xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision b9df3997)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/synthetic-events.h"
37 #include "time-utils.h"
38 
39 #include "../arch/x86/include/uapi/asm/perf_regs.h"
40 
41 #include "intel-pt-decoder/intel-pt-log.h"
42 #include "intel-pt-decoder/intel-pt-decoder.h"
43 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
44 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
45 
46 #define MAX_TIMESTAMP (~0ULL)
47 
48 struct range {
49 	u64 start;
50 	u64 end;
51 };
52 
53 struct intel_pt {
54 	struct auxtrace auxtrace;
55 	struct auxtrace_queues queues;
56 	struct auxtrace_heap heap;
57 	u32 auxtrace_type;
58 	struct perf_session *session;
59 	struct machine *machine;
60 	struct evsel *switch_evsel;
61 	struct thread *unknown_thread;
62 	bool timeless_decoding;
63 	bool sampling_mode;
64 	bool snapshot_mode;
65 	bool per_cpu_mmaps;
66 	bool have_tsc;
67 	bool data_queued;
68 	bool est_tsc;
69 	bool sync_switch;
70 	bool mispred_all;
71 	int have_sched_switch;
72 	u32 pmu_type;
73 	u64 kernel_start;
74 	u64 switch_ip;
75 	u64 ptss_ip;
76 
77 	struct perf_tsc_conversion tc;
78 	bool cap_user_time_zero;
79 
80 	struct itrace_synth_opts synth_opts;
81 
82 	bool sample_instructions;
83 	u64 instructions_sample_type;
84 	u64 instructions_id;
85 
86 	bool sample_branches;
87 	u32 branches_filter;
88 	u64 branches_sample_type;
89 	u64 branches_id;
90 
91 	bool sample_transactions;
92 	u64 transactions_sample_type;
93 	u64 transactions_id;
94 
95 	bool sample_ptwrites;
96 	u64 ptwrites_sample_type;
97 	u64 ptwrites_id;
98 
99 	bool sample_pwr_events;
100 	u64 pwr_events_sample_type;
101 	u64 mwait_id;
102 	u64 pwre_id;
103 	u64 exstop_id;
104 	u64 pwrx_id;
105 	u64 cbr_id;
106 
107 	bool sample_pebs;
108 	struct evsel *pebs_evsel;
109 
110 	u64 tsc_bit;
111 	u64 mtc_bit;
112 	u64 mtc_freq_bits;
113 	u32 tsc_ctc_ratio_n;
114 	u32 tsc_ctc_ratio_d;
115 	u64 cyc_bit;
116 	u64 noretcomp_bit;
117 	unsigned max_non_turbo_ratio;
118 	unsigned cbr2khz;
119 
120 	unsigned long num_events;
121 
122 	char *filter;
123 	struct addr_filters filts;
124 
125 	struct range *time_ranges;
126 	unsigned int range_cnt;
127 };
128 
129 enum switch_state {
130 	INTEL_PT_SS_NOT_TRACING,
131 	INTEL_PT_SS_UNKNOWN,
132 	INTEL_PT_SS_TRACING,
133 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
134 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
135 };
136 
137 struct intel_pt_queue {
138 	struct intel_pt *pt;
139 	unsigned int queue_nr;
140 	struct auxtrace_buffer *buffer;
141 	struct auxtrace_buffer *old_buffer;
142 	void *decoder;
143 	const struct intel_pt_state *state;
144 	struct ip_callchain *chain;
145 	struct branch_stack *last_branch;
146 	struct branch_stack *last_branch_rb;
147 	size_t last_branch_pos;
148 	union perf_event *event_buf;
149 	bool on_heap;
150 	bool stop;
151 	bool step_through_buffers;
152 	bool use_buffer_pid_tid;
153 	bool sync_switch;
154 	pid_t pid, tid;
155 	int cpu;
156 	int switch_state;
157 	pid_t next_tid;
158 	struct thread *thread;
159 	bool exclude_kernel;
160 	bool have_sample;
161 	u64 time;
162 	u64 timestamp;
163 	u64 sel_timestamp;
164 	bool sel_start;
165 	unsigned int sel_idx;
166 	u32 flags;
167 	u16 insn_len;
168 	u64 last_insn_cnt;
169 	u64 ipc_insn_cnt;
170 	u64 ipc_cyc_cnt;
171 	u64 last_in_insn_cnt;
172 	u64 last_in_cyc_cnt;
173 	u64 last_br_insn_cnt;
174 	u64 last_br_cyc_cnt;
175 	unsigned int cbr_seen;
176 	char insn[INTEL_PT_INSN_BUF_SZ];
177 };
178 
179 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
180 			  unsigned char *buf, size_t len)
181 {
182 	struct intel_pt_pkt packet;
183 	size_t pos = 0;
184 	int ret, pkt_len, i;
185 	char desc[INTEL_PT_PKT_DESC_MAX];
186 	const char *color = PERF_COLOR_BLUE;
187 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
188 
189 	color_fprintf(stdout, color,
190 		      ". ... Intel Processor Trace data: size %zu bytes\n",
191 		      len);
192 
193 	while (len) {
194 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
195 		if (ret > 0)
196 			pkt_len = ret;
197 		else
198 			pkt_len = 1;
199 		printf(".");
200 		color_fprintf(stdout, color, "  %08x: ", pos);
201 		for (i = 0; i < pkt_len; i++)
202 			color_fprintf(stdout, color, " %02x", buf[i]);
203 		for (; i < 16; i++)
204 			color_fprintf(stdout, color, "   ");
205 		if (ret > 0) {
206 			ret = intel_pt_pkt_desc(&packet, desc,
207 						INTEL_PT_PKT_DESC_MAX);
208 			if (ret > 0)
209 				color_fprintf(stdout, color, " %s\n", desc);
210 		} else {
211 			color_fprintf(stdout, color, " Bad packet!\n");
212 		}
213 		pos += pkt_len;
214 		buf += pkt_len;
215 		len -= pkt_len;
216 	}
217 }
218 
219 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
220 				size_t len)
221 {
222 	printf(".\n");
223 	intel_pt_dump(pt, buf, len);
224 }
225 
226 static void intel_pt_log_event(union perf_event *event)
227 {
228 	FILE *f = intel_pt_log_fp();
229 
230 	if (!intel_pt_enable_logging || !f)
231 		return;
232 
233 	perf_event__fprintf(event, f);
234 }
235 
236 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
237 				   struct auxtrace_buffer *b)
238 {
239 	bool consecutive = false;
240 	void *start;
241 
242 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
243 				      pt->have_tsc, &consecutive);
244 	if (!start)
245 		return -EINVAL;
246 	b->use_size = b->data + b->size - start;
247 	b->use_data = start;
248 	if (b->use_size && consecutive)
249 		b->consecutive = true;
250 	return 0;
251 }
252 
253 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
254 			       struct auxtrace_buffer *buffer,
255 			       struct auxtrace_buffer *old_buffer,
256 			       struct intel_pt_buffer *b)
257 {
258 	bool might_overlap;
259 
260 	if (!buffer->data) {
261 		int fd = perf_data__fd(ptq->pt->session->data);
262 
263 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
264 		if (!buffer->data)
265 			return -ENOMEM;
266 	}
267 
268 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
269 	if (might_overlap && !buffer->consecutive && old_buffer &&
270 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
271 		return -ENOMEM;
272 
273 	if (buffer->use_data) {
274 		b->len = buffer->use_size;
275 		b->buf = buffer->use_data;
276 	} else {
277 		b->len = buffer->size;
278 		b->buf = buffer->data;
279 	}
280 	b->ref_timestamp = buffer->reference;
281 
282 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
283 		b->consecutive = false;
284 		b->trace_nr = buffer->buffer_nr + 1;
285 	} else {
286 		b->consecutive = true;
287 	}
288 
289 	return 0;
290 }
291 
292 /* Do not drop buffers with references - refer intel_pt_get_trace() */
293 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
294 					   struct auxtrace_buffer *buffer)
295 {
296 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
297 		return;
298 
299 	auxtrace_buffer__drop_data(buffer);
300 }
301 
302 /* Must be serialized with respect to intel_pt_get_trace() */
303 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
304 			      void *cb_data)
305 {
306 	struct intel_pt_queue *ptq = data;
307 	struct auxtrace_buffer *buffer = ptq->buffer;
308 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
309 	struct auxtrace_queue *queue;
310 	int err = 0;
311 
312 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
313 
314 	while (1) {
315 		struct intel_pt_buffer b = { .len = 0 };
316 
317 		buffer = auxtrace_buffer__next(queue, buffer);
318 		if (!buffer)
319 			break;
320 
321 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
322 		if (err)
323 			break;
324 
325 		if (b.len) {
326 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
327 			old_buffer = buffer;
328 		} else {
329 			intel_pt_lookahead_drop_buffer(ptq, buffer);
330 			continue;
331 		}
332 
333 		err = cb(&b, cb_data);
334 		if (err)
335 			break;
336 	}
337 
338 	if (buffer != old_buffer)
339 		intel_pt_lookahead_drop_buffer(ptq, buffer);
340 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
341 
342 	return err;
343 }
344 
345 /*
346  * This function assumes data is processed sequentially only.
347  * Must be serialized with respect to intel_pt_lookahead()
348  */
349 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
350 {
351 	struct intel_pt_queue *ptq = data;
352 	struct auxtrace_buffer *buffer = ptq->buffer;
353 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
354 	struct auxtrace_queue *queue;
355 	int err;
356 
357 	if (ptq->stop) {
358 		b->len = 0;
359 		return 0;
360 	}
361 
362 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
363 
364 	buffer = auxtrace_buffer__next(queue, buffer);
365 	if (!buffer) {
366 		if (old_buffer)
367 			auxtrace_buffer__drop_data(old_buffer);
368 		b->len = 0;
369 		return 0;
370 	}
371 
372 	ptq->buffer = buffer;
373 
374 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
375 	if (err)
376 		return err;
377 
378 	if (ptq->step_through_buffers)
379 		ptq->stop = true;
380 
381 	if (b->len) {
382 		if (old_buffer)
383 			auxtrace_buffer__drop_data(old_buffer);
384 		ptq->old_buffer = buffer;
385 	} else {
386 		auxtrace_buffer__drop_data(buffer);
387 		return intel_pt_get_trace(b, data);
388 	}
389 
390 	return 0;
391 }
392 
393 struct intel_pt_cache_entry {
394 	struct auxtrace_cache_entry	entry;
395 	u64				insn_cnt;
396 	u64				byte_cnt;
397 	enum intel_pt_insn_op		op;
398 	enum intel_pt_insn_branch	branch;
399 	int				length;
400 	int32_t				rel;
401 	char				insn[INTEL_PT_INSN_BUF_SZ];
402 };
403 
404 static int intel_pt_config_div(const char *var, const char *value, void *data)
405 {
406 	int *d = data;
407 	long val;
408 
409 	if (!strcmp(var, "intel-pt.cache-divisor")) {
410 		val = strtol(value, NULL, 0);
411 		if (val > 0 && val <= INT_MAX)
412 			*d = val;
413 	}
414 
415 	return 0;
416 }
417 
418 static int intel_pt_cache_divisor(void)
419 {
420 	static int d;
421 
422 	if (d)
423 		return d;
424 
425 	perf_config(intel_pt_config_div, &d);
426 
427 	if (!d)
428 		d = 64;
429 
430 	return d;
431 }
432 
433 static unsigned int intel_pt_cache_size(struct dso *dso,
434 					struct machine *machine)
435 {
436 	off_t size;
437 
438 	size = dso__data_size(dso, machine);
439 	size /= intel_pt_cache_divisor();
440 	if (size < 1000)
441 		return 10;
442 	if (size > (1 << 21))
443 		return 21;
444 	return 32 - __builtin_clz(size);
445 }
446 
447 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
448 					     struct machine *machine)
449 {
450 	struct auxtrace_cache *c;
451 	unsigned int bits;
452 
453 	if (dso->auxtrace_cache)
454 		return dso->auxtrace_cache;
455 
456 	bits = intel_pt_cache_size(dso, machine);
457 
458 	/* Ignoring cache creation failure */
459 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
460 
461 	dso->auxtrace_cache = c;
462 
463 	return c;
464 }
465 
466 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
467 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
468 			      struct intel_pt_insn *intel_pt_insn)
469 {
470 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
471 	struct intel_pt_cache_entry *e;
472 	int err;
473 
474 	if (!c)
475 		return -ENOMEM;
476 
477 	e = auxtrace_cache__alloc_entry(c);
478 	if (!e)
479 		return -ENOMEM;
480 
481 	e->insn_cnt = insn_cnt;
482 	e->byte_cnt = byte_cnt;
483 	e->op = intel_pt_insn->op;
484 	e->branch = intel_pt_insn->branch;
485 	e->length = intel_pt_insn->length;
486 	e->rel = intel_pt_insn->rel;
487 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
488 
489 	err = auxtrace_cache__add(c, offset, &e->entry);
490 	if (err)
491 		auxtrace_cache__free_entry(c, e);
492 
493 	return err;
494 }
495 
496 static struct intel_pt_cache_entry *
497 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
498 {
499 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
500 
501 	if (!c)
502 		return NULL;
503 
504 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
505 }
506 
507 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
508 {
509 	return ip >= pt->kernel_start ?
510 	       PERF_RECORD_MISC_KERNEL :
511 	       PERF_RECORD_MISC_USER;
512 }
513 
514 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
515 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
516 				   uint64_t to_ip, uint64_t max_insn_cnt,
517 				   void *data)
518 {
519 	struct intel_pt_queue *ptq = data;
520 	struct machine *machine = ptq->pt->machine;
521 	struct thread *thread;
522 	struct addr_location al;
523 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
524 	ssize_t len;
525 	int x86_64;
526 	u8 cpumode;
527 	u64 offset, start_offset, start_ip;
528 	u64 insn_cnt = 0;
529 	bool one_map = true;
530 
531 	intel_pt_insn->length = 0;
532 
533 	if (to_ip && *ip == to_ip)
534 		goto out_no_cache;
535 
536 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
537 
538 	thread = ptq->thread;
539 	if (!thread) {
540 		if (cpumode != PERF_RECORD_MISC_KERNEL)
541 			return -EINVAL;
542 		thread = ptq->pt->unknown_thread;
543 	}
544 
545 	while (1) {
546 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
547 			return -EINVAL;
548 
549 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
550 		    dso__data_status_seen(al.map->dso,
551 					  DSO_DATA_STATUS_SEEN_ITRACE))
552 			return -ENOENT;
553 
554 		offset = al.map->map_ip(al.map, *ip);
555 
556 		if (!to_ip && one_map) {
557 			struct intel_pt_cache_entry *e;
558 
559 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
560 			if (e &&
561 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
562 				*insn_cnt_ptr = e->insn_cnt;
563 				*ip += e->byte_cnt;
564 				intel_pt_insn->op = e->op;
565 				intel_pt_insn->branch = e->branch;
566 				intel_pt_insn->length = e->length;
567 				intel_pt_insn->rel = e->rel;
568 				memcpy(intel_pt_insn->buf, e->insn,
569 				       INTEL_PT_INSN_BUF_SZ);
570 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
571 				return 0;
572 			}
573 		}
574 
575 		start_offset = offset;
576 		start_ip = *ip;
577 
578 		/* Load maps to ensure dso->is_64_bit has been updated */
579 		map__load(al.map);
580 
581 		x86_64 = al.map->dso->is_64_bit;
582 
583 		while (1) {
584 			len = dso__data_read_offset(al.map->dso, machine,
585 						    offset, buf,
586 						    INTEL_PT_INSN_BUF_SZ);
587 			if (len <= 0)
588 				return -EINVAL;
589 
590 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
591 				return -EINVAL;
592 
593 			intel_pt_log_insn(intel_pt_insn, *ip);
594 
595 			insn_cnt += 1;
596 
597 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
598 				goto out;
599 
600 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
601 				goto out_no_cache;
602 
603 			*ip += intel_pt_insn->length;
604 
605 			if (to_ip && *ip == to_ip)
606 				goto out_no_cache;
607 
608 			if (*ip >= al.map->end)
609 				break;
610 
611 			offset += intel_pt_insn->length;
612 		}
613 		one_map = false;
614 	}
615 out:
616 	*insn_cnt_ptr = insn_cnt;
617 
618 	if (!one_map)
619 		goto out_no_cache;
620 
621 	/*
622 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
623 	 * entries.
624 	 */
625 	if (to_ip) {
626 		struct intel_pt_cache_entry *e;
627 
628 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
629 		if (e)
630 			return 0;
631 	}
632 
633 	/* Ignore cache errors */
634 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
635 			   *ip - start_ip, intel_pt_insn);
636 
637 	return 0;
638 
639 out_no_cache:
640 	*insn_cnt_ptr = insn_cnt;
641 	return 0;
642 }
643 
644 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
645 				  uint64_t offset, const char *filename)
646 {
647 	struct addr_filter *filt;
648 	bool have_filter   = false;
649 	bool hit_tracestop = false;
650 	bool hit_filter    = false;
651 
652 	list_for_each_entry(filt, &pt->filts.head, list) {
653 		if (filt->start)
654 			have_filter = true;
655 
656 		if ((filename && !filt->filename) ||
657 		    (!filename && filt->filename) ||
658 		    (filename && strcmp(filename, filt->filename)))
659 			continue;
660 
661 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
662 			continue;
663 
664 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
665 			     ip, offset, filename ? filename : "[kernel]",
666 			     filt->start ? "filter" : "stop",
667 			     filt->addr, filt->size);
668 
669 		if (filt->start)
670 			hit_filter = true;
671 		else
672 			hit_tracestop = true;
673 	}
674 
675 	if (!hit_tracestop && !hit_filter)
676 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
677 			     ip, offset, filename ? filename : "[kernel]");
678 
679 	return hit_tracestop || (have_filter && !hit_filter);
680 }
681 
682 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
683 {
684 	struct intel_pt_queue *ptq = data;
685 	struct thread *thread;
686 	struct addr_location al;
687 	u8 cpumode;
688 	u64 offset;
689 
690 	if (ip >= ptq->pt->kernel_start)
691 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
692 
693 	cpumode = PERF_RECORD_MISC_USER;
694 
695 	thread = ptq->thread;
696 	if (!thread)
697 		return -EINVAL;
698 
699 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
700 		return -EINVAL;
701 
702 	offset = al.map->map_ip(al.map, ip);
703 
704 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
705 				     al.map->dso->long_name);
706 }
707 
708 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
709 {
710 	return __intel_pt_pgd_ip(ip, data) > 0;
711 }
712 
713 static bool intel_pt_get_config(struct intel_pt *pt,
714 				struct perf_event_attr *attr, u64 *config)
715 {
716 	if (attr->type == pt->pmu_type) {
717 		if (config)
718 			*config = attr->config;
719 		return true;
720 	}
721 
722 	return false;
723 }
724 
725 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
726 {
727 	struct evsel *evsel;
728 
729 	evlist__for_each_entry(pt->session->evlist, evsel) {
730 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
731 		    !evsel->core.attr.exclude_kernel)
732 			return false;
733 	}
734 	return true;
735 }
736 
737 static bool intel_pt_return_compression(struct intel_pt *pt)
738 {
739 	struct evsel *evsel;
740 	u64 config;
741 
742 	if (!pt->noretcomp_bit)
743 		return true;
744 
745 	evlist__for_each_entry(pt->session->evlist, evsel) {
746 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
747 		    (config & pt->noretcomp_bit))
748 			return false;
749 	}
750 	return true;
751 }
752 
753 static bool intel_pt_branch_enable(struct intel_pt *pt)
754 {
755 	struct evsel *evsel;
756 	u64 config;
757 
758 	evlist__for_each_entry(pt->session->evlist, evsel) {
759 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
760 		    (config & 1) && !(config & 0x2000))
761 			return false;
762 	}
763 	return true;
764 }
765 
766 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
767 {
768 	struct evsel *evsel;
769 	unsigned int shift;
770 	u64 config;
771 
772 	if (!pt->mtc_freq_bits)
773 		return 0;
774 
775 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
776 		config >>= 1;
777 
778 	evlist__for_each_entry(pt->session->evlist, evsel) {
779 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
780 			return (config & pt->mtc_freq_bits) >> shift;
781 	}
782 	return 0;
783 }
784 
785 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
786 {
787 	struct evsel *evsel;
788 	bool timeless_decoding = true;
789 	u64 config;
790 
791 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
792 		return true;
793 
794 	evlist__for_each_entry(pt->session->evlist, evsel) {
795 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
796 			return true;
797 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
798 			if (config & pt->tsc_bit)
799 				timeless_decoding = false;
800 			else
801 				return true;
802 		}
803 	}
804 	return timeless_decoding;
805 }
806 
807 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
808 {
809 	struct evsel *evsel;
810 
811 	evlist__for_each_entry(pt->session->evlist, evsel) {
812 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
813 		    !evsel->core.attr.exclude_kernel)
814 			return true;
815 	}
816 	return false;
817 }
818 
819 static bool intel_pt_have_tsc(struct intel_pt *pt)
820 {
821 	struct evsel *evsel;
822 	bool have_tsc = false;
823 	u64 config;
824 
825 	if (!pt->tsc_bit)
826 		return false;
827 
828 	evlist__for_each_entry(pt->session->evlist, evsel) {
829 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
830 			if (config & pt->tsc_bit)
831 				have_tsc = true;
832 			else
833 				return false;
834 		}
835 	}
836 	return have_tsc;
837 }
838 
839 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
840 {
841 	u64 quot, rem;
842 
843 	quot = ns / pt->tc.time_mult;
844 	rem  = ns % pt->tc.time_mult;
845 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
846 		pt->tc.time_mult;
847 }
848 
849 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
850 						   unsigned int queue_nr)
851 {
852 	struct intel_pt_params params = { .get_trace = 0, };
853 	struct perf_env *env = pt->machine->env;
854 	struct intel_pt_queue *ptq;
855 
856 	ptq = zalloc(sizeof(struct intel_pt_queue));
857 	if (!ptq)
858 		return NULL;
859 
860 	if (pt->synth_opts.callchain) {
861 		size_t sz = sizeof(struct ip_callchain);
862 
863 		/* Add 1 to callchain_sz for callchain context */
864 		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
865 		ptq->chain = zalloc(sz);
866 		if (!ptq->chain)
867 			goto out_free;
868 	}
869 
870 	if (pt->synth_opts.last_branch) {
871 		size_t sz = sizeof(struct branch_stack);
872 
873 		sz += pt->synth_opts.last_branch_sz *
874 		      sizeof(struct branch_entry);
875 		ptq->last_branch = zalloc(sz);
876 		if (!ptq->last_branch)
877 			goto out_free;
878 		ptq->last_branch_rb = zalloc(sz);
879 		if (!ptq->last_branch_rb)
880 			goto out_free;
881 	}
882 
883 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
884 	if (!ptq->event_buf)
885 		goto out_free;
886 
887 	ptq->pt = pt;
888 	ptq->queue_nr = queue_nr;
889 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
890 	ptq->pid = -1;
891 	ptq->tid = -1;
892 	ptq->cpu = -1;
893 	ptq->next_tid = -1;
894 
895 	params.get_trace = intel_pt_get_trace;
896 	params.walk_insn = intel_pt_walk_next_insn;
897 	params.lookahead = intel_pt_lookahead;
898 	params.data = ptq;
899 	params.return_compression = intel_pt_return_compression(pt);
900 	params.branch_enable = intel_pt_branch_enable(pt);
901 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
902 	params.mtc_period = intel_pt_mtc_period(pt);
903 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
904 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
905 
906 	if (pt->filts.cnt > 0)
907 		params.pgd_ip = intel_pt_pgd_ip;
908 
909 	if (pt->synth_opts.instructions) {
910 		if (pt->synth_opts.period) {
911 			switch (pt->synth_opts.period_type) {
912 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
913 				params.period_type =
914 						INTEL_PT_PERIOD_INSTRUCTIONS;
915 				params.period = pt->synth_opts.period;
916 				break;
917 			case PERF_ITRACE_PERIOD_TICKS:
918 				params.period_type = INTEL_PT_PERIOD_TICKS;
919 				params.period = pt->synth_opts.period;
920 				break;
921 			case PERF_ITRACE_PERIOD_NANOSECS:
922 				params.period_type = INTEL_PT_PERIOD_TICKS;
923 				params.period = intel_pt_ns_to_ticks(pt,
924 							pt->synth_opts.period);
925 				break;
926 			default:
927 				break;
928 			}
929 		}
930 
931 		if (!params.period) {
932 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
933 			params.period = 1;
934 		}
935 	}
936 
937 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
938 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
939 
940 	ptq->decoder = intel_pt_decoder_new(&params);
941 	if (!ptq->decoder)
942 		goto out_free;
943 
944 	return ptq;
945 
946 out_free:
947 	zfree(&ptq->event_buf);
948 	zfree(&ptq->last_branch);
949 	zfree(&ptq->last_branch_rb);
950 	zfree(&ptq->chain);
951 	free(ptq);
952 	return NULL;
953 }
954 
955 static void intel_pt_free_queue(void *priv)
956 {
957 	struct intel_pt_queue *ptq = priv;
958 
959 	if (!ptq)
960 		return;
961 	thread__zput(ptq->thread);
962 	intel_pt_decoder_free(ptq->decoder);
963 	zfree(&ptq->event_buf);
964 	zfree(&ptq->last_branch);
965 	zfree(&ptq->last_branch_rb);
966 	zfree(&ptq->chain);
967 	free(ptq);
968 }
969 
970 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
971 				     struct auxtrace_queue *queue)
972 {
973 	struct intel_pt_queue *ptq = queue->priv;
974 
975 	if (queue->tid == -1 || pt->have_sched_switch) {
976 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
977 		thread__zput(ptq->thread);
978 	}
979 
980 	if (!ptq->thread && ptq->tid != -1)
981 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
982 
983 	if (ptq->thread) {
984 		ptq->pid = ptq->thread->pid_;
985 		if (queue->cpu == -1)
986 			ptq->cpu = ptq->thread->cpu;
987 	}
988 }
989 
990 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
991 {
992 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
993 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
994 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
995 		if (ptq->state->to_ip)
996 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
997 				     PERF_IP_FLAG_ASYNC |
998 				     PERF_IP_FLAG_INTERRUPT;
999 		else
1000 			ptq->flags = PERF_IP_FLAG_BRANCH |
1001 				     PERF_IP_FLAG_TRACE_END;
1002 		ptq->insn_len = 0;
1003 	} else {
1004 		if (ptq->state->from_ip)
1005 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1006 		else
1007 			ptq->flags = PERF_IP_FLAG_BRANCH |
1008 				     PERF_IP_FLAG_TRACE_BEGIN;
1009 		if (ptq->state->flags & INTEL_PT_IN_TX)
1010 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1011 		ptq->insn_len = ptq->state->insn_len;
1012 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1013 	}
1014 
1015 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1016 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1017 	if (ptq->state->type & INTEL_PT_TRACE_END)
1018 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1019 }
1020 
1021 static void intel_pt_setup_time_range(struct intel_pt *pt,
1022 				      struct intel_pt_queue *ptq)
1023 {
1024 	if (!pt->range_cnt)
1025 		return;
1026 
1027 	ptq->sel_timestamp = pt->time_ranges[0].start;
1028 	ptq->sel_idx = 0;
1029 
1030 	if (ptq->sel_timestamp) {
1031 		ptq->sel_start = true;
1032 	} else {
1033 		ptq->sel_timestamp = pt->time_ranges[0].end;
1034 		ptq->sel_start = false;
1035 	}
1036 }
1037 
1038 static int intel_pt_setup_queue(struct intel_pt *pt,
1039 				struct auxtrace_queue *queue,
1040 				unsigned int queue_nr)
1041 {
1042 	struct intel_pt_queue *ptq = queue->priv;
1043 
1044 	if (list_empty(&queue->head))
1045 		return 0;
1046 
1047 	if (!ptq) {
1048 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1049 		if (!ptq)
1050 			return -ENOMEM;
1051 		queue->priv = ptq;
1052 
1053 		if (queue->cpu != -1)
1054 			ptq->cpu = queue->cpu;
1055 		ptq->tid = queue->tid;
1056 
1057 		ptq->cbr_seen = UINT_MAX;
1058 
1059 		if (pt->sampling_mode && !pt->snapshot_mode &&
1060 		    pt->timeless_decoding)
1061 			ptq->step_through_buffers = true;
1062 
1063 		ptq->sync_switch = pt->sync_switch;
1064 
1065 		intel_pt_setup_time_range(pt, ptq);
1066 	}
1067 
1068 	if (!ptq->on_heap &&
1069 	    (!ptq->sync_switch ||
1070 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1071 		const struct intel_pt_state *state;
1072 		int ret;
1073 
1074 		if (pt->timeless_decoding)
1075 			return 0;
1076 
1077 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1078 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1079 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1080 
1081 		if (ptq->sel_start && ptq->sel_timestamp) {
1082 			ret = intel_pt_fast_forward(ptq->decoder,
1083 						    ptq->sel_timestamp);
1084 			if (ret)
1085 				return ret;
1086 		}
1087 
1088 		while (1) {
1089 			state = intel_pt_decode(ptq->decoder);
1090 			if (state->err) {
1091 				if (state->err == INTEL_PT_ERR_NODATA) {
1092 					intel_pt_log("queue %u has no timestamp\n",
1093 						     queue_nr);
1094 					return 0;
1095 				}
1096 				continue;
1097 			}
1098 			if (state->timestamp)
1099 				break;
1100 		}
1101 
1102 		ptq->timestamp = state->timestamp;
1103 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1104 			     queue_nr, ptq->timestamp);
1105 		ptq->state = state;
1106 		ptq->have_sample = true;
1107 		if (ptq->sel_start && ptq->sel_timestamp &&
1108 		    ptq->timestamp < ptq->sel_timestamp)
1109 			ptq->have_sample = false;
1110 		intel_pt_sample_flags(ptq);
1111 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1112 		if (ret)
1113 			return ret;
1114 		ptq->on_heap = true;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int intel_pt_setup_queues(struct intel_pt *pt)
1121 {
1122 	unsigned int i;
1123 	int ret;
1124 
1125 	for (i = 0; i < pt->queues.nr_queues; i++) {
1126 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1127 		if (ret)
1128 			return ret;
1129 	}
1130 	return 0;
1131 }
1132 
1133 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1134 {
1135 	struct branch_stack *bs_src = ptq->last_branch_rb;
1136 	struct branch_stack *bs_dst = ptq->last_branch;
1137 	size_t nr = 0;
1138 
1139 	bs_dst->nr = bs_src->nr;
1140 
1141 	if (!bs_src->nr)
1142 		return;
1143 
1144 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1145 	memcpy(&bs_dst->entries[0],
1146 	       &bs_src->entries[ptq->last_branch_pos],
1147 	       sizeof(struct branch_entry) * nr);
1148 
1149 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1150 		memcpy(&bs_dst->entries[nr],
1151 		       &bs_src->entries[0],
1152 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1153 	}
1154 }
1155 
1156 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1157 {
1158 	ptq->last_branch_pos = 0;
1159 	ptq->last_branch_rb->nr = 0;
1160 }
1161 
1162 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1163 {
1164 	const struct intel_pt_state *state = ptq->state;
1165 	struct branch_stack *bs = ptq->last_branch_rb;
1166 	struct branch_entry *be;
1167 
1168 	if (!ptq->last_branch_pos)
1169 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1170 
1171 	ptq->last_branch_pos -= 1;
1172 
1173 	be              = &bs->entries[ptq->last_branch_pos];
1174 	be->from        = state->from_ip;
1175 	be->to          = state->to_ip;
1176 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1177 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1178 	/* No support for mispredict */
1179 	be->flags.mispred = ptq->pt->mispred_all;
1180 
1181 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1182 		bs->nr += 1;
1183 }
1184 
1185 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1186 {
1187 	return pt->synth_opts.initial_skip &&
1188 	       pt->num_events++ < pt->synth_opts.initial_skip;
1189 }
1190 
1191 /*
1192  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1193  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1194  * from this decoder state.
1195  */
1196 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1197 {
1198 	return pt->synth_opts.initial_skip &&
1199 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1200 }
1201 
1202 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1203 				   union perf_event *event,
1204 				   struct perf_sample *sample)
1205 {
1206 	event->sample.header.type = PERF_RECORD_SAMPLE;
1207 	event->sample.header.size = sizeof(struct perf_event_header);
1208 
1209 	sample->pid = ptq->pid;
1210 	sample->tid = ptq->tid;
1211 	sample->cpu = ptq->cpu;
1212 	sample->insn_len = ptq->insn_len;
1213 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1214 }
1215 
1216 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1217 				   struct intel_pt_queue *ptq,
1218 				   union perf_event *event,
1219 				   struct perf_sample *sample)
1220 {
1221 	intel_pt_prep_a_sample(ptq, event, sample);
1222 
1223 	if (!pt->timeless_decoding)
1224 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1225 
1226 	sample->ip = ptq->state->from_ip;
1227 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1228 	sample->addr = ptq->state->to_ip;
1229 	sample->period = 1;
1230 	sample->flags = ptq->flags;
1231 
1232 	event->sample.header.misc = sample->cpumode;
1233 }
1234 
1235 static int intel_pt_inject_event(union perf_event *event,
1236 				 struct perf_sample *sample, u64 type)
1237 {
1238 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1239 	return perf_event__synthesize_sample(event, type, 0, sample);
1240 }
1241 
1242 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1243 				      union perf_event *event,
1244 				      struct perf_sample *sample, u64 type)
1245 {
1246 	if (!pt->synth_opts.inject)
1247 		return 0;
1248 
1249 	return intel_pt_inject_event(event, sample, type);
1250 }
1251 
1252 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1253 					  union perf_event *event,
1254 					  struct perf_sample *sample, u64 type)
1255 {
1256 	int ret;
1257 
1258 	ret = intel_pt_opt_inject(pt, event, sample, type);
1259 	if (ret)
1260 		return ret;
1261 
1262 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1263 	if (ret)
1264 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1265 
1266 	return ret;
1267 }
1268 
1269 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1270 {
1271 	struct intel_pt *pt = ptq->pt;
1272 	union perf_event *event = ptq->event_buf;
1273 	struct perf_sample sample = { .ip = 0, };
1274 	struct dummy_branch_stack {
1275 		u64			nr;
1276 		struct branch_entry	entries;
1277 	} dummy_bs;
1278 
1279 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1280 		return 0;
1281 
1282 	if (intel_pt_skip_event(pt))
1283 		return 0;
1284 
1285 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1286 
1287 	sample.id = ptq->pt->branches_id;
1288 	sample.stream_id = ptq->pt->branches_id;
1289 
1290 	/*
1291 	 * perf report cannot handle events without a branch stack when using
1292 	 * SORT_MODE__BRANCH so make a dummy one.
1293 	 */
1294 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1295 		dummy_bs = (struct dummy_branch_stack){
1296 			.nr = 1,
1297 			.entries = {
1298 				.from = sample.ip,
1299 				.to = sample.addr,
1300 			},
1301 		};
1302 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1303 	}
1304 
1305 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1306 	if (sample.cyc_cnt) {
1307 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1308 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1309 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1310 	}
1311 
1312 	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1313 					      pt->branches_sample_type);
1314 }
1315 
1316 static void intel_pt_prep_sample(struct intel_pt *pt,
1317 				 struct intel_pt_queue *ptq,
1318 				 union perf_event *event,
1319 				 struct perf_sample *sample)
1320 {
1321 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1322 
1323 	if (pt->synth_opts.callchain) {
1324 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1325 				     pt->synth_opts.callchain_sz + 1,
1326 				     sample->ip, pt->kernel_start);
1327 		sample->callchain = ptq->chain;
1328 	}
1329 
1330 	if (pt->synth_opts.last_branch) {
1331 		intel_pt_copy_last_branch_rb(ptq);
1332 		sample->branch_stack = ptq->last_branch;
1333 	}
1334 }
1335 
1336 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1337 					       struct intel_pt_queue *ptq,
1338 					       union perf_event *event,
1339 					       struct perf_sample *sample,
1340 					       u64 type)
1341 {
1342 	int ret;
1343 
1344 	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1345 
1346 	if (pt->synth_opts.last_branch)
1347 		intel_pt_reset_last_branch_rb(ptq);
1348 
1349 	return ret;
1350 }
1351 
1352 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1353 {
1354 	struct intel_pt *pt = ptq->pt;
1355 	union perf_event *event = ptq->event_buf;
1356 	struct perf_sample sample = { .ip = 0, };
1357 
1358 	if (intel_pt_skip_event(pt))
1359 		return 0;
1360 
1361 	intel_pt_prep_sample(pt, ptq, event, &sample);
1362 
1363 	sample.id = ptq->pt->instructions_id;
1364 	sample.stream_id = ptq->pt->instructions_id;
1365 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1366 
1367 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1368 	if (sample.cyc_cnt) {
1369 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1370 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1371 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1372 	}
1373 
1374 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1375 
1376 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1377 					    pt->instructions_sample_type);
1378 }
1379 
1380 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1381 {
1382 	struct intel_pt *pt = ptq->pt;
1383 	union perf_event *event = ptq->event_buf;
1384 	struct perf_sample sample = { .ip = 0, };
1385 
1386 	if (intel_pt_skip_event(pt))
1387 		return 0;
1388 
1389 	intel_pt_prep_sample(pt, ptq, event, &sample);
1390 
1391 	sample.id = ptq->pt->transactions_id;
1392 	sample.stream_id = ptq->pt->transactions_id;
1393 
1394 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1395 					    pt->transactions_sample_type);
1396 }
1397 
1398 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1399 				   struct intel_pt_queue *ptq,
1400 				   union perf_event *event,
1401 				   struct perf_sample *sample)
1402 {
1403 	intel_pt_prep_sample(pt, ptq, event, sample);
1404 
1405 	/*
1406 	 * Zero IP is used to mean "trace start" but that is not the case for
1407 	 * power or PTWRITE events with no IP, so clear the flags.
1408 	 */
1409 	if (!sample->ip)
1410 		sample->flags = 0;
1411 }
1412 
1413 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1414 {
1415 	struct intel_pt *pt = ptq->pt;
1416 	union perf_event *event = ptq->event_buf;
1417 	struct perf_sample sample = { .ip = 0, };
1418 	struct perf_synth_intel_ptwrite raw;
1419 
1420 	if (intel_pt_skip_event(pt))
1421 		return 0;
1422 
1423 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1424 
1425 	sample.id = ptq->pt->ptwrites_id;
1426 	sample.stream_id = ptq->pt->ptwrites_id;
1427 
1428 	raw.flags = 0;
1429 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1430 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1431 
1432 	sample.raw_size = perf_synth__raw_size(raw);
1433 	sample.raw_data = perf_synth__raw_data(&raw);
1434 
1435 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1436 					    pt->ptwrites_sample_type);
1437 }
1438 
1439 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1440 {
1441 	struct intel_pt *pt = ptq->pt;
1442 	union perf_event *event = ptq->event_buf;
1443 	struct perf_sample sample = { .ip = 0, };
1444 	struct perf_synth_intel_cbr raw;
1445 	u32 flags;
1446 
1447 	if (intel_pt_skip_cbr_event(pt))
1448 		return 0;
1449 
1450 	ptq->cbr_seen = ptq->state->cbr;
1451 
1452 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1453 
1454 	sample.id = ptq->pt->cbr_id;
1455 	sample.stream_id = ptq->pt->cbr_id;
1456 
1457 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1458 	raw.flags = cpu_to_le32(flags);
1459 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1460 	raw.reserved3 = 0;
1461 
1462 	sample.raw_size = perf_synth__raw_size(raw);
1463 	sample.raw_data = perf_synth__raw_data(&raw);
1464 
1465 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1466 					    pt->pwr_events_sample_type);
1467 }
1468 
1469 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1470 {
1471 	struct intel_pt *pt = ptq->pt;
1472 	union perf_event *event = ptq->event_buf;
1473 	struct perf_sample sample = { .ip = 0, };
1474 	struct perf_synth_intel_mwait raw;
1475 
1476 	if (intel_pt_skip_event(pt))
1477 		return 0;
1478 
1479 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1480 
1481 	sample.id = ptq->pt->mwait_id;
1482 	sample.stream_id = ptq->pt->mwait_id;
1483 
1484 	raw.reserved = 0;
1485 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1486 
1487 	sample.raw_size = perf_synth__raw_size(raw);
1488 	sample.raw_data = perf_synth__raw_data(&raw);
1489 
1490 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1491 					    pt->pwr_events_sample_type);
1492 }
1493 
1494 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1495 {
1496 	struct intel_pt *pt = ptq->pt;
1497 	union perf_event *event = ptq->event_buf;
1498 	struct perf_sample sample = { .ip = 0, };
1499 	struct perf_synth_intel_pwre raw;
1500 
1501 	if (intel_pt_skip_event(pt))
1502 		return 0;
1503 
1504 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1505 
1506 	sample.id = ptq->pt->pwre_id;
1507 	sample.stream_id = ptq->pt->pwre_id;
1508 
1509 	raw.reserved = 0;
1510 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1511 
1512 	sample.raw_size = perf_synth__raw_size(raw);
1513 	sample.raw_data = perf_synth__raw_data(&raw);
1514 
1515 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1516 					    pt->pwr_events_sample_type);
1517 }
1518 
1519 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1520 {
1521 	struct intel_pt *pt = ptq->pt;
1522 	union perf_event *event = ptq->event_buf;
1523 	struct perf_sample sample = { .ip = 0, };
1524 	struct perf_synth_intel_exstop raw;
1525 
1526 	if (intel_pt_skip_event(pt))
1527 		return 0;
1528 
1529 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1530 
1531 	sample.id = ptq->pt->exstop_id;
1532 	sample.stream_id = ptq->pt->exstop_id;
1533 
1534 	raw.flags = 0;
1535 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1536 
1537 	sample.raw_size = perf_synth__raw_size(raw);
1538 	sample.raw_data = perf_synth__raw_data(&raw);
1539 
1540 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1541 					    pt->pwr_events_sample_type);
1542 }
1543 
1544 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1545 {
1546 	struct intel_pt *pt = ptq->pt;
1547 	union perf_event *event = ptq->event_buf;
1548 	struct perf_sample sample = { .ip = 0, };
1549 	struct perf_synth_intel_pwrx raw;
1550 
1551 	if (intel_pt_skip_event(pt))
1552 		return 0;
1553 
1554 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1555 
1556 	sample.id = ptq->pt->pwrx_id;
1557 	sample.stream_id = ptq->pt->pwrx_id;
1558 
1559 	raw.reserved = 0;
1560 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1561 
1562 	sample.raw_size = perf_synth__raw_size(raw);
1563 	sample.raw_data = perf_synth__raw_data(&raw);
1564 
1565 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1566 					    pt->pwr_events_sample_type);
1567 }
1568 
1569 /*
1570  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1571  * intel_pt_add_gp_regs().
1572  */
1573 static const int pebs_gp_regs[] = {
1574 	[PERF_REG_X86_FLAGS]	= 1,
1575 	[PERF_REG_X86_IP]	= 2,
1576 	[PERF_REG_X86_AX]	= 3,
1577 	[PERF_REG_X86_CX]	= 4,
1578 	[PERF_REG_X86_DX]	= 5,
1579 	[PERF_REG_X86_BX]	= 6,
1580 	[PERF_REG_X86_SP]	= 7,
1581 	[PERF_REG_X86_BP]	= 8,
1582 	[PERF_REG_X86_SI]	= 9,
1583 	[PERF_REG_X86_DI]	= 10,
1584 	[PERF_REG_X86_R8]	= 11,
1585 	[PERF_REG_X86_R9]	= 12,
1586 	[PERF_REG_X86_R10]	= 13,
1587 	[PERF_REG_X86_R11]	= 14,
1588 	[PERF_REG_X86_R12]	= 15,
1589 	[PERF_REG_X86_R13]	= 16,
1590 	[PERF_REG_X86_R14]	= 17,
1591 	[PERF_REG_X86_R15]	= 18,
1592 };
1593 
1594 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1595 				 const struct intel_pt_blk_items *items,
1596 				 u64 regs_mask)
1597 {
1598 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1599 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1600 	u32 bit;
1601 	int i;
1602 
1603 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1604 		/* Get the PEBS gp_regs array index */
1605 		int n = pebs_gp_regs[i] - 1;
1606 
1607 		if (n < 0)
1608 			continue;
1609 		/*
1610 		 * Add only registers that were requested (i.e. 'regs_mask') and
1611 		 * that were provided (i.e. 'mask'), and update the resulting
1612 		 * mask (i.e. 'intr_regs->mask') accordingly.
1613 		 */
1614 		if (mask & 1 << n && regs_mask & bit) {
1615 			intr_regs->mask |= bit;
1616 			*pos++ = gp_regs[n];
1617 		}
1618 	}
1619 
1620 	return pos;
1621 }
1622 
1623 #ifndef PERF_REG_X86_XMM0
1624 #define PERF_REG_X86_XMM0 32
1625 #endif
1626 
1627 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1628 			     const struct intel_pt_blk_items *items,
1629 			     u64 regs_mask)
1630 {
1631 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1632 	const u64 *xmm = items->xmm;
1633 
1634 	/*
1635 	 * If there are any XMM registers, then there should be all of them.
1636 	 * Nevertheless, follow the logic to add only registers that were
1637 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1638 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1639 	 */
1640 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1641 
1642 	for (; mask; mask >>= 1, xmm++) {
1643 		if (mask & 1)
1644 			*pos++ = *xmm;
1645 	}
1646 }
1647 
1648 #define LBR_INFO_MISPRED	(1ULL << 63)
1649 #define LBR_INFO_IN_TX		(1ULL << 62)
1650 #define LBR_INFO_ABORT		(1ULL << 61)
1651 #define LBR_INFO_CYCLES		0xffff
1652 
1653 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1654 static u64 intel_pt_lbr_flags(u64 info)
1655 {
1656 	union {
1657 		struct branch_flags flags;
1658 		u64 result;
1659 	} u = {
1660 		.flags = {
1661 			.mispred	= !!(info & LBR_INFO_MISPRED),
1662 			.predicted	= !(info & LBR_INFO_MISPRED),
1663 			.in_tx		= !!(info & LBR_INFO_IN_TX),
1664 			.abort		= !!(info & LBR_INFO_ABORT),
1665 			.cycles		= info & LBR_INFO_CYCLES,
1666 		}
1667 	};
1668 
1669 	return u.result;
1670 }
1671 
1672 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1673 			      const struct intel_pt_blk_items *items)
1674 {
1675 	u64 *to;
1676 	int i;
1677 
1678 	br_stack->nr = 0;
1679 
1680 	to = &br_stack->entries[0].from;
1681 
1682 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1683 		u32 mask = items->mask[i];
1684 		const u64 *from = items->val[i];
1685 
1686 		for (; mask; mask >>= 3, from += 3) {
1687 			if ((mask & 7) == 7) {
1688 				*to++ = from[0];
1689 				*to++ = from[1];
1690 				*to++ = intel_pt_lbr_flags(from[2]);
1691 				br_stack->nr += 1;
1692 			}
1693 		}
1694 	}
1695 }
1696 
1697 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1698 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1699 
1700 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1701 {
1702 	const struct intel_pt_blk_items *items = &ptq->state->items;
1703 	struct perf_sample sample = { .ip = 0, };
1704 	union perf_event *event = ptq->event_buf;
1705 	struct intel_pt *pt = ptq->pt;
1706 	struct evsel *evsel = pt->pebs_evsel;
1707 	u64 sample_type = evsel->core.attr.sample_type;
1708 	u64 id = evsel->core.id[0];
1709 	u8 cpumode;
1710 
1711 	if (intel_pt_skip_event(pt))
1712 		return 0;
1713 
1714 	intel_pt_prep_a_sample(ptq, event, &sample);
1715 
1716 	sample.id = id;
1717 	sample.stream_id = id;
1718 
1719 	if (!evsel->core.attr.freq)
1720 		sample.period = evsel->core.attr.sample_period;
1721 
1722 	/* No support for non-zero CS base */
1723 	if (items->has_ip)
1724 		sample.ip = items->ip;
1725 	else if (items->has_rip)
1726 		sample.ip = items->rip;
1727 	else
1728 		sample.ip = ptq->state->from_ip;
1729 
1730 	/* No support for guest mode at this time */
1731 	cpumode = sample.ip < ptq->pt->kernel_start ?
1732 		  PERF_RECORD_MISC_USER :
1733 		  PERF_RECORD_MISC_KERNEL;
1734 
1735 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1736 
1737 	sample.cpumode = cpumode;
1738 
1739 	if (sample_type & PERF_SAMPLE_TIME) {
1740 		u64 timestamp = 0;
1741 
1742 		if (items->has_timestamp)
1743 			timestamp = items->timestamp;
1744 		else if (!pt->timeless_decoding)
1745 			timestamp = ptq->timestamp;
1746 		if (timestamp)
1747 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1748 	}
1749 
1750 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1751 	    pt->synth_opts.callchain) {
1752 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1753 				     pt->synth_opts.callchain_sz, sample.ip,
1754 				     pt->kernel_start);
1755 		sample.callchain = ptq->chain;
1756 	}
1757 
1758 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1759 	    items->mask[INTEL_PT_GP_REGS_POS]) {
1760 		u64 regs[sizeof(sample.intr_regs.mask)];
1761 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1762 		u64 *pos;
1763 
1764 		sample.intr_regs.abi = items->is_32_bit ?
1765 				       PERF_SAMPLE_REGS_ABI_32 :
1766 				       PERF_SAMPLE_REGS_ABI_64;
1767 		sample.intr_regs.regs = regs;
1768 
1769 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1770 
1771 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1772 	}
1773 
1774 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1775 		struct {
1776 			struct branch_stack br_stack;
1777 			struct branch_entry entries[LBRS_MAX];
1778 		} br;
1779 
1780 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1781 		    items->mask[INTEL_PT_LBR_1_POS] ||
1782 		    items->mask[INTEL_PT_LBR_2_POS]) {
1783 			intel_pt_add_lbrs(&br.br_stack, items);
1784 			sample.branch_stack = &br.br_stack;
1785 		} else if (pt->synth_opts.last_branch) {
1786 			intel_pt_copy_last_branch_rb(ptq);
1787 			sample.branch_stack = ptq->last_branch;
1788 		} else {
1789 			br.br_stack.nr = 0;
1790 			sample.branch_stack = &br.br_stack;
1791 		}
1792 	}
1793 
1794 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1795 		sample.addr = items->mem_access_address;
1796 
1797 	if (sample_type & PERF_SAMPLE_WEIGHT) {
1798 		/*
1799 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1800 		 * intel_hsw_weight().
1801 		 */
1802 		if (items->has_mem_access_latency)
1803 			sample.weight = items->mem_access_latency;
1804 		if (!sample.weight && items->has_tsx_aux_info) {
1805 			/* Cycles last block */
1806 			sample.weight = (u32)items->tsx_aux_info;
1807 		}
1808 	}
1809 
1810 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1811 		u64 ax = items->has_rax ? items->rax : 0;
1812 		/* Refer kernel's intel_hsw_transaction() */
1813 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1814 
1815 		/* For RTM XABORTs also log the abort code from AX */
1816 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1817 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1818 		sample.transaction = txn;
1819 	}
1820 
1821 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1822 }
1823 
1824 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1825 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1826 {
1827 	union perf_event event;
1828 	char msg[MAX_AUXTRACE_ERROR_MSG];
1829 	int err;
1830 
1831 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1832 
1833 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1834 			     code, cpu, pid, tid, ip, msg, timestamp);
1835 
1836 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1837 	if (err)
1838 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1839 		       err);
1840 
1841 	return err;
1842 }
1843 
1844 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1845 				 const struct intel_pt_state *state)
1846 {
1847 	struct intel_pt *pt = ptq->pt;
1848 	u64 tm = ptq->timestamp;
1849 
1850 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1851 
1852 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1853 				    ptq->tid, state->from_ip, tm);
1854 }
1855 
1856 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1857 {
1858 	struct auxtrace_queue *queue;
1859 	pid_t tid = ptq->next_tid;
1860 	int err;
1861 
1862 	if (tid == -1)
1863 		return 0;
1864 
1865 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1866 
1867 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1868 
1869 	queue = &pt->queues.queue_array[ptq->queue_nr];
1870 	intel_pt_set_pid_tid_cpu(pt, queue);
1871 
1872 	ptq->next_tid = -1;
1873 
1874 	return err;
1875 }
1876 
1877 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1878 {
1879 	struct intel_pt *pt = ptq->pt;
1880 
1881 	return ip == pt->switch_ip &&
1882 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1883 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1884 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1885 }
1886 
1887 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1888 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1889 
1890 static int intel_pt_sample(struct intel_pt_queue *ptq)
1891 {
1892 	const struct intel_pt_state *state = ptq->state;
1893 	struct intel_pt *pt = ptq->pt;
1894 	int err;
1895 
1896 	if (!ptq->have_sample)
1897 		return 0;
1898 
1899 	ptq->have_sample = false;
1900 
1901 	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1902 		/*
1903 		 * Cycle count and instruction count only go together to create
1904 		 * a valid IPC ratio when the cycle count changes.
1905 		 */
1906 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1907 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1908 	}
1909 
1910 	/*
1911 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1912 	 * precedes the current timestamp.
1913 	 */
1914 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1915 		err = intel_pt_synth_pebs_sample(ptq);
1916 		if (err)
1917 			return err;
1918 	}
1919 
1920 	if (pt->sample_pwr_events) {
1921 		if (ptq->state->cbr != ptq->cbr_seen) {
1922 			err = intel_pt_synth_cbr_sample(ptq);
1923 			if (err)
1924 				return err;
1925 		}
1926 		if (state->type & INTEL_PT_PWR_EVT) {
1927 			if (state->type & INTEL_PT_MWAIT_OP) {
1928 				err = intel_pt_synth_mwait_sample(ptq);
1929 				if (err)
1930 					return err;
1931 			}
1932 			if (state->type & INTEL_PT_PWR_ENTRY) {
1933 				err = intel_pt_synth_pwre_sample(ptq);
1934 				if (err)
1935 					return err;
1936 			}
1937 			if (state->type & INTEL_PT_EX_STOP) {
1938 				err = intel_pt_synth_exstop_sample(ptq);
1939 				if (err)
1940 					return err;
1941 			}
1942 			if (state->type & INTEL_PT_PWR_EXIT) {
1943 				err = intel_pt_synth_pwrx_sample(ptq);
1944 				if (err)
1945 					return err;
1946 			}
1947 		}
1948 	}
1949 
1950 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1951 		err = intel_pt_synth_instruction_sample(ptq);
1952 		if (err)
1953 			return err;
1954 	}
1955 
1956 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1957 		err = intel_pt_synth_transaction_sample(ptq);
1958 		if (err)
1959 			return err;
1960 	}
1961 
1962 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1963 		err = intel_pt_synth_ptwrite_sample(ptq);
1964 		if (err)
1965 			return err;
1966 	}
1967 
1968 	if (!(state->type & INTEL_PT_BRANCH))
1969 		return 0;
1970 
1971 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1972 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1973 				    state->to_ip, ptq->insn_len,
1974 				    state->trace_nr);
1975 	else
1976 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1977 
1978 	if (pt->sample_branches) {
1979 		err = intel_pt_synth_branch_sample(ptq);
1980 		if (err)
1981 			return err;
1982 	}
1983 
1984 	if (pt->synth_opts.last_branch)
1985 		intel_pt_update_last_branch_rb(ptq);
1986 
1987 	if (!ptq->sync_switch)
1988 		return 0;
1989 
1990 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1991 		switch (ptq->switch_state) {
1992 		case INTEL_PT_SS_NOT_TRACING:
1993 		case INTEL_PT_SS_UNKNOWN:
1994 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1995 			err = intel_pt_next_tid(pt, ptq);
1996 			if (err)
1997 				return err;
1998 			ptq->switch_state = INTEL_PT_SS_TRACING;
1999 			break;
2000 		default:
2001 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2002 			return 1;
2003 		}
2004 	} else if (!state->to_ip) {
2005 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2006 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2007 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2008 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2009 		   state->to_ip == pt->ptss_ip &&
2010 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2011 		ptq->switch_state = INTEL_PT_SS_TRACING;
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2018 {
2019 	struct machine *machine = pt->machine;
2020 	struct map *map;
2021 	struct symbol *sym, *start;
2022 	u64 ip, switch_ip = 0;
2023 	const char *ptss;
2024 
2025 	if (ptss_ip)
2026 		*ptss_ip = 0;
2027 
2028 	map = machine__kernel_map(machine);
2029 	if (!map)
2030 		return 0;
2031 
2032 	if (map__load(map))
2033 		return 0;
2034 
2035 	start = dso__first_symbol(map->dso);
2036 
2037 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2038 		if (sym->binding == STB_GLOBAL &&
2039 		    !strcmp(sym->name, "__switch_to")) {
2040 			ip = map->unmap_ip(map, sym->start);
2041 			if (ip >= map->start && ip < map->end) {
2042 				switch_ip = ip;
2043 				break;
2044 			}
2045 		}
2046 	}
2047 
2048 	if (!switch_ip || !ptss_ip)
2049 		return 0;
2050 
2051 	if (pt->have_sched_switch == 1)
2052 		ptss = "perf_trace_sched_switch";
2053 	else
2054 		ptss = "__perf_event_task_sched_out";
2055 
2056 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2057 		if (!strcmp(sym->name, ptss)) {
2058 			ip = map->unmap_ip(map, sym->start);
2059 			if (ip >= map->start && ip < map->end) {
2060 				*ptss_ip = ip;
2061 				break;
2062 			}
2063 		}
2064 	}
2065 
2066 	return switch_ip;
2067 }
2068 
2069 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2070 {
2071 	unsigned int i;
2072 
2073 	pt->sync_switch = true;
2074 
2075 	for (i = 0; i < pt->queues.nr_queues; i++) {
2076 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2077 		struct intel_pt_queue *ptq = queue->priv;
2078 
2079 		if (ptq)
2080 			ptq->sync_switch = true;
2081 	}
2082 }
2083 
2084 /*
2085  * To filter against time ranges, it is only necessary to look at the next start
2086  * or end time.
2087  */
2088 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2089 {
2090 	struct intel_pt *pt = ptq->pt;
2091 
2092 	if (ptq->sel_start) {
2093 		/* Next time is an end time */
2094 		ptq->sel_start = false;
2095 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2096 		return true;
2097 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2098 		/* Next time is a start time */
2099 		ptq->sel_start = true;
2100 		ptq->sel_idx += 1;
2101 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2102 		return true;
2103 	}
2104 
2105 	/* No next time */
2106 	return false;
2107 }
2108 
2109 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2110 {
2111 	int err;
2112 
2113 	while (1) {
2114 		if (ptq->sel_start) {
2115 			if (ptq->timestamp >= ptq->sel_timestamp) {
2116 				/* After start time, so consider next time */
2117 				intel_pt_next_time(ptq);
2118 				if (!ptq->sel_timestamp) {
2119 					/* No end time */
2120 					return 0;
2121 				}
2122 				/* Check against end time */
2123 				continue;
2124 			}
2125 			/* Before start time, so fast forward */
2126 			ptq->have_sample = false;
2127 			if (ptq->sel_timestamp > *ff_timestamp) {
2128 				if (ptq->sync_switch) {
2129 					intel_pt_next_tid(ptq->pt, ptq);
2130 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2131 				}
2132 				*ff_timestamp = ptq->sel_timestamp;
2133 				err = intel_pt_fast_forward(ptq->decoder,
2134 							    ptq->sel_timestamp);
2135 				if (err)
2136 					return err;
2137 			}
2138 			return 0;
2139 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2140 			/* After end time, so consider next time */
2141 			if (!intel_pt_next_time(ptq)) {
2142 				/* No next time range, so stop decoding */
2143 				ptq->have_sample = false;
2144 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2145 				return 1;
2146 			}
2147 			/* Check against next start time */
2148 			continue;
2149 		} else {
2150 			/* Before end time */
2151 			return 0;
2152 		}
2153 	}
2154 }
2155 
2156 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2157 {
2158 	const struct intel_pt_state *state = ptq->state;
2159 	struct intel_pt *pt = ptq->pt;
2160 	u64 ff_timestamp = 0;
2161 	int err;
2162 
2163 	if (!pt->kernel_start) {
2164 		pt->kernel_start = machine__kernel_start(pt->machine);
2165 		if (pt->per_cpu_mmaps &&
2166 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2167 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2168 		    !pt->sampling_mode) {
2169 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2170 			if (pt->switch_ip) {
2171 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2172 					     pt->switch_ip, pt->ptss_ip);
2173 				intel_pt_enable_sync_switch(pt);
2174 			}
2175 		}
2176 	}
2177 
2178 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2179 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2180 	while (1) {
2181 		err = intel_pt_sample(ptq);
2182 		if (err)
2183 			return err;
2184 
2185 		state = intel_pt_decode(ptq->decoder);
2186 		if (state->err) {
2187 			if (state->err == INTEL_PT_ERR_NODATA)
2188 				return 1;
2189 			if (ptq->sync_switch &&
2190 			    state->from_ip >= pt->kernel_start) {
2191 				ptq->sync_switch = false;
2192 				intel_pt_next_tid(pt, ptq);
2193 			}
2194 			if (pt->synth_opts.errors) {
2195 				err = intel_ptq_synth_error(ptq, state);
2196 				if (err)
2197 					return err;
2198 			}
2199 			continue;
2200 		}
2201 
2202 		ptq->state = state;
2203 		ptq->have_sample = true;
2204 		intel_pt_sample_flags(ptq);
2205 
2206 		/* Use estimated TSC upon return to user space */
2207 		if (pt->est_tsc &&
2208 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2209 		    state->to_ip && state->to_ip < pt->kernel_start) {
2210 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2211 				     state->timestamp, state->est_timestamp);
2212 			ptq->timestamp = state->est_timestamp;
2213 		/* Use estimated TSC in unknown switch state */
2214 		} else if (ptq->sync_switch &&
2215 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2216 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2217 			   ptq->next_tid == -1) {
2218 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2219 				     state->timestamp, state->est_timestamp);
2220 			ptq->timestamp = state->est_timestamp;
2221 		} else if (state->timestamp > ptq->timestamp) {
2222 			ptq->timestamp = state->timestamp;
2223 		}
2224 
2225 		if (ptq->sel_timestamp) {
2226 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2227 			if (err)
2228 				return err;
2229 		}
2230 
2231 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2232 			*timestamp = ptq->timestamp;
2233 			return 0;
2234 		}
2235 	}
2236 	return 0;
2237 }
2238 
2239 static inline int intel_pt_update_queues(struct intel_pt *pt)
2240 {
2241 	if (pt->queues.new_data) {
2242 		pt->queues.new_data = false;
2243 		return intel_pt_setup_queues(pt);
2244 	}
2245 	return 0;
2246 }
2247 
2248 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2249 {
2250 	unsigned int queue_nr;
2251 	u64 ts;
2252 	int ret;
2253 
2254 	while (1) {
2255 		struct auxtrace_queue *queue;
2256 		struct intel_pt_queue *ptq;
2257 
2258 		if (!pt->heap.heap_cnt)
2259 			return 0;
2260 
2261 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2262 			return 0;
2263 
2264 		queue_nr = pt->heap.heap_array[0].queue_nr;
2265 		queue = &pt->queues.queue_array[queue_nr];
2266 		ptq = queue->priv;
2267 
2268 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2269 			     queue_nr, pt->heap.heap_array[0].ordinal,
2270 			     timestamp);
2271 
2272 		auxtrace_heap__pop(&pt->heap);
2273 
2274 		if (pt->heap.heap_cnt) {
2275 			ts = pt->heap.heap_array[0].ordinal + 1;
2276 			if (ts > timestamp)
2277 				ts = timestamp;
2278 		} else {
2279 			ts = timestamp;
2280 		}
2281 
2282 		intel_pt_set_pid_tid_cpu(pt, queue);
2283 
2284 		ret = intel_pt_run_decoder(ptq, &ts);
2285 
2286 		if (ret < 0) {
2287 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2288 			return ret;
2289 		}
2290 
2291 		if (!ret) {
2292 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2293 			if (ret < 0)
2294 				return ret;
2295 		} else {
2296 			ptq->on_heap = false;
2297 		}
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2304 					    u64 time_)
2305 {
2306 	struct auxtrace_queues *queues = &pt->queues;
2307 	unsigned int i;
2308 	u64 ts = 0;
2309 
2310 	for (i = 0; i < queues->nr_queues; i++) {
2311 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2312 		struct intel_pt_queue *ptq = queue->priv;
2313 
2314 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2315 			ptq->time = time_;
2316 			intel_pt_set_pid_tid_cpu(pt, queue);
2317 			intel_pt_run_decoder(ptq, &ts);
2318 		}
2319 	}
2320 	return 0;
2321 }
2322 
2323 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2324 {
2325 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2326 				    sample->pid, sample->tid, 0, sample->time);
2327 }
2328 
2329 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2330 {
2331 	unsigned i, j;
2332 
2333 	if (cpu < 0 || !pt->queues.nr_queues)
2334 		return NULL;
2335 
2336 	if ((unsigned)cpu >= pt->queues.nr_queues)
2337 		i = pt->queues.nr_queues - 1;
2338 	else
2339 		i = cpu;
2340 
2341 	if (pt->queues.queue_array[i].cpu == cpu)
2342 		return pt->queues.queue_array[i].priv;
2343 
2344 	for (j = 0; i > 0; j++) {
2345 		if (pt->queues.queue_array[--i].cpu == cpu)
2346 			return pt->queues.queue_array[i].priv;
2347 	}
2348 
2349 	for (; j < pt->queues.nr_queues; j++) {
2350 		if (pt->queues.queue_array[j].cpu == cpu)
2351 			return pt->queues.queue_array[j].priv;
2352 	}
2353 
2354 	return NULL;
2355 }
2356 
2357 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2358 				u64 timestamp)
2359 {
2360 	struct intel_pt_queue *ptq;
2361 	int err;
2362 
2363 	if (!pt->sync_switch)
2364 		return 1;
2365 
2366 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2367 	if (!ptq || !ptq->sync_switch)
2368 		return 1;
2369 
2370 	switch (ptq->switch_state) {
2371 	case INTEL_PT_SS_NOT_TRACING:
2372 		break;
2373 	case INTEL_PT_SS_UNKNOWN:
2374 	case INTEL_PT_SS_TRACING:
2375 		ptq->next_tid = tid;
2376 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2377 		return 0;
2378 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2379 		if (!ptq->on_heap) {
2380 			ptq->timestamp = perf_time_to_tsc(timestamp,
2381 							  &pt->tc);
2382 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2383 						 ptq->timestamp);
2384 			if (err)
2385 				return err;
2386 			ptq->on_heap = true;
2387 		}
2388 		ptq->switch_state = INTEL_PT_SS_TRACING;
2389 		break;
2390 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2391 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2392 		break;
2393 	default:
2394 		break;
2395 	}
2396 
2397 	ptq->next_tid = -1;
2398 
2399 	return 1;
2400 }
2401 
2402 static int intel_pt_process_switch(struct intel_pt *pt,
2403 				   struct perf_sample *sample)
2404 {
2405 	struct evsel *evsel;
2406 	pid_t tid;
2407 	int cpu, ret;
2408 
2409 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2410 	if (evsel != pt->switch_evsel)
2411 		return 0;
2412 
2413 	tid = perf_evsel__intval(evsel, sample, "next_pid");
2414 	cpu = sample->cpu;
2415 
2416 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2417 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2418 		     &pt->tc));
2419 
2420 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2421 	if (ret <= 0)
2422 		return ret;
2423 
2424 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2425 }
2426 
2427 static int intel_pt_context_switch_in(struct intel_pt *pt,
2428 				      struct perf_sample *sample)
2429 {
2430 	pid_t pid = sample->pid;
2431 	pid_t tid = sample->tid;
2432 	int cpu = sample->cpu;
2433 
2434 	if (pt->sync_switch) {
2435 		struct intel_pt_queue *ptq;
2436 
2437 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2438 		if (ptq && ptq->sync_switch) {
2439 			ptq->next_tid = -1;
2440 			switch (ptq->switch_state) {
2441 			case INTEL_PT_SS_NOT_TRACING:
2442 			case INTEL_PT_SS_UNKNOWN:
2443 			case INTEL_PT_SS_TRACING:
2444 				break;
2445 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2446 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2447 				ptq->switch_state = INTEL_PT_SS_TRACING;
2448 				break;
2449 			default:
2450 				break;
2451 			}
2452 		}
2453 	}
2454 
2455 	/*
2456 	 * If the current tid has not been updated yet, ensure it is now that
2457 	 * a "switch in" event has occurred.
2458 	 */
2459 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2460 		return 0;
2461 
2462 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2463 }
2464 
2465 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2466 				   struct perf_sample *sample)
2467 {
2468 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2469 	pid_t pid, tid;
2470 	int cpu, ret;
2471 
2472 	cpu = sample->cpu;
2473 
2474 	if (pt->have_sched_switch == 3) {
2475 		if (!out)
2476 			return intel_pt_context_switch_in(pt, sample);
2477 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2478 			pr_err("Expecting CPU-wide context switch event\n");
2479 			return -EINVAL;
2480 		}
2481 		pid = event->context_switch.next_prev_pid;
2482 		tid = event->context_switch.next_prev_tid;
2483 	} else {
2484 		if (out)
2485 			return 0;
2486 		pid = sample->pid;
2487 		tid = sample->tid;
2488 	}
2489 
2490 	if (tid == -1) {
2491 		pr_err("context_switch event has no tid\n");
2492 		return -EINVAL;
2493 	}
2494 
2495 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2496 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2497 		     &pt->tc));
2498 
2499 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2500 	if (ret <= 0)
2501 		return ret;
2502 
2503 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2504 }
2505 
2506 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2507 					 union perf_event *event,
2508 					 struct perf_sample *sample)
2509 {
2510 	if (!pt->per_cpu_mmaps)
2511 		return 0;
2512 
2513 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2514 		     sample->cpu, event->itrace_start.pid,
2515 		     event->itrace_start.tid, sample->time,
2516 		     perf_time_to_tsc(sample->time, &pt->tc));
2517 
2518 	return machine__set_current_tid(pt->machine, sample->cpu,
2519 					event->itrace_start.pid,
2520 					event->itrace_start.tid);
2521 }
2522 
2523 static int intel_pt_process_event(struct perf_session *session,
2524 				  union perf_event *event,
2525 				  struct perf_sample *sample,
2526 				  struct perf_tool *tool)
2527 {
2528 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2529 					   auxtrace);
2530 	u64 timestamp;
2531 	int err = 0;
2532 
2533 	if (dump_trace)
2534 		return 0;
2535 
2536 	if (!tool->ordered_events) {
2537 		pr_err("Intel Processor Trace requires ordered events\n");
2538 		return -EINVAL;
2539 	}
2540 
2541 	if (sample->time && sample->time != (u64)-1)
2542 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2543 	else
2544 		timestamp = 0;
2545 
2546 	if (timestamp || pt->timeless_decoding) {
2547 		err = intel_pt_update_queues(pt);
2548 		if (err)
2549 			return err;
2550 	}
2551 
2552 	if (pt->timeless_decoding) {
2553 		if (event->header.type == PERF_RECORD_EXIT) {
2554 			err = intel_pt_process_timeless_queues(pt,
2555 							       event->fork.tid,
2556 							       sample->time);
2557 		}
2558 	} else if (timestamp) {
2559 		err = intel_pt_process_queues(pt, timestamp);
2560 	}
2561 	if (err)
2562 		return err;
2563 
2564 	if (event->header.type == PERF_RECORD_AUX &&
2565 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2566 	    pt->synth_opts.errors) {
2567 		err = intel_pt_lost(pt, sample);
2568 		if (err)
2569 			return err;
2570 	}
2571 
2572 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2573 		err = intel_pt_process_switch(pt, sample);
2574 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2575 		err = intel_pt_process_itrace_start(pt, event, sample);
2576 	else if (event->header.type == PERF_RECORD_SWITCH ||
2577 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2578 		err = intel_pt_context_switch(pt, event, sample);
2579 
2580 	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2581 		     event->header.type, sample->cpu, sample->time, timestamp);
2582 	intel_pt_log_event(event);
2583 
2584 	return err;
2585 }
2586 
2587 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2588 {
2589 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2590 					   auxtrace);
2591 	int ret;
2592 
2593 	if (dump_trace)
2594 		return 0;
2595 
2596 	if (!tool->ordered_events)
2597 		return -EINVAL;
2598 
2599 	ret = intel_pt_update_queues(pt);
2600 	if (ret < 0)
2601 		return ret;
2602 
2603 	if (pt->timeless_decoding)
2604 		return intel_pt_process_timeless_queues(pt, -1,
2605 							MAX_TIMESTAMP - 1);
2606 
2607 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2608 }
2609 
2610 static void intel_pt_free_events(struct perf_session *session)
2611 {
2612 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2613 					   auxtrace);
2614 	struct auxtrace_queues *queues = &pt->queues;
2615 	unsigned int i;
2616 
2617 	for (i = 0; i < queues->nr_queues; i++) {
2618 		intel_pt_free_queue(queues->queue_array[i].priv);
2619 		queues->queue_array[i].priv = NULL;
2620 	}
2621 	intel_pt_log_disable();
2622 	auxtrace_queues__free(queues);
2623 }
2624 
2625 static void intel_pt_free(struct perf_session *session)
2626 {
2627 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2628 					   auxtrace);
2629 
2630 	auxtrace_heap__free(&pt->heap);
2631 	intel_pt_free_events(session);
2632 	session->auxtrace = NULL;
2633 	thread__put(pt->unknown_thread);
2634 	addr_filters__exit(&pt->filts);
2635 	zfree(&pt->filter);
2636 	zfree(&pt->time_ranges);
2637 	free(pt);
2638 }
2639 
2640 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2641 					   union perf_event *event,
2642 					   struct perf_tool *tool __maybe_unused)
2643 {
2644 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2645 					   auxtrace);
2646 
2647 	if (!pt->data_queued) {
2648 		struct auxtrace_buffer *buffer;
2649 		off_t data_offset;
2650 		int fd = perf_data__fd(session->data);
2651 		int err;
2652 
2653 		if (perf_data__is_pipe(session->data)) {
2654 			data_offset = 0;
2655 		} else {
2656 			data_offset = lseek(fd, 0, SEEK_CUR);
2657 			if (data_offset == -1)
2658 				return -errno;
2659 		}
2660 
2661 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2662 						 data_offset, &buffer);
2663 		if (err)
2664 			return err;
2665 
2666 		/* Dump here now we have copied a piped trace out of the pipe */
2667 		if (dump_trace) {
2668 			if (auxtrace_buffer__get_data(buffer, fd)) {
2669 				intel_pt_dump_event(pt, buffer->data,
2670 						    buffer->size);
2671 				auxtrace_buffer__put_data(buffer);
2672 			}
2673 		}
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 struct intel_pt_synth {
2680 	struct perf_tool dummy_tool;
2681 	struct perf_session *session;
2682 };
2683 
2684 static int intel_pt_event_synth(struct perf_tool *tool,
2685 				union perf_event *event,
2686 				struct perf_sample *sample __maybe_unused,
2687 				struct machine *machine __maybe_unused)
2688 {
2689 	struct intel_pt_synth *intel_pt_synth =
2690 			container_of(tool, struct intel_pt_synth, dummy_tool);
2691 
2692 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2693 						 NULL);
2694 }
2695 
2696 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2697 				struct perf_event_attr *attr, u64 id)
2698 {
2699 	struct intel_pt_synth intel_pt_synth;
2700 	int err;
2701 
2702 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2703 		 name, id, (u64)attr->sample_type);
2704 
2705 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2706 	intel_pt_synth.session = session;
2707 
2708 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2709 					  &id, intel_pt_event_synth);
2710 	if (err)
2711 		pr_err("%s: failed to synthesize '%s' event type\n",
2712 		       __func__, name);
2713 
2714 	return err;
2715 }
2716 
2717 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2718 				    const char *name)
2719 {
2720 	struct evsel *evsel;
2721 
2722 	evlist__for_each_entry(evlist, evsel) {
2723 		if (evsel->core.id && evsel->core.id[0] == id) {
2724 			if (evsel->name)
2725 				zfree(&evsel->name);
2726 			evsel->name = strdup(name);
2727 			break;
2728 		}
2729 	}
2730 }
2731 
2732 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2733 					 struct evlist *evlist)
2734 {
2735 	struct evsel *evsel;
2736 
2737 	evlist__for_each_entry(evlist, evsel) {
2738 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2739 			return evsel;
2740 	}
2741 
2742 	return NULL;
2743 }
2744 
2745 static int intel_pt_synth_events(struct intel_pt *pt,
2746 				 struct perf_session *session)
2747 {
2748 	struct evlist *evlist = session->evlist;
2749 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2750 	struct perf_event_attr attr;
2751 	u64 id;
2752 	int err;
2753 
2754 	if (!evsel) {
2755 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2756 		return 0;
2757 	}
2758 
2759 	memset(&attr, 0, sizeof(struct perf_event_attr));
2760 	attr.size = sizeof(struct perf_event_attr);
2761 	attr.type = PERF_TYPE_HARDWARE;
2762 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2763 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2764 			    PERF_SAMPLE_PERIOD;
2765 	if (pt->timeless_decoding)
2766 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2767 	else
2768 		attr.sample_type |= PERF_SAMPLE_TIME;
2769 	if (!pt->per_cpu_mmaps)
2770 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2771 	attr.exclude_user = evsel->core.attr.exclude_user;
2772 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2773 	attr.exclude_hv = evsel->core.attr.exclude_hv;
2774 	attr.exclude_host = evsel->core.attr.exclude_host;
2775 	attr.exclude_guest = evsel->core.attr.exclude_guest;
2776 	attr.sample_id_all = evsel->core.attr.sample_id_all;
2777 	attr.read_format = evsel->core.attr.read_format;
2778 
2779 	id = evsel->core.id[0] + 1000000000;
2780 	if (!id)
2781 		id = 1;
2782 
2783 	if (pt->synth_opts.branches) {
2784 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2785 		attr.sample_period = 1;
2786 		attr.sample_type |= PERF_SAMPLE_ADDR;
2787 		err = intel_pt_synth_event(session, "branches", &attr, id);
2788 		if (err)
2789 			return err;
2790 		pt->sample_branches = true;
2791 		pt->branches_sample_type = attr.sample_type;
2792 		pt->branches_id = id;
2793 		id += 1;
2794 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2795 	}
2796 
2797 	if (pt->synth_opts.callchain)
2798 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2799 	if (pt->synth_opts.last_branch)
2800 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2801 
2802 	if (pt->synth_opts.instructions) {
2803 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2804 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2805 			attr.sample_period =
2806 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2807 		else
2808 			attr.sample_period = pt->synth_opts.period;
2809 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2810 		if (err)
2811 			return err;
2812 		pt->sample_instructions = true;
2813 		pt->instructions_sample_type = attr.sample_type;
2814 		pt->instructions_id = id;
2815 		id += 1;
2816 	}
2817 
2818 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2819 	attr.sample_period = 1;
2820 
2821 	if (pt->synth_opts.transactions) {
2822 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2823 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2824 		if (err)
2825 			return err;
2826 		pt->sample_transactions = true;
2827 		pt->transactions_sample_type = attr.sample_type;
2828 		pt->transactions_id = id;
2829 		intel_pt_set_event_name(evlist, id, "transactions");
2830 		id += 1;
2831 	}
2832 
2833 	attr.type = PERF_TYPE_SYNTH;
2834 	attr.sample_type |= PERF_SAMPLE_RAW;
2835 
2836 	if (pt->synth_opts.ptwrites) {
2837 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2838 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2839 		if (err)
2840 			return err;
2841 		pt->sample_ptwrites = true;
2842 		pt->ptwrites_sample_type = attr.sample_type;
2843 		pt->ptwrites_id = id;
2844 		intel_pt_set_event_name(evlist, id, "ptwrite");
2845 		id += 1;
2846 	}
2847 
2848 	if (pt->synth_opts.pwr_events) {
2849 		pt->sample_pwr_events = true;
2850 		pt->pwr_events_sample_type = attr.sample_type;
2851 
2852 		attr.config = PERF_SYNTH_INTEL_CBR;
2853 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2854 		if (err)
2855 			return err;
2856 		pt->cbr_id = id;
2857 		intel_pt_set_event_name(evlist, id, "cbr");
2858 		id += 1;
2859 	}
2860 
2861 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2862 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2863 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2864 		if (err)
2865 			return err;
2866 		pt->mwait_id = id;
2867 		intel_pt_set_event_name(evlist, id, "mwait");
2868 		id += 1;
2869 
2870 		attr.config = PERF_SYNTH_INTEL_PWRE;
2871 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2872 		if (err)
2873 			return err;
2874 		pt->pwre_id = id;
2875 		intel_pt_set_event_name(evlist, id, "pwre");
2876 		id += 1;
2877 
2878 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2879 		err = intel_pt_synth_event(session, "exstop", &attr, id);
2880 		if (err)
2881 			return err;
2882 		pt->exstop_id = id;
2883 		intel_pt_set_event_name(evlist, id, "exstop");
2884 		id += 1;
2885 
2886 		attr.config = PERF_SYNTH_INTEL_PWRX;
2887 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2888 		if (err)
2889 			return err;
2890 		pt->pwrx_id = id;
2891 		intel_pt_set_event_name(evlist, id, "pwrx");
2892 		id += 1;
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2899 {
2900 	struct evsel *evsel;
2901 
2902 	if (!pt->synth_opts.other_events)
2903 		return;
2904 
2905 	evlist__for_each_entry(pt->session->evlist, evsel) {
2906 		if (evsel->core.attr.aux_output && evsel->core.id) {
2907 			pt->sample_pebs = true;
2908 			pt->pebs_evsel = evsel;
2909 			return;
2910 		}
2911 	}
2912 }
2913 
2914 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
2915 {
2916 	struct evsel *evsel;
2917 
2918 	evlist__for_each_entry_reverse(evlist, evsel) {
2919 		const char *name = perf_evsel__name(evsel);
2920 
2921 		if (!strcmp(name, "sched:sched_switch"))
2922 			return evsel;
2923 	}
2924 
2925 	return NULL;
2926 }
2927 
2928 static bool intel_pt_find_switch(struct evlist *evlist)
2929 {
2930 	struct evsel *evsel;
2931 
2932 	evlist__for_each_entry(evlist, evsel) {
2933 		if (evsel->core.attr.context_switch)
2934 			return true;
2935 	}
2936 
2937 	return false;
2938 }
2939 
2940 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2941 {
2942 	struct intel_pt *pt = data;
2943 
2944 	if (!strcmp(var, "intel-pt.mispred-all"))
2945 		pt->mispred_all = perf_config_bool(var, value);
2946 
2947 	return 0;
2948 }
2949 
2950 /* Find least TSC which converts to ns or later */
2951 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
2952 {
2953 	u64 tsc, tm;
2954 
2955 	tsc = perf_time_to_tsc(ns, &pt->tc);
2956 
2957 	while (1) {
2958 		tm = tsc_to_perf_time(tsc, &pt->tc);
2959 		if (tm < ns)
2960 			break;
2961 		tsc -= 1;
2962 	}
2963 
2964 	while (tm < ns)
2965 		tm = tsc_to_perf_time(++tsc, &pt->tc);
2966 
2967 	return tsc;
2968 }
2969 
2970 /* Find greatest TSC which converts to ns or earlier */
2971 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
2972 {
2973 	u64 tsc, tm;
2974 
2975 	tsc = perf_time_to_tsc(ns, &pt->tc);
2976 
2977 	while (1) {
2978 		tm = tsc_to_perf_time(tsc, &pt->tc);
2979 		if (tm > ns)
2980 			break;
2981 		tsc += 1;
2982 	}
2983 
2984 	while (tm > ns)
2985 		tm = tsc_to_perf_time(--tsc, &pt->tc);
2986 
2987 	return tsc;
2988 }
2989 
2990 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
2991 				      struct itrace_synth_opts *opts)
2992 {
2993 	struct perf_time_interval *p = opts->ptime_range;
2994 	int n = opts->range_num;
2995 	int i;
2996 
2997 	if (!n || !p || pt->timeless_decoding)
2998 		return 0;
2999 
3000 	pt->time_ranges = calloc(n, sizeof(struct range));
3001 	if (!pt->time_ranges)
3002 		return -ENOMEM;
3003 
3004 	pt->range_cnt = n;
3005 
3006 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3007 
3008 	for (i = 0; i < n; i++) {
3009 		struct range *r = &pt->time_ranges[i];
3010 		u64 ts = p[i].start;
3011 		u64 te = p[i].end;
3012 
3013 		/*
3014 		 * Take care to ensure the TSC range matches the perf-time range
3015 		 * when converted back to perf-time.
3016 		 */
3017 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3018 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3019 
3020 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3021 			     i, ts, te);
3022 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3023 			     i, r->start, r->end);
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static const char * const intel_pt_info_fmts[] = {
3030 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3031 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3032 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3033 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3034 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3035 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3036 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3037 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3038 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3039 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3040 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3041 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3042 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3043 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3044 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3045 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3046 };
3047 
3048 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3049 {
3050 	int i;
3051 
3052 	if (!dump_trace)
3053 		return;
3054 
3055 	for (i = start; i <= finish; i++)
3056 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3057 }
3058 
3059 static void intel_pt_print_info_str(const char *name, const char *str)
3060 {
3061 	if (!dump_trace)
3062 		return;
3063 
3064 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3065 }
3066 
3067 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3068 {
3069 	return auxtrace_info->header.size >=
3070 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3071 }
3072 
3073 int intel_pt_process_auxtrace_info(union perf_event *event,
3074 				   struct perf_session *session)
3075 {
3076 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3077 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3078 	struct intel_pt *pt;
3079 	void *info_end;
3080 	__u64 *info;
3081 	int err;
3082 
3083 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3084 					min_sz)
3085 		return -EINVAL;
3086 
3087 	pt = zalloc(sizeof(struct intel_pt));
3088 	if (!pt)
3089 		return -ENOMEM;
3090 
3091 	addr_filters__init(&pt->filts);
3092 
3093 	err = perf_config(intel_pt_perf_config, pt);
3094 	if (err)
3095 		goto err_free;
3096 
3097 	err = auxtrace_queues__init(&pt->queues);
3098 	if (err)
3099 		goto err_free;
3100 
3101 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3102 
3103 	pt->session = session;
3104 	pt->machine = &session->machines.host; /* No kvm support */
3105 	pt->auxtrace_type = auxtrace_info->type;
3106 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3107 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3108 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3109 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3110 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3111 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3112 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3113 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3114 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3115 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3116 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3117 			    INTEL_PT_PER_CPU_MMAPS);
3118 
3119 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3120 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3121 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3122 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3123 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3124 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3125 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3126 				    INTEL_PT_CYC_BIT);
3127 	}
3128 
3129 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3130 		pt->max_non_turbo_ratio =
3131 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3132 		intel_pt_print_info(&auxtrace_info->priv[0],
3133 				    INTEL_PT_MAX_NONTURBO_RATIO,
3134 				    INTEL_PT_MAX_NONTURBO_RATIO);
3135 	}
3136 
3137 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3138 	info_end = (void *)info + auxtrace_info->header.size;
3139 
3140 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3141 		size_t len;
3142 
3143 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3144 		intel_pt_print_info(&auxtrace_info->priv[0],
3145 				    INTEL_PT_FILTER_STR_LEN,
3146 				    INTEL_PT_FILTER_STR_LEN);
3147 		if (len) {
3148 			const char *filter = (const char *)info;
3149 
3150 			len = roundup(len + 1, 8);
3151 			info += len >> 3;
3152 			if ((void *)info > info_end) {
3153 				pr_err("%s: bad filter string length\n", __func__);
3154 				err = -EINVAL;
3155 				goto err_free_queues;
3156 			}
3157 			pt->filter = memdup(filter, len);
3158 			if (!pt->filter) {
3159 				err = -ENOMEM;
3160 				goto err_free_queues;
3161 			}
3162 			if (session->header.needs_swap)
3163 				mem_bswap_64(pt->filter, len);
3164 			if (pt->filter[len - 1]) {
3165 				pr_err("%s: filter string not null terminated\n", __func__);
3166 				err = -EINVAL;
3167 				goto err_free_queues;
3168 			}
3169 			err = addr_filters__parse_bare_filter(&pt->filts,
3170 							      filter);
3171 			if (err)
3172 				goto err_free_queues;
3173 		}
3174 		intel_pt_print_info_str("Filter string", pt->filter);
3175 	}
3176 
3177 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3178 	if (pt->timeless_decoding && !pt->tc.time_mult)
3179 		pt->tc.time_mult = 1;
3180 	pt->have_tsc = intel_pt_have_tsc(pt);
3181 	pt->sampling_mode = false;
3182 	pt->est_tsc = !pt->timeless_decoding;
3183 
3184 	pt->unknown_thread = thread__new(999999999, 999999999);
3185 	if (!pt->unknown_thread) {
3186 		err = -ENOMEM;
3187 		goto err_free_queues;
3188 	}
3189 
3190 	/*
3191 	 * Since this thread will not be kept in any rbtree not in a
3192 	 * list, initialize its list node so that at thread__put() the
3193 	 * current thread lifetime assuption is kept and we don't segfault
3194 	 * at list_del_init().
3195 	 */
3196 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3197 
3198 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3199 	if (err)
3200 		goto err_delete_thread;
3201 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
3202 		err = -ENOMEM;
3203 		goto err_delete_thread;
3204 	}
3205 
3206 	pt->auxtrace.process_event = intel_pt_process_event;
3207 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3208 	pt->auxtrace.flush_events = intel_pt_flush;
3209 	pt->auxtrace.free_events = intel_pt_free_events;
3210 	pt->auxtrace.free = intel_pt_free;
3211 	session->auxtrace = &pt->auxtrace;
3212 
3213 	if (dump_trace)
3214 		return 0;
3215 
3216 	if (pt->have_sched_switch == 1) {
3217 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3218 		if (!pt->switch_evsel) {
3219 			pr_err("%s: missing sched_switch event\n", __func__);
3220 			err = -EINVAL;
3221 			goto err_delete_thread;
3222 		}
3223 	} else if (pt->have_sched_switch == 2 &&
3224 		   !intel_pt_find_switch(session->evlist)) {
3225 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3226 		err = -EINVAL;
3227 		goto err_delete_thread;
3228 	}
3229 
3230 	if (session->itrace_synth_opts->set) {
3231 		pt->synth_opts = *session->itrace_synth_opts;
3232 	} else {
3233 		itrace_synth_opts__set_default(&pt->synth_opts,
3234 				session->itrace_synth_opts->default_no_sample);
3235 		if (!session->itrace_synth_opts->default_no_sample &&
3236 		    !session->itrace_synth_opts->inject) {
3237 			pt->synth_opts.branches = false;
3238 			pt->synth_opts.callchain = true;
3239 		}
3240 		pt->synth_opts.thread_stack =
3241 				session->itrace_synth_opts->thread_stack;
3242 	}
3243 
3244 	if (pt->synth_opts.log)
3245 		intel_pt_log_enable();
3246 
3247 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3248 	if (pt->tc.time_mult) {
3249 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3250 
3251 		if (!pt->max_non_turbo_ratio)
3252 			pt->max_non_turbo_ratio =
3253 					(tsc_freq + 50000000) / 100000000;
3254 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3255 		intel_pt_log("Maximum non-turbo ratio %u\n",
3256 			     pt->max_non_turbo_ratio);
3257 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3258 	}
3259 
3260 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3261 	if (err)
3262 		goto err_delete_thread;
3263 
3264 	if (pt->synth_opts.calls)
3265 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3266 				       PERF_IP_FLAG_TRACE_END;
3267 	if (pt->synth_opts.returns)
3268 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3269 				       PERF_IP_FLAG_TRACE_BEGIN;
3270 
3271 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3272 		symbol_conf.use_callchain = true;
3273 		if (callchain_register_param(&callchain_param) < 0) {
3274 			symbol_conf.use_callchain = false;
3275 			pt->synth_opts.callchain = false;
3276 		}
3277 	}
3278 
3279 	err = intel_pt_synth_events(pt, session);
3280 	if (err)
3281 		goto err_delete_thread;
3282 
3283 	intel_pt_setup_pebs_events(pt);
3284 
3285 	err = auxtrace_queues__process_index(&pt->queues, session);
3286 	if (err)
3287 		goto err_delete_thread;
3288 
3289 	if (pt->queues.populated)
3290 		pt->data_queued = true;
3291 
3292 	if (pt->timeless_decoding)
3293 		pr_debug2("Intel PT decoding without timestamps\n");
3294 
3295 	return 0;
3296 
3297 err_delete_thread:
3298 	thread__zput(pt->unknown_thread);
3299 err_free_queues:
3300 	intel_pt_log_disable();
3301 	auxtrace_queues__free(&pt->queues);
3302 	session->auxtrace = NULL;
3303 err_free:
3304 	addr_filters__exit(&pt->filts);
3305 	zfree(&pt->filter);
3306 	zfree(&pt->time_ranges);
3307 	free(pt);
3308 	return err;
3309 }
3310