xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision be58f710)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 	u64 first_timestamp;
82 
83 	struct perf_tsc_conversion tc;
84 	bool cap_user_time_zero;
85 
86 	struct itrace_synth_opts synth_opts;
87 
88 	bool sample_instructions;
89 	u64 instructions_sample_type;
90 	u64 instructions_id;
91 
92 	bool sample_branches;
93 	u32 branches_filter;
94 	u64 branches_sample_type;
95 	u64 branches_id;
96 
97 	bool sample_transactions;
98 	u64 transactions_sample_type;
99 	u64 transactions_id;
100 
101 	bool sample_ptwrites;
102 	u64 ptwrites_sample_type;
103 	u64 ptwrites_id;
104 
105 	bool sample_pwr_events;
106 	u64 pwr_events_sample_type;
107 	u64 mwait_id;
108 	u64 pwre_id;
109 	u64 exstop_id;
110 	u64 pwrx_id;
111 	u64 cbr_id;
112 	u64 psb_id;
113 
114 	bool sample_pebs;
115 	struct evsel *pebs_evsel;
116 
117 	u64 tsc_bit;
118 	u64 mtc_bit;
119 	u64 mtc_freq_bits;
120 	u32 tsc_ctc_ratio_n;
121 	u32 tsc_ctc_ratio_d;
122 	u64 cyc_bit;
123 	u64 noretcomp_bit;
124 	unsigned max_non_turbo_ratio;
125 	unsigned cbr2khz;
126 	int max_loops;
127 
128 	unsigned long num_events;
129 
130 	char *filter;
131 	struct addr_filters filts;
132 
133 	struct range *time_ranges;
134 	unsigned int range_cnt;
135 
136 	struct ip_callchain *chain;
137 	struct branch_stack *br_stack;
138 
139 	u64 dflt_tsc_offset;
140 	struct rb_root vmcs_info;
141 };
142 
143 enum switch_state {
144 	INTEL_PT_SS_NOT_TRACING,
145 	INTEL_PT_SS_UNKNOWN,
146 	INTEL_PT_SS_TRACING,
147 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
148 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
149 };
150 
151 struct intel_pt_queue {
152 	struct intel_pt *pt;
153 	unsigned int queue_nr;
154 	struct auxtrace_buffer *buffer;
155 	struct auxtrace_buffer *old_buffer;
156 	void *decoder;
157 	const struct intel_pt_state *state;
158 	struct ip_callchain *chain;
159 	struct branch_stack *last_branch;
160 	union perf_event *event_buf;
161 	bool on_heap;
162 	bool stop;
163 	bool step_through_buffers;
164 	bool use_buffer_pid_tid;
165 	bool sync_switch;
166 	pid_t pid, tid;
167 	int cpu;
168 	int switch_state;
169 	pid_t next_tid;
170 	struct thread *thread;
171 	struct machine *guest_machine;
172 	struct thread *unknown_guest_thread;
173 	pid_t guest_machine_pid;
174 	bool exclude_kernel;
175 	bool have_sample;
176 	u64 time;
177 	u64 timestamp;
178 	u64 sel_timestamp;
179 	bool sel_start;
180 	unsigned int sel_idx;
181 	u32 flags;
182 	u16 insn_len;
183 	u64 last_insn_cnt;
184 	u64 ipc_insn_cnt;
185 	u64 ipc_cyc_cnt;
186 	u64 last_in_insn_cnt;
187 	u64 last_in_cyc_cnt;
188 	u64 last_br_insn_cnt;
189 	u64 last_br_cyc_cnt;
190 	unsigned int cbr_seen;
191 	char insn[INTEL_PT_INSN_BUF_SZ];
192 };
193 
194 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
195 			  unsigned char *buf, size_t len)
196 {
197 	struct intel_pt_pkt packet;
198 	size_t pos = 0;
199 	int ret, pkt_len, i;
200 	char desc[INTEL_PT_PKT_DESC_MAX];
201 	const char *color = PERF_COLOR_BLUE;
202 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
203 
204 	color_fprintf(stdout, color,
205 		      ". ... Intel Processor Trace data: size %zu bytes\n",
206 		      len);
207 
208 	while (len) {
209 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
210 		if (ret > 0)
211 			pkt_len = ret;
212 		else
213 			pkt_len = 1;
214 		printf(".");
215 		color_fprintf(stdout, color, "  %08x: ", pos);
216 		for (i = 0; i < pkt_len; i++)
217 			color_fprintf(stdout, color, " %02x", buf[i]);
218 		for (; i < 16; i++)
219 			color_fprintf(stdout, color, "   ");
220 		if (ret > 0) {
221 			ret = intel_pt_pkt_desc(&packet, desc,
222 						INTEL_PT_PKT_DESC_MAX);
223 			if (ret > 0)
224 				color_fprintf(stdout, color, " %s\n", desc);
225 		} else {
226 			color_fprintf(stdout, color, " Bad packet!\n");
227 		}
228 		pos += pkt_len;
229 		buf += pkt_len;
230 		len -= pkt_len;
231 	}
232 }
233 
234 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
235 				size_t len)
236 {
237 	printf(".\n");
238 	intel_pt_dump(pt, buf, len);
239 }
240 
241 static void intel_pt_log_event(union perf_event *event)
242 {
243 	FILE *f = intel_pt_log_fp();
244 
245 	if (!intel_pt_enable_logging || !f)
246 		return;
247 
248 	perf_event__fprintf(event, NULL, f);
249 }
250 
251 static void intel_pt_dump_sample(struct perf_session *session,
252 				 struct perf_sample *sample)
253 {
254 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
255 					   auxtrace);
256 
257 	printf("\n");
258 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
259 }
260 
261 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
262 {
263 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
264 	int n = pt->synth_opts.range_num;
265 
266 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
267 		return true;
268 
269 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
270 		return false;
271 
272 	/* perf_time__ranges_skip_sample does not work if time is zero */
273 	if (!tm)
274 		tm = 1;
275 
276 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
277 }
278 
279 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
280 							u64 vmcs,
281 							u64 dflt_tsc_offset)
282 {
283 	struct rb_node **p = &rb_root->rb_node;
284 	struct rb_node *parent = NULL;
285 	struct intel_pt_vmcs_info *v;
286 
287 	while (*p) {
288 		parent = *p;
289 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
290 
291 		if (v->vmcs == vmcs)
292 			return v;
293 
294 		if (vmcs < v->vmcs)
295 			p = &(*p)->rb_left;
296 		else
297 			p = &(*p)->rb_right;
298 	}
299 
300 	v = zalloc(sizeof(*v));
301 	if (v) {
302 		v->vmcs = vmcs;
303 		v->tsc_offset = dflt_tsc_offset;
304 		v->reliable = dflt_tsc_offset;
305 
306 		rb_link_node(&v->rb_node, parent, p);
307 		rb_insert_color(&v->rb_node, rb_root);
308 	}
309 
310 	return v;
311 }
312 
313 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
314 {
315 	struct intel_pt_queue *ptq = data;
316 	struct intel_pt *pt = ptq->pt;
317 
318 	if (!vmcs && !pt->dflt_tsc_offset)
319 		return NULL;
320 
321 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
322 }
323 
324 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
325 {
326 	struct intel_pt_vmcs_info *v;
327 	struct rb_node *n;
328 
329 	n = rb_first(&pt->vmcs_info);
330 	while (n) {
331 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
332 		n = rb_next(n);
333 		rb_erase(&v->rb_node, &pt->vmcs_info);
334 		free(v);
335 	}
336 }
337 
338 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
339 				   struct auxtrace_buffer *b)
340 {
341 	bool consecutive = false;
342 	void *start;
343 
344 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
345 				      pt->have_tsc, &consecutive,
346 				      pt->synth_opts.vm_time_correlation);
347 	if (!start)
348 		return -EINVAL;
349 	/*
350 	 * In the case of vm_time_correlation, the overlap might contain TSC
351 	 * packets that will not be fixed, and that will then no longer work for
352 	 * overlap detection. Avoid that by zeroing out the overlap.
353 	 */
354 	if (pt->synth_opts.vm_time_correlation)
355 		memset(b->data, 0, start - b->data);
356 	b->use_size = b->data + b->size - start;
357 	b->use_data = start;
358 	if (b->use_size && consecutive)
359 		b->consecutive = true;
360 	return 0;
361 }
362 
363 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
364 			       struct auxtrace_buffer *buffer,
365 			       struct auxtrace_buffer *old_buffer,
366 			       struct intel_pt_buffer *b)
367 {
368 	bool might_overlap;
369 
370 	if (!buffer->data) {
371 		int fd = perf_data__fd(ptq->pt->session->data);
372 
373 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
374 		if (!buffer->data)
375 			return -ENOMEM;
376 	}
377 
378 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
379 	if (might_overlap && !buffer->consecutive && old_buffer &&
380 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
381 		return -ENOMEM;
382 
383 	if (buffer->use_data) {
384 		b->len = buffer->use_size;
385 		b->buf = buffer->use_data;
386 	} else {
387 		b->len = buffer->size;
388 		b->buf = buffer->data;
389 	}
390 	b->ref_timestamp = buffer->reference;
391 
392 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
393 		b->consecutive = false;
394 		b->trace_nr = buffer->buffer_nr + 1;
395 	} else {
396 		b->consecutive = true;
397 	}
398 
399 	return 0;
400 }
401 
402 /* Do not drop buffers with references - refer intel_pt_get_trace() */
403 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
404 					   struct auxtrace_buffer *buffer)
405 {
406 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
407 		return;
408 
409 	auxtrace_buffer__drop_data(buffer);
410 }
411 
412 /* Must be serialized with respect to intel_pt_get_trace() */
413 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
414 			      void *cb_data)
415 {
416 	struct intel_pt_queue *ptq = data;
417 	struct auxtrace_buffer *buffer = ptq->buffer;
418 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
419 	struct auxtrace_queue *queue;
420 	int err = 0;
421 
422 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
423 
424 	while (1) {
425 		struct intel_pt_buffer b = { .len = 0 };
426 
427 		buffer = auxtrace_buffer__next(queue, buffer);
428 		if (!buffer)
429 			break;
430 
431 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
432 		if (err)
433 			break;
434 
435 		if (b.len) {
436 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
437 			old_buffer = buffer;
438 		} else {
439 			intel_pt_lookahead_drop_buffer(ptq, buffer);
440 			continue;
441 		}
442 
443 		err = cb(&b, cb_data);
444 		if (err)
445 			break;
446 	}
447 
448 	if (buffer != old_buffer)
449 		intel_pt_lookahead_drop_buffer(ptq, buffer);
450 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
451 
452 	return err;
453 }
454 
455 /*
456  * This function assumes data is processed sequentially only.
457  * Must be serialized with respect to intel_pt_lookahead()
458  */
459 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
460 {
461 	struct intel_pt_queue *ptq = data;
462 	struct auxtrace_buffer *buffer = ptq->buffer;
463 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
464 	struct auxtrace_queue *queue;
465 	int err;
466 
467 	if (ptq->stop) {
468 		b->len = 0;
469 		return 0;
470 	}
471 
472 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
473 
474 	buffer = auxtrace_buffer__next(queue, buffer);
475 	if (!buffer) {
476 		if (old_buffer)
477 			auxtrace_buffer__drop_data(old_buffer);
478 		b->len = 0;
479 		return 0;
480 	}
481 
482 	ptq->buffer = buffer;
483 
484 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
485 	if (err)
486 		return err;
487 
488 	if (ptq->step_through_buffers)
489 		ptq->stop = true;
490 
491 	if (b->len) {
492 		if (old_buffer)
493 			auxtrace_buffer__drop_data(old_buffer);
494 		ptq->old_buffer = buffer;
495 	} else {
496 		auxtrace_buffer__drop_data(buffer);
497 		return intel_pt_get_trace(b, data);
498 	}
499 
500 	return 0;
501 }
502 
503 struct intel_pt_cache_entry {
504 	struct auxtrace_cache_entry	entry;
505 	u64				insn_cnt;
506 	u64				byte_cnt;
507 	enum intel_pt_insn_op		op;
508 	enum intel_pt_insn_branch	branch;
509 	int				length;
510 	int32_t				rel;
511 	char				insn[INTEL_PT_INSN_BUF_SZ];
512 };
513 
514 static int intel_pt_config_div(const char *var, const char *value, void *data)
515 {
516 	int *d = data;
517 	long val;
518 
519 	if (!strcmp(var, "intel-pt.cache-divisor")) {
520 		val = strtol(value, NULL, 0);
521 		if (val > 0 && val <= INT_MAX)
522 			*d = val;
523 	}
524 
525 	return 0;
526 }
527 
528 static int intel_pt_cache_divisor(void)
529 {
530 	static int d;
531 
532 	if (d)
533 		return d;
534 
535 	perf_config(intel_pt_config_div, &d);
536 
537 	if (!d)
538 		d = 64;
539 
540 	return d;
541 }
542 
543 static unsigned int intel_pt_cache_size(struct dso *dso,
544 					struct machine *machine)
545 {
546 	off_t size;
547 
548 	size = dso__data_size(dso, machine);
549 	size /= intel_pt_cache_divisor();
550 	if (size < 1000)
551 		return 10;
552 	if (size > (1 << 21))
553 		return 21;
554 	return 32 - __builtin_clz(size);
555 }
556 
557 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
558 					     struct machine *machine)
559 {
560 	struct auxtrace_cache *c;
561 	unsigned int bits;
562 
563 	if (dso->auxtrace_cache)
564 		return dso->auxtrace_cache;
565 
566 	bits = intel_pt_cache_size(dso, machine);
567 
568 	/* Ignoring cache creation failure */
569 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
570 
571 	dso->auxtrace_cache = c;
572 
573 	return c;
574 }
575 
576 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
577 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
578 			      struct intel_pt_insn *intel_pt_insn)
579 {
580 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
581 	struct intel_pt_cache_entry *e;
582 	int err;
583 
584 	if (!c)
585 		return -ENOMEM;
586 
587 	e = auxtrace_cache__alloc_entry(c);
588 	if (!e)
589 		return -ENOMEM;
590 
591 	e->insn_cnt = insn_cnt;
592 	e->byte_cnt = byte_cnt;
593 	e->op = intel_pt_insn->op;
594 	e->branch = intel_pt_insn->branch;
595 	e->length = intel_pt_insn->length;
596 	e->rel = intel_pt_insn->rel;
597 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
598 
599 	err = auxtrace_cache__add(c, offset, &e->entry);
600 	if (err)
601 		auxtrace_cache__free_entry(c, e);
602 
603 	return err;
604 }
605 
606 static struct intel_pt_cache_entry *
607 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
608 {
609 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
610 
611 	if (!c)
612 		return NULL;
613 
614 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
615 }
616 
617 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
618 				      u64 offset)
619 {
620 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621 
622 	if (!c)
623 		return;
624 
625 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
626 }
627 
628 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
629 {
630 	/* Assumes 64-bit kernel */
631 	return ip & (1ULL << 63);
632 }
633 
634 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
635 {
636 	if (nr) {
637 		return intel_pt_guest_kernel_ip(ip) ?
638 		       PERF_RECORD_MISC_GUEST_KERNEL :
639 		       PERF_RECORD_MISC_GUEST_USER;
640 	}
641 
642 	return ip >= ptq->pt->kernel_start ?
643 	       PERF_RECORD_MISC_KERNEL :
644 	       PERF_RECORD_MISC_USER;
645 }
646 
647 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
648 {
649 	/* No support for non-zero CS base */
650 	if (from_ip)
651 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
652 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
653 }
654 
655 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
656 {
657 	struct machines *machines = &ptq->pt->session->machines;
658 	struct machine *machine;
659 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
660 
661 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
662 		return 0;
663 
664 	ptq->guest_machine = NULL;
665 	thread__zput(ptq->unknown_guest_thread);
666 
667 	machine = machines__find_guest(machines, pid);
668 	if (!machine)
669 		return -1;
670 
671 	ptq->unknown_guest_thread = machine__idle_thread(machine);
672 	if (!ptq->unknown_guest_thread)
673 		return -1;
674 
675 	ptq->guest_machine = machine;
676 	ptq->guest_machine_pid = pid;
677 
678 	return 0;
679 }
680 
681 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
682 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
683 				   uint64_t to_ip, uint64_t max_insn_cnt,
684 				   void *data)
685 {
686 	struct intel_pt_queue *ptq = data;
687 	struct machine *machine = ptq->pt->machine;
688 	struct thread *thread;
689 	struct addr_location al;
690 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
691 	ssize_t len;
692 	int x86_64;
693 	u8 cpumode;
694 	u64 offset, start_offset, start_ip;
695 	u64 insn_cnt = 0;
696 	bool one_map = true;
697 	bool nr;
698 
699 	intel_pt_insn->length = 0;
700 
701 	if (to_ip && *ip == to_ip)
702 		goto out_no_cache;
703 
704 	nr = ptq->state->to_nr;
705 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
706 
707 	if (nr) {
708 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
709 		    intel_pt_get_guest(ptq))
710 			return -EINVAL;
711 		machine = ptq->guest_machine;
712 		thread = ptq->unknown_guest_thread;
713 	} else {
714 		thread = ptq->thread;
715 		if (!thread) {
716 			if (cpumode != PERF_RECORD_MISC_KERNEL)
717 				return -EINVAL;
718 			thread = ptq->pt->unknown_thread;
719 		}
720 	}
721 
722 	while (1) {
723 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
724 			return -EINVAL;
725 
726 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
727 		    dso__data_status_seen(al.map->dso,
728 					  DSO_DATA_STATUS_SEEN_ITRACE))
729 			return -ENOENT;
730 
731 		offset = al.map->map_ip(al.map, *ip);
732 
733 		if (!to_ip && one_map) {
734 			struct intel_pt_cache_entry *e;
735 
736 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
737 			if (e &&
738 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
739 				*insn_cnt_ptr = e->insn_cnt;
740 				*ip += e->byte_cnt;
741 				intel_pt_insn->op = e->op;
742 				intel_pt_insn->branch = e->branch;
743 				intel_pt_insn->length = e->length;
744 				intel_pt_insn->rel = e->rel;
745 				memcpy(intel_pt_insn->buf, e->insn,
746 				       INTEL_PT_INSN_BUF_SZ);
747 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
748 				return 0;
749 			}
750 		}
751 
752 		start_offset = offset;
753 		start_ip = *ip;
754 
755 		/* Load maps to ensure dso->is_64_bit has been updated */
756 		map__load(al.map);
757 
758 		x86_64 = al.map->dso->is_64_bit;
759 
760 		while (1) {
761 			len = dso__data_read_offset(al.map->dso, machine,
762 						    offset, buf,
763 						    INTEL_PT_INSN_BUF_SZ);
764 			if (len <= 0)
765 				return -EINVAL;
766 
767 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
768 				return -EINVAL;
769 
770 			intel_pt_log_insn(intel_pt_insn, *ip);
771 
772 			insn_cnt += 1;
773 
774 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
775 				goto out;
776 
777 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
778 				goto out_no_cache;
779 
780 			*ip += intel_pt_insn->length;
781 
782 			if (to_ip && *ip == to_ip) {
783 				intel_pt_insn->length = 0;
784 				goto out_no_cache;
785 			}
786 
787 			if (*ip >= al.map->end)
788 				break;
789 
790 			offset += intel_pt_insn->length;
791 		}
792 		one_map = false;
793 	}
794 out:
795 	*insn_cnt_ptr = insn_cnt;
796 
797 	if (!one_map)
798 		goto out_no_cache;
799 
800 	/*
801 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
802 	 * entries.
803 	 */
804 	if (to_ip) {
805 		struct intel_pt_cache_entry *e;
806 
807 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
808 		if (e)
809 			return 0;
810 	}
811 
812 	/* Ignore cache errors */
813 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
814 			   *ip - start_ip, intel_pt_insn);
815 
816 	return 0;
817 
818 out_no_cache:
819 	*insn_cnt_ptr = insn_cnt;
820 	return 0;
821 }
822 
823 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
824 				  uint64_t offset, const char *filename)
825 {
826 	struct addr_filter *filt;
827 	bool have_filter   = false;
828 	bool hit_tracestop = false;
829 	bool hit_filter    = false;
830 
831 	list_for_each_entry(filt, &pt->filts.head, list) {
832 		if (filt->start)
833 			have_filter = true;
834 
835 		if ((filename && !filt->filename) ||
836 		    (!filename && filt->filename) ||
837 		    (filename && strcmp(filename, filt->filename)))
838 			continue;
839 
840 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
841 			continue;
842 
843 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
844 			     ip, offset, filename ? filename : "[kernel]",
845 			     filt->start ? "filter" : "stop",
846 			     filt->addr, filt->size);
847 
848 		if (filt->start)
849 			hit_filter = true;
850 		else
851 			hit_tracestop = true;
852 	}
853 
854 	if (!hit_tracestop && !hit_filter)
855 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
856 			     ip, offset, filename ? filename : "[kernel]");
857 
858 	return hit_tracestop || (have_filter && !hit_filter);
859 }
860 
861 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
862 {
863 	struct intel_pt_queue *ptq = data;
864 	struct thread *thread;
865 	struct addr_location al;
866 	u8 cpumode;
867 	u64 offset;
868 
869 	if (ptq->state->to_nr) {
870 		if (intel_pt_guest_kernel_ip(ip))
871 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
872 		/* No support for decoding guest user space */
873 		return -EINVAL;
874 	} else if (ip >= ptq->pt->kernel_start) {
875 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
876 	}
877 
878 	cpumode = PERF_RECORD_MISC_USER;
879 
880 	thread = ptq->thread;
881 	if (!thread)
882 		return -EINVAL;
883 
884 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
885 		return -EINVAL;
886 
887 	offset = al.map->map_ip(al.map, ip);
888 
889 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
890 				     al.map->dso->long_name);
891 }
892 
893 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
894 {
895 	return __intel_pt_pgd_ip(ip, data) > 0;
896 }
897 
898 static bool intel_pt_get_config(struct intel_pt *pt,
899 				struct perf_event_attr *attr, u64 *config)
900 {
901 	if (attr->type == pt->pmu_type) {
902 		if (config)
903 			*config = attr->config;
904 		return true;
905 	}
906 
907 	return false;
908 }
909 
910 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
911 {
912 	struct evsel *evsel;
913 
914 	evlist__for_each_entry(pt->session->evlist, evsel) {
915 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
916 		    !evsel->core.attr.exclude_kernel)
917 			return false;
918 	}
919 	return true;
920 }
921 
922 static bool intel_pt_return_compression(struct intel_pt *pt)
923 {
924 	struct evsel *evsel;
925 	u64 config;
926 
927 	if (!pt->noretcomp_bit)
928 		return true;
929 
930 	evlist__for_each_entry(pt->session->evlist, evsel) {
931 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
932 		    (config & pt->noretcomp_bit))
933 			return false;
934 	}
935 	return true;
936 }
937 
938 static bool intel_pt_branch_enable(struct intel_pt *pt)
939 {
940 	struct evsel *evsel;
941 	u64 config;
942 
943 	evlist__for_each_entry(pt->session->evlist, evsel) {
944 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
945 		    (config & 1) && !(config & 0x2000))
946 			return false;
947 	}
948 	return true;
949 }
950 
951 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
952 {
953 	struct evsel *evsel;
954 	unsigned int shift;
955 	u64 config;
956 
957 	if (!pt->mtc_freq_bits)
958 		return 0;
959 
960 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
961 		config >>= 1;
962 
963 	evlist__for_each_entry(pt->session->evlist, evsel) {
964 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
965 			return (config & pt->mtc_freq_bits) >> shift;
966 	}
967 	return 0;
968 }
969 
970 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
971 {
972 	struct evsel *evsel;
973 	bool timeless_decoding = true;
974 	u64 config;
975 
976 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
977 		return true;
978 
979 	evlist__for_each_entry(pt->session->evlist, evsel) {
980 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
981 			return true;
982 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
983 			if (config & pt->tsc_bit)
984 				timeless_decoding = false;
985 			else
986 				return true;
987 		}
988 	}
989 	return timeless_decoding;
990 }
991 
992 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
993 {
994 	struct evsel *evsel;
995 
996 	evlist__for_each_entry(pt->session->evlist, evsel) {
997 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
998 		    !evsel->core.attr.exclude_kernel)
999 			return true;
1000 	}
1001 	return false;
1002 }
1003 
1004 static bool intel_pt_have_tsc(struct intel_pt *pt)
1005 {
1006 	struct evsel *evsel;
1007 	bool have_tsc = false;
1008 	u64 config;
1009 
1010 	if (!pt->tsc_bit)
1011 		return false;
1012 
1013 	evlist__for_each_entry(pt->session->evlist, evsel) {
1014 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1015 			if (config & pt->tsc_bit)
1016 				have_tsc = true;
1017 			else
1018 				return false;
1019 		}
1020 	}
1021 	return have_tsc;
1022 }
1023 
1024 static bool intel_pt_have_mtc(struct intel_pt *pt)
1025 {
1026 	struct evsel *evsel;
1027 	u64 config;
1028 
1029 	evlist__for_each_entry(pt->session->evlist, evsel) {
1030 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1031 		    (config & pt->mtc_bit))
1032 			return true;
1033 	}
1034 	return false;
1035 }
1036 
1037 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1038 {
1039 	struct evsel *evsel;
1040 
1041 	evlist__for_each_entry(pt->session->evlist, evsel) {
1042 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1043 		    evsel->core.attr.aux_sample_size)
1044 			return true;
1045 	}
1046 	return false;
1047 }
1048 
1049 static u64 intel_pt_ctl(struct intel_pt *pt)
1050 {
1051 	struct evsel *evsel;
1052 	u64 config;
1053 
1054 	evlist__for_each_entry(pt->session->evlist, evsel) {
1055 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1056 			return config;
1057 	}
1058 	return 0;
1059 }
1060 
1061 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1062 {
1063 	u64 quot, rem;
1064 
1065 	quot = ns / pt->tc.time_mult;
1066 	rem  = ns % pt->tc.time_mult;
1067 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1068 		pt->tc.time_mult;
1069 }
1070 
1071 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1072 {
1073 	size_t sz = sizeof(struct ip_callchain);
1074 
1075 	/* Add 1 to callchain_sz for callchain context */
1076 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1077 	return zalloc(sz);
1078 }
1079 
1080 static int intel_pt_callchain_init(struct intel_pt *pt)
1081 {
1082 	struct evsel *evsel;
1083 
1084 	evlist__for_each_entry(pt->session->evlist, evsel) {
1085 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1086 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1087 	}
1088 
1089 	pt->chain = intel_pt_alloc_chain(pt);
1090 	if (!pt->chain)
1091 		return -ENOMEM;
1092 
1093 	return 0;
1094 }
1095 
1096 static void intel_pt_add_callchain(struct intel_pt *pt,
1097 				   struct perf_sample *sample)
1098 {
1099 	struct thread *thread = machine__findnew_thread(pt->machine,
1100 							sample->pid,
1101 							sample->tid);
1102 
1103 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1104 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1105 				  pt->kernel_start);
1106 
1107 	sample->callchain = pt->chain;
1108 }
1109 
1110 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1111 {
1112 	size_t sz = sizeof(struct branch_stack);
1113 
1114 	sz += entry_cnt * sizeof(struct branch_entry);
1115 	return zalloc(sz);
1116 }
1117 
1118 static int intel_pt_br_stack_init(struct intel_pt *pt)
1119 {
1120 	struct evsel *evsel;
1121 
1122 	evlist__for_each_entry(pt->session->evlist, evsel) {
1123 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1124 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1125 	}
1126 
1127 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1128 	if (!pt->br_stack)
1129 		return -ENOMEM;
1130 
1131 	return 0;
1132 }
1133 
1134 static void intel_pt_add_br_stack(struct intel_pt *pt,
1135 				  struct perf_sample *sample)
1136 {
1137 	struct thread *thread = machine__findnew_thread(pt->machine,
1138 							sample->pid,
1139 							sample->tid);
1140 
1141 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1142 				     pt->br_stack_sz, sample->ip,
1143 				     pt->kernel_start);
1144 
1145 	sample->branch_stack = pt->br_stack;
1146 }
1147 
1148 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1149 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1150 
1151 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1152 						   unsigned int queue_nr)
1153 {
1154 	struct intel_pt_params params = { .get_trace = 0, };
1155 	struct perf_env *env = pt->machine->env;
1156 	struct intel_pt_queue *ptq;
1157 
1158 	ptq = zalloc(sizeof(struct intel_pt_queue));
1159 	if (!ptq)
1160 		return NULL;
1161 
1162 	if (pt->synth_opts.callchain) {
1163 		ptq->chain = intel_pt_alloc_chain(pt);
1164 		if (!ptq->chain)
1165 			goto out_free;
1166 	}
1167 
1168 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1169 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1170 
1171 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1172 		if (!ptq->last_branch)
1173 			goto out_free;
1174 	}
1175 
1176 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1177 	if (!ptq->event_buf)
1178 		goto out_free;
1179 
1180 	ptq->pt = pt;
1181 	ptq->queue_nr = queue_nr;
1182 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1183 	ptq->pid = -1;
1184 	ptq->tid = -1;
1185 	ptq->cpu = -1;
1186 	ptq->next_tid = -1;
1187 
1188 	params.get_trace = intel_pt_get_trace;
1189 	params.walk_insn = intel_pt_walk_next_insn;
1190 	params.lookahead = intel_pt_lookahead;
1191 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1192 	params.data = ptq;
1193 	params.return_compression = intel_pt_return_compression(pt);
1194 	params.branch_enable = intel_pt_branch_enable(pt);
1195 	params.ctl = intel_pt_ctl(pt);
1196 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1197 	params.mtc_period = intel_pt_mtc_period(pt);
1198 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1199 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1200 	params.quick = pt->synth_opts.quick;
1201 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1202 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1203 	params.first_timestamp = pt->first_timestamp;
1204 	params.max_loops = pt->max_loops;
1205 
1206 	if (pt->filts.cnt > 0)
1207 		params.pgd_ip = intel_pt_pgd_ip;
1208 
1209 	if (pt->synth_opts.instructions) {
1210 		if (pt->synth_opts.period) {
1211 			switch (pt->synth_opts.period_type) {
1212 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1213 				params.period_type =
1214 						INTEL_PT_PERIOD_INSTRUCTIONS;
1215 				params.period = pt->synth_opts.period;
1216 				break;
1217 			case PERF_ITRACE_PERIOD_TICKS:
1218 				params.period_type = INTEL_PT_PERIOD_TICKS;
1219 				params.period = pt->synth_opts.period;
1220 				break;
1221 			case PERF_ITRACE_PERIOD_NANOSECS:
1222 				params.period_type = INTEL_PT_PERIOD_TICKS;
1223 				params.period = intel_pt_ns_to_ticks(pt,
1224 							pt->synth_opts.period);
1225 				break;
1226 			default:
1227 				break;
1228 			}
1229 		}
1230 
1231 		if (!params.period) {
1232 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1233 			params.period = 1;
1234 		}
1235 	}
1236 
1237 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1238 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1239 
1240 	ptq->decoder = intel_pt_decoder_new(&params);
1241 	if (!ptq->decoder)
1242 		goto out_free;
1243 
1244 	return ptq;
1245 
1246 out_free:
1247 	zfree(&ptq->event_buf);
1248 	zfree(&ptq->last_branch);
1249 	zfree(&ptq->chain);
1250 	free(ptq);
1251 	return NULL;
1252 }
1253 
1254 static void intel_pt_free_queue(void *priv)
1255 {
1256 	struct intel_pt_queue *ptq = priv;
1257 
1258 	if (!ptq)
1259 		return;
1260 	thread__zput(ptq->thread);
1261 	thread__zput(ptq->unknown_guest_thread);
1262 	intel_pt_decoder_free(ptq->decoder);
1263 	zfree(&ptq->event_buf);
1264 	zfree(&ptq->last_branch);
1265 	zfree(&ptq->chain);
1266 	free(ptq);
1267 }
1268 
1269 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1270 {
1271 	unsigned int i;
1272 
1273 	pt->first_timestamp = timestamp;
1274 
1275 	for (i = 0; i < pt->queues.nr_queues; i++) {
1276 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1277 		struct intel_pt_queue *ptq = queue->priv;
1278 
1279 		if (ptq && ptq->decoder)
1280 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1281 	}
1282 }
1283 
1284 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1285 				     struct auxtrace_queue *queue)
1286 {
1287 	struct intel_pt_queue *ptq = queue->priv;
1288 
1289 	if (queue->tid == -1 || pt->have_sched_switch) {
1290 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1291 		if (ptq->tid == -1)
1292 			ptq->pid = -1;
1293 		thread__zput(ptq->thread);
1294 	}
1295 
1296 	if (!ptq->thread && ptq->tid != -1)
1297 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1298 
1299 	if (ptq->thread) {
1300 		ptq->pid = ptq->thread->pid_;
1301 		if (queue->cpu == -1)
1302 			ptq->cpu = ptq->thread->cpu;
1303 	}
1304 }
1305 
1306 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1307 {
1308 	ptq->insn_len = 0;
1309 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1310 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1311 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1312 		if (!ptq->state->to_ip)
1313 			ptq->flags = PERF_IP_FLAG_BRANCH |
1314 				     PERF_IP_FLAG_TRACE_END;
1315 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1316 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1317 				     PERF_IP_FLAG_VMEXIT;
1318 		else
1319 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1320 				     PERF_IP_FLAG_ASYNC |
1321 				     PERF_IP_FLAG_INTERRUPT;
1322 	} else {
1323 		if (ptq->state->from_ip)
1324 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1325 		else
1326 			ptq->flags = PERF_IP_FLAG_BRANCH |
1327 				     PERF_IP_FLAG_TRACE_BEGIN;
1328 		if (ptq->state->flags & INTEL_PT_IN_TX)
1329 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1330 		ptq->insn_len = ptq->state->insn_len;
1331 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1332 	}
1333 
1334 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1335 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1336 	if (ptq->state->type & INTEL_PT_TRACE_END)
1337 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1338 }
1339 
1340 static void intel_pt_setup_time_range(struct intel_pt *pt,
1341 				      struct intel_pt_queue *ptq)
1342 {
1343 	if (!pt->range_cnt)
1344 		return;
1345 
1346 	ptq->sel_timestamp = pt->time_ranges[0].start;
1347 	ptq->sel_idx = 0;
1348 
1349 	if (ptq->sel_timestamp) {
1350 		ptq->sel_start = true;
1351 	} else {
1352 		ptq->sel_timestamp = pt->time_ranges[0].end;
1353 		ptq->sel_start = false;
1354 	}
1355 }
1356 
1357 static int intel_pt_setup_queue(struct intel_pt *pt,
1358 				struct auxtrace_queue *queue,
1359 				unsigned int queue_nr)
1360 {
1361 	struct intel_pt_queue *ptq = queue->priv;
1362 
1363 	if (list_empty(&queue->head))
1364 		return 0;
1365 
1366 	if (!ptq) {
1367 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1368 		if (!ptq)
1369 			return -ENOMEM;
1370 		queue->priv = ptq;
1371 
1372 		if (queue->cpu != -1)
1373 			ptq->cpu = queue->cpu;
1374 		ptq->tid = queue->tid;
1375 
1376 		ptq->cbr_seen = UINT_MAX;
1377 
1378 		if (pt->sampling_mode && !pt->snapshot_mode &&
1379 		    pt->timeless_decoding)
1380 			ptq->step_through_buffers = true;
1381 
1382 		ptq->sync_switch = pt->sync_switch;
1383 
1384 		intel_pt_setup_time_range(pt, ptq);
1385 	}
1386 
1387 	if (!ptq->on_heap &&
1388 	    (!ptq->sync_switch ||
1389 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1390 		const struct intel_pt_state *state;
1391 		int ret;
1392 
1393 		if (pt->timeless_decoding)
1394 			return 0;
1395 
1396 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1397 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1398 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1399 
1400 		if (ptq->sel_start && ptq->sel_timestamp) {
1401 			ret = intel_pt_fast_forward(ptq->decoder,
1402 						    ptq->sel_timestamp);
1403 			if (ret)
1404 				return ret;
1405 		}
1406 
1407 		while (1) {
1408 			state = intel_pt_decode(ptq->decoder);
1409 			if (state->err) {
1410 				if (state->err == INTEL_PT_ERR_NODATA) {
1411 					intel_pt_log("queue %u has no timestamp\n",
1412 						     queue_nr);
1413 					return 0;
1414 				}
1415 				continue;
1416 			}
1417 			if (state->timestamp)
1418 				break;
1419 		}
1420 
1421 		ptq->timestamp = state->timestamp;
1422 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1423 			     queue_nr, ptq->timestamp);
1424 		ptq->state = state;
1425 		ptq->have_sample = true;
1426 		if (ptq->sel_start && ptq->sel_timestamp &&
1427 		    ptq->timestamp < ptq->sel_timestamp)
1428 			ptq->have_sample = false;
1429 		intel_pt_sample_flags(ptq);
1430 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1431 		if (ret)
1432 			return ret;
1433 		ptq->on_heap = true;
1434 	}
1435 
1436 	return 0;
1437 }
1438 
1439 static int intel_pt_setup_queues(struct intel_pt *pt)
1440 {
1441 	unsigned int i;
1442 	int ret;
1443 
1444 	for (i = 0; i < pt->queues.nr_queues; i++) {
1445 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1446 		if (ret)
1447 			return ret;
1448 	}
1449 	return 0;
1450 }
1451 
1452 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1453 {
1454 	return pt->synth_opts.initial_skip &&
1455 	       pt->num_events++ < pt->synth_opts.initial_skip;
1456 }
1457 
1458 /*
1459  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1460  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1461  * from this decoder state.
1462  */
1463 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1464 {
1465 	return pt->synth_opts.initial_skip &&
1466 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1467 }
1468 
1469 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1470 				   union perf_event *event,
1471 				   struct perf_sample *sample)
1472 {
1473 	event->sample.header.type = PERF_RECORD_SAMPLE;
1474 	event->sample.header.size = sizeof(struct perf_event_header);
1475 
1476 	sample->pid = ptq->pid;
1477 	sample->tid = ptq->tid;
1478 	sample->cpu = ptq->cpu;
1479 	sample->insn_len = ptq->insn_len;
1480 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1481 }
1482 
1483 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1484 				   struct intel_pt_queue *ptq,
1485 				   union perf_event *event,
1486 				   struct perf_sample *sample)
1487 {
1488 	intel_pt_prep_a_sample(ptq, event, sample);
1489 
1490 	if (!pt->timeless_decoding)
1491 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1492 
1493 	sample->ip = ptq->state->from_ip;
1494 	sample->addr = ptq->state->to_ip;
1495 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1496 	sample->period = 1;
1497 	sample->flags = ptq->flags;
1498 
1499 	event->sample.header.misc = sample->cpumode;
1500 }
1501 
1502 static int intel_pt_inject_event(union perf_event *event,
1503 				 struct perf_sample *sample, u64 type)
1504 {
1505 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1506 	return perf_event__synthesize_sample(event, type, 0, sample);
1507 }
1508 
1509 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1510 				      union perf_event *event,
1511 				      struct perf_sample *sample, u64 type)
1512 {
1513 	if (!pt->synth_opts.inject)
1514 		return 0;
1515 
1516 	return intel_pt_inject_event(event, sample, type);
1517 }
1518 
1519 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1520 					union perf_event *event,
1521 					struct perf_sample *sample, u64 type)
1522 {
1523 	int ret;
1524 
1525 	ret = intel_pt_opt_inject(pt, event, sample, type);
1526 	if (ret)
1527 		return ret;
1528 
1529 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1530 	if (ret)
1531 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1532 
1533 	return ret;
1534 }
1535 
1536 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1537 {
1538 	struct intel_pt *pt = ptq->pt;
1539 	union perf_event *event = ptq->event_buf;
1540 	struct perf_sample sample = { .ip = 0, };
1541 	struct dummy_branch_stack {
1542 		u64			nr;
1543 		u64			hw_idx;
1544 		struct branch_entry	entries;
1545 	} dummy_bs;
1546 
1547 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1548 		return 0;
1549 
1550 	if (intel_pt_skip_event(pt))
1551 		return 0;
1552 
1553 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1554 
1555 	sample.id = ptq->pt->branches_id;
1556 	sample.stream_id = ptq->pt->branches_id;
1557 
1558 	/*
1559 	 * perf report cannot handle events without a branch stack when using
1560 	 * SORT_MODE__BRANCH so make a dummy one.
1561 	 */
1562 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1563 		dummy_bs = (struct dummy_branch_stack){
1564 			.nr = 1,
1565 			.hw_idx = -1ULL,
1566 			.entries = {
1567 				.from = sample.ip,
1568 				.to = sample.addr,
1569 			},
1570 		};
1571 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1572 	}
1573 
1574 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1575 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1576 	if (sample.cyc_cnt) {
1577 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1578 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1579 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1580 	}
1581 
1582 	return intel_pt_deliver_synth_event(pt, event, &sample,
1583 					    pt->branches_sample_type);
1584 }
1585 
1586 static void intel_pt_prep_sample(struct intel_pt *pt,
1587 				 struct intel_pt_queue *ptq,
1588 				 union perf_event *event,
1589 				 struct perf_sample *sample)
1590 {
1591 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1592 
1593 	if (pt->synth_opts.callchain) {
1594 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1595 				     pt->synth_opts.callchain_sz + 1,
1596 				     sample->ip, pt->kernel_start);
1597 		sample->callchain = ptq->chain;
1598 	}
1599 
1600 	if (pt->synth_opts.last_branch) {
1601 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1602 					pt->br_stack_sz);
1603 		sample->branch_stack = ptq->last_branch;
1604 	}
1605 }
1606 
1607 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1608 {
1609 	struct intel_pt *pt = ptq->pt;
1610 	union perf_event *event = ptq->event_buf;
1611 	struct perf_sample sample = { .ip = 0, };
1612 
1613 	if (intel_pt_skip_event(pt))
1614 		return 0;
1615 
1616 	intel_pt_prep_sample(pt, ptq, event, &sample);
1617 
1618 	sample.id = ptq->pt->instructions_id;
1619 	sample.stream_id = ptq->pt->instructions_id;
1620 	if (pt->synth_opts.quick)
1621 		sample.period = 1;
1622 	else
1623 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1624 
1625 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1626 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1627 	if (sample.cyc_cnt) {
1628 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1629 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1630 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1631 	}
1632 
1633 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1634 
1635 	return intel_pt_deliver_synth_event(pt, event, &sample,
1636 					    pt->instructions_sample_type);
1637 }
1638 
1639 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1640 {
1641 	struct intel_pt *pt = ptq->pt;
1642 	union perf_event *event = ptq->event_buf;
1643 	struct perf_sample sample = { .ip = 0, };
1644 
1645 	if (intel_pt_skip_event(pt))
1646 		return 0;
1647 
1648 	intel_pt_prep_sample(pt, ptq, event, &sample);
1649 
1650 	sample.id = ptq->pt->transactions_id;
1651 	sample.stream_id = ptq->pt->transactions_id;
1652 
1653 	return intel_pt_deliver_synth_event(pt, event, &sample,
1654 					    pt->transactions_sample_type);
1655 }
1656 
1657 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1658 				   struct intel_pt_queue *ptq,
1659 				   union perf_event *event,
1660 				   struct perf_sample *sample)
1661 {
1662 	intel_pt_prep_sample(pt, ptq, event, sample);
1663 
1664 	/*
1665 	 * Zero IP is used to mean "trace start" but that is not the case for
1666 	 * power or PTWRITE events with no IP, so clear the flags.
1667 	 */
1668 	if (!sample->ip)
1669 		sample->flags = 0;
1670 }
1671 
1672 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1673 {
1674 	struct intel_pt *pt = ptq->pt;
1675 	union perf_event *event = ptq->event_buf;
1676 	struct perf_sample sample = { .ip = 0, };
1677 	struct perf_synth_intel_ptwrite raw;
1678 
1679 	if (intel_pt_skip_event(pt))
1680 		return 0;
1681 
1682 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683 
1684 	sample.id = ptq->pt->ptwrites_id;
1685 	sample.stream_id = ptq->pt->ptwrites_id;
1686 
1687 	raw.flags = 0;
1688 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1689 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1690 
1691 	sample.raw_size = perf_synth__raw_size(raw);
1692 	sample.raw_data = perf_synth__raw_data(&raw);
1693 
1694 	return intel_pt_deliver_synth_event(pt, event, &sample,
1695 					    pt->ptwrites_sample_type);
1696 }
1697 
1698 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1699 {
1700 	struct intel_pt *pt = ptq->pt;
1701 	union perf_event *event = ptq->event_buf;
1702 	struct perf_sample sample = { .ip = 0, };
1703 	struct perf_synth_intel_cbr raw;
1704 	u32 flags;
1705 
1706 	if (intel_pt_skip_cbr_event(pt))
1707 		return 0;
1708 
1709 	ptq->cbr_seen = ptq->state->cbr;
1710 
1711 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1712 
1713 	sample.id = ptq->pt->cbr_id;
1714 	sample.stream_id = ptq->pt->cbr_id;
1715 
1716 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1717 	raw.flags = cpu_to_le32(flags);
1718 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1719 	raw.reserved3 = 0;
1720 
1721 	sample.raw_size = perf_synth__raw_size(raw);
1722 	sample.raw_data = perf_synth__raw_data(&raw);
1723 
1724 	return intel_pt_deliver_synth_event(pt, event, &sample,
1725 					    pt->pwr_events_sample_type);
1726 }
1727 
1728 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1729 {
1730 	struct intel_pt *pt = ptq->pt;
1731 	union perf_event *event = ptq->event_buf;
1732 	struct perf_sample sample = { .ip = 0, };
1733 	struct perf_synth_intel_psb raw;
1734 
1735 	if (intel_pt_skip_event(pt))
1736 		return 0;
1737 
1738 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1739 
1740 	sample.id = ptq->pt->psb_id;
1741 	sample.stream_id = ptq->pt->psb_id;
1742 	sample.flags = 0;
1743 
1744 	raw.reserved = 0;
1745 	raw.offset = ptq->state->psb_offset;
1746 
1747 	sample.raw_size = perf_synth__raw_size(raw);
1748 	sample.raw_data = perf_synth__raw_data(&raw);
1749 
1750 	return intel_pt_deliver_synth_event(pt, event, &sample,
1751 					    pt->pwr_events_sample_type);
1752 }
1753 
1754 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1755 {
1756 	struct intel_pt *pt = ptq->pt;
1757 	union perf_event *event = ptq->event_buf;
1758 	struct perf_sample sample = { .ip = 0, };
1759 	struct perf_synth_intel_mwait raw;
1760 
1761 	if (intel_pt_skip_event(pt))
1762 		return 0;
1763 
1764 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1765 
1766 	sample.id = ptq->pt->mwait_id;
1767 	sample.stream_id = ptq->pt->mwait_id;
1768 
1769 	raw.reserved = 0;
1770 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1771 
1772 	sample.raw_size = perf_synth__raw_size(raw);
1773 	sample.raw_data = perf_synth__raw_data(&raw);
1774 
1775 	return intel_pt_deliver_synth_event(pt, event, &sample,
1776 					    pt->pwr_events_sample_type);
1777 }
1778 
1779 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1780 {
1781 	struct intel_pt *pt = ptq->pt;
1782 	union perf_event *event = ptq->event_buf;
1783 	struct perf_sample sample = { .ip = 0, };
1784 	struct perf_synth_intel_pwre raw;
1785 
1786 	if (intel_pt_skip_event(pt))
1787 		return 0;
1788 
1789 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1790 
1791 	sample.id = ptq->pt->pwre_id;
1792 	sample.stream_id = ptq->pt->pwre_id;
1793 
1794 	raw.reserved = 0;
1795 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1796 
1797 	sample.raw_size = perf_synth__raw_size(raw);
1798 	sample.raw_data = perf_synth__raw_data(&raw);
1799 
1800 	return intel_pt_deliver_synth_event(pt, event, &sample,
1801 					    pt->pwr_events_sample_type);
1802 }
1803 
1804 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1805 {
1806 	struct intel_pt *pt = ptq->pt;
1807 	union perf_event *event = ptq->event_buf;
1808 	struct perf_sample sample = { .ip = 0, };
1809 	struct perf_synth_intel_exstop raw;
1810 
1811 	if (intel_pt_skip_event(pt))
1812 		return 0;
1813 
1814 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1815 
1816 	sample.id = ptq->pt->exstop_id;
1817 	sample.stream_id = ptq->pt->exstop_id;
1818 
1819 	raw.flags = 0;
1820 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1821 
1822 	sample.raw_size = perf_synth__raw_size(raw);
1823 	sample.raw_data = perf_synth__raw_data(&raw);
1824 
1825 	return intel_pt_deliver_synth_event(pt, event, &sample,
1826 					    pt->pwr_events_sample_type);
1827 }
1828 
1829 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1830 {
1831 	struct intel_pt *pt = ptq->pt;
1832 	union perf_event *event = ptq->event_buf;
1833 	struct perf_sample sample = { .ip = 0, };
1834 	struct perf_synth_intel_pwrx raw;
1835 
1836 	if (intel_pt_skip_event(pt))
1837 		return 0;
1838 
1839 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1840 
1841 	sample.id = ptq->pt->pwrx_id;
1842 	sample.stream_id = ptq->pt->pwrx_id;
1843 
1844 	raw.reserved = 0;
1845 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1846 
1847 	sample.raw_size = perf_synth__raw_size(raw);
1848 	sample.raw_data = perf_synth__raw_data(&raw);
1849 
1850 	return intel_pt_deliver_synth_event(pt, event, &sample,
1851 					    pt->pwr_events_sample_type);
1852 }
1853 
1854 /*
1855  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1856  * intel_pt_add_gp_regs().
1857  */
1858 static const int pebs_gp_regs[] = {
1859 	[PERF_REG_X86_FLAGS]	= 1,
1860 	[PERF_REG_X86_IP]	= 2,
1861 	[PERF_REG_X86_AX]	= 3,
1862 	[PERF_REG_X86_CX]	= 4,
1863 	[PERF_REG_X86_DX]	= 5,
1864 	[PERF_REG_X86_BX]	= 6,
1865 	[PERF_REG_X86_SP]	= 7,
1866 	[PERF_REG_X86_BP]	= 8,
1867 	[PERF_REG_X86_SI]	= 9,
1868 	[PERF_REG_X86_DI]	= 10,
1869 	[PERF_REG_X86_R8]	= 11,
1870 	[PERF_REG_X86_R9]	= 12,
1871 	[PERF_REG_X86_R10]	= 13,
1872 	[PERF_REG_X86_R11]	= 14,
1873 	[PERF_REG_X86_R12]	= 15,
1874 	[PERF_REG_X86_R13]	= 16,
1875 	[PERF_REG_X86_R14]	= 17,
1876 	[PERF_REG_X86_R15]	= 18,
1877 };
1878 
1879 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1880 				 const struct intel_pt_blk_items *items,
1881 				 u64 regs_mask)
1882 {
1883 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1884 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1885 	u32 bit;
1886 	int i;
1887 
1888 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1889 		/* Get the PEBS gp_regs array index */
1890 		int n = pebs_gp_regs[i] - 1;
1891 
1892 		if (n < 0)
1893 			continue;
1894 		/*
1895 		 * Add only registers that were requested (i.e. 'regs_mask') and
1896 		 * that were provided (i.e. 'mask'), and update the resulting
1897 		 * mask (i.e. 'intr_regs->mask') accordingly.
1898 		 */
1899 		if (mask & 1 << n && regs_mask & bit) {
1900 			intr_regs->mask |= bit;
1901 			*pos++ = gp_regs[n];
1902 		}
1903 	}
1904 
1905 	return pos;
1906 }
1907 
1908 #ifndef PERF_REG_X86_XMM0
1909 #define PERF_REG_X86_XMM0 32
1910 #endif
1911 
1912 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1913 			     const struct intel_pt_blk_items *items,
1914 			     u64 regs_mask)
1915 {
1916 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1917 	const u64 *xmm = items->xmm;
1918 
1919 	/*
1920 	 * If there are any XMM registers, then there should be all of them.
1921 	 * Nevertheless, follow the logic to add only registers that were
1922 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1923 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1924 	 */
1925 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1926 
1927 	for (; mask; mask >>= 1, xmm++) {
1928 		if (mask & 1)
1929 			*pos++ = *xmm;
1930 	}
1931 }
1932 
1933 #define LBR_INFO_MISPRED	(1ULL << 63)
1934 #define LBR_INFO_IN_TX		(1ULL << 62)
1935 #define LBR_INFO_ABORT		(1ULL << 61)
1936 #define LBR_INFO_CYCLES		0xffff
1937 
1938 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1939 static u64 intel_pt_lbr_flags(u64 info)
1940 {
1941 	union {
1942 		struct branch_flags flags;
1943 		u64 result;
1944 	} u;
1945 
1946 	u.result	  = 0;
1947 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1948 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1949 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1950 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1951 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1952 
1953 	return u.result;
1954 }
1955 
1956 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1957 			      const struct intel_pt_blk_items *items)
1958 {
1959 	u64 *to;
1960 	int i;
1961 
1962 	br_stack->nr = 0;
1963 
1964 	to = &br_stack->entries[0].from;
1965 
1966 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1967 		u32 mask = items->mask[i];
1968 		const u64 *from = items->val[i];
1969 
1970 		for (; mask; mask >>= 3, from += 3) {
1971 			if ((mask & 7) == 7) {
1972 				*to++ = from[0];
1973 				*to++ = from[1];
1974 				*to++ = intel_pt_lbr_flags(from[2]);
1975 				br_stack->nr += 1;
1976 			}
1977 		}
1978 	}
1979 }
1980 
1981 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1982 {
1983 	const struct intel_pt_blk_items *items = &ptq->state->items;
1984 	struct perf_sample sample = { .ip = 0, };
1985 	union perf_event *event = ptq->event_buf;
1986 	struct intel_pt *pt = ptq->pt;
1987 	struct evsel *evsel = pt->pebs_evsel;
1988 	u64 sample_type = evsel->core.attr.sample_type;
1989 	u64 id = evsel->core.id[0];
1990 	u8 cpumode;
1991 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1992 
1993 	if (intel_pt_skip_event(pt))
1994 		return 0;
1995 
1996 	intel_pt_prep_a_sample(ptq, event, &sample);
1997 
1998 	sample.id = id;
1999 	sample.stream_id = id;
2000 
2001 	if (!evsel->core.attr.freq)
2002 		sample.period = evsel->core.attr.sample_period;
2003 
2004 	/* No support for non-zero CS base */
2005 	if (items->has_ip)
2006 		sample.ip = items->ip;
2007 	else if (items->has_rip)
2008 		sample.ip = items->rip;
2009 	else
2010 		sample.ip = ptq->state->from_ip;
2011 
2012 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2013 
2014 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2015 
2016 	sample.cpumode = cpumode;
2017 
2018 	if (sample_type & PERF_SAMPLE_TIME) {
2019 		u64 timestamp = 0;
2020 
2021 		if (items->has_timestamp)
2022 			timestamp = items->timestamp;
2023 		else if (!pt->timeless_decoding)
2024 			timestamp = ptq->timestamp;
2025 		if (timestamp)
2026 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2027 	}
2028 
2029 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2030 	    pt->synth_opts.callchain) {
2031 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2032 				     pt->synth_opts.callchain_sz, sample.ip,
2033 				     pt->kernel_start);
2034 		sample.callchain = ptq->chain;
2035 	}
2036 
2037 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2038 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2039 	     items->mask[INTEL_PT_XMM_POS])) {
2040 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2041 		u64 *pos;
2042 
2043 		sample.intr_regs.abi = items->is_32_bit ?
2044 				       PERF_SAMPLE_REGS_ABI_32 :
2045 				       PERF_SAMPLE_REGS_ABI_64;
2046 		sample.intr_regs.regs = regs;
2047 
2048 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2049 
2050 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2051 	}
2052 
2053 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2054 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2055 		    items->mask[INTEL_PT_LBR_1_POS] ||
2056 		    items->mask[INTEL_PT_LBR_2_POS]) {
2057 			intel_pt_add_lbrs(ptq->last_branch, items);
2058 		} else if (pt->synth_opts.last_branch) {
2059 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2060 						ptq->last_branch,
2061 						pt->br_stack_sz);
2062 		} else {
2063 			ptq->last_branch->nr = 0;
2064 		}
2065 		sample.branch_stack = ptq->last_branch;
2066 	}
2067 
2068 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2069 		sample.addr = items->mem_access_address;
2070 
2071 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2072 		/*
2073 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2074 		 * intel_hsw_weight().
2075 		 */
2076 		if (items->has_mem_access_latency) {
2077 			u64 weight = items->mem_access_latency >> 32;
2078 
2079 			/*
2080 			 * Starts from SPR, the mem access latency field
2081 			 * contains both cache latency [47:32] and instruction
2082 			 * latency [15:0]. The cache latency is the same as the
2083 			 * mem access latency on previous platforms.
2084 			 *
2085 			 * In practice, no memory access could last than 4G
2086 			 * cycles. Use latency >> 32 to distinguish the
2087 			 * different format of the mem access latency field.
2088 			 */
2089 			if (weight > 0) {
2090 				sample.weight = weight & 0xffff;
2091 				sample.ins_lat = items->mem_access_latency & 0xffff;
2092 			} else
2093 				sample.weight = items->mem_access_latency;
2094 		}
2095 		if (!sample.weight && items->has_tsx_aux_info) {
2096 			/* Cycles last block */
2097 			sample.weight = (u32)items->tsx_aux_info;
2098 		}
2099 	}
2100 
2101 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2102 		u64 ax = items->has_rax ? items->rax : 0;
2103 		/* Refer kernel's intel_hsw_transaction() */
2104 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2105 
2106 		/* For RTM XABORTs also log the abort code from AX */
2107 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2108 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2109 		sample.transaction = txn;
2110 	}
2111 
2112 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2113 }
2114 
2115 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2116 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2117 {
2118 	union perf_event event;
2119 	char msg[MAX_AUXTRACE_ERROR_MSG];
2120 	int err;
2121 
2122 	if (pt->synth_opts.error_minus_flags) {
2123 		if (code == INTEL_PT_ERR_OVR &&
2124 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2125 			return 0;
2126 		if (code == INTEL_PT_ERR_LOST &&
2127 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2128 			return 0;
2129 	}
2130 
2131 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2132 
2133 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2134 			     code, cpu, pid, tid, ip, msg, timestamp);
2135 
2136 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2137 	if (err)
2138 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2139 		       err);
2140 
2141 	return err;
2142 }
2143 
2144 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2145 				 const struct intel_pt_state *state)
2146 {
2147 	struct intel_pt *pt = ptq->pt;
2148 	u64 tm = ptq->timestamp;
2149 
2150 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2151 
2152 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2153 				    ptq->tid, state->from_ip, tm);
2154 }
2155 
2156 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2157 {
2158 	struct auxtrace_queue *queue;
2159 	pid_t tid = ptq->next_tid;
2160 	int err;
2161 
2162 	if (tid == -1)
2163 		return 0;
2164 
2165 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2166 
2167 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2168 
2169 	queue = &pt->queues.queue_array[ptq->queue_nr];
2170 	intel_pt_set_pid_tid_cpu(pt, queue);
2171 
2172 	ptq->next_tid = -1;
2173 
2174 	return err;
2175 }
2176 
2177 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2178 {
2179 	struct intel_pt *pt = ptq->pt;
2180 
2181 	return ip == pt->switch_ip &&
2182 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2183 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2184 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2185 }
2186 
2187 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2188 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2189 
2190 static int intel_pt_sample(struct intel_pt_queue *ptq)
2191 {
2192 	const struct intel_pt_state *state = ptq->state;
2193 	struct intel_pt *pt = ptq->pt;
2194 	int err;
2195 
2196 	if (!ptq->have_sample)
2197 		return 0;
2198 
2199 	ptq->have_sample = false;
2200 
2201 	ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2202 	ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2203 
2204 	/*
2205 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2206 	 * precedes the current timestamp.
2207 	 */
2208 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2209 		err = intel_pt_synth_pebs_sample(ptq);
2210 		if (err)
2211 			return err;
2212 	}
2213 
2214 	if (pt->sample_pwr_events) {
2215 		if (state->type & INTEL_PT_PSB_EVT) {
2216 			err = intel_pt_synth_psb_sample(ptq);
2217 			if (err)
2218 				return err;
2219 		}
2220 		if (ptq->state->cbr != ptq->cbr_seen) {
2221 			err = intel_pt_synth_cbr_sample(ptq);
2222 			if (err)
2223 				return err;
2224 		}
2225 		if (state->type & INTEL_PT_PWR_EVT) {
2226 			if (state->type & INTEL_PT_MWAIT_OP) {
2227 				err = intel_pt_synth_mwait_sample(ptq);
2228 				if (err)
2229 					return err;
2230 			}
2231 			if (state->type & INTEL_PT_PWR_ENTRY) {
2232 				err = intel_pt_synth_pwre_sample(ptq);
2233 				if (err)
2234 					return err;
2235 			}
2236 			if (state->type & INTEL_PT_EX_STOP) {
2237 				err = intel_pt_synth_exstop_sample(ptq);
2238 				if (err)
2239 					return err;
2240 			}
2241 			if (state->type & INTEL_PT_PWR_EXIT) {
2242 				err = intel_pt_synth_pwrx_sample(ptq);
2243 				if (err)
2244 					return err;
2245 			}
2246 		}
2247 	}
2248 
2249 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2250 		err = intel_pt_synth_instruction_sample(ptq);
2251 		if (err)
2252 			return err;
2253 	}
2254 
2255 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2256 		err = intel_pt_synth_transaction_sample(ptq);
2257 		if (err)
2258 			return err;
2259 	}
2260 
2261 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2262 		err = intel_pt_synth_ptwrite_sample(ptq);
2263 		if (err)
2264 			return err;
2265 	}
2266 
2267 	if (!(state->type & INTEL_PT_BRANCH))
2268 		return 0;
2269 
2270 	if (pt->use_thread_stack) {
2271 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2272 				    state->from_ip, state->to_ip, ptq->insn_len,
2273 				    state->trace_nr, pt->callstack,
2274 				    pt->br_stack_sz_plus,
2275 				    pt->mispred_all);
2276 	} else {
2277 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2278 	}
2279 
2280 	if (pt->sample_branches) {
2281 		if (state->from_nr != state->to_nr &&
2282 		    state->from_ip && state->to_ip) {
2283 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2284 			u64 to_ip = st->to_ip;
2285 			u64 from_ip = st->from_ip;
2286 
2287 			/*
2288 			 * perf cannot handle having different machines for ip
2289 			 * and addr, so create 2 branches.
2290 			 */
2291 			st->to_ip = 0;
2292 			err = intel_pt_synth_branch_sample(ptq);
2293 			if (err)
2294 				return err;
2295 			st->from_ip = 0;
2296 			st->to_ip = to_ip;
2297 			err = intel_pt_synth_branch_sample(ptq);
2298 			st->from_ip = from_ip;
2299 		} else {
2300 			err = intel_pt_synth_branch_sample(ptq);
2301 		}
2302 		if (err)
2303 			return err;
2304 	}
2305 
2306 	if (!ptq->sync_switch)
2307 		return 0;
2308 
2309 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2310 		switch (ptq->switch_state) {
2311 		case INTEL_PT_SS_NOT_TRACING:
2312 		case INTEL_PT_SS_UNKNOWN:
2313 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2314 			err = intel_pt_next_tid(pt, ptq);
2315 			if (err)
2316 				return err;
2317 			ptq->switch_state = INTEL_PT_SS_TRACING;
2318 			break;
2319 		default:
2320 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2321 			return 1;
2322 		}
2323 	} else if (!state->to_ip) {
2324 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2325 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2326 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2327 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2328 		   state->to_ip == pt->ptss_ip &&
2329 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2330 		ptq->switch_state = INTEL_PT_SS_TRACING;
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2337 {
2338 	struct machine *machine = pt->machine;
2339 	struct map *map;
2340 	struct symbol *sym, *start;
2341 	u64 ip, switch_ip = 0;
2342 	const char *ptss;
2343 
2344 	if (ptss_ip)
2345 		*ptss_ip = 0;
2346 
2347 	map = machine__kernel_map(machine);
2348 	if (!map)
2349 		return 0;
2350 
2351 	if (map__load(map))
2352 		return 0;
2353 
2354 	start = dso__first_symbol(map->dso);
2355 
2356 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2357 		if (sym->binding == STB_GLOBAL &&
2358 		    !strcmp(sym->name, "__switch_to")) {
2359 			ip = map->unmap_ip(map, sym->start);
2360 			if (ip >= map->start && ip < map->end) {
2361 				switch_ip = ip;
2362 				break;
2363 			}
2364 		}
2365 	}
2366 
2367 	if (!switch_ip || !ptss_ip)
2368 		return 0;
2369 
2370 	if (pt->have_sched_switch == 1)
2371 		ptss = "perf_trace_sched_switch";
2372 	else
2373 		ptss = "__perf_event_task_sched_out";
2374 
2375 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2376 		if (!strcmp(sym->name, ptss)) {
2377 			ip = map->unmap_ip(map, sym->start);
2378 			if (ip >= map->start && ip < map->end) {
2379 				*ptss_ip = ip;
2380 				break;
2381 			}
2382 		}
2383 	}
2384 
2385 	return switch_ip;
2386 }
2387 
2388 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2389 {
2390 	unsigned int i;
2391 
2392 	pt->sync_switch = true;
2393 
2394 	for (i = 0; i < pt->queues.nr_queues; i++) {
2395 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2396 		struct intel_pt_queue *ptq = queue->priv;
2397 
2398 		if (ptq)
2399 			ptq->sync_switch = true;
2400 	}
2401 }
2402 
2403 /*
2404  * To filter against time ranges, it is only necessary to look at the next start
2405  * or end time.
2406  */
2407 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2408 {
2409 	struct intel_pt *pt = ptq->pt;
2410 
2411 	if (ptq->sel_start) {
2412 		/* Next time is an end time */
2413 		ptq->sel_start = false;
2414 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2415 		return true;
2416 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2417 		/* Next time is a start time */
2418 		ptq->sel_start = true;
2419 		ptq->sel_idx += 1;
2420 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2421 		return true;
2422 	}
2423 
2424 	/* No next time */
2425 	return false;
2426 }
2427 
2428 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2429 {
2430 	int err;
2431 
2432 	while (1) {
2433 		if (ptq->sel_start) {
2434 			if (ptq->timestamp >= ptq->sel_timestamp) {
2435 				/* After start time, so consider next time */
2436 				intel_pt_next_time(ptq);
2437 				if (!ptq->sel_timestamp) {
2438 					/* No end time */
2439 					return 0;
2440 				}
2441 				/* Check against end time */
2442 				continue;
2443 			}
2444 			/* Before start time, so fast forward */
2445 			ptq->have_sample = false;
2446 			if (ptq->sel_timestamp > *ff_timestamp) {
2447 				if (ptq->sync_switch) {
2448 					intel_pt_next_tid(ptq->pt, ptq);
2449 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2450 				}
2451 				*ff_timestamp = ptq->sel_timestamp;
2452 				err = intel_pt_fast_forward(ptq->decoder,
2453 							    ptq->sel_timestamp);
2454 				if (err)
2455 					return err;
2456 			}
2457 			return 0;
2458 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2459 			/* After end time, so consider next time */
2460 			if (!intel_pt_next_time(ptq)) {
2461 				/* No next time range, so stop decoding */
2462 				ptq->have_sample = false;
2463 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2464 				return 1;
2465 			}
2466 			/* Check against next start time */
2467 			continue;
2468 		} else {
2469 			/* Before end time */
2470 			return 0;
2471 		}
2472 	}
2473 }
2474 
2475 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2476 {
2477 	const struct intel_pt_state *state = ptq->state;
2478 	struct intel_pt *pt = ptq->pt;
2479 	u64 ff_timestamp = 0;
2480 	int err;
2481 
2482 	if (!pt->kernel_start) {
2483 		pt->kernel_start = machine__kernel_start(pt->machine);
2484 		if (pt->per_cpu_mmaps &&
2485 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2486 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2487 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2488 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2489 			if (pt->switch_ip) {
2490 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2491 					     pt->switch_ip, pt->ptss_ip);
2492 				intel_pt_enable_sync_switch(pt);
2493 			}
2494 		}
2495 	}
2496 
2497 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2498 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2499 	while (1) {
2500 		err = intel_pt_sample(ptq);
2501 		if (err)
2502 			return err;
2503 
2504 		state = intel_pt_decode(ptq->decoder);
2505 		if (state->err) {
2506 			if (state->err == INTEL_PT_ERR_NODATA)
2507 				return 1;
2508 			if (ptq->sync_switch &&
2509 			    state->from_ip >= pt->kernel_start) {
2510 				ptq->sync_switch = false;
2511 				intel_pt_next_tid(pt, ptq);
2512 			}
2513 			if (pt->synth_opts.errors) {
2514 				err = intel_ptq_synth_error(ptq, state);
2515 				if (err)
2516 					return err;
2517 			}
2518 			continue;
2519 		}
2520 
2521 		ptq->state = state;
2522 		ptq->have_sample = true;
2523 		intel_pt_sample_flags(ptq);
2524 
2525 		/* Use estimated TSC upon return to user space */
2526 		if (pt->est_tsc &&
2527 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2528 		    state->to_ip && state->to_ip < pt->kernel_start) {
2529 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2530 				     state->timestamp, state->est_timestamp);
2531 			ptq->timestamp = state->est_timestamp;
2532 		/* Use estimated TSC in unknown switch state */
2533 		} else if (ptq->sync_switch &&
2534 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2535 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2536 			   ptq->next_tid == -1) {
2537 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2538 				     state->timestamp, state->est_timestamp);
2539 			ptq->timestamp = state->est_timestamp;
2540 		} else if (state->timestamp > ptq->timestamp) {
2541 			ptq->timestamp = state->timestamp;
2542 		}
2543 
2544 		if (ptq->sel_timestamp) {
2545 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2546 			if (err)
2547 				return err;
2548 		}
2549 
2550 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2551 			*timestamp = ptq->timestamp;
2552 			return 0;
2553 		}
2554 	}
2555 	return 0;
2556 }
2557 
2558 static inline int intel_pt_update_queues(struct intel_pt *pt)
2559 {
2560 	if (pt->queues.new_data) {
2561 		pt->queues.new_data = false;
2562 		return intel_pt_setup_queues(pt);
2563 	}
2564 	return 0;
2565 }
2566 
2567 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2568 {
2569 	unsigned int queue_nr;
2570 	u64 ts;
2571 	int ret;
2572 
2573 	while (1) {
2574 		struct auxtrace_queue *queue;
2575 		struct intel_pt_queue *ptq;
2576 
2577 		if (!pt->heap.heap_cnt)
2578 			return 0;
2579 
2580 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2581 			return 0;
2582 
2583 		queue_nr = pt->heap.heap_array[0].queue_nr;
2584 		queue = &pt->queues.queue_array[queue_nr];
2585 		ptq = queue->priv;
2586 
2587 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2588 			     queue_nr, pt->heap.heap_array[0].ordinal,
2589 			     timestamp);
2590 
2591 		auxtrace_heap__pop(&pt->heap);
2592 
2593 		if (pt->heap.heap_cnt) {
2594 			ts = pt->heap.heap_array[0].ordinal + 1;
2595 			if (ts > timestamp)
2596 				ts = timestamp;
2597 		} else {
2598 			ts = timestamp;
2599 		}
2600 
2601 		intel_pt_set_pid_tid_cpu(pt, queue);
2602 
2603 		ret = intel_pt_run_decoder(ptq, &ts);
2604 
2605 		if (ret < 0) {
2606 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2607 			return ret;
2608 		}
2609 
2610 		if (!ret) {
2611 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2612 			if (ret < 0)
2613 				return ret;
2614 		} else {
2615 			ptq->on_heap = false;
2616 		}
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2623 					    u64 time_)
2624 {
2625 	struct auxtrace_queues *queues = &pt->queues;
2626 	unsigned int i;
2627 	u64 ts = 0;
2628 
2629 	for (i = 0; i < queues->nr_queues; i++) {
2630 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631 		struct intel_pt_queue *ptq = queue->priv;
2632 
2633 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2634 			ptq->time = time_;
2635 			intel_pt_set_pid_tid_cpu(pt, queue);
2636 			intel_pt_run_decoder(ptq, &ts);
2637 		}
2638 	}
2639 	return 0;
2640 }
2641 
2642 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2643 					    struct auxtrace_queue *queue,
2644 					    struct perf_sample *sample)
2645 {
2646 	struct machine *m = ptq->pt->machine;
2647 
2648 	ptq->pid = sample->pid;
2649 	ptq->tid = sample->tid;
2650 	ptq->cpu = queue->cpu;
2651 
2652 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2653 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2654 
2655 	thread__zput(ptq->thread);
2656 
2657 	if (ptq->tid == -1)
2658 		return;
2659 
2660 	if (ptq->pid == -1) {
2661 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2662 		if (ptq->thread)
2663 			ptq->pid = ptq->thread->pid_;
2664 		return;
2665 	}
2666 
2667 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2668 }
2669 
2670 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2671 					    struct perf_sample *sample)
2672 {
2673 	struct auxtrace_queue *queue;
2674 	struct intel_pt_queue *ptq;
2675 	u64 ts = 0;
2676 
2677 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2678 	if (!queue)
2679 		return -EINVAL;
2680 
2681 	ptq = queue->priv;
2682 	if (!ptq)
2683 		return 0;
2684 
2685 	ptq->stop = false;
2686 	ptq->time = sample->time;
2687 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2688 	intel_pt_run_decoder(ptq, &ts);
2689 	return 0;
2690 }
2691 
2692 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2693 {
2694 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2695 				    sample->pid, sample->tid, 0, sample->time);
2696 }
2697 
2698 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2699 {
2700 	unsigned i, j;
2701 
2702 	if (cpu < 0 || !pt->queues.nr_queues)
2703 		return NULL;
2704 
2705 	if ((unsigned)cpu >= pt->queues.nr_queues)
2706 		i = pt->queues.nr_queues - 1;
2707 	else
2708 		i = cpu;
2709 
2710 	if (pt->queues.queue_array[i].cpu == cpu)
2711 		return pt->queues.queue_array[i].priv;
2712 
2713 	for (j = 0; i > 0; j++) {
2714 		if (pt->queues.queue_array[--i].cpu == cpu)
2715 			return pt->queues.queue_array[i].priv;
2716 	}
2717 
2718 	for (; j < pt->queues.nr_queues; j++) {
2719 		if (pt->queues.queue_array[j].cpu == cpu)
2720 			return pt->queues.queue_array[j].priv;
2721 	}
2722 
2723 	return NULL;
2724 }
2725 
2726 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2727 				u64 timestamp)
2728 {
2729 	struct intel_pt_queue *ptq;
2730 	int err;
2731 
2732 	if (!pt->sync_switch)
2733 		return 1;
2734 
2735 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2736 	if (!ptq || !ptq->sync_switch)
2737 		return 1;
2738 
2739 	switch (ptq->switch_state) {
2740 	case INTEL_PT_SS_NOT_TRACING:
2741 		break;
2742 	case INTEL_PT_SS_UNKNOWN:
2743 	case INTEL_PT_SS_TRACING:
2744 		ptq->next_tid = tid;
2745 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2746 		return 0;
2747 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2748 		if (!ptq->on_heap) {
2749 			ptq->timestamp = perf_time_to_tsc(timestamp,
2750 							  &pt->tc);
2751 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2752 						 ptq->timestamp);
2753 			if (err)
2754 				return err;
2755 			ptq->on_heap = true;
2756 		}
2757 		ptq->switch_state = INTEL_PT_SS_TRACING;
2758 		break;
2759 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2760 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2761 		break;
2762 	default:
2763 		break;
2764 	}
2765 
2766 	ptq->next_tid = -1;
2767 
2768 	return 1;
2769 }
2770 
2771 static int intel_pt_process_switch(struct intel_pt *pt,
2772 				   struct perf_sample *sample)
2773 {
2774 	pid_t tid;
2775 	int cpu, ret;
2776 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2777 
2778 	if (evsel != pt->switch_evsel)
2779 		return 0;
2780 
2781 	tid = evsel__intval(evsel, sample, "next_pid");
2782 	cpu = sample->cpu;
2783 
2784 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2785 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2786 		     &pt->tc));
2787 
2788 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2789 	if (ret <= 0)
2790 		return ret;
2791 
2792 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2793 }
2794 
2795 static int intel_pt_context_switch_in(struct intel_pt *pt,
2796 				      struct perf_sample *sample)
2797 {
2798 	pid_t pid = sample->pid;
2799 	pid_t tid = sample->tid;
2800 	int cpu = sample->cpu;
2801 
2802 	if (pt->sync_switch) {
2803 		struct intel_pt_queue *ptq;
2804 
2805 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2806 		if (ptq && ptq->sync_switch) {
2807 			ptq->next_tid = -1;
2808 			switch (ptq->switch_state) {
2809 			case INTEL_PT_SS_NOT_TRACING:
2810 			case INTEL_PT_SS_UNKNOWN:
2811 			case INTEL_PT_SS_TRACING:
2812 				break;
2813 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2814 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2815 				ptq->switch_state = INTEL_PT_SS_TRACING;
2816 				break;
2817 			default:
2818 				break;
2819 			}
2820 		}
2821 	}
2822 
2823 	/*
2824 	 * If the current tid has not been updated yet, ensure it is now that
2825 	 * a "switch in" event has occurred.
2826 	 */
2827 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2828 		return 0;
2829 
2830 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2831 }
2832 
2833 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2834 				   struct perf_sample *sample)
2835 {
2836 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2837 	pid_t pid, tid;
2838 	int cpu, ret;
2839 
2840 	cpu = sample->cpu;
2841 
2842 	if (pt->have_sched_switch == 3) {
2843 		if (!out)
2844 			return intel_pt_context_switch_in(pt, sample);
2845 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2846 			pr_err("Expecting CPU-wide context switch event\n");
2847 			return -EINVAL;
2848 		}
2849 		pid = event->context_switch.next_prev_pid;
2850 		tid = event->context_switch.next_prev_tid;
2851 	} else {
2852 		if (out)
2853 			return 0;
2854 		pid = sample->pid;
2855 		tid = sample->tid;
2856 	}
2857 
2858 	if (tid == -1)
2859 		intel_pt_log("context_switch event has no tid\n");
2860 
2861 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2862 	if (ret <= 0)
2863 		return ret;
2864 
2865 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2866 }
2867 
2868 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2869 					 union perf_event *event,
2870 					 struct perf_sample *sample)
2871 {
2872 	if (!pt->per_cpu_mmaps)
2873 		return 0;
2874 
2875 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2876 		     sample->cpu, event->itrace_start.pid,
2877 		     event->itrace_start.tid, sample->time,
2878 		     perf_time_to_tsc(sample->time, &pt->tc));
2879 
2880 	return machine__set_current_tid(pt->machine, sample->cpu,
2881 					event->itrace_start.pid,
2882 					event->itrace_start.tid);
2883 }
2884 
2885 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2886 			     struct addr_location *al)
2887 {
2888 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2889 		if (!thread__find_map(thread, cpumode, addr, al))
2890 			return -1;
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 /* Invalidate all instruction cache entries that overlap the text poke */
2897 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2898 {
2899 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2900 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2901 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2902 	int cnt = 4096 + event->text_poke.new_len;
2903 	struct thread *thread = pt->unknown_thread;
2904 	struct addr_location al = { .map = NULL };
2905 	struct machine *machine = pt->machine;
2906 	struct intel_pt_cache_entry *e;
2907 	u64 offset;
2908 
2909 	if (!event->text_poke.new_len)
2910 		return 0;
2911 
2912 	for (; cnt; cnt--, addr--) {
2913 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2914 			if (addr < event->text_poke.addr)
2915 				return 0;
2916 			continue;
2917 		}
2918 
2919 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2920 			continue;
2921 
2922 		offset = al.map->map_ip(al.map, addr);
2923 
2924 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2925 		if (!e)
2926 			continue;
2927 
2928 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2929 			/*
2930 			 * No overlap. Working backwards there cannot be another
2931 			 * basic block that overlaps the text poke if there is a
2932 			 * branch instruction before the text poke address.
2933 			 */
2934 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2935 				return 0;
2936 		} else {
2937 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2938 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2939 				     al.map->dso->long_name, addr);
2940 		}
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 static int intel_pt_process_event(struct perf_session *session,
2947 				  union perf_event *event,
2948 				  struct perf_sample *sample,
2949 				  struct perf_tool *tool)
2950 {
2951 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2952 					   auxtrace);
2953 	u64 timestamp;
2954 	int err = 0;
2955 
2956 	if (dump_trace)
2957 		return 0;
2958 
2959 	if (!tool->ordered_events) {
2960 		pr_err("Intel Processor Trace requires ordered events\n");
2961 		return -EINVAL;
2962 	}
2963 
2964 	if (sample->time && sample->time != (u64)-1)
2965 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2966 	else
2967 		timestamp = 0;
2968 
2969 	if (timestamp || pt->timeless_decoding) {
2970 		err = intel_pt_update_queues(pt);
2971 		if (err)
2972 			return err;
2973 	}
2974 
2975 	if (pt->timeless_decoding) {
2976 		if (pt->sampling_mode) {
2977 			if (sample->aux_sample.size)
2978 				err = intel_pt_process_timeless_sample(pt,
2979 								       sample);
2980 		} else if (event->header.type == PERF_RECORD_EXIT) {
2981 			err = intel_pt_process_timeless_queues(pt,
2982 							       event->fork.tid,
2983 							       sample->time);
2984 		}
2985 	} else if (timestamp) {
2986 		if (!pt->first_timestamp)
2987 			intel_pt_first_timestamp(pt, timestamp);
2988 		err = intel_pt_process_queues(pt, timestamp);
2989 	}
2990 	if (err)
2991 		return err;
2992 
2993 	if (event->header.type == PERF_RECORD_SAMPLE) {
2994 		if (pt->synth_opts.add_callchain && !sample->callchain)
2995 			intel_pt_add_callchain(pt, sample);
2996 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2997 			intel_pt_add_br_stack(pt, sample);
2998 	}
2999 
3000 	if (event->header.type == PERF_RECORD_AUX &&
3001 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3002 	    pt->synth_opts.errors) {
3003 		err = intel_pt_lost(pt, sample);
3004 		if (err)
3005 			return err;
3006 	}
3007 
3008 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3009 		err = intel_pt_process_switch(pt, sample);
3010 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3011 		err = intel_pt_process_itrace_start(pt, event, sample);
3012 	else if (event->header.type == PERF_RECORD_SWITCH ||
3013 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3014 		err = intel_pt_context_switch(pt, event, sample);
3015 
3016 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3017 		err = intel_pt_text_poke(pt, event);
3018 
3019 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3020 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3021 			     event->header.type, sample->cpu, sample->time, timestamp);
3022 		intel_pt_log_event(event);
3023 	}
3024 
3025 	return err;
3026 }
3027 
3028 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3029 {
3030 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3031 					   auxtrace);
3032 	int ret;
3033 
3034 	if (dump_trace)
3035 		return 0;
3036 
3037 	if (!tool->ordered_events)
3038 		return -EINVAL;
3039 
3040 	ret = intel_pt_update_queues(pt);
3041 	if (ret < 0)
3042 		return ret;
3043 
3044 	if (pt->timeless_decoding)
3045 		return intel_pt_process_timeless_queues(pt, -1,
3046 							MAX_TIMESTAMP - 1);
3047 
3048 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3049 }
3050 
3051 static void intel_pt_free_events(struct perf_session *session)
3052 {
3053 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3054 					   auxtrace);
3055 	struct auxtrace_queues *queues = &pt->queues;
3056 	unsigned int i;
3057 
3058 	for (i = 0; i < queues->nr_queues; i++) {
3059 		intel_pt_free_queue(queues->queue_array[i].priv);
3060 		queues->queue_array[i].priv = NULL;
3061 	}
3062 	intel_pt_log_disable();
3063 	auxtrace_queues__free(queues);
3064 }
3065 
3066 static void intel_pt_free(struct perf_session *session)
3067 {
3068 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3069 					   auxtrace);
3070 
3071 	auxtrace_heap__free(&pt->heap);
3072 	intel_pt_free_events(session);
3073 	session->auxtrace = NULL;
3074 	intel_pt_free_vmcs_info(pt);
3075 	thread__put(pt->unknown_thread);
3076 	addr_filters__exit(&pt->filts);
3077 	zfree(&pt->chain);
3078 	zfree(&pt->filter);
3079 	zfree(&pt->time_ranges);
3080 	free(pt);
3081 }
3082 
3083 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3084 				       struct evsel *evsel)
3085 {
3086 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3087 					   auxtrace);
3088 
3089 	return evsel->core.attr.type == pt->pmu_type;
3090 }
3091 
3092 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3093 					   union perf_event *event,
3094 					   struct perf_tool *tool __maybe_unused)
3095 {
3096 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3097 					   auxtrace);
3098 
3099 	if (!pt->data_queued) {
3100 		struct auxtrace_buffer *buffer;
3101 		off_t data_offset;
3102 		int fd = perf_data__fd(session->data);
3103 		int err;
3104 
3105 		if (perf_data__is_pipe(session->data)) {
3106 			data_offset = 0;
3107 		} else {
3108 			data_offset = lseek(fd, 0, SEEK_CUR);
3109 			if (data_offset == -1)
3110 				return -errno;
3111 		}
3112 
3113 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3114 						 data_offset, &buffer);
3115 		if (err)
3116 			return err;
3117 
3118 		/* Dump here now we have copied a piped trace out of the pipe */
3119 		if (dump_trace) {
3120 			if (auxtrace_buffer__get_data(buffer, fd)) {
3121 				intel_pt_dump_event(pt, buffer->data,
3122 						    buffer->size);
3123 				auxtrace_buffer__put_data(buffer);
3124 			}
3125 		}
3126 	}
3127 
3128 	return 0;
3129 }
3130 
3131 static int intel_pt_queue_data(struct perf_session *session,
3132 			       struct perf_sample *sample,
3133 			       union perf_event *event, u64 data_offset)
3134 {
3135 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3136 					   auxtrace);
3137 	u64 timestamp;
3138 
3139 	if (event) {
3140 		return auxtrace_queues__add_event(&pt->queues, session, event,
3141 						  data_offset, NULL);
3142 	}
3143 
3144 	if (sample->time && sample->time != (u64)-1)
3145 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3146 	else
3147 		timestamp = 0;
3148 
3149 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3150 					   data_offset, timestamp);
3151 }
3152 
3153 struct intel_pt_synth {
3154 	struct perf_tool dummy_tool;
3155 	struct perf_session *session;
3156 };
3157 
3158 static int intel_pt_event_synth(struct perf_tool *tool,
3159 				union perf_event *event,
3160 				struct perf_sample *sample __maybe_unused,
3161 				struct machine *machine __maybe_unused)
3162 {
3163 	struct intel_pt_synth *intel_pt_synth =
3164 			container_of(tool, struct intel_pt_synth, dummy_tool);
3165 
3166 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3167 						 NULL);
3168 }
3169 
3170 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3171 				struct perf_event_attr *attr, u64 id)
3172 {
3173 	struct intel_pt_synth intel_pt_synth;
3174 	int err;
3175 
3176 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3177 		 name, id, (u64)attr->sample_type);
3178 
3179 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3180 	intel_pt_synth.session = session;
3181 
3182 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3183 					  &id, intel_pt_event_synth);
3184 	if (err)
3185 		pr_err("%s: failed to synthesize '%s' event type\n",
3186 		       __func__, name);
3187 
3188 	return err;
3189 }
3190 
3191 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3192 				    const char *name)
3193 {
3194 	struct evsel *evsel;
3195 
3196 	evlist__for_each_entry(evlist, evsel) {
3197 		if (evsel->core.id && evsel->core.id[0] == id) {
3198 			if (evsel->name)
3199 				zfree(&evsel->name);
3200 			evsel->name = strdup(name);
3201 			break;
3202 		}
3203 	}
3204 }
3205 
3206 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3207 					 struct evlist *evlist)
3208 {
3209 	struct evsel *evsel;
3210 
3211 	evlist__for_each_entry(evlist, evsel) {
3212 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3213 			return evsel;
3214 	}
3215 
3216 	return NULL;
3217 }
3218 
3219 static int intel_pt_synth_events(struct intel_pt *pt,
3220 				 struct perf_session *session)
3221 {
3222 	struct evlist *evlist = session->evlist;
3223 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3224 	struct perf_event_attr attr;
3225 	u64 id;
3226 	int err;
3227 
3228 	if (!evsel) {
3229 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3230 		return 0;
3231 	}
3232 
3233 	memset(&attr, 0, sizeof(struct perf_event_attr));
3234 	attr.size = sizeof(struct perf_event_attr);
3235 	attr.type = PERF_TYPE_HARDWARE;
3236 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3237 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3238 			    PERF_SAMPLE_PERIOD;
3239 	if (pt->timeless_decoding)
3240 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3241 	else
3242 		attr.sample_type |= PERF_SAMPLE_TIME;
3243 	if (!pt->per_cpu_mmaps)
3244 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3245 	attr.exclude_user = evsel->core.attr.exclude_user;
3246 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3247 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3248 	attr.exclude_host = evsel->core.attr.exclude_host;
3249 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3250 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3251 	attr.read_format = evsel->core.attr.read_format;
3252 
3253 	id = evsel->core.id[0] + 1000000000;
3254 	if (!id)
3255 		id = 1;
3256 
3257 	if (pt->synth_opts.branches) {
3258 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3259 		attr.sample_period = 1;
3260 		attr.sample_type |= PERF_SAMPLE_ADDR;
3261 		err = intel_pt_synth_event(session, "branches", &attr, id);
3262 		if (err)
3263 			return err;
3264 		pt->sample_branches = true;
3265 		pt->branches_sample_type = attr.sample_type;
3266 		pt->branches_id = id;
3267 		id += 1;
3268 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3269 	}
3270 
3271 	if (pt->synth_opts.callchain)
3272 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3273 	if (pt->synth_opts.last_branch) {
3274 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3275 		/*
3276 		 * We don't use the hardware index, but the sample generation
3277 		 * code uses the new format branch_stack with this field,
3278 		 * so the event attributes must indicate that it's present.
3279 		 */
3280 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3281 	}
3282 
3283 	if (pt->synth_opts.instructions) {
3284 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3285 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3286 			attr.sample_period =
3287 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3288 		else
3289 			attr.sample_period = pt->synth_opts.period;
3290 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3291 		if (err)
3292 			return err;
3293 		pt->sample_instructions = true;
3294 		pt->instructions_sample_type = attr.sample_type;
3295 		pt->instructions_id = id;
3296 		id += 1;
3297 	}
3298 
3299 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3300 	attr.sample_period = 1;
3301 
3302 	if (pt->synth_opts.transactions) {
3303 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3304 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3305 		if (err)
3306 			return err;
3307 		pt->sample_transactions = true;
3308 		pt->transactions_sample_type = attr.sample_type;
3309 		pt->transactions_id = id;
3310 		intel_pt_set_event_name(evlist, id, "transactions");
3311 		id += 1;
3312 	}
3313 
3314 	attr.type = PERF_TYPE_SYNTH;
3315 	attr.sample_type |= PERF_SAMPLE_RAW;
3316 
3317 	if (pt->synth_opts.ptwrites) {
3318 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3319 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3320 		if (err)
3321 			return err;
3322 		pt->sample_ptwrites = true;
3323 		pt->ptwrites_sample_type = attr.sample_type;
3324 		pt->ptwrites_id = id;
3325 		intel_pt_set_event_name(evlist, id, "ptwrite");
3326 		id += 1;
3327 	}
3328 
3329 	if (pt->synth_opts.pwr_events) {
3330 		pt->sample_pwr_events = true;
3331 		pt->pwr_events_sample_type = attr.sample_type;
3332 
3333 		attr.config = PERF_SYNTH_INTEL_CBR;
3334 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3335 		if (err)
3336 			return err;
3337 		pt->cbr_id = id;
3338 		intel_pt_set_event_name(evlist, id, "cbr");
3339 		id += 1;
3340 
3341 		attr.config = PERF_SYNTH_INTEL_PSB;
3342 		err = intel_pt_synth_event(session, "psb", &attr, id);
3343 		if (err)
3344 			return err;
3345 		pt->psb_id = id;
3346 		intel_pt_set_event_name(evlist, id, "psb");
3347 		id += 1;
3348 	}
3349 
3350 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3351 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3352 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3353 		if (err)
3354 			return err;
3355 		pt->mwait_id = id;
3356 		intel_pt_set_event_name(evlist, id, "mwait");
3357 		id += 1;
3358 
3359 		attr.config = PERF_SYNTH_INTEL_PWRE;
3360 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3361 		if (err)
3362 			return err;
3363 		pt->pwre_id = id;
3364 		intel_pt_set_event_name(evlist, id, "pwre");
3365 		id += 1;
3366 
3367 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3368 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3369 		if (err)
3370 			return err;
3371 		pt->exstop_id = id;
3372 		intel_pt_set_event_name(evlist, id, "exstop");
3373 		id += 1;
3374 
3375 		attr.config = PERF_SYNTH_INTEL_PWRX;
3376 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3377 		if (err)
3378 			return err;
3379 		pt->pwrx_id = id;
3380 		intel_pt_set_event_name(evlist, id, "pwrx");
3381 		id += 1;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3388 {
3389 	struct evsel *evsel;
3390 
3391 	if (!pt->synth_opts.other_events)
3392 		return;
3393 
3394 	evlist__for_each_entry(pt->session->evlist, evsel) {
3395 		if (evsel->core.attr.aux_output && evsel->core.id) {
3396 			pt->sample_pebs = true;
3397 			pt->pebs_evsel = evsel;
3398 			return;
3399 		}
3400 	}
3401 }
3402 
3403 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3404 {
3405 	struct evsel *evsel;
3406 
3407 	evlist__for_each_entry_reverse(evlist, evsel) {
3408 		const char *name = evsel__name(evsel);
3409 
3410 		if (!strcmp(name, "sched:sched_switch"))
3411 			return evsel;
3412 	}
3413 
3414 	return NULL;
3415 }
3416 
3417 static bool intel_pt_find_switch(struct evlist *evlist)
3418 {
3419 	struct evsel *evsel;
3420 
3421 	evlist__for_each_entry(evlist, evsel) {
3422 		if (evsel->core.attr.context_switch)
3423 			return true;
3424 	}
3425 
3426 	return false;
3427 }
3428 
3429 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3430 {
3431 	struct intel_pt *pt = data;
3432 
3433 	if (!strcmp(var, "intel-pt.mispred-all"))
3434 		pt->mispred_all = perf_config_bool(var, value);
3435 
3436 	if (!strcmp(var, "intel-pt.max-loops"))
3437 		perf_config_int(&pt->max_loops, var, value);
3438 
3439 	return 0;
3440 }
3441 
3442 /* Find least TSC which converts to ns or later */
3443 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3444 {
3445 	u64 tsc, tm;
3446 
3447 	tsc = perf_time_to_tsc(ns, &pt->tc);
3448 
3449 	while (1) {
3450 		tm = tsc_to_perf_time(tsc, &pt->tc);
3451 		if (tm < ns)
3452 			break;
3453 		tsc -= 1;
3454 	}
3455 
3456 	while (tm < ns)
3457 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3458 
3459 	return tsc;
3460 }
3461 
3462 /* Find greatest TSC which converts to ns or earlier */
3463 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3464 {
3465 	u64 tsc, tm;
3466 
3467 	tsc = perf_time_to_tsc(ns, &pt->tc);
3468 
3469 	while (1) {
3470 		tm = tsc_to_perf_time(tsc, &pt->tc);
3471 		if (tm > ns)
3472 			break;
3473 		tsc += 1;
3474 	}
3475 
3476 	while (tm > ns)
3477 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3478 
3479 	return tsc;
3480 }
3481 
3482 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3483 				      struct itrace_synth_opts *opts)
3484 {
3485 	struct perf_time_interval *p = opts->ptime_range;
3486 	int n = opts->range_num;
3487 	int i;
3488 
3489 	if (!n || !p || pt->timeless_decoding)
3490 		return 0;
3491 
3492 	pt->time_ranges = calloc(n, sizeof(struct range));
3493 	if (!pt->time_ranges)
3494 		return -ENOMEM;
3495 
3496 	pt->range_cnt = n;
3497 
3498 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3499 
3500 	for (i = 0; i < n; i++) {
3501 		struct range *r = &pt->time_ranges[i];
3502 		u64 ts = p[i].start;
3503 		u64 te = p[i].end;
3504 
3505 		/*
3506 		 * Take care to ensure the TSC range matches the perf-time range
3507 		 * when converted back to perf-time.
3508 		 */
3509 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3510 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3511 
3512 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3513 			     i, ts, te);
3514 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3515 			     i, r->start, r->end);
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3522 {
3523 	struct intel_pt_vmcs_info *vmcs_info;
3524 	u64 tsc_offset, vmcs;
3525 	char *p = *args;
3526 
3527 	errno = 0;
3528 
3529 	p = skip_spaces(p);
3530 	if (!*p)
3531 		return 1;
3532 
3533 	tsc_offset = strtoull(p, &p, 0);
3534 	if (errno)
3535 		return -errno;
3536 	p = skip_spaces(p);
3537 	if (*p != ':') {
3538 		pt->dflt_tsc_offset = tsc_offset;
3539 		*args = p;
3540 		return 0;
3541 	}
3542 	while (1) {
3543 		vmcs = strtoull(p, &p, 0);
3544 		if (errno)
3545 			return -errno;
3546 		if (!vmcs)
3547 			return -EINVAL;
3548 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3549 		if (!vmcs_info)
3550 			return -ENOMEM;
3551 		p = skip_spaces(p);
3552 		if (*p != ',')
3553 			break;
3554 		p += 1;
3555 	}
3556 	*args = p;
3557 	return 0;
3558 }
3559 
3560 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3561 {
3562 	char *args = pt->synth_opts.vm_tm_corr_args;
3563 	int ret;
3564 
3565 	if (!args)
3566 		return 0;
3567 
3568 	do {
3569 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3570 	} while (!ret);
3571 
3572 	if (ret < 0) {
3573 		pr_err("Failed to parse VM Time Correlation options\n");
3574 		return ret;
3575 	}
3576 
3577 	return 0;
3578 }
3579 
3580 static const char * const intel_pt_info_fmts[] = {
3581 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3582 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3583 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3584 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3585 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3586 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3587 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3588 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3589 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3590 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3591 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3592 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3593 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3594 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3595 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3596 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3597 };
3598 
3599 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3600 {
3601 	int i;
3602 
3603 	if (!dump_trace)
3604 		return;
3605 
3606 	for (i = start; i <= finish; i++)
3607 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3608 }
3609 
3610 static void intel_pt_print_info_str(const char *name, const char *str)
3611 {
3612 	if (!dump_trace)
3613 		return;
3614 
3615 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3616 }
3617 
3618 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3619 {
3620 	return auxtrace_info->header.size >=
3621 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3622 }
3623 
3624 int intel_pt_process_auxtrace_info(union perf_event *event,
3625 				   struct perf_session *session)
3626 {
3627 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3628 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3629 	struct intel_pt *pt;
3630 	void *info_end;
3631 	__u64 *info;
3632 	int err;
3633 
3634 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3635 					min_sz)
3636 		return -EINVAL;
3637 
3638 	pt = zalloc(sizeof(struct intel_pt));
3639 	if (!pt)
3640 		return -ENOMEM;
3641 
3642 	pt->vmcs_info = RB_ROOT;
3643 
3644 	addr_filters__init(&pt->filts);
3645 
3646 	err = perf_config(intel_pt_perf_config, pt);
3647 	if (err)
3648 		goto err_free;
3649 
3650 	err = auxtrace_queues__init(&pt->queues);
3651 	if (err)
3652 		goto err_free;
3653 
3654 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3655 
3656 	if (session->itrace_synth_opts->set) {
3657 		pt->synth_opts = *session->itrace_synth_opts;
3658 	} else {
3659 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3660 
3661 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3662 		if (!opts->default_no_sample && !opts->inject) {
3663 			pt->synth_opts.branches = false;
3664 			pt->synth_opts.callchain = true;
3665 			pt->synth_opts.add_callchain = true;
3666 		}
3667 		pt->synth_opts.thread_stack = opts->thread_stack;
3668 	}
3669 
3670 	pt->session = session;
3671 	pt->machine = &session->machines.host; /* No kvm support */
3672 	pt->auxtrace_type = auxtrace_info->type;
3673 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3674 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3675 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3676 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3677 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3678 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3679 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3680 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3681 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3682 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3683 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3684 			    INTEL_PT_PER_CPU_MMAPS);
3685 
3686 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3687 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3688 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3689 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3690 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3691 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3692 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3693 				    INTEL_PT_CYC_BIT);
3694 	}
3695 
3696 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3697 		pt->max_non_turbo_ratio =
3698 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3699 		intel_pt_print_info(&auxtrace_info->priv[0],
3700 				    INTEL_PT_MAX_NONTURBO_RATIO,
3701 				    INTEL_PT_MAX_NONTURBO_RATIO);
3702 	}
3703 
3704 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3705 	info_end = (void *)info + auxtrace_info->header.size;
3706 
3707 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3708 		size_t len;
3709 
3710 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3711 		intel_pt_print_info(&auxtrace_info->priv[0],
3712 				    INTEL_PT_FILTER_STR_LEN,
3713 				    INTEL_PT_FILTER_STR_LEN);
3714 		if (len) {
3715 			const char *filter = (const char *)info;
3716 
3717 			len = roundup(len + 1, 8);
3718 			info += len >> 3;
3719 			if ((void *)info > info_end) {
3720 				pr_err("%s: bad filter string length\n", __func__);
3721 				err = -EINVAL;
3722 				goto err_free_queues;
3723 			}
3724 			pt->filter = memdup(filter, len);
3725 			if (!pt->filter) {
3726 				err = -ENOMEM;
3727 				goto err_free_queues;
3728 			}
3729 			if (session->header.needs_swap)
3730 				mem_bswap_64(pt->filter, len);
3731 			if (pt->filter[len - 1]) {
3732 				pr_err("%s: filter string not null terminated\n", __func__);
3733 				err = -EINVAL;
3734 				goto err_free_queues;
3735 			}
3736 			err = addr_filters__parse_bare_filter(&pt->filts,
3737 							      filter);
3738 			if (err)
3739 				goto err_free_queues;
3740 		}
3741 		intel_pt_print_info_str("Filter string", pt->filter);
3742 	}
3743 
3744 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3745 	if (pt->timeless_decoding && !pt->tc.time_mult)
3746 		pt->tc.time_mult = 1;
3747 	pt->have_tsc = intel_pt_have_tsc(pt);
3748 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3749 	pt->est_tsc = !pt->timeless_decoding;
3750 
3751 	if (pt->synth_opts.vm_time_correlation) {
3752 		if (pt->timeless_decoding) {
3753 			pr_err("Intel PT has no time information for VM Time Correlation\n");
3754 			err = -EINVAL;
3755 			goto err_free_queues;
3756 		}
3757 		if (session->itrace_synth_opts->ptime_range) {
3758 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
3759 			err = -EINVAL;
3760 			goto err_free_queues;
3761 		}
3762 		/* Currently TSC Offset is calculated using MTC packets */
3763 		if (!intel_pt_have_mtc(pt)) {
3764 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
3765 			err = -EINVAL;
3766 			goto err_free_queues;
3767 		}
3768 		err = intel_pt_parse_vm_tm_corr_args(pt);
3769 		if (err)
3770 			goto err_free_queues;
3771 	}
3772 
3773 	pt->unknown_thread = thread__new(999999999, 999999999);
3774 	if (!pt->unknown_thread) {
3775 		err = -ENOMEM;
3776 		goto err_free_queues;
3777 	}
3778 
3779 	/*
3780 	 * Since this thread will not be kept in any rbtree not in a
3781 	 * list, initialize its list node so that at thread__put() the
3782 	 * current thread lifetime assumption is kept and we don't segfault
3783 	 * at list_del_init().
3784 	 */
3785 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3786 
3787 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3788 	if (err)
3789 		goto err_delete_thread;
3790 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3791 		err = -ENOMEM;
3792 		goto err_delete_thread;
3793 	}
3794 
3795 	pt->auxtrace.process_event = intel_pt_process_event;
3796 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3797 	pt->auxtrace.queue_data = intel_pt_queue_data;
3798 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3799 	pt->auxtrace.flush_events = intel_pt_flush;
3800 	pt->auxtrace.free_events = intel_pt_free_events;
3801 	pt->auxtrace.free = intel_pt_free;
3802 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3803 	session->auxtrace = &pt->auxtrace;
3804 
3805 	if (dump_trace)
3806 		return 0;
3807 
3808 	if (pt->have_sched_switch == 1) {
3809 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3810 		if (!pt->switch_evsel) {
3811 			pr_err("%s: missing sched_switch event\n", __func__);
3812 			err = -EINVAL;
3813 			goto err_delete_thread;
3814 		}
3815 	} else if (pt->have_sched_switch == 2 &&
3816 		   !intel_pt_find_switch(session->evlist)) {
3817 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3818 		err = -EINVAL;
3819 		goto err_delete_thread;
3820 	}
3821 
3822 	if (pt->synth_opts.log)
3823 		intel_pt_log_enable();
3824 
3825 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3826 	if (pt->tc.time_mult) {
3827 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3828 
3829 		if (!pt->max_non_turbo_ratio)
3830 			pt->max_non_turbo_ratio =
3831 					(tsc_freq + 50000000) / 100000000;
3832 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3833 		intel_pt_log("Maximum non-turbo ratio %u\n",
3834 			     pt->max_non_turbo_ratio);
3835 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3836 	}
3837 
3838 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3839 	if (err)
3840 		goto err_delete_thread;
3841 
3842 	if (pt->synth_opts.calls)
3843 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3844 				       PERF_IP_FLAG_TRACE_END;
3845 	if (pt->synth_opts.returns)
3846 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3847 				       PERF_IP_FLAG_TRACE_BEGIN;
3848 
3849 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3850 	    !symbol_conf.use_callchain) {
3851 		symbol_conf.use_callchain = true;
3852 		if (callchain_register_param(&callchain_param) < 0) {
3853 			symbol_conf.use_callchain = false;
3854 			pt->synth_opts.callchain = false;
3855 			pt->synth_opts.add_callchain = false;
3856 		}
3857 	}
3858 
3859 	if (pt->synth_opts.add_callchain) {
3860 		err = intel_pt_callchain_init(pt);
3861 		if (err)
3862 			goto err_delete_thread;
3863 	}
3864 
3865 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3866 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3867 		pt->br_stack_sz_plus = pt->br_stack_sz;
3868 	}
3869 
3870 	if (pt->synth_opts.add_last_branch) {
3871 		err = intel_pt_br_stack_init(pt);
3872 		if (err)
3873 			goto err_delete_thread;
3874 		/*
3875 		 * Additional branch stack size to cater for tracing from the
3876 		 * actual sample ip to where the sample time is recorded.
3877 		 * Measured at about 200 branches, but generously set to 1024.
3878 		 * If kernel space is not being traced, then add just 1 for the
3879 		 * branch to kernel space.
3880 		 */
3881 		if (intel_pt_tracing_kernel(pt))
3882 			pt->br_stack_sz_plus += 1024;
3883 		else
3884 			pt->br_stack_sz_plus += 1;
3885 	}
3886 
3887 	pt->use_thread_stack = pt->synth_opts.callchain ||
3888 			       pt->synth_opts.add_callchain ||
3889 			       pt->synth_opts.thread_stack ||
3890 			       pt->synth_opts.last_branch ||
3891 			       pt->synth_opts.add_last_branch;
3892 
3893 	pt->callstack = pt->synth_opts.callchain ||
3894 			pt->synth_opts.add_callchain ||
3895 			pt->synth_opts.thread_stack;
3896 
3897 	err = intel_pt_synth_events(pt, session);
3898 	if (err)
3899 		goto err_delete_thread;
3900 
3901 	intel_pt_setup_pebs_events(pt);
3902 
3903 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3904 		err = auxtrace_queue_data(session, true, true);
3905 	else
3906 		err = auxtrace_queues__process_index(&pt->queues, session);
3907 	if (err)
3908 		goto err_delete_thread;
3909 
3910 	if (pt->queues.populated)
3911 		pt->data_queued = true;
3912 
3913 	if (pt->timeless_decoding)
3914 		pr_debug2("Intel PT decoding without timestamps\n");
3915 
3916 	return 0;
3917 
3918 err_delete_thread:
3919 	zfree(&pt->chain);
3920 	thread__zput(pt->unknown_thread);
3921 err_free_queues:
3922 	intel_pt_log_disable();
3923 	auxtrace_queues__free(&pt->queues);
3924 	session->auxtrace = NULL;
3925 err_free:
3926 	addr_filters__exit(&pt->filts);
3927 	zfree(&pt->filter);
3928 	zfree(&pt->time_ranges);
3929 	free(pt);
3930 	return err;
3931 }
3932