1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0) 50 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4) 51 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13) 52 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31) 53 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55) 54 55 struct range { 56 u64 start; 57 u64 end; 58 }; 59 60 struct intel_pt { 61 struct auxtrace auxtrace; 62 struct auxtrace_queues queues; 63 struct auxtrace_heap heap; 64 u32 auxtrace_type; 65 struct perf_session *session; 66 struct machine *machine; 67 struct evsel *switch_evsel; 68 struct thread *unknown_thread; 69 bool timeless_decoding; 70 bool sampling_mode; 71 bool snapshot_mode; 72 bool per_cpu_mmaps; 73 bool have_tsc; 74 bool data_queued; 75 bool est_tsc; 76 bool sync_switch; 77 bool mispred_all; 78 bool use_thread_stack; 79 bool callstack; 80 bool cap_event_trace; 81 unsigned int br_stack_sz; 82 unsigned int br_stack_sz_plus; 83 int have_sched_switch; 84 u32 pmu_type; 85 u64 kernel_start; 86 u64 switch_ip; 87 u64 ptss_ip; 88 u64 first_timestamp; 89 90 struct perf_tsc_conversion tc; 91 bool cap_user_time_zero; 92 93 struct itrace_synth_opts synth_opts; 94 95 bool sample_instructions; 96 u64 instructions_sample_type; 97 u64 instructions_id; 98 99 bool sample_branches; 100 u32 branches_filter; 101 u64 branches_sample_type; 102 u64 branches_id; 103 104 bool sample_transactions; 105 u64 transactions_sample_type; 106 u64 transactions_id; 107 108 bool sample_ptwrites; 109 u64 ptwrites_sample_type; 110 u64 ptwrites_id; 111 112 bool sample_pwr_events; 113 u64 pwr_events_sample_type; 114 u64 mwait_id; 115 u64 pwre_id; 116 u64 exstop_id; 117 u64 pwrx_id; 118 u64 cbr_id; 119 u64 psb_id; 120 121 bool single_pebs; 122 bool sample_pebs; 123 struct evsel *pebs_evsel; 124 125 u64 evt_sample_type; 126 u64 evt_id; 127 128 u64 iflag_chg_sample_type; 129 u64 iflag_chg_id; 130 131 u64 tsc_bit; 132 u64 mtc_bit; 133 u64 mtc_freq_bits; 134 u32 tsc_ctc_ratio_n; 135 u32 tsc_ctc_ratio_d; 136 u64 cyc_bit; 137 u64 noretcomp_bit; 138 unsigned max_non_turbo_ratio; 139 unsigned cbr2khz; 140 int max_loops; 141 142 unsigned long num_events; 143 144 char *filter; 145 struct addr_filters filts; 146 147 struct range *time_ranges; 148 unsigned int range_cnt; 149 150 struct ip_callchain *chain; 151 struct branch_stack *br_stack; 152 153 u64 dflt_tsc_offset; 154 struct rb_root vmcs_info; 155 }; 156 157 enum switch_state { 158 INTEL_PT_SS_NOT_TRACING, 159 INTEL_PT_SS_UNKNOWN, 160 INTEL_PT_SS_TRACING, 161 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 162 INTEL_PT_SS_EXPECTING_SWITCH_IP, 163 }; 164 165 /* applicable_counters is 64-bits */ 166 #define INTEL_PT_MAX_PEBS 64 167 168 struct intel_pt_pebs_event { 169 struct evsel *evsel; 170 u64 id; 171 }; 172 173 struct intel_pt_queue { 174 struct intel_pt *pt; 175 unsigned int queue_nr; 176 struct auxtrace_buffer *buffer; 177 struct auxtrace_buffer *old_buffer; 178 void *decoder; 179 const struct intel_pt_state *state; 180 struct ip_callchain *chain; 181 struct branch_stack *last_branch; 182 union perf_event *event_buf; 183 bool on_heap; 184 bool stop; 185 bool step_through_buffers; 186 bool use_buffer_pid_tid; 187 bool sync_switch; 188 bool sample_ipc; 189 pid_t pid, tid; 190 int cpu; 191 int switch_state; 192 pid_t next_tid; 193 struct thread *thread; 194 struct machine *guest_machine; 195 struct thread *guest_thread; 196 struct thread *unknown_guest_thread; 197 pid_t guest_machine_pid; 198 bool exclude_kernel; 199 bool have_sample; 200 u64 time; 201 u64 timestamp; 202 u64 sel_timestamp; 203 bool sel_start; 204 unsigned int sel_idx; 205 u32 flags; 206 u16 insn_len; 207 u64 last_insn_cnt; 208 u64 ipc_insn_cnt; 209 u64 ipc_cyc_cnt; 210 u64 last_in_insn_cnt; 211 u64 last_in_cyc_cnt; 212 u64 last_br_insn_cnt; 213 u64 last_br_cyc_cnt; 214 unsigned int cbr_seen; 215 char insn[INTEL_PT_INSN_BUF_SZ]; 216 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS]; 217 }; 218 219 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 220 unsigned char *buf, size_t len) 221 { 222 struct intel_pt_pkt packet; 223 size_t pos = 0; 224 int ret, pkt_len, i; 225 char desc[INTEL_PT_PKT_DESC_MAX]; 226 const char *color = PERF_COLOR_BLUE; 227 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 228 229 color_fprintf(stdout, color, 230 ". ... Intel Processor Trace data: size %zu bytes\n", 231 len); 232 233 while (len) { 234 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 235 if (ret > 0) 236 pkt_len = ret; 237 else 238 pkt_len = 1; 239 printf("."); 240 color_fprintf(stdout, color, " %08x: ", pos); 241 for (i = 0; i < pkt_len; i++) 242 color_fprintf(stdout, color, " %02x", buf[i]); 243 for (; i < 16; i++) 244 color_fprintf(stdout, color, " "); 245 if (ret > 0) { 246 ret = intel_pt_pkt_desc(&packet, desc, 247 INTEL_PT_PKT_DESC_MAX); 248 if (ret > 0) 249 color_fprintf(stdout, color, " %s\n", desc); 250 } else { 251 color_fprintf(stdout, color, " Bad packet!\n"); 252 } 253 pos += pkt_len; 254 buf += pkt_len; 255 len -= pkt_len; 256 } 257 } 258 259 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 260 size_t len) 261 { 262 printf(".\n"); 263 intel_pt_dump(pt, buf, len); 264 } 265 266 static void intel_pt_log_event(union perf_event *event) 267 { 268 FILE *f = intel_pt_log_fp(); 269 270 if (!intel_pt_enable_logging || !f) 271 return; 272 273 perf_event__fprintf(event, NULL, f); 274 } 275 276 static void intel_pt_dump_sample(struct perf_session *session, 277 struct perf_sample *sample) 278 { 279 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 280 auxtrace); 281 282 printf("\n"); 283 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 284 } 285 286 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 287 { 288 struct perf_time_interval *range = pt->synth_opts.ptime_range; 289 int n = pt->synth_opts.range_num; 290 291 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 292 return true; 293 294 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 295 return false; 296 297 /* perf_time__ranges_skip_sample does not work if time is zero */ 298 if (!tm) 299 tm = 1; 300 301 return !n || !perf_time__ranges_skip_sample(range, n, tm); 302 } 303 304 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, 305 u64 vmcs, 306 u64 dflt_tsc_offset) 307 { 308 struct rb_node **p = &rb_root->rb_node; 309 struct rb_node *parent = NULL; 310 struct intel_pt_vmcs_info *v; 311 312 while (*p) { 313 parent = *p; 314 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); 315 316 if (v->vmcs == vmcs) 317 return v; 318 319 if (vmcs < v->vmcs) 320 p = &(*p)->rb_left; 321 else 322 p = &(*p)->rb_right; 323 } 324 325 v = zalloc(sizeof(*v)); 326 if (v) { 327 v->vmcs = vmcs; 328 v->tsc_offset = dflt_tsc_offset; 329 v->reliable = dflt_tsc_offset; 330 331 rb_link_node(&v->rb_node, parent, p); 332 rb_insert_color(&v->rb_node, rb_root); 333 } 334 335 return v; 336 } 337 338 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) 339 { 340 struct intel_pt_queue *ptq = data; 341 struct intel_pt *pt = ptq->pt; 342 343 if (!vmcs && !pt->dflt_tsc_offset) 344 return NULL; 345 346 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); 347 } 348 349 static void intel_pt_free_vmcs_info(struct intel_pt *pt) 350 { 351 struct intel_pt_vmcs_info *v; 352 struct rb_node *n; 353 354 n = rb_first(&pt->vmcs_info); 355 while (n) { 356 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); 357 n = rb_next(n); 358 rb_erase(&v->rb_node, &pt->vmcs_info); 359 free(v); 360 } 361 } 362 363 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 364 struct auxtrace_buffer *b) 365 { 366 bool consecutive = false; 367 void *start; 368 369 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 370 pt->have_tsc, &consecutive, 371 pt->synth_opts.vm_time_correlation); 372 if (!start) 373 return -EINVAL; 374 /* 375 * In the case of vm_time_correlation, the overlap might contain TSC 376 * packets that will not be fixed, and that will then no longer work for 377 * overlap detection. Avoid that by zeroing out the overlap. 378 */ 379 if (pt->synth_opts.vm_time_correlation) 380 memset(b->data, 0, start - b->data); 381 b->use_size = b->data + b->size - start; 382 b->use_data = start; 383 if (b->use_size && consecutive) 384 b->consecutive = true; 385 return 0; 386 } 387 388 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 389 struct auxtrace_buffer *buffer, 390 struct auxtrace_buffer *old_buffer, 391 struct intel_pt_buffer *b) 392 { 393 bool might_overlap; 394 395 if (!buffer->data) { 396 int fd = perf_data__fd(ptq->pt->session->data); 397 398 buffer->data = auxtrace_buffer__get_data(buffer, fd); 399 if (!buffer->data) 400 return -ENOMEM; 401 } 402 403 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 404 if (might_overlap && !buffer->consecutive && old_buffer && 405 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 406 return -ENOMEM; 407 408 if (buffer->use_data) { 409 b->len = buffer->use_size; 410 b->buf = buffer->use_data; 411 } else { 412 b->len = buffer->size; 413 b->buf = buffer->data; 414 } 415 b->ref_timestamp = buffer->reference; 416 417 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 418 b->consecutive = false; 419 b->trace_nr = buffer->buffer_nr + 1; 420 } else { 421 b->consecutive = true; 422 } 423 424 return 0; 425 } 426 427 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 428 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 429 struct auxtrace_buffer *buffer) 430 { 431 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 432 return; 433 434 auxtrace_buffer__drop_data(buffer); 435 } 436 437 /* Must be serialized with respect to intel_pt_get_trace() */ 438 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 439 void *cb_data) 440 { 441 struct intel_pt_queue *ptq = data; 442 struct auxtrace_buffer *buffer = ptq->buffer; 443 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 444 struct auxtrace_queue *queue; 445 int err = 0; 446 447 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 448 449 while (1) { 450 struct intel_pt_buffer b = { .len = 0 }; 451 452 buffer = auxtrace_buffer__next(queue, buffer); 453 if (!buffer) 454 break; 455 456 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 457 if (err) 458 break; 459 460 if (b.len) { 461 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 462 old_buffer = buffer; 463 } else { 464 intel_pt_lookahead_drop_buffer(ptq, buffer); 465 continue; 466 } 467 468 err = cb(&b, cb_data); 469 if (err) 470 break; 471 } 472 473 if (buffer != old_buffer) 474 intel_pt_lookahead_drop_buffer(ptq, buffer); 475 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 476 477 return err; 478 } 479 480 /* 481 * This function assumes data is processed sequentially only. 482 * Must be serialized with respect to intel_pt_lookahead() 483 */ 484 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 485 { 486 struct intel_pt_queue *ptq = data; 487 struct auxtrace_buffer *buffer = ptq->buffer; 488 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 489 struct auxtrace_queue *queue; 490 int err; 491 492 if (ptq->stop) { 493 b->len = 0; 494 return 0; 495 } 496 497 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 498 499 buffer = auxtrace_buffer__next(queue, buffer); 500 if (!buffer) { 501 if (old_buffer) 502 auxtrace_buffer__drop_data(old_buffer); 503 b->len = 0; 504 return 0; 505 } 506 507 ptq->buffer = buffer; 508 509 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 510 if (err) 511 return err; 512 513 if (ptq->step_through_buffers) 514 ptq->stop = true; 515 516 if (b->len) { 517 if (old_buffer) 518 auxtrace_buffer__drop_data(old_buffer); 519 ptq->old_buffer = buffer; 520 } else { 521 auxtrace_buffer__drop_data(buffer); 522 return intel_pt_get_trace(b, data); 523 } 524 525 return 0; 526 } 527 528 struct intel_pt_cache_entry { 529 struct auxtrace_cache_entry entry; 530 u64 insn_cnt; 531 u64 byte_cnt; 532 enum intel_pt_insn_op op; 533 enum intel_pt_insn_branch branch; 534 bool emulated_ptwrite; 535 int length; 536 int32_t rel; 537 char insn[INTEL_PT_INSN_BUF_SZ]; 538 }; 539 540 static int intel_pt_config_div(const char *var, const char *value, void *data) 541 { 542 int *d = data; 543 long val; 544 545 if (!strcmp(var, "intel-pt.cache-divisor")) { 546 val = strtol(value, NULL, 0); 547 if (val > 0 && val <= INT_MAX) 548 *d = val; 549 } 550 551 return 0; 552 } 553 554 static int intel_pt_cache_divisor(void) 555 { 556 static int d; 557 558 if (d) 559 return d; 560 561 perf_config(intel_pt_config_div, &d); 562 563 if (!d) 564 d = 64; 565 566 return d; 567 } 568 569 static unsigned int intel_pt_cache_size(struct dso *dso, 570 struct machine *machine) 571 { 572 off_t size; 573 574 size = dso__data_size(dso, machine); 575 size /= intel_pt_cache_divisor(); 576 if (size < 1000) 577 return 10; 578 if (size > (1 << 21)) 579 return 21; 580 return 32 - __builtin_clz(size); 581 } 582 583 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 584 struct machine *machine) 585 { 586 struct auxtrace_cache *c; 587 unsigned int bits; 588 589 if (dso->auxtrace_cache) 590 return dso->auxtrace_cache; 591 592 bits = intel_pt_cache_size(dso, machine); 593 594 /* Ignoring cache creation failure */ 595 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 596 597 dso->auxtrace_cache = c; 598 599 return c; 600 } 601 602 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 603 u64 offset, u64 insn_cnt, u64 byte_cnt, 604 struct intel_pt_insn *intel_pt_insn) 605 { 606 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 607 struct intel_pt_cache_entry *e; 608 int err; 609 610 if (!c) 611 return -ENOMEM; 612 613 e = auxtrace_cache__alloc_entry(c); 614 if (!e) 615 return -ENOMEM; 616 617 e->insn_cnt = insn_cnt; 618 e->byte_cnt = byte_cnt; 619 e->op = intel_pt_insn->op; 620 e->branch = intel_pt_insn->branch; 621 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite; 622 e->length = intel_pt_insn->length; 623 e->rel = intel_pt_insn->rel; 624 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 625 626 err = auxtrace_cache__add(c, offset, &e->entry); 627 if (err) 628 auxtrace_cache__free_entry(c, e); 629 630 return err; 631 } 632 633 static struct intel_pt_cache_entry * 634 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 635 { 636 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 637 638 if (!c) 639 return NULL; 640 641 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 642 } 643 644 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 645 u64 offset) 646 { 647 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 648 649 if (!c) 650 return; 651 652 auxtrace_cache__remove(dso->auxtrace_cache, offset); 653 } 654 655 static inline bool intel_pt_guest_kernel_ip(uint64_t ip) 656 { 657 /* Assumes 64-bit kernel */ 658 return ip & (1ULL << 63); 659 } 660 661 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) 662 { 663 if (nr) { 664 return intel_pt_guest_kernel_ip(ip) ? 665 PERF_RECORD_MISC_GUEST_KERNEL : 666 PERF_RECORD_MISC_GUEST_USER; 667 } 668 669 return ip >= ptq->pt->kernel_start ? 670 PERF_RECORD_MISC_KERNEL : 671 PERF_RECORD_MISC_USER; 672 } 673 674 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) 675 { 676 /* No support for non-zero CS base */ 677 if (from_ip) 678 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); 679 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); 680 } 681 682 static int intel_pt_get_guest(struct intel_pt_queue *ptq) 683 { 684 struct machines *machines = &ptq->pt->session->machines; 685 struct machine *machine; 686 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; 687 688 if (ptq->guest_machine && pid == ptq->guest_machine_pid) 689 return 0; 690 691 ptq->guest_machine = NULL; 692 thread__zput(ptq->unknown_guest_thread); 693 694 if (symbol_conf.guest_code) { 695 thread__zput(ptq->guest_thread); 696 ptq->guest_thread = machines__findnew_guest_code(machines, pid); 697 } 698 699 machine = machines__find_guest(machines, pid); 700 if (!machine) 701 return -1; 702 703 ptq->unknown_guest_thread = machine__idle_thread(machine); 704 if (!ptq->unknown_guest_thread) 705 return -1; 706 707 ptq->guest_machine = machine; 708 ptq->guest_machine_pid = pid; 709 710 return 0; 711 } 712 713 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn) 714 { 715 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL; 716 } 717 718 #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite " 719 #define PTWRITE_MAGIC_LEN 16 720 721 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset) 722 { 723 unsigned char buf[PTWRITE_MAGIC_LEN]; 724 ssize_t len; 725 726 len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN); 727 if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) { 728 intel_pt_log("Emulated ptwrite signature found\n"); 729 return true; 730 } 731 intel_pt_log("Emulated ptwrite signature not found\n"); 732 return false; 733 } 734 735 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 736 uint64_t *insn_cnt_ptr, uint64_t *ip, 737 uint64_t to_ip, uint64_t max_insn_cnt, 738 void *data) 739 { 740 struct intel_pt_queue *ptq = data; 741 struct machine *machine = ptq->pt->machine; 742 struct thread *thread; 743 struct addr_location al; 744 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 745 ssize_t len; 746 int x86_64; 747 u8 cpumode; 748 u64 offset, start_offset, start_ip; 749 u64 insn_cnt = 0; 750 bool one_map = true; 751 bool nr; 752 753 intel_pt_insn->length = 0; 754 755 if (to_ip && *ip == to_ip) 756 goto out_no_cache; 757 758 nr = ptq->state->to_nr; 759 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); 760 761 if (nr) { 762 if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) || 763 intel_pt_get_guest(ptq)) 764 return -EINVAL; 765 machine = ptq->guest_machine; 766 thread = ptq->guest_thread; 767 if (!thread) { 768 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) 769 return -EINVAL; 770 thread = ptq->unknown_guest_thread; 771 } 772 } else { 773 thread = ptq->thread; 774 if (!thread) { 775 if (cpumode != PERF_RECORD_MISC_KERNEL) 776 return -EINVAL; 777 thread = ptq->pt->unknown_thread; 778 } 779 } 780 781 while (1) { 782 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 783 return -EINVAL; 784 785 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 786 dso__data_status_seen(al.map->dso, 787 DSO_DATA_STATUS_SEEN_ITRACE)) 788 return -ENOENT; 789 790 offset = al.map->map_ip(al.map, *ip); 791 792 if (!to_ip && one_map) { 793 struct intel_pt_cache_entry *e; 794 795 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 796 if (e && 797 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 798 *insn_cnt_ptr = e->insn_cnt; 799 *ip += e->byte_cnt; 800 intel_pt_insn->op = e->op; 801 intel_pt_insn->branch = e->branch; 802 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite; 803 intel_pt_insn->length = e->length; 804 intel_pt_insn->rel = e->rel; 805 memcpy(intel_pt_insn->buf, e->insn, 806 INTEL_PT_INSN_BUF_SZ); 807 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 808 return 0; 809 } 810 } 811 812 start_offset = offset; 813 start_ip = *ip; 814 815 /* Load maps to ensure dso->is_64_bit has been updated */ 816 map__load(al.map); 817 818 x86_64 = al.map->dso->is_64_bit; 819 820 while (1) { 821 len = dso__data_read_offset(al.map->dso, machine, 822 offset, buf, 823 INTEL_PT_INSN_BUF_SZ); 824 if (len <= 0) 825 return -EINVAL; 826 827 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 828 return -EINVAL; 829 830 intel_pt_log_insn(intel_pt_insn, *ip); 831 832 insn_cnt += 1; 833 834 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) { 835 bool eptw; 836 u64 offs; 837 838 if (!intel_pt_jmp_16(intel_pt_insn)) 839 goto out; 840 /* Check for emulated ptwrite */ 841 offs = offset + intel_pt_insn->length; 842 eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs); 843 intel_pt_insn->emulated_ptwrite = eptw; 844 goto out; 845 } 846 847 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 848 goto out_no_cache; 849 850 *ip += intel_pt_insn->length; 851 852 if (to_ip && *ip == to_ip) { 853 intel_pt_insn->length = 0; 854 goto out_no_cache; 855 } 856 857 if (*ip >= al.map->end) 858 break; 859 860 offset += intel_pt_insn->length; 861 } 862 one_map = false; 863 } 864 out: 865 *insn_cnt_ptr = insn_cnt; 866 867 if (!one_map) 868 goto out_no_cache; 869 870 /* 871 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 872 * entries. 873 */ 874 if (to_ip) { 875 struct intel_pt_cache_entry *e; 876 877 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 878 if (e) 879 return 0; 880 } 881 882 /* Ignore cache errors */ 883 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 884 *ip - start_ip, intel_pt_insn); 885 886 return 0; 887 888 out_no_cache: 889 *insn_cnt_ptr = insn_cnt; 890 return 0; 891 } 892 893 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 894 uint64_t offset, const char *filename) 895 { 896 struct addr_filter *filt; 897 bool have_filter = false; 898 bool hit_tracestop = false; 899 bool hit_filter = false; 900 901 list_for_each_entry(filt, &pt->filts.head, list) { 902 if (filt->start) 903 have_filter = true; 904 905 if ((filename && !filt->filename) || 906 (!filename && filt->filename) || 907 (filename && strcmp(filename, filt->filename))) 908 continue; 909 910 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 911 continue; 912 913 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 914 ip, offset, filename ? filename : "[kernel]", 915 filt->start ? "filter" : "stop", 916 filt->addr, filt->size); 917 918 if (filt->start) 919 hit_filter = true; 920 else 921 hit_tracestop = true; 922 } 923 924 if (!hit_tracestop && !hit_filter) 925 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 926 ip, offset, filename ? filename : "[kernel]"); 927 928 return hit_tracestop || (have_filter && !hit_filter); 929 } 930 931 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 932 { 933 struct intel_pt_queue *ptq = data; 934 struct thread *thread; 935 struct addr_location al; 936 u8 cpumode; 937 u64 offset; 938 939 if (ptq->state->to_nr) { 940 if (intel_pt_guest_kernel_ip(ip)) 941 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 942 /* No support for decoding guest user space */ 943 return -EINVAL; 944 } else if (ip >= ptq->pt->kernel_start) { 945 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 946 } 947 948 cpumode = PERF_RECORD_MISC_USER; 949 950 thread = ptq->thread; 951 if (!thread) 952 return -EINVAL; 953 954 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 955 return -EINVAL; 956 957 offset = al.map->map_ip(al.map, ip); 958 959 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 960 al.map->dso->long_name); 961 } 962 963 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 964 { 965 return __intel_pt_pgd_ip(ip, data) > 0; 966 } 967 968 static bool intel_pt_get_config(struct intel_pt *pt, 969 struct perf_event_attr *attr, u64 *config) 970 { 971 if (attr->type == pt->pmu_type) { 972 if (config) 973 *config = attr->config; 974 return true; 975 } 976 977 return false; 978 } 979 980 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 981 { 982 struct evsel *evsel; 983 984 evlist__for_each_entry(pt->session->evlist, evsel) { 985 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 986 !evsel->core.attr.exclude_kernel) 987 return false; 988 } 989 return true; 990 } 991 992 static bool intel_pt_return_compression(struct intel_pt *pt) 993 { 994 struct evsel *evsel; 995 u64 config; 996 997 if (!pt->noretcomp_bit) 998 return true; 999 1000 evlist__for_each_entry(pt->session->evlist, evsel) { 1001 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1002 (config & pt->noretcomp_bit)) 1003 return false; 1004 } 1005 return true; 1006 } 1007 1008 static bool intel_pt_branch_enable(struct intel_pt *pt) 1009 { 1010 struct evsel *evsel; 1011 u64 config; 1012 1013 evlist__for_each_entry(pt->session->evlist, evsel) { 1014 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1015 (config & INTEL_PT_CFG_PASS_THRU) && 1016 !(config & INTEL_PT_CFG_BRANCH_EN)) 1017 return false; 1018 } 1019 return true; 1020 } 1021 1022 static bool intel_pt_disabled_tnt(struct intel_pt *pt) 1023 { 1024 struct evsel *evsel; 1025 u64 config; 1026 1027 evlist__for_each_entry(pt->session->evlist, evsel) { 1028 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1029 config & INTEL_PT_CFG_TNT_DIS) 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 1036 { 1037 struct evsel *evsel; 1038 unsigned int shift; 1039 u64 config; 1040 1041 if (!pt->mtc_freq_bits) 1042 return 0; 1043 1044 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 1045 config >>= 1; 1046 1047 evlist__for_each_entry(pt->session->evlist, evsel) { 1048 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1049 return (config & pt->mtc_freq_bits) >> shift; 1050 } 1051 return 0; 1052 } 1053 1054 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 1055 { 1056 struct evsel *evsel; 1057 bool timeless_decoding = true; 1058 u64 config; 1059 1060 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) 1061 return true; 1062 1063 evlist__for_each_entry(pt->session->evlist, evsel) { 1064 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 1065 return true; 1066 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1067 if (config & pt->tsc_bit) 1068 timeless_decoding = false; 1069 else 1070 return true; 1071 } 1072 } 1073 return timeless_decoding; 1074 } 1075 1076 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 1077 { 1078 struct evsel *evsel; 1079 1080 evlist__for_each_entry(pt->session->evlist, evsel) { 1081 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1082 !evsel->core.attr.exclude_kernel) 1083 return true; 1084 } 1085 return false; 1086 } 1087 1088 static bool intel_pt_have_tsc(struct intel_pt *pt) 1089 { 1090 struct evsel *evsel; 1091 bool have_tsc = false; 1092 u64 config; 1093 1094 if (!pt->tsc_bit) 1095 return false; 1096 1097 evlist__for_each_entry(pt->session->evlist, evsel) { 1098 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1099 if (config & pt->tsc_bit) 1100 have_tsc = true; 1101 else 1102 return false; 1103 } 1104 } 1105 return have_tsc; 1106 } 1107 1108 static bool intel_pt_have_mtc(struct intel_pt *pt) 1109 { 1110 struct evsel *evsel; 1111 u64 config; 1112 1113 evlist__for_each_entry(pt->session->evlist, evsel) { 1114 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1115 (config & pt->mtc_bit)) 1116 return true; 1117 } 1118 return false; 1119 } 1120 1121 static bool intel_pt_sampling_mode(struct intel_pt *pt) 1122 { 1123 struct evsel *evsel; 1124 1125 evlist__for_each_entry(pt->session->evlist, evsel) { 1126 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 1127 evsel->core.attr.aux_sample_size) 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 static u64 intel_pt_ctl(struct intel_pt *pt) 1134 { 1135 struct evsel *evsel; 1136 u64 config; 1137 1138 evlist__for_each_entry(pt->session->evlist, evsel) { 1139 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1140 return config; 1141 } 1142 return 0; 1143 } 1144 1145 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 1146 { 1147 u64 quot, rem; 1148 1149 quot = ns / pt->tc.time_mult; 1150 rem = ns % pt->tc.time_mult; 1151 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 1152 pt->tc.time_mult; 1153 } 1154 1155 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 1156 { 1157 size_t sz = sizeof(struct ip_callchain); 1158 1159 /* Add 1 to callchain_sz for callchain context */ 1160 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 1161 return zalloc(sz); 1162 } 1163 1164 static int intel_pt_callchain_init(struct intel_pt *pt) 1165 { 1166 struct evsel *evsel; 1167 1168 evlist__for_each_entry(pt->session->evlist, evsel) { 1169 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1170 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 1171 } 1172 1173 pt->chain = intel_pt_alloc_chain(pt); 1174 if (!pt->chain) 1175 return -ENOMEM; 1176 1177 return 0; 1178 } 1179 1180 static void intel_pt_add_callchain(struct intel_pt *pt, 1181 struct perf_sample *sample) 1182 { 1183 struct thread *thread = machine__findnew_thread(pt->machine, 1184 sample->pid, 1185 sample->tid); 1186 1187 thread_stack__sample_late(thread, sample->cpu, pt->chain, 1188 pt->synth_opts.callchain_sz + 1, sample->ip, 1189 pt->kernel_start); 1190 1191 sample->callchain = pt->chain; 1192 } 1193 1194 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 1195 { 1196 size_t sz = sizeof(struct branch_stack); 1197 1198 sz += entry_cnt * sizeof(struct branch_entry); 1199 return zalloc(sz); 1200 } 1201 1202 static int intel_pt_br_stack_init(struct intel_pt *pt) 1203 { 1204 struct evsel *evsel; 1205 1206 evlist__for_each_entry(pt->session->evlist, evsel) { 1207 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 1208 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 1209 } 1210 1211 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 1212 if (!pt->br_stack) 1213 return -ENOMEM; 1214 1215 return 0; 1216 } 1217 1218 static void intel_pt_add_br_stack(struct intel_pt *pt, 1219 struct perf_sample *sample) 1220 { 1221 struct thread *thread = machine__findnew_thread(pt->machine, 1222 sample->pid, 1223 sample->tid); 1224 1225 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 1226 pt->br_stack_sz, sample->ip, 1227 pt->kernel_start); 1228 1229 sample->branch_stack = pt->br_stack; 1230 } 1231 1232 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1233 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 1234 1235 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 1236 unsigned int queue_nr) 1237 { 1238 struct intel_pt_params params = { .get_trace = 0, }; 1239 struct perf_env *env = pt->machine->env; 1240 struct intel_pt_queue *ptq; 1241 1242 ptq = zalloc(sizeof(struct intel_pt_queue)); 1243 if (!ptq) 1244 return NULL; 1245 1246 if (pt->synth_opts.callchain) { 1247 ptq->chain = intel_pt_alloc_chain(pt); 1248 if (!ptq->chain) 1249 goto out_free; 1250 } 1251 1252 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1253 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1254 1255 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1256 if (!ptq->last_branch) 1257 goto out_free; 1258 } 1259 1260 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1261 if (!ptq->event_buf) 1262 goto out_free; 1263 1264 ptq->pt = pt; 1265 ptq->queue_nr = queue_nr; 1266 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1267 ptq->pid = -1; 1268 ptq->tid = -1; 1269 ptq->cpu = -1; 1270 ptq->next_tid = -1; 1271 1272 params.get_trace = intel_pt_get_trace; 1273 params.walk_insn = intel_pt_walk_next_insn; 1274 params.lookahead = intel_pt_lookahead; 1275 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; 1276 params.data = ptq; 1277 params.return_compression = intel_pt_return_compression(pt); 1278 params.branch_enable = intel_pt_branch_enable(pt); 1279 params.ctl = intel_pt_ctl(pt); 1280 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1281 params.mtc_period = intel_pt_mtc_period(pt); 1282 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1283 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1284 params.quick = pt->synth_opts.quick; 1285 params.vm_time_correlation = pt->synth_opts.vm_time_correlation; 1286 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; 1287 params.first_timestamp = pt->first_timestamp; 1288 params.max_loops = pt->max_loops; 1289 1290 /* Cannot walk code without TNT, so force 'quick' mode */ 1291 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick) 1292 params.quick = 1; 1293 1294 if (pt->filts.cnt > 0) 1295 params.pgd_ip = intel_pt_pgd_ip; 1296 1297 if (pt->synth_opts.instructions) { 1298 if (pt->synth_opts.period) { 1299 switch (pt->synth_opts.period_type) { 1300 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1301 params.period_type = 1302 INTEL_PT_PERIOD_INSTRUCTIONS; 1303 params.period = pt->synth_opts.period; 1304 break; 1305 case PERF_ITRACE_PERIOD_TICKS: 1306 params.period_type = INTEL_PT_PERIOD_TICKS; 1307 params.period = pt->synth_opts.period; 1308 break; 1309 case PERF_ITRACE_PERIOD_NANOSECS: 1310 params.period_type = INTEL_PT_PERIOD_TICKS; 1311 params.period = intel_pt_ns_to_ticks(pt, 1312 pt->synth_opts.period); 1313 break; 1314 default: 1315 break; 1316 } 1317 } 1318 1319 if (!params.period) { 1320 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1321 params.period = 1; 1322 } 1323 } 1324 1325 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1326 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1327 1328 ptq->decoder = intel_pt_decoder_new(¶ms); 1329 if (!ptq->decoder) 1330 goto out_free; 1331 1332 return ptq; 1333 1334 out_free: 1335 zfree(&ptq->event_buf); 1336 zfree(&ptq->last_branch); 1337 zfree(&ptq->chain); 1338 free(ptq); 1339 return NULL; 1340 } 1341 1342 static void intel_pt_free_queue(void *priv) 1343 { 1344 struct intel_pt_queue *ptq = priv; 1345 1346 if (!ptq) 1347 return; 1348 thread__zput(ptq->thread); 1349 thread__zput(ptq->guest_thread); 1350 thread__zput(ptq->unknown_guest_thread); 1351 intel_pt_decoder_free(ptq->decoder); 1352 zfree(&ptq->event_buf); 1353 zfree(&ptq->last_branch); 1354 zfree(&ptq->chain); 1355 free(ptq); 1356 } 1357 1358 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) 1359 { 1360 unsigned int i; 1361 1362 pt->first_timestamp = timestamp; 1363 1364 for (i = 0; i < pt->queues.nr_queues; i++) { 1365 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1366 struct intel_pt_queue *ptq = queue->priv; 1367 1368 if (ptq && ptq->decoder) 1369 intel_pt_set_first_timestamp(ptq->decoder, timestamp); 1370 } 1371 } 1372 1373 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1374 struct auxtrace_queue *queue) 1375 { 1376 struct intel_pt_queue *ptq = queue->priv; 1377 1378 if (queue->tid == -1 || pt->have_sched_switch) { 1379 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1380 if (ptq->tid == -1) 1381 ptq->pid = -1; 1382 thread__zput(ptq->thread); 1383 } 1384 1385 if (!ptq->thread && ptq->tid != -1) 1386 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1387 1388 if (ptq->thread) { 1389 ptq->pid = ptq->thread->pid_; 1390 if (queue->cpu == -1) 1391 ptq->cpu = ptq->thread->cpu; 1392 } 1393 } 1394 1395 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1396 { 1397 struct intel_pt *pt = ptq->pt; 1398 1399 ptq->insn_len = 0; 1400 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1401 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1402 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1403 if (!ptq->state->to_ip) 1404 ptq->flags = PERF_IP_FLAG_BRANCH | 1405 PERF_IP_FLAG_TRACE_END; 1406 else if (ptq->state->from_nr && !ptq->state->to_nr) 1407 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1408 PERF_IP_FLAG_VMEXIT; 1409 else 1410 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1411 PERF_IP_FLAG_ASYNC | 1412 PERF_IP_FLAG_INTERRUPT; 1413 } else { 1414 if (ptq->state->from_ip) 1415 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1416 else 1417 ptq->flags = PERF_IP_FLAG_BRANCH | 1418 PERF_IP_FLAG_TRACE_BEGIN; 1419 if (ptq->state->flags & INTEL_PT_IN_TX) 1420 ptq->flags |= PERF_IP_FLAG_IN_TX; 1421 ptq->insn_len = ptq->state->insn_len; 1422 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1423 } 1424 1425 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1426 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1427 if (ptq->state->type & INTEL_PT_TRACE_END) 1428 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1429 1430 if (pt->cap_event_trace) { 1431 if (ptq->state->type & INTEL_PT_IFLAG_CHG) { 1432 if (!ptq->state->from_iflag) 1433 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1434 if (ptq->state->from_iflag != ptq->state->to_iflag) 1435 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE; 1436 } else if (!ptq->state->to_iflag) { 1437 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1438 } 1439 } 1440 } 1441 1442 static void intel_pt_setup_time_range(struct intel_pt *pt, 1443 struct intel_pt_queue *ptq) 1444 { 1445 if (!pt->range_cnt) 1446 return; 1447 1448 ptq->sel_timestamp = pt->time_ranges[0].start; 1449 ptq->sel_idx = 0; 1450 1451 if (ptq->sel_timestamp) { 1452 ptq->sel_start = true; 1453 } else { 1454 ptq->sel_timestamp = pt->time_ranges[0].end; 1455 ptq->sel_start = false; 1456 } 1457 } 1458 1459 static int intel_pt_setup_queue(struct intel_pt *pt, 1460 struct auxtrace_queue *queue, 1461 unsigned int queue_nr) 1462 { 1463 struct intel_pt_queue *ptq = queue->priv; 1464 1465 if (list_empty(&queue->head)) 1466 return 0; 1467 1468 if (!ptq) { 1469 ptq = intel_pt_alloc_queue(pt, queue_nr); 1470 if (!ptq) 1471 return -ENOMEM; 1472 queue->priv = ptq; 1473 1474 if (queue->cpu != -1) 1475 ptq->cpu = queue->cpu; 1476 ptq->tid = queue->tid; 1477 1478 ptq->cbr_seen = UINT_MAX; 1479 1480 if (pt->sampling_mode && !pt->snapshot_mode && 1481 pt->timeless_decoding) 1482 ptq->step_through_buffers = true; 1483 1484 ptq->sync_switch = pt->sync_switch; 1485 1486 intel_pt_setup_time_range(pt, ptq); 1487 } 1488 1489 if (!ptq->on_heap && 1490 (!ptq->sync_switch || 1491 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1492 const struct intel_pt_state *state; 1493 int ret; 1494 1495 if (pt->timeless_decoding) 1496 return 0; 1497 1498 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1499 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1500 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1501 1502 if (ptq->sel_start && ptq->sel_timestamp) { 1503 ret = intel_pt_fast_forward(ptq->decoder, 1504 ptq->sel_timestamp); 1505 if (ret) 1506 return ret; 1507 } 1508 1509 while (1) { 1510 state = intel_pt_decode(ptq->decoder); 1511 if (state->err) { 1512 if (state->err == INTEL_PT_ERR_NODATA) { 1513 intel_pt_log("queue %u has no timestamp\n", 1514 queue_nr); 1515 return 0; 1516 } 1517 continue; 1518 } 1519 if (state->timestamp) 1520 break; 1521 } 1522 1523 ptq->timestamp = state->timestamp; 1524 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1525 queue_nr, ptq->timestamp); 1526 ptq->state = state; 1527 ptq->have_sample = true; 1528 if (ptq->sel_start && ptq->sel_timestamp && 1529 ptq->timestamp < ptq->sel_timestamp) 1530 ptq->have_sample = false; 1531 intel_pt_sample_flags(ptq); 1532 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1533 if (ret) 1534 return ret; 1535 ptq->on_heap = true; 1536 } 1537 1538 return 0; 1539 } 1540 1541 static int intel_pt_setup_queues(struct intel_pt *pt) 1542 { 1543 unsigned int i; 1544 int ret; 1545 1546 for (i = 0; i < pt->queues.nr_queues; i++) { 1547 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1548 if (ret) 1549 return ret; 1550 } 1551 return 0; 1552 } 1553 1554 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1555 { 1556 return pt->synth_opts.initial_skip && 1557 pt->num_events++ < pt->synth_opts.initial_skip; 1558 } 1559 1560 /* 1561 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1562 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1563 * from this decoder state. 1564 */ 1565 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1566 { 1567 return pt->synth_opts.initial_skip && 1568 pt->num_events + 4 < pt->synth_opts.initial_skip; 1569 } 1570 1571 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1572 union perf_event *event, 1573 struct perf_sample *sample) 1574 { 1575 event->sample.header.type = PERF_RECORD_SAMPLE; 1576 event->sample.header.size = sizeof(struct perf_event_header); 1577 1578 sample->pid = ptq->pid; 1579 sample->tid = ptq->tid; 1580 sample->cpu = ptq->cpu; 1581 sample->insn_len = ptq->insn_len; 1582 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1583 } 1584 1585 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1586 struct intel_pt_queue *ptq, 1587 union perf_event *event, 1588 struct perf_sample *sample) 1589 { 1590 intel_pt_prep_a_sample(ptq, event, sample); 1591 1592 if (!pt->timeless_decoding) 1593 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1594 1595 sample->ip = ptq->state->from_ip; 1596 sample->addr = ptq->state->to_ip; 1597 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); 1598 sample->period = 1; 1599 sample->flags = ptq->flags; 1600 1601 event->sample.header.misc = sample->cpumode; 1602 } 1603 1604 static int intel_pt_inject_event(union perf_event *event, 1605 struct perf_sample *sample, u64 type) 1606 { 1607 event->header.size = perf_event__sample_event_size(sample, type, 0); 1608 return perf_event__synthesize_sample(event, type, 0, sample); 1609 } 1610 1611 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1612 union perf_event *event, 1613 struct perf_sample *sample, u64 type) 1614 { 1615 if (!pt->synth_opts.inject) 1616 return 0; 1617 1618 return intel_pt_inject_event(event, sample, type); 1619 } 1620 1621 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1622 union perf_event *event, 1623 struct perf_sample *sample, u64 type) 1624 { 1625 int ret; 1626 1627 ret = intel_pt_opt_inject(pt, event, sample, type); 1628 if (ret) 1629 return ret; 1630 1631 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1632 if (ret) 1633 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1634 1635 return ret; 1636 } 1637 1638 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1639 { 1640 struct intel_pt *pt = ptq->pt; 1641 union perf_event *event = ptq->event_buf; 1642 struct perf_sample sample = { .ip = 0, }; 1643 struct dummy_branch_stack { 1644 u64 nr; 1645 u64 hw_idx; 1646 struct branch_entry entries; 1647 } dummy_bs; 1648 1649 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1650 return 0; 1651 1652 if (intel_pt_skip_event(pt)) 1653 return 0; 1654 1655 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1656 1657 sample.id = ptq->pt->branches_id; 1658 sample.stream_id = ptq->pt->branches_id; 1659 1660 /* 1661 * perf report cannot handle events without a branch stack when using 1662 * SORT_MODE__BRANCH so make a dummy one. 1663 */ 1664 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1665 dummy_bs = (struct dummy_branch_stack){ 1666 .nr = 1, 1667 .hw_idx = -1ULL, 1668 .entries = { 1669 .from = sample.ip, 1670 .to = sample.addr, 1671 }, 1672 }; 1673 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1674 } 1675 1676 if (ptq->sample_ipc) 1677 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1678 if (sample.cyc_cnt) { 1679 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1680 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1681 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1682 } 1683 1684 return intel_pt_deliver_synth_event(pt, event, &sample, 1685 pt->branches_sample_type); 1686 } 1687 1688 static void intel_pt_prep_sample(struct intel_pt *pt, 1689 struct intel_pt_queue *ptq, 1690 union perf_event *event, 1691 struct perf_sample *sample) 1692 { 1693 intel_pt_prep_b_sample(pt, ptq, event, sample); 1694 1695 if (pt->synth_opts.callchain) { 1696 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1697 pt->synth_opts.callchain_sz + 1, 1698 sample->ip, pt->kernel_start); 1699 sample->callchain = ptq->chain; 1700 } 1701 1702 if (pt->synth_opts.last_branch) { 1703 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1704 pt->br_stack_sz); 1705 sample->branch_stack = ptq->last_branch; 1706 } 1707 } 1708 1709 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1710 { 1711 struct intel_pt *pt = ptq->pt; 1712 union perf_event *event = ptq->event_buf; 1713 struct perf_sample sample = { .ip = 0, }; 1714 1715 if (intel_pt_skip_event(pt)) 1716 return 0; 1717 1718 intel_pt_prep_sample(pt, ptq, event, &sample); 1719 1720 sample.id = ptq->pt->instructions_id; 1721 sample.stream_id = ptq->pt->instructions_id; 1722 if (pt->synth_opts.quick) 1723 sample.period = 1; 1724 else 1725 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1726 1727 if (ptq->sample_ipc) 1728 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1729 if (sample.cyc_cnt) { 1730 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1731 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1732 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1733 } 1734 1735 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1736 1737 return intel_pt_deliver_synth_event(pt, event, &sample, 1738 pt->instructions_sample_type); 1739 } 1740 1741 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1742 { 1743 struct intel_pt *pt = ptq->pt; 1744 union perf_event *event = ptq->event_buf; 1745 struct perf_sample sample = { .ip = 0, }; 1746 1747 if (intel_pt_skip_event(pt)) 1748 return 0; 1749 1750 intel_pt_prep_sample(pt, ptq, event, &sample); 1751 1752 sample.id = ptq->pt->transactions_id; 1753 sample.stream_id = ptq->pt->transactions_id; 1754 1755 return intel_pt_deliver_synth_event(pt, event, &sample, 1756 pt->transactions_sample_type); 1757 } 1758 1759 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1760 struct intel_pt_queue *ptq, 1761 union perf_event *event, 1762 struct perf_sample *sample) 1763 { 1764 intel_pt_prep_sample(pt, ptq, event, sample); 1765 1766 /* 1767 * Zero IP is used to mean "trace start" but that is not the case for 1768 * power or PTWRITE events with no IP, so clear the flags. 1769 */ 1770 if (!sample->ip) 1771 sample->flags = 0; 1772 } 1773 1774 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1775 { 1776 struct intel_pt *pt = ptq->pt; 1777 union perf_event *event = ptq->event_buf; 1778 struct perf_sample sample = { .ip = 0, }; 1779 struct perf_synth_intel_ptwrite raw; 1780 1781 if (intel_pt_skip_event(pt)) 1782 return 0; 1783 1784 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1785 1786 sample.id = ptq->pt->ptwrites_id; 1787 sample.stream_id = ptq->pt->ptwrites_id; 1788 1789 raw.flags = 0; 1790 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1791 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1792 1793 sample.raw_size = perf_synth__raw_size(raw); 1794 sample.raw_data = perf_synth__raw_data(&raw); 1795 1796 return intel_pt_deliver_synth_event(pt, event, &sample, 1797 pt->ptwrites_sample_type); 1798 } 1799 1800 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1801 { 1802 struct intel_pt *pt = ptq->pt; 1803 union perf_event *event = ptq->event_buf; 1804 struct perf_sample sample = { .ip = 0, }; 1805 struct perf_synth_intel_cbr raw; 1806 u32 flags; 1807 1808 if (intel_pt_skip_cbr_event(pt)) 1809 return 0; 1810 1811 ptq->cbr_seen = ptq->state->cbr; 1812 1813 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1814 1815 sample.id = ptq->pt->cbr_id; 1816 sample.stream_id = ptq->pt->cbr_id; 1817 1818 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1819 raw.flags = cpu_to_le32(flags); 1820 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1821 raw.reserved3 = 0; 1822 1823 sample.raw_size = perf_synth__raw_size(raw); 1824 sample.raw_data = perf_synth__raw_data(&raw); 1825 1826 return intel_pt_deliver_synth_event(pt, event, &sample, 1827 pt->pwr_events_sample_type); 1828 } 1829 1830 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) 1831 { 1832 struct intel_pt *pt = ptq->pt; 1833 union perf_event *event = ptq->event_buf; 1834 struct perf_sample sample = { .ip = 0, }; 1835 struct perf_synth_intel_psb raw; 1836 1837 if (intel_pt_skip_event(pt)) 1838 return 0; 1839 1840 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1841 1842 sample.id = ptq->pt->psb_id; 1843 sample.stream_id = ptq->pt->psb_id; 1844 sample.flags = 0; 1845 1846 raw.reserved = 0; 1847 raw.offset = ptq->state->psb_offset; 1848 1849 sample.raw_size = perf_synth__raw_size(raw); 1850 sample.raw_data = perf_synth__raw_data(&raw); 1851 1852 return intel_pt_deliver_synth_event(pt, event, &sample, 1853 pt->pwr_events_sample_type); 1854 } 1855 1856 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1857 { 1858 struct intel_pt *pt = ptq->pt; 1859 union perf_event *event = ptq->event_buf; 1860 struct perf_sample sample = { .ip = 0, }; 1861 struct perf_synth_intel_mwait raw; 1862 1863 if (intel_pt_skip_event(pt)) 1864 return 0; 1865 1866 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1867 1868 sample.id = ptq->pt->mwait_id; 1869 sample.stream_id = ptq->pt->mwait_id; 1870 1871 raw.reserved = 0; 1872 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1873 1874 sample.raw_size = perf_synth__raw_size(raw); 1875 sample.raw_data = perf_synth__raw_data(&raw); 1876 1877 return intel_pt_deliver_synth_event(pt, event, &sample, 1878 pt->pwr_events_sample_type); 1879 } 1880 1881 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1882 { 1883 struct intel_pt *pt = ptq->pt; 1884 union perf_event *event = ptq->event_buf; 1885 struct perf_sample sample = { .ip = 0, }; 1886 struct perf_synth_intel_pwre raw; 1887 1888 if (intel_pt_skip_event(pt)) 1889 return 0; 1890 1891 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1892 1893 sample.id = ptq->pt->pwre_id; 1894 sample.stream_id = ptq->pt->pwre_id; 1895 1896 raw.reserved = 0; 1897 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1898 1899 sample.raw_size = perf_synth__raw_size(raw); 1900 sample.raw_data = perf_synth__raw_data(&raw); 1901 1902 return intel_pt_deliver_synth_event(pt, event, &sample, 1903 pt->pwr_events_sample_type); 1904 } 1905 1906 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1907 { 1908 struct intel_pt *pt = ptq->pt; 1909 union perf_event *event = ptq->event_buf; 1910 struct perf_sample sample = { .ip = 0, }; 1911 struct perf_synth_intel_exstop raw; 1912 1913 if (intel_pt_skip_event(pt)) 1914 return 0; 1915 1916 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1917 1918 sample.id = ptq->pt->exstop_id; 1919 sample.stream_id = ptq->pt->exstop_id; 1920 1921 raw.flags = 0; 1922 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1923 1924 sample.raw_size = perf_synth__raw_size(raw); 1925 sample.raw_data = perf_synth__raw_data(&raw); 1926 1927 return intel_pt_deliver_synth_event(pt, event, &sample, 1928 pt->pwr_events_sample_type); 1929 } 1930 1931 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1932 { 1933 struct intel_pt *pt = ptq->pt; 1934 union perf_event *event = ptq->event_buf; 1935 struct perf_sample sample = { .ip = 0, }; 1936 struct perf_synth_intel_pwrx raw; 1937 1938 if (intel_pt_skip_event(pt)) 1939 return 0; 1940 1941 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1942 1943 sample.id = ptq->pt->pwrx_id; 1944 sample.stream_id = ptq->pt->pwrx_id; 1945 1946 raw.reserved = 0; 1947 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1948 1949 sample.raw_size = perf_synth__raw_size(raw); 1950 sample.raw_data = perf_synth__raw_data(&raw); 1951 1952 return intel_pt_deliver_synth_event(pt, event, &sample, 1953 pt->pwr_events_sample_type); 1954 } 1955 1956 /* 1957 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1958 * intel_pt_add_gp_regs(). 1959 */ 1960 static const int pebs_gp_regs[] = { 1961 [PERF_REG_X86_FLAGS] = 1, 1962 [PERF_REG_X86_IP] = 2, 1963 [PERF_REG_X86_AX] = 3, 1964 [PERF_REG_X86_CX] = 4, 1965 [PERF_REG_X86_DX] = 5, 1966 [PERF_REG_X86_BX] = 6, 1967 [PERF_REG_X86_SP] = 7, 1968 [PERF_REG_X86_BP] = 8, 1969 [PERF_REG_X86_SI] = 9, 1970 [PERF_REG_X86_DI] = 10, 1971 [PERF_REG_X86_R8] = 11, 1972 [PERF_REG_X86_R9] = 12, 1973 [PERF_REG_X86_R10] = 13, 1974 [PERF_REG_X86_R11] = 14, 1975 [PERF_REG_X86_R12] = 15, 1976 [PERF_REG_X86_R13] = 16, 1977 [PERF_REG_X86_R14] = 17, 1978 [PERF_REG_X86_R15] = 18, 1979 }; 1980 1981 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1982 const struct intel_pt_blk_items *items, 1983 u64 regs_mask) 1984 { 1985 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1986 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1987 u32 bit; 1988 int i; 1989 1990 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1991 /* Get the PEBS gp_regs array index */ 1992 int n = pebs_gp_regs[i] - 1; 1993 1994 if (n < 0) 1995 continue; 1996 /* 1997 * Add only registers that were requested (i.e. 'regs_mask') and 1998 * that were provided (i.e. 'mask'), and update the resulting 1999 * mask (i.e. 'intr_regs->mask') accordingly. 2000 */ 2001 if (mask & 1 << n && regs_mask & bit) { 2002 intr_regs->mask |= bit; 2003 *pos++ = gp_regs[n]; 2004 } 2005 } 2006 2007 return pos; 2008 } 2009 2010 #ifndef PERF_REG_X86_XMM0 2011 #define PERF_REG_X86_XMM0 32 2012 #endif 2013 2014 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 2015 const struct intel_pt_blk_items *items, 2016 u64 regs_mask) 2017 { 2018 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 2019 const u64 *xmm = items->xmm; 2020 2021 /* 2022 * If there are any XMM registers, then there should be all of them. 2023 * Nevertheless, follow the logic to add only registers that were 2024 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 2025 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 2026 */ 2027 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 2028 2029 for (; mask; mask >>= 1, xmm++) { 2030 if (mask & 1) 2031 *pos++ = *xmm; 2032 } 2033 } 2034 2035 #define LBR_INFO_MISPRED (1ULL << 63) 2036 #define LBR_INFO_IN_TX (1ULL << 62) 2037 #define LBR_INFO_ABORT (1ULL << 61) 2038 #define LBR_INFO_CYCLES 0xffff 2039 2040 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 2041 static u64 intel_pt_lbr_flags(u64 info) 2042 { 2043 union { 2044 struct branch_flags flags; 2045 u64 result; 2046 } u; 2047 2048 u.result = 0; 2049 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 2050 u.flags.predicted = !(info & LBR_INFO_MISPRED); 2051 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 2052 u.flags.abort = !!(info & LBR_INFO_ABORT); 2053 u.flags.cycles = info & LBR_INFO_CYCLES; 2054 2055 return u.result; 2056 } 2057 2058 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 2059 const struct intel_pt_blk_items *items) 2060 { 2061 u64 *to; 2062 int i; 2063 2064 br_stack->nr = 0; 2065 2066 to = &br_stack->entries[0].from; 2067 2068 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 2069 u32 mask = items->mask[i]; 2070 const u64 *from = items->val[i]; 2071 2072 for (; mask; mask >>= 3, from += 3) { 2073 if ((mask & 7) == 7) { 2074 *to++ = from[0]; 2075 *to++ = from[1]; 2076 *to++ = intel_pt_lbr_flags(from[2]); 2077 br_stack->nr += 1; 2078 } 2079 } 2080 } 2081 } 2082 2083 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id) 2084 { 2085 const struct intel_pt_blk_items *items = &ptq->state->items; 2086 struct perf_sample sample = { .ip = 0, }; 2087 union perf_event *event = ptq->event_buf; 2088 struct intel_pt *pt = ptq->pt; 2089 u64 sample_type = evsel->core.attr.sample_type; 2090 u8 cpumode; 2091 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 2092 2093 if (intel_pt_skip_event(pt)) 2094 return 0; 2095 2096 intel_pt_prep_a_sample(ptq, event, &sample); 2097 2098 sample.id = id; 2099 sample.stream_id = id; 2100 2101 if (!evsel->core.attr.freq) 2102 sample.period = evsel->core.attr.sample_period; 2103 2104 /* No support for non-zero CS base */ 2105 if (items->has_ip) 2106 sample.ip = items->ip; 2107 else if (items->has_rip) 2108 sample.ip = items->rip; 2109 else 2110 sample.ip = ptq->state->from_ip; 2111 2112 cpumode = intel_pt_cpumode(ptq, sample.ip, 0); 2113 2114 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 2115 2116 sample.cpumode = cpumode; 2117 2118 if (sample_type & PERF_SAMPLE_TIME) { 2119 u64 timestamp = 0; 2120 2121 if (items->has_timestamp) 2122 timestamp = items->timestamp; 2123 else if (!pt->timeless_decoding) 2124 timestamp = ptq->timestamp; 2125 if (timestamp) 2126 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 2127 } 2128 2129 if (sample_type & PERF_SAMPLE_CALLCHAIN && 2130 pt->synth_opts.callchain) { 2131 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 2132 pt->synth_opts.callchain_sz, sample.ip, 2133 pt->kernel_start); 2134 sample.callchain = ptq->chain; 2135 } 2136 2137 if (sample_type & PERF_SAMPLE_REGS_INTR && 2138 (items->mask[INTEL_PT_GP_REGS_POS] || 2139 items->mask[INTEL_PT_XMM_POS])) { 2140 u64 regs_mask = evsel->core.attr.sample_regs_intr; 2141 u64 *pos; 2142 2143 sample.intr_regs.abi = items->is_32_bit ? 2144 PERF_SAMPLE_REGS_ABI_32 : 2145 PERF_SAMPLE_REGS_ABI_64; 2146 sample.intr_regs.regs = regs; 2147 2148 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 2149 2150 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 2151 } 2152 2153 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 2154 if (items->mask[INTEL_PT_LBR_0_POS] || 2155 items->mask[INTEL_PT_LBR_1_POS] || 2156 items->mask[INTEL_PT_LBR_2_POS]) { 2157 intel_pt_add_lbrs(ptq->last_branch, items); 2158 } else if (pt->synth_opts.last_branch) { 2159 thread_stack__br_sample(ptq->thread, ptq->cpu, 2160 ptq->last_branch, 2161 pt->br_stack_sz); 2162 } else { 2163 ptq->last_branch->nr = 0; 2164 } 2165 sample.branch_stack = ptq->last_branch; 2166 } 2167 2168 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 2169 sample.addr = items->mem_access_address; 2170 2171 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2172 /* 2173 * Refer kernel's setup_pebs_adaptive_sample_data() and 2174 * intel_hsw_weight(). 2175 */ 2176 if (items->has_mem_access_latency) { 2177 u64 weight = items->mem_access_latency >> 32; 2178 2179 /* 2180 * Starts from SPR, the mem access latency field 2181 * contains both cache latency [47:32] and instruction 2182 * latency [15:0]. The cache latency is the same as the 2183 * mem access latency on previous platforms. 2184 * 2185 * In practice, no memory access could last than 4G 2186 * cycles. Use latency >> 32 to distinguish the 2187 * different format of the mem access latency field. 2188 */ 2189 if (weight > 0) { 2190 sample.weight = weight & 0xffff; 2191 sample.ins_lat = items->mem_access_latency & 0xffff; 2192 } else 2193 sample.weight = items->mem_access_latency; 2194 } 2195 if (!sample.weight && items->has_tsx_aux_info) { 2196 /* Cycles last block */ 2197 sample.weight = (u32)items->tsx_aux_info; 2198 } 2199 } 2200 2201 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 2202 u64 ax = items->has_rax ? items->rax : 0; 2203 /* Refer kernel's intel_hsw_transaction() */ 2204 u64 txn = (u8)(items->tsx_aux_info >> 32); 2205 2206 /* For RTM XABORTs also log the abort code from AX */ 2207 if (txn & PERF_TXN_TRANSACTION && ax & 1) 2208 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 2209 sample.transaction = txn; 2210 } 2211 2212 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 2213 } 2214 2215 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq) 2216 { 2217 struct intel_pt *pt = ptq->pt; 2218 struct evsel *evsel = pt->pebs_evsel; 2219 u64 id = evsel->core.id[0]; 2220 2221 return intel_pt_do_synth_pebs_sample(ptq, evsel, id); 2222 } 2223 2224 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 2225 { 2226 const struct intel_pt_blk_items *items = &ptq->state->items; 2227 struct intel_pt_pebs_event *pe; 2228 struct intel_pt *pt = ptq->pt; 2229 int err = -EINVAL; 2230 int hw_id; 2231 2232 if (!items->has_applicable_counters || !items->applicable_counters) { 2233 if (!pt->single_pebs) 2234 pr_err("PEBS-via-PT record with no applicable_counters\n"); 2235 return intel_pt_synth_single_pebs_sample(ptq); 2236 } 2237 2238 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) { 2239 pe = &ptq->pebs[hw_id]; 2240 if (!pe->evsel) { 2241 if (!pt->single_pebs) 2242 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n", 2243 hw_id); 2244 return intel_pt_synth_single_pebs_sample(ptq); 2245 } 2246 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id); 2247 if (err) 2248 return err; 2249 } 2250 2251 return err; 2252 } 2253 2254 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq) 2255 { 2256 struct intel_pt *pt = ptq->pt; 2257 union perf_event *event = ptq->event_buf; 2258 struct perf_sample sample = { .ip = 0, }; 2259 struct { 2260 struct perf_synth_intel_evt cfe; 2261 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS]; 2262 } raw; 2263 int i; 2264 2265 if (intel_pt_skip_event(pt)) 2266 return 0; 2267 2268 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2269 2270 sample.id = ptq->pt->evt_id; 2271 sample.stream_id = ptq->pt->evt_id; 2272 2273 raw.cfe.type = ptq->state->cfe_type; 2274 raw.cfe.reserved = 0; 2275 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2276 raw.cfe.vector = ptq->state->cfe_vector; 2277 raw.cfe.evd_cnt = ptq->state->evd_cnt; 2278 2279 for (i = 0; i < ptq->state->evd_cnt; i++) { 2280 raw.evd[i].et = 0; 2281 raw.evd[i].evd_type = ptq->state->evd[i].type; 2282 raw.evd[i].payload = ptq->state->evd[i].payload; 2283 } 2284 2285 sample.raw_size = perf_synth__raw_size(raw) + 2286 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd); 2287 sample.raw_data = perf_synth__raw_data(&raw); 2288 2289 return intel_pt_deliver_synth_event(pt, event, &sample, 2290 pt->evt_sample_type); 2291 } 2292 2293 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq) 2294 { 2295 struct intel_pt *pt = ptq->pt; 2296 union perf_event *event = ptq->event_buf; 2297 struct perf_sample sample = { .ip = 0, }; 2298 struct perf_synth_intel_iflag_chg raw; 2299 2300 if (intel_pt_skip_event(pt)) 2301 return 0; 2302 2303 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2304 2305 sample.id = ptq->pt->iflag_chg_id; 2306 sample.stream_id = ptq->pt->iflag_chg_id; 2307 2308 raw.flags = 0; 2309 raw.iflag = ptq->state->to_iflag; 2310 2311 if (ptq->state->type & INTEL_PT_BRANCH) { 2312 raw.via_branch = 1; 2313 raw.branch_ip = ptq->state->to_ip; 2314 } else { 2315 sample.addr = 0; 2316 } 2317 sample.flags = ptq->flags; 2318 2319 sample.raw_size = perf_synth__raw_size(raw); 2320 sample.raw_data = perf_synth__raw_data(&raw); 2321 2322 return intel_pt_deliver_synth_event(pt, event, &sample, 2323 pt->iflag_chg_sample_type); 2324 } 2325 2326 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 2327 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 2328 { 2329 union perf_event event; 2330 char msg[MAX_AUXTRACE_ERROR_MSG]; 2331 int err; 2332 2333 if (pt->synth_opts.error_minus_flags) { 2334 if (code == INTEL_PT_ERR_OVR && 2335 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 2336 return 0; 2337 if (code == INTEL_PT_ERR_LOST && 2338 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 2339 return 0; 2340 } 2341 2342 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 2343 2344 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 2345 code, cpu, pid, tid, ip, msg, timestamp); 2346 2347 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 2348 if (err) 2349 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 2350 err); 2351 2352 return err; 2353 } 2354 2355 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 2356 const struct intel_pt_state *state) 2357 { 2358 struct intel_pt *pt = ptq->pt; 2359 u64 tm = ptq->timestamp; 2360 2361 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 2362 2363 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 2364 ptq->tid, state->from_ip, tm); 2365 } 2366 2367 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 2368 { 2369 struct auxtrace_queue *queue; 2370 pid_t tid = ptq->next_tid; 2371 int err; 2372 2373 if (tid == -1) 2374 return 0; 2375 2376 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 2377 2378 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 2379 2380 queue = &pt->queues.queue_array[ptq->queue_nr]; 2381 intel_pt_set_pid_tid_cpu(pt, queue); 2382 2383 ptq->next_tid = -1; 2384 2385 return err; 2386 } 2387 2388 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 2389 { 2390 struct intel_pt *pt = ptq->pt; 2391 2392 return ip == pt->switch_ip && 2393 (ptq->flags & PERF_IP_FLAG_BRANCH) && 2394 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 2395 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 2396 } 2397 2398 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 2399 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 2400 2401 static int intel_pt_sample(struct intel_pt_queue *ptq) 2402 { 2403 const struct intel_pt_state *state = ptq->state; 2404 struct intel_pt *pt = ptq->pt; 2405 int err; 2406 2407 if (!ptq->have_sample) 2408 return 0; 2409 2410 ptq->have_sample = false; 2411 2412 if (pt->synth_opts.approx_ipc) { 2413 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2414 ptq->ipc_cyc_cnt = ptq->state->cycles; 2415 ptq->sample_ipc = true; 2416 } else { 2417 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2418 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 2419 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC; 2420 } 2421 2422 /* Ensure guest code maps are set up */ 2423 if (symbol_conf.guest_code && (state->from_nr || state->to_nr)) 2424 intel_pt_get_guest(ptq); 2425 2426 /* 2427 * Do PEBS first to allow for the possibility that the PEBS timestamp 2428 * precedes the current timestamp. 2429 */ 2430 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 2431 err = intel_pt_synth_pebs_sample(ptq); 2432 if (err) 2433 return err; 2434 } 2435 2436 if (pt->synth_opts.intr_events) { 2437 if (state->type & INTEL_PT_EVT) { 2438 err = intel_pt_synth_events_sample(ptq); 2439 if (err) 2440 return err; 2441 } 2442 if (state->type & INTEL_PT_IFLAG_CHG) { 2443 err = intel_pt_synth_iflag_chg_sample(ptq); 2444 if (err) 2445 return err; 2446 } 2447 } 2448 2449 if (pt->sample_pwr_events) { 2450 if (state->type & INTEL_PT_PSB_EVT) { 2451 err = intel_pt_synth_psb_sample(ptq); 2452 if (err) 2453 return err; 2454 } 2455 if (ptq->state->cbr != ptq->cbr_seen) { 2456 err = intel_pt_synth_cbr_sample(ptq); 2457 if (err) 2458 return err; 2459 } 2460 if (state->type & INTEL_PT_PWR_EVT) { 2461 if (state->type & INTEL_PT_MWAIT_OP) { 2462 err = intel_pt_synth_mwait_sample(ptq); 2463 if (err) 2464 return err; 2465 } 2466 if (state->type & INTEL_PT_PWR_ENTRY) { 2467 err = intel_pt_synth_pwre_sample(ptq); 2468 if (err) 2469 return err; 2470 } 2471 if (state->type & INTEL_PT_EX_STOP) { 2472 err = intel_pt_synth_exstop_sample(ptq); 2473 if (err) 2474 return err; 2475 } 2476 if (state->type & INTEL_PT_PWR_EXIT) { 2477 err = intel_pt_synth_pwrx_sample(ptq); 2478 if (err) 2479 return err; 2480 } 2481 } 2482 } 2483 2484 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 2485 err = intel_pt_synth_instruction_sample(ptq); 2486 if (err) 2487 return err; 2488 } 2489 2490 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2491 err = intel_pt_synth_transaction_sample(ptq); 2492 if (err) 2493 return err; 2494 } 2495 2496 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2497 err = intel_pt_synth_ptwrite_sample(ptq); 2498 if (err) 2499 return err; 2500 } 2501 2502 if (!(state->type & INTEL_PT_BRANCH)) 2503 return 0; 2504 2505 if (pt->use_thread_stack) { 2506 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2507 state->from_ip, state->to_ip, ptq->insn_len, 2508 state->trace_nr, pt->callstack, 2509 pt->br_stack_sz_plus, 2510 pt->mispred_all); 2511 } else { 2512 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2513 } 2514 2515 if (pt->sample_branches) { 2516 if (state->from_nr != state->to_nr && 2517 state->from_ip && state->to_ip) { 2518 struct intel_pt_state *st = (struct intel_pt_state *)state; 2519 u64 to_ip = st->to_ip; 2520 u64 from_ip = st->from_ip; 2521 2522 /* 2523 * perf cannot handle having different machines for ip 2524 * and addr, so create 2 branches. 2525 */ 2526 st->to_ip = 0; 2527 err = intel_pt_synth_branch_sample(ptq); 2528 if (err) 2529 return err; 2530 st->from_ip = 0; 2531 st->to_ip = to_ip; 2532 err = intel_pt_synth_branch_sample(ptq); 2533 st->from_ip = from_ip; 2534 } else { 2535 err = intel_pt_synth_branch_sample(ptq); 2536 } 2537 if (err) 2538 return err; 2539 } 2540 2541 if (!ptq->sync_switch) 2542 return 0; 2543 2544 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2545 switch (ptq->switch_state) { 2546 case INTEL_PT_SS_NOT_TRACING: 2547 case INTEL_PT_SS_UNKNOWN: 2548 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2549 err = intel_pt_next_tid(pt, ptq); 2550 if (err) 2551 return err; 2552 ptq->switch_state = INTEL_PT_SS_TRACING; 2553 break; 2554 default: 2555 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2556 return 1; 2557 } 2558 } else if (!state->to_ip) { 2559 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2560 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2561 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2562 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2563 state->to_ip == pt->ptss_ip && 2564 (ptq->flags & PERF_IP_FLAG_CALL)) { 2565 ptq->switch_state = INTEL_PT_SS_TRACING; 2566 } 2567 2568 return 0; 2569 } 2570 2571 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2572 { 2573 struct machine *machine = pt->machine; 2574 struct map *map; 2575 struct symbol *sym, *start; 2576 u64 ip, switch_ip = 0; 2577 const char *ptss; 2578 2579 if (ptss_ip) 2580 *ptss_ip = 0; 2581 2582 map = machine__kernel_map(machine); 2583 if (!map) 2584 return 0; 2585 2586 if (map__load(map)) 2587 return 0; 2588 2589 start = dso__first_symbol(map->dso); 2590 2591 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2592 if (sym->binding == STB_GLOBAL && 2593 !strcmp(sym->name, "__switch_to")) { 2594 ip = map->unmap_ip(map, sym->start); 2595 if (ip >= map->start && ip < map->end) { 2596 switch_ip = ip; 2597 break; 2598 } 2599 } 2600 } 2601 2602 if (!switch_ip || !ptss_ip) 2603 return 0; 2604 2605 if (pt->have_sched_switch == 1) 2606 ptss = "perf_trace_sched_switch"; 2607 else 2608 ptss = "__perf_event_task_sched_out"; 2609 2610 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2611 if (!strcmp(sym->name, ptss)) { 2612 ip = map->unmap_ip(map, sym->start); 2613 if (ip >= map->start && ip < map->end) { 2614 *ptss_ip = ip; 2615 break; 2616 } 2617 } 2618 } 2619 2620 return switch_ip; 2621 } 2622 2623 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2624 { 2625 unsigned int i; 2626 2627 pt->sync_switch = true; 2628 2629 for (i = 0; i < pt->queues.nr_queues; i++) { 2630 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2631 struct intel_pt_queue *ptq = queue->priv; 2632 2633 if (ptq) 2634 ptq->sync_switch = true; 2635 } 2636 } 2637 2638 /* 2639 * To filter against time ranges, it is only necessary to look at the next start 2640 * or end time. 2641 */ 2642 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2643 { 2644 struct intel_pt *pt = ptq->pt; 2645 2646 if (ptq->sel_start) { 2647 /* Next time is an end time */ 2648 ptq->sel_start = false; 2649 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2650 return true; 2651 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2652 /* Next time is a start time */ 2653 ptq->sel_start = true; 2654 ptq->sel_idx += 1; 2655 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2656 return true; 2657 } 2658 2659 /* No next time */ 2660 return false; 2661 } 2662 2663 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2664 { 2665 int err; 2666 2667 while (1) { 2668 if (ptq->sel_start) { 2669 if (ptq->timestamp >= ptq->sel_timestamp) { 2670 /* After start time, so consider next time */ 2671 intel_pt_next_time(ptq); 2672 if (!ptq->sel_timestamp) { 2673 /* No end time */ 2674 return 0; 2675 } 2676 /* Check against end time */ 2677 continue; 2678 } 2679 /* Before start time, so fast forward */ 2680 ptq->have_sample = false; 2681 if (ptq->sel_timestamp > *ff_timestamp) { 2682 if (ptq->sync_switch) { 2683 intel_pt_next_tid(ptq->pt, ptq); 2684 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2685 } 2686 *ff_timestamp = ptq->sel_timestamp; 2687 err = intel_pt_fast_forward(ptq->decoder, 2688 ptq->sel_timestamp); 2689 if (err) 2690 return err; 2691 } 2692 return 0; 2693 } else if (ptq->timestamp > ptq->sel_timestamp) { 2694 /* After end time, so consider next time */ 2695 if (!intel_pt_next_time(ptq)) { 2696 /* No next time range, so stop decoding */ 2697 ptq->have_sample = false; 2698 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2699 return 1; 2700 } 2701 /* Check against next start time */ 2702 continue; 2703 } else { 2704 /* Before end time */ 2705 return 0; 2706 } 2707 } 2708 } 2709 2710 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2711 { 2712 const struct intel_pt_state *state = ptq->state; 2713 struct intel_pt *pt = ptq->pt; 2714 u64 ff_timestamp = 0; 2715 int err; 2716 2717 if (!pt->kernel_start) { 2718 pt->kernel_start = machine__kernel_start(pt->machine); 2719 if (pt->per_cpu_mmaps && 2720 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2721 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2722 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { 2723 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2724 if (pt->switch_ip) { 2725 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2726 pt->switch_ip, pt->ptss_ip); 2727 intel_pt_enable_sync_switch(pt); 2728 } 2729 } 2730 } 2731 2732 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2733 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2734 while (1) { 2735 err = intel_pt_sample(ptq); 2736 if (err) 2737 return err; 2738 2739 state = intel_pt_decode(ptq->decoder); 2740 if (state->err) { 2741 if (state->err == INTEL_PT_ERR_NODATA) 2742 return 1; 2743 if (ptq->sync_switch && 2744 state->from_ip >= pt->kernel_start) { 2745 ptq->sync_switch = false; 2746 intel_pt_next_tid(pt, ptq); 2747 } 2748 ptq->timestamp = state->est_timestamp; 2749 if (pt->synth_opts.errors) { 2750 err = intel_ptq_synth_error(ptq, state); 2751 if (err) 2752 return err; 2753 } 2754 continue; 2755 } 2756 2757 ptq->state = state; 2758 ptq->have_sample = true; 2759 intel_pt_sample_flags(ptq); 2760 2761 /* Use estimated TSC upon return to user space */ 2762 if (pt->est_tsc && 2763 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2764 state->to_ip && state->to_ip < pt->kernel_start) { 2765 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2766 state->timestamp, state->est_timestamp); 2767 ptq->timestamp = state->est_timestamp; 2768 /* Use estimated TSC in unknown switch state */ 2769 } else if (ptq->sync_switch && 2770 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2771 intel_pt_is_switch_ip(ptq, state->to_ip) && 2772 ptq->next_tid == -1) { 2773 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2774 state->timestamp, state->est_timestamp); 2775 ptq->timestamp = state->est_timestamp; 2776 } else if (state->timestamp > ptq->timestamp) { 2777 ptq->timestamp = state->timestamp; 2778 } 2779 2780 if (ptq->sel_timestamp) { 2781 err = intel_pt_time_filter(ptq, &ff_timestamp); 2782 if (err) 2783 return err; 2784 } 2785 2786 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2787 *timestamp = ptq->timestamp; 2788 return 0; 2789 } 2790 } 2791 return 0; 2792 } 2793 2794 static inline int intel_pt_update_queues(struct intel_pt *pt) 2795 { 2796 if (pt->queues.new_data) { 2797 pt->queues.new_data = false; 2798 return intel_pt_setup_queues(pt); 2799 } 2800 return 0; 2801 } 2802 2803 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2804 { 2805 unsigned int queue_nr; 2806 u64 ts; 2807 int ret; 2808 2809 while (1) { 2810 struct auxtrace_queue *queue; 2811 struct intel_pt_queue *ptq; 2812 2813 if (!pt->heap.heap_cnt) 2814 return 0; 2815 2816 if (pt->heap.heap_array[0].ordinal >= timestamp) 2817 return 0; 2818 2819 queue_nr = pt->heap.heap_array[0].queue_nr; 2820 queue = &pt->queues.queue_array[queue_nr]; 2821 ptq = queue->priv; 2822 2823 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2824 queue_nr, pt->heap.heap_array[0].ordinal, 2825 timestamp); 2826 2827 auxtrace_heap__pop(&pt->heap); 2828 2829 if (pt->heap.heap_cnt) { 2830 ts = pt->heap.heap_array[0].ordinal + 1; 2831 if (ts > timestamp) 2832 ts = timestamp; 2833 } else { 2834 ts = timestamp; 2835 } 2836 2837 intel_pt_set_pid_tid_cpu(pt, queue); 2838 2839 ret = intel_pt_run_decoder(ptq, &ts); 2840 2841 if (ret < 0) { 2842 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2843 return ret; 2844 } 2845 2846 if (!ret) { 2847 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2848 if (ret < 0) 2849 return ret; 2850 } else { 2851 ptq->on_heap = false; 2852 } 2853 } 2854 2855 return 0; 2856 } 2857 2858 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2859 u64 time_) 2860 { 2861 struct auxtrace_queues *queues = &pt->queues; 2862 unsigned int i; 2863 u64 ts = 0; 2864 2865 for (i = 0; i < queues->nr_queues; i++) { 2866 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2867 struct intel_pt_queue *ptq = queue->priv; 2868 2869 if (ptq && (tid == -1 || ptq->tid == tid)) { 2870 ptq->time = time_; 2871 intel_pt_set_pid_tid_cpu(pt, queue); 2872 intel_pt_run_decoder(ptq, &ts); 2873 } 2874 } 2875 return 0; 2876 } 2877 2878 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2879 struct auxtrace_queue *queue, 2880 struct perf_sample *sample) 2881 { 2882 struct machine *m = ptq->pt->machine; 2883 2884 ptq->pid = sample->pid; 2885 ptq->tid = sample->tid; 2886 ptq->cpu = queue->cpu; 2887 2888 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2889 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2890 2891 thread__zput(ptq->thread); 2892 2893 if (ptq->tid == -1) 2894 return; 2895 2896 if (ptq->pid == -1) { 2897 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2898 if (ptq->thread) 2899 ptq->pid = ptq->thread->pid_; 2900 return; 2901 } 2902 2903 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2904 } 2905 2906 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2907 struct perf_sample *sample) 2908 { 2909 struct auxtrace_queue *queue; 2910 struct intel_pt_queue *ptq; 2911 u64 ts = 0; 2912 2913 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2914 if (!queue) 2915 return -EINVAL; 2916 2917 ptq = queue->priv; 2918 if (!ptq) 2919 return 0; 2920 2921 ptq->stop = false; 2922 ptq->time = sample->time; 2923 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2924 intel_pt_run_decoder(ptq, &ts); 2925 return 0; 2926 } 2927 2928 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2929 { 2930 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2931 sample->pid, sample->tid, 0, sample->time); 2932 } 2933 2934 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2935 { 2936 unsigned i, j; 2937 2938 if (cpu < 0 || !pt->queues.nr_queues) 2939 return NULL; 2940 2941 if ((unsigned)cpu >= pt->queues.nr_queues) 2942 i = pt->queues.nr_queues - 1; 2943 else 2944 i = cpu; 2945 2946 if (pt->queues.queue_array[i].cpu == cpu) 2947 return pt->queues.queue_array[i].priv; 2948 2949 for (j = 0; i > 0; j++) { 2950 if (pt->queues.queue_array[--i].cpu == cpu) 2951 return pt->queues.queue_array[i].priv; 2952 } 2953 2954 for (; j < pt->queues.nr_queues; j++) { 2955 if (pt->queues.queue_array[j].cpu == cpu) 2956 return pt->queues.queue_array[j].priv; 2957 } 2958 2959 return NULL; 2960 } 2961 2962 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2963 u64 timestamp) 2964 { 2965 struct intel_pt_queue *ptq; 2966 int err; 2967 2968 if (!pt->sync_switch) 2969 return 1; 2970 2971 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2972 if (!ptq || !ptq->sync_switch) 2973 return 1; 2974 2975 switch (ptq->switch_state) { 2976 case INTEL_PT_SS_NOT_TRACING: 2977 break; 2978 case INTEL_PT_SS_UNKNOWN: 2979 case INTEL_PT_SS_TRACING: 2980 ptq->next_tid = tid; 2981 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2982 return 0; 2983 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2984 if (!ptq->on_heap) { 2985 ptq->timestamp = perf_time_to_tsc(timestamp, 2986 &pt->tc); 2987 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2988 ptq->timestamp); 2989 if (err) 2990 return err; 2991 ptq->on_heap = true; 2992 } 2993 ptq->switch_state = INTEL_PT_SS_TRACING; 2994 break; 2995 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2996 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2997 break; 2998 default: 2999 break; 3000 } 3001 3002 ptq->next_tid = -1; 3003 3004 return 1; 3005 } 3006 3007 static int intel_pt_process_switch(struct intel_pt *pt, 3008 struct perf_sample *sample) 3009 { 3010 pid_t tid; 3011 int cpu, ret; 3012 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); 3013 3014 if (evsel != pt->switch_evsel) 3015 return 0; 3016 3017 tid = evsel__intval(evsel, sample, "next_pid"); 3018 cpu = sample->cpu; 3019 3020 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3021 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 3022 &pt->tc)); 3023 3024 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3025 if (ret <= 0) 3026 return ret; 3027 3028 return machine__set_current_tid(pt->machine, cpu, -1, tid); 3029 } 3030 3031 static int intel_pt_context_switch_in(struct intel_pt *pt, 3032 struct perf_sample *sample) 3033 { 3034 pid_t pid = sample->pid; 3035 pid_t tid = sample->tid; 3036 int cpu = sample->cpu; 3037 3038 if (pt->sync_switch) { 3039 struct intel_pt_queue *ptq; 3040 3041 ptq = intel_pt_cpu_to_ptq(pt, cpu); 3042 if (ptq && ptq->sync_switch) { 3043 ptq->next_tid = -1; 3044 switch (ptq->switch_state) { 3045 case INTEL_PT_SS_NOT_TRACING: 3046 case INTEL_PT_SS_UNKNOWN: 3047 case INTEL_PT_SS_TRACING: 3048 break; 3049 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 3050 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3051 ptq->switch_state = INTEL_PT_SS_TRACING; 3052 break; 3053 default: 3054 break; 3055 } 3056 } 3057 } 3058 3059 /* 3060 * If the current tid has not been updated yet, ensure it is now that 3061 * a "switch in" event has occurred. 3062 */ 3063 if (machine__get_current_tid(pt->machine, cpu) == tid) 3064 return 0; 3065 3066 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3067 } 3068 3069 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 3070 struct perf_sample *sample) 3071 { 3072 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3073 pid_t pid, tid; 3074 int cpu, ret; 3075 3076 cpu = sample->cpu; 3077 3078 if (pt->have_sched_switch == 3) { 3079 if (!out) 3080 return intel_pt_context_switch_in(pt, sample); 3081 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 3082 pr_err("Expecting CPU-wide context switch event\n"); 3083 return -EINVAL; 3084 } 3085 pid = event->context_switch.next_prev_pid; 3086 tid = event->context_switch.next_prev_tid; 3087 } else { 3088 if (out) 3089 return 0; 3090 pid = sample->pid; 3091 tid = sample->tid; 3092 } 3093 3094 if (tid == -1) 3095 intel_pt_log("context_switch event has no tid\n"); 3096 3097 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3098 if (ret <= 0) 3099 return ret; 3100 3101 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3102 } 3103 3104 static int intel_pt_process_itrace_start(struct intel_pt *pt, 3105 union perf_event *event, 3106 struct perf_sample *sample) 3107 { 3108 if (!pt->per_cpu_mmaps) 3109 return 0; 3110 3111 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3112 sample->cpu, event->itrace_start.pid, 3113 event->itrace_start.tid, sample->time, 3114 perf_time_to_tsc(sample->time, &pt->tc)); 3115 3116 return machine__set_current_tid(pt->machine, sample->cpu, 3117 event->itrace_start.pid, 3118 event->itrace_start.tid); 3119 } 3120 3121 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt, 3122 union perf_event *event, 3123 struct perf_sample *sample) 3124 { 3125 u64 hw_id = event->aux_output_hw_id.hw_id; 3126 struct auxtrace_queue *queue; 3127 struct intel_pt_queue *ptq; 3128 struct evsel *evsel; 3129 3130 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3131 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id); 3132 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) { 3133 pr_err("Bad AUX output hardware ID\n"); 3134 return -EINVAL; 3135 } 3136 3137 ptq = queue->priv; 3138 3139 ptq->pebs[hw_id].evsel = evsel; 3140 ptq->pebs[hw_id].id = sample->id; 3141 3142 return 0; 3143 } 3144 3145 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 3146 struct addr_location *al) 3147 { 3148 if (!al->map || addr < al->map->start || addr >= al->map->end) { 3149 if (!thread__find_map(thread, cpumode, addr, al)) 3150 return -1; 3151 } 3152 3153 return 0; 3154 } 3155 3156 /* Invalidate all instruction cache entries that overlap the text poke */ 3157 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 3158 { 3159 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 3160 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 3161 /* Assume text poke begins in a basic block no more than 4096 bytes */ 3162 int cnt = 4096 + event->text_poke.new_len; 3163 struct thread *thread = pt->unknown_thread; 3164 struct addr_location al = { .map = NULL }; 3165 struct machine *machine = pt->machine; 3166 struct intel_pt_cache_entry *e; 3167 u64 offset; 3168 3169 if (!event->text_poke.new_len) 3170 return 0; 3171 3172 for (; cnt; cnt--, addr--) { 3173 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 3174 if (addr < event->text_poke.addr) 3175 return 0; 3176 continue; 3177 } 3178 3179 if (!al.map->dso || !al.map->dso->auxtrace_cache) 3180 continue; 3181 3182 offset = al.map->map_ip(al.map, addr); 3183 3184 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 3185 if (!e) 3186 continue; 3187 3188 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 3189 /* 3190 * No overlap. Working backwards there cannot be another 3191 * basic block that overlaps the text poke if there is a 3192 * branch instruction before the text poke address. 3193 */ 3194 if (e->branch != INTEL_PT_BR_NO_BRANCH) 3195 return 0; 3196 } else { 3197 intel_pt_cache_invalidate(al.map->dso, machine, offset); 3198 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 3199 al.map->dso->long_name, addr); 3200 } 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int intel_pt_process_event(struct perf_session *session, 3207 union perf_event *event, 3208 struct perf_sample *sample, 3209 struct perf_tool *tool) 3210 { 3211 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3212 auxtrace); 3213 u64 timestamp; 3214 int err = 0; 3215 3216 if (dump_trace) 3217 return 0; 3218 3219 if (!tool->ordered_events) { 3220 pr_err("Intel Processor Trace requires ordered events\n"); 3221 return -EINVAL; 3222 } 3223 3224 if (sample->time && sample->time != (u64)-1) 3225 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3226 else 3227 timestamp = 0; 3228 3229 if (timestamp || pt->timeless_decoding) { 3230 err = intel_pt_update_queues(pt); 3231 if (err) 3232 return err; 3233 } 3234 3235 if (pt->timeless_decoding) { 3236 if (pt->sampling_mode) { 3237 if (sample->aux_sample.size) 3238 err = intel_pt_process_timeless_sample(pt, 3239 sample); 3240 } else if (event->header.type == PERF_RECORD_EXIT) { 3241 err = intel_pt_process_timeless_queues(pt, 3242 event->fork.tid, 3243 sample->time); 3244 } 3245 } else if (timestamp) { 3246 if (!pt->first_timestamp) 3247 intel_pt_first_timestamp(pt, timestamp); 3248 err = intel_pt_process_queues(pt, timestamp); 3249 } 3250 if (err) 3251 return err; 3252 3253 if (event->header.type == PERF_RECORD_SAMPLE) { 3254 if (pt->synth_opts.add_callchain && !sample->callchain) 3255 intel_pt_add_callchain(pt, sample); 3256 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 3257 intel_pt_add_br_stack(pt, sample); 3258 } 3259 3260 if (event->header.type == PERF_RECORD_AUX && 3261 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 3262 pt->synth_opts.errors) { 3263 err = intel_pt_lost(pt, sample); 3264 if (err) 3265 return err; 3266 } 3267 3268 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 3269 err = intel_pt_process_switch(pt, sample); 3270 else if (event->header.type == PERF_RECORD_ITRACE_START) 3271 err = intel_pt_process_itrace_start(pt, event, sample); 3272 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) 3273 err = intel_pt_process_aux_output_hw_id(pt, event, sample); 3274 else if (event->header.type == PERF_RECORD_SWITCH || 3275 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 3276 err = intel_pt_context_switch(pt, event, sample); 3277 3278 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 3279 err = intel_pt_text_poke(pt, event); 3280 3281 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 3282 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 3283 event->header.type, sample->cpu, sample->time, timestamp); 3284 intel_pt_log_event(event); 3285 } 3286 3287 return err; 3288 } 3289 3290 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 3291 { 3292 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3293 auxtrace); 3294 int ret; 3295 3296 if (dump_trace) 3297 return 0; 3298 3299 if (!tool->ordered_events) 3300 return -EINVAL; 3301 3302 ret = intel_pt_update_queues(pt); 3303 if (ret < 0) 3304 return ret; 3305 3306 if (pt->timeless_decoding) 3307 return intel_pt_process_timeless_queues(pt, -1, 3308 MAX_TIMESTAMP - 1); 3309 3310 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 3311 } 3312 3313 static void intel_pt_free_events(struct perf_session *session) 3314 { 3315 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3316 auxtrace); 3317 struct auxtrace_queues *queues = &pt->queues; 3318 unsigned int i; 3319 3320 for (i = 0; i < queues->nr_queues; i++) { 3321 intel_pt_free_queue(queues->queue_array[i].priv); 3322 queues->queue_array[i].priv = NULL; 3323 } 3324 intel_pt_log_disable(); 3325 auxtrace_queues__free(queues); 3326 } 3327 3328 static void intel_pt_free(struct perf_session *session) 3329 { 3330 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3331 auxtrace); 3332 3333 auxtrace_heap__free(&pt->heap); 3334 intel_pt_free_events(session); 3335 session->auxtrace = NULL; 3336 intel_pt_free_vmcs_info(pt); 3337 thread__put(pt->unknown_thread); 3338 addr_filters__exit(&pt->filts); 3339 zfree(&pt->chain); 3340 zfree(&pt->filter); 3341 zfree(&pt->time_ranges); 3342 free(pt); 3343 } 3344 3345 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 3346 struct evsel *evsel) 3347 { 3348 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3349 auxtrace); 3350 3351 return evsel->core.attr.type == pt->pmu_type; 3352 } 3353 3354 static int intel_pt_process_auxtrace_event(struct perf_session *session, 3355 union perf_event *event, 3356 struct perf_tool *tool __maybe_unused) 3357 { 3358 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3359 auxtrace); 3360 3361 if (!pt->data_queued) { 3362 struct auxtrace_buffer *buffer; 3363 off_t data_offset; 3364 int fd = perf_data__fd(session->data); 3365 int err; 3366 3367 if (perf_data__is_pipe(session->data)) { 3368 data_offset = 0; 3369 } else { 3370 data_offset = lseek(fd, 0, SEEK_CUR); 3371 if (data_offset == -1) 3372 return -errno; 3373 } 3374 3375 err = auxtrace_queues__add_event(&pt->queues, session, event, 3376 data_offset, &buffer); 3377 if (err) 3378 return err; 3379 3380 /* Dump here now we have copied a piped trace out of the pipe */ 3381 if (dump_trace) { 3382 if (auxtrace_buffer__get_data(buffer, fd)) { 3383 intel_pt_dump_event(pt, buffer->data, 3384 buffer->size); 3385 auxtrace_buffer__put_data(buffer); 3386 } 3387 } 3388 } 3389 3390 return 0; 3391 } 3392 3393 static int intel_pt_queue_data(struct perf_session *session, 3394 struct perf_sample *sample, 3395 union perf_event *event, u64 data_offset) 3396 { 3397 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3398 auxtrace); 3399 u64 timestamp; 3400 3401 if (event) { 3402 return auxtrace_queues__add_event(&pt->queues, session, event, 3403 data_offset, NULL); 3404 } 3405 3406 if (sample->time && sample->time != (u64)-1) 3407 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3408 else 3409 timestamp = 0; 3410 3411 return auxtrace_queues__add_sample(&pt->queues, session, sample, 3412 data_offset, timestamp); 3413 } 3414 3415 struct intel_pt_synth { 3416 struct perf_tool dummy_tool; 3417 struct perf_session *session; 3418 }; 3419 3420 static int intel_pt_event_synth(struct perf_tool *tool, 3421 union perf_event *event, 3422 struct perf_sample *sample __maybe_unused, 3423 struct machine *machine __maybe_unused) 3424 { 3425 struct intel_pt_synth *intel_pt_synth = 3426 container_of(tool, struct intel_pt_synth, dummy_tool); 3427 3428 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 3429 NULL); 3430 } 3431 3432 static int intel_pt_synth_event(struct perf_session *session, const char *name, 3433 struct perf_event_attr *attr, u64 id) 3434 { 3435 struct intel_pt_synth intel_pt_synth; 3436 int err; 3437 3438 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 3439 name, id, (u64)attr->sample_type); 3440 3441 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 3442 intel_pt_synth.session = session; 3443 3444 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 3445 &id, intel_pt_event_synth); 3446 if (err) 3447 pr_err("%s: failed to synthesize '%s' event type\n", 3448 __func__, name); 3449 3450 return err; 3451 } 3452 3453 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 3454 const char *name) 3455 { 3456 struct evsel *evsel; 3457 3458 evlist__for_each_entry(evlist, evsel) { 3459 if (evsel->core.id && evsel->core.id[0] == id) { 3460 if (evsel->name) 3461 zfree(&evsel->name); 3462 evsel->name = strdup(name); 3463 break; 3464 } 3465 } 3466 } 3467 3468 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 3469 struct evlist *evlist) 3470 { 3471 struct evsel *evsel; 3472 3473 evlist__for_each_entry(evlist, evsel) { 3474 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 3475 return evsel; 3476 } 3477 3478 return NULL; 3479 } 3480 3481 static int intel_pt_synth_events(struct intel_pt *pt, 3482 struct perf_session *session) 3483 { 3484 struct evlist *evlist = session->evlist; 3485 struct evsel *evsel = intel_pt_evsel(pt, evlist); 3486 struct perf_event_attr attr; 3487 u64 id; 3488 int err; 3489 3490 if (!evsel) { 3491 pr_debug("There are no selected events with Intel Processor Trace data\n"); 3492 return 0; 3493 } 3494 3495 memset(&attr, 0, sizeof(struct perf_event_attr)); 3496 attr.size = sizeof(struct perf_event_attr); 3497 attr.type = PERF_TYPE_HARDWARE; 3498 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 3499 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 3500 PERF_SAMPLE_PERIOD; 3501 if (pt->timeless_decoding) 3502 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 3503 else 3504 attr.sample_type |= PERF_SAMPLE_TIME; 3505 if (!pt->per_cpu_mmaps) 3506 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 3507 attr.exclude_user = evsel->core.attr.exclude_user; 3508 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 3509 attr.exclude_hv = evsel->core.attr.exclude_hv; 3510 attr.exclude_host = evsel->core.attr.exclude_host; 3511 attr.exclude_guest = evsel->core.attr.exclude_guest; 3512 attr.sample_id_all = evsel->core.attr.sample_id_all; 3513 attr.read_format = evsel->core.attr.read_format; 3514 3515 id = evsel->core.id[0] + 1000000000; 3516 if (!id) 3517 id = 1; 3518 3519 if (pt->synth_opts.branches) { 3520 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3521 attr.sample_period = 1; 3522 attr.sample_type |= PERF_SAMPLE_ADDR; 3523 err = intel_pt_synth_event(session, "branches", &attr, id); 3524 if (err) 3525 return err; 3526 pt->sample_branches = true; 3527 pt->branches_sample_type = attr.sample_type; 3528 pt->branches_id = id; 3529 id += 1; 3530 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3531 } 3532 3533 if (pt->synth_opts.callchain) 3534 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3535 if (pt->synth_opts.last_branch) { 3536 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3537 /* 3538 * We don't use the hardware index, but the sample generation 3539 * code uses the new format branch_stack with this field, 3540 * so the event attributes must indicate that it's present. 3541 */ 3542 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3543 } 3544 3545 if (pt->synth_opts.instructions) { 3546 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3547 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3548 attr.sample_period = 3549 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3550 else 3551 attr.sample_period = pt->synth_opts.period; 3552 err = intel_pt_synth_event(session, "instructions", &attr, id); 3553 if (err) 3554 return err; 3555 pt->sample_instructions = true; 3556 pt->instructions_sample_type = attr.sample_type; 3557 pt->instructions_id = id; 3558 id += 1; 3559 } 3560 3561 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3562 attr.sample_period = 1; 3563 3564 if (pt->synth_opts.transactions) { 3565 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3566 err = intel_pt_synth_event(session, "transactions", &attr, id); 3567 if (err) 3568 return err; 3569 pt->sample_transactions = true; 3570 pt->transactions_sample_type = attr.sample_type; 3571 pt->transactions_id = id; 3572 intel_pt_set_event_name(evlist, id, "transactions"); 3573 id += 1; 3574 } 3575 3576 attr.type = PERF_TYPE_SYNTH; 3577 attr.sample_type |= PERF_SAMPLE_RAW; 3578 3579 if (pt->synth_opts.ptwrites) { 3580 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3581 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3582 if (err) 3583 return err; 3584 pt->sample_ptwrites = true; 3585 pt->ptwrites_sample_type = attr.sample_type; 3586 pt->ptwrites_id = id; 3587 intel_pt_set_event_name(evlist, id, "ptwrite"); 3588 id += 1; 3589 } 3590 3591 if (pt->synth_opts.pwr_events) { 3592 pt->sample_pwr_events = true; 3593 pt->pwr_events_sample_type = attr.sample_type; 3594 3595 attr.config = PERF_SYNTH_INTEL_CBR; 3596 err = intel_pt_synth_event(session, "cbr", &attr, id); 3597 if (err) 3598 return err; 3599 pt->cbr_id = id; 3600 intel_pt_set_event_name(evlist, id, "cbr"); 3601 id += 1; 3602 3603 attr.config = PERF_SYNTH_INTEL_PSB; 3604 err = intel_pt_synth_event(session, "psb", &attr, id); 3605 if (err) 3606 return err; 3607 pt->psb_id = id; 3608 intel_pt_set_event_name(evlist, id, "psb"); 3609 id += 1; 3610 } 3611 3612 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) { 3613 attr.config = PERF_SYNTH_INTEL_MWAIT; 3614 err = intel_pt_synth_event(session, "mwait", &attr, id); 3615 if (err) 3616 return err; 3617 pt->mwait_id = id; 3618 intel_pt_set_event_name(evlist, id, "mwait"); 3619 id += 1; 3620 3621 attr.config = PERF_SYNTH_INTEL_PWRE; 3622 err = intel_pt_synth_event(session, "pwre", &attr, id); 3623 if (err) 3624 return err; 3625 pt->pwre_id = id; 3626 intel_pt_set_event_name(evlist, id, "pwre"); 3627 id += 1; 3628 3629 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3630 err = intel_pt_synth_event(session, "exstop", &attr, id); 3631 if (err) 3632 return err; 3633 pt->exstop_id = id; 3634 intel_pt_set_event_name(evlist, id, "exstop"); 3635 id += 1; 3636 3637 attr.config = PERF_SYNTH_INTEL_PWRX; 3638 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3639 if (err) 3640 return err; 3641 pt->pwrx_id = id; 3642 intel_pt_set_event_name(evlist, id, "pwrx"); 3643 id += 1; 3644 } 3645 3646 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) { 3647 attr.config = PERF_SYNTH_INTEL_EVT; 3648 err = intel_pt_synth_event(session, "evt", &attr, id); 3649 if (err) 3650 return err; 3651 pt->evt_sample_type = attr.sample_type; 3652 pt->evt_id = id; 3653 intel_pt_set_event_name(evlist, id, "evt"); 3654 id += 1; 3655 } 3656 3657 if (pt->synth_opts.intr_events && pt->cap_event_trace) { 3658 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG; 3659 err = intel_pt_synth_event(session, "iflag", &attr, id); 3660 if (err) 3661 return err; 3662 pt->iflag_chg_sample_type = attr.sample_type; 3663 pt->iflag_chg_id = id; 3664 intel_pt_set_event_name(evlist, id, "iflag"); 3665 id += 1; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3672 { 3673 struct evsel *evsel; 3674 3675 if (!pt->synth_opts.other_events) 3676 return; 3677 3678 evlist__for_each_entry(pt->session->evlist, evsel) { 3679 if (evsel->core.attr.aux_output && evsel->core.id) { 3680 if (pt->single_pebs) { 3681 pt->single_pebs = false; 3682 return; 3683 } 3684 pt->single_pebs = true; 3685 pt->sample_pebs = true; 3686 pt->pebs_evsel = evsel; 3687 } 3688 } 3689 } 3690 3691 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3692 { 3693 struct evsel *evsel; 3694 3695 evlist__for_each_entry_reverse(evlist, evsel) { 3696 const char *name = evsel__name(evsel); 3697 3698 if (!strcmp(name, "sched:sched_switch")) 3699 return evsel; 3700 } 3701 3702 return NULL; 3703 } 3704 3705 static bool intel_pt_find_switch(struct evlist *evlist) 3706 { 3707 struct evsel *evsel; 3708 3709 evlist__for_each_entry(evlist, evsel) { 3710 if (evsel->core.attr.context_switch) 3711 return true; 3712 } 3713 3714 return false; 3715 } 3716 3717 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3718 { 3719 struct intel_pt *pt = data; 3720 3721 if (!strcmp(var, "intel-pt.mispred-all")) 3722 pt->mispred_all = perf_config_bool(var, value); 3723 3724 if (!strcmp(var, "intel-pt.max-loops")) 3725 perf_config_int(&pt->max_loops, var, value); 3726 3727 return 0; 3728 } 3729 3730 /* Find least TSC which converts to ns or later */ 3731 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3732 { 3733 u64 tsc, tm; 3734 3735 tsc = perf_time_to_tsc(ns, &pt->tc); 3736 3737 while (1) { 3738 tm = tsc_to_perf_time(tsc, &pt->tc); 3739 if (tm < ns) 3740 break; 3741 tsc -= 1; 3742 } 3743 3744 while (tm < ns) 3745 tm = tsc_to_perf_time(++tsc, &pt->tc); 3746 3747 return tsc; 3748 } 3749 3750 /* Find greatest TSC which converts to ns or earlier */ 3751 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3752 { 3753 u64 tsc, tm; 3754 3755 tsc = perf_time_to_tsc(ns, &pt->tc); 3756 3757 while (1) { 3758 tm = tsc_to_perf_time(tsc, &pt->tc); 3759 if (tm > ns) 3760 break; 3761 tsc += 1; 3762 } 3763 3764 while (tm > ns) 3765 tm = tsc_to_perf_time(--tsc, &pt->tc); 3766 3767 return tsc; 3768 } 3769 3770 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3771 struct itrace_synth_opts *opts) 3772 { 3773 struct perf_time_interval *p = opts->ptime_range; 3774 int n = opts->range_num; 3775 int i; 3776 3777 if (!n || !p || pt->timeless_decoding) 3778 return 0; 3779 3780 pt->time_ranges = calloc(n, sizeof(struct range)); 3781 if (!pt->time_ranges) 3782 return -ENOMEM; 3783 3784 pt->range_cnt = n; 3785 3786 intel_pt_log("%s: %u range(s)\n", __func__, n); 3787 3788 for (i = 0; i < n; i++) { 3789 struct range *r = &pt->time_ranges[i]; 3790 u64 ts = p[i].start; 3791 u64 te = p[i].end; 3792 3793 /* 3794 * Take care to ensure the TSC range matches the perf-time range 3795 * when converted back to perf-time. 3796 */ 3797 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3798 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3799 3800 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3801 i, ts, te); 3802 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3803 i, r->start, r->end); 3804 } 3805 3806 return 0; 3807 } 3808 3809 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) 3810 { 3811 struct intel_pt_vmcs_info *vmcs_info; 3812 u64 tsc_offset, vmcs; 3813 char *p = *args; 3814 3815 errno = 0; 3816 3817 p = skip_spaces(p); 3818 if (!*p) 3819 return 1; 3820 3821 tsc_offset = strtoull(p, &p, 0); 3822 if (errno) 3823 return -errno; 3824 p = skip_spaces(p); 3825 if (*p != ':') { 3826 pt->dflt_tsc_offset = tsc_offset; 3827 *args = p; 3828 return 0; 3829 } 3830 p += 1; 3831 while (1) { 3832 vmcs = strtoull(p, &p, 0); 3833 if (errno) 3834 return -errno; 3835 if (!vmcs) 3836 return -EINVAL; 3837 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); 3838 if (!vmcs_info) 3839 return -ENOMEM; 3840 p = skip_spaces(p); 3841 if (*p != ',') 3842 break; 3843 p += 1; 3844 } 3845 *args = p; 3846 return 0; 3847 } 3848 3849 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) 3850 { 3851 char *args = pt->synth_opts.vm_tm_corr_args; 3852 int ret; 3853 3854 if (!args) 3855 return 0; 3856 3857 do { 3858 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); 3859 } while (!ret); 3860 3861 if (ret < 0) { 3862 pr_err("Failed to parse VM Time Correlation options\n"); 3863 return ret; 3864 } 3865 3866 return 0; 3867 } 3868 3869 static const char * const intel_pt_info_fmts[] = { 3870 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3871 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3872 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3873 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3874 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3875 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3876 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3877 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3878 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3879 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3880 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3881 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3882 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3883 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3884 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3885 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3886 }; 3887 3888 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3889 { 3890 int i; 3891 3892 if (!dump_trace) 3893 return; 3894 3895 for (i = start; i <= finish; i++) 3896 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3897 } 3898 3899 static void intel_pt_print_info_str(const char *name, const char *str) 3900 { 3901 if (!dump_trace) 3902 return; 3903 3904 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3905 } 3906 3907 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3908 { 3909 return auxtrace_info->header.size >= 3910 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3911 } 3912 3913 int intel_pt_process_auxtrace_info(union perf_event *event, 3914 struct perf_session *session) 3915 { 3916 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3917 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3918 struct intel_pt *pt; 3919 void *info_end; 3920 __u64 *info; 3921 int err; 3922 3923 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3924 min_sz) 3925 return -EINVAL; 3926 3927 pt = zalloc(sizeof(struct intel_pt)); 3928 if (!pt) 3929 return -ENOMEM; 3930 3931 pt->vmcs_info = RB_ROOT; 3932 3933 addr_filters__init(&pt->filts); 3934 3935 err = perf_config(intel_pt_perf_config, pt); 3936 if (err) 3937 goto err_free; 3938 3939 err = auxtrace_queues__init(&pt->queues); 3940 if (err) 3941 goto err_free; 3942 3943 if (session->itrace_synth_opts->set) { 3944 pt->synth_opts = *session->itrace_synth_opts; 3945 } else { 3946 struct itrace_synth_opts *opts = session->itrace_synth_opts; 3947 3948 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); 3949 if (!opts->default_no_sample && !opts->inject) { 3950 pt->synth_opts.branches = false; 3951 pt->synth_opts.callchain = true; 3952 pt->synth_opts.add_callchain = true; 3953 } 3954 pt->synth_opts.thread_stack = opts->thread_stack; 3955 } 3956 3957 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT)) 3958 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3959 3960 pt->session = session; 3961 pt->machine = &session->machines.host; /* No kvm support */ 3962 pt->auxtrace_type = auxtrace_info->type; 3963 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3964 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3965 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3966 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3967 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3968 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3969 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3970 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3971 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3972 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3973 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3974 INTEL_PT_PER_CPU_MMAPS); 3975 3976 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3977 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3978 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3979 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3980 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3981 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3982 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3983 INTEL_PT_CYC_BIT); 3984 } 3985 3986 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3987 pt->max_non_turbo_ratio = 3988 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3989 intel_pt_print_info(&auxtrace_info->priv[0], 3990 INTEL_PT_MAX_NONTURBO_RATIO, 3991 INTEL_PT_MAX_NONTURBO_RATIO); 3992 } 3993 3994 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3995 info_end = (void *)auxtrace_info + auxtrace_info->header.size; 3996 3997 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3998 size_t len; 3999 4000 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 4001 intel_pt_print_info(&auxtrace_info->priv[0], 4002 INTEL_PT_FILTER_STR_LEN, 4003 INTEL_PT_FILTER_STR_LEN); 4004 if (len) { 4005 const char *filter = (const char *)info; 4006 4007 len = roundup(len + 1, 8); 4008 info += len >> 3; 4009 if ((void *)info > info_end) { 4010 pr_err("%s: bad filter string length\n", __func__); 4011 err = -EINVAL; 4012 goto err_free_queues; 4013 } 4014 pt->filter = memdup(filter, len); 4015 if (!pt->filter) { 4016 err = -ENOMEM; 4017 goto err_free_queues; 4018 } 4019 if (session->header.needs_swap) 4020 mem_bswap_64(pt->filter, len); 4021 if (pt->filter[len - 1]) { 4022 pr_err("%s: filter string not null terminated\n", __func__); 4023 err = -EINVAL; 4024 goto err_free_queues; 4025 } 4026 err = addr_filters__parse_bare_filter(&pt->filts, 4027 filter); 4028 if (err) 4029 goto err_free_queues; 4030 } 4031 intel_pt_print_info_str("Filter string", pt->filter); 4032 } 4033 4034 if ((void *)info < info_end) { 4035 pt->cap_event_trace = *info++; 4036 if (dump_trace) 4037 fprintf(stdout, " Cap Event Trace %d\n", 4038 pt->cap_event_trace); 4039 } 4040 4041 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 4042 if (pt->timeless_decoding && !pt->tc.time_mult) 4043 pt->tc.time_mult = 1; 4044 pt->have_tsc = intel_pt_have_tsc(pt); 4045 pt->sampling_mode = intel_pt_sampling_mode(pt); 4046 pt->est_tsc = !pt->timeless_decoding; 4047 4048 if (pt->synth_opts.vm_time_correlation) { 4049 if (pt->timeless_decoding) { 4050 pr_err("Intel PT has no time information for VM Time Correlation\n"); 4051 err = -EINVAL; 4052 goto err_free_queues; 4053 } 4054 if (session->itrace_synth_opts->ptime_range) { 4055 pr_err("Time ranges cannot be specified with VM Time Correlation\n"); 4056 err = -EINVAL; 4057 goto err_free_queues; 4058 } 4059 /* Currently TSC Offset is calculated using MTC packets */ 4060 if (!intel_pt_have_mtc(pt)) { 4061 pr_err("MTC packets must have been enabled for VM Time Correlation\n"); 4062 err = -EINVAL; 4063 goto err_free_queues; 4064 } 4065 err = intel_pt_parse_vm_tm_corr_args(pt); 4066 if (err) 4067 goto err_free_queues; 4068 } 4069 4070 pt->unknown_thread = thread__new(999999999, 999999999); 4071 if (!pt->unknown_thread) { 4072 err = -ENOMEM; 4073 goto err_free_queues; 4074 } 4075 4076 /* 4077 * Since this thread will not be kept in any rbtree not in a 4078 * list, initialize its list node so that at thread__put() the 4079 * current thread lifetime assumption is kept and we don't segfault 4080 * at list_del_init(). 4081 */ 4082 INIT_LIST_HEAD(&pt->unknown_thread->node); 4083 4084 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 4085 if (err) 4086 goto err_delete_thread; 4087 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 4088 err = -ENOMEM; 4089 goto err_delete_thread; 4090 } 4091 4092 pt->auxtrace.process_event = intel_pt_process_event; 4093 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 4094 pt->auxtrace.queue_data = intel_pt_queue_data; 4095 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 4096 pt->auxtrace.flush_events = intel_pt_flush; 4097 pt->auxtrace.free_events = intel_pt_free_events; 4098 pt->auxtrace.free = intel_pt_free; 4099 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 4100 session->auxtrace = &pt->auxtrace; 4101 4102 if (dump_trace) 4103 return 0; 4104 4105 if (pt->have_sched_switch == 1) { 4106 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 4107 if (!pt->switch_evsel) { 4108 pr_err("%s: missing sched_switch event\n", __func__); 4109 err = -EINVAL; 4110 goto err_delete_thread; 4111 } 4112 } else if (pt->have_sched_switch == 2 && 4113 !intel_pt_find_switch(session->evlist)) { 4114 pr_err("%s: missing context_switch attribute flag\n", __func__); 4115 err = -EINVAL; 4116 goto err_delete_thread; 4117 } 4118 4119 if (pt->synth_opts.log) 4120 intel_pt_log_enable(); 4121 4122 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 4123 if (pt->tc.time_mult) { 4124 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 4125 4126 if (!pt->max_non_turbo_ratio) 4127 pt->max_non_turbo_ratio = 4128 (tsc_freq + 50000000) / 100000000; 4129 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 4130 intel_pt_log("Maximum non-turbo ratio %u\n", 4131 pt->max_non_turbo_ratio); 4132 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 4133 } 4134 4135 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 4136 if (err) 4137 goto err_delete_thread; 4138 4139 if (pt->synth_opts.calls) 4140 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 4141 PERF_IP_FLAG_TRACE_END; 4142 if (pt->synth_opts.returns) 4143 pt->branches_filter |= PERF_IP_FLAG_RETURN | 4144 PERF_IP_FLAG_TRACE_BEGIN; 4145 4146 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 4147 !symbol_conf.use_callchain) { 4148 symbol_conf.use_callchain = true; 4149 if (callchain_register_param(&callchain_param) < 0) { 4150 symbol_conf.use_callchain = false; 4151 pt->synth_opts.callchain = false; 4152 pt->synth_opts.add_callchain = false; 4153 } 4154 } 4155 4156 if (pt->synth_opts.add_callchain) { 4157 err = intel_pt_callchain_init(pt); 4158 if (err) 4159 goto err_delete_thread; 4160 } 4161 4162 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 4163 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 4164 pt->br_stack_sz_plus = pt->br_stack_sz; 4165 } 4166 4167 if (pt->synth_opts.add_last_branch) { 4168 err = intel_pt_br_stack_init(pt); 4169 if (err) 4170 goto err_delete_thread; 4171 /* 4172 * Additional branch stack size to cater for tracing from the 4173 * actual sample ip to where the sample time is recorded. 4174 * Measured at about 200 branches, but generously set to 1024. 4175 * If kernel space is not being traced, then add just 1 for the 4176 * branch to kernel space. 4177 */ 4178 if (intel_pt_tracing_kernel(pt)) 4179 pt->br_stack_sz_plus += 1024; 4180 else 4181 pt->br_stack_sz_plus += 1; 4182 } 4183 4184 pt->use_thread_stack = pt->synth_opts.callchain || 4185 pt->synth_opts.add_callchain || 4186 pt->synth_opts.thread_stack || 4187 pt->synth_opts.last_branch || 4188 pt->synth_opts.add_last_branch; 4189 4190 pt->callstack = pt->synth_opts.callchain || 4191 pt->synth_opts.add_callchain || 4192 pt->synth_opts.thread_stack; 4193 4194 err = intel_pt_synth_events(pt, session); 4195 if (err) 4196 goto err_delete_thread; 4197 4198 intel_pt_setup_pebs_events(pt); 4199 4200 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 4201 err = auxtrace_queue_data(session, true, true); 4202 else 4203 err = auxtrace_queues__process_index(&pt->queues, session); 4204 if (err) 4205 goto err_delete_thread; 4206 4207 if (pt->queues.populated) 4208 pt->data_queued = true; 4209 4210 if (pt->timeless_decoding) 4211 pr_debug2("Intel PT decoding without timestamps\n"); 4212 4213 return 0; 4214 4215 err_delete_thread: 4216 zfree(&pt->chain); 4217 thread__zput(pt->unknown_thread); 4218 err_free_queues: 4219 intel_pt_log_disable(); 4220 auxtrace_queues__free(&pt->queues); 4221 session->auxtrace = NULL; 4222 err_free: 4223 addr_filters__exit(&pt->filts); 4224 zfree(&pt->filter); 4225 zfree(&pt->time_ranges); 4226 free(pt); 4227 return err; 4228 } 4229