 return true; 953 954 evlist__for_each_entry(pt->session->evlist, evsel) { 955 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 956 (config & pt->noretcomp_bit)) 957 return false; 958 } 959 return true; 960 } 961 962 static bool intel_pt_branch_enable(struct intel_pt *pt) 963 { 964 struct evsel *evsel; 965 u64 config; 966 967 evlist__for_each_entry(pt->session->evlist, evsel) { 968 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 969 (config & INTEL_PT_CFG_PASS_THRU) && 970 !(config & INTEL_PT_CFG_BRANCH_EN)) 971 return false; 972 } 973 return true; 974 } 975 976 static bool intel_pt_disabled_tnt(struct intel_pt *pt) 977 { 978 struct evsel *evsel; 979 u64 config; 980 981 evlist__for_each_entry(pt->session->evlist, evsel) { 982 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 983 config & INTEL_PT_CFG_TNT_DIS) 984 return true; 985 } 986 return false; 987 } 988 989 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 990 { 991 struct evsel *evsel; 992 unsigned int shift; 993 u64 config; 994 995 if (!pt->mtc_freq_bits) 996 return 0; 997 998 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 999 config >>= 1; 1000 1001 evlist__for_each_entry(pt->session->evlist, evsel) { 1002 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1003 return (config & pt->mtc_freq_bits) >> shift; 1004 } 1005 return 0; 1006 } 1007 1008 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 1009 { 1010 struct evsel *evsel; 1011 bool timeless_decoding = true; 1012 u64 config; 1013 1014 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) 1015 return true; 1016 1017 evlist__for_each_entry(pt->session->evlist, evsel) { 1018 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 1019 return true; 1020 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1021 if (config & pt->tsc_bit) 1022 timeless_decoding = false; 1023 else 1024 return true; 1025 } 1026 } 1027 return timeless_decoding; 1028 } 1029 1030 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 1031 { 1032 struct evsel *evsel; 1033 1034 evlist__for_each_entry(pt->session->evlist, evsel) { 1035 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1036 !evsel->core.attr.exclude_kernel) 1037 return true; 1038 } 1039 return false; 1040 } 1041 1042 static bool intel_pt_have_tsc(struct intel_pt *pt) 1043 { 1044 struct evsel *evsel; 1045 bool have_tsc = false; 1046 u64 config; 1047 1048 if (!pt->tsc_bit) 1049 return false; 1050 1051 evlist__for_each_entry(pt->session->evlist, evsel) { 1052 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1053 if (config & pt->tsc_bit) 1054 have_tsc = true; 1055 else 1056 return false; 1057 } 1058 } 1059 return have_tsc; 1060 } 1061 1062 static bool intel_pt_have_mtc(struct intel_pt *pt) 1063 { 1064 struct evsel *evsel; 1065 u64 config; 1066 1067 evlist__for_each_entry(pt->session->evlist, evsel) { 1068 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1069 (config & pt->mtc_bit)) 1070 return true; 1071 } 1072 return false; 1073 } 1074 1075 static bool intel_pt_sampling_mode(struct intel_pt *pt) 1076 { 1077 struct evsel *evsel; 1078 1079 evlist__for_each_entry(pt->session->evlist, evsel) { 1080 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 1081 evsel->core.attr.aux_sample_size) 1082 return true; 1083 } 1084 return false; 1085 } 1086 1087 static u64 intel_pt_ctl(struct intel_pt *pt) 1088 { 1089 struct evsel *evsel; 1090 u64 config; 1091 1092 evlist__for_each_entry(pt->session->evlist, evsel) { 1093 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1094 return config; 1095 } 1096 return 0; 1097 } 1098 1099 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 1100 { 1101 u64 quot, rem; 1102 1103 quot = ns / pt->tc.time_mult; 1104 rem = ns % pt->tc.time_mult; 1105 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 1106 pt->tc.time_mult; 1107 } 1108 1109 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 1110 { 1111 size_t sz = sizeof(struct ip_callchain); 1112 1113 /* Add 1 to callchain_sz for callchain context */ 1114 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 1115 return zalloc(sz); 1116 } 1117 1118 static int intel_pt_callchain_init(struct intel_pt *pt) 1119 { 1120 struct evsel *evsel; 1121 1122 evlist__for_each_entry(pt->session->evlist, evsel) { 1123 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1124 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 1125 } 1126 1127 pt->chain = intel_pt_alloc_chain(pt); 1128 if (!pt->chain) 1129 return -ENOMEM; 1130 1131 return 0; 1132 } 1133 1134 static void intel_pt_add_callchain(struct intel_pt *pt, 1135 struct perf_sample *sample) 1136 { 1137 struct thread *thread = machine__findnew_thread(pt->machine, 1138 sample->pid, 1139 sample->tid); 1140 1141 thread_stack__sample_late(thread, sample->cpu, pt->chain, 1142 pt->synth_opts.callchain_sz + 1, sample->ip, 1143 pt->kernel_start); 1144 1145 sample->callchain = pt->chain; 1146 } 1147 1148 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 1149 { 1150 size_t sz = sizeof(struct branch_stack); 1151 1152 sz += entry_cnt * sizeof(struct branch_entry); 1153 return zalloc(sz); 1154 } 1155 1156 static int intel_pt_br_stack_init(struct intel_pt *pt) 1157 { 1158 struct evsel *evsel; 1159 1160 evlist__for_each_entry(pt->session->evlist, evsel) { 1161 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 1162 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 1163 } 1164 1165 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 1166 if (!pt->br_stack) 1167 return -ENOMEM; 1168 1169 return 0; 1170 } 1171 1172 static void intel_pt_add_br_stack(struct intel_pt *pt, 1173 struct perf_sample *sample) 1174 { 1175 struct thread *thread = machine__findnew_thread(pt->machine, 1176 sample->pid, 1177 sample->tid); 1178 1179 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 1180 pt->br_stack_sz, sample->ip, 1181 pt->kernel_start); 1182 1183 sample->branch_stack = pt->br_stack; 1184 } 1185 1186 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1187 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 1188 1189 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 1190 unsigned int queue_nr) 1191 { 1192 struct intel_pt_params params = { .get_trace = 0, }; 1193 struct perf_env *env = pt->machine->env; 1194 struct intel_pt_queue *ptq; 1195 1196 ptq = zalloc(sizeof(struct intel_pt_queue)); 1197 if (!ptq) 1198 return NULL; 1199 1200 if (pt->synth_opts.callchain) { 1201 ptq->chain = intel_pt_alloc_chain(pt); 1202 if (!ptq->chain) 1203 goto out_free; 1204 } 1205 1206 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1207 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1208 1209 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1210 if (!ptq->last_branch) 1211 goto out_free; 1212 } 1213 1214 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1215 if (!ptq->event_buf) 1216 goto out_free; 1217 1218 ptq->pt = pt; 1219 ptq->queue_nr = queue_nr; 1220 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1221 ptq->pid = -1; 1222 ptq->tid = -1; 1223 ptq->cpu = -1; 1224 ptq->next_tid = -1; 1225 1226 params.get_trace = intel_pt_get_trace; 1227 params.walk_insn = intel_pt_walk_next_insn; 1228 params.lookahead = intel_pt_lookahead; 1229 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; 1230 params.data = ptq; 1231 params.return_compression = intel_pt_return_compression(pt); 1232 params.branch_enable = intel_pt_branch_enable(pt); 1233 params.ctl = intel_pt_ctl(pt); 1234 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1235 params.mtc_period = intel_pt_mtc_period(pt); 1236 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1237 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1238 params.quick = pt->synth_opts.quick; 1239 params.vm_time_correlation = pt->synth_opts.vm_time_correlation; 1240 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; 1241 params.first_timestamp = pt->first_timestamp; 1242 params.max_loops = pt->max_loops; 1243 1244 /* Cannot walk code without TNT, so force 'quick' mode */ 1245 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick) 1246 params.quick = 1; 1247 1248 if (pt->filts.cnt > 0) 1249 params.pgd_ip = intel_pt_pgd_ip; 1250 1251 if (pt->synth_opts.instructions) { 1252 if (pt->synth_opts.period) { 1253 switch (pt->synth_opts.period_type) { 1254 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1255 params.period_type = 1256 INTEL_PT_PERIOD_INSTRUCTIONS; 1257 params.period = pt->synth_opts.period; 1258 break; 1259 case PERF_ITRACE_PERIOD_TICKS: 1260 params.period_type = INTEL_PT_PERIOD_TICKS; 1261 params.period = pt->synth_opts.period; 1262 break; 1263 case PERF_ITRACE_PERIOD_NANOSECS: 1264 params.period_type = INTEL_PT_PERIOD_TICKS; 1265 params.period = intel_pt_ns_to_ticks(pt, 1266 pt->synth_opts.period); 1267 break; 1268 default: 1269 break; 1270 } 1271 } 1272 1273 if (!params.period) { 1274 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1275 params.period = 1; 1276 } 1277 } 1278 1279 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1280 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1281 1282 ptq->decoder = intel_pt_decoder_new(¶ms); 1283 if (!ptq->decoder) 1284 goto out_free; 1285 1286 return ptq; 1287 1288 out_free: 1289 zfree(&ptq->event_buf); 1290 zfree(&ptq->last_branch); 1291 zfree(&ptq->chain); 1292 free(ptq); 1293 return NULL; 1294 } 1295 1296 static void intel_pt_free_queue(void *priv) 1297 { 1298 struct intel_pt_queue *ptq = priv; 1299 1300 if (!ptq) 1301 return; 1302 thread__zput(ptq->thread); 1303 thread__zput(ptq->unknown_guest_thread); 1304 intel_pt_decoder_free(ptq->decoder); 1305 zfree(&ptq->event_buf); 1306 zfree(&ptq->last_branch); 1307 zfree(&ptq->chain); 1308 free(ptq); 1309 } 1310 1311 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) 1312 { 1313 unsigned int i; 1314 1315 pt->first_timestamp = timestamp; 1316 1317 for (i = 0; i < pt->queues.nr_queues; i++) { 1318 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1319 struct intel_pt_queue *ptq = queue->priv; 1320 1321 if (ptq && ptq->decoder) 1322 intel_pt_set_first_timestamp(ptq->decoder, timestamp); 1323 } 1324 } 1325 1326 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1327 struct auxtrace_queue *queue) 1328 { 1329 struct intel_pt_queue *ptq = queue->priv; 1330 1331 if (queue->tid == -1 || pt->have_sched_switch) { 1332 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1333 if (ptq->tid == -1) 1334 ptq->pid = -1; 1335 thread__zput(ptq->thread); 1336 } 1337 1338 if (!ptq->thread && ptq->tid != -1) 1339 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1340 1341 if (ptq->thread) { 1342 ptq->pid = ptq->thread->pid_; 1343 if (queue->cpu == -1) 1344 ptq->cpu = ptq->thread->cpu; 1345 } 1346 } 1347 1348 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1349 { 1350 struct intel_pt *pt = ptq->pt; 1351 1352 ptq->insn_len = 0; 1353 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1354 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1355 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1356 if (!ptq->state->to_ip) 1357 ptq->flags = PERF_IP_FLAG_BRANCH | 1358 PERF_IP_FLAG_TRACE_END; 1359 else if (ptq->state->from_nr && !ptq->state->to_nr) 1360 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1361 PERF_IP_FLAG_VMEXIT; 1362 else 1363 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1364 PERF_IP_FLAG_ASYNC | 1365 PERF_IP_FLAG_INTERRUPT; 1366 } else { 1367 if (ptq->state->from_ip) 1368 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1369 else 1370 ptq->flags = PERF_IP_FLAG_BRANCH | 1371 PERF_IP_FLAG_TRACE_BEGIN; 1372 if (ptq->state->flags & INTEL_PT_IN_TX) 1373 ptq->flags |= PERF_IP_FLAG_IN_TX; 1374 ptq->insn_len = ptq->state->insn_len; 1375 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1376 } 1377 1378 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1379 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1380 if (ptq->state->type & INTEL_PT_TRACE_END) 1381 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1382 1383 if (pt->cap_event_trace) { 1384 if (ptq->state->type & INTEL_PT_IFLAG_CHG) { 1385 if (!ptq->state->from_iflag) 1386 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1387 if (ptq->state->from_iflag != ptq->state->to_iflag) 1388 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE; 1389 } else if (!ptq->state->to_iflag) { 1390 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1391 } 1392 } 1393 } 1394 1395 static void intel_pt_setup_time_range(struct intel_pt *pt, 1396 struct intel_pt_queue *ptq) 1397 { 1398 if (!pt->range_cnt) 1399 return; 1400 1401 ptq->sel_timestamp = pt->time_ranges[0].start; 1402 ptq->sel_idx = 0; 1403 1404 if (ptq->sel_timestamp) { 1405 ptq->sel_start = true; 1406 } else { 1407 ptq->sel_timestamp = pt->time_ranges[0].end; 1408 ptq->sel_start = false; 1409 } 1410 } 1411 1412 static int intel_pt_setup_queue(struct intel_pt *pt, 1413 struct auxtrace_queue *queue, 1414 unsigned int queue_nr) 1415 { 1416 struct intel_pt_queue *ptq = queue->priv; 1417 1418 if (list_empty(&queue->head)) 1419 return 0; 1420 1421 if (!ptq) { 1422 ptq = intel_pt_alloc_queue(pt, queue_nr); 1423 if (!ptq) 1424 return -ENOMEM; 1425 queue->priv = ptq; 1426 1427 if (queue->cpu != -1) 1428 ptq->cpu = queue->cpu; 1429 ptq->tid = queue->tid; 1430 1431 ptq->cbr_seen = UINT_MAX; 1432 1433 if (pt->sampling_mode && !pt->snapshot_mode && 1434 pt->timeless_decoding) 1435 ptq->step_through_buffers = true; 1436 1437 ptq->sync_switch = pt->sync_switch; 1438 1439 intel_pt_setup_time_range(pt, ptq); 1440 } 1441 1442 if (!ptq->on_heap && 1443 (!ptq->sync_switch || 1444 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1445 const struct intel_pt_state *state; 1446 int ret; 1447 1448 if (pt->timeless_decoding) 1449 return 0; 1450 1451 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1452 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1453 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1454 1455 if (ptq->sel_start && ptq->sel_timestamp) { 1456 ret = intel_pt_fast_forward(ptq->decoder, 1457 ptq->sel_timestamp); 1458 if (ret) 1459 return ret; 1460 } 1461 1462 while (1) { 1463 state = intel_pt_decode(ptq->decoder); 1464 if (state->err) { 1465 if (state->err == INTEL_PT_ERR_NODATA) { 1466 intel_pt_log("queue %u has no timestamp\n", 1467 queue_nr); 1468 return 0; 1469 } 1470 continue; 1471 } 1472 if (state->timestamp) 1473 break; 1474 } 1475 1476 ptq->timestamp = state->timestamp; 1477 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1478 queue_nr, ptq->timestamp); 1479 ptq->state = state; 1480 ptq->have_sample = true; 1481 if (ptq->sel_start && ptq->sel_timestamp && 1482 ptq->timestamp < ptq->sel_timestamp) 1483 ptq->have_sample = false; 1484 intel_pt_sample_flags(ptq); 1485 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1486 if (ret) 1487 return ret; 1488 ptq->on_heap = true; 1489 } 1490 1491 return 0; 1492 } 1493 1494 static int intel_pt_setup_queues(struct intel_pt *pt) 1495 { 1496 unsigned int i; 1497 int ret; 1498 1499 for (i = 0; i < pt->queues.nr_queues; i++) { 1500 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1501 if (ret) 1502 return ret; 1503 } 1504 return 0; 1505 } 1506 1507 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1508 { 1509 return pt->synth_opts.initial_skip && 1510 pt->num_events++ < pt->synth_opts.initial_skip; 1511 } 1512 1513 /* 1514 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1515 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1516 * from this decoder state. 1517 */ 1518 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1519 { 1520 return pt->synth_opts.initial_skip && 1521 pt->num_events + 4 < pt->synth_opts.initial_skip; 1522 } 1523 1524 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1525 union perf_event *event, 1526 struct perf_sample *sample) 1527 { 1528 event->sample.header.type = PERF_RECORD_SAMPLE; 1529 event->sample.header.size = sizeof(struct perf_event_header); 1530 1531 sample->pid = ptq->pid; 1532 sample->tid = ptq->tid; 1533 sample->cpu = ptq->cpu; 1534 sample->insn_len = ptq->insn_len; 1535 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1536 } 1537 1538 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1539 struct intel_pt_queue *ptq, 1540 union perf_event *event, 1541 struct perf_sample *sample) 1542 { 1543 intel_pt_prep_a_sample(ptq, event, sample); 1544 1545 if (!pt->timeless_decoding) 1546 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1547 1548 sample->ip = ptq->state->from_ip; 1549 sample->addr = ptq->state->to_ip; 1550 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); 1551 sample->period = 1; 1552 sample->flags = ptq->flags; 1553 1554 event->sample.header.misc = sample->cpumode; 1555 } 1556 1557 static int intel_pt_inject_event(union perf_event *event, 1558 struct perf_sample *sample, u64 type) 1559 { 1560 event->header.size = perf_event__sample_event_size(sample, type, 0); 1561 return perf_event__synthesize_sample(event, type, 0, sample); 1562 } 1563 1564 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1565 union perf_event *event, 1566 struct perf_sample *sample, u64 type) 1567 { 1568 if (!pt->synth_opts.inject) 1569 return 0; 1570 1571 return intel_pt_inject_event(event, sample, type); 1572 } 1573 1574 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1575 union perf_event *event, 1576 struct perf_sample *sample, u64 type) 1577 { 1578 int ret; 1579 1580 ret = intel_pt_opt_inject(pt, event, sample, type); 1581 if (ret) 1582 return ret; 1583 1584 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1585 if (ret) 1586 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1587 1588 return ret; 1589 } 1590 1591 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1592 { 1593 struct intel_pt *pt = ptq->pt; 1594 union perf_event *event = ptq->event_buf; 1595 struct perf_sample sample = { .ip = 0, }; 1596 struct dummy_branch_stack { 1597 u64 nr; 1598 u64 hw_idx; 1599 struct branch_entry entries; 1600 } dummy_bs; 1601 1602 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1603 return 0; 1604 1605 if (intel_pt_skip_event(pt)) 1606 return 0; 1607 1608 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1609 1610 sample.id = ptq->pt->branches_id; 1611 sample.stream_id = ptq->pt->branches_id; 1612 1613 /* 1614 * perf report cannot handle events without a branch stack when using 1615 * SORT_MODE__BRANCH so make a dummy one. 1616 */ 1617 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1618 dummy_bs = (struct dummy_branch_stack){ 1619 .nr = 1, 1620 .hw_idx = -1ULL, 1621 .entries = { 1622 .from = sample.ip, 1623 .to = sample.addr, 1624 }, 1625 }; 1626 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1627 } 1628 1629 if (ptq->sample_ipc) 1630 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1631 if (sample.cyc_cnt) { 1632 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1633 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1634 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1635 } 1636 1637 return intel_pt_deliver_synth_event(pt, event, &sample, 1638 pt->branches_sample_type); 1639 } 1640 1641 static void intel_pt_prep_sample(struct intel_pt *pt, 1642 struct intel_pt_queue *ptq, 1643 union perf_event *event, 1644 struct perf_sample *sample) 1645 { 1646 intel_pt_prep_b_sample(pt, ptq, event, sample); 1647 1648 if (pt->synth_opts.callchain) { 1649 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1650 pt->synth_opts.callchain_sz + 1, 1651 sample->ip, pt->kernel_start); 1652 sample->callchain = ptq->chain; 1653 } 1654 1655 if (pt->synth_opts.last_branch) { 1656 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1657 pt->br_stack_sz); 1658 sample->branch_stack = ptq->last_branch; 1659 } 1660 } 1661 1662 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1663 { 1664 struct intel_pt *pt = ptq->pt; 1665 union perf_event *event = ptq->event_buf; 1666 struct perf_sample sample = { .ip = 0, }; 1667 1668 if (intel_pt_skip_event(pt)) 1669 return 0; 1670 1671 intel_pt_prep_sample(pt, ptq, event, &sample); 1672 1673 sample.id = ptq->pt->instructions_id; 1674 sample.stream_id = ptq->pt->instructions_id; 1675 if (pt->synth_opts.quick) 1676 sample.period = 1; 1677 else 1678 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1679 1680 if (ptq->sample_ipc) 1681 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1682 if (sample.cyc_cnt) { 1683 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1684 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1685 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1686 } 1687 1688 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1689 1690 return intel_pt_deliver_synth_event(pt, event, &sample, 1691 pt->instructions_sample_type); 1692 } 1693 1694 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1695 { 1696 struct intel_pt *pt = ptq->pt; 1697 union perf_event *event = ptq->event_buf; 1698 struct perf_sample sample = { .ip = 0, }; 1699 1700 if (intel_pt_skip_event(pt)) 1701 return 0; 1702 1703 intel_pt_prep_sample(pt, ptq, event, &sample); 1704 1705 sample.id = ptq->pt->transactions_id; 1706 sample.stream_id = ptq->pt->transactions_id; 1707 1708 return intel_pt_deliver_synth_event(pt, event, &sample, 1709 pt->transactions_sample_type); 1710 } 1711 1712 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1713 struct intel_pt_queue *ptq, 1714 union perf_event *event, 1715 struct perf_sample *sample) 1716 { 1717 intel_pt_prep_sample(pt, ptq, event, sample); 1718 1719 /* 1720 * Zero IP is used to mean "trace start" but that is not the case for 1721 * power or PTWRITE events with no IP, so clear the flags. 1722 */ 1723 if (!sample->ip) 1724 sample->flags = 0; 1725 } 1726 1727 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1728 { 1729 struct intel_pt *pt = ptq->pt; 1730 union perf_event *event = ptq->event_buf; 1731 struct perf_sample sample = { .ip = 0, }; 1732 struct perf_synth_intel_ptwrite raw; 1733 1734 if (intel_pt_skip_event(pt)) 1735 return 0; 1736 1737 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1738 1739 sample.id = ptq->pt->ptwrites_id; 1740 sample.stream_id = ptq->pt->ptwrites_id; 1741 1742 raw.flags = 0; 1743 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1744 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1745 1746 sample.raw_size = perf_synth__raw_size(raw); 1747 sample.raw_data = perf_synth__raw_data(&raw); 1748 1749 return intel_pt_deliver_synth_event(pt, event, &sample, 1750 pt->ptwrites_sample_type); 1751 } 1752 1753 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1754 { 1755 struct intel_pt *pt = ptq->pt; 1756 union perf_event *event = ptq->event_buf; 1757 struct perf_sample sample = { .ip = 0, }; 1758 struct perf_synth_intel_cbr raw; 1759 u32 flags; 1760 1761 if (intel_pt_skip_cbr_event(pt)) 1762 return 0; 1763 1764 ptq->cbr_seen = ptq->state->cbr; 1765 1766 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1767 1768 sample.id = ptq->pt->cbr_id; 1769 sample.stream_id = ptq->pt->cbr_id; 1770 1771 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1772 raw.flags = cpu_to_le32(flags); 1773 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1774 raw.reserved3 = 0; 1775 1776 sample.raw_size = perf_synth__raw_size(raw); 1777 sample.raw_data = perf_synth__raw_data(&raw); 1778 1779 return intel_pt_deliver_synth_event(pt, event, &sample, 1780 pt->pwr_events_sample_type); 1781 } 1782 1783 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) 1784 { 1785 struct intel_pt *pt = ptq->pt; 1786 union perf_event *event = ptq->event_buf; 1787 struct perf_sample sample = { .ip = 0, }; 1788 struct perf_synth_intel_psb raw; 1789 1790 if (intel_pt_skip_event(pt)) 1791 return 0; 1792 1793 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1794 1795 sample.id = ptq->pt->psb_id; 1796 sample.stream_id = ptq->pt->psb_id; 1797 sample.flags = 0; 1798 1799 raw.reserved = 0; 1800 raw.offset = ptq->state->psb_offset; 1801 1802 sample.raw_size = perf_synth__raw_size(raw); 1803 sample.raw_data = perf_synth__raw_data(&raw); 1804 1805 return intel_pt_deliver_synth_event(pt, event, &sample, 1806 pt->pwr_events_sample_type); 1807 } 1808 1809 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1810 { 1811 struct intel_pt *pt = ptq->pt; 1812 union perf_event *event = ptq->event_buf; 1813 struct perf_sample sample = { .ip = 0, }; 1814 struct perf_synth_intel_mwait raw; 1815 1816 if (intel_pt_skip_event(pt)) 1817 return 0; 1818 1819 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1820 1821 sample.id = ptq->pt->mwait_id; 1822 sample.stream_id = ptq->pt->mwait_id; 1823 1824 raw.reserved = 0; 1825 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1826 1827 sample.raw_size = perf_synth__raw_size(raw); 1828 sample.raw_data = perf_synth__raw_data(&raw); 1829 1830 return intel_pt_deliver_synth_event(pt, event, &sample, 1831 pt->pwr_events_sample_type); 1832 } 1833 1834 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1835 { 1836 struct intel_pt *pt = ptq->pt; 1837 union perf_event *event = ptq->event_buf; 1838 struct perf_sample sample = { .ip = 0, }; 1839 struct perf_synth_intel_pwre raw; 1840 1841 if (intel_pt_skip_event(pt)) 1842 return 0; 1843 1844 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1845 1846 sample.id = ptq->pt->pwre_id; 1847 sample.stream_id = ptq->pt->pwre_id; 1848 1849 raw.reserved = 0; 1850 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1851 1852 sample.raw_size = perf_synth__raw_size(raw); 1853 sample.raw_data = perf_synth__raw_data(&raw); 1854 1855 return intel_pt_deliver_synth_event(pt, event, &sample, 1856 pt->pwr_events_sample_type); 1857 } 1858 1859 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1860 { 1861 struct intel_pt *pt = ptq->pt; 1862 union perf_event *event = ptq->event_buf; 1863 struct perf_sample sample = { .ip = 0, }; 1864 struct perf_synth_intel_exstop raw; 1865 1866 if (intel_pt_skip_event(pt)) 1867 return 0; 1868 1869 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1870 1871 sample.id = ptq->pt->exstop_id; 1872 sample.stream_id = ptq->pt->exstop_id; 1873 1874 raw.flags = 0; 1875 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1876 1877 sample.raw_size = perf_synth__raw_size(raw); 1878 sample.raw_data = perf_synth__raw_data(&raw); 1879 1880 return intel_pt_deliver_synth_event(pt, event, &sample, 1881 pt->pwr_events_sample_type); 1882 } 1883 1884 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1885 { 1886 struct intel_pt *pt = ptq->pt; 1887 union perf_event *event = ptq->event_buf; 1888 struct perf_sample sample = { .ip = 0, }; 1889 struct perf_synth_intel_pwrx raw; 1890 1891 if (intel_pt_skip_event(pt)) 1892 return 0; 1893 1894 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1895 1896 sample.id = ptq->pt->pwrx_id; 1897 sample.stream_id = ptq->pt->pwrx_id; 1898 1899 raw.reserved = 0; 1900 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1901 1902 sample.raw_size = perf_synth__raw_size(raw); 1903 sample.raw_data = perf_synth__raw_data(&raw); 1904 1905 return intel_pt_deliver_synth_event(pt, event, &sample, 1906 pt->pwr_events_sample_type); 1907 } 1908 1909 /* 1910 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1911 * intel_pt_add_gp_regs(). 1912 */ 1913 static const int pebs_gp_regs[] = { 1914 [PERF_REG_X86_FLAGS] = 1, 1915 [PERF_REG_X86_IP] = 2, 1916 [PERF_REG_X86_AX] = 3, 1917 [PERF_REG_X86_CX] = 4, 1918 [PERF_REG_X86_DX] = 5, 1919 [PERF_REG_X86_BX] = 6, 1920 [PERF_REG_X86_SP] = 7, 1921 [PERF_REG_X86_BP] = 8, 1922 [PERF_REG_X86_SI] = 9, 1923 [PERF_REG_X86_DI] = 10, 1924 [PERF_REG_X86_R8] = 11, 1925 [PERF_REG_X86_R9] = 12, 1926 [PERF_REG_X86_R10] = 13, 1927 [PERF_REG_X86_R11] = 14, 1928 [PERF_REG_X86_R12] = 15, 1929 [PERF_REG_X86_R13] = 16, 1930 [PERF_REG_X86_R14] = 17, 1931 [PERF_REG_X86_R15] = 18, 1932 }; 1933 1934 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1935 const struct intel_pt_blk_items *items, 1936 u64 regs_mask) 1937 { 1938 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1939 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1940 u32 bit; 1941 int i; 1942 1943 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1944 /* Get the PEBS gp_regs array index */ 1945 int n = pebs_gp_regs[i] - 1; 1946 1947 if (n < 0) 1948 continue; 1949 /* 1950 * Add only registers that were requested (i.e. 'regs_mask') and 1951 * that were provided (i.e. 'mask'), and update the resulting 1952 * mask (i.e. 'intr_regs->mask') accordingly. 1953 */ 1954 if (mask & 1 << n && regs_mask & bit) { 1955 intr_regs->mask |= bit; 1956 *pos++ = gp_regs[n]; 1957 } 1958 } 1959 1960 return pos; 1961 } 1962 1963 #ifndef PERF_REG_X86_XMM0 1964 #define PERF_REG_X86_XMM0 32 1965 #endif 1966 1967 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1968 const struct intel_pt_blk_items *items, 1969 u64 regs_mask) 1970 { 1971 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1972 const u64 *xmm = items->xmm; 1973 1974 /* 1975 * If there are any XMM registers, then there should be all of them. 1976 * Nevertheless, follow the logic to add only registers that were 1977 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1978 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1979 */ 1980 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1981 1982 for (; mask; mask >>= 1, xmm++) { 1983 if (mask & 1) 1984 *pos++ = *xmm; 1985 } 1986 } 1987 1988 #define LBR_INFO_MISPRED (1ULL << 63) 1989 #define LBR_INFO_IN_TX (1ULL << 62) 1990 #define LBR_INFO_ABORT (1ULL << 61) 1991 #define LBR_INFO_CYCLES 0xffff 1992 1993 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1994 static u64 intel_pt_lbr_flags(u64 info) 1995 { 1996 union { 1997 struct branch_flags flags; 1998 u64 result; 1999 } u; 2000 2001 u.result = 0; 2002 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 2003 u.flags.predicted = !(info & LBR_INFO_MISPRED); 2004 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 2005 u.flags.abort = !!(info & LBR_INFO_ABORT); 2006 u.flags.cycles = info & LBR_INFO_CYCLES; 2007 2008 return u.result; 2009 } 2010 2011 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 2012 const struct intel_pt_blk_items *items) 2013 { 2014 u64 *to; 2015 int i; 2016 2017 br_stack->nr = 0; 2018 2019 to = &br_stack->entries[0].from; 2020 2021 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 2022 u32 mask = items->mask[i]; 2023 const u64 *from = items->val[i]; 2024 2025 for (; mask; mask >>= 3, from += 3) { 2026 if ((mask & 7) == 7) { 2027 *to++ = from[0]; 2028 *to++ = from[1]; 2029 *to++ = intel_pt_lbr_flags(from[2]); 2030 br_stack->nr += 1; 2031 } 2032 } 2033 } 2034 } 2035 2036 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id) 2037 { 2038 const struct intel_pt_blk_items *items = &ptq->state->items; 2039 struct perf_sample sample = { .ip = 0, }; 2040 union perf_event *event = ptq->event_buf; 2041 struct intel_pt *pt = ptq->pt; 2042 u64 sample_type = evsel->core.attr.sample_type; 2043 u8 cpumode; 2044 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 2045 2046 if (intel_pt_skip_event(pt)) 2047 return 0; 2048 2049 intel_pt_prep_a_sample(ptq, event, &sample); 2050 2051 sample.id = id; 2052 sample.stream_id = id; 2053 2054 if (!evsel->core.attr.freq) 2055 sample.period = evsel->core.attr.sample_period; 2056 2057 /* No support for non-zero CS base */ 2058 if (items->has_ip) 2059 sample.ip = items->ip; 2060 else if (items->has_rip) 2061 sample.ip = items->rip; 2062 else 2063 sample.ip = ptq->state->from_ip; 2064 2065 cpumode = intel_pt_cpumode(ptq, sample.ip, 0); 2066 2067 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 2068 2069 sample.cpumode = cpumode; 2070 2071 if (sample_type & PERF_SAMPLE_TIME) { 2072 u64 timestamp = 0; 2073 2074 if (items->has_timestamp) 2075 timestamp = items->timestamp; 2076 else if (!pt->timeless_decoding) 2077 timestamp = ptq->timestamp; 2078 if (timestamp) 2079 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 2080 } 2081 2082 if (sample_type & PERF_SAMPLE_CALLCHAIN && 2083 pt->synth_opts.callchain) { 2084 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 2085 pt->synth_opts.callchain_sz, sample.ip, 2086 pt->kernel_start); 2087 sample.callchain = ptq->chain; 2088 } 2089 2090 if (sample_type & PERF_SAMPLE_REGS_INTR && 2091 (items->mask[INTEL_PT_GP_REGS_POS] || 2092 items->mask[INTEL_PT_XMM_POS])) { 2093 u64 regs_mask = evsel->core.attr.sample_regs_intr; 2094 u64 *pos; 2095 2096 sample.intr_regs.abi = items->is_32_bit ? 2097 PERF_SAMPLE_REGS_ABI_32 : 2098 PERF_SAMPLE_REGS_ABI_64; 2099 sample.intr_regs.regs = regs; 2100 2101 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 2102 2103 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 2104 } 2105 2106 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 2107 if (items->mask[INTEL_PT_LBR_0_POS] || 2108 items->mask[INTEL_PT_LBR_1_POS] || 2109 items->mask[INTEL_PT_LBR_2_POS]) { 2110 intel_pt_add_lbrs(ptq->last_branch, items); 2111 } else if (pt->synth_opts.last_branch) { 2112 thread_stack__br_sample(ptq->thread, ptq->cpu, 2113 ptq->last_branch, 2114 pt->br_stack_sz); 2115 } else { 2116 ptq->last_branch->nr = 0; 2117 } 2118 sample.branch_stack = ptq->last_branch; 2119 } 2120 2121 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 2122 sample.addr = items->mem_access_address; 2123 2124 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2125 /* 2126 * Refer kernel's setup_pebs_adaptive_sample_data() and 2127 * intel_hsw_weight(). 2128 */ 2129 if (items->has_mem_access_latency) { 2130 u64 weight = items->mem_access_latency >> 32; 2131 2132 /* 2133 * Starts from SPR, the mem access latency field 2134 * contains both cache latency [47:32] and instruction 2135 * latency [15:0]. The cache latency is the same as the 2136 * mem access latency on previous platforms. 2137 * 2138 * In practice, no memory access could last than 4G 2139 * cycles. Use latency >> 32 to distinguish the 2140 * different format of the mem access latency field. 2141 */ 2142 if (weight > 0) { 2143 sample.weight = weight & 0xffff; 2144 sample.ins_lat = items->mem_access_latency & 0xffff; 2145 } else 2146 sample.weight = items->mem_access_latency; 2147 } 2148 if (!sample.weight && items->has_tsx_aux_info) { 2149 /* Cycles last block */ 2150 sample.weight = (u32)items->tsx_aux_info; 2151 } 2152 } 2153 2154 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 2155 u64 ax = items->has_rax ? items->rax : 0; 2156 /* Refer kernel's intel_hsw_transaction() */ 2157 u64 txn = (u8)(items->tsx_aux_info >> 32); 2158 2159 /* For RTM XABORTs also log the abort code from AX */ 2160 if (txn & PERF_TXN_TRANSACTION && ax & 1) 2161 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 2162 sample.transaction = txn; 2163 } 2164 2165 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 2166 } 2167 2168 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq) 2169 { 2170 struct intel_pt *pt = ptq->pt; 2171 struct evsel *evsel = pt->pebs_evsel; 2172 u64 id = evsel->core.id[0]; 2173 2174 return intel_pt_do_synth_pebs_sample(ptq, evsel, id); 2175 } 2176 2177 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 2178 { 2179 const struct intel_pt_blk_items *items = &ptq->state->items; 2180 struct intel_pt_pebs_event *pe; 2181 struct intel_pt *pt = ptq->pt; 2182 int err = -EINVAL; 2183 int hw_id; 2184 2185 if (!items->has_applicable_counters || !items->applicable_counters) { 2186 if (!pt->single_pebs) 2187 pr_err("PEBS-via-PT record with no applicable_counters\n"); 2188 return intel_pt_synth_single_pebs_sample(ptq); 2189 } 2190 2191 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) { 2192 pe = &ptq->pebs[hw_id]; 2193 if (!pe->evsel) { 2194 if (!pt->single_pebs) 2195 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n", 2196 hw_id); 2197 return intel_pt_synth_single_pebs_sample(ptq); 2198 } 2199 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id); 2200 if (err) 2201 return err; 2202 } 2203 2204 return err; 2205 } 2206 2207 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq) 2208 { 2209 struct intel_pt *pt = ptq->pt; 2210 union perf_event *event = ptq->event_buf; 2211 struct perf_sample sample = { .ip = 0, }; 2212 struct { 2213 struct perf_synth_intel_evt cfe; 2214 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS]; 2215 } raw; 2216 int i; 2217 2218 if (intel_pt_skip_event(pt)) 2219 return 0; 2220 2221 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2222 2223 sample.id = ptq->pt->evt_id; 2224 sample.stream_id = ptq->pt->evt_id; 2225 2226 raw.cfe.type = ptq->state->cfe_type; 2227 raw.cfe.reserved = 0; 2228 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2229 raw.cfe.vector = ptq->state->cfe_vector; 2230 raw.cfe.evd_cnt = ptq->state->evd_cnt; 2231 2232 for (i = 0; i < ptq->state->evd_cnt; i++) { 2233 raw.evd[i].et = 0; 2234 raw.evd[i].evd_type = ptq->state->evd[i].type; 2235 raw.evd[i].payload = ptq->state->evd[i].payload; 2236 } 2237 2238 sample.raw_size = perf_synth__raw_size(raw) + 2239 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd); 2240 sample.raw_data = perf_synth__raw_data(&raw); 2241 2242 return intel_pt_deliver_synth_event(pt, event, &sample, 2243 pt->evt_sample_type); 2244 } 2245 2246 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq) 2247 { 2248 struct intel_pt *pt = ptq->pt; 2249 union perf_event *event = ptq->event_buf; 2250 struct perf_sample sample = { .ip = 0, }; 2251 struct perf_synth_intel_iflag_chg raw; 2252 2253 if (intel_pt_skip_event(pt)) 2254 return 0; 2255 2256 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2257 2258 sample.id = ptq->pt->iflag_chg_id; 2259 sample.stream_id = ptq->pt->iflag_chg_id; 2260 2261 raw.flags = 0; 2262 raw.iflag = ptq->state->to_iflag; 2263 2264 if (ptq->state->type & INTEL_PT_BRANCH) { 2265 raw.via_branch = 1; 2266 raw.branch_ip = ptq->state->to_ip; 2267 } else { 2268 sample.addr = 0; 2269 } 2270 sample.flags = ptq->flags; 2271 2272 sample.raw_size = perf_synth__raw_size(raw); 2273 sample.raw_data = perf_synth__raw_data(&raw); 2274 2275 return intel_pt_deliver_synth_event(pt, event, &sample, 2276 pt->iflag_chg_sample_type); 2277 } 2278 2279 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 2280 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 2281 { 2282 union perf_event event; 2283 char msg[MAX_AUXTRACE_ERROR_MSG]; 2284 int err; 2285 2286 if (pt->synth_opts.error_minus_flags) { 2287 if (code == INTEL_PT_ERR_OVR && 2288 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 2289 return 0; 2290 if (code == INTEL_PT_ERR_LOST && 2291 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 2292 return 0; 2293 } 2294 2295 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 2296 2297 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 2298 code, cpu, pid, tid, ip, msg, timestamp); 2299 2300 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 2301 if (err) 2302 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 2303 err); 2304 2305 return err; 2306 } 2307 2308 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 2309 const struct intel_pt_state *state) 2310 { 2311 struct intel_pt *pt = ptq->pt; 2312 u64 tm = ptq->timestamp; 2313 2314 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 2315 2316 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 2317 ptq->tid, state->from_ip, tm); 2318 } 2319 2320 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 2321 { 2322 struct auxtrace_queue *queue; 2323 pid_t tid = ptq->next_tid; 2324 int err; 2325 2326 if (tid == -1) 2327 return 0; 2328 2329 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 2330 2331 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 2332 2333 queue = &pt->queues.queue_array[ptq->queue_nr]; 2334 intel_pt_set_pid_tid_cpu(pt, queue); 2335 2336 ptq->next_tid = -1; 2337 2338 return err; 2339 } 2340 2341 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 2342 { 2343 struct intel_pt *pt = ptq->pt; 2344 2345 return ip == pt->switch_ip && 2346 (ptq->flags & PERF_IP_FLAG_BRANCH) && 2347 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 2348 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 2349 } 2350 2351 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 2352 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 2353 2354 static int intel_pt_sample(struct intel_pt_queue *ptq) 2355 { 2356 const struct intel_pt_state *state = ptq->state; 2357 struct intel_pt *pt = ptq->pt; 2358 int err; 2359 2360 if (!ptq->have_sample) 2361 return 0; 2362 2363 ptq->have_sample = false; 2364 2365 if (pt->synth_opts.approx_ipc) { 2366 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2367 ptq->ipc_cyc_cnt = ptq->state->cycles; 2368 ptq->sample_ipc = true; 2369 } else { 2370 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2371 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 2372 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC; 2373 } 2374 2375 /* 2376 * Do PEBS first to allow for the possibility that the PEBS timestamp 2377 * precedes the current timestamp. 2378 */ 2379 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 2380 err = intel_pt_synth_pebs_sample(ptq); 2381 if (err) 2382 return err; 2383 } 2384 2385 if (pt->synth_opts.intr_events) { 2386 if (state->type & INTEL_PT_EVT) { 2387 err = intel_pt_synth_events_sample(ptq); 2388 if (err) 2389 return err; 2390 } 2391 if (state->type & INTEL_PT_IFLAG_CHG) { 2392 err = intel_pt_synth_iflag_chg_sample(ptq); 2393 if (err) 2394 return err; 2395 } 2396 } 2397 2398 if (pt->sample_pwr_events) { 2399 if (state->type & INTEL_PT_PSB_EVT) { 2400 err = intel_pt_synth_psb_sample(ptq); 2401 if (err) 2402 return err; 2403 } 2404 if (ptq->state->cbr != ptq->cbr_seen) { 2405 err = intel_pt_synth_cbr_sample(ptq); 2406 if (err) 2407 return err; 2408 } 2409 if (state->type & INTEL_PT_PWR_EVT) { 2410 if (state->type & INTEL_PT_MWAIT_OP) { 2411 err = intel_pt_synth_mwait_sample(ptq); 2412 if (err) 2413 return err; 2414 } 2415 if (state->type & INTEL_PT_PWR_ENTRY) { 2416 err = intel_pt_synth_pwre_sample(ptq); 2417 if (err) 2418 return err; 2419 } 2420 if (state->type & INTEL_PT_EX_STOP) { 2421 err = intel_pt_synth_exstop_sample(ptq); 2422 if (err) 2423 return err; 2424 } 2425 if (state->type & INTEL_PT_PWR_EXIT) { 2426 err = intel_pt_synth_pwrx_sample(ptq); 2427 if (err) 2428 return err; 2429 } 2430 } 2431 } 2432 2433 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 2434 err = intel_pt_synth_instruction_sample(ptq); 2435 if (err) 2436 return err; 2437 } 2438 2439 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2440 err = intel_pt_synth_transaction_sample(ptq); 2441 if (err) 2442 return err; 2443 } 2444 2445 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2446 err = intel_pt_synth_ptwrite_sample(ptq); 2447 if (err) 2448 return err; 2449 } 2450 2451 if (!(state->type & INTEL_PT_BRANCH)) 2452 return 0; 2453 2454 if (pt->use_thread_stack) { 2455 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2456 state->from_ip, state->to_ip, ptq->insn_len, 2457 state->trace_nr, pt->callstack, 2458 pt->br_stack_sz_plus, 2459 pt->mispred_all); 2460 } else { 2461 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2462 } 2463 2464 if (pt->sample_branches) { 2465 if (state->from_nr != state->to_nr && 2466 state->from_ip && state->to_ip) { 2467 struct intel_pt_state *st = (struct intel_pt_state *)state; 2468 u64 to_ip = st->to_ip; 2469 u64 from_ip = st->from_ip; 2470 2471 /* 2472 * perf cannot handle having different machines for ip 2473 * and addr, so create 2 branches. 2474 */ 2475 st->to_ip = 0; 2476 err = intel_pt_synth_branch_sample(ptq); 2477 if (err) 2478 return err; 2479 st->from_ip = 0; 2480 st->to_ip = to_ip; 2481 err = intel_pt_synth_branch_sample(ptq); 2482 st->from_ip = from_ip; 2483 } else { 2484 err = intel_pt_synth_branch_sample(ptq); 2485 } 2486 if (err) 2487 return err; 2488 } 2489 2490 if (!ptq->sync_switch) 2491 return 0; 2492 2493 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2494 switch (ptq->switch_state) { 2495 case INTEL_PT_SS_NOT_TRACING: 2496 case INTEL_PT_SS_UNKNOWN: 2497 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2498 err = intel_pt_next_tid(pt, ptq); 2499 if (err) 2500 return err; 2501 ptq->switch_state = INTEL_PT_SS_TRACING; 2502 break; 2503 default: 2504 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2505 return 1; 2506 } 2507 } else if (!state->to_ip) { 2508 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2509 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2510 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2511 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2512 state->to_ip == pt->ptss_ip && 2513 (ptq->flags & PERF_IP_FLAG_CALL)) { 2514 ptq->switch_state = INTEL_PT_SS_TRACING; 2515 } 2516 2517 return 0; 2518 } 2519 2520 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2521 { 2522 struct machine *machine = pt->machine; 2523 struct map *map; 2524 struct symbol *sym, *start; 2525 u64 ip, switch_ip = 0; 2526 const char *ptss; 2527 2528 if (ptss_ip) 2529 *ptss_ip = 0; 2530 2531 map = machine__kernel_map(machine); 2532 if (!map) 2533 return 0; 2534 2535 if (map__load(map)) 2536 return 0; 2537 2538 start = dso__first_symbol(map->dso); 2539 2540 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2541 if (sym->binding == STB_GLOBAL && 2542 !strcmp(sym->name, "__switch_to")) { 2543 ip = map->unmap_ip(map, sym->start); 2544 if (ip >= map->start && ip < map->end) { 2545 switch_ip = ip; 2546 break; 2547 } 2548 } 2549 } 2550 2551 if (!switch_ip || !ptss_ip) 2552 return 0; 2553 2554 if (pt->have_sched_switch == 1) 2555 ptss = "perf_trace_sched_switch"; 2556 else 2557 ptss = "__perf_event_task_sched_out"; 2558 2559 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2560 if (!strcmp(sym->name, ptss)) { 2561 ip = map->unmap_ip(map, sym->start); 2562 if (ip >= map->start && ip < map->end) { 2563 *ptss_ip = ip; 2564 break; 2565 } 2566 } 2567 } 2568 2569 return switch_ip; 2570 } 2571 2572 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2573 { 2574 unsigned int i; 2575 2576 pt->sync_switch = true; 2577 2578 for (i = 0; i < pt->queues.nr_queues; i++) { 2579 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2580 struct intel_pt_queue *ptq = queue->priv; 2581 2582 if (ptq) 2583 ptq->sync_switch = true; 2584 } 2585 } 2586 2587 /* 2588 * To filter against time ranges, it is only necessary to look at the next start 2589 * or end time. 2590 */ 2591 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2592 { 2593 struct intel_pt *pt = ptq->pt; 2594 2595 if (ptq->sel_start) { 2596 /* Next time is an end time */ 2597 ptq->sel_start = false; 2598 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2599 return true; 2600 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2601 /* Next time is a start time */ 2602 ptq->sel_start = true; 2603 ptq->sel_idx += 1; 2604 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2605 return true; 2606 } 2607 2608 /* No next time */ 2609 return false; 2610 } 2611 2612 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2613 { 2614 int err; 2615 2616 while (1) { 2617 if (ptq->sel_start) { 2618 if (ptq->timestamp >= ptq->sel_timestamp) { 2619 /* After start time, so consider next time */ 2620 intel_pt_next_time(ptq); 2621 if (!ptq->sel_timestamp) { 2622 /* No end time */ 2623 return 0; 2624 } 2625 /* Check against end time */ 2626 continue; 2627 } 2628 /* Before start time, so fast forward */ 2629 ptq->have_sample = false; 2630 if (ptq->sel_timestamp > *ff_timestamp) { 2631 if (ptq->sync_switch) { 2632 intel_pt_next_tid(ptq->pt, ptq); 2633 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2634 } 2635 *ff_timestamp = ptq->sel_timestamp; 2636 err = intel_pt_fast_forward(ptq->decoder, 2637 ptq->sel_timestamp); 2638 if (err) 2639 return err; 2640 } 2641 return 0; 2642 } else if (ptq->timestamp > ptq->sel_timestamp) { 2643 /* After end time, so consider next time */ 2644 if (!intel_pt_next_time(ptq)) { 2645 /* No next time range, so stop decoding */ 2646 ptq->have_sample = false; 2647 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2648 return 1; 2649 } 2650 /* Check against next start time */ 2651 continue; 2652 } else { 2653 /* Before end time */ 2654 return 0; 2655 } 2656 } 2657 } 2658 2659 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2660 { 2661 const struct intel_pt_state *state = ptq->state; 2662 struct intel_pt *pt = ptq->pt; 2663 u64 ff_timestamp = 0; 2664 int err; 2665 2666 if (!pt->kernel_start) { 2667 pt->kernel_start = machine__kernel_start(pt->machine); 2668 if (pt->per_cpu_mmaps && 2669 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2670 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2671 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { 2672 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2673 if (pt->switch_ip) { 2674 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2675 pt->switch_ip, pt->ptss_ip); 2676 intel_pt_enable_sync_switch(pt); 2677 } 2678 } 2679 } 2680 2681 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2682 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2683 while (1) { 2684 err = intel_pt_sample(ptq); 2685 if (err) 2686 return err; 2687 2688 state = intel_pt_decode(ptq->decoder); 2689 if (state->err) { 2690 if (state->err == INTEL_PT_ERR_NODATA) 2691 return 1; 2692 if (ptq->sync_switch && 2693 state->from_ip >= pt->kernel_start) { 2694 ptq->sync_switch = false; 2695 intel_pt_next_tid(pt, ptq); 2696 } 2697 ptq->timestamp = state->est_timestamp; 2698 if (pt->synth_opts.errors) { 2699 err = intel_ptq_synth_error(ptq, state); 2700 if (err) 2701 return err; 2702 } 2703 continue; 2704 } 2705 2706 ptq->state = state; 2707 ptq->have_sample = true; 2708 intel_pt_sample_flags(ptq); 2709 2710 /* Use estimated TSC upon return to user space */ 2711 if (pt->est_tsc && 2712 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2713 state->to_ip && state->to_ip < pt->kernel_start) { 2714 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2715 state->timestamp, state->est_timestamp); 2716 ptq->timestamp = state->est_timestamp; 2717 /* Use estimated TSC in unknown switch state */ 2718 } else if (ptq->sync_switch && 2719 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2720 intel_pt_is_switch_ip(ptq, state->to_ip) && 2721 ptq->next_tid == -1) { 2722 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2723 state->timestamp, state->est_timestamp); 2724 ptq->timestamp = state->est_timestamp; 2725 } else if (state->timestamp > ptq->timestamp) { 2726 ptq->timestamp = state->timestamp; 2727 } 2728 2729 if (ptq->sel_timestamp) { 2730 err = intel_pt_time_filter(ptq, &ff_timestamp); 2731 if (err) 2732 return err; 2733 } 2734 2735 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2736 *timestamp = ptq->timestamp; 2737 return 0; 2738 } 2739 } 2740 return 0; 2741 } 2742 2743 static inline int intel_pt_update_queues(struct intel_pt *pt) 2744 { 2745 if (pt->queues.new_data) { 2746 pt->queues.new_data = false; 2747 return intel_pt_setup_queues(pt); 2748 } 2749 return 0; 2750 } 2751 2752 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2753 { 2754 unsigned int queue_nr; 2755 u64 ts; 2756 int ret; 2757 2758 while (1) { 2759 struct auxtrace_queue *queue; 2760 struct intel_pt_queue *ptq; 2761 2762 if (!pt->heap.heap_cnt) 2763 return 0; 2764 2765 if (pt->heap.heap_array[0].ordinal >= timestamp) 2766 return 0; 2767 2768 queue_nr = pt->heap.heap_array[0].queue_nr; 2769 queue = &pt->queues.queue_array[queue_nr]; 2770 ptq = queue->priv; 2771 2772 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2773 queue_nr, pt->heap.heap_array[0].ordinal, 2774 timestamp); 2775 2776 auxtrace_heap__pop(&pt->heap); 2777 2778 if (pt->heap.heap_cnt) { 2779 ts = pt->heap.heap_array[0].ordinal + 1; 2780 if (ts > timestamp) 2781 ts = timestamp; 2782 } else { 2783 ts = timestamp; 2784 } 2785 2786 intel_pt_set_pid_tid_cpu(pt, queue); 2787 2788 ret = intel_pt_run_decoder(ptq, &ts); 2789 2790 if (ret < 0) { 2791 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2792 return ret; 2793 } 2794 2795 if (!ret) { 2796 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2797 if (ret < 0) 2798 return ret; 2799 } else { 2800 ptq->on_heap = false; 2801 } 2802 } 2803 2804 return 0; 2805 } 2806 2807 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2808 u64 time_) 2809 { 2810 struct auxtrace_queues *queues = &pt->queues; 2811 unsigned int i; 2812 u64 ts = 0; 2813 2814 for (i = 0; i < queues->nr_queues; i++) { 2815 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2816 struct intel_pt_queue *ptq = queue->priv; 2817 2818 if (ptq && (tid == -1 || ptq->tid == tid)) { 2819 ptq->time = time_; 2820 intel_pt_set_pid_tid_cpu(pt, queue); 2821 intel_pt_run_decoder(ptq, &ts); 2822 } 2823 } 2824 return 0; 2825 } 2826 2827 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2828 struct auxtrace_queue *queue, 2829 struct perf_sample *sample) 2830 { 2831 struct machine *m = ptq->pt->machine; 2832 2833 ptq->pid = sample->pid; 2834 ptq->tid = sample->tid; 2835 ptq->cpu = queue->cpu; 2836 2837 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2838 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2839 2840 thread__zput(ptq->thread); 2841 2842 if (ptq->tid == -1) 2843 return; 2844 2845 if (ptq->pid == -1) { 2846 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2847 if (ptq->thread) 2848 ptq->pid = ptq->thread->pid_; 2849 return; 2850 } 2851 2852 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2853 } 2854 2855 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2856 struct perf_sample *sample) 2857 { 2858 struct auxtrace_queue *queue; 2859 struct intel_pt_queue *ptq; 2860 u64 ts = 0; 2861 2862 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2863 if (!queue) 2864 return -EINVAL; 2865 2866 ptq = queue->priv; 2867 if (!ptq) 2868 return 0; 2869 2870 ptq->stop = false; 2871 ptq->time = sample->time; 2872 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2873 intel_pt_run_decoder(ptq, &ts); 2874 return 0; 2875 } 2876 2877 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2878 { 2879 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2880 sample->pid, sample->tid, 0, sample->time); 2881 } 2882 2883 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2884 { 2885 unsigned i, j; 2886 2887 if (cpu < 0 || !pt->queues.nr_queues) 2888 return NULL; 2889 2890 if ((unsigned)cpu >= pt->queues.nr_queues) 2891 i = pt->queues.nr_queues - 1; 2892 else 2893 i = cpu; 2894 2895 if (pt->queues.queue_array[i].cpu == cpu) 2896 return pt->queues.queue_array[i].priv; 2897 2898 for (j = 0; i > 0; j++) { 2899 if (pt->queues.queue_array[--i].cpu == cpu) 2900 return pt->queues.queue_array[i].priv; 2901 } 2902 2903 for (; j < pt->queues.nr_queues; j++) { 2904 if (pt->queues.queue_array[j].cpu == cpu) 2905 return pt->queues.queue_array[j].priv; 2906 } 2907 2908 return NULL; 2909 } 2910 2911 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2912 u64 timestamp) 2913 { 2914 struct intel_pt_queue *ptq; 2915 int err; 2916 2917 if (!pt->sync_switch) 2918 return 1; 2919 2920 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2921 if (!ptq || !ptq->sync_switch) 2922 return 1; 2923 2924 switch (ptq->switch_state) { 2925 case INTEL_PT_SS_NOT_TRACING: 2926 break; 2927 case INTEL_PT_SS_UNKNOWN: 2928 case INTEL_PT_SS_TRACING: 2929 ptq->next_tid = tid; 2930 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2931 return 0; 2932 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2933 if (!ptq->on_heap) { 2934 ptq->timestamp = perf_time_to_tsc(timestamp, 2935 &pt->tc); 2936 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2937 ptq->timestamp); 2938 if (err) 2939 return err; 2940 ptq->on_heap = true; 2941 } 2942 ptq->switch_state = INTEL_PT_SS_TRACING; 2943 break; 2944 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2945 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2946 break; 2947 default: 2948 break; 2949 } 2950 2951 ptq->next_tid = -1; 2952 2953 return 1; 2954 } 2955 2956 static int intel_pt_process_switch(struct intel_pt *pt, 2957 struct perf_sample *sample) 2958 { 2959 pid_t tid; 2960 int cpu, ret; 2961 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); 2962 2963 if (evsel != pt->switch_evsel) 2964 return 0; 2965 2966 tid = evsel__intval(evsel, sample, "next_pid"); 2967 cpu = sample->cpu; 2968 2969 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2970 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2971 &pt->tc)); 2972 2973 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2974 if (ret <= 0) 2975 return ret; 2976 2977 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2978 } 2979 2980 static int intel_pt_context_switch_in(struct intel_pt *pt, 2981 struct perf_sample *sample) 2982 { 2983 pid_t pid = sample->pid; 2984 pid_t tid = sample->tid; 2985 int cpu = sample->cpu; 2986 2987 if (pt->sync_switch) { 2988 struct intel_pt_queue *ptq; 2989 2990 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2991 if (ptq && ptq->sync_switch) { 2992 ptq->next_tid = -1; 2993 switch (ptq->switch_state) { 2994 case INTEL_PT_SS_NOT_TRACING: 2995 case INTEL_PT_SS_UNKNOWN: 2996 case INTEL_PT_SS_TRACING: 2997 break; 2998 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2999 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3000 ptq->switch_state = INTEL_PT_SS_TRACING; 3001 break; 3002 default: 3003 break; 3004 } 3005 } 3006 } 3007 3008 /* 3009 * If the current tid has not been updated yet, ensure it is now that 3010 * a "switch in" event has occurred. 3011 */ 3012 if (machine__get_current_tid(pt->machine, cpu) == tid) 3013 return 0; 3014 3015 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3016 } 3017 3018 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 3019 struct perf_sample *sample) 3020 { 3021 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3022 pid_t pid, tid; 3023 int cpu, ret; 3024 3025 cpu = sample->cpu; 3026 3027 if (pt->have_sched_switch == 3) { 3028 if (!out) 3029 return intel_pt_context_switch_in(pt, sample); 3030 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 3031 pr_err("Expecting CPU-wide context switch event\n"); 3032 return -EINVAL; 3033 } 3034 pid = event->context_switch.next_prev_pid; 3035 tid = event->context_switch.next_prev_tid; 3036 } else { 3037 if (out) 3038 return 0; 3039 pid = sample->pid; 3040 tid = sample->tid; 3041 } 3042 3043 if (tid == -1) 3044 intel_pt_log("context_switch event has no tid\n"); 3045 3046 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3047 if (ret <= 0) 3048 return ret; 3049 3050 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3051 } 3052 3053 static int intel_pt_process_itrace_start(struct intel_pt *pt, 3054 union perf_event *event, 3055 struct perf_sample *sample) 3056 { 3057 if (!pt->per_cpu_mmaps) 3058 return 0; 3059 3060 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3061 sample->cpu, event->itrace_start.pid, 3062 event->itrace_start.tid, sample->time, 3063 perf_time_to_tsc(sample->time, &pt->tc)); 3064 3065 return machine__set_current_tid(pt->machine, sample->cpu, 3066 event->itrace_start.pid, 3067 event->itrace_start.tid); 3068 } 3069 3070 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt, 3071 union perf_event *event, 3072 struct perf_sample *sample) 3073 { 3074 u64 hw_id = event->aux_output_hw_id.hw_id; 3075 struct auxtrace_queue *queue; 3076 struct intel_pt_queue *ptq; 3077 struct evsel *evsel; 3078 3079 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3080 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id); 3081 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) { 3082 pr_err("Bad AUX output hardware ID\n"); 3083 return -EINVAL; 3084 } 3085 3086 ptq = queue->priv; 3087 3088 ptq->pebs[hw_id].evsel = evsel; 3089 ptq->pebs[hw_id].id = sample->id; 3090 3091 return 0; 3092 } 3093 3094 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 3095 struct addr_location *al) 3096 { 3097 if (!al->map || addr < al->map->start || addr >= al->map->end) { 3098 if (!thread__find_map(thread, cpumode, addr, al)) 3099 return -1; 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* Invalidate all instruction cache entries that overlap the text poke */ 3106 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 3107 { 3108 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 3109 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 3110 /* Assume text poke begins in a basic block no more than 4096 bytes */ 3111 int cnt = 4096 + event->text_poke.new_len; 3112 struct thread *thread = pt->unknown_thread; 3113 struct addr_location al = { .map = NULL }; 3114 struct machine *machine = pt->machine; 3115 struct intel_pt_cache_entry *e; 3116 u64 offset; 3117 3118 if (!event->text_poke.new_len) 3119 return 0; 3120 3121 for (; cnt; cnt--, addr--) { 3122 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 3123 if (addr < event->text_poke.addr) 3124 return 0; 3125 continue; 3126 } 3127 3128 if (!al.map->dso || !al.map->dso->auxtrace_cache) 3129 continue; 3130 3131 offset = al.map->map_ip(al.map, addr); 3132 3133 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 3134 if (!e) 3135 continue; 3136 3137 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 3138 /* 3139 * No overlap. Working backwards there cannot be another 3140 * basic block that overlaps the text poke if there is a 3141 * branch instruction before the text poke address. 3142 */ 3143 if (e->branch != INTEL_PT_BR_NO_BRANCH) 3144 return 0; 3145 } else { 3146 intel_pt_cache_invalidate(al.map->dso, machine, offset); 3147 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 3148 al.map->dso->long_name, addr); 3149 } 3150 } 3151 3152 return 0; 3153 } 3154 3155 static int intel_pt_process_event(struct perf_session *session, 3156 union perf_event *event, 3157 struct perf_sample *sample, 3158 struct perf_tool *tool) 3159 { 3160 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3161 auxtrace); 3162 u64 timestamp; 3163 int err = 0; 3164 3165 if (dump_trace) 3166 return 0; 3167 3168 if (!tool->ordered_events) { 3169 pr_err("Intel Processor Trace requires ordered events\n"); 3170 return -EINVAL; 3171 } 3172 3173 if (sample->time && sample->time != (u64)-1) 3174 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3175 else 3176 timestamp = 0; 3177 3178 if (timestamp || pt->timeless_decoding) { 3179 err = intel_pt_update_queues(pt); 3180 if (err) 3181 return err; 3182 } 3183 3184 if (pt->timeless_decoding) { 3185 if (pt->sampling_mode) { 3186 if (sample->aux_sample.size) 3187 err = intel_pt_process_timeless_sample(pt, 3188 sample); 3189 } else if (event->header.type == PERF_RECORD_EXIT) { 3190 err = intel_pt_process_timeless_queues(pt, 3191 event->fork.tid, 3192 sample->time); 3193 } 3194 } else if (timestamp) { 3195 if (!pt->first_timestamp) 3196 intel_pt_first_timestamp(pt, timestamp); 3197 err = intel_pt_process_queues(pt, timestamp); 3198 } 3199 if (err) 3200 return err; 3201 3202 if (event->header.type == PERF_RECORD_SAMPLE) { 3203 if (pt->synth_opts.add_callchain && !sample->callchain) 3204 intel_pt_add_callchain(pt, sample); 3205 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 3206 intel_pt_add_br_stack(pt, sample); 3207 } 3208 3209 if (event->header.type == PERF_RECORD_AUX && 3210 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 3211 pt->synth_opts.errors) { 3212 err = intel_pt_lost(pt, sample); 3213 if (err) 3214 return err; 3215 } 3216 3217 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 3218 err = intel_pt_process_switch(pt, sample); 3219 else if (event->header.type == PERF_RECORD_ITRACE_START) 3220 err = intel_pt_process_itrace_start(pt, event, sample); 3221 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) 3222 err = intel_pt_process_aux_output_hw_id(pt, event, sample); 3223 else if (event->header.type == PERF_RECORD_SWITCH || 3224 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 3225 err = intel_pt_context_switch(pt, event, sample); 3226 3227 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 3228 err = intel_pt_text_poke(pt, event); 3229 3230 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 3231 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 3232 event->header.type, sample->cpu, sample->time, timestamp); 3233 intel_pt_log_event(event); 3234 } 3235 3236 return err; 3237 } 3238 3239 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 3240 { 3241 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3242 auxtrace); 3243 int ret; 3244 3245 if (dump_trace) 3246 return 0; 3247 3248 if (!tool->ordered_events) 3249 return -EINVAL; 3250 3251 ret = intel_pt_update_queues(pt); 3252 if (ret < 0) 3253 return ret; 3254 3255 if (pt->timeless_decoding) 3256 return intel_pt_process_timeless_queues(pt, -1, 3257 MAX_TIMESTAMP - 1); 3258 3259 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 3260 } 3261 3262 static void intel_pt_free_events(struct perf_session *session) 3263 { 3264 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3265 auxtrace); 3266 struct auxtrace_queues *queues = &pt->queues; 3267 unsigned int i; 3268 3269 for (i = 0; i < queues->nr_queues; i++) { 3270 intel_pt_free_queue(queues->queue_array[i].priv); 3271 queues->queue_array[i].priv = NULL; 3272 } 3273 intel_pt_log_disable(); 3274 auxtrace_queues__free(queues); 3275 } 3276 3277 static void intel_pt_free(struct perf_session *session) 3278 { 3279 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3280 auxtrace); 3281 3282 auxtrace_heap__free(&pt->heap); 3283 intel_pt_free_events(session); 3284 session->auxtrace = NULL; 3285 intel_pt_free_vmcs_info(pt); 3286 thread__put(pt->unknown_thread); 3287 addr_filters__exit(&pt->filts); 3288 zfree(&pt->chain); 3289 zfree(&pt->filter); 3290 zfree(&pt->time_ranges); 3291 free(pt); 3292 } 3293 3294 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 3295 struct evsel *evsel) 3296 { 3297 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3298 auxtrace); 3299 3300 return evsel->core.attr.type == pt->pmu_type; 3301 } 3302 3303 static int intel_pt_process_auxtrace_event(struct perf_session *session, 3304 union perf_event *event, 3305 struct perf_tool *tool __maybe_unused) 3306 { 3307 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3308 auxtrace); 3309 3310 if (!pt->data_queued) { 3311 struct auxtrace_buffer *buffer; 3312 off_t data_offset; 3313 int fd = perf_data__fd(session->data); 3314 int err; 3315 3316 if (perf_data__is_pipe(session->data)) { 3317 data_offset = 0; 3318 } else { 3319 data_offset = lseek(fd, 0, SEEK_CUR); 3320 if (data_offset == -1) 3321 return -errno; 3322 } 3323 3324 err = auxtrace_queues__add_event(&pt->queues, session, event, 3325 data_offset, &buffer); 3326 if (err) 3327 return err; 3328 3329 /* Dump here now we have copied a piped trace out of the pipe */ 3330 if (dump_trace) { 3331 if (auxtrace_buffer__get_data(buffer, fd)) { 3332 intel_pt_dump_event(pt, buffer->data, 3333 buffer->size); 3334 auxtrace_buffer__put_data(buffer); 3335 } 3336 } 3337 } 3338 3339 return 0; 3340 } 3341 3342 static int intel_pt_queue_data(struct perf_session *session, 3343 struct perf_sample *sample, 3344 union perf_event *event, u64 data_offset) 3345 { 3346 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3347 auxtrace); 3348 u64 timestamp; 3349 3350 if (event) { 3351 return auxtrace_queues__add_event(&pt->queues, session, event, 3352 data_offset, NULL); 3353 } 3354 3355 if (sample->time && sample->time != (u64)-1) 3356 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3357 else 3358 timestamp = 0; 3359 3360 return auxtrace_queues__add_sample(&pt->queues, session, sample, 3361 data_offset, timestamp); 3362 } 3363 3364 struct intel_pt_synth { 3365 struct perf_tool dummy_tool; 3366 struct perf_session *session; 3367 }; 3368 3369 static int intel_pt_event_synth(struct perf_tool *tool, 3370 union perf_event *event, 3371 struct perf_sample *sample __maybe_unused, 3372 struct machine *machine __maybe_unused) 3373 { 3374 struct intel_pt_synth *intel_pt_synth = 3375 container_of(tool, struct intel_pt_synth, dummy_tool); 3376 3377 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 3378 NULL); 3379 } 3380 3381 static int intel_pt_synth_event(struct perf_session *session, const char *name, 3382 struct perf_event_attr *attr, u64 id) 3383 { 3384 struct intel_pt_synth intel_pt_synth; 3385 int err; 3386 3387 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 3388 name, id, (u64)attr->sample_type); 3389 3390 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 3391 intel_pt_synth.session = session; 3392 3393 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 3394 &id, intel_pt_event_synth); 3395 if (err) 3396 pr_err("%s: failed to synthesize '%s' event type\n", 3397 __func__, name); 3398 3399 return err; 3400 } 3401 3402 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 3403 const char *name) 3404 { 3405 struct evsel *evsel; 3406 3407 evlist__for_each_entry(evlist, evsel) { 3408 if (evsel->core.id && evsel->core.id[0] == id) { 3409 if (evsel->name) 3410 zfree(&evsel->name); 3411 evsel->name = strdup(name); 3412 break; 3413 } 3414 } 3415 } 3416 3417 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 3418 struct evlist *evlist) 3419 { 3420 struct evsel *evsel; 3421 3422 evlist__for_each_entry(evlist, evsel) { 3423 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 3424 return evsel; 3425 } 3426 3427 return NULL; 3428 } 3429 3430 static int intel_pt_synth_events(struct intel_pt *pt, 3431 struct perf_session *session) 3432 { 3433 struct evlist *evlist = session->evlist; 3434 struct evsel *evsel = intel_pt_evsel(pt, evlist); 3435 struct perf_event_attr attr; 3436 u64 id; 3437 int err; 3438 3439 if (!evsel) { 3440 pr_debug("There are no selected events with Intel Processor Trace data\n"); 3441 return 0; 3442 } 3443 3444 memset(&attr, 0, sizeof(struct perf_event_attr)); 3445 attr.size = sizeof(struct perf_event_attr); 3446 attr.type = PERF_TYPE_HARDWARE; 3447 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 3448 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 3449 PERF_SAMPLE_PERIOD; 3450 if (pt->timeless_decoding) 3451 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 3452 else 3453 attr.sample_type |= PERF_SAMPLE_TIME; 3454 if (!pt->per_cpu_mmaps) 3455 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 3456 attr.exclude_user = evsel->core.attr.exclude_user; 3457 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 3458 attr.exclude_hv = evsel->core.attr.exclude_hv; 3459 attr.exclude_host = evsel->core.attr.exclude_host; 3460 attr.exclude_guest = evsel->core.attr.exclude_guest; 3461 attr.sample_id_all = evsel->core.attr.sample_id_all; 3462 attr.read_format = evsel->core.attr.read_format; 3463 3464 id = evsel->core.id[0] + 1000000000; 3465 if (!id) 3466 id = 1; 3467 3468 if (pt->synth_opts.branches) { 3469 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3470 attr.sample_period = 1; 3471 attr.sample_type |= PERF_SAMPLE_ADDR; 3472 err = intel_pt_synth_event(session, "branches", &attr, id); 3473 if (err) 3474 return err; 3475 pt->sample_branches = true; 3476 pt->branches_sample_type = attr.sample_type; 3477 pt->branches_id = id; 3478 id += 1; 3479 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3480 } 3481 3482 if (pt->synth_opts.callchain) 3483 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3484 if (pt->synth_opts.last_branch) { 3485 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3486 /* 3487 * We don't use the hardware index, but the sample generation 3488 * code uses the new format branch_stack with this field, 3489 * so the event attributes must indicate that it's present. 3490 */ 3491 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3492 } 3493 3494 if (pt->synth_opts.instructions) { 3495 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3496 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3497 attr.sample_period = 3498 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3499 else 3500 attr.sample_period = pt->synth_opts.period; 3501 err = intel_pt_synth_event(session, "instructions", &attr, id); 3502 if (err) 3503 return err; 3504 pt->sample_instructions = true; 3505 pt->instructions_sample_type = attr.sample_type; 3506 pt->instructions_id = id; 3507 id += 1; 3508 } 3509 3510 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3511 attr.sample_period = 1; 3512 3513 if (pt->synth_opts.transactions) { 3514 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3515 err = intel_pt_synth_event(session, "transactions", &attr, id); 3516 if (err) 3517 return err; 3518 pt->sample_transactions = true; 3519 pt->transactions_sample_type = attr.sample_type; 3520 pt->transactions_id = id; 3521 intel_pt_set_event_name(evlist, id, "transactions"); 3522 id += 1; 3523 } 3524 3525 attr.type = PERF_TYPE_SYNTH; 3526 attr.sample_type |= PERF_SAMPLE_RAW; 3527 3528 if (pt->synth_opts.ptwrites) { 3529 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3530 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3531 if (err) 3532 return err; 3533 pt->sample_ptwrites = true; 3534 pt->ptwrites_sample_type = attr.sample_type; 3535 pt->ptwrites_id = id; 3536 intel_pt_set_event_name(evlist, id, "ptwrite"); 3537 id += 1; 3538 } 3539 3540 if (pt->synth_opts.pwr_events) { 3541 pt->sample_pwr_events = true; 3542 pt->pwr_events_sample_type = attr.sample_type; 3543 3544 attr.config = PERF_SYNTH_INTEL_CBR; 3545 err = intel_pt_synth_event(session, "cbr", &attr, id); 3546 if (err) 3547 return err; 3548 pt->cbr_id = id; 3549 intel_pt_set_event_name(evlist, id, "cbr"); 3550 id += 1; 3551 3552 attr.config = PERF_SYNTH_INTEL_PSB; 3553 err = intel_pt_synth_event(session, "psb", &attr, id); 3554 if (err) 3555 return err; 3556 pt->psb_id = id; 3557 intel_pt_set_event_name(evlist, id, "psb"); 3558 id += 1; 3559 } 3560 3561 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) { 3562 attr.config = PERF_SYNTH_INTEL_MWAIT; 3563 err = intel_pt_synth_event(session, "mwait", &attr, id); 3564 if (err) 3565 return err; 3566 pt->mwait_id = id; 3567 intel_pt_set_event_name(evlist, id, "mwait"); 3568 id += 1; 3569 3570 attr.config = PERF_SYNTH_INTEL_PWRE; 3571 err = intel_pt_synth_event(session, "pwre", &attr, id); 3572 if (err) 3573 return err; 3574 pt->pwre_id = id; 3575 intel_pt_set_event_name(evlist, id, "pwre"); 3576 id += 1; 3577 3578 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3579 err = intel_pt_synth_event(session, "exstop", &attr, id); 3580 if (err) 3581 return err; 3582 pt->exstop_id = id; 3583 intel_pt_set_event_name(evlist, id, "exstop"); 3584 id += 1; 3585 3586 attr.config = PERF_SYNTH_INTEL_PWRX; 3587 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3588 if (err) 3589 return err; 3590 pt->pwrx_id = id; 3591 intel_pt_set_event_name(evlist, id, "pwrx"); 3592 id += 1; 3593 } 3594 3595 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) { 3596 attr.config = PERF_SYNTH_INTEL_EVT; 3597 err = intel_pt_synth_event(session, "evt", &attr, id); 3598 if (err) 3599 return err; 3600 pt->evt_sample_type = attr.sample_type; 3601 pt->evt_id = id; 3602 intel_pt_set_event_name(evlist, id, "evt"); 3603 id += 1; 3604 } 3605 3606 if (pt->synth_opts.intr_events && pt->cap_event_trace) { 3607 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG; 3608 err = intel_pt_synth_event(session, "iflag", &attr, id); 3609 if (err) 3610 return err; 3611 pt->iflag_chg_sample_type = attr.sample_type; 3612 pt->iflag_chg_id = id; 3613 intel_pt_set_event_name(evlist, id, "iflag"); 3614 id += 1; 3615 } 3616 3617 return 0; 3618 } 3619 3620 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3621 { 3622 struct evsel *evsel; 3623 3624 if (!pt->synth_opts.other_events) 3625 return; 3626 3627 evlist__for_each_entry(pt->session->evlist, evsel) { 3628 if (evsel->core.attr.aux_output && evsel->core.id) { 3629 if (pt->single_pebs) { 3630 pt->single_pebs = false; 3631 return; 3632 } 3633 pt->single_pebs = true; 3634 pt->sample_pebs = true; 3635 pt->pebs_evsel = evsel; 3636 } 3637 } 3638 } 3639 3640 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3641 { 3642 struct evsel *evsel; 3643 3644 evlist__for_each_entry_reverse(evlist, evsel) { 3645 const char *name = evsel__name(evsel); 3646 3647 if (!strcmp(name, "sched:sched_switch")) 3648 return evsel; 3649 } 3650 3651 return NULL; 3652 } 3653 3654 static bool intel_pt_find_switch(struct evlist *evlist) 3655 { 3656 struct evsel *evsel; 3657 3658 evlist__for_each_entry(evlist, evsel) { 3659 if (evsel->core.attr.context_switch) 3660 return true; 3661 } 3662 3663 return false; 3664 } 3665 3666 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3667 { 3668 struct intel_pt *pt = data; 3669 3670 if (!strcmp(var, "intel-pt.mispred-all")) 3671 pt->mispred_all = perf_config_bool(var, value); 3672 3673 if (!strcmp(var, "intel-pt.max-loops")) 3674 perf_config_int(&pt->max_loops, var, value); 3675 3676 return 0; 3677 } 3678 3679 /* Find least TSC which converts to ns or later */ 3680 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3681 { 3682 u64 tsc, tm; 3683 3684 tsc = perf_time_to_tsc(ns, &pt->tc); 3685 3686 while (1) { 3687 tm = tsc_to_perf_time(tsc, &pt->tc); 3688 if (tm < ns) 3689 break; 3690 tsc -= 1; 3691 } 3692 3693 while (tm < ns) 3694 tm = tsc_to_perf_time(++tsc, &pt->tc); 3695 3696 return tsc; 3697 } 3698 3699 /* Find greatest TSC which converts to ns or earlier */ 3700 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3701 { 3702 u64 tsc, tm; 3703 3704 tsc = perf_time_to_tsc(ns, &pt->tc); 3705 3706 while (1) { 3707 tm = tsc_to_perf_time(tsc, &pt->tc); 3708 if (tm > ns) 3709 break; 3710 tsc += 1; 3711 } 3712 3713 while (tm > ns) 3714 tm = tsc_to_perf_time(--tsc, &pt->tc); 3715 3716 return tsc; 3717 } 3718 3719 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3720 struct itrace_synth_opts *opts) 3721 { 3722 struct perf_time_interval *p = opts->ptime_range; 3723 int n = opts->range_num; 3724 int i; 3725 3726 if (!n || !p || pt->timeless_decoding) 3727 return 0; 3728 3729 pt->time_ranges = calloc(n, sizeof(struct range)); 3730 if (!pt->time_ranges) 3731 return -ENOMEM; 3732 3733 pt->range_cnt = n; 3734 3735 intel_pt_log("%s: %u range(s)\n", __func__, n); 3736 3737 for (i = 0; i < n; i++) { 3738 struct range *r = &pt->time_ranges[i]; 3739 u64 ts = p[i].start; 3740 u64 te = p[i].end; 3741 3742 /* 3743 * Take care to ensure the TSC range matches the perf-time range 3744 * when converted back to perf-time. 3745 */ 3746 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3747 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3748 3749 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3750 i, ts, te); 3751 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3752 i, r->start, r->end); 3753 } 3754 3755 return 0; 3756 } 3757 3758 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) 3759 { 3760 struct intel_pt_vmcs_info *vmcs_info; 3761 u64 tsc_offset, vmcs; 3762 char *p = *args; 3763 3764 errno = 0; 3765 3766 p = skip_spaces(p); 3767 if (!*p) 3768 return 1; 3769 3770 tsc_offset = strtoull(p, &p, 0); 3771 if (errno) 3772 return -errno; 3773 p = skip_spaces(p); 3774 if (*p != ':') { 3775 pt->dflt_tsc_offset = tsc_offset; 3776 *args = p; 3777 return 0; 3778 } 3779 p += 1; 3780 while (1) { 3781 vmcs = strtoull(p, &p, 0); 3782 if (errno) 3783 return -errno; 3784 if (!vmcs) 3785 return -EINVAL; 3786 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); 3787 if (!vmcs_info) 3788 return -ENOMEM; 3789 p = skip_spaces(p); 3790 if (*p != ',') 3791 break; 3792 p += 1; 3793 } 3794 *args = p; 3795 return 0; 3796 } 3797 3798 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) 3799 { 3800 char *args = pt->synth_opts.vm_tm_corr_args; 3801 int ret; 3802 3803 if (!args) 3804 return 0; 3805 3806 do { 3807 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); 3808 } while (!ret); 3809 3810 if (ret < 0) { 3811 pr_err("Failed to parse VM Time Correlation options\n"); 3812 return ret; 3813 } 3814 3815 return 0; 3816 } 3817 3818 static const char * const intel_pt_info_fmts[] = { 3819 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3820 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3821 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3822 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3823 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3824 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3825 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3826 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3827 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3828 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3829 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3830 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3831 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3832 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3833 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3834 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3835 }; 3836 3837 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3838 { 3839 int i; 3840 3841 if (!dump_trace) 3842 return; 3843 3844 for (i = start; i <= finish; i++) 3845 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3846 } 3847 3848 static void intel_pt_print_info_str(const char *name, const char *str) 3849 { 3850 if (!dump_trace) 3851 return; 3852 3853 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3854 } 3855 3856 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3857 { 3858 return auxtrace_info->header.size >= 3859 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3860 } 3861 3862 int intel_pt_process_auxtrace_info(union perf_event *event, 3863 struct perf_session *session) 3864 { 3865 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3866 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3867 struct intel_pt *pt; 3868 void *info_end; 3869 __u64 *info; 3870 int err; 3871 3872 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3873 min_sz) 3874 return -EINVAL; 3875 3876 pt = zalloc(sizeof(struct intel_pt)); 3877 if (!pt) 3878 return -ENOMEM; 3879 3880 pt->vmcs_info = RB_ROOT; 3881 3882 addr_filters__init(&pt->filts); 3883 3884 err = perf_config(intel_pt_perf_config, pt); 3885 if (err) 3886 goto err_free; 3887 3888 err = auxtrace_queues__init(&pt->queues); 3889 if (err) 3890 goto err_free; 3891 3892 if (session->itrace_synth_opts->set) { 3893 pt->synth_opts = *session->itrace_synth_opts; 3894 } else { 3895 struct itrace_synth_opts *opts = session->itrace_synth_opts; 3896 3897 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); 3898 if (!opts->default_no_sample && !opts->inject) { 3899 pt->synth_opts.branches = false; 3900 pt->synth_opts.callchain = true; 3901 pt->synth_opts.add_callchain = true; 3902 } 3903 pt->synth_opts.thread_stack = opts->thread_stack; 3904 } 3905 3906 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT)) 3907 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3908 3909 pt->session = session; 3910 pt->machine = &session->machines.host; /* No kvm support */ 3911 pt->auxtrace_type = auxtrace_info->type; 3912 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3913 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3914 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3915 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3916 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3917 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3918 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3919 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3920 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3921 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3922 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3923 INTEL_PT_PER_CPU_MMAPS); 3924 3925 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3926 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3927 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3928 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3929 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3930 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3931 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3932 INTEL_PT_CYC_BIT); 3933 } 3934 3935 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3936 pt->max_non_turbo_ratio = 3937 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3938 intel_pt_print_info(&auxtrace_info->priv[0], 3939 INTEL_PT_MAX_NONTURBO_RATIO, 3940 INTEL_PT_MAX_NONTURBO_RATIO); 3941 } 3942 3943 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3944 info_end = (void *)auxtrace_info + auxtrace_info->header.size; 3945 3946 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3947 size_t len; 3948 3949 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3950 intel_pt_print_info(&auxtrace_info->priv[0], 3951 INTEL_PT_FILTER_STR_LEN, 3952 INTEL_PT_FILTER_STR_LEN); 3953 if (len) { 3954 const char *filter = (const char *)info; 3955 3956 len = roundup(len + 1, 8); 3957 info += len >> 3; 3958 if ((void *)info > info_end) { 3959 pr_err("%s: bad filter string length\n", __func__); 3960 err = -EINVAL; 3961 goto err_free_queues; 3962 } 3963 pt->filter = memdup(filter, len); 3964 if (!pt->filter) { 3965 err = -ENOMEM; 3966 goto err_free_queues; 3967 } 3968 if (session->header.needs_swap) 3969 mem_bswap_64(pt->filter, len); 3970 if (pt->filter[len - 1]) { 3971 pr_err("%s: filter string not null terminated\n", __func__); 3972 err = -EINVAL; 3973 goto err_free_queues; 3974 } 3975 err = addr_filters__parse_bare_filter(&pt->filts, 3976 filter); 3977 if (err) 3978 goto err_free_queues; 3979 } 3980 intel_pt_print_info_str("Filter string", pt->filter); 3981 } 3982 3983 if ((void *)info < info_end) { 3984 pt->cap_event_trace = *info++; 3985 if (dump_trace) 3986 fprintf(stdout, " Cap Event Trace %d\n", 3987 pt->cap_event_trace); 3988 } 3989 3990 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3991 if (pt->timeless_decoding && !pt->tc.time_mult) 3992 pt->tc.time_mult = 1; 3993 pt->have_tsc = intel_pt_have_tsc(pt); 3994 pt->sampling_mode = intel_pt_sampling_mode(pt); 3995 pt->est_tsc = !pt->timeless_decoding; 3996 3997 if (pt->synth_opts.vm_time_correlation) { 3998 if (pt->timeless_decoding) { 3999 pr_err("Intel PT has no time information for VM Time Correlation\n"); 4000 err = -EINVAL; 4001 goto err_free_queues; 4002 } 4003 if (session->itrace_synth_opts->ptime_range) { 4004 pr_err("Time ranges cannot be specified with VM Time Correlation\n"); 4005 err = -EINVAL; 4006 goto err_free_queues; 4007 } 4008 /* Currently TSC Offset is calculated using MTC packets */ 4009 if (!intel_pt_have_mtc(pt)) { 4010 pr_err("MTC packets must have been enabled for VM Time Correlation\n"); 4011 err = -EINVAL; 4012 goto err_free_queues; 4013 } 4014 err = intel_pt_parse_vm_tm_corr_args(pt); 4015 if (err) 4016 goto err_free_queues; 4017 } 4018 4019 pt->unknown_thread = thread__new(999999999, 999999999); 4020 if (!pt->unknown_thread) { 4021 err = -ENOMEM; 4022 goto err_free_queues; 4023 } 4024 4025 /* 4026 * Since this thread will not be kept in any rbtree not in a 4027 * list, initialize its list node so that at thread__put() the 4028 * current thread lifetime assumption is kept and we don't segfault 4029 * at list_del_init(). 4030 */ 4031 INIT_LIST_HEAD(&pt->unknown_thread->node); 4032 4033 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 4034 if (err) 4035 goto err_delete_thread; 4036 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 4037 err = -ENOMEM; 4038 goto err_delete_thread; 4039 } 4040 4041 pt->auxtrace.process_event = intel_pt_process_event; 4042 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 4043 pt->auxtrace.queue_data = intel_pt_queue_data; 4044 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 4045 pt->auxtrace.flush_events = intel_pt_flush; 4046 pt->auxtrace.free_events = intel_pt_free_events; 4047 pt->auxtrace.free = intel_pt_free; 4048 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 4049 session->auxtrace = &pt->auxtrace; 4050 4051 if (dump_trace) 4052 return 0; 4053 4054 if (pt->have_sched_switch == 1) { 4055 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 4056 if (!pt->switch_evsel) { 4057 pr_err("%s: missing sched_switch event\n", __func__); 4058 err = -EINVAL; 4059 goto err_delete_thread; 4060 } 4061 } else if (pt->have_sched_switch == 2 && 4062 !intel_pt_find_switch(session->evlist)) { 4063 pr_err("%s: missing context_switch attribute flag\n", __func__); 4064 err = -EINVAL; 4065 goto err_delete_thread; 4066 } 4067 4068 if (pt->synth_opts.log) 4069 intel_pt_log_enable(); 4070 4071 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 4072 if (pt->tc.time_mult) { 4073 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 4074 4075 if (!pt->max_non_turbo_ratio) 4076 pt->max_non_turbo_ratio = 4077 (tsc_freq + 50000000) / 100000000; 4078 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 4079 intel_pt_log("Maximum non-turbo ratio %u\n", 4080 pt->max_non_turbo_ratio); 4081 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 4082 } 4083 4084 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 4085 if (err) 4086 goto err_delete_thread; 4087 4088 if (pt->synth_opts.calls) 4089 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 4090 PERF_IP_FLAG_TRACE_END; 4091 if (pt->synth_opts.returns) 4092 pt->branches_filter |= PERF_IP_FLAG_RETURN | 4093 PERF_IP_FLAG_TRACE_BEGIN; 4094 4095 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 4096 !symbol_conf.use_callchain) { 4097 symbol_conf.use_callchain = true; 4098 if (callchain_register_param(&callchain_param) < 0) { 4099 symbol_conf.use_callchain = false; 4100 pt->synth_opts.callchain = false; 4101 pt->synth_opts.add_callchain = false; 4102 } 4103 } 4104 4105 if (pt->synth_opts.add_callchain) { 4106 err = intel_pt_callchain_init(pt); 4107 if (err) 4108 goto err_delete_thread; 4109 } 4110 4111 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 4112 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 4113 pt->br_stack_sz_plus = pt->br_stack_sz; 4114 } 4115 4116 if (pt->synth_opts.add_last_branch) { 4117 err = intel_pt_br_stack_init(pt); 4118 if (err) 4119 goto err_delete_thread; 4120 /* 4121 * Additional branch stack size to cater for tracing from the 4122 * actual sample ip to where the sample time is recorded. 4123 * Measured at about 200 branches, but generously set to 1024. 4124 * If kernel space is not being traced, then add just 1 for the 4125 * branch to kernel space. 4126 */ 4127 if (intel_pt_tracing_kernel(pt)) 4128 pt->br_stack_sz_plus += 1024; 4129 else 4130 pt->br_stack_sz_plus += 1; 4131 } 4132 4133 pt->use_thread_stack = pt->synth_opts.callchain || 4134 pt->synth_opts.add_callchain || 4135 pt->synth_opts.thread_stack || 4136 pt->synth_opts.last_branch || 4137 pt->synth_opts.add_last_branch; 4138 4139 pt->callstack = pt->synth_opts.callchain || 4140 pt->synth_opts.add_callchain || 4141 pt->synth_opts.thread_stack; 4142 4143 err = intel_pt_synth_events(pt, session); 4144 if (err) 4145 goto err_delete_thread; 4146 4147 intel_pt_setup_pebs_events(pt); 4148 4149 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 4150 err = auxtrace_queue_data(session, true, true); 4151 else 4152 err = auxtrace_queues__process_index(&pt->queues, session); 4153 if (err) 4154 goto err_delete_thread; 4155 4156 if (pt->queues.populated) 4157 pt->data_queued = true; 4158 4159 if (pt->timeless_decoding) 4160 pr_debug2("Intel PT decoding without timestamps\n"); 4161 4162 return 0; 4163 4164 err_delete_thread: 4165 zfree(&pt->chain); 4166 thread__zput(pt->unknown_thread); 4167 err_free_queues: 4168 intel_pt_log_disable(); 4169 auxtrace_queues__free(&pt->queues); 4170 session->auxtrace = NULL; 4171 err_free: 4172 addr_filters__exit(&pt->filts); 4173 zfree(&pt->filter); 4174 zfree(&pt->time_ranges); 4175 free(pt); 4176 return err; 4177 } 4178