xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <stdio.h>
18 #include <stdbool.h>
19 #include <errno.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 
23 #include "../perf.h"
24 #include "session.h"
25 #include "machine.h"
26 #include "memswap.h"
27 #include "sort.h"
28 #include "tool.h"
29 #include "event.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "map.h"
33 #include "color.h"
34 #include "util.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "symbol.h"
38 #include "callchain.h"
39 #include "dso.h"
40 #include "debug.h"
41 #include "auxtrace.h"
42 #include "tsc.h"
43 #include "intel-pt.h"
44 #include "config.h"
45 
46 #include "intel-pt-decoder/intel-pt-log.h"
47 #include "intel-pt-decoder/intel-pt-decoder.h"
48 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
50 
51 #define MAX_TIMESTAMP (~0ULL)
52 
53 struct intel_pt {
54 	struct auxtrace auxtrace;
55 	struct auxtrace_queues queues;
56 	struct auxtrace_heap heap;
57 	u32 auxtrace_type;
58 	struct perf_session *session;
59 	struct machine *machine;
60 	struct perf_evsel *switch_evsel;
61 	struct thread *unknown_thread;
62 	bool timeless_decoding;
63 	bool sampling_mode;
64 	bool snapshot_mode;
65 	bool per_cpu_mmaps;
66 	bool have_tsc;
67 	bool data_queued;
68 	bool est_tsc;
69 	bool sync_switch;
70 	bool mispred_all;
71 	int have_sched_switch;
72 	u32 pmu_type;
73 	u64 kernel_start;
74 	u64 switch_ip;
75 	u64 ptss_ip;
76 
77 	struct perf_tsc_conversion tc;
78 	bool cap_user_time_zero;
79 
80 	struct itrace_synth_opts synth_opts;
81 
82 	bool sample_instructions;
83 	u64 instructions_sample_type;
84 	u64 instructions_id;
85 
86 	bool sample_branches;
87 	u32 branches_filter;
88 	u64 branches_sample_type;
89 	u64 branches_id;
90 
91 	bool sample_transactions;
92 	u64 transactions_sample_type;
93 	u64 transactions_id;
94 
95 	bool sample_ptwrites;
96 	u64 ptwrites_sample_type;
97 	u64 ptwrites_id;
98 
99 	bool sample_pwr_events;
100 	u64 pwr_events_sample_type;
101 	u64 mwait_id;
102 	u64 pwre_id;
103 	u64 exstop_id;
104 	u64 pwrx_id;
105 	u64 cbr_id;
106 
107 	u64 tsc_bit;
108 	u64 mtc_bit;
109 	u64 mtc_freq_bits;
110 	u32 tsc_ctc_ratio_n;
111 	u32 tsc_ctc_ratio_d;
112 	u64 cyc_bit;
113 	u64 noretcomp_bit;
114 	unsigned max_non_turbo_ratio;
115 	unsigned cbr2khz;
116 
117 	unsigned long num_events;
118 
119 	char *filter;
120 	struct addr_filters filts;
121 };
122 
123 enum switch_state {
124 	INTEL_PT_SS_NOT_TRACING,
125 	INTEL_PT_SS_UNKNOWN,
126 	INTEL_PT_SS_TRACING,
127 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
128 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
129 };
130 
131 struct intel_pt_queue {
132 	struct intel_pt *pt;
133 	unsigned int queue_nr;
134 	struct auxtrace_buffer *buffer;
135 	struct auxtrace_buffer *old_buffer;
136 	void *decoder;
137 	const struct intel_pt_state *state;
138 	struct ip_callchain *chain;
139 	struct branch_stack *last_branch;
140 	struct branch_stack *last_branch_rb;
141 	size_t last_branch_pos;
142 	union perf_event *event_buf;
143 	bool on_heap;
144 	bool stop;
145 	bool step_through_buffers;
146 	bool use_buffer_pid_tid;
147 	bool sync_switch;
148 	pid_t pid, tid;
149 	int cpu;
150 	int switch_state;
151 	pid_t next_tid;
152 	struct thread *thread;
153 	bool exclude_kernel;
154 	bool have_sample;
155 	u64 time;
156 	u64 timestamp;
157 	u32 flags;
158 	u16 insn_len;
159 	u64 last_insn_cnt;
160 	char insn[INTEL_PT_INSN_BUF_SZ];
161 };
162 
163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
164 			  unsigned char *buf, size_t len)
165 {
166 	struct intel_pt_pkt packet;
167 	size_t pos = 0;
168 	int ret, pkt_len, i;
169 	char desc[INTEL_PT_PKT_DESC_MAX];
170 	const char *color = PERF_COLOR_BLUE;
171 
172 	color_fprintf(stdout, color,
173 		      ". ... Intel Processor Trace data: size %zu bytes\n",
174 		      len);
175 
176 	while (len) {
177 		ret = intel_pt_get_packet(buf, len, &packet);
178 		if (ret > 0)
179 			pkt_len = ret;
180 		else
181 			pkt_len = 1;
182 		printf(".");
183 		color_fprintf(stdout, color, "  %08x: ", pos);
184 		for (i = 0; i < pkt_len; i++)
185 			color_fprintf(stdout, color, " %02x", buf[i]);
186 		for (; i < 16; i++)
187 			color_fprintf(stdout, color, "   ");
188 		if (ret > 0) {
189 			ret = intel_pt_pkt_desc(&packet, desc,
190 						INTEL_PT_PKT_DESC_MAX);
191 			if (ret > 0)
192 				color_fprintf(stdout, color, " %s\n", desc);
193 		} else {
194 			color_fprintf(stdout, color, " Bad packet!\n");
195 		}
196 		pos += pkt_len;
197 		buf += pkt_len;
198 		len -= pkt_len;
199 	}
200 }
201 
202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
203 				size_t len)
204 {
205 	printf(".\n");
206 	intel_pt_dump(pt, buf, len);
207 }
208 
209 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
210 				   struct auxtrace_buffer *b)
211 {
212 	bool consecutive = false;
213 	void *start;
214 
215 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
216 				      pt->have_tsc, &consecutive);
217 	if (!start)
218 		return -EINVAL;
219 	b->use_size = b->data + b->size - start;
220 	b->use_data = start;
221 	if (b->use_size && consecutive)
222 		b->consecutive = true;
223 	return 0;
224 }
225 
226 /* This function assumes data is processed sequentially only */
227 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
228 {
229 	struct intel_pt_queue *ptq = data;
230 	struct auxtrace_buffer *buffer = ptq->buffer;
231 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
232 	struct auxtrace_queue *queue;
233 	bool might_overlap;
234 
235 	if (ptq->stop) {
236 		b->len = 0;
237 		return 0;
238 	}
239 
240 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
241 
242 	buffer = auxtrace_buffer__next(queue, buffer);
243 	if (!buffer) {
244 		if (old_buffer)
245 			auxtrace_buffer__drop_data(old_buffer);
246 		b->len = 0;
247 		return 0;
248 	}
249 
250 	ptq->buffer = buffer;
251 
252 	if (!buffer->data) {
253 		int fd = perf_data__fd(ptq->pt->session->data);
254 
255 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
256 		if (!buffer->data)
257 			return -ENOMEM;
258 	}
259 
260 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
261 	if (might_overlap && !buffer->consecutive && old_buffer &&
262 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
263 		return -ENOMEM;
264 
265 	if (buffer->use_data) {
266 		b->len = buffer->use_size;
267 		b->buf = buffer->use_data;
268 	} else {
269 		b->len = buffer->size;
270 		b->buf = buffer->data;
271 	}
272 	b->ref_timestamp = buffer->reference;
273 
274 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
275 		b->consecutive = false;
276 		b->trace_nr = buffer->buffer_nr + 1;
277 	} else {
278 		b->consecutive = true;
279 	}
280 
281 	if (ptq->step_through_buffers)
282 		ptq->stop = true;
283 
284 	if (b->len) {
285 		if (old_buffer)
286 			auxtrace_buffer__drop_data(old_buffer);
287 		ptq->old_buffer = buffer;
288 	} else {
289 		auxtrace_buffer__drop_data(buffer);
290 		return intel_pt_get_trace(b, data);
291 	}
292 
293 	return 0;
294 }
295 
296 struct intel_pt_cache_entry {
297 	struct auxtrace_cache_entry	entry;
298 	u64				insn_cnt;
299 	u64				byte_cnt;
300 	enum intel_pt_insn_op		op;
301 	enum intel_pt_insn_branch	branch;
302 	int				length;
303 	int32_t				rel;
304 	char				insn[INTEL_PT_INSN_BUF_SZ];
305 };
306 
307 static int intel_pt_config_div(const char *var, const char *value, void *data)
308 {
309 	int *d = data;
310 	long val;
311 
312 	if (!strcmp(var, "intel-pt.cache-divisor")) {
313 		val = strtol(value, NULL, 0);
314 		if (val > 0 && val <= INT_MAX)
315 			*d = val;
316 	}
317 
318 	return 0;
319 }
320 
321 static int intel_pt_cache_divisor(void)
322 {
323 	static int d;
324 
325 	if (d)
326 		return d;
327 
328 	perf_config(intel_pt_config_div, &d);
329 
330 	if (!d)
331 		d = 64;
332 
333 	return d;
334 }
335 
336 static unsigned int intel_pt_cache_size(struct dso *dso,
337 					struct machine *machine)
338 {
339 	off_t size;
340 
341 	size = dso__data_size(dso, machine);
342 	size /= intel_pt_cache_divisor();
343 	if (size < 1000)
344 		return 10;
345 	if (size > (1 << 21))
346 		return 21;
347 	return 32 - __builtin_clz(size);
348 }
349 
350 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
351 					     struct machine *machine)
352 {
353 	struct auxtrace_cache *c;
354 	unsigned int bits;
355 
356 	if (dso->auxtrace_cache)
357 		return dso->auxtrace_cache;
358 
359 	bits = intel_pt_cache_size(dso, machine);
360 
361 	/* Ignoring cache creation failure */
362 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
363 
364 	dso->auxtrace_cache = c;
365 
366 	return c;
367 }
368 
369 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
370 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
371 			      struct intel_pt_insn *intel_pt_insn)
372 {
373 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
374 	struct intel_pt_cache_entry *e;
375 	int err;
376 
377 	if (!c)
378 		return -ENOMEM;
379 
380 	e = auxtrace_cache__alloc_entry(c);
381 	if (!e)
382 		return -ENOMEM;
383 
384 	e->insn_cnt = insn_cnt;
385 	e->byte_cnt = byte_cnt;
386 	e->op = intel_pt_insn->op;
387 	e->branch = intel_pt_insn->branch;
388 	e->length = intel_pt_insn->length;
389 	e->rel = intel_pt_insn->rel;
390 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
391 
392 	err = auxtrace_cache__add(c, offset, &e->entry);
393 	if (err)
394 		auxtrace_cache__free_entry(c, e);
395 
396 	return err;
397 }
398 
399 static struct intel_pt_cache_entry *
400 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
401 {
402 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
403 
404 	if (!c)
405 		return NULL;
406 
407 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
408 }
409 
410 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
411 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
412 				   uint64_t to_ip, uint64_t max_insn_cnt,
413 				   void *data)
414 {
415 	struct intel_pt_queue *ptq = data;
416 	struct machine *machine = ptq->pt->machine;
417 	struct thread *thread;
418 	struct addr_location al;
419 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
420 	ssize_t len;
421 	int x86_64;
422 	u8 cpumode;
423 	u64 offset, start_offset, start_ip;
424 	u64 insn_cnt = 0;
425 	bool one_map = true;
426 
427 	intel_pt_insn->length = 0;
428 
429 	if (to_ip && *ip == to_ip)
430 		goto out_no_cache;
431 
432 	if (*ip >= ptq->pt->kernel_start)
433 		cpumode = PERF_RECORD_MISC_KERNEL;
434 	else
435 		cpumode = PERF_RECORD_MISC_USER;
436 
437 	thread = ptq->thread;
438 	if (!thread) {
439 		if (cpumode != PERF_RECORD_MISC_KERNEL)
440 			return -EINVAL;
441 		thread = ptq->pt->unknown_thread;
442 	}
443 
444 	while (1) {
445 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
446 			return -EINVAL;
447 
448 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
449 		    dso__data_status_seen(al.map->dso,
450 					  DSO_DATA_STATUS_SEEN_ITRACE))
451 			return -ENOENT;
452 
453 		offset = al.map->map_ip(al.map, *ip);
454 
455 		if (!to_ip && one_map) {
456 			struct intel_pt_cache_entry *e;
457 
458 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
459 			if (e &&
460 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
461 				*insn_cnt_ptr = e->insn_cnt;
462 				*ip += e->byte_cnt;
463 				intel_pt_insn->op = e->op;
464 				intel_pt_insn->branch = e->branch;
465 				intel_pt_insn->length = e->length;
466 				intel_pt_insn->rel = e->rel;
467 				memcpy(intel_pt_insn->buf, e->insn,
468 				       INTEL_PT_INSN_BUF_SZ);
469 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
470 				return 0;
471 			}
472 		}
473 
474 		start_offset = offset;
475 		start_ip = *ip;
476 
477 		/* Load maps to ensure dso->is_64_bit has been updated */
478 		map__load(al.map);
479 
480 		x86_64 = al.map->dso->is_64_bit;
481 
482 		while (1) {
483 			len = dso__data_read_offset(al.map->dso, machine,
484 						    offset, buf,
485 						    INTEL_PT_INSN_BUF_SZ);
486 			if (len <= 0)
487 				return -EINVAL;
488 
489 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
490 				return -EINVAL;
491 
492 			intel_pt_log_insn(intel_pt_insn, *ip);
493 
494 			insn_cnt += 1;
495 
496 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
497 				goto out;
498 
499 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
500 				goto out_no_cache;
501 
502 			*ip += intel_pt_insn->length;
503 
504 			if (to_ip && *ip == to_ip)
505 				goto out_no_cache;
506 
507 			if (*ip >= al.map->end)
508 				break;
509 
510 			offset += intel_pt_insn->length;
511 		}
512 		one_map = false;
513 	}
514 out:
515 	*insn_cnt_ptr = insn_cnt;
516 
517 	if (!one_map)
518 		goto out_no_cache;
519 
520 	/*
521 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
522 	 * entries.
523 	 */
524 	if (to_ip) {
525 		struct intel_pt_cache_entry *e;
526 
527 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
528 		if (e)
529 			return 0;
530 	}
531 
532 	/* Ignore cache errors */
533 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
534 			   *ip - start_ip, intel_pt_insn);
535 
536 	return 0;
537 
538 out_no_cache:
539 	*insn_cnt_ptr = insn_cnt;
540 	return 0;
541 }
542 
543 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
544 				  uint64_t offset, const char *filename)
545 {
546 	struct addr_filter *filt;
547 	bool have_filter   = false;
548 	bool hit_tracestop = false;
549 	bool hit_filter    = false;
550 
551 	list_for_each_entry(filt, &pt->filts.head, list) {
552 		if (filt->start)
553 			have_filter = true;
554 
555 		if ((filename && !filt->filename) ||
556 		    (!filename && filt->filename) ||
557 		    (filename && strcmp(filename, filt->filename)))
558 			continue;
559 
560 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
561 			continue;
562 
563 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
564 			     ip, offset, filename ? filename : "[kernel]",
565 			     filt->start ? "filter" : "stop",
566 			     filt->addr, filt->size);
567 
568 		if (filt->start)
569 			hit_filter = true;
570 		else
571 			hit_tracestop = true;
572 	}
573 
574 	if (!hit_tracestop && !hit_filter)
575 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
576 			     ip, offset, filename ? filename : "[kernel]");
577 
578 	return hit_tracestop || (have_filter && !hit_filter);
579 }
580 
581 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
582 {
583 	struct intel_pt_queue *ptq = data;
584 	struct thread *thread;
585 	struct addr_location al;
586 	u8 cpumode;
587 	u64 offset;
588 
589 	if (ip >= ptq->pt->kernel_start)
590 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
591 
592 	cpumode = PERF_RECORD_MISC_USER;
593 
594 	thread = ptq->thread;
595 	if (!thread)
596 		return -EINVAL;
597 
598 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
599 		return -EINVAL;
600 
601 	offset = al.map->map_ip(al.map, ip);
602 
603 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
604 				     al.map->dso->long_name);
605 }
606 
607 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
608 {
609 	return __intel_pt_pgd_ip(ip, data) > 0;
610 }
611 
612 static bool intel_pt_get_config(struct intel_pt *pt,
613 				struct perf_event_attr *attr, u64 *config)
614 {
615 	if (attr->type == pt->pmu_type) {
616 		if (config)
617 			*config = attr->config;
618 		return true;
619 	}
620 
621 	return false;
622 }
623 
624 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
625 {
626 	struct perf_evsel *evsel;
627 
628 	evlist__for_each_entry(pt->session->evlist, evsel) {
629 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
630 		    !evsel->attr.exclude_kernel)
631 			return false;
632 	}
633 	return true;
634 }
635 
636 static bool intel_pt_return_compression(struct intel_pt *pt)
637 {
638 	struct perf_evsel *evsel;
639 	u64 config;
640 
641 	if (!pt->noretcomp_bit)
642 		return true;
643 
644 	evlist__for_each_entry(pt->session->evlist, evsel) {
645 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
646 		    (config & pt->noretcomp_bit))
647 			return false;
648 	}
649 	return true;
650 }
651 
652 static bool intel_pt_branch_enable(struct intel_pt *pt)
653 {
654 	struct perf_evsel *evsel;
655 	u64 config;
656 
657 	evlist__for_each_entry(pt->session->evlist, evsel) {
658 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
659 		    (config & 1) && !(config & 0x2000))
660 			return false;
661 	}
662 	return true;
663 }
664 
665 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
666 {
667 	struct perf_evsel *evsel;
668 	unsigned int shift;
669 	u64 config;
670 
671 	if (!pt->mtc_freq_bits)
672 		return 0;
673 
674 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
675 		config >>= 1;
676 
677 	evlist__for_each_entry(pt->session->evlist, evsel) {
678 		if (intel_pt_get_config(pt, &evsel->attr, &config))
679 			return (config & pt->mtc_freq_bits) >> shift;
680 	}
681 	return 0;
682 }
683 
684 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
685 {
686 	struct perf_evsel *evsel;
687 	bool timeless_decoding = true;
688 	u64 config;
689 
690 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
691 		return true;
692 
693 	evlist__for_each_entry(pt->session->evlist, evsel) {
694 		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
695 			return true;
696 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
697 			if (config & pt->tsc_bit)
698 				timeless_decoding = false;
699 			else
700 				return true;
701 		}
702 	}
703 	return timeless_decoding;
704 }
705 
706 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
707 {
708 	struct perf_evsel *evsel;
709 
710 	evlist__for_each_entry(pt->session->evlist, evsel) {
711 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
712 		    !evsel->attr.exclude_kernel)
713 			return true;
714 	}
715 	return false;
716 }
717 
718 static bool intel_pt_have_tsc(struct intel_pt *pt)
719 {
720 	struct perf_evsel *evsel;
721 	bool have_tsc = false;
722 	u64 config;
723 
724 	if (!pt->tsc_bit)
725 		return false;
726 
727 	evlist__for_each_entry(pt->session->evlist, evsel) {
728 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
729 			if (config & pt->tsc_bit)
730 				have_tsc = true;
731 			else
732 				return false;
733 		}
734 	}
735 	return have_tsc;
736 }
737 
738 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
739 {
740 	u64 quot, rem;
741 
742 	quot = ns / pt->tc.time_mult;
743 	rem  = ns % pt->tc.time_mult;
744 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
745 		pt->tc.time_mult;
746 }
747 
748 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
749 						   unsigned int queue_nr)
750 {
751 	struct intel_pt_params params = { .get_trace = 0, };
752 	struct perf_env *env = pt->machine->env;
753 	struct intel_pt_queue *ptq;
754 
755 	ptq = zalloc(sizeof(struct intel_pt_queue));
756 	if (!ptq)
757 		return NULL;
758 
759 	if (pt->synth_opts.callchain) {
760 		size_t sz = sizeof(struct ip_callchain);
761 
762 		sz += pt->synth_opts.callchain_sz * sizeof(u64);
763 		ptq->chain = zalloc(sz);
764 		if (!ptq->chain)
765 			goto out_free;
766 	}
767 
768 	if (pt->synth_opts.last_branch) {
769 		size_t sz = sizeof(struct branch_stack);
770 
771 		sz += pt->synth_opts.last_branch_sz *
772 		      sizeof(struct branch_entry);
773 		ptq->last_branch = zalloc(sz);
774 		if (!ptq->last_branch)
775 			goto out_free;
776 		ptq->last_branch_rb = zalloc(sz);
777 		if (!ptq->last_branch_rb)
778 			goto out_free;
779 	}
780 
781 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
782 	if (!ptq->event_buf)
783 		goto out_free;
784 
785 	ptq->pt = pt;
786 	ptq->queue_nr = queue_nr;
787 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
788 	ptq->pid = -1;
789 	ptq->tid = -1;
790 	ptq->cpu = -1;
791 	ptq->next_tid = -1;
792 
793 	params.get_trace = intel_pt_get_trace;
794 	params.walk_insn = intel_pt_walk_next_insn;
795 	params.data = ptq;
796 	params.return_compression = intel_pt_return_compression(pt);
797 	params.branch_enable = intel_pt_branch_enable(pt);
798 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
799 	params.mtc_period = intel_pt_mtc_period(pt);
800 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
801 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
802 
803 	if (pt->filts.cnt > 0)
804 		params.pgd_ip = intel_pt_pgd_ip;
805 
806 	if (pt->synth_opts.instructions) {
807 		if (pt->synth_opts.period) {
808 			switch (pt->synth_opts.period_type) {
809 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
810 				params.period_type =
811 						INTEL_PT_PERIOD_INSTRUCTIONS;
812 				params.period = pt->synth_opts.period;
813 				break;
814 			case PERF_ITRACE_PERIOD_TICKS:
815 				params.period_type = INTEL_PT_PERIOD_TICKS;
816 				params.period = pt->synth_opts.period;
817 				break;
818 			case PERF_ITRACE_PERIOD_NANOSECS:
819 				params.period_type = INTEL_PT_PERIOD_TICKS;
820 				params.period = intel_pt_ns_to_ticks(pt,
821 							pt->synth_opts.period);
822 				break;
823 			default:
824 				break;
825 			}
826 		}
827 
828 		if (!params.period) {
829 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
830 			params.period = 1;
831 		}
832 	}
833 
834 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
835 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
836 
837 	ptq->decoder = intel_pt_decoder_new(&params);
838 	if (!ptq->decoder)
839 		goto out_free;
840 
841 	return ptq;
842 
843 out_free:
844 	zfree(&ptq->event_buf);
845 	zfree(&ptq->last_branch);
846 	zfree(&ptq->last_branch_rb);
847 	zfree(&ptq->chain);
848 	free(ptq);
849 	return NULL;
850 }
851 
852 static void intel_pt_free_queue(void *priv)
853 {
854 	struct intel_pt_queue *ptq = priv;
855 
856 	if (!ptq)
857 		return;
858 	thread__zput(ptq->thread);
859 	intel_pt_decoder_free(ptq->decoder);
860 	zfree(&ptq->event_buf);
861 	zfree(&ptq->last_branch);
862 	zfree(&ptq->last_branch_rb);
863 	zfree(&ptq->chain);
864 	free(ptq);
865 }
866 
867 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
868 				     struct auxtrace_queue *queue)
869 {
870 	struct intel_pt_queue *ptq = queue->priv;
871 
872 	if (queue->tid == -1 || pt->have_sched_switch) {
873 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
874 		thread__zput(ptq->thread);
875 	}
876 
877 	if (!ptq->thread && ptq->tid != -1)
878 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
879 
880 	if (ptq->thread) {
881 		ptq->pid = ptq->thread->pid_;
882 		if (queue->cpu == -1)
883 			ptq->cpu = ptq->thread->cpu;
884 	}
885 }
886 
887 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
888 {
889 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
890 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
891 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
892 		if (ptq->state->to_ip)
893 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
894 				     PERF_IP_FLAG_ASYNC |
895 				     PERF_IP_FLAG_INTERRUPT;
896 		else
897 			ptq->flags = PERF_IP_FLAG_BRANCH |
898 				     PERF_IP_FLAG_TRACE_END;
899 		ptq->insn_len = 0;
900 	} else {
901 		if (ptq->state->from_ip)
902 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
903 		else
904 			ptq->flags = PERF_IP_FLAG_BRANCH |
905 				     PERF_IP_FLAG_TRACE_BEGIN;
906 		if (ptq->state->flags & INTEL_PT_IN_TX)
907 			ptq->flags |= PERF_IP_FLAG_IN_TX;
908 		ptq->insn_len = ptq->state->insn_len;
909 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
910 	}
911 }
912 
913 static int intel_pt_setup_queue(struct intel_pt *pt,
914 				struct auxtrace_queue *queue,
915 				unsigned int queue_nr)
916 {
917 	struct intel_pt_queue *ptq = queue->priv;
918 
919 	if (list_empty(&queue->head))
920 		return 0;
921 
922 	if (!ptq) {
923 		ptq = intel_pt_alloc_queue(pt, queue_nr);
924 		if (!ptq)
925 			return -ENOMEM;
926 		queue->priv = ptq;
927 
928 		if (queue->cpu != -1)
929 			ptq->cpu = queue->cpu;
930 		ptq->tid = queue->tid;
931 
932 		if (pt->sampling_mode && !pt->snapshot_mode &&
933 		    pt->timeless_decoding)
934 			ptq->step_through_buffers = true;
935 
936 		ptq->sync_switch = pt->sync_switch;
937 	}
938 
939 	if (!ptq->on_heap &&
940 	    (!ptq->sync_switch ||
941 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
942 		const struct intel_pt_state *state;
943 		int ret;
944 
945 		if (pt->timeless_decoding)
946 			return 0;
947 
948 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
949 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
950 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
951 		while (1) {
952 			state = intel_pt_decode(ptq->decoder);
953 			if (state->err) {
954 				if (state->err == INTEL_PT_ERR_NODATA) {
955 					intel_pt_log("queue %u has no timestamp\n",
956 						     queue_nr);
957 					return 0;
958 				}
959 				continue;
960 			}
961 			if (state->timestamp)
962 				break;
963 		}
964 
965 		ptq->timestamp = state->timestamp;
966 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
967 			     queue_nr, ptq->timestamp);
968 		ptq->state = state;
969 		ptq->have_sample = true;
970 		intel_pt_sample_flags(ptq);
971 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
972 		if (ret)
973 			return ret;
974 		ptq->on_heap = true;
975 	}
976 
977 	return 0;
978 }
979 
980 static int intel_pt_setup_queues(struct intel_pt *pt)
981 {
982 	unsigned int i;
983 	int ret;
984 
985 	for (i = 0; i < pt->queues.nr_queues; i++) {
986 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
987 		if (ret)
988 			return ret;
989 	}
990 	return 0;
991 }
992 
993 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
994 {
995 	struct branch_stack *bs_src = ptq->last_branch_rb;
996 	struct branch_stack *bs_dst = ptq->last_branch;
997 	size_t nr = 0;
998 
999 	bs_dst->nr = bs_src->nr;
1000 
1001 	if (!bs_src->nr)
1002 		return;
1003 
1004 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1005 	memcpy(&bs_dst->entries[0],
1006 	       &bs_src->entries[ptq->last_branch_pos],
1007 	       sizeof(struct branch_entry) * nr);
1008 
1009 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1010 		memcpy(&bs_dst->entries[nr],
1011 		       &bs_src->entries[0],
1012 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1013 	}
1014 }
1015 
1016 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1017 {
1018 	ptq->last_branch_pos = 0;
1019 	ptq->last_branch_rb->nr = 0;
1020 }
1021 
1022 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1023 {
1024 	const struct intel_pt_state *state = ptq->state;
1025 	struct branch_stack *bs = ptq->last_branch_rb;
1026 	struct branch_entry *be;
1027 
1028 	if (!ptq->last_branch_pos)
1029 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1030 
1031 	ptq->last_branch_pos -= 1;
1032 
1033 	be              = &bs->entries[ptq->last_branch_pos];
1034 	be->from        = state->from_ip;
1035 	be->to          = state->to_ip;
1036 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1037 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1038 	/* No support for mispredict */
1039 	be->flags.mispred = ptq->pt->mispred_all;
1040 
1041 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1042 		bs->nr += 1;
1043 }
1044 
1045 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1046 {
1047 	return pt->synth_opts.initial_skip &&
1048 	       pt->num_events++ < pt->synth_opts.initial_skip;
1049 }
1050 
1051 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1052 				   struct intel_pt_queue *ptq,
1053 				   union perf_event *event,
1054 				   struct perf_sample *sample)
1055 {
1056 	event->sample.header.type = PERF_RECORD_SAMPLE;
1057 	event->sample.header.misc = PERF_RECORD_MISC_USER;
1058 	event->sample.header.size = sizeof(struct perf_event_header);
1059 
1060 	if (!pt->timeless_decoding)
1061 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1062 
1063 	sample->cpumode = PERF_RECORD_MISC_USER;
1064 	sample->ip = ptq->state->from_ip;
1065 	sample->pid = ptq->pid;
1066 	sample->tid = ptq->tid;
1067 	sample->addr = ptq->state->to_ip;
1068 	sample->period = 1;
1069 	sample->cpu = ptq->cpu;
1070 	sample->flags = ptq->flags;
1071 	sample->insn_len = ptq->insn_len;
1072 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1073 }
1074 
1075 static int intel_pt_inject_event(union perf_event *event,
1076 				 struct perf_sample *sample, u64 type)
1077 {
1078 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1079 	return perf_event__synthesize_sample(event, type, 0, sample);
1080 }
1081 
1082 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1083 				      union perf_event *event,
1084 				      struct perf_sample *sample, u64 type)
1085 {
1086 	if (!pt->synth_opts.inject)
1087 		return 0;
1088 
1089 	return intel_pt_inject_event(event, sample, type);
1090 }
1091 
1092 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1093 					  union perf_event *event,
1094 					  struct perf_sample *sample, u64 type)
1095 {
1096 	int ret;
1097 
1098 	ret = intel_pt_opt_inject(pt, event, sample, type);
1099 	if (ret)
1100 		return ret;
1101 
1102 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1103 	if (ret)
1104 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1105 
1106 	return ret;
1107 }
1108 
1109 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1110 {
1111 	struct intel_pt *pt = ptq->pt;
1112 	union perf_event *event = ptq->event_buf;
1113 	struct perf_sample sample = { .ip = 0, };
1114 	struct dummy_branch_stack {
1115 		u64			nr;
1116 		struct branch_entry	entries;
1117 	} dummy_bs;
1118 
1119 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1120 		return 0;
1121 
1122 	if (intel_pt_skip_event(pt))
1123 		return 0;
1124 
1125 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1126 
1127 	sample.id = ptq->pt->branches_id;
1128 	sample.stream_id = ptq->pt->branches_id;
1129 
1130 	/*
1131 	 * perf report cannot handle events without a branch stack when using
1132 	 * SORT_MODE__BRANCH so make a dummy one.
1133 	 */
1134 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1135 		dummy_bs = (struct dummy_branch_stack){
1136 			.nr = 1,
1137 			.entries = {
1138 				.from = sample.ip,
1139 				.to = sample.addr,
1140 			},
1141 		};
1142 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1143 	}
1144 
1145 	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1146 					      pt->branches_sample_type);
1147 }
1148 
1149 static void intel_pt_prep_sample(struct intel_pt *pt,
1150 				 struct intel_pt_queue *ptq,
1151 				 union perf_event *event,
1152 				 struct perf_sample *sample)
1153 {
1154 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1155 
1156 	if (pt->synth_opts.callchain) {
1157 		thread_stack__sample(ptq->thread, ptq->chain,
1158 				     pt->synth_opts.callchain_sz, sample->ip);
1159 		sample->callchain = ptq->chain;
1160 	}
1161 
1162 	if (pt->synth_opts.last_branch) {
1163 		intel_pt_copy_last_branch_rb(ptq);
1164 		sample->branch_stack = ptq->last_branch;
1165 	}
1166 }
1167 
1168 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1169 					       struct intel_pt_queue *ptq,
1170 					       union perf_event *event,
1171 					       struct perf_sample *sample,
1172 					       u64 type)
1173 {
1174 	int ret;
1175 
1176 	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1177 
1178 	if (pt->synth_opts.last_branch)
1179 		intel_pt_reset_last_branch_rb(ptq);
1180 
1181 	return ret;
1182 }
1183 
1184 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1185 {
1186 	struct intel_pt *pt = ptq->pt;
1187 	union perf_event *event = ptq->event_buf;
1188 	struct perf_sample sample = { .ip = 0, };
1189 
1190 	if (intel_pt_skip_event(pt))
1191 		return 0;
1192 
1193 	intel_pt_prep_sample(pt, ptq, event, &sample);
1194 
1195 	sample.id = ptq->pt->instructions_id;
1196 	sample.stream_id = ptq->pt->instructions_id;
1197 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1198 
1199 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1200 
1201 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1202 					    pt->instructions_sample_type);
1203 }
1204 
1205 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1206 {
1207 	struct intel_pt *pt = ptq->pt;
1208 	union perf_event *event = ptq->event_buf;
1209 	struct perf_sample sample = { .ip = 0, };
1210 
1211 	if (intel_pt_skip_event(pt))
1212 		return 0;
1213 
1214 	intel_pt_prep_sample(pt, ptq, event, &sample);
1215 
1216 	sample.id = ptq->pt->transactions_id;
1217 	sample.stream_id = ptq->pt->transactions_id;
1218 
1219 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1220 					    pt->transactions_sample_type);
1221 }
1222 
1223 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1224 				   struct intel_pt_queue *ptq,
1225 				   union perf_event *event,
1226 				   struct perf_sample *sample)
1227 {
1228 	intel_pt_prep_sample(pt, ptq, event, sample);
1229 
1230 	/*
1231 	 * Zero IP is used to mean "trace start" but that is not the case for
1232 	 * power or PTWRITE events with no IP, so clear the flags.
1233 	 */
1234 	if (!sample->ip)
1235 		sample->flags = 0;
1236 }
1237 
1238 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1239 {
1240 	struct intel_pt *pt = ptq->pt;
1241 	union perf_event *event = ptq->event_buf;
1242 	struct perf_sample sample = { .ip = 0, };
1243 	struct perf_synth_intel_ptwrite raw;
1244 
1245 	if (intel_pt_skip_event(pt))
1246 		return 0;
1247 
1248 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1249 
1250 	sample.id = ptq->pt->ptwrites_id;
1251 	sample.stream_id = ptq->pt->ptwrites_id;
1252 
1253 	raw.flags = 0;
1254 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1255 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1256 
1257 	sample.raw_size = perf_synth__raw_size(raw);
1258 	sample.raw_data = perf_synth__raw_data(&raw);
1259 
1260 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1261 					    pt->ptwrites_sample_type);
1262 }
1263 
1264 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1265 {
1266 	struct intel_pt *pt = ptq->pt;
1267 	union perf_event *event = ptq->event_buf;
1268 	struct perf_sample sample = { .ip = 0, };
1269 	struct perf_synth_intel_cbr raw;
1270 	u32 flags;
1271 
1272 	if (intel_pt_skip_event(pt))
1273 		return 0;
1274 
1275 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1276 
1277 	sample.id = ptq->pt->cbr_id;
1278 	sample.stream_id = ptq->pt->cbr_id;
1279 
1280 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1281 	raw.flags = cpu_to_le32(flags);
1282 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1283 	raw.reserved3 = 0;
1284 
1285 	sample.raw_size = perf_synth__raw_size(raw);
1286 	sample.raw_data = perf_synth__raw_data(&raw);
1287 
1288 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1289 					    pt->pwr_events_sample_type);
1290 }
1291 
1292 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1293 {
1294 	struct intel_pt *pt = ptq->pt;
1295 	union perf_event *event = ptq->event_buf;
1296 	struct perf_sample sample = { .ip = 0, };
1297 	struct perf_synth_intel_mwait raw;
1298 
1299 	if (intel_pt_skip_event(pt))
1300 		return 0;
1301 
1302 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1303 
1304 	sample.id = ptq->pt->mwait_id;
1305 	sample.stream_id = ptq->pt->mwait_id;
1306 
1307 	raw.reserved = 0;
1308 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1309 
1310 	sample.raw_size = perf_synth__raw_size(raw);
1311 	sample.raw_data = perf_synth__raw_data(&raw);
1312 
1313 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1314 					    pt->pwr_events_sample_type);
1315 }
1316 
1317 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1318 {
1319 	struct intel_pt *pt = ptq->pt;
1320 	union perf_event *event = ptq->event_buf;
1321 	struct perf_sample sample = { .ip = 0, };
1322 	struct perf_synth_intel_pwre raw;
1323 
1324 	if (intel_pt_skip_event(pt))
1325 		return 0;
1326 
1327 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1328 
1329 	sample.id = ptq->pt->pwre_id;
1330 	sample.stream_id = ptq->pt->pwre_id;
1331 
1332 	raw.reserved = 0;
1333 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1334 
1335 	sample.raw_size = perf_synth__raw_size(raw);
1336 	sample.raw_data = perf_synth__raw_data(&raw);
1337 
1338 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1339 					    pt->pwr_events_sample_type);
1340 }
1341 
1342 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1343 {
1344 	struct intel_pt *pt = ptq->pt;
1345 	union perf_event *event = ptq->event_buf;
1346 	struct perf_sample sample = { .ip = 0, };
1347 	struct perf_synth_intel_exstop raw;
1348 
1349 	if (intel_pt_skip_event(pt))
1350 		return 0;
1351 
1352 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1353 
1354 	sample.id = ptq->pt->exstop_id;
1355 	sample.stream_id = ptq->pt->exstop_id;
1356 
1357 	raw.flags = 0;
1358 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1359 
1360 	sample.raw_size = perf_synth__raw_size(raw);
1361 	sample.raw_data = perf_synth__raw_data(&raw);
1362 
1363 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1364 					    pt->pwr_events_sample_type);
1365 }
1366 
1367 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1368 {
1369 	struct intel_pt *pt = ptq->pt;
1370 	union perf_event *event = ptq->event_buf;
1371 	struct perf_sample sample = { .ip = 0, };
1372 	struct perf_synth_intel_pwrx raw;
1373 
1374 	if (intel_pt_skip_event(pt))
1375 		return 0;
1376 
1377 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1378 
1379 	sample.id = ptq->pt->pwrx_id;
1380 	sample.stream_id = ptq->pt->pwrx_id;
1381 
1382 	raw.reserved = 0;
1383 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1384 
1385 	sample.raw_size = perf_synth__raw_size(raw);
1386 	sample.raw_data = perf_synth__raw_data(&raw);
1387 
1388 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1389 					    pt->pwr_events_sample_type);
1390 }
1391 
1392 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1393 				pid_t pid, pid_t tid, u64 ip)
1394 {
1395 	union perf_event event;
1396 	char msg[MAX_AUXTRACE_ERROR_MSG];
1397 	int err;
1398 
1399 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1400 
1401 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1402 			     code, cpu, pid, tid, ip, msg);
1403 
1404 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1405 	if (err)
1406 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1407 		       err);
1408 
1409 	return err;
1410 }
1411 
1412 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1413 {
1414 	struct auxtrace_queue *queue;
1415 	pid_t tid = ptq->next_tid;
1416 	int err;
1417 
1418 	if (tid == -1)
1419 		return 0;
1420 
1421 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1422 
1423 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1424 
1425 	queue = &pt->queues.queue_array[ptq->queue_nr];
1426 	intel_pt_set_pid_tid_cpu(pt, queue);
1427 
1428 	ptq->next_tid = -1;
1429 
1430 	return err;
1431 }
1432 
1433 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1434 {
1435 	struct intel_pt *pt = ptq->pt;
1436 
1437 	return ip == pt->switch_ip &&
1438 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1439 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1440 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1441 }
1442 
1443 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1444 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1445 			  INTEL_PT_CBR_CHG)
1446 
1447 static int intel_pt_sample(struct intel_pt_queue *ptq)
1448 {
1449 	const struct intel_pt_state *state = ptq->state;
1450 	struct intel_pt *pt = ptq->pt;
1451 	int err;
1452 
1453 	if (!ptq->have_sample)
1454 		return 0;
1455 
1456 	ptq->have_sample = false;
1457 
1458 	if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1459 		if (state->type & INTEL_PT_CBR_CHG) {
1460 			err = intel_pt_synth_cbr_sample(ptq);
1461 			if (err)
1462 				return err;
1463 		}
1464 		if (state->type & INTEL_PT_MWAIT_OP) {
1465 			err = intel_pt_synth_mwait_sample(ptq);
1466 			if (err)
1467 				return err;
1468 		}
1469 		if (state->type & INTEL_PT_PWR_ENTRY) {
1470 			err = intel_pt_synth_pwre_sample(ptq);
1471 			if (err)
1472 				return err;
1473 		}
1474 		if (state->type & INTEL_PT_EX_STOP) {
1475 			err = intel_pt_synth_exstop_sample(ptq);
1476 			if (err)
1477 				return err;
1478 		}
1479 		if (state->type & INTEL_PT_PWR_EXIT) {
1480 			err = intel_pt_synth_pwrx_sample(ptq);
1481 			if (err)
1482 				return err;
1483 		}
1484 	}
1485 
1486 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1487 		err = intel_pt_synth_instruction_sample(ptq);
1488 		if (err)
1489 			return err;
1490 	}
1491 
1492 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1493 		err = intel_pt_synth_transaction_sample(ptq);
1494 		if (err)
1495 			return err;
1496 	}
1497 
1498 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1499 		err = intel_pt_synth_ptwrite_sample(ptq);
1500 		if (err)
1501 			return err;
1502 	}
1503 
1504 	if (!(state->type & INTEL_PT_BRANCH))
1505 		return 0;
1506 
1507 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1508 		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1509 				    state->to_ip, ptq->insn_len,
1510 				    state->trace_nr);
1511 	else
1512 		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1513 
1514 	if (pt->sample_branches) {
1515 		err = intel_pt_synth_branch_sample(ptq);
1516 		if (err)
1517 			return err;
1518 	}
1519 
1520 	if (pt->synth_opts.last_branch)
1521 		intel_pt_update_last_branch_rb(ptq);
1522 
1523 	if (!ptq->sync_switch)
1524 		return 0;
1525 
1526 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1527 		switch (ptq->switch_state) {
1528 		case INTEL_PT_SS_NOT_TRACING:
1529 		case INTEL_PT_SS_UNKNOWN:
1530 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1531 			err = intel_pt_next_tid(pt, ptq);
1532 			if (err)
1533 				return err;
1534 			ptq->switch_state = INTEL_PT_SS_TRACING;
1535 			break;
1536 		default:
1537 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1538 			return 1;
1539 		}
1540 	} else if (!state->to_ip) {
1541 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1542 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1543 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1544 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1545 		   state->to_ip == pt->ptss_ip &&
1546 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1547 		ptq->switch_state = INTEL_PT_SS_TRACING;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1554 {
1555 	struct machine *machine = pt->machine;
1556 	struct map *map;
1557 	struct symbol *sym, *start;
1558 	u64 ip, switch_ip = 0;
1559 	const char *ptss;
1560 
1561 	if (ptss_ip)
1562 		*ptss_ip = 0;
1563 
1564 	map = machine__kernel_map(machine);
1565 	if (!map)
1566 		return 0;
1567 
1568 	if (map__load(map))
1569 		return 0;
1570 
1571 	start = dso__first_symbol(map->dso);
1572 
1573 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1574 		if (sym->binding == STB_GLOBAL &&
1575 		    !strcmp(sym->name, "__switch_to")) {
1576 			ip = map->unmap_ip(map, sym->start);
1577 			if (ip >= map->start && ip < map->end) {
1578 				switch_ip = ip;
1579 				break;
1580 			}
1581 		}
1582 	}
1583 
1584 	if (!switch_ip || !ptss_ip)
1585 		return 0;
1586 
1587 	if (pt->have_sched_switch == 1)
1588 		ptss = "perf_trace_sched_switch";
1589 	else
1590 		ptss = "__perf_event_task_sched_out";
1591 
1592 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1593 		if (!strcmp(sym->name, ptss)) {
1594 			ip = map->unmap_ip(map, sym->start);
1595 			if (ip >= map->start && ip < map->end) {
1596 				*ptss_ip = ip;
1597 				break;
1598 			}
1599 		}
1600 	}
1601 
1602 	return switch_ip;
1603 }
1604 
1605 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1606 {
1607 	unsigned int i;
1608 
1609 	pt->sync_switch = true;
1610 
1611 	for (i = 0; i < pt->queues.nr_queues; i++) {
1612 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1613 		struct intel_pt_queue *ptq = queue->priv;
1614 
1615 		if (ptq)
1616 			ptq->sync_switch = true;
1617 	}
1618 }
1619 
1620 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1621 {
1622 	const struct intel_pt_state *state = ptq->state;
1623 	struct intel_pt *pt = ptq->pt;
1624 	int err;
1625 
1626 	if (!pt->kernel_start) {
1627 		pt->kernel_start = machine__kernel_start(pt->machine);
1628 		if (pt->per_cpu_mmaps &&
1629 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1630 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1631 		    !pt->sampling_mode) {
1632 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1633 			if (pt->switch_ip) {
1634 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1635 					     pt->switch_ip, pt->ptss_ip);
1636 				intel_pt_enable_sync_switch(pt);
1637 			}
1638 		}
1639 	}
1640 
1641 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1642 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1643 	while (1) {
1644 		err = intel_pt_sample(ptq);
1645 		if (err)
1646 			return err;
1647 
1648 		state = intel_pt_decode(ptq->decoder);
1649 		if (state->err) {
1650 			if (state->err == INTEL_PT_ERR_NODATA)
1651 				return 1;
1652 			if (ptq->sync_switch &&
1653 			    state->from_ip >= pt->kernel_start) {
1654 				ptq->sync_switch = false;
1655 				intel_pt_next_tid(pt, ptq);
1656 			}
1657 			if (pt->synth_opts.errors) {
1658 				err = intel_pt_synth_error(pt, state->err,
1659 							   ptq->cpu, ptq->pid,
1660 							   ptq->tid,
1661 							   state->from_ip);
1662 				if (err)
1663 					return err;
1664 			}
1665 			continue;
1666 		}
1667 
1668 		ptq->state = state;
1669 		ptq->have_sample = true;
1670 		intel_pt_sample_flags(ptq);
1671 
1672 		/* Use estimated TSC upon return to user space */
1673 		if (pt->est_tsc &&
1674 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1675 		    state->to_ip && state->to_ip < pt->kernel_start) {
1676 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1677 				     state->timestamp, state->est_timestamp);
1678 			ptq->timestamp = state->est_timestamp;
1679 		/* Use estimated TSC in unknown switch state */
1680 		} else if (ptq->sync_switch &&
1681 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1682 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1683 			   ptq->next_tid == -1) {
1684 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1685 				     state->timestamp, state->est_timestamp);
1686 			ptq->timestamp = state->est_timestamp;
1687 		} else if (state->timestamp > ptq->timestamp) {
1688 			ptq->timestamp = state->timestamp;
1689 		}
1690 
1691 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1692 			*timestamp = ptq->timestamp;
1693 			return 0;
1694 		}
1695 	}
1696 	return 0;
1697 }
1698 
1699 static inline int intel_pt_update_queues(struct intel_pt *pt)
1700 {
1701 	if (pt->queues.new_data) {
1702 		pt->queues.new_data = false;
1703 		return intel_pt_setup_queues(pt);
1704 	}
1705 	return 0;
1706 }
1707 
1708 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1709 {
1710 	unsigned int queue_nr;
1711 	u64 ts;
1712 	int ret;
1713 
1714 	while (1) {
1715 		struct auxtrace_queue *queue;
1716 		struct intel_pt_queue *ptq;
1717 
1718 		if (!pt->heap.heap_cnt)
1719 			return 0;
1720 
1721 		if (pt->heap.heap_array[0].ordinal >= timestamp)
1722 			return 0;
1723 
1724 		queue_nr = pt->heap.heap_array[0].queue_nr;
1725 		queue = &pt->queues.queue_array[queue_nr];
1726 		ptq = queue->priv;
1727 
1728 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1729 			     queue_nr, pt->heap.heap_array[0].ordinal,
1730 			     timestamp);
1731 
1732 		auxtrace_heap__pop(&pt->heap);
1733 
1734 		if (pt->heap.heap_cnt) {
1735 			ts = pt->heap.heap_array[0].ordinal + 1;
1736 			if (ts > timestamp)
1737 				ts = timestamp;
1738 		} else {
1739 			ts = timestamp;
1740 		}
1741 
1742 		intel_pt_set_pid_tid_cpu(pt, queue);
1743 
1744 		ret = intel_pt_run_decoder(ptq, &ts);
1745 
1746 		if (ret < 0) {
1747 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1748 			return ret;
1749 		}
1750 
1751 		if (!ret) {
1752 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1753 			if (ret < 0)
1754 				return ret;
1755 		} else {
1756 			ptq->on_heap = false;
1757 		}
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1764 					    u64 time_)
1765 {
1766 	struct auxtrace_queues *queues = &pt->queues;
1767 	unsigned int i;
1768 	u64 ts = 0;
1769 
1770 	for (i = 0; i < queues->nr_queues; i++) {
1771 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1772 		struct intel_pt_queue *ptq = queue->priv;
1773 
1774 		if (ptq && (tid == -1 || ptq->tid == tid)) {
1775 			ptq->time = time_;
1776 			intel_pt_set_pid_tid_cpu(pt, queue);
1777 			intel_pt_run_decoder(ptq, &ts);
1778 		}
1779 	}
1780 	return 0;
1781 }
1782 
1783 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1784 {
1785 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1786 				    sample->pid, sample->tid, 0);
1787 }
1788 
1789 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1790 {
1791 	unsigned i, j;
1792 
1793 	if (cpu < 0 || !pt->queues.nr_queues)
1794 		return NULL;
1795 
1796 	if ((unsigned)cpu >= pt->queues.nr_queues)
1797 		i = pt->queues.nr_queues - 1;
1798 	else
1799 		i = cpu;
1800 
1801 	if (pt->queues.queue_array[i].cpu == cpu)
1802 		return pt->queues.queue_array[i].priv;
1803 
1804 	for (j = 0; i > 0; j++) {
1805 		if (pt->queues.queue_array[--i].cpu == cpu)
1806 			return pt->queues.queue_array[i].priv;
1807 	}
1808 
1809 	for (; j < pt->queues.nr_queues; j++) {
1810 		if (pt->queues.queue_array[j].cpu == cpu)
1811 			return pt->queues.queue_array[j].priv;
1812 	}
1813 
1814 	return NULL;
1815 }
1816 
1817 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1818 				u64 timestamp)
1819 {
1820 	struct intel_pt_queue *ptq;
1821 	int err;
1822 
1823 	if (!pt->sync_switch)
1824 		return 1;
1825 
1826 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1827 	if (!ptq || !ptq->sync_switch)
1828 		return 1;
1829 
1830 	switch (ptq->switch_state) {
1831 	case INTEL_PT_SS_NOT_TRACING:
1832 		ptq->next_tid = -1;
1833 		break;
1834 	case INTEL_PT_SS_UNKNOWN:
1835 	case INTEL_PT_SS_TRACING:
1836 		ptq->next_tid = tid;
1837 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1838 		return 0;
1839 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1840 		if (!ptq->on_heap) {
1841 			ptq->timestamp = perf_time_to_tsc(timestamp,
1842 							  &pt->tc);
1843 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1844 						 ptq->timestamp);
1845 			if (err)
1846 				return err;
1847 			ptq->on_heap = true;
1848 		}
1849 		ptq->switch_state = INTEL_PT_SS_TRACING;
1850 		break;
1851 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1852 		ptq->next_tid = tid;
1853 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1854 		break;
1855 	default:
1856 		break;
1857 	}
1858 
1859 	return 1;
1860 }
1861 
1862 static int intel_pt_process_switch(struct intel_pt *pt,
1863 				   struct perf_sample *sample)
1864 {
1865 	struct perf_evsel *evsel;
1866 	pid_t tid;
1867 	int cpu, ret;
1868 
1869 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1870 	if (evsel != pt->switch_evsel)
1871 		return 0;
1872 
1873 	tid = perf_evsel__intval(evsel, sample, "next_pid");
1874 	cpu = sample->cpu;
1875 
1876 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1877 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1878 		     &pt->tc));
1879 
1880 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1881 	if (ret <= 0)
1882 		return ret;
1883 
1884 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1885 }
1886 
1887 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1888 				   struct perf_sample *sample)
1889 {
1890 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1891 	pid_t pid, tid;
1892 	int cpu, ret;
1893 
1894 	cpu = sample->cpu;
1895 
1896 	if (pt->have_sched_switch == 3) {
1897 		if (!out)
1898 			return 0;
1899 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1900 			pr_err("Expecting CPU-wide context switch event\n");
1901 			return -EINVAL;
1902 		}
1903 		pid = event->context_switch.next_prev_pid;
1904 		tid = event->context_switch.next_prev_tid;
1905 	} else {
1906 		if (out)
1907 			return 0;
1908 		pid = sample->pid;
1909 		tid = sample->tid;
1910 	}
1911 
1912 	if (tid == -1) {
1913 		pr_err("context_switch event has no tid\n");
1914 		return -EINVAL;
1915 	}
1916 
1917 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1918 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1919 		     &pt->tc));
1920 
1921 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1922 	if (ret <= 0)
1923 		return ret;
1924 
1925 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1926 }
1927 
1928 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1929 					 union perf_event *event,
1930 					 struct perf_sample *sample)
1931 {
1932 	if (!pt->per_cpu_mmaps)
1933 		return 0;
1934 
1935 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1936 		     sample->cpu, event->itrace_start.pid,
1937 		     event->itrace_start.tid, sample->time,
1938 		     perf_time_to_tsc(sample->time, &pt->tc));
1939 
1940 	return machine__set_current_tid(pt->machine, sample->cpu,
1941 					event->itrace_start.pid,
1942 					event->itrace_start.tid);
1943 }
1944 
1945 static int intel_pt_process_event(struct perf_session *session,
1946 				  union perf_event *event,
1947 				  struct perf_sample *sample,
1948 				  struct perf_tool *tool)
1949 {
1950 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1951 					   auxtrace);
1952 	u64 timestamp;
1953 	int err = 0;
1954 
1955 	if (dump_trace)
1956 		return 0;
1957 
1958 	if (!tool->ordered_events) {
1959 		pr_err("Intel Processor Trace requires ordered events\n");
1960 		return -EINVAL;
1961 	}
1962 
1963 	if (sample->time && sample->time != (u64)-1)
1964 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1965 	else
1966 		timestamp = 0;
1967 
1968 	if (timestamp || pt->timeless_decoding) {
1969 		err = intel_pt_update_queues(pt);
1970 		if (err)
1971 			return err;
1972 	}
1973 
1974 	if (pt->timeless_decoding) {
1975 		if (event->header.type == PERF_RECORD_EXIT) {
1976 			err = intel_pt_process_timeless_queues(pt,
1977 							       event->fork.tid,
1978 							       sample->time);
1979 		}
1980 	} else if (timestamp) {
1981 		err = intel_pt_process_queues(pt, timestamp);
1982 	}
1983 	if (err)
1984 		return err;
1985 
1986 	if (event->header.type == PERF_RECORD_AUX &&
1987 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1988 	    pt->synth_opts.errors) {
1989 		err = intel_pt_lost(pt, sample);
1990 		if (err)
1991 			return err;
1992 	}
1993 
1994 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1995 		err = intel_pt_process_switch(pt, sample);
1996 	else if (event->header.type == PERF_RECORD_ITRACE_START)
1997 		err = intel_pt_process_itrace_start(pt, event, sample);
1998 	else if (event->header.type == PERF_RECORD_SWITCH ||
1999 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2000 		err = intel_pt_context_switch(pt, event, sample);
2001 
2002 	intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
2003 		     perf_event__name(event->header.type), event->header.type,
2004 		     sample->cpu, sample->time, timestamp);
2005 
2006 	return err;
2007 }
2008 
2009 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2010 {
2011 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2012 					   auxtrace);
2013 	int ret;
2014 
2015 	if (dump_trace)
2016 		return 0;
2017 
2018 	if (!tool->ordered_events)
2019 		return -EINVAL;
2020 
2021 	ret = intel_pt_update_queues(pt);
2022 	if (ret < 0)
2023 		return ret;
2024 
2025 	if (pt->timeless_decoding)
2026 		return intel_pt_process_timeless_queues(pt, -1,
2027 							MAX_TIMESTAMP - 1);
2028 
2029 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2030 }
2031 
2032 static void intel_pt_free_events(struct perf_session *session)
2033 {
2034 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2035 					   auxtrace);
2036 	struct auxtrace_queues *queues = &pt->queues;
2037 	unsigned int i;
2038 
2039 	for (i = 0; i < queues->nr_queues; i++) {
2040 		intel_pt_free_queue(queues->queue_array[i].priv);
2041 		queues->queue_array[i].priv = NULL;
2042 	}
2043 	intel_pt_log_disable();
2044 	auxtrace_queues__free(queues);
2045 }
2046 
2047 static void intel_pt_free(struct perf_session *session)
2048 {
2049 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2050 					   auxtrace);
2051 
2052 	auxtrace_heap__free(&pt->heap);
2053 	intel_pt_free_events(session);
2054 	session->auxtrace = NULL;
2055 	thread__put(pt->unknown_thread);
2056 	addr_filters__exit(&pt->filts);
2057 	zfree(&pt->filter);
2058 	free(pt);
2059 }
2060 
2061 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2062 					   union perf_event *event,
2063 					   struct perf_tool *tool __maybe_unused)
2064 {
2065 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2066 					   auxtrace);
2067 
2068 	if (!pt->data_queued) {
2069 		struct auxtrace_buffer *buffer;
2070 		off_t data_offset;
2071 		int fd = perf_data__fd(session->data);
2072 		int err;
2073 
2074 		if (perf_data__is_pipe(session->data)) {
2075 			data_offset = 0;
2076 		} else {
2077 			data_offset = lseek(fd, 0, SEEK_CUR);
2078 			if (data_offset == -1)
2079 				return -errno;
2080 		}
2081 
2082 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2083 						 data_offset, &buffer);
2084 		if (err)
2085 			return err;
2086 
2087 		/* Dump here now we have copied a piped trace out of the pipe */
2088 		if (dump_trace) {
2089 			if (auxtrace_buffer__get_data(buffer, fd)) {
2090 				intel_pt_dump_event(pt, buffer->data,
2091 						    buffer->size);
2092 				auxtrace_buffer__put_data(buffer);
2093 			}
2094 		}
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 struct intel_pt_synth {
2101 	struct perf_tool dummy_tool;
2102 	struct perf_session *session;
2103 };
2104 
2105 static int intel_pt_event_synth(struct perf_tool *tool,
2106 				union perf_event *event,
2107 				struct perf_sample *sample __maybe_unused,
2108 				struct machine *machine __maybe_unused)
2109 {
2110 	struct intel_pt_synth *intel_pt_synth =
2111 			container_of(tool, struct intel_pt_synth, dummy_tool);
2112 
2113 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2114 						 NULL);
2115 }
2116 
2117 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2118 				struct perf_event_attr *attr, u64 id)
2119 {
2120 	struct intel_pt_synth intel_pt_synth;
2121 	int err;
2122 
2123 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2124 		 name, id, (u64)attr->sample_type);
2125 
2126 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2127 	intel_pt_synth.session = session;
2128 
2129 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2130 					  &id, intel_pt_event_synth);
2131 	if (err)
2132 		pr_err("%s: failed to synthesize '%s' event type\n",
2133 		       __func__, name);
2134 
2135 	return err;
2136 }
2137 
2138 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2139 				    const char *name)
2140 {
2141 	struct perf_evsel *evsel;
2142 
2143 	evlist__for_each_entry(evlist, evsel) {
2144 		if (evsel->id && evsel->id[0] == id) {
2145 			if (evsel->name)
2146 				zfree(&evsel->name);
2147 			evsel->name = strdup(name);
2148 			break;
2149 		}
2150 	}
2151 }
2152 
2153 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2154 					 struct perf_evlist *evlist)
2155 {
2156 	struct perf_evsel *evsel;
2157 
2158 	evlist__for_each_entry(evlist, evsel) {
2159 		if (evsel->attr.type == pt->pmu_type && evsel->ids)
2160 			return evsel;
2161 	}
2162 
2163 	return NULL;
2164 }
2165 
2166 static int intel_pt_synth_events(struct intel_pt *pt,
2167 				 struct perf_session *session)
2168 {
2169 	struct perf_evlist *evlist = session->evlist;
2170 	struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2171 	struct perf_event_attr attr;
2172 	u64 id;
2173 	int err;
2174 
2175 	if (!evsel) {
2176 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2177 		return 0;
2178 	}
2179 
2180 	memset(&attr, 0, sizeof(struct perf_event_attr));
2181 	attr.size = sizeof(struct perf_event_attr);
2182 	attr.type = PERF_TYPE_HARDWARE;
2183 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2184 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2185 			    PERF_SAMPLE_PERIOD;
2186 	if (pt->timeless_decoding)
2187 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2188 	else
2189 		attr.sample_type |= PERF_SAMPLE_TIME;
2190 	if (!pt->per_cpu_mmaps)
2191 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2192 	attr.exclude_user = evsel->attr.exclude_user;
2193 	attr.exclude_kernel = evsel->attr.exclude_kernel;
2194 	attr.exclude_hv = evsel->attr.exclude_hv;
2195 	attr.exclude_host = evsel->attr.exclude_host;
2196 	attr.exclude_guest = evsel->attr.exclude_guest;
2197 	attr.sample_id_all = evsel->attr.sample_id_all;
2198 	attr.read_format = evsel->attr.read_format;
2199 
2200 	id = evsel->id[0] + 1000000000;
2201 	if (!id)
2202 		id = 1;
2203 
2204 	if (pt->synth_opts.branches) {
2205 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2206 		attr.sample_period = 1;
2207 		attr.sample_type |= PERF_SAMPLE_ADDR;
2208 		err = intel_pt_synth_event(session, "branches", &attr, id);
2209 		if (err)
2210 			return err;
2211 		pt->sample_branches = true;
2212 		pt->branches_sample_type = attr.sample_type;
2213 		pt->branches_id = id;
2214 		id += 1;
2215 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2216 	}
2217 
2218 	if (pt->synth_opts.callchain)
2219 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2220 	if (pt->synth_opts.last_branch)
2221 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2222 
2223 	if (pt->synth_opts.instructions) {
2224 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2225 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2226 			attr.sample_period =
2227 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2228 		else
2229 			attr.sample_period = pt->synth_opts.period;
2230 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2231 		if (err)
2232 			return err;
2233 		pt->sample_instructions = true;
2234 		pt->instructions_sample_type = attr.sample_type;
2235 		pt->instructions_id = id;
2236 		id += 1;
2237 	}
2238 
2239 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2240 	attr.sample_period = 1;
2241 
2242 	if (pt->synth_opts.transactions) {
2243 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2244 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2245 		if (err)
2246 			return err;
2247 		pt->sample_transactions = true;
2248 		pt->transactions_sample_type = attr.sample_type;
2249 		pt->transactions_id = id;
2250 		intel_pt_set_event_name(evlist, id, "transactions");
2251 		id += 1;
2252 	}
2253 
2254 	attr.type = PERF_TYPE_SYNTH;
2255 	attr.sample_type |= PERF_SAMPLE_RAW;
2256 
2257 	if (pt->synth_opts.ptwrites) {
2258 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2259 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2260 		if (err)
2261 			return err;
2262 		pt->sample_ptwrites = true;
2263 		pt->ptwrites_sample_type = attr.sample_type;
2264 		pt->ptwrites_id = id;
2265 		intel_pt_set_event_name(evlist, id, "ptwrite");
2266 		id += 1;
2267 	}
2268 
2269 	if (pt->synth_opts.pwr_events) {
2270 		pt->sample_pwr_events = true;
2271 		pt->pwr_events_sample_type = attr.sample_type;
2272 
2273 		attr.config = PERF_SYNTH_INTEL_CBR;
2274 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2275 		if (err)
2276 			return err;
2277 		pt->cbr_id = id;
2278 		intel_pt_set_event_name(evlist, id, "cbr");
2279 		id += 1;
2280 	}
2281 
2282 	if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2283 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2284 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2285 		if (err)
2286 			return err;
2287 		pt->mwait_id = id;
2288 		intel_pt_set_event_name(evlist, id, "mwait");
2289 		id += 1;
2290 
2291 		attr.config = PERF_SYNTH_INTEL_PWRE;
2292 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2293 		if (err)
2294 			return err;
2295 		pt->pwre_id = id;
2296 		intel_pt_set_event_name(evlist, id, "pwre");
2297 		id += 1;
2298 
2299 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2300 		err = intel_pt_synth_event(session, "exstop", &attr, id);
2301 		if (err)
2302 			return err;
2303 		pt->exstop_id = id;
2304 		intel_pt_set_event_name(evlist, id, "exstop");
2305 		id += 1;
2306 
2307 		attr.config = PERF_SYNTH_INTEL_PWRX;
2308 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2309 		if (err)
2310 			return err;
2311 		pt->pwrx_id = id;
2312 		intel_pt_set_event_name(evlist, id, "pwrx");
2313 		id += 1;
2314 	}
2315 
2316 	return 0;
2317 }
2318 
2319 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2320 {
2321 	struct perf_evsel *evsel;
2322 
2323 	evlist__for_each_entry_reverse(evlist, evsel) {
2324 		const char *name = perf_evsel__name(evsel);
2325 
2326 		if (!strcmp(name, "sched:sched_switch"))
2327 			return evsel;
2328 	}
2329 
2330 	return NULL;
2331 }
2332 
2333 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2334 {
2335 	struct perf_evsel *evsel;
2336 
2337 	evlist__for_each_entry(evlist, evsel) {
2338 		if (evsel->attr.context_switch)
2339 			return true;
2340 	}
2341 
2342 	return false;
2343 }
2344 
2345 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2346 {
2347 	struct intel_pt *pt = data;
2348 
2349 	if (!strcmp(var, "intel-pt.mispred-all"))
2350 		pt->mispred_all = perf_config_bool(var, value);
2351 
2352 	return 0;
2353 }
2354 
2355 static const char * const intel_pt_info_fmts[] = {
2356 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
2357 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
2358 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
2359 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
2360 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
2361 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
2362 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
2363 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
2364 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
2365 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
2366 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
2367 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
2368 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
2369 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
2370 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
2371 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
2372 };
2373 
2374 static void intel_pt_print_info(u64 *arr, int start, int finish)
2375 {
2376 	int i;
2377 
2378 	if (!dump_trace)
2379 		return;
2380 
2381 	for (i = start; i <= finish; i++)
2382 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2383 }
2384 
2385 static void intel_pt_print_info_str(const char *name, const char *str)
2386 {
2387 	if (!dump_trace)
2388 		return;
2389 
2390 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2391 }
2392 
2393 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2394 {
2395 	return auxtrace_info->header.size >=
2396 		sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2397 }
2398 
2399 int intel_pt_process_auxtrace_info(union perf_event *event,
2400 				   struct perf_session *session)
2401 {
2402 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2403 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2404 	struct intel_pt *pt;
2405 	void *info_end;
2406 	u64 *info;
2407 	int err;
2408 
2409 	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2410 					min_sz)
2411 		return -EINVAL;
2412 
2413 	pt = zalloc(sizeof(struct intel_pt));
2414 	if (!pt)
2415 		return -ENOMEM;
2416 
2417 	addr_filters__init(&pt->filts);
2418 
2419 	err = perf_config(intel_pt_perf_config, pt);
2420 	if (err)
2421 		goto err_free;
2422 
2423 	err = auxtrace_queues__init(&pt->queues);
2424 	if (err)
2425 		goto err_free;
2426 
2427 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2428 
2429 	pt->session = session;
2430 	pt->machine = &session->machines.host; /* No kvm support */
2431 	pt->auxtrace_type = auxtrace_info->type;
2432 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2433 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2434 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2435 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2436 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2437 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2438 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2439 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2440 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2441 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2442 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2443 			    INTEL_PT_PER_CPU_MMAPS);
2444 
2445 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2446 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2447 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2448 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2449 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2450 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2451 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2452 				    INTEL_PT_CYC_BIT);
2453 	}
2454 
2455 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2456 		pt->max_non_turbo_ratio =
2457 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2458 		intel_pt_print_info(&auxtrace_info->priv[0],
2459 				    INTEL_PT_MAX_NONTURBO_RATIO,
2460 				    INTEL_PT_MAX_NONTURBO_RATIO);
2461 	}
2462 
2463 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2464 	info_end = (void *)info + auxtrace_info->header.size;
2465 
2466 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2467 		size_t len;
2468 
2469 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2470 		intel_pt_print_info(&auxtrace_info->priv[0],
2471 				    INTEL_PT_FILTER_STR_LEN,
2472 				    INTEL_PT_FILTER_STR_LEN);
2473 		if (len) {
2474 			const char *filter = (const char *)info;
2475 
2476 			len = roundup(len + 1, 8);
2477 			info += len >> 3;
2478 			if ((void *)info > info_end) {
2479 				pr_err("%s: bad filter string length\n", __func__);
2480 				err = -EINVAL;
2481 				goto err_free_queues;
2482 			}
2483 			pt->filter = memdup(filter, len);
2484 			if (!pt->filter) {
2485 				err = -ENOMEM;
2486 				goto err_free_queues;
2487 			}
2488 			if (session->header.needs_swap)
2489 				mem_bswap_64(pt->filter, len);
2490 			if (pt->filter[len - 1]) {
2491 				pr_err("%s: filter string not null terminated\n", __func__);
2492 				err = -EINVAL;
2493 				goto err_free_queues;
2494 			}
2495 			err = addr_filters__parse_bare_filter(&pt->filts,
2496 							      filter);
2497 			if (err)
2498 				goto err_free_queues;
2499 		}
2500 		intel_pt_print_info_str("Filter string", pt->filter);
2501 	}
2502 
2503 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2504 	pt->have_tsc = intel_pt_have_tsc(pt);
2505 	pt->sampling_mode = false;
2506 	pt->est_tsc = !pt->timeless_decoding;
2507 
2508 	pt->unknown_thread = thread__new(999999999, 999999999);
2509 	if (!pt->unknown_thread) {
2510 		err = -ENOMEM;
2511 		goto err_free_queues;
2512 	}
2513 
2514 	/*
2515 	 * Since this thread will not be kept in any rbtree not in a
2516 	 * list, initialize its list node so that at thread__put() the
2517 	 * current thread lifetime assuption is kept and we don't segfault
2518 	 * at list_del_init().
2519 	 */
2520 	INIT_LIST_HEAD(&pt->unknown_thread->node);
2521 
2522 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2523 	if (err)
2524 		goto err_delete_thread;
2525 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2526 		err = -ENOMEM;
2527 		goto err_delete_thread;
2528 	}
2529 
2530 	pt->auxtrace.process_event = intel_pt_process_event;
2531 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2532 	pt->auxtrace.flush_events = intel_pt_flush;
2533 	pt->auxtrace.free_events = intel_pt_free_events;
2534 	pt->auxtrace.free = intel_pt_free;
2535 	session->auxtrace = &pt->auxtrace;
2536 
2537 	if (dump_trace)
2538 		return 0;
2539 
2540 	if (pt->have_sched_switch == 1) {
2541 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2542 		if (!pt->switch_evsel) {
2543 			pr_err("%s: missing sched_switch event\n", __func__);
2544 			err = -EINVAL;
2545 			goto err_delete_thread;
2546 		}
2547 	} else if (pt->have_sched_switch == 2 &&
2548 		   !intel_pt_find_switch(session->evlist)) {
2549 		pr_err("%s: missing context_switch attribute flag\n", __func__);
2550 		err = -EINVAL;
2551 		goto err_delete_thread;
2552 	}
2553 
2554 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2555 		pt->synth_opts = *session->itrace_synth_opts;
2556 	} else {
2557 		itrace_synth_opts__set_default(&pt->synth_opts);
2558 		if (use_browser != -1) {
2559 			pt->synth_opts.branches = false;
2560 			pt->synth_opts.callchain = true;
2561 		}
2562 		if (session->itrace_synth_opts)
2563 			pt->synth_opts.thread_stack =
2564 				session->itrace_synth_opts->thread_stack;
2565 	}
2566 
2567 	if (pt->synth_opts.log)
2568 		intel_pt_log_enable();
2569 
2570 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
2571 	if (pt->tc.time_mult) {
2572 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2573 
2574 		if (!pt->max_non_turbo_ratio)
2575 			pt->max_non_turbo_ratio =
2576 					(tsc_freq + 50000000) / 100000000;
2577 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2578 		intel_pt_log("Maximum non-turbo ratio %u\n",
2579 			     pt->max_non_turbo_ratio);
2580 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2581 	}
2582 
2583 	if (pt->synth_opts.calls)
2584 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2585 				       PERF_IP_FLAG_TRACE_END;
2586 	if (pt->synth_opts.returns)
2587 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2588 				       PERF_IP_FLAG_TRACE_BEGIN;
2589 
2590 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2591 		symbol_conf.use_callchain = true;
2592 		if (callchain_register_param(&callchain_param) < 0) {
2593 			symbol_conf.use_callchain = false;
2594 			pt->synth_opts.callchain = false;
2595 		}
2596 	}
2597 
2598 	err = intel_pt_synth_events(pt, session);
2599 	if (err)
2600 		goto err_delete_thread;
2601 
2602 	err = auxtrace_queues__process_index(&pt->queues, session);
2603 	if (err)
2604 		goto err_delete_thread;
2605 
2606 	if (pt->queues.populated)
2607 		pt->data_queued = true;
2608 
2609 	if (pt->timeless_decoding)
2610 		pr_debug2("Intel PT decoding without timestamps\n");
2611 
2612 	return 0;
2613 
2614 err_delete_thread:
2615 	thread__zput(pt->unknown_thread);
2616 err_free_queues:
2617 	intel_pt_log_disable();
2618 	auxtrace_queues__free(&pt->queues);
2619 	session->auxtrace = NULL;
2620 err_free:
2621 	addr_filters__exit(&pt->filts);
2622 	zfree(&pt->filter);
2623 	free(pt);
2624 	return err;
2625 }
2626