xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/synthetic-events.h"
37 #include "time-utils.h"
38 
39 #include "../arch/x86/include/uapi/asm/perf_regs.h"
40 
41 #include "intel-pt-decoder/intel-pt-log.h"
42 #include "intel-pt-decoder/intel-pt-decoder.h"
43 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
44 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
45 
46 #define MAX_TIMESTAMP (~0ULL)
47 
48 struct range {
49 	u64 start;
50 	u64 end;
51 };
52 
53 struct intel_pt {
54 	struct auxtrace auxtrace;
55 	struct auxtrace_queues queues;
56 	struct auxtrace_heap heap;
57 	u32 auxtrace_type;
58 	struct perf_session *session;
59 	struct machine *machine;
60 	struct evsel *switch_evsel;
61 	struct thread *unknown_thread;
62 	bool timeless_decoding;
63 	bool sampling_mode;
64 	bool snapshot_mode;
65 	bool per_cpu_mmaps;
66 	bool have_tsc;
67 	bool data_queued;
68 	bool est_tsc;
69 	bool sync_switch;
70 	bool mispred_all;
71 	int have_sched_switch;
72 	u32 pmu_type;
73 	u64 kernel_start;
74 	u64 switch_ip;
75 	u64 ptss_ip;
76 
77 	struct perf_tsc_conversion tc;
78 	bool cap_user_time_zero;
79 
80 	struct itrace_synth_opts synth_opts;
81 
82 	bool sample_instructions;
83 	u64 instructions_sample_type;
84 	u64 instructions_id;
85 
86 	bool sample_branches;
87 	u32 branches_filter;
88 	u64 branches_sample_type;
89 	u64 branches_id;
90 
91 	bool sample_transactions;
92 	u64 transactions_sample_type;
93 	u64 transactions_id;
94 
95 	bool sample_ptwrites;
96 	u64 ptwrites_sample_type;
97 	u64 ptwrites_id;
98 
99 	bool sample_pwr_events;
100 	u64 pwr_events_sample_type;
101 	u64 mwait_id;
102 	u64 pwre_id;
103 	u64 exstop_id;
104 	u64 pwrx_id;
105 	u64 cbr_id;
106 
107 	bool sample_pebs;
108 	struct evsel *pebs_evsel;
109 
110 	u64 tsc_bit;
111 	u64 mtc_bit;
112 	u64 mtc_freq_bits;
113 	u32 tsc_ctc_ratio_n;
114 	u32 tsc_ctc_ratio_d;
115 	u64 cyc_bit;
116 	u64 noretcomp_bit;
117 	unsigned max_non_turbo_ratio;
118 	unsigned cbr2khz;
119 
120 	unsigned long num_events;
121 
122 	char *filter;
123 	struct addr_filters filts;
124 
125 	struct range *time_ranges;
126 	unsigned int range_cnt;
127 };
128 
129 enum switch_state {
130 	INTEL_PT_SS_NOT_TRACING,
131 	INTEL_PT_SS_UNKNOWN,
132 	INTEL_PT_SS_TRACING,
133 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
134 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
135 };
136 
137 struct intel_pt_queue {
138 	struct intel_pt *pt;
139 	unsigned int queue_nr;
140 	struct auxtrace_buffer *buffer;
141 	struct auxtrace_buffer *old_buffer;
142 	void *decoder;
143 	const struct intel_pt_state *state;
144 	struct ip_callchain *chain;
145 	struct branch_stack *last_branch;
146 	struct branch_stack *last_branch_rb;
147 	size_t last_branch_pos;
148 	union perf_event *event_buf;
149 	bool on_heap;
150 	bool stop;
151 	bool step_through_buffers;
152 	bool use_buffer_pid_tid;
153 	bool sync_switch;
154 	pid_t pid, tid;
155 	int cpu;
156 	int switch_state;
157 	pid_t next_tid;
158 	struct thread *thread;
159 	bool exclude_kernel;
160 	bool have_sample;
161 	u64 time;
162 	u64 timestamp;
163 	u64 sel_timestamp;
164 	bool sel_start;
165 	unsigned int sel_idx;
166 	u32 flags;
167 	u16 insn_len;
168 	u64 last_insn_cnt;
169 	u64 ipc_insn_cnt;
170 	u64 ipc_cyc_cnt;
171 	u64 last_in_insn_cnt;
172 	u64 last_in_cyc_cnt;
173 	u64 last_br_insn_cnt;
174 	u64 last_br_cyc_cnt;
175 	unsigned int cbr_seen;
176 	char insn[INTEL_PT_INSN_BUF_SZ];
177 };
178 
179 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
180 			  unsigned char *buf, size_t len)
181 {
182 	struct intel_pt_pkt packet;
183 	size_t pos = 0;
184 	int ret, pkt_len, i;
185 	char desc[INTEL_PT_PKT_DESC_MAX];
186 	const char *color = PERF_COLOR_BLUE;
187 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
188 
189 	color_fprintf(stdout, color,
190 		      ". ... Intel Processor Trace data: size %zu bytes\n",
191 		      len);
192 
193 	while (len) {
194 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
195 		if (ret > 0)
196 			pkt_len = ret;
197 		else
198 			pkt_len = 1;
199 		printf(".");
200 		color_fprintf(stdout, color, "  %08x: ", pos);
201 		for (i = 0; i < pkt_len; i++)
202 			color_fprintf(stdout, color, " %02x", buf[i]);
203 		for (; i < 16; i++)
204 			color_fprintf(stdout, color, "   ");
205 		if (ret > 0) {
206 			ret = intel_pt_pkt_desc(&packet, desc,
207 						INTEL_PT_PKT_DESC_MAX);
208 			if (ret > 0)
209 				color_fprintf(stdout, color, " %s\n", desc);
210 		} else {
211 			color_fprintf(stdout, color, " Bad packet!\n");
212 		}
213 		pos += pkt_len;
214 		buf += pkt_len;
215 		len -= pkt_len;
216 	}
217 }
218 
219 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
220 				size_t len)
221 {
222 	printf(".\n");
223 	intel_pt_dump(pt, buf, len);
224 }
225 
226 static void intel_pt_log_event(union perf_event *event)
227 {
228 	FILE *f = intel_pt_log_fp();
229 
230 	if (!intel_pt_enable_logging || !f)
231 		return;
232 
233 	perf_event__fprintf(event, f);
234 }
235 
236 static void intel_pt_dump_sample(struct perf_session *session,
237 				 struct perf_sample *sample)
238 {
239 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
240 					   auxtrace);
241 
242 	printf("\n");
243 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
244 }
245 
246 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
247 				   struct auxtrace_buffer *b)
248 {
249 	bool consecutive = false;
250 	void *start;
251 
252 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
253 				      pt->have_tsc, &consecutive);
254 	if (!start)
255 		return -EINVAL;
256 	b->use_size = b->data + b->size - start;
257 	b->use_data = start;
258 	if (b->use_size && consecutive)
259 		b->consecutive = true;
260 	return 0;
261 }
262 
263 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
264 			       struct auxtrace_buffer *buffer,
265 			       struct auxtrace_buffer *old_buffer,
266 			       struct intel_pt_buffer *b)
267 {
268 	bool might_overlap;
269 
270 	if (!buffer->data) {
271 		int fd = perf_data__fd(ptq->pt->session->data);
272 
273 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
274 		if (!buffer->data)
275 			return -ENOMEM;
276 	}
277 
278 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
279 	if (might_overlap && !buffer->consecutive && old_buffer &&
280 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
281 		return -ENOMEM;
282 
283 	if (buffer->use_data) {
284 		b->len = buffer->use_size;
285 		b->buf = buffer->use_data;
286 	} else {
287 		b->len = buffer->size;
288 		b->buf = buffer->data;
289 	}
290 	b->ref_timestamp = buffer->reference;
291 
292 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
293 		b->consecutive = false;
294 		b->trace_nr = buffer->buffer_nr + 1;
295 	} else {
296 		b->consecutive = true;
297 	}
298 
299 	return 0;
300 }
301 
302 /* Do not drop buffers with references - refer intel_pt_get_trace() */
303 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
304 					   struct auxtrace_buffer *buffer)
305 {
306 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
307 		return;
308 
309 	auxtrace_buffer__drop_data(buffer);
310 }
311 
312 /* Must be serialized with respect to intel_pt_get_trace() */
313 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
314 			      void *cb_data)
315 {
316 	struct intel_pt_queue *ptq = data;
317 	struct auxtrace_buffer *buffer = ptq->buffer;
318 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
319 	struct auxtrace_queue *queue;
320 	int err = 0;
321 
322 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
323 
324 	while (1) {
325 		struct intel_pt_buffer b = { .len = 0 };
326 
327 		buffer = auxtrace_buffer__next(queue, buffer);
328 		if (!buffer)
329 			break;
330 
331 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
332 		if (err)
333 			break;
334 
335 		if (b.len) {
336 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
337 			old_buffer = buffer;
338 		} else {
339 			intel_pt_lookahead_drop_buffer(ptq, buffer);
340 			continue;
341 		}
342 
343 		err = cb(&b, cb_data);
344 		if (err)
345 			break;
346 	}
347 
348 	if (buffer != old_buffer)
349 		intel_pt_lookahead_drop_buffer(ptq, buffer);
350 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
351 
352 	return err;
353 }
354 
355 /*
356  * This function assumes data is processed sequentially only.
357  * Must be serialized with respect to intel_pt_lookahead()
358  */
359 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
360 {
361 	struct intel_pt_queue *ptq = data;
362 	struct auxtrace_buffer *buffer = ptq->buffer;
363 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
364 	struct auxtrace_queue *queue;
365 	int err;
366 
367 	if (ptq->stop) {
368 		b->len = 0;
369 		return 0;
370 	}
371 
372 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
373 
374 	buffer = auxtrace_buffer__next(queue, buffer);
375 	if (!buffer) {
376 		if (old_buffer)
377 			auxtrace_buffer__drop_data(old_buffer);
378 		b->len = 0;
379 		return 0;
380 	}
381 
382 	ptq->buffer = buffer;
383 
384 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
385 	if (err)
386 		return err;
387 
388 	if (ptq->step_through_buffers)
389 		ptq->stop = true;
390 
391 	if (b->len) {
392 		if (old_buffer)
393 			auxtrace_buffer__drop_data(old_buffer);
394 		ptq->old_buffer = buffer;
395 	} else {
396 		auxtrace_buffer__drop_data(buffer);
397 		return intel_pt_get_trace(b, data);
398 	}
399 
400 	return 0;
401 }
402 
403 struct intel_pt_cache_entry {
404 	struct auxtrace_cache_entry	entry;
405 	u64				insn_cnt;
406 	u64				byte_cnt;
407 	enum intel_pt_insn_op		op;
408 	enum intel_pt_insn_branch	branch;
409 	int				length;
410 	int32_t				rel;
411 	char				insn[INTEL_PT_INSN_BUF_SZ];
412 };
413 
414 static int intel_pt_config_div(const char *var, const char *value, void *data)
415 {
416 	int *d = data;
417 	long val;
418 
419 	if (!strcmp(var, "intel-pt.cache-divisor")) {
420 		val = strtol(value, NULL, 0);
421 		if (val > 0 && val <= INT_MAX)
422 			*d = val;
423 	}
424 
425 	return 0;
426 }
427 
428 static int intel_pt_cache_divisor(void)
429 {
430 	static int d;
431 
432 	if (d)
433 		return d;
434 
435 	perf_config(intel_pt_config_div, &d);
436 
437 	if (!d)
438 		d = 64;
439 
440 	return d;
441 }
442 
443 static unsigned int intel_pt_cache_size(struct dso *dso,
444 					struct machine *machine)
445 {
446 	off_t size;
447 
448 	size = dso__data_size(dso, machine);
449 	size /= intel_pt_cache_divisor();
450 	if (size < 1000)
451 		return 10;
452 	if (size > (1 << 21))
453 		return 21;
454 	return 32 - __builtin_clz(size);
455 }
456 
457 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
458 					     struct machine *machine)
459 {
460 	struct auxtrace_cache *c;
461 	unsigned int bits;
462 
463 	if (dso->auxtrace_cache)
464 		return dso->auxtrace_cache;
465 
466 	bits = intel_pt_cache_size(dso, machine);
467 
468 	/* Ignoring cache creation failure */
469 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
470 
471 	dso->auxtrace_cache = c;
472 
473 	return c;
474 }
475 
476 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
477 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
478 			      struct intel_pt_insn *intel_pt_insn)
479 {
480 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
481 	struct intel_pt_cache_entry *e;
482 	int err;
483 
484 	if (!c)
485 		return -ENOMEM;
486 
487 	e = auxtrace_cache__alloc_entry(c);
488 	if (!e)
489 		return -ENOMEM;
490 
491 	e->insn_cnt = insn_cnt;
492 	e->byte_cnt = byte_cnt;
493 	e->op = intel_pt_insn->op;
494 	e->branch = intel_pt_insn->branch;
495 	e->length = intel_pt_insn->length;
496 	e->rel = intel_pt_insn->rel;
497 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
498 
499 	err = auxtrace_cache__add(c, offset, &e->entry);
500 	if (err)
501 		auxtrace_cache__free_entry(c, e);
502 
503 	return err;
504 }
505 
506 static struct intel_pt_cache_entry *
507 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
508 {
509 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
510 
511 	if (!c)
512 		return NULL;
513 
514 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
515 }
516 
517 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
518 {
519 	return ip >= pt->kernel_start ?
520 	       PERF_RECORD_MISC_KERNEL :
521 	       PERF_RECORD_MISC_USER;
522 }
523 
524 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
525 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
526 				   uint64_t to_ip, uint64_t max_insn_cnt,
527 				   void *data)
528 {
529 	struct intel_pt_queue *ptq = data;
530 	struct machine *machine = ptq->pt->machine;
531 	struct thread *thread;
532 	struct addr_location al;
533 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
534 	ssize_t len;
535 	int x86_64;
536 	u8 cpumode;
537 	u64 offset, start_offset, start_ip;
538 	u64 insn_cnt = 0;
539 	bool one_map = true;
540 
541 	intel_pt_insn->length = 0;
542 
543 	if (to_ip && *ip == to_ip)
544 		goto out_no_cache;
545 
546 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
547 
548 	thread = ptq->thread;
549 	if (!thread) {
550 		if (cpumode != PERF_RECORD_MISC_KERNEL)
551 			return -EINVAL;
552 		thread = ptq->pt->unknown_thread;
553 	}
554 
555 	while (1) {
556 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
557 			return -EINVAL;
558 
559 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
560 		    dso__data_status_seen(al.map->dso,
561 					  DSO_DATA_STATUS_SEEN_ITRACE))
562 			return -ENOENT;
563 
564 		offset = al.map->map_ip(al.map, *ip);
565 
566 		if (!to_ip && one_map) {
567 			struct intel_pt_cache_entry *e;
568 
569 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
570 			if (e &&
571 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
572 				*insn_cnt_ptr = e->insn_cnt;
573 				*ip += e->byte_cnt;
574 				intel_pt_insn->op = e->op;
575 				intel_pt_insn->branch = e->branch;
576 				intel_pt_insn->length = e->length;
577 				intel_pt_insn->rel = e->rel;
578 				memcpy(intel_pt_insn->buf, e->insn,
579 				       INTEL_PT_INSN_BUF_SZ);
580 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
581 				return 0;
582 			}
583 		}
584 
585 		start_offset = offset;
586 		start_ip = *ip;
587 
588 		/* Load maps to ensure dso->is_64_bit has been updated */
589 		map__load(al.map);
590 
591 		x86_64 = al.map->dso->is_64_bit;
592 
593 		while (1) {
594 			len = dso__data_read_offset(al.map->dso, machine,
595 						    offset, buf,
596 						    INTEL_PT_INSN_BUF_SZ);
597 			if (len <= 0)
598 				return -EINVAL;
599 
600 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
601 				return -EINVAL;
602 
603 			intel_pt_log_insn(intel_pt_insn, *ip);
604 
605 			insn_cnt += 1;
606 
607 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
608 				goto out;
609 
610 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
611 				goto out_no_cache;
612 
613 			*ip += intel_pt_insn->length;
614 
615 			if (to_ip && *ip == to_ip)
616 				goto out_no_cache;
617 
618 			if (*ip >= al.map->end)
619 				break;
620 
621 			offset += intel_pt_insn->length;
622 		}
623 		one_map = false;
624 	}
625 out:
626 	*insn_cnt_ptr = insn_cnt;
627 
628 	if (!one_map)
629 		goto out_no_cache;
630 
631 	/*
632 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
633 	 * entries.
634 	 */
635 	if (to_ip) {
636 		struct intel_pt_cache_entry *e;
637 
638 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
639 		if (e)
640 			return 0;
641 	}
642 
643 	/* Ignore cache errors */
644 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
645 			   *ip - start_ip, intel_pt_insn);
646 
647 	return 0;
648 
649 out_no_cache:
650 	*insn_cnt_ptr = insn_cnt;
651 	return 0;
652 }
653 
654 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
655 				  uint64_t offset, const char *filename)
656 {
657 	struct addr_filter *filt;
658 	bool have_filter   = false;
659 	bool hit_tracestop = false;
660 	bool hit_filter    = false;
661 
662 	list_for_each_entry(filt, &pt->filts.head, list) {
663 		if (filt->start)
664 			have_filter = true;
665 
666 		if ((filename && !filt->filename) ||
667 		    (!filename && filt->filename) ||
668 		    (filename && strcmp(filename, filt->filename)))
669 			continue;
670 
671 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
672 			continue;
673 
674 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
675 			     ip, offset, filename ? filename : "[kernel]",
676 			     filt->start ? "filter" : "stop",
677 			     filt->addr, filt->size);
678 
679 		if (filt->start)
680 			hit_filter = true;
681 		else
682 			hit_tracestop = true;
683 	}
684 
685 	if (!hit_tracestop && !hit_filter)
686 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
687 			     ip, offset, filename ? filename : "[kernel]");
688 
689 	return hit_tracestop || (have_filter && !hit_filter);
690 }
691 
692 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
693 {
694 	struct intel_pt_queue *ptq = data;
695 	struct thread *thread;
696 	struct addr_location al;
697 	u8 cpumode;
698 	u64 offset;
699 
700 	if (ip >= ptq->pt->kernel_start)
701 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
702 
703 	cpumode = PERF_RECORD_MISC_USER;
704 
705 	thread = ptq->thread;
706 	if (!thread)
707 		return -EINVAL;
708 
709 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
710 		return -EINVAL;
711 
712 	offset = al.map->map_ip(al.map, ip);
713 
714 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
715 				     al.map->dso->long_name);
716 }
717 
718 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
719 {
720 	return __intel_pt_pgd_ip(ip, data) > 0;
721 }
722 
723 static bool intel_pt_get_config(struct intel_pt *pt,
724 				struct perf_event_attr *attr, u64 *config)
725 {
726 	if (attr->type == pt->pmu_type) {
727 		if (config)
728 			*config = attr->config;
729 		return true;
730 	}
731 
732 	return false;
733 }
734 
735 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
736 {
737 	struct evsel *evsel;
738 
739 	evlist__for_each_entry(pt->session->evlist, evsel) {
740 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
741 		    !evsel->core.attr.exclude_kernel)
742 			return false;
743 	}
744 	return true;
745 }
746 
747 static bool intel_pt_return_compression(struct intel_pt *pt)
748 {
749 	struct evsel *evsel;
750 	u64 config;
751 
752 	if (!pt->noretcomp_bit)
753 		return true;
754 
755 	evlist__for_each_entry(pt->session->evlist, evsel) {
756 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
757 		    (config & pt->noretcomp_bit))
758 			return false;
759 	}
760 	return true;
761 }
762 
763 static bool intel_pt_branch_enable(struct intel_pt *pt)
764 {
765 	struct evsel *evsel;
766 	u64 config;
767 
768 	evlist__for_each_entry(pt->session->evlist, evsel) {
769 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
770 		    (config & 1) && !(config & 0x2000))
771 			return false;
772 	}
773 	return true;
774 }
775 
776 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
777 {
778 	struct evsel *evsel;
779 	unsigned int shift;
780 	u64 config;
781 
782 	if (!pt->mtc_freq_bits)
783 		return 0;
784 
785 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
786 		config >>= 1;
787 
788 	evlist__for_each_entry(pt->session->evlist, evsel) {
789 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
790 			return (config & pt->mtc_freq_bits) >> shift;
791 	}
792 	return 0;
793 }
794 
795 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
796 {
797 	struct evsel *evsel;
798 	bool timeless_decoding = true;
799 	u64 config;
800 
801 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
802 		return true;
803 
804 	evlist__for_each_entry(pt->session->evlist, evsel) {
805 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
806 			return true;
807 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
808 			if (config & pt->tsc_bit)
809 				timeless_decoding = false;
810 			else
811 				return true;
812 		}
813 	}
814 	return timeless_decoding;
815 }
816 
817 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
818 {
819 	struct evsel *evsel;
820 
821 	evlist__for_each_entry(pt->session->evlist, evsel) {
822 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
823 		    !evsel->core.attr.exclude_kernel)
824 			return true;
825 	}
826 	return false;
827 }
828 
829 static bool intel_pt_have_tsc(struct intel_pt *pt)
830 {
831 	struct evsel *evsel;
832 	bool have_tsc = false;
833 	u64 config;
834 
835 	if (!pt->tsc_bit)
836 		return false;
837 
838 	evlist__for_each_entry(pt->session->evlist, evsel) {
839 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
840 			if (config & pt->tsc_bit)
841 				have_tsc = true;
842 			else
843 				return false;
844 		}
845 	}
846 	return have_tsc;
847 }
848 
849 static bool intel_pt_sampling_mode(struct intel_pt *pt)
850 {
851 	struct evsel *evsel;
852 
853 	evlist__for_each_entry(pt->session->evlist, evsel) {
854 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
855 		    evsel->core.attr.aux_sample_size)
856 			return true;
857 	}
858 	return false;
859 }
860 
861 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
862 {
863 	u64 quot, rem;
864 
865 	quot = ns / pt->tc.time_mult;
866 	rem  = ns % pt->tc.time_mult;
867 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
868 		pt->tc.time_mult;
869 }
870 
871 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
872 						   unsigned int queue_nr)
873 {
874 	struct intel_pt_params params = { .get_trace = 0, };
875 	struct perf_env *env = pt->machine->env;
876 	struct intel_pt_queue *ptq;
877 
878 	ptq = zalloc(sizeof(struct intel_pt_queue));
879 	if (!ptq)
880 		return NULL;
881 
882 	if (pt->synth_opts.callchain) {
883 		size_t sz = sizeof(struct ip_callchain);
884 
885 		/* Add 1 to callchain_sz for callchain context */
886 		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
887 		ptq->chain = zalloc(sz);
888 		if (!ptq->chain)
889 			goto out_free;
890 	}
891 
892 	if (pt->synth_opts.last_branch) {
893 		size_t sz = sizeof(struct branch_stack);
894 
895 		sz += pt->synth_opts.last_branch_sz *
896 		      sizeof(struct branch_entry);
897 		ptq->last_branch = zalloc(sz);
898 		if (!ptq->last_branch)
899 			goto out_free;
900 		ptq->last_branch_rb = zalloc(sz);
901 		if (!ptq->last_branch_rb)
902 			goto out_free;
903 	}
904 
905 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
906 	if (!ptq->event_buf)
907 		goto out_free;
908 
909 	ptq->pt = pt;
910 	ptq->queue_nr = queue_nr;
911 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
912 	ptq->pid = -1;
913 	ptq->tid = -1;
914 	ptq->cpu = -1;
915 	ptq->next_tid = -1;
916 
917 	params.get_trace = intel_pt_get_trace;
918 	params.walk_insn = intel_pt_walk_next_insn;
919 	params.lookahead = intel_pt_lookahead;
920 	params.data = ptq;
921 	params.return_compression = intel_pt_return_compression(pt);
922 	params.branch_enable = intel_pt_branch_enable(pt);
923 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
924 	params.mtc_period = intel_pt_mtc_period(pt);
925 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
926 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
927 
928 	if (pt->filts.cnt > 0)
929 		params.pgd_ip = intel_pt_pgd_ip;
930 
931 	if (pt->synth_opts.instructions) {
932 		if (pt->synth_opts.period) {
933 			switch (pt->synth_opts.period_type) {
934 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
935 				params.period_type =
936 						INTEL_PT_PERIOD_INSTRUCTIONS;
937 				params.period = pt->synth_opts.period;
938 				break;
939 			case PERF_ITRACE_PERIOD_TICKS:
940 				params.period_type = INTEL_PT_PERIOD_TICKS;
941 				params.period = pt->synth_opts.period;
942 				break;
943 			case PERF_ITRACE_PERIOD_NANOSECS:
944 				params.period_type = INTEL_PT_PERIOD_TICKS;
945 				params.period = intel_pt_ns_to_ticks(pt,
946 							pt->synth_opts.period);
947 				break;
948 			default:
949 				break;
950 			}
951 		}
952 
953 		if (!params.period) {
954 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
955 			params.period = 1;
956 		}
957 	}
958 
959 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
960 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
961 
962 	ptq->decoder = intel_pt_decoder_new(&params);
963 	if (!ptq->decoder)
964 		goto out_free;
965 
966 	return ptq;
967 
968 out_free:
969 	zfree(&ptq->event_buf);
970 	zfree(&ptq->last_branch);
971 	zfree(&ptq->last_branch_rb);
972 	zfree(&ptq->chain);
973 	free(ptq);
974 	return NULL;
975 }
976 
977 static void intel_pt_free_queue(void *priv)
978 {
979 	struct intel_pt_queue *ptq = priv;
980 
981 	if (!ptq)
982 		return;
983 	thread__zput(ptq->thread);
984 	intel_pt_decoder_free(ptq->decoder);
985 	zfree(&ptq->event_buf);
986 	zfree(&ptq->last_branch);
987 	zfree(&ptq->last_branch_rb);
988 	zfree(&ptq->chain);
989 	free(ptq);
990 }
991 
992 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
993 				     struct auxtrace_queue *queue)
994 {
995 	struct intel_pt_queue *ptq = queue->priv;
996 
997 	if (queue->tid == -1 || pt->have_sched_switch) {
998 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
999 		thread__zput(ptq->thread);
1000 	}
1001 
1002 	if (!ptq->thread && ptq->tid != -1)
1003 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1004 
1005 	if (ptq->thread) {
1006 		ptq->pid = ptq->thread->pid_;
1007 		if (queue->cpu == -1)
1008 			ptq->cpu = ptq->thread->cpu;
1009 	}
1010 }
1011 
1012 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1013 {
1014 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1015 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1016 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1017 		if (ptq->state->to_ip)
1018 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1019 				     PERF_IP_FLAG_ASYNC |
1020 				     PERF_IP_FLAG_INTERRUPT;
1021 		else
1022 			ptq->flags = PERF_IP_FLAG_BRANCH |
1023 				     PERF_IP_FLAG_TRACE_END;
1024 		ptq->insn_len = 0;
1025 	} else {
1026 		if (ptq->state->from_ip)
1027 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1028 		else
1029 			ptq->flags = PERF_IP_FLAG_BRANCH |
1030 				     PERF_IP_FLAG_TRACE_BEGIN;
1031 		if (ptq->state->flags & INTEL_PT_IN_TX)
1032 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1033 		ptq->insn_len = ptq->state->insn_len;
1034 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1035 	}
1036 
1037 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1038 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1039 	if (ptq->state->type & INTEL_PT_TRACE_END)
1040 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1041 }
1042 
1043 static void intel_pt_setup_time_range(struct intel_pt *pt,
1044 				      struct intel_pt_queue *ptq)
1045 {
1046 	if (!pt->range_cnt)
1047 		return;
1048 
1049 	ptq->sel_timestamp = pt->time_ranges[0].start;
1050 	ptq->sel_idx = 0;
1051 
1052 	if (ptq->sel_timestamp) {
1053 		ptq->sel_start = true;
1054 	} else {
1055 		ptq->sel_timestamp = pt->time_ranges[0].end;
1056 		ptq->sel_start = false;
1057 	}
1058 }
1059 
1060 static int intel_pt_setup_queue(struct intel_pt *pt,
1061 				struct auxtrace_queue *queue,
1062 				unsigned int queue_nr)
1063 {
1064 	struct intel_pt_queue *ptq = queue->priv;
1065 
1066 	if (list_empty(&queue->head))
1067 		return 0;
1068 
1069 	if (!ptq) {
1070 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1071 		if (!ptq)
1072 			return -ENOMEM;
1073 		queue->priv = ptq;
1074 
1075 		if (queue->cpu != -1)
1076 			ptq->cpu = queue->cpu;
1077 		ptq->tid = queue->tid;
1078 
1079 		ptq->cbr_seen = UINT_MAX;
1080 
1081 		if (pt->sampling_mode && !pt->snapshot_mode &&
1082 		    pt->timeless_decoding)
1083 			ptq->step_through_buffers = true;
1084 
1085 		ptq->sync_switch = pt->sync_switch;
1086 
1087 		intel_pt_setup_time_range(pt, ptq);
1088 	}
1089 
1090 	if (!ptq->on_heap &&
1091 	    (!ptq->sync_switch ||
1092 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1093 		const struct intel_pt_state *state;
1094 		int ret;
1095 
1096 		if (pt->timeless_decoding)
1097 			return 0;
1098 
1099 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1100 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1101 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1102 
1103 		if (ptq->sel_start && ptq->sel_timestamp) {
1104 			ret = intel_pt_fast_forward(ptq->decoder,
1105 						    ptq->sel_timestamp);
1106 			if (ret)
1107 				return ret;
1108 		}
1109 
1110 		while (1) {
1111 			state = intel_pt_decode(ptq->decoder);
1112 			if (state->err) {
1113 				if (state->err == INTEL_PT_ERR_NODATA) {
1114 					intel_pt_log("queue %u has no timestamp\n",
1115 						     queue_nr);
1116 					return 0;
1117 				}
1118 				continue;
1119 			}
1120 			if (state->timestamp)
1121 				break;
1122 		}
1123 
1124 		ptq->timestamp = state->timestamp;
1125 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1126 			     queue_nr, ptq->timestamp);
1127 		ptq->state = state;
1128 		ptq->have_sample = true;
1129 		if (ptq->sel_start && ptq->sel_timestamp &&
1130 		    ptq->timestamp < ptq->sel_timestamp)
1131 			ptq->have_sample = false;
1132 		intel_pt_sample_flags(ptq);
1133 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1134 		if (ret)
1135 			return ret;
1136 		ptq->on_heap = true;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static int intel_pt_setup_queues(struct intel_pt *pt)
1143 {
1144 	unsigned int i;
1145 	int ret;
1146 
1147 	for (i = 0; i < pt->queues.nr_queues; i++) {
1148 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1149 		if (ret)
1150 			return ret;
1151 	}
1152 	return 0;
1153 }
1154 
1155 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1156 {
1157 	struct branch_stack *bs_src = ptq->last_branch_rb;
1158 	struct branch_stack *bs_dst = ptq->last_branch;
1159 	size_t nr = 0;
1160 
1161 	bs_dst->nr = bs_src->nr;
1162 
1163 	if (!bs_src->nr)
1164 		return;
1165 
1166 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1167 	memcpy(&bs_dst->entries[0],
1168 	       &bs_src->entries[ptq->last_branch_pos],
1169 	       sizeof(struct branch_entry) * nr);
1170 
1171 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1172 		memcpy(&bs_dst->entries[nr],
1173 		       &bs_src->entries[0],
1174 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1175 	}
1176 }
1177 
1178 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1179 {
1180 	ptq->last_branch_pos = 0;
1181 	ptq->last_branch_rb->nr = 0;
1182 }
1183 
1184 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1185 {
1186 	const struct intel_pt_state *state = ptq->state;
1187 	struct branch_stack *bs = ptq->last_branch_rb;
1188 	struct branch_entry *be;
1189 
1190 	if (!ptq->last_branch_pos)
1191 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1192 
1193 	ptq->last_branch_pos -= 1;
1194 
1195 	be              = &bs->entries[ptq->last_branch_pos];
1196 	be->from        = state->from_ip;
1197 	be->to          = state->to_ip;
1198 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1199 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1200 	/* No support for mispredict */
1201 	be->flags.mispred = ptq->pt->mispred_all;
1202 
1203 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1204 		bs->nr += 1;
1205 }
1206 
1207 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1208 {
1209 	return pt->synth_opts.initial_skip &&
1210 	       pt->num_events++ < pt->synth_opts.initial_skip;
1211 }
1212 
1213 /*
1214  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1215  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1216  * from this decoder state.
1217  */
1218 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1219 {
1220 	return pt->synth_opts.initial_skip &&
1221 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1222 }
1223 
1224 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1225 				   union perf_event *event,
1226 				   struct perf_sample *sample)
1227 {
1228 	event->sample.header.type = PERF_RECORD_SAMPLE;
1229 	event->sample.header.size = sizeof(struct perf_event_header);
1230 
1231 	sample->pid = ptq->pid;
1232 	sample->tid = ptq->tid;
1233 	sample->cpu = ptq->cpu;
1234 	sample->insn_len = ptq->insn_len;
1235 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1236 }
1237 
1238 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1239 				   struct intel_pt_queue *ptq,
1240 				   union perf_event *event,
1241 				   struct perf_sample *sample)
1242 {
1243 	intel_pt_prep_a_sample(ptq, event, sample);
1244 
1245 	if (!pt->timeless_decoding)
1246 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1247 
1248 	sample->ip = ptq->state->from_ip;
1249 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1250 	sample->addr = ptq->state->to_ip;
1251 	sample->period = 1;
1252 	sample->flags = ptq->flags;
1253 
1254 	event->sample.header.misc = sample->cpumode;
1255 }
1256 
1257 static int intel_pt_inject_event(union perf_event *event,
1258 				 struct perf_sample *sample, u64 type)
1259 {
1260 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1261 	return perf_event__synthesize_sample(event, type, 0, sample);
1262 }
1263 
1264 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1265 				      union perf_event *event,
1266 				      struct perf_sample *sample, u64 type)
1267 {
1268 	if (!pt->synth_opts.inject)
1269 		return 0;
1270 
1271 	return intel_pt_inject_event(event, sample, type);
1272 }
1273 
1274 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1275 					  union perf_event *event,
1276 					  struct perf_sample *sample, u64 type)
1277 {
1278 	int ret;
1279 
1280 	ret = intel_pt_opt_inject(pt, event, sample, type);
1281 	if (ret)
1282 		return ret;
1283 
1284 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1285 	if (ret)
1286 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1287 
1288 	return ret;
1289 }
1290 
1291 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1292 {
1293 	struct intel_pt *pt = ptq->pt;
1294 	union perf_event *event = ptq->event_buf;
1295 	struct perf_sample sample = { .ip = 0, };
1296 	struct dummy_branch_stack {
1297 		u64			nr;
1298 		struct branch_entry	entries;
1299 	} dummy_bs;
1300 
1301 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1302 		return 0;
1303 
1304 	if (intel_pt_skip_event(pt))
1305 		return 0;
1306 
1307 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1308 
1309 	sample.id = ptq->pt->branches_id;
1310 	sample.stream_id = ptq->pt->branches_id;
1311 
1312 	/*
1313 	 * perf report cannot handle events without a branch stack when using
1314 	 * SORT_MODE__BRANCH so make a dummy one.
1315 	 */
1316 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1317 		dummy_bs = (struct dummy_branch_stack){
1318 			.nr = 1,
1319 			.entries = {
1320 				.from = sample.ip,
1321 				.to = sample.addr,
1322 			},
1323 		};
1324 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1325 	}
1326 
1327 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1328 	if (sample.cyc_cnt) {
1329 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1330 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1331 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1332 	}
1333 
1334 	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1335 					      pt->branches_sample_type);
1336 }
1337 
1338 static void intel_pt_prep_sample(struct intel_pt *pt,
1339 				 struct intel_pt_queue *ptq,
1340 				 union perf_event *event,
1341 				 struct perf_sample *sample)
1342 {
1343 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1344 
1345 	if (pt->synth_opts.callchain) {
1346 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1347 				     pt->synth_opts.callchain_sz + 1,
1348 				     sample->ip, pt->kernel_start);
1349 		sample->callchain = ptq->chain;
1350 	}
1351 
1352 	if (pt->synth_opts.last_branch) {
1353 		intel_pt_copy_last_branch_rb(ptq);
1354 		sample->branch_stack = ptq->last_branch;
1355 	}
1356 }
1357 
1358 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1359 					       struct intel_pt_queue *ptq,
1360 					       union perf_event *event,
1361 					       struct perf_sample *sample,
1362 					       u64 type)
1363 {
1364 	int ret;
1365 
1366 	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1367 
1368 	if (pt->synth_opts.last_branch)
1369 		intel_pt_reset_last_branch_rb(ptq);
1370 
1371 	return ret;
1372 }
1373 
1374 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1375 {
1376 	struct intel_pt *pt = ptq->pt;
1377 	union perf_event *event = ptq->event_buf;
1378 	struct perf_sample sample = { .ip = 0, };
1379 
1380 	if (intel_pt_skip_event(pt))
1381 		return 0;
1382 
1383 	intel_pt_prep_sample(pt, ptq, event, &sample);
1384 
1385 	sample.id = ptq->pt->instructions_id;
1386 	sample.stream_id = ptq->pt->instructions_id;
1387 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1388 
1389 	sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1390 	if (sample.cyc_cnt) {
1391 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1392 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1393 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1394 	}
1395 
1396 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1397 
1398 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1399 					    pt->instructions_sample_type);
1400 }
1401 
1402 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1403 {
1404 	struct intel_pt *pt = ptq->pt;
1405 	union perf_event *event = ptq->event_buf;
1406 	struct perf_sample sample = { .ip = 0, };
1407 
1408 	if (intel_pt_skip_event(pt))
1409 		return 0;
1410 
1411 	intel_pt_prep_sample(pt, ptq, event, &sample);
1412 
1413 	sample.id = ptq->pt->transactions_id;
1414 	sample.stream_id = ptq->pt->transactions_id;
1415 
1416 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1417 					    pt->transactions_sample_type);
1418 }
1419 
1420 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1421 				   struct intel_pt_queue *ptq,
1422 				   union perf_event *event,
1423 				   struct perf_sample *sample)
1424 {
1425 	intel_pt_prep_sample(pt, ptq, event, sample);
1426 
1427 	/*
1428 	 * Zero IP is used to mean "trace start" but that is not the case for
1429 	 * power or PTWRITE events with no IP, so clear the flags.
1430 	 */
1431 	if (!sample->ip)
1432 		sample->flags = 0;
1433 }
1434 
1435 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1436 {
1437 	struct intel_pt *pt = ptq->pt;
1438 	union perf_event *event = ptq->event_buf;
1439 	struct perf_sample sample = { .ip = 0, };
1440 	struct perf_synth_intel_ptwrite raw;
1441 
1442 	if (intel_pt_skip_event(pt))
1443 		return 0;
1444 
1445 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1446 
1447 	sample.id = ptq->pt->ptwrites_id;
1448 	sample.stream_id = ptq->pt->ptwrites_id;
1449 
1450 	raw.flags = 0;
1451 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1452 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1453 
1454 	sample.raw_size = perf_synth__raw_size(raw);
1455 	sample.raw_data = perf_synth__raw_data(&raw);
1456 
1457 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1458 					    pt->ptwrites_sample_type);
1459 }
1460 
1461 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1462 {
1463 	struct intel_pt *pt = ptq->pt;
1464 	union perf_event *event = ptq->event_buf;
1465 	struct perf_sample sample = { .ip = 0, };
1466 	struct perf_synth_intel_cbr raw;
1467 	u32 flags;
1468 
1469 	if (intel_pt_skip_cbr_event(pt))
1470 		return 0;
1471 
1472 	ptq->cbr_seen = ptq->state->cbr;
1473 
1474 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1475 
1476 	sample.id = ptq->pt->cbr_id;
1477 	sample.stream_id = ptq->pt->cbr_id;
1478 
1479 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1480 	raw.flags = cpu_to_le32(flags);
1481 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1482 	raw.reserved3 = 0;
1483 
1484 	sample.raw_size = perf_synth__raw_size(raw);
1485 	sample.raw_data = perf_synth__raw_data(&raw);
1486 
1487 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1488 					    pt->pwr_events_sample_type);
1489 }
1490 
1491 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1492 {
1493 	struct intel_pt *pt = ptq->pt;
1494 	union perf_event *event = ptq->event_buf;
1495 	struct perf_sample sample = { .ip = 0, };
1496 	struct perf_synth_intel_mwait raw;
1497 
1498 	if (intel_pt_skip_event(pt))
1499 		return 0;
1500 
1501 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1502 
1503 	sample.id = ptq->pt->mwait_id;
1504 	sample.stream_id = ptq->pt->mwait_id;
1505 
1506 	raw.reserved = 0;
1507 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1508 
1509 	sample.raw_size = perf_synth__raw_size(raw);
1510 	sample.raw_data = perf_synth__raw_data(&raw);
1511 
1512 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1513 					    pt->pwr_events_sample_type);
1514 }
1515 
1516 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1517 {
1518 	struct intel_pt *pt = ptq->pt;
1519 	union perf_event *event = ptq->event_buf;
1520 	struct perf_sample sample = { .ip = 0, };
1521 	struct perf_synth_intel_pwre raw;
1522 
1523 	if (intel_pt_skip_event(pt))
1524 		return 0;
1525 
1526 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1527 
1528 	sample.id = ptq->pt->pwre_id;
1529 	sample.stream_id = ptq->pt->pwre_id;
1530 
1531 	raw.reserved = 0;
1532 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1533 
1534 	sample.raw_size = perf_synth__raw_size(raw);
1535 	sample.raw_data = perf_synth__raw_data(&raw);
1536 
1537 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1538 					    pt->pwr_events_sample_type);
1539 }
1540 
1541 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1542 {
1543 	struct intel_pt *pt = ptq->pt;
1544 	union perf_event *event = ptq->event_buf;
1545 	struct perf_sample sample = { .ip = 0, };
1546 	struct perf_synth_intel_exstop raw;
1547 
1548 	if (intel_pt_skip_event(pt))
1549 		return 0;
1550 
1551 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1552 
1553 	sample.id = ptq->pt->exstop_id;
1554 	sample.stream_id = ptq->pt->exstop_id;
1555 
1556 	raw.flags = 0;
1557 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1558 
1559 	sample.raw_size = perf_synth__raw_size(raw);
1560 	sample.raw_data = perf_synth__raw_data(&raw);
1561 
1562 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1563 					    pt->pwr_events_sample_type);
1564 }
1565 
1566 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1567 {
1568 	struct intel_pt *pt = ptq->pt;
1569 	union perf_event *event = ptq->event_buf;
1570 	struct perf_sample sample = { .ip = 0, };
1571 	struct perf_synth_intel_pwrx raw;
1572 
1573 	if (intel_pt_skip_event(pt))
1574 		return 0;
1575 
1576 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1577 
1578 	sample.id = ptq->pt->pwrx_id;
1579 	sample.stream_id = ptq->pt->pwrx_id;
1580 
1581 	raw.reserved = 0;
1582 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1583 
1584 	sample.raw_size = perf_synth__raw_size(raw);
1585 	sample.raw_data = perf_synth__raw_data(&raw);
1586 
1587 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1588 					    pt->pwr_events_sample_type);
1589 }
1590 
1591 /*
1592  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1593  * intel_pt_add_gp_regs().
1594  */
1595 static const int pebs_gp_regs[] = {
1596 	[PERF_REG_X86_FLAGS]	= 1,
1597 	[PERF_REG_X86_IP]	= 2,
1598 	[PERF_REG_X86_AX]	= 3,
1599 	[PERF_REG_X86_CX]	= 4,
1600 	[PERF_REG_X86_DX]	= 5,
1601 	[PERF_REG_X86_BX]	= 6,
1602 	[PERF_REG_X86_SP]	= 7,
1603 	[PERF_REG_X86_BP]	= 8,
1604 	[PERF_REG_X86_SI]	= 9,
1605 	[PERF_REG_X86_DI]	= 10,
1606 	[PERF_REG_X86_R8]	= 11,
1607 	[PERF_REG_X86_R9]	= 12,
1608 	[PERF_REG_X86_R10]	= 13,
1609 	[PERF_REG_X86_R11]	= 14,
1610 	[PERF_REG_X86_R12]	= 15,
1611 	[PERF_REG_X86_R13]	= 16,
1612 	[PERF_REG_X86_R14]	= 17,
1613 	[PERF_REG_X86_R15]	= 18,
1614 };
1615 
1616 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1617 				 const struct intel_pt_blk_items *items,
1618 				 u64 regs_mask)
1619 {
1620 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1621 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1622 	u32 bit;
1623 	int i;
1624 
1625 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1626 		/* Get the PEBS gp_regs array index */
1627 		int n = pebs_gp_regs[i] - 1;
1628 
1629 		if (n < 0)
1630 			continue;
1631 		/*
1632 		 * Add only registers that were requested (i.e. 'regs_mask') and
1633 		 * that were provided (i.e. 'mask'), and update the resulting
1634 		 * mask (i.e. 'intr_regs->mask') accordingly.
1635 		 */
1636 		if (mask & 1 << n && regs_mask & bit) {
1637 			intr_regs->mask |= bit;
1638 			*pos++ = gp_regs[n];
1639 		}
1640 	}
1641 
1642 	return pos;
1643 }
1644 
1645 #ifndef PERF_REG_X86_XMM0
1646 #define PERF_REG_X86_XMM0 32
1647 #endif
1648 
1649 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1650 			     const struct intel_pt_blk_items *items,
1651 			     u64 regs_mask)
1652 {
1653 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1654 	const u64 *xmm = items->xmm;
1655 
1656 	/*
1657 	 * If there are any XMM registers, then there should be all of them.
1658 	 * Nevertheless, follow the logic to add only registers that were
1659 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1660 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1661 	 */
1662 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1663 
1664 	for (; mask; mask >>= 1, xmm++) {
1665 		if (mask & 1)
1666 			*pos++ = *xmm;
1667 	}
1668 }
1669 
1670 #define LBR_INFO_MISPRED	(1ULL << 63)
1671 #define LBR_INFO_IN_TX		(1ULL << 62)
1672 #define LBR_INFO_ABORT		(1ULL << 61)
1673 #define LBR_INFO_CYCLES		0xffff
1674 
1675 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1676 static u64 intel_pt_lbr_flags(u64 info)
1677 {
1678 	union {
1679 		struct branch_flags flags;
1680 		u64 result;
1681 	} u = {
1682 		.flags = {
1683 			.mispred	= !!(info & LBR_INFO_MISPRED),
1684 			.predicted	= !(info & LBR_INFO_MISPRED),
1685 			.in_tx		= !!(info & LBR_INFO_IN_TX),
1686 			.abort		= !!(info & LBR_INFO_ABORT),
1687 			.cycles		= info & LBR_INFO_CYCLES,
1688 		}
1689 	};
1690 
1691 	return u.result;
1692 }
1693 
1694 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1695 			      const struct intel_pt_blk_items *items)
1696 {
1697 	u64 *to;
1698 	int i;
1699 
1700 	br_stack->nr = 0;
1701 
1702 	to = &br_stack->entries[0].from;
1703 
1704 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1705 		u32 mask = items->mask[i];
1706 		const u64 *from = items->val[i];
1707 
1708 		for (; mask; mask >>= 3, from += 3) {
1709 			if ((mask & 7) == 7) {
1710 				*to++ = from[0];
1711 				*to++ = from[1];
1712 				*to++ = intel_pt_lbr_flags(from[2]);
1713 				br_stack->nr += 1;
1714 			}
1715 		}
1716 	}
1717 }
1718 
1719 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1720 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
1721 
1722 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1723 {
1724 	const struct intel_pt_blk_items *items = &ptq->state->items;
1725 	struct perf_sample sample = { .ip = 0, };
1726 	union perf_event *event = ptq->event_buf;
1727 	struct intel_pt *pt = ptq->pt;
1728 	struct evsel *evsel = pt->pebs_evsel;
1729 	u64 sample_type = evsel->core.attr.sample_type;
1730 	u64 id = evsel->core.id[0];
1731 	u8 cpumode;
1732 
1733 	if (intel_pt_skip_event(pt))
1734 		return 0;
1735 
1736 	intel_pt_prep_a_sample(ptq, event, &sample);
1737 
1738 	sample.id = id;
1739 	sample.stream_id = id;
1740 
1741 	if (!evsel->core.attr.freq)
1742 		sample.period = evsel->core.attr.sample_period;
1743 
1744 	/* No support for non-zero CS base */
1745 	if (items->has_ip)
1746 		sample.ip = items->ip;
1747 	else if (items->has_rip)
1748 		sample.ip = items->rip;
1749 	else
1750 		sample.ip = ptq->state->from_ip;
1751 
1752 	/* No support for guest mode at this time */
1753 	cpumode = sample.ip < ptq->pt->kernel_start ?
1754 		  PERF_RECORD_MISC_USER :
1755 		  PERF_RECORD_MISC_KERNEL;
1756 
1757 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1758 
1759 	sample.cpumode = cpumode;
1760 
1761 	if (sample_type & PERF_SAMPLE_TIME) {
1762 		u64 timestamp = 0;
1763 
1764 		if (items->has_timestamp)
1765 			timestamp = items->timestamp;
1766 		else if (!pt->timeless_decoding)
1767 			timestamp = ptq->timestamp;
1768 		if (timestamp)
1769 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1770 	}
1771 
1772 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1773 	    pt->synth_opts.callchain) {
1774 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1775 				     pt->synth_opts.callchain_sz, sample.ip,
1776 				     pt->kernel_start);
1777 		sample.callchain = ptq->chain;
1778 	}
1779 
1780 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1781 	    items->mask[INTEL_PT_GP_REGS_POS]) {
1782 		u64 regs[sizeof(sample.intr_regs.mask)];
1783 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1784 		u64 *pos;
1785 
1786 		sample.intr_regs.abi = items->is_32_bit ?
1787 				       PERF_SAMPLE_REGS_ABI_32 :
1788 				       PERF_SAMPLE_REGS_ABI_64;
1789 		sample.intr_regs.regs = regs;
1790 
1791 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1792 
1793 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1794 	}
1795 
1796 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1797 		struct {
1798 			struct branch_stack br_stack;
1799 			struct branch_entry entries[LBRS_MAX];
1800 		} br;
1801 
1802 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1803 		    items->mask[INTEL_PT_LBR_1_POS] ||
1804 		    items->mask[INTEL_PT_LBR_2_POS]) {
1805 			intel_pt_add_lbrs(&br.br_stack, items);
1806 			sample.branch_stack = &br.br_stack;
1807 		} else if (pt->synth_opts.last_branch) {
1808 			intel_pt_copy_last_branch_rb(ptq);
1809 			sample.branch_stack = ptq->last_branch;
1810 		} else {
1811 			br.br_stack.nr = 0;
1812 			sample.branch_stack = &br.br_stack;
1813 		}
1814 	}
1815 
1816 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1817 		sample.addr = items->mem_access_address;
1818 
1819 	if (sample_type & PERF_SAMPLE_WEIGHT) {
1820 		/*
1821 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1822 		 * intel_hsw_weight().
1823 		 */
1824 		if (items->has_mem_access_latency)
1825 			sample.weight = items->mem_access_latency;
1826 		if (!sample.weight && items->has_tsx_aux_info) {
1827 			/* Cycles last block */
1828 			sample.weight = (u32)items->tsx_aux_info;
1829 		}
1830 	}
1831 
1832 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1833 		u64 ax = items->has_rax ? items->rax : 0;
1834 		/* Refer kernel's intel_hsw_transaction() */
1835 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1836 
1837 		/* For RTM XABORTs also log the abort code from AX */
1838 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
1839 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1840 		sample.transaction = txn;
1841 	}
1842 
1843 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
1844 }
1845 
1846 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1847 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1848 {
1849 	union perf_event event;
1850 	char msg[MAX_AUXTRACE_ERROR_MSG];
1851 	int err;
1852 
1853 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1854 
1855 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1856 			     code, cpu, pid, tid, ip, msg, timestamp);
1857 
1858 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1859 	if (err)
1860 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1861 		       err);
1862 
1863 	return err;
1864 }
1865 
1866 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1867 				 const struct intel_pt_state *state)
1868 {
1869 	struct intel_pt *pt = ptq->pt;
1870 	u64 tm = ptq->timestamp;
1871 
1872 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1873 
1874 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1875 				    ptq->tid, state->from_ip, tm);
1876 }
1877 
1878 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1879 {
1880 	struct auxtrace_queue *queue;
1881 	pid_t tid = ptq->next_tid;
1882 	int err;
1883 
1884 	if (tid == -1)
1885 		return 0;
1886 
1887 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1888 
1889 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1890 
1891 	queue = &pt->queues.queue_array[ptq->queue_nr];
1892 	intel_pt_set_pid_tid_cpu(pt, queue);
1893 
1894 	ptq->next_tid = -1;
1895 
1896 	return err;
1897 }
1898 
1899 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1900 {
1901 	struct intel_pt *pt = ptq->pt;
1902 
1903 	return ip == pt->switch_ip &&
1904 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1905 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1906 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1907 }
1908 
1909 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1910 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1911 
1912 static int intel_pt_sample(struct intel_pt_queue *ptq)
1913 {
1914 	const struct intel_pt_state *state = ptq->state;
1915 	struct intel_pt *pt = ptq->pt;
1916 	int err;
1917 
1918 	if (!ptq->have_sample)
1919 		return 0;
1920 
1921 	ptq->have_sample = false;
1922 
1923 	if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1924 		/*
1925 		 * Cycle count and instruction count only go together to create
1926 		 * a valid IPC ratio when the cycle count changes.
1927 		 */
1928 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1929 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1930 	}
1931 
1932 	/*
1933 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
1934 	 * precedes the current timestamp.
1935 	 */
1936 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1937 		err = intel_pt_synth_pebs_sample(ptq);
1938 		if (err)
1939 			return err;
1940 	}
1941 
1942 	if (pt->sample_pwr_events) {
1943 		if (ptq->state->cbr != ptq->cbr_seen) {
1944 			err = intel_pt_synth_cbr_sample(ptq);
1945 			if (err)
1946 				return err;
1947 		}
1948 		if (state->type & INTEL_PT_PWR_EVT) {
1949 			if (state->type & INTEL_PT_MWAIT_OP) {
1950 				err = intel_pt_synth_mwait_sample(ptq);
1951 				if (err)
1952 					return err;
1953 			}
1954 			if (state->type & INTEL_PT_PWR_ENTRY) {
1955 				err = intel_pt_synth_pwre_sample(ptq);
1956 				if (err)
1957 					return err;
1958 			}
1959 			if (state->type & INTEL_PT_EX_STOP) {
1960 				err = intel_pt_synth_exstop_sample(ptq);
1961 				if (err)
1962 					return err;
1963 			}
1964 			if (state->type & INTEL_PT_PWR_EXIT) {
1965 				err = intel_pt_synth_pwrx_sample(ptq);
1966 				if (err)
1967 					return err;
1968 			}
1969 		}
1970 	}
1971 
1972 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1973 		err = intel_pt_synth_instruction_sample(ptq);
1974 		if (err)
1975 			return err;
1976 	}
1977 
1978 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1979 		err = intel_pt_synth_transaction_sample(ptq);
1980 		if (err)
1981 			return err;
1982 	}
1983 
1984 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1985 		err = intel_pt_synth_ptwrite_sample(ptq);
1986 		if (err)
1987 			return err;
1988 	}
1989 
1990 	if (!(state->type & INTEL_PT_BRANCH))
1991 		return 0;
1992 
1993 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1994 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
1995 				    state->to_ip, ptq->insn_len,
1996 				    state->trace_nr);
1997 	else
1998 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
1999 
2000 	if (pt->sample_branches) {
2001 		err = intel_pt_synth_branch_sample(ptq);
2002 		if (err)
2003 			return err;
2004 	}
2005 
2006 	if (pt->synth_opts.last_branch)
2007 		intel_pt_update_last_branch_rb(ptq);
2008 
2009 	if (!ptq->sync_switch)
2010 		return 0;
2011 
2012 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2013 		switch (ptq->switch_state) {
2014 		case INTEL_PT_SS_NOT_TRACING:
2015 		case INTEL_PT_SS_UNKNOWN:
2016 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2017 			err = intel_pt_next_tid(pt, ptq);
2018 			if (err)
2019 				return err;
2020 			ptq->switch_state = INTEL_PT_SS_TRACING;
2021 			break;
2022 		default:
2023 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2024 			return 1;
2025 		}
2026 	} else if (!state->to_ip) {
2027 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2028 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2029 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2030 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2031 		   state->to_ip == pt->ptss_ip &&
2032 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2033 		ptq->switch_state = INTEL_PT_SS_TRACING;
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2040 {
2041 	struct machine *machine = pt->machine;
2042 	struct map *map;
2043 	struct symbol *sym, *start;
2044 	u64 ip, switch_ip = 0;
2045 	const char *ptss;
2046 
2047 	if (ptss_ip)
2048 		*ptss_ip = 0;
2049 
2050 	map = machine__kernel_map(machine);
2051 	if (!map)
2052 		return 0;
2053 
2054 	if (map__load(map))
2055 		return 0;
2056 
2057 	start = dso__first_symbol(map->dso);
2058 
2059 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2060 		if (sym->binding == STB_GLOBAL &&
2061 		    !strcmp(sym->name, "__switch_to")) {
2062 			ip = map->unmap_ip(map, sym->start);
2063 			if (ip >= map->start && ip < map->end) {
2064 				switch_ip = ip;
2065 				break;
2066 			}
2067 		}
2068 	}
2069 
2070 	if (!switch_ip || !ptss_ip)
2071 		return 0;
2072 
2073 	if (pt->have_sched_switch == 1)
2074 		ptss = "perf_trace_sched_switch";
2075 	else
2076 		ptss = "__perf_event_task_sched_out";
2077 
2078 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2079 		if (!strcmp(sym->name, ptss)) {
2080 			ip = map->unmap_ip(map, sym->start);
2081 			if (ip >= map->start && ip < map->end) {
2082 				*ptss_ip = ip;
2083 				break;
2084 			}
2085 		}
2086 	}
2087 
2088 	return switch_ip;
2089 }
2090 
2091 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2092 {
2093 	unsigned int i;
2094 
2095 	pt->sync_switch = true;
2096 
2097 	for (i = 0; i < pt->queues.nr_queues; i++) {
2098 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2099 		struct intel_pt_queue *ptq = queue->priv;
2100 
2101 		if (ptq)
2102 			ptq->sync_switch = true;
2103 	}
2104 }
2105 
2106 /*
2107  * To filter against time ranges, it is only necessary to look at the next start
2108  * or end time.
2109  */
2110 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2111 {
2112 	struct intel_pt *pt = ptq->pt;
2113 
2114 	if (ptq->sel_start) {
2115 		/* Next time is an end time */
2116 		ptq->sel_start = false;
2117 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2118 		return true;
2119 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2120 		/* Next time is a start time */
2121 		ptq->sel_start = true;
2122 		ptq->sel_idx += 1;
2123 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2124 		return true;
2125 	}
2126 
2127 	/* No next time */
2128 	return false;
2129 }
2130 
2131 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2132 {
2133 	int err;
2134 
2135 	while (1) {
2136 		if (ptq->sel_start) {
2137 			if (ptq->timestamp >= ptq->sel_timestamp) {
2138 				/* After start time, so consider next time */
2139 				intel_pt_next_time(ptq);
2140 				if (!ptq->sel_timestamp) {
2141 					/* No end time */
2142 					return 0;
2143 				}
2144 				/* Check against end time */
2145 				continue;
2146 			}
2147 			/* Before start time, so fast forward */
2148 			ptq->have_sample = false;
2149 			if (ptq->sel_timestamp > *ff_timestamp) {
2150 				if (ptq->sync_switch) {
2151 					intel_pt_next_tid(ptq->pt, ptq);
2152 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2153 				}
2154 				*ff_timestamp = ptq->sel_timestamp;
2155 				err = intel_pt_fast_forward(ptq->decoder,
2156 							    ptq->sel_timestamp);
2157 				if (err)
2158 					return err;
2159 			}
2160 			return 0;
2161 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2162 			/* After end time, so consider next time */
2163 			if (!intel_pt_next_time(ptq)) {
2164 				/* No next time range, so stop decoding */
2165 				ptq->have_sample = false;
2166 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2167 				return 1;
2168 			}
2169 			/* Check against next start time */
2170 			continue;
2171 		} else {
2172 			/* Before end time */
2173 			return 0;
2174 		}
2175 	}
2176 }
2177 
2178 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2179 {
2180 	const struct intel_pt_state *state = ptq->state;
2181 	struct intel_pt *pt = ptq->pt;
2182 	u64 ff_timestamp = 0;
2183 	int err;
2184 
2185 	if (!pt->kernel_start) {
2186 		pt->kernel_start = machine__kernel_start(pt->machine);
2187 		if (pt->per_cpu_mmaps &&
2188 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2189 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2190 		    !pt->sampling_mode) {
2191 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2192 			if (pt->switch_ip) {
2193 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2194 					     pt->switch_ip, pt->ptss_ip);
2195 				intel_pt_enable_sync_switch(pt);
2196 			}
2197 		}
2198 	}
2199 
2200 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2201 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2202 	while (1) {
2203 		err = intel_pt_sample(ptq);
2204 		if (err)
2205 			return err;
2206 
2207 		state = intel_pt_decode(ptq->decoder);
2208 		if (state->err) {
2209 			if (state->err == INTEL_PT_ERR_NODATA)
2210 				return 1;
2211 			if (ptq->sync_switch &&
2212 			    state->from_ip >= pt->kernel_start) {
2213 				ptq->sync_switch = false;
2214 				intel_pt_next_tid(pt, ptq);
2215 			}
2216 			if (pt->synth_opts.errors) {
2217 				err = intel_ptq_synth_error(ptq, state);
2218 				if (err)
2219 					return err;
2220 			}
2221 			continue;
2222 		}
2223 
2224 		ptq->state = state;
2225 		ptq->have_sample = true;
2226 		intel_pt_sample_flags(ptq);
2227 
2228 		/* Use estimated TSC upon return to user space */
2229 		if (pt->est_tsc &&
2230 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2231 		    state->to_ip && state->to_ip < pt->kernel_start) {
2232 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2233 				     state->timestamp, state->est_timestamp);
2234 			ptq->timestamp = state->est_timestamp;
2235 		/* Use estimated TSC in unknown switch state */
2236 		} else if (ptq->sync_switch &&
2237 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2238 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2239 			   ptq->next_tid == -1) {
2240 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2241 				     state->timestamp, state->est_timestamp);
2242 			ptq->timestamp = state->est_timestamp;
2243 		} else if (state->timestamp > ptq->timestamp) {
2244 			ptq->timestamp = state->timestamp;
2245 		}
2246 
2247 		if (ptq->sel_timestamp) {
2248 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2249 			if (err)
2250 				return err;
2251 		}
2252 
2253 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2254 			*timestamp = ptq->timestamp;
2255 			return 0;
2256 		}
2257 	}
2258 	return 0;
2259 }
2260 
2261 static inline int intel_pt_update_queues(struct intel_pt *pt)
2262 {
2263 	if (pt->queues.new_data) {
2264 		pt->queues.new_data = false;
2265 		return intel_pt_setup_queues(pt);
2266 	}
2267 	return 0;
2268 }
2269 
2270 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2271 {
2272 	unsigned int queue_nr;
2273 	u64 ts;
2274 	int ret;
2275 
2276 	while (1) {
2277 		struct auxtrace_queue *queue;
2278 		struct intel_pt_queue *ptq;
2279 
2280 		if (!pt->heap.heap_cnt)
2281 			return 0;
2282 
2283 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2284 			return 0;
2285 
2286 		queue_nr = pt->heap.heap_array[0].queue_nr;
2287 		queue = &pt->queues.queue_array[queue_nr];
2288 		ptq = queue->priv;
2289 
2290 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2291 			     queue_nr, pt->heap.heap_array[0].ordinal,
2292 			     timestamp);
2293 
2294 		auxtrace_heap__pop(&pt->heap);
2295 
2296 		if (pt->heap.heap_cnt) {
2297 			ts = pt->heap.heap_array[0].ordinal + 1;
2298 			if (ts > timestamp)
2299 				ts = timestamp;
2300 		} else {
2301 			ts = timestamp;
2302 		}
2303 
2304 		intel_pt_set_pid_tid_cpu(pt, queue);
2305 
2306 		ret = intel_pt_run_decoder(ptq, &ts);
2307 
2308 		if (ret < 0) {
2309 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2310 			return ret;
2311 		}
2312 
2313 		if (!ret) {
2314 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2315 			if (ret < 0)
2316 				return ret;
2317 		} else {
2318 			ptq->on_heap = false;
2319 		}
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2326 					    u64 time_)
2327 {
2328 	struct auxtrace_queues *queues = &pt->queues;
2329 	unsigned int i;
2330 	u64 ts = 0;
2331 
2332 	for (i = 0; i < queues->nr_queues; i++) {
2333 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2334 		struct intel_pt_queue *ptq = queue->priv;
2335 
2336 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2337 			ptq->time = time_;
2338 			intel_pt_set_pid_tid_cpu(pt, queue);
2339 			intel_pt_run_decoder(ptq, &ts);
2340 		}
2341 	}
2342 	return 0;
2343 }
2344 
2345 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2346 					    struct auxtrace_queue *queue,
2347 					    struct perf_sample *sample)
2348 {
2349 	struct machine *m = ptq->pt->machine;
2350 
2351 	ptq->pid = sample->pid;
2352 	ptq->tid = sample->tid;
2353 	ptq->cpu = queue->cpu;
2354 
2355 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2356 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2357 
2358 	thread__zput(ptq->thread);
2359 
2360 	if (ptq->tid == -1)
2361 		return;
2362 
2363 	if (ptq->pid == -1) {
2364 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2365 		if (ptq->thread)
2366 			ptq->pid = ptq->thread->pid_;
2367 		return;
2368 	}
2369 
2370 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2371 }
2372 
2373 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2374 					    struct perf_sample *sample)
2375 {
2376 	struct auxtrace_queue *queue;
2377 	struct intel_pt_queue *ptq;
2378 	u64 ts = 0;
2379 
2380 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2381 	if (!queue)
2382 		return -EINVAL;
2383 
2384 	ptq = queue->priv;
2385 	if (!ptq)
2386 		return 0;
2387 
2388 	ptq->stop = false;
2389 	ptq->time = sample->time;
2390 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2391 	intel_pt_run_decoder(ptq, &ts);
2392 	return 0;
2393 }
2394 
2395 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2396 {
2397 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2398 				    sample->pid, sample->tid, 0, sample->time);
2399 }
2400 
2401 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2402 {
2403 	unsigned i, j;
2404 
2405 	if (cpu < 0 || !pt->queues.nr_queues)
2406 		return NULL;
2407 
2408 	if ((unsigned)cpu >= pt->queues.nr_queues)
2409 		i = pt->queues.nr_queues - 1;
2410 	else
2411 		i = cpu;
2412 
2413 	if (pt->queues.queue_array[i].cpu == cpu)
2414 		return pt->queues.queue_array[i].priv;
2415 
2416 	for (j = 0; i > 0; j++) {
2417 		if (pt->queues.queue_array[--i].cpu == cpu)
2418 			return pt->queues.queue_array[i].priv;
2419 	}
2420 
2421 	for (; j < pt->queues.nr_queues; j++) {
2422 		if (pt->queues.queue_array[j].cpu == cpu)
2423 			return pt->queues.queue_array[j].priv;
2424 	}
2425 
2426 	return NULL;
2427 }
2428 
2429 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2430 				u64 timestamp)
2431 {
2432 	struct intel_pt_queue *ptq;
2433 	int err;
2434 
2435 	if (!pt->sync_switch)
2436 		return 1;
2437 
2438 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2439 	if (!ptq || !ptq->sync_switch)
2440 		return 1;
2441 
2442 	switch (ptq->switch_state) {
2443 	case INTEL_PT_SS_NOT_TRACING:
2444 		break;
2445 	case INTEL_PT_SS_UNKNOWN:
2446 	case INTEL_PT_SS_TRACING:
2447 		ptq->next_tid = tid;
2448 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2449 		return 0;
2450 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2451 		if (!ptq->on_heap) {
2452 			ptq->timestamp = perf_time_to_tsc(timestamp,
2453 							  &pt->tc);
2454 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2455 						 ptq->timestamp);
2456 			if (err)
2457 				return err;
2458 			ptq->on_heap = true;
2459 		}
2460 		ptq->switch_state = INTEL_PT_SS_TRACING;
2461 		break;
2462 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2463 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2464 		break;
2465 	default:
2466 		break;
2467 	}
2468 
2469 	ptq->next_tid = -1;
2470 
2471 	return 1;
2472 }
2473 
2474 static int intel_pt_process_switch(struct intel_pt *pt,
2475 				   struct perf_sample *sample)
2476 {
2477 	struct evsel *evsel;
2478 	pid_t tid;
2479 	int cpu, ret;
2480 
2481 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2482 	if (evsel != pt->switch_evsel)
2483 		return 0;
2484 
2485 	tid = perf_evsel__intval(evsel, sample, "next_pid");
2486 	cpu = sample->cpu;
2487 
2488 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2489 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2490 		     &pt->tc));
2491 
2492 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2493 	if (ret <= 0)
2494 		return ret;
2495 
2496 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2497 }
2498 
2499 static int intel_pt_context_switch_in(struct intel_pt *pt,
2500 				      struct perf_sample *sample)
2501 {
2502 	pid_t pid = sample->pid;
2503 	pid_t tid = sample->tid;
2504 	int cpu = sample->cpu;
2505 
2506 	if (pt->sync_switch) {
2507 		struct intel_pt_queue *ptq;
2508 
2509 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2510 		if (ptq && ptq->sync_switch) {
2511 			ptq->next_tid = -1;
2512 			switch (ptq->switch_state) {
2513 			case INTEL_PT_SS_NOT_TRACING:
2514 			case INTEL_PT_SS_UNKNOWN:
2515 			case INTEL_PT_SS_TRACING:
2516 				break;
2517 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2518 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2519 				ptq->switch_state = INTEL_PT_SS_TRACING;
2520 				break;
2521 			default:
2522 				break;
2523 			}
2524 		}
2525 	}
2526 
2527 	/*
2528 	 * If the current tid has not been updated yet, ensure it is now that
2529 	 * a "switch in" event has occurred.
2530 	 */
2531 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2532 		return 0;
2533 
2534 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2535 }
2536 
2537 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2538 				   struct perf_sample *sample)
2539 {
2540 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2541 	pid_t pid, tid;
2542 	int cpu, ret;
2543 
2544 	cpu = sample->cpu;
2545 
2546 	if (pt->have_sched_switch == 3) {
2547 		if (!out)
2548 			return intel_pt_context_switch_in(pt, sample);
2549 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2550 			pr_err("Expecting CPU-wide context switch event\n");
2551 			return -EINVAL;
2552 		}
2553 		pid = event->context_switch.next_prev_pid;
2554 		tid = event->context_switch.next_prev_tid;
2555 	} else {
2556 		if (out)
2557 			return 0;
2558 		pid = sample->pid;
2559 		tid = sample->tid;
2560 	}
2561 
2562 	if (tid == -1) {
2563 		pr_err("context_switch event has no tid\n");
2564 		return -EINVAL;
2565 	}
2566 
2567 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2568 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2569 		     &pt->tc));
2570 
2571 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2572 	if (ret <= 0)
2573 		return ret;
2574 
2575 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2576 }
2577 
2578 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2579 					 union perf_event *event,
2580 					 struct perf_sample *sample)
2581 {
2582 	if (!pt->per_cpu_mmaps)
2583 		return 0;
2584 
2585 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2586 		     sample->cpu, event->itrace_start.pid,
2587 		     event->itrace_start.tid, sample->time,
2588 		     perf_time_to_tsc(sample->time, &pt->tc));
2589 
2590 	return machine__set_current_tid(pt->machine, sample->cpu,
2591 					event->itrace_start.pid,
2592 					event->itrace_start.tid);
2593 }
2594 
2595 static int intel_pt_process_event(struct perf_session *session,
2596 				  union perf_event *event,
2597 				  struct perf_sample *sample,
2598 				  struct perf_tool *tool)
2599 {
2600 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2601 					   auxtrace);
2602 	u64 timestamp;
2603 	int err = 0;
2604 
2605 	if (dump_trace)
2606 		return 0;
2607 
2608 	if (!tool->ordered_events) {
2609 		pr_err("Intel Processor Trace requires ordered events\n");
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (sample->time && sample->time != (u64)-1)
2614 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2615 	else
2616 		timestamp = 0;
2617 
2618 	if (timestamp || pt->timeless_decoding) {
2619 		err = intel_pt_update_queues(pt);
2620 		if (err)
2621 			return err;
2622 	}
2623 
2624 	if (pt->timeless_decoding) {
2625 		if (pt->sampling_mode) {
2626 			if (sample->aux_sample.size)
2627 				err = intel_pt_process_timeless_sample(pt,
2628 								       sample);
2629 		} else if (event->header.type == PERF_RECORD_EXIT) {
2630 			err = intel_pt_process_timeless_queues(pt,
2631 							       event->fork.tid,
2632 							       sample->time);
2633 		}
2634 	} else if (timestamp) {
2635 		err = intel_pt_process_queues(pt, timestamp);
2636 	}
2637 	if (err)
2638 		return err;
2639 
2640 	if (event->header.type == PERF_RECORD_AUX &&
2641 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2642 	    pt->synth_opts.errors) {
2643 		err = intel_pt_lost(pt, sample);
2644 		if (err)
2645 			return err;
2646 	}
2647 
2648 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2649 		err = intel_pt_process_switch(pt, sample);
2650 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2651 		err = intel_pt_process_itrace_start(pt, event, sample);
2652 	else if (event->header.type == PERF_RECORD_SWITCH ||
2653 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2654 		err = intel_pt_context_switch(pt, event, sample);
2655 
2656 	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2657 		     event->header.type, sample->cpu, sample->time, timestamp);
2658 	intel_pt_log_event(event);
2659 
2660 	return err;
2661 }
2662 
2663 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2664 {
2665 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2666 					   auxtrace);
2667 	int ret;
2668 
2669 	if (dump_trace)
2670 		return 0;
2671 
2672 	if (!tool->ordered_events)
2673 		return -EINVAL;
2674 
2675 	ret = intel_pt_update_queues(pt);
2676 	if (ret < 0)
2677 		return ret;
2678 
2679 	if (pt->timeless_decoding)
2680 		return intel_pt_process_timeless_queues(pt, -1,
2681 							MAX_TIMESTAMP - 1);
2682 
2683 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2684 }
2685 
2686 static void intel_pt_free_events(struct perf_session *session)
2687 {
2688 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2689 					   auxtrace);
2690 	struct auxtrace_queues *queues = &pt->queues;
2691 	unsigned int i;
2692 
2693 	for (i = 0; i < queues->nr_queues; i++) {
2694 		intel_pt_free_queue(queues->queue_array[i].priv);
2695 		queues->queue_array[i].priv = NULL;
2696 	}
2697 	intel_pt_log_disable();
2698 	auxtrace_queues__free(queues);
2699 }
2700 
2701 static void intel_pt_free(struct perf_session *session)
2702 {
2703 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2704 					   auxtrace);
2705 
2706 	auxtrace_heap__free(&pt->heap);
2707 	intel_pt_free_events(session);
2708 	session->auxtrace = NULL;
2709 	thread__put(pt->unknown_thread);
2710 	addr_filters__exit(&pt->filts);
2711 	zfree(&pt->filter);
2712 	zfree(&pt->time_ranges);
2713 	free(pt);
2714 }
2715 
2716 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2717 					   union perf_event *event,
2718 					   struct perf_tool *tool __maybe_unused)
2719 {
2720 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2721 					   auxtrace);
2722 
2723 	if (!pt->data_queued) {
2724 		struct auxtrace_buffer *buffer;
2725 		off_t data_offset;
2726 		int fd = perf_data__fd(session->data);
2727 		int err;
2728 
2729 		if (perf_data__is_pipe(session->data)) {
2730 			data_offset = 0;
2731 		} else {
2732 			data_offset = lseek(fd, 0, SEEK_CUR);
2733 			if (data_offset == -1)
2734 				return -errno;
2735 		}
2736 
2737 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2738 						 data_offset, &buffer);
2739 		if (err)
2740 			return err;
2741 
2742 		/* Dump here now we have copied a piped trace out of the pipe */
2743 		if (dump_trace) {
2744 			if (auxtrace_buffer__get_data(buffer, fd)) {
2745 				intel_pt_dump_event(pt, buffer->data,
2746 						    buffer->size);
2747 				auxtrace_buffer__put_data(buffer);
2748 			}
2749 		}
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static int intel_pt_queue_data(struct perf_session *session,
2756 			       struct perf_sample *sample,
2757 			       union perf_event *event, u64 data_offset)
2758 {
2759 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2760 					   auxtrace);
2761 	u64 timestamp;
2762 
2763 	if (event) {
2764 		return auxtrace_queues__add_event(&pt->queues, session, event,
2765 						  data_offset, NULL);
2766 	}
2767 
2768 	if (sample->time && sample->time != (u64)-1)
2769 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2770 	else
2771 		timestamp = 0;
2772 
2773 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
2774 					   data_offset, timestamp);
2775 }
2776 
2777 struct intel_pt_synth {
2778 	struct perf_tool dummy_tool;
2779 	struct perf_session *session;
2780 };
2781 
2782 static int intel_pt_event_synth(struct perf_tool *tool,
2783 				union perf_event *event,
2784 				struct perf_sample *sample __maybe_unused,
2785 				struct machine *machine __maybe_unused)
2786 {
2787 	struct intel_pt_synth *intel_pt_synth =
2788 			container_of(tool, struct intel_pt_synth, dummy_tool);
2789 
2790 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2791 						 NULL);
2792 }
2793 
2794 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2795 				struct perf_event_attr *attr, u64 id)
2796 {
2797 	struct intel_pt_synth intel_pt_synth;
2798 	int err;
2799 
2800 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2801 		 name, id, (u64)attr->sample_type);
2802 
2803 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2804 	intel_pt_synth.session = session;
2805 
2806 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2807 					  &id, intel_pt_event_synth);
2808 	if (err)
2809 		pr_err("%s: failed to synthesize '%s' event type\n",
2810 		       __func__, name);
2811 
2812 	return err;
2813 }
2814 
2815 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2816 				    const char *name)
2817 {
2818 	struct evsel *evsel;
2819 
2820 	evlist__for_each_entry(evlist, evsel) {
2821 		if (evsel->core.id && evsel->core.id[0] == id) {
2822 			if (evsel->name)
2823 				zfree(&evsel->name);
2824 			evsel->name = strdup(name);
2825 			break;
2826 		}
2827 	}
2828 }
2829 
2830 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2831 					 struct evlist *evlist)
2832 {
2833 	struct evsel *evsel;
2834 
2835 	evlist__for_each_entry(evlist, evsel) {
2836 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2837 			return evsel;
2838 	}
2839 
2840 	return NULL;
2841 }
2842 
2843 static int intel_pt_synth_events(struct intel_pt *pt,
2844 				 struct perf_session *session)
2845 {
2846 	struct evlist *evlist = session->evlist;
2847 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
2848 	struct perf_event_attr attr;
2849 	u64 id;
2850 	int err;
2851 
2852 	if (!evsel) {
2853 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2854 		return 0;
2855 	}
2856 
2857 	memset(&attr, 0, sizeof(struct perf_event_attr));
2858 	attr.size = sizeof(struct perf_event_attr);
2859 	attr.type = PERF_TYPE_HARDWARE;
2860 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2861 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2862 			    PERF_SAMPLE_PERIOD;
2863 	if (pt->timeless_decoding)
2864 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2865 	else
2866 		attr.sample_type |= PERF_SAMPLE_TIME;
2867 	if (!pt->per_cpu_mmaps)
2868 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2869 	attr.exclude_user = evsel->core.attr.exclude_user;
2870 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2871 	attr.exclude_hv = evsel->core.attr.exclude_hv;
2872 	attr.exclude_host = evsel->core.attr.exclude_host;
2873 	attr.exclude_guest = evsel->core.attr.exclude_guest;
2874 	attr.sample_id_all = evsel->core.attr.sample_id_all;
2875 	attr.read_format = evsel->core.attr.read_format;
2876 
2877 	id = evsel->core.id[0] + 1000000000;
2878 	if (!id)
2879 		id = 1;
2880 
2881 	if (pt->synth_opts.branches) {
2882 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2883 		attr.sample_period = 1;
2884 		attr.sample_type |= PERF_SAMPLE_ADDR;
2885 		err = intel_pt_synth_event(session, "branches", &attr, id);
2886 		if (err)
2887 			return err;
2888 		pt->sample_branches = true;
2889 		pt->branches_sample_type = attr.sample_type;
2890 		pt->branches_id = id;
2891 		id += 1;
2892 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2893 	}
2894 
2895 	if (pt->synth_opts.callchain)
2896 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2897 	if (pt->synth_opts.last_branch)
2898 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2899 
2900 	if (pt->synth_opts.instructions) {
2901 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2902 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2903 			attr.sample_period =
2904 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2905 		else
2906 			attr.sample_period = pt->synth_opts.period;
2907 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2908 		if (err)
2909 			return err;
2910 		pt->sample_instructions = true;
2911 		pt->instructions_sample_type = attr.sample_type;
2912 		pt->instructions_id = id;
2913 		id += 1;
2914 	}
2915 
2916 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2917 	attr.sample_period = 1;
2918 
2919 	if (pt->synth_opts.transactions) {
2920 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2921 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2922 		if (err)
2923 			return err;
2924 		pt->sample_transactions = true;
2925 		pt->transactions_sample_type = attr.sample_type;
2926 		pt->transactions_id = id;
2927 		intel_pt_set_event_name(evlist, id, "transactions");
2928 		id += 1;
2929 	}
2930 
2931 	attr.type = PERF_TYPE_SYNTH;
2932 	attr.sample_type |= PERF_SAMPLE_RAW;
2933 
2934 	if (pt->synth_opts.ptwrites) {
2935 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2936 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2937 		if (err)
2938 			return err;
2939 		pt->sample_ptwrites = true;
2940 		pt->ptwrites_sample_type = attr.sample_type;
2941 		pt->ptwrites_id = id;
2942 		intel_pt_set_event_name(evlist, id, "ptwrite");
2943 		id += 1;
2944 	}
2945 
2946 	if (pt->synth_opts.pwr_events) {
2947 		pt->sample_pwr_events = true;
2948 		pt->pwr_events_sample_type = attr.sample_type;
2949 
2950 		attr.config = PERF_SYNTH_INTEL_CBR;
2951 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2952 		if (err)
2953 			return err;
2954 		pt->cbr_id = id;
2955 		intel_pt_set_event_name(evlist, id, "cbr");
2956 		id += 1;
2957 	}
2958 
2959 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2960 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2961 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2962 		if (err)
2963 			return err;
2964 		pt->mwait_id = id;
2965 		intel_pt_set_event_name(evlist, id, "mwait");
2966 		id += 1;
2967 
2968 		attr.config = PERF_SYNTH_INTEL_PWRE;
2969 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2970 		if (err)
2971 			return err;
2972 		pt->pwre_id = id;
2973 		intel_pt_set_event_name(evlist, id, "pwre");
2974 		id += 1;
2975 
2976 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2977 		err = intel_pt_synth_event(session, "exstop", &attr, id);
2978 		if (err)
2979 			return err;
2980 		pt->exstop_id = id;
2981 		intel_pt_set_event_name(evlist, id, "exstop");
2982 		id += 1;
2983 
2984 		attr.config = PERF_SYNTH_INTEL_PWRX;
2985 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2986 		if (err)
2987 			return err;
2988 		pt->pwrx_id = id;
2989 		intel_pt_set_event_name(evlist, id, "pwrx");
2990 		id += 1;
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
2997 {
2998 	struct evsel *evsel;
2999 
3000 	if (!pt->synth_opts.other_events)
3001 		return;
3002 
3003 	evlist__for_each_entry(pt->session->evlist, evsel) {
3004 		if (evsel->core.attr.aux_output && evsel->core.id) {
3005 			pt->sample_pebs = true;
3006 			pt->pebs_evsel = evsel;
3007 			return;
3008 		}
3009 	}
3010 }
3011 
3012 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3013 {
3014 	struct evsel *evsel;
3015 
3016 	evlist__for_each_entry_reverse(evlist, evsel) {
3017 		const char *name = perf_evsel__name(evsel);
3018 
3019 		if (!strcmp(name, "sched:sched_switch"))
3020 			return evsel;
3021 	}
3022 
3023 	return NULL;
3024 }
3025 
3026 static bool intel_pt_find_switch(struct evlist *evlist)
3027 {
3028 	struct evsel *evsel;
3029 
3030 	evlist__for_each_entry(evlist, evsel) {
3031 		if (evsel->core.attr.context_switch)
3032 			return true;
3033 	}
3034 
3035 	return false;
3036 }
3037 
3038 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3039 {
3040 	struct intel_pt *pt = data;
3041 
3042 	if (!strcmp(var, "intel-pt.mispred-all"))
3043 		pt->mispred_all = perf_config_bool(var, value);
3044 
3045 	return 0;
3046 }
3047 
3048 /* Find least TSC which converts to ns or later */
3049 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3050 {
3051 	u64 tsc, tm;
3052 
3053 	tsc = perf_time_to_tsc(ns, &pt->tc);
3054 
3055 	while (1) {
3056 		tm = tsc_to_perf_time(tsc, &pt->tc);
3057 		if (tm < ns)
3058 			break;
3059 		tsc -= 1;
3060 	}
3061 
3062 	while (tm < ns)
3063 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3064 
3065 	return tsc;
3066 }
3067 
3068 /* Find greatest TSC which converts to ns or earlier */
3069 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3070 {
3071 	u64 tsc, tm;
3072 
3073 	tsc = perf_time_to_tsc(ns, &pt->tc);
3074 
3075 	while (1) {
3076 		tm = tsc_to_perf_time(tsc, &pt->tc);
3077 		if (tm > ns)
3078 			break;
3079 		tsc += 1;
3080 	}
3081 
3082 	while (tm > ns)
3083 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3084 
3085 	return tsc;
3086 }
3087 
3088 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3089 				      struct itrace_synth_opts *opts)
3090 {
3091 	struct perf_time_interval *p = opts->ptime_range;
3092 	int n = opts->range_num;
3093 	int i;
3094 
3095 	if (!n || !p || pt->timeless_decoding)
3096 		return 0;
3097 
3098 	pt->time_ranges = calloc(n, sizeof(struct range));
3099 	if (!pt->time_ranges)
3100 		return -ENOMEM;
3101 
3102 	pt->range_cnt = n;
3103 
3104 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3105 
3106 	for (i = 0; i < n; i++) {
3107 		struct range *r = &pt->time_ranges[i];
3108 		u64 ts = p[i].start;
3109 		u64 te = p[i].end;
3110 
3111 		/*
3112 		 * Take care to ensure the TSC range matches the perf-time range
3113 		 * when converted back to perf-time.
3114 		 */
3115 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3116 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3117 
3118 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3119 			     i, ts, te);
3120 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3121 			     i, r->start, r->end);
3122 	}
3123 
3124 	return 0;
3125 }
3126 
3127 static const char * const intel_pt_info_fmts[] = {
3128 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3129 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3130 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3131 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3132 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3133 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3134 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3135 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3136 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3137 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3138 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3139 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3140 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3141 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3142 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3143 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3144 };
3145 
3146 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3147 {
3148 	int i;
3149 
3150 	if (!dump_trace)
3151 		return;
3152 
3153 	for (i = start; i <= finish; i++)
3154 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3155 }
3156 
3157 static void intel_pt_print_info_str(const char *name, const char *str)
3158 {
3159 	if (!dump_trace)
3160 		return;
3161 
3162 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3163 }
3164 
3165 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3166 {
3167 	return auxtrace_info->header.size >=
3168 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3169 }
3170 
3171 int intel_pt_process_auxtrace_info(union perf_event *event,
3172 				   struct perf_session *session)
3173 {
3174 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3175 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3176 	struct intel_pt *pt;
3177 	void *info_end;
3178 	__u64 *info;
3179 	int err;
3180 
3181 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3182 					min_sz)
3183 		return -EINVAL;
3184 
3185 	pt = zalloc(sizeof(struct intel_pt));
3186 	if (!pt)
3187 		return -ENOMEM;
3188 
3189 	addr_filters__init(&pt->filts);
3190 
3191 	err = perf_config(intel_pt_perf_config, pt);
3192 	if (err)
3193 		goto err_free;
3194 
3195 	err = auxtrace_queues__init(&pt->queues);
3196 	if (err)
3197 		goto err_free;
3198 
3199 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3200 
3201 	pt->session = session;
3202 	pt->machine = &session->machines.host; /* No kvm support */
3203 	pt->auxtrace_type = auxtrace_info->type;
3204 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3205 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3206 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3207 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3208 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3209 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3210 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3211 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3212 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3213 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3214 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3215 			    INTEL_PT_PER_CPU_MMAPS);
3216 
3217 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3218 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3219 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3220 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3221 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3222 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3223 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3224 				    INTEL_PT_CYC_BIT);
3225 	}
3226 
3227 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3228 		pt->max_non_turbo_ratio =
3229 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3230 		intel_pt_print_info(&auxtrace_info->priv[0],
3231 				    INTEL_PT_MAX_NONTURBO_RATIO,
3232 				    INTEL_PT_MAX_NONTURBO_RATIO);
3233 	}
3234 
3235 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3236 	info_end = (void *)info + auxtrace_info->header.size;
3237 
3238 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3239 		size_t len;
3240 
3241 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3242 		intel_pt_print_info(&auxtrace_info->priv[0],
3243 				    INTEL_PT_FILTER_STR_LEN,
3244 				    INTEL_PT_FILTER_STR_LEN);
3245 		if (len) {
3246 			const char *filter = (const char *)info;
3247 
3248 			len = roundup(len + 1, 8);
3249 			info += len >> 3;
3250 			if ((void *)info > info_end) {
3251 				pr_err("%s: bad filter string length\n", __func__);
3252 				err = -EINVAL;
3253 				goto err_free_queues;
3254 			}
3255 			pt->filter = memdup(filter, len);
3256 			if (!pt->filter) {
3257 				err = -ENOMEM;
3258 				goto err_free_queues;
3259 			}
3260 			if (session->header.needs_swap)
3261 				mem_bswap_64(pt->filter, len);
3262 			if (pt->filter[len - 1]) {
3263 				pr_err("%s: filter string not null terminated\n", __func__);
3264 				err = -EINVAL;
3265 				goto err_free_queues;
3266 			}
3267 			err = addr_filters__parse_bare_filter(&pt->filts,
3268 							      filter);
3269 			if (err)
3270 				goto err_free_queues;
3271 		}
3272 		intel_pt_print_info_str("Filter string", pt->filter);
3273 	}
3274 
3275 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3276 	if (pt->timeless_decoding && !pt->tc.time_mult)
3277 		pt->tc.time_mult = 1;
3278 	pt->have_tsc = intel_pt_have_tsc(pt);
3279 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3280 	pt->est_tsc = !pt->timeless_decoding;
3281 
3282 	pt->unknown_thread = thread__new(999999999, 999999999);
3283 	if (!pt->unknown_thread) {
3284 		err = -ENOMEM;
3285 		goto err_free_queues;
3286 	}
3287 
3288 	/*
3289 	 * Since this thread will not be kept in any rbtree not in a
3290 	 * list, initialize its list node so that at thread__put() the
3291 	 * current thread lifetime assuption is kept and we don't segfault
3292 	 * at list_del_init().
3293 	 */
3294 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3295 
3296 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3297 	if (err)
3298 		goto err_delete_thread;
3299 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3300 		err = -ENOMEM;
3301 		goto err_delete_thread;
3302 	}
3303 
3304 	pt->auxtrace.process_event = intel_pt_process_event;
3305 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3306 	pt->auxtrace.queue_data = intel_pt_queue_data;
3307 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3308 	pt->auxtrace.flush_events = intel_pt_flush;
3309 	pt->auxtrace.free_events = intel_pt_free_events;
3310 	pt->auxtrace.free = intel_pt_free;
3311 	session->auxtrace = &pt->auxtrace;
3312 
3313 	if (dump_trace)
3314 		return 0;
3315 
3316 	if (pt->have_sched_switch == 1) {
3317 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3318 		if (!pt->switch_evsel) {
3319 			pr_err("%s: missing sched_switch event\n", __func__);
3320 			err = -EINVAL;
3321 			goto err_delete_thread;
3322 		}
3323 	} else if (pt->have_sched_switch == 2 &&
3324 		   !intel_pt_find_switch(session->evlist)) {
3325 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3326 		err = -EINVAL;
3327 		goto err_delete_thread;
3328 	}
3329 
3330 	if (session->itrace_synth_opts->set) {
3331 		pt->synth_opts = *session->itrace_synth_opts;
3332 	} else {
3333 		itrace_synth_opts__set_default(&pt->synth_opts,
3334 				session->itrace_synth_opts->default_no_sample);
3335 		if (!session->itrace_synth_opts->default_no_sample &&
3336 		    !session->itrace_synth_opts->inject) {
3337 			pt->synth_opts.branches = false;
3338 			pt->synth_opts.callchain = true;
3339 		}
3340 		pt->synth_opts.thread_stack =
3341 				session->itrace_synth_opts->thread_stack;
3342 	}
3343 
3344 	if (pt->synth_opts.log)
3345 		intel_pt_log_enable();
3346 
3347 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3348 	if (pt->tc.time_mult) {
3349 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3350 
3351 		if (!pt->max_non_turbo_ratio)
3352 			pt->max_non_turbo_ratio =
3353 					(tsc_freq + 50000000) / 100000000;
3354 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3355 		intel_pt_log("Maximum non-turbo ratio %u\n",
3356 			     pt->max_non_turbo_ratio);
3357 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3358 	}
3359 
3360 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3361 	if (err)
3362 		goto err_delete_thread;
3363 
3364 	if (pt->synth_opts.calls)
3365 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3366 				       PERF_IP_FLAG_TRACE_END;
3367 	if (pt->synth_opts.returns)
3368 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3369 				       PERF_IP_FLAG_TRACE_BEGIN;
3370 
3371 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
3372 		symbol_conf.use_callchain = true;
3373 		if (callchain_register_param(&callchain_param) < 0) {
3374 			symbol_conf.use_callchain = false;
3375 			pt->synth_opts.callchain = false;
3376 		}
3377 	}
3378 
3379 	err = intel_pt_synth_events(pt, session);
3380 	if (err)
3381 		goto err_delete_thread;
3382 
3383 	intel_pt_setup_pebs_events(pt);
3384 
3385 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3386 		err = auxtrace_queue_data(session, true, true);
3387 	else
3388 		err = auxtrace_queues__process_index(&pt->queues, session);
3389 	if (err)
3390 		goto err_delete_thread;
3391 
3392 	if (pt->queues.populated)
3393 		pt->data_queued = true;
3394 
3395 	if (pt->timeless_decoding)
3396 		pr_debug2("Intel PT decoding without timestamps\n");
3397 
3398 	return 0;
3399 
3400 err_delete_thread:
3401 	thread__zput(pt->unknown_thread);
3402 err_free_queues:
3403 	intel_pt_log_disable();
3404 	auxtrace_queues__free(&pt->queues);
3405 	session->auxtrace = NULL;
3406 err_free:
3407 	addr_filters__exit(&pt->filts);
3408 	zfree(&pt->filter);
3409 	zfree(&pt->time_ranges);
3410 	free(pt);
3411 	return err;
3412 }
3413