xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision a583bf18)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
54 
55 struct range {
56 	u64 start;
57 	u64 end;
58 };
59 
60 struct intel_pt {
61 	struct auxtrace auxtrace;
62 	struct auxtrace_queues queues;
63 	struct auxtrace_heap heap;
64 	u32 auxtrace_type;
65 	struct perf_session *session;
66 	struct machine *machine;
67 	struct evsel *switch_evsel;
68 	struct thread *unknown_thread;
69 	bool timeless_decoding;
70 	bool sampling_mode;
71 	bool snapshot_mode;
72 	bool per_cpu_mmaps;
73 	bool have_tsc;
74 	bool data_queued;
75 	bool est_tsc;
76 	bool sync_switch;
77 	bool mispred_all;
78 	bool use_thread_stack;
79 	bool callstack;
80 	bool cap_event_trace;
81 	unsigned int br_stack_sz;
82 	unsigned int br_stack_sz_plus;
83 	int have_sched_switch;
84 	u32 pmu_type;
85 	u64 kernel_start;
86 	u64 switch_ip;
87 	u64 ptss_ip;
88 	u64 first_timestamp;
89 
90 	struct perf_tsc_conversion tc;
91 	bool cap_user_time_zero;
92 
93 	struct itrace_synth_opts synth_opts;
94 
95 	bool sample_instructions;
96 	u64 instructions_sample_type;
97 	u64 instructions_id;
98 
99 	bool sample_branches;
100 	u32 branches_filter;
101 	u64 branches_sample_type;
102 	u64 branches_id;
103 
104 	bool sample_transactions;
105 	u64 transactions_sample_type;
106 	u64 transactions_id;
107 
108 	bool sample_ptwrites;
109 	u64 ptwrites_sample_type;
110 	u64 ptwrites_id;
111 
112 	bool sample_pwr_events;
113 	u64 pwr_events_sample_type;
114 	u64 mwait_id;
115 	u64 pwre_id;
116 	u64 exstop_id;
117 	u64 pwrx_id;
118 	u64 cbr_id;
119 	u64 psb_id;
120 
121 	bool single_pebs;
122 	bool sample_pebs;
123 	struct evsel *pebs_evsel;
124 
125 	u64 evt_sample_type;
126 	u64 evt_id;
127 
128 	u64 iflag_chg_sample_type;
129 	u64 iflag_chg_id;
130 
131 	u64 tsc_bit;
132 	u64 mtc_bit;
133 	u64 mtc_freq_bits;
134 	u32 tsc_ctc_ratio_n;
135 	u32 tsc_ctc_ratio_d;
136 	u64 cyc_bit;
137 	u64 noretcomp_bit;
138 	unsigned max_non_turbo_ratio;
139 	unsigned cbr2khz;
140 	int max_loops;
141 
142 	unsigned long num_events;
143 
144 	char *filter;
145 	struct addr_filters filts;
146 
147 	struct range *time_ranges;
148 	unsigned int range_cnt;
149 
150 	struct ip_callchain *chain;
151 	struct branch_stack *br_stack;
152 
153 	u64 dflt_tsc_offset;
154 	struct rb_root vmcs_info;
155 };
156 
157 enum switch_state {
158 	INTEL_PT_SS_NOT_TRACING,
159 	INTEL_PT_SS_UNKNOWN,
160 	INTEL_PT_SS_TRACING,
161 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
162 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
163 };
164 
165 /* applicable_counters is 64-bits */
166 #define INTEL_PT_MAX_PEBS 64
167 
168 struct intel_pt_pebs_event {
169 	struct evsel *evsel;
170 	u64 id;
171 };
172 
173 struct intel_pt_queue {
174 	struct intel_pt *pt;
175 	unsigned int queue_nr;
176 	struct auxtrace_buffer *buffer;
177 	struct auxtrace_buffer *old_buffer;
178 	void *decoder;
179 	const struct intel_pt_state *state;
180 	struct ip_callchain *chain;
181 	struct branch_stack *last_branch;
182 	union perf_event *event_buf;
183 	bool on_heap;
184 	bool stop;
185 	bool step_through_buffers;
186 	bool use_buffer_pid_tid;
187 	bool sync_switch;
188 	bool sample_ipc;
189 	pid_t pid, tid;
190 	int cpu;
191 	int switch_state;
192 	pid_t next_tid;
193 	struct thread *thread;
194 	struct machine *guest_machine;
195 	struct thread *unknown_guest_thread;
196 	pid_t guest_machine_pid;
197 	bool exclude_kernel;
198 	bool have_sample;
199 	u64 time;
200 	u64 timestamp;
201 	u64 sel_timestamp;
202 	bool sel_start;
203 	unsigned int sel_idx;
204 	u32 flags;
205 	u16 insn_len;
206 	u64 last_insn_cnt;
207 	u64 ipc_insn_cnt;
208 	u64 ipc_cyc_cnt;
209 	u64 last_in_insn_cnt;
210 	u64 last_in_cyc_cnt;
211 	u64 last_br_insn_cnt;
212 	u64 last_br_cyc_cnt;
213 	unsigned int cbr_seen;
214 	char insn[INTEL_PT_INSN_BUF_SZ];
215 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
216 };
217 
218 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
219 			  unsigned char *buf, size_t len)
220 {
221 	struct intel_pt_pkt packet;
222 	size_t pos = 0;
223 	int ret, pkt_len, i;
224 	char desc[INTEL_PT_PKT_DESC_MAX];
225 	const char *color = PERF_COLOR_BLUE;
226 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
227 
228 	color_fprintf(stdout, color,
229 		      ". ... Intel Processor Trace data: size %zu bytes\n",
230 		      len);
231 
232 	while (len) {
233 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
234 		if (ret > 0)
235 			pkt_len = ret;
236 		else
237 			pkt_len = 1;
238 		printf(".");
239 		color_fprintf(stdout, color, "  %08x: ", pos);
240 		for (i = 0; i < pkt_len; i++)
241 			color_fprintf(stdout, color, " %02x", buf[i]);
242 		for (; i < 16; i++)
243 			color_fprintf(stdout, color, "   ");
244 		if (ret > 0) {
245 			ret = intel_pt_pkt_desc(&packet, desc,
246 						INTEL_PT_PKT_DESC_MAX);
247 			if (ret > 0)
248 				color_fprintf(stdout, color, " %s\n", desc);
249 		} else {
250 			color_fprintf(stdout, color, " Bad packet!\n");
251 		}
252 		pos += pkt_len;
253 		buf += pkt_len;
254 		len -= pkt_len;
255 	}
256 }
257 
258 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
259 				size_t len)
260 {
261 	printf(".\n");
262 	intel_pt_dump(pt, buf, len);
263 }
264 
265 static void intel_pt_log_event(union perf_event *event)
266 {
267 	FILE *f = intel_pt_log_fp();
268 
269 	if (!intel_pt_enable_logging || !f)
270 		return;
271 
272 	perf_event__fprintf(event, NULL, f);
273 }
274 
275 static void intel_pt_dump_sample(struct perf_session *session,
276 				 struct perf_sample *sample)
277 {
278 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
279 					   auxtrace);
280 
281 	printf("\n");
282 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
283 }
284 
285 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
286 {
287 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
288 	int n = pt->synth_opts.range_num;
289 
290 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
291 		return true;
292 
293 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
294 		return false;
295 
296 	/* perf_time__ranges_skip_sample does not work if time is zero */
297 	if (!tm)
298 		tm = 1;
299 
300 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
301 }
302 
303 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
304 							u64 vmcs,
305 							u64 dflt_tsc_offset)
306 {
307 	struct rb_node **p = &rb_root->rb_node;
308 	struct rb_node *parent = NULL;
309 	struct intel_pt_vmcs_info *v;
310 
311 	while (*p) {
312 		parent = *p;
313 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
314 
315 		if (v->vmcs == vmcs)
316 			return v;
317 
318 		if (vmcs < v->vmcs)
319 			p = &(*p)->rb_left;
320 		else
321 			p = &(*p)->rb_right;
322 	}
323 
324 	v = zalloc(sizeof(*v));
325 	if (v) {
326 		v->vmcs = vmcs;
327 		v->tsc_offset = dflt_tsc_offset;
328 		v->reliable = dflt_tsc_offset;
329 
330 		rb_link_node(&v->rb_node, parent, p);
331 		rb_insert_color(&v->rb_node, rb_root);
332 	}
333 
334 	return v;
335 }
336 
337 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
338 {
339 	struct intel_pt_queue *ptq = data;
340 	struct intel_pt *pt = ptq->pt;
341 
342 	if (!vmcs && !pt->dflt_tsc_offset)
343 		return NULL;
344 
345 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
346 }
347 
348 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
349 {
350 	struct intel_pt_vmcs_info *v;
351 	struct rb_node *n;
352 
353 	n = rb_first(&pt->vmcs_info);
354 	while (n) {
355 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
356 		n = rb_next(n);
357 		rb_erase(&v->rb_node, &pt->vmcs_info);
358 		free(v);
359 	}
360 }
361 
362 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
363 				   struct auxtrace_buffer *b)
364 {
365 	bool consecutive = false;
366 	void *start;
367 
368 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
369 				      pt->have_tsc, &consecutive,
370 				      pt->synth_opts.vm_time_correlation);
371 	if (!start)
372 		return -EINVAL;
373 	/*
374 	 * In the case of vm_time_correlation, the overlap might contain TSC
375 	 * packets that will not be fixed, and that will then no longer work for
376 	 * overlap detection. Avoid that by zeroing out the overlap.
377 	 */
378 	if (pt->synth_opts.vm_time_correlation)
379 		memset(b->data, 0, start - b->data);
380 	b->use_size = b->data + b->size - start;
381 	b->use_data = start;
382 	if (b->use_size && consecutive)
383 		b->consecutive = true;
384 	return 0;
385 }
386 
387 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
388 			       struct auxtrace_buffer *buffer,
389 			       struct auxtrace_buffer *old_buffer,
390 			       struct intel_pt_buffer *b)
391 {
392 	bool might_overlap;
393 
394 	if (!buffer->data) {
395 		int fd = perf_data__fd(ptq->pt->session->data);
396 
397 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
398 		if (!buffer->data)
399 			return -ENOMEM;
400 	}
401 
402 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
403 	if (might_overlap && !buffer->consecutive && old_buffer &&
404 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
405 		return -ENOMEM;
406 
407 	if (buffer->use_data) {
408 		b->len = buffer->use_size;
409 		b->buf = buffer->use_data;
410 	} else {
411 		b->len = buffer->size;
412 		b->buf = buffer->data;
413 	}
414 	b->ref_timestamp = buffer->reference;
415 
416 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
417 		b->consecutive = false;
418 		b->trace_nr = buffer->buffer_nr + 1;
419 	} else {
420 		b->consecutive = true;
421 	}
422 
423 	return 0;
424 }
425 
426 /* Do not drop buffers with references - refer intel_pt_get_trace() */
427 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
428 					   struct auxtrace_buffer *buffer)
429 {
430 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
431 		return;
432 
433 	auxtrace_buffer__drop_data(buffer);
434 }
435 
436 /* Must be serialized with respect to intel_pt_get_trace() */
437 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
438 			      void *cb_data)
439 {
440 	struct intel_pt_queue *ptq = data;
441 	struct auxtrace_buffer *buffer = ptq->buffer;
442 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
443 	struct auxtrace_queue *queue;
444 	int err = 0;
445 
446 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
447 
448 	while (1) {
449 		struct intel_pt_buffer b = { .len = 0 };
450 
451 		buffer = auxtrace_buffer__next(queue, buffer);
452 		if (!buffer)
453 			break;
454 
455 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
456 		if (err)
457 			break;
458 
459 		if (b.len) {
460 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
461 			old_buffer = buffer;
462 		} else {
463 			intel_pt_lookahead_drop_buffer(ptq, buffer);
464 			continue;
465 		}
466 
467 		err = cb(&b, cb_data);
468 		if (err)
469 			break;
470 	}
471 
472 	if (buffer != old_buffer)
473 		intel_pt_lookahead_drop_buffer(ptq, buffer);
474 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
475 
476 	return err;
477 }
478 
479 /*
480  * This function assumes data is processed sequentially only.
481  * Must be serialized with respect to intel_pt_lookahead()
482  */
483 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
484 {
485 	struct intel_pt_queue *ptq = data;
486 	struct auxtrace_buffer *buffer = ptq->buffer;
487 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
488 	struct auxtrace_queue *queue;
489 	int err;
490 
491 	if (ptq->stop) {
492 		b->len = 0;
493 		return 0;
494 	}
495 
496 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
497 
498 	buffer = auxtrace_buffer__next(queue, buffer);
499 	if (!buffer) {
500 		if (old_buffer)
501 			auxtrace_buffer__drop_data(old_buffer);
502 		b->len = 0;
503 		return 0;
504 	}
505 
506 	ptq->buffer = buffer;
507 
508 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
509 	if (err)
510 		return err;
511 
512 	if (ptq->step_through_buffers)
513 		ptq->stop = true;
514 
515 	if (b->len) {
516 		if (old_buffer)
517 			auxtrace_buffer__drop_data(old_buffer);
518 		ptq->old_buffer = buffer;
519 	} else {
520 		auxtrace_buffer__drop_data(buffer);
521 		return intel_pt_get_trace(b, data);
522 	}
523 
524 	return 0;
525 }
526 
527 struct intel_pt_cache_entry {
528 	struct auxtrace_cache_entry	entry;
529 	u64				insn_cnt;
530 	u64				byte_cnt;
531 	enum intel_pt_insn_op		op;
532 	enum intel_pt_insn_branch	branch;
533 	bool				emulated_ptwrite;
534 	int				length;
535 	int32_t				rel;
536 	char				insn[INTEL_PT_INSN_BUF_SZ];
537 };
538 
539 static int intel_pt_config_div(const char *var, const char *value, void *data)
540 {
541 	int *d = data;
542 	long val;
543 
544 	if (!strcmp(var, "intel-pt.cache-divisor")) {
545 		val = strtol(value, NULL, 0);
546 		if (val > 0 && val <= INT_MAX)
547 			*d = val;
548 	}
549 
550 	return 0;
551 }
552 
553 static int intel_pt_cache_divisor(void)
554 {
555 	static int d;
556 
557 	if (d)
558 		return d;
559 
560 	perf_config(intel_pt_config_div, &d);
561 
562 	if (!d)
563 		d = 64;
564 
565 	return d;
566 }
567 
568 static unsigned int intel_pt_cache_size(struct dso *dso,
569 					struct machine *machine)
570 {
571 	off_t size;
572 
573 	size = dso__data_size(dso, machine);
574 	size /= intel_pt_cache_divisor();
575 	if (size < 1000)
576 		return 10;
577 	if (size > (1 << 21))
578 		return 21;
579 	return 32 - __builtin_clz(size);
580 }
581 
582 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
583 					     struct machine *machine)
584 {
585 	struct auxtrace_cache *c;
586 	unsigned int bits;
587 
588 	if (dso->auxtrace_cache)
589 		return dso->auxtrace_cache;
590 
591 	bits = intel_pt_cache_size(dso, machine);
592 
593 	/* Ignoring cache creation failure */
594 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
595 
596 	dso->auxtrace_cache = c;
597 
598 	return c;
599 }
600 
601 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
602 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
603 			      struct intel_pt_insn *intel_pt_insn)
604 {
605 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
606 	struct intel_pt_cache_entry *e;
607 	int err;
608 
609 	if (!c)
610 		return -ENOMEM;
611 
612 	e = auxtrace_cache__alloc_entry(c);
613 	if (!e)
614 		return -ENOMEM;
615 
616 	e->insn_cnt = insn_cnt;
617 	e->byte_cnt = byte_cnt;
618 	e->op = intel_pt_insn->op;
619 	e->branch = intel_pt_insn->branch;
620 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
621 	e->length = intel_pt_insn->length;
622 	e->rel = intel_pt_insn->rel;
623 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
624 
625 	err = auxtrace_cache__add(c, offset, &e->entry);
626 	if (err)
627 		auxtrace_cache__free_entry(c, e);
628 
629 	return err;
630 }
631 
632 static struct intel_pt_cache_entry *
633 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
634 {
635 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
636 
637 	if (!c)
638 		return NULL;
639 
640 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
641 }
642 
643 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
644 				      u64 offset)
645 {
646 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
647 
648 	if (!c)
649 		return;
650 
651 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
652 }
653 
654 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
655 {
656 	/* Assumes 64-bit kernel */
657 	return ip & (1ULL << 63);
658 }
659 
660 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
661 {
662 	if (nr) {
663 		return intel_pt_guest_kernel_ip(ip) ?
664 		       PERF_RECORD_MISC_GUEST_KERNEL :
665 		       PERF_RECORD_MISC_GUEST_USER;
666 	}
667 
668 	return ip >= ptq->pt->kernel_start ?
669 	       PERF_RECORD_MISC_KERNEL :
670 	       PERF_RECORD_MISC_USER;
671 }
672 
673 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
674 {
675 	/* No support for non-zero CS base */
676 	if (from_ip)
677 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
678 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
679 }
680 
681 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
682 {
683 	struct machines *machines = &ptq->pt->session->machines;
684 	struct machine *machine;
685 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
686 
687 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
688 		return 0;
689 
690 	ptq->guest_machine = NULL;
691 	thread__zput(ptq->unknown_guest_thread);
692 
693 	machine = machines__find_guest(machines, pid);
694 	if (!machine)
695 		return -1;
696 
697 	ptq->unknown_guest_thread = machine__idle_thread(machine);
698 	if (!ptq->unknown_guest_thread)
699 		return -1;
700 
701 	ptq->guest_machine = machine;
702 	ptq->guest_machine_pid = pid;
703 
704 	return 0;
705 }
706 
707 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
708 {
709 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
710 }
711 
712 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
713 #define PTWRITE_MAGIC_LEN	16
714 
715 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
716 {
717 	unsigned char buf[PTWRITE_MAGIC_LEN];
718 	ssize_t len;
719 
720 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
721 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
722 		intel_pt_log("Emulated ptwrite signature found\n");
723 		return true;
724 	}
725 	intel_pt_log("Emulated ptwrite signature not found\n");
726 	return false;
727 }
728 
729 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
730 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
731 				   uint64_t to_ip, uint64_t max_insn_cnt,
732 				   void *data)
733 {
734 	struct intel_pt_queue *ptq = data;
735 	struct machine *machine = ptq->pt->machine;
736 	struct thread *thread;
737 	struct addr_location al;
738 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
739 	ssize_t len;
740 	int x86_64;
741 	u8 cpumode;
742 	u64 offset, start_offset, start_ip;
743 	u64 insn_cnt = 0;
744 	bool one_map = true;
745 	bool nr;
746 
747 	intel_pt_insn->length = 0;
748 
749 	if (to_ip && *ip == to_ip)
750 		goto out_no_cache;
751 
752 	nr = ptq->state->to_nr;
753 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
754 
755 	if (nr) {
756 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
757 		    intel_pt_get_guest(ptq))
758 			return -EINVAL;
759 		machine = ptq->guest_machine;
760 		thread = ptq->unknown_guest_thread;
761 	} else {
762 		thread = ptq->thread;
763 		if (!thread) {
764 			if (cpumode != PERF_RECORD_MISC_KERNEL)
765 				return -EINVAL;
766 			thread = ptq->pt->unknown_thread;
767 		}
768 	}
769 
770 	while (1) {
771 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
772 			return -EINVAL;
773 
774 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
775 		    dso__data_status_seen(al.map->dso,
776 					  DSO_DATA_STATUS_SEEN_ITRACE))
777 			return -ENOENT;
778 
779 		offset = al.map->map_ip(al.map, *ip);
780 
781 		if (!to_ip && one_map) {
782 			struct intel_pt_cache_entry *e;
783 
784 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
785 			if (e &&
786 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
787 				*insn_cnt_ptr = e->insn_cnt;
788 				*ip += e->byte_cnt;
789 				intel_pt_insn->op = e->op;
790 				intel_pt_insn->branch = e->branch;
791 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
792 				intel_pt_insn->length = e->length;
793 				intel_pt_insn->rel = e->rel;
794 				memcpy(intel_pt_insn->buf, e->insn,
795 				       INTEL_PT_INSN_BUF_SZ);
796 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
797 				return 0;
798 			}
799 		}
800 
801 		start_offset = offset;
802 		start_ip = *ip;
803 
804 		/* Load maps to ensure dso->is_64_bit has been updated */
805 		map__load(al.map);
806 
807 		x86_64 = al.map->dso->is_64_bit;
808 
809 		while (1) {
810 			len = dso__data_read_offset(al.map->dso, machine,
811 						    offset, buf,
812 						    INTEL_PT_INSN_BUF_SZ);
813 			if (len <= 0)
814 				return -EINVAL;
815 
816 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
817 				return -EINVAL;
818 
819 			intel_pt_log_insn(intel_pt_insn, *ip);
820 
821 			insn_cnt += 1;
822 
823 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
824 				bool eptw;
825 				u64 offs;
826 
827 				if (!intel_pt_jmp_16(intel_pt_insn))
828 					goto out;
829 				/* Check for emulated ptwrite */
830 				offs = offset + intel_pt_insn->length;
831 				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
832 				intel_pt_insn->emulated_ptwrite = eptw;
833 				goto out;
834 			}
835 
836 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
837 				goto out_no_cache;
838 
839 			*ip += intel_pt_insn->length;
840 
841 			if (to_ip && *ip == to_ip) {
842 				intel_pt_insn->length = 0;
843 				goto out_no_cache;
844 			}
845 
846 			if (*ip >= al.map->end)
847 				break;
848 
849 			offset += intel_pt_insn->length;
850 		}
851 		one_map = false;
852 	}
853 out:
854 	*insn_cnt_ptr = insn_cnt;
855 
856 	if (!one_map)
857 		goto out_no_cache;
858 
859 	/*
860 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
861 	 * entries.
862 	 */
863 	if (to_ip) {
864 		struct intel_pt_cache_entry *e;
865 
866 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
867 		if (e)
868 			return 0;
869 	}
870 
871 	/* Ignore cache errors */
872 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
873 			   *ip - start_ip, intel_pt_insn);
874 
875 	return 0;
876 
877 out_no_cache:
878 	*insn_cnt_ptr = insn_cnt;
879 	return 0;
880 }
881 
882 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
883 				  uint64_t offset, const char *filename)
884 {
885 	struct addr_filter *filt;
886 	bool have_filter   = false;
887 	bool hit_tracestop = false;
888 	bool hit_filter    = false;
889 
890 	list_for_each_entry(filt, &pt->filts.head, list) {
891 		if (filt->start)
892 			have_filter = true;
893 
894 		if ((filename && !filt->filename) ||
895 		    (!filename && filt->filename) ||
896 		    (filename && strcmp(filename, filt->filename)))
897 			continue;
898 
899 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
900 			continue;
901 
902 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
903 			     ip, offset, filename ? filename : "[kernel]",
904 			     filt->start ? "filter" : "stop",
905 			     filt->addr, filt->size);
906 
907 		if (filt->start)
908 			hit_filter = true;
909 		else
910 			hit_tracestop = true;
911 	}
912 
913 	if (!hit_tracestop && !hit_filter)
914 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
915 			     ip, offset, filename ? filename : "[kernel]");
916 
917 	return hit_tracestop || (have_filter && !hit_filter);
918 }
919 
920 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
921 {
922 	struct intel_pt_queue *ptq = data;
923 	struct thread *thread;
924 	struct addr_location al;
925 	u8 cpumode;
926 	u64 offset;
927 
928 	if (ptq->state->to_nr) {
929 		if (intel_pt_guest_kernel_ip(ip))
930 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
931 		/* No support for decoding guest user space */
932 		return -EINVAL;
933 	} else if (ip >= ptq->pt->kernel_start) {
934 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
935 	}
936 
937 	cpumode = PERF_RECORD_MISC_USER;
938 
939 	thread = ptq->thread;
940 	if (!thread)
941 		return -EINVAL;
942 
943 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
944 		return -EINVAL;
945 
946 	offset = al.map->map_ip(al.map, ip);
947 
948 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
949 				     al.map->dso->long_name);
950 }
951 
952 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
953 {
954 	return __intel_pt_pgd_ip(ip, data) > 0;
955 }
956 
957 static bool intel_pt_get_config(struct intel_pt *pt,
958 				struct perf_event_attr *attr, u64 *config)
959 {
960 	if (attr->type == pt->pmu_type) {
961 		if (config)
962 			*config = attr->config;
963 		return true;
964 	}
965 
966 	return false;
967 }
968 
969 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
970 {
971 	struct evsel *evsel;
972 
973 	evlist__for_each_entry(pt->session->evlist, evsel) {
974 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
975 		    !evsel->core.attr.exclude_kernel)
976 			return false;
977 	}
978 	return true;
979 }
980 
981 static bool intel_pt_return_compression(struct intel_pt *pt)
982 {
983 	struct evsel *evsel;
984 	u64 config;
985 
986 	if (!pt->noretcomp_bit)
987 		return true;
988 
989 	evlist__for_each_entry(pt->session->evlist, evsel) {
990 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
991 		    (config & pt->noretcomp_bit))
992 			return false;
993 	}
994 	return true;
995 }
996 
997 static bool intel_pt_branch_enable(struct intel_pt *pt)
998 {
999 	struct evsel *evsel;
1000 	u64 config;
1001 
1002 	evlist__for_each_entry(pt->session->evlist, evsel) {
1003 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1004 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1005 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1006 			return false;
1007 	}
1008 	return true;
1009 }
1010 
1011 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1012 {
1013 	struct evsel *evsel;
1014 	u64 config;
1015 
1016 	evlist__for_each_entry(pt->session->evlist, evsel) {
1017 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1018 		    config & INTEL_PT_CFG_TNT_DIS)
1019 			return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1025 {
1026 	struct evsel *evsel;
1027 	unsigned int shift;
1028 	u64 config;
1029 
1030 	if (!pt->mtc_freq_bits)
1031 		return 0;
1032 
1033 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1034 		config >>= 1;
1035 
1036 	evlist__for_each_entry(pt->session->evlist, evsel) {
1037 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1038 			return (config & pt->mtc_freq_bits) >> shift;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1044 {
1045 	struct evsel *evsel;
1046 	bool timeless_decoding = true;
1047 	u64 config;
1048 
1049 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1050 		return true;
1051 
1052 	evlist__for_each_entry(pt->session->evlist, evsel) {
1053 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1054 			return true;
1055 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1056 			if (config & pt->tsc_bit)
1057 				timeless_decoding = false;
1058 			else
1059 				return true;
1060 		}
1061 	}
1062 	return timeless_decoding;
1063 }
1064 
1065 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1066 {
1067 	struct evsel *evsel;
1068 
1069 	evlist__for_each_entry(pt->session->evlist, evsel) {
1070 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1071 		    !evsel->core.attr.exclude_kernel)
1072 			return true;
1073 	}
1074 	return false;
1075 }
1076 
1077 static bool intel_pt_have_tsc(struct intel_pt *pt)
1078 {
1079 	struct evsel *evsel;
1080 	bool have_tsc = false;
1081 	u64 config;
1082 
1083 	if (!pt->tsc_bit)
1084 		return false;
1085 
1086 	evlist__for_each_entry(pt->session->evlist, evsel) {
1087 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1088 			if (config & pt->tsc_bit)
1089 				have_tsc = true;
1090 			else
1091 				return false;
1092 		}
1093 	}
1094 	return have_tsc;
1095 }
1096 
1097 static bool intel_pt_have_mtc(struct intel_pt *pt)
1098 {
1099 	struct evsel *evsel;
1100 	u64 config;
1101 
1102 	evlist__for_each_entry(pt->session->evlist, evsel) {
1103 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1104 		    (config & pt->mtc_bit))
1105 			return true;
1106 	}
1107 	return false;
1108 }
1109 
1110 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1111 {
1112 	struct evsel *evsel;
1113 
1114 	evlist__for_each_entry(pt->session->evlist, evsel) {
1115 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1116 		    evsel->core.attr.aux_sample_size)
1117 			return true;
1118 	}
1119 	return false;
1120 }
1121 
1122 static u64 intel_pt_ctl(struct intel_pt *pt)
1123 {
1124 	struct evsel *evsel;
1125 	u64 config;
1126 
1127 	evlist__for_each_entry(pt->session->evlist, evsel) {
1128 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1129 			return config;
1130 	}
1131 	return 0;
1132 }
1133 
1134 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1135 {
1136 	u64 quot, rem;
1137 
1138 	quot = ns / pt->tc.time_mult;
1139 	rem  = ns % pt->tc.time_mult;
1140 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1141 		pt->tc.time_mult;
1142 }
1143 
1144 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1145 {
1146 	size_t sz = sizeof(struct ip_callchain);
1147 
1148 	/* Add 1 to callchain_sz for callchain context */
1149 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1150 	return zalloc(sz);
1151 }
1152 
1153 static int intel_pt_callchain_init(struct intel_pt *pt)
1154 {
1155 	struct evsel *evsel;
1156 
1157 	evlist__for_each_entry(pt->session->evlist, evsel) {
1158 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1159 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1160 	}
1161 
1162 	pt->chain = intel_pt_alloc_chain(pt);
1163 	if (!pt->chain)
1164 		return -ENOMEM;
1165 
1166 	return 0;
1167 }
1168 
1169 static void intel_pt_add_callchain(struct intel_pt *pt,
1170 				   struct perf_sample *sample)
1171 {
1172 	struct thread *thread = machine__findnew_thread(pt->machine,
1173 							sample->pid,
1174 							sample->tid);
1175 
1176 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1177 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1178 				  pt->kernel_start);
1179 
1180 	sample->callchain = pt->chain;
1181 }
1182 
1183 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1184 {
1185 	size_t sz = sizeof(struct branch_stack);
1186 
1187 	sz += entry_cnt * sizeof(struct branch_entry);
1188 	return zalloc(sz);
1189 }
1190 
1191 static int intel_pt_br_stack_init(struct intel_pt *pt)
1192 {
1193 	struct evsel *evsel;
1194 
1195 	evlist__for_each_entry(pt->session->evlist, evsel) {
1196 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1197 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1198 	}
1199 
1200 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1201 	if (!pt->br_stack)
1202 		return -ENOMEM;
1203 
1204 	return 0;
1205 }
1206 
1207 static void intel_pt_add_br_stack(struct intel_pt *pt,
1208 				  struct perf_sample *sample)
1209 {
1210 	struct thread *thread = machine__findnew_thread(pt->machine,
1211 							sample->pid,
1212 							sample->tid);
1213 
1214 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1215 				     pt->br_stack_sz, sample->ip,
1216 				     pt->kernel_start);
1217 
1218 	sample->branch_stack = pt->br_stack;
1219 }
1220 
1221 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1222 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1223 
1224 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1225 						   unsigned int queue_nr)
1226 {
1227 	struct intel_pt_params params = { .get_trace = 0, };
1228 	struct perf_env *env = pt->machine->env;
1229 	struct intel_pt_queue *ptq;
1230 
1231 	ptq = zalloc(sizeof(struct intel_pt_queue));
1232 	if (!ptq)
1233 		return NULL;
1234 
1235 	if (pt->synth_opts.callchain) {
1236 		ptq->chain = intel_pt_alloc_chain(pt);
1237 		if (!ptq->chain)
1238 			goto out_free;
1239 	}
1240 
1241 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1242 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1243 
1244 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1245 		if (!ptq->last_branch)
1246 			goto out_free;
1247 	}
1248 
1249 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1250 	if (!ptq->event_buf)
1251 		goto out_free;
1252 
1253 	ptq->pt = pt;
1254 	ptq->queue_nr = queue_nr;
1255 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1256 	ptq->pid = -1;
1257 	ptq->tid = -1;
1258 	ptq->cpu = -1;
1259 	ptq->next_tid = -1;
1260 
1261 	params.get_trace = intel_pt_get_trace;
1262 	params.walk_insn = intel_pt_walk_next_insn;
1263 	params.lookahead = intel_pt_lookahead;
1264 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1265 	params.data = ptq;
1266 	params.return_compression = intel_pt_return_compression(pt);
1267 	params.branch_enable = intel_pt_branch_enable(pt);
1268 	params.ctl = intel_pt_ctl(pt);
1269 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1270 	params.mtc_period = intel_pt_mtc_period(pt);
1271 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1272 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1273 	params.quick = pt->synth_opts.quick;
1274 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1275 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1276 	params.first_timestamp = pt->first_timestamp;
1277 	params.max_loops = pt->max_loops;
1278 
1279 	/* Cannot walk code without TNT, so force 'quick' mode */
1280 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1281 		params.quick = 1;
1282 
1283 	if (pt->filts.cnt > 0)
1284 		params.pgd_ip = intel_pt_pgd_ip;
1285 
1286 	if (pt->synth_opts.instructions) {
1287 		if (pt->synth_opts.period) {
1288 			switch (pt->synth_opts.period_type) {
1289 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1290 				params.period_type =
1291 						INTEL_PT_PERIOD_INSTRUCTIONS;
1292 				params.period = pt->synth_opts.period;
1293 				break;
1294 			case PERF_ITRACE_PERIOD_TICKS:
1295 				params.period_type = INTEL_PT_PERIOD_TICKS;
1296 				params.period = pt->synth_opts.period;
1297 				break;
1298 			case PERF_ITRACE_PERIOD_NANOSECS:
1299 				params.period_type = INTEL_PT_PERIOD_TICKS;
1300 				params.period = intel_pt_ns_to_ticks(pt,
1301 							pt->synth_opts.period);
1302 				break;
1303 			default:
1304 				break;
1305 			}
1306 		}
1307 
1308 		if (!params.period) {
1309 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1310 			params.period = 1;
1311 		}
1312 	}
1313 
1314 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1315 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1316 
1317 	ptq->decoder = intel_pt_decoder_new(&params);
1318 	if (!ptq->decoder)
1319 		goto out_free;
1320 
1321 	return ptq;
1322 
1323 out_free:
1324 	zfree(&ptq->event_buf);
1325 	zfree(&ptq->last_branch);
1326 	zfree(&ptq->chain);
1327 	free(ptq);
1328 	return NULL;
1329 }
1330 
1331 static void intel_pt_free_queue(void *priv)
1332 {
1333 	struct intel_pt_queue *ptq = priv;
1334 
1335 	if (!ptq)
1336 		return;
1337 	thread__zput(ptq->thread);
1338 	thread__zput(ptq->unknown_guest_thread);
1339 	intel_pt_decoder_free(ptq->decoder);
1340 	zfree(&ptq->event_buf);
1341 	zfree(&ptq->last_branch);
1342 	zfree(&ptq->chain);
1343 	free(ptq);
1344 }
1345 
1346 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1347 {
1348 	unsigned int i;
1349 
1350 	pt->first_timestamp = timestamp;
1351 
1352 	for (i = 0; i < pt->queues.nr_queues; i++) {
1353 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1354 		struct intel_pt_queue *ptq = queue->priv;
1355 
1356 		if (ptq && ptq->decoder)
1357 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1358 	}
1359 }
1360 
1361 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1362 				     struct auxtrace_queue *queue)
1363 {
1364 	struct intel_pt_queue *ptq = queue->priv;
1365 
1366 	if (queue->tid == -1 || pt->have_sched_switch) {
1367 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1368 		if (ptq->tid == -1)
1369 			ptq->pid = -1;
1370 		thread__zput(ptq->thread);
1371 	}
1372 
1373 	if (!ptq->thread && ptq->tid != -1)
1374 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1375 
1376 	if (ptq->thread) {
1377 		ptq->pid = ptq->thread->pid_;
1378 		if (queue->cpu == -1)
1379 			ptq->cpu = ptq->thread->cpu;
1380 	}
1381 }
1382 
1383 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1384 {
1385 	struct intel_pt *pt = ptq->pt;
1386 
1387 	ptq->insn_len = 0;
1388 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1389 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1390 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1391 		if (!ptq->state->to_ip)
1392 			ptq->flags = PERF_IP_FLAG_BRANCH |
1393 				     PERF_IP_FLAG_TRACE_END;
1394 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1395 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1396 				     PERF_IP_FLAG_VMEXIT;
1397 		else
1398 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1399 				     PERF_IP_FLAG_ASYNC |
1400 				     PERF_IP_FLAG_INTERRUPT;
1401 	} else {
1402 		if (ptq->state->from_ip)
1403 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1404 		else
1405 			ptq->flags = PERF_IP_FLAG_BRANCH |
1406 				     PERF_IP_FLAG_TRACE_BEGIN;
1407 		if (ptq->state->flags & INTEL_PT_IN_TX)
1408 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1409 		ptq->insn_len = ptq->state->insn_len;
1410 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1411 	}
1412 
1413 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1414 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1415 	if (ptq->state->type & INTEL_PT_TRACE_END)
1416 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1417 
1418 	if (pt->cap_event_trace) {
1419 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1420 			if (!ptq->state->from_iflag)
1421 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1422 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1423 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1424 		} else if (!ptq->state->to_iflag) {
1425 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1426 		}
1427 	}
1428 }
1429 
1430 static void intel_pt_setup_time_range(struct intel_pt *pt,
1431 				      struct intel_pt_queue *ptq)
1432 {
1433 	if (!pt->range_cnt)
1434 		return;
1435 
1436 	ptq->sel_timestamp = pt->time_ranges[0].start;
1437 	ptq->sel_idx = 0;
1438 
1439 	if (ptq->sel_timestamp) {
1440 		ptq->sel_start = true;
1441 	} else {
1442 		ptq->sel_timestamp = pt->time_ranges[0].end;
1443 		ptq->sel_start = false;
1444 	}
1445 }
1446 
1447 static int intel_pt_setup_queue(struct intel_pt *pt,
1448 				struct auxtrace_queue *queue,
1449 				unsigned int queue_nr)
1450 {
1451 	struct intel_pt_queue *ptq = queue->priv;
1452 
1453 	if (list_empty(&queue->head))
1454 		return 0;
1455 
1456 	if (!ptq) {
1457 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1458 		if (!ptq)
1459 			return -ENOMEM;
1460 		queue->priv = ptq;
1461 
1462 		if (queue->cpu != -1)
1463 			ptq->cpu = queue->cpu;
1464 		ptq->tid = queue->tid;
1465 
1466 		ptq->cbr_seen = UINT_MAX;
1467 
1468 		if (pt->sampling_mode && !pt->snapshot_mode &&
1469 		    pt->timeless_decoding)
1470 			ptq->step_through_buffers = true;
1471 
1472 		ptq->sync_switch = pt->sync_switch;
1473 
1474 		intel_pt_setup_time_range(pt, ptq);
1475 	}
1476 
1477 	if (!ptq->on_heap &&
1478 	    (!ptq->sync_switch ||
1479 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1480 		const struct intel_pt_state *state;
1481 		int ret;
1482 
1483 		if (pt->timeless_decoding)
1484 			return 0;
1485 
1486 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1487 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1488 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1489 
1490 		if (ptq->sel_start && ptq->sel_timestamp) {
1491 			ret = intel_pt_fast_forward(ptq->decoder,
1492 						    ptq->sel_timestamp);
1493 			if (ret)
1494 				return ret;
1495 		}
1496 
1497 		while (1) {
1498 			state = intel_pt_decode(ptq->decoder);
1499 			if (state->err) {
1500 				if (state->err == INTEL_PT_ERR_NODATA) {
1501 					intel_pt_log("queue %u has no timestamp\n",
1502 						     queue_nr);
1503 					return 0;
1504 				}
1505 				continue;
1506 			}
1507 			if (state->timestamp)
1508 				break;
1509 		}
1510 
1511 		ptq->timestamp = state->timestamp;
1512 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1513 			     queue_nr, ptq->timestamp);
1514 		ptq->state = state;
1515 		ptq->have_sample = true;
1516 		if (ptq->sel_start && ptq->sel_timestamp &&
1517 		    ptq->timestamp < ptq->sel_timestamp)
1518 			ptq->have_sample = false;
1519 		intel_pt_sample_flags(ptq);
1520 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1521 		if (ret)
1522 			return ret;
1523 		ptq->on_heap = true;
1524 	}
1525 
1526 	return 0;
1527 }
1528 
1529 static int intel_pt_setup_queues(struct intel_pt *pt)
1530 {
1531 	unsigned int i;
1532 	int ret;
1533 
1534 	for (i = 0; i < pt->queues.nr_queues; i++) {
1535 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1536 		if (ret)
1537 			return ret;
1538 	}
1539 	return 0;
1540 }
1541 
1542 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1543 {
1544 	return pt->synth_opts.initial_skip &&
1545 	       pt->num_events++ < pt->synth_opts.initial_skip;
1546 }
1547 
1548 /*
1549  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1550  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1551  * from this decoder state.
1552  */
1553 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1554 {
1555 	return pt->synth_opts.initial_skip &&
1556 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1557 }
1558 
1559 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1560 				   union perf_event *event,
1561 				   struct perf_sample *sample)
1562 {
1563 	event->sample.header.type = PERF_RECORD_SAMPLE;
1564 	event->sample.header.size = sizeof(struct perf_event_header);
1565 
1566 	sample->pid = ptq->pid;
1567 	sample->tid = ptq->tid;
1568 	sample->cpu = ptq->cpu;
1569 	sample->insn_len = ptq->insn_len;
1570 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1571 }
1572 
1573 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1574 				   struct intel_pt_queue *ptq,
1575 				   union perf_event *event,
1576 				   struct perf_sample *sample)
1577 {
1578 	intel_pt_prep_a_sample(ptq, event, sample);
1579 
1580 	if (!pt->timeless_decoding)
1581 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1582 
1583 	sample->ip = ptq->state->from_ip;
1584 	sample->addr = ptq->state->to_ip;
1585 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1586 	sample->period = 1;
1587 	sample->flags = ptq->flags;
1588 
1589 	event->sample.header.misc = sample->cpumode;
1590 }
1591 
1592 static int intel_pt_inject_event(union perf_event *event,
1593 				 struct perf_sample *sample, u64 type)
1594 {
1595 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1596 	return perf_event__synthesize_sample(event, type, 0, sample);
1597 }
1598 
1599 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1600 				      union perf_event *event,
1601 				      struct perf_sample *sample, u64 type)
1602 {
1603 	if (!pt->synth_opts.inject)
1604 		return 0;
1605 
1606 	return intel_pt_inject_event(event, sample, type);
1607 }
1608 
1609 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1610 					union perf_event *event,
1611 					struct perf_sample *sample, u64 type)
1612 {
1613 	int ret;
1614 
1615 	ret = intel_pt_opt_inject(pt, event, sample, type);
1616 	if (ret)
1617 		return ret;
1618 
1619 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1620 	if (ret)
1621 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1622 
1623 	return ret;
1624 }
1625 
1626 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1627 {
1628 	struct intel_pt *pt = ptq->pt;
1629 	union perf_event *event = ptq->event_buf;
1630 	struct perf_sample sample = { .ip = 0, };
1631 	struct dummy_branch_stack {
1632 		u64			nr;
1633 		u64			hw_idx;
1634 		struct branch_entry	entries;
1635 	} dummy_bs;
1636 
1637 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1638 		return 0;
1639 
1640 	if (intel_pt_skip_event(pt))
1641 		return 0;
1642 
1643 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1644 
1645 	sample.id = ptq->pt->branches_id;
1646 	sample.stream_id = ptq->pt->branches_id;
1647 
1648 	/*
1649 	 * perf report cannot handle events without a branch stack when using
1650 	 * SORT_MODE__BRANCH so make a dummy one.
1651 	 */
1652 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1653 		dummy_bs = (struct dummy_branch_stack){
1654 			.nr = 1,
1655 			.hw_idx = -1ULL,
1656 			.entries = {
1657 				.from = sample.ip,
1658 				.to = sample.addr,
1659 			},
1660 		};
1661 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1662 	}
1663 
1664 	if (ptq->sample_ipc)
1665 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1666 	if (sample.cyc_cnt) {
1667 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1668 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1669 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1670 	}
1671 
1672 	return intel_pt_deliver_synth_event(pt, event, &sample,
1673 					    pt->branches_sample_type);
1674 }
1675 
1676 static void intel_pt_prep_sample(struct intel_pt *pt,
1677 				 struct intel_pt_queue *ptq,
1678 				 union perf_event *event,
1679 				 struct perf_sample *sample)
1680 {
1681 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1682 
1683 	if (pt->synth_opts.callchain) {
1684 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1685 				     pt->synth_opts.callchain_sz + 1,
1686 				     sample->ip, pt->kernel_start);
1687 		sample->callchain = ptq->chain;
1688 	}
1689 
1690 	if (pt->synth_opts.last_branch) {
1691 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1692 					pt->br_stack_sz);
1693 		sample->branch_stack = ptq->last_branch;
1694 	}
1695 }
1696 
1697 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1698 {
1699 	struct intel_pt *pt = ptq->pt;
1700 	union perf_event *event = ptq->event_buf;
1701 	struct perf_sample sample = { .ip = 0, };
1702 
1703 	if (intel_pt_skip_event(pt))
1704 		return 0;
1705 
1706 	intel_pt_prep_sample(pt, ptq, event, &sample);
1707 
1708 	sample.id = ptq->pt->instructions_id;
1709 	sample.stream_id = ptq->pt->instructions_id;
1710 	if (pt->synth_opts.quick)
1711 		sample.period = 1;
1712 	else
1713 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1714 
1715 	if (ptq->sample_ipc)
1716 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1717 	if (sample.cyc_cnt) {
1718 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1719 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1720 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1721 	}
1722 
1723 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1724 
1725 	return intel_pt_deliver_synth_event(pt, event, &sample,
1726 					    pt->instructions_sample_type);
1727 }
1728 
1729 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1730 {
1731 	struct intel_pt *pt = ptq->pt;
1732 	union perf_event *event = ptq->event_buf;
1733 	struct perf_sample sample = { .ip = 0, };
1734 
1735 	if (intel_pt_skip_event(pt))
1736 		return 0;
1737 
1738 	intel_pt_prep_sample(pt, ptq, event, &sample);
1739 
1740 	sample.id = ptq->pt->transactions_id;
1741 	sample.stream_id = ptq->pt->transactions_id;
1742 
1743 	return intel_pt_deliver_synth_event(pt, event, &sample,
1744 					    pt->transactions_sample_type);
1745 }
1746 
1747 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1748 				   struct intel_pt_queue *ptq,
1749 				   union perf_event *event,
1750 				   struct perf_sample *sample)
1751 {
1752 	intel_pt_prep_sample(pt, ptq, event, sample);
1753 
1754 	/*
1755 	 * Zero IP is used to mean "trace start" but that is not the case for
1756 	 * power or PTWRITE events with no IP, so clear the flags.
1757 	 */
1758 	if (!sample->ip)
1759 		sample->flags = 0;
1760 }
1761 
1762 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1763 {
1764 	struct intel_pt *pt = ptq->pt;
1765 	union perf_event *event = ptq->event_buf;
1766 	struct perf_sample sample = { .ip = 0, };
1767 	struct perf_synth_intel_ptwrite raw;
1768 
1769 	if (intel_pt_skip_event(pt))
1770 		return 0;
1771 
1772 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1773 
1774 	sample.id = ptq->pt->ptwrites_id;
1775 	sample.stream_id = ptq->pt->ptwrites_id;
1776 
1777 	raw.flags = 0;
1778 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1779 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1780 
1781 	sample.raw_size = perf_synth__raw_size(raw);
1782 	sample.raw_data = perf_synth__raw_data(&raw);
1783 
1784 	return intel_pt_deliver_synth_event(pt, event, &sample,
1785 					    pt->ptwrites_sample_type);
1786 }
1787 
1788 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1789 {
1790 	struct intel_pt *pt = ptq->pt;
1791 	union perf_event *event = ptq->event_buf;
1792 	struct perf_sample sample = { .ip = 0, };
1793 	struct perf_synth_intel_cbr raw;
1794 	u32 flags;
1795 
1796 	if (intel_pt_skip_cbr_event(pt))
1797 		return 0;
1798 
1799 	ptq->cbr_seen = ptq->state->cbr;
1800 
1801 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1802 
1803 	sample.id = ptq->pt->cbr_id;
1804 	sample.stream_id = ptq->pt->cbr_id;
1805 
1806 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1807 	raw.flags = cpu_to_le32(flags);
1808 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1809 	raw.reserved3 = 0;
1810 
1811 	sample.raw_size = perf_synth__raw_size(raw);
1812 	sample.raw_data = perf_synth__raw_data(&raw);
1813 
1814 	return intel_pt_deliver_synth_event(pt, event, &sample,
1815 					    pt->pwr_events_sample_type);
1816 }
1817 
1818 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1819 {
1820 	struct intel_pt *pt = ptq->pt;
1821 	union perf_event *event = ptq->event_buf;
1822 	struct perf_sample sample = { .ip = 0, };
1823 	struct perf_synth_intel_psb raw;
1824 
1825 	if (intel_pt_skip_event(pt))
1826 		return 0;
1827 
1828 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1829 
1830 	sample.id = ptq->pt->psb_id;
1831 	sample.stream_id = ptq->pt->psb_id;
1832 	sample.flags = 0;
1833 
1834 	raw.reserved = 0;
1835 	raw.offset = ptq->state->psb_offset;
1836 
1837 	sample.raw_size = perf_synth__raw_size(raw);
1838 	sample.raw_data = perf_synth__raw_data(&raw);
1839 
1840 	return intel_pt_deliver_synth_event(pt, event, &sample,
1841 					    pt->pwr_events_sample_type);
1842 }
1843 
1844 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1845 {
1846 	struct intel_pt *pt = ptq->pt;
1847 	union perf_event *event = ptq->event_buf;
1848 	struct perf_sample sample = { .ip = 0, };
1849 	struct perf_synth_intel_mwait raw;
1850 
1851 	if (intel_pt_skip_event(pt))
1852 		return 0;
1853 
1854 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1855 
1856 	sample.id = ptq->pt->mwait_id;
1857 	sample.stream_id = ptq->pt->mwait_id;
1858 
1859 	raw.reserved = 0;
1860 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1861 
1862 	sample.raw_size = perf_synth__raw_size(raw);
1863 	sample.raw_data = perf_synth__raw_data(&raw);
1864 
1865 	return intel_pt_deliver_synth_event(pt, event, &sample,
1866 					    pt->pwr_events_sample_type);
1867 }
1868 
1869 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1870 {
1871 	struct intel_pt *pt = ptq->pt;
1872 	union perf_event *event = ptq->event_buf;
1873 	struct perf_sample sample = { .ip = 0, };
1874 	struct perf_synth_intel_pwre raw;
1875 
1876 	if (intel_pt_skip_event(pt))
1877 		return 0;
1878 
1879 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1880 
1881 	sample.id = ptq->pt->pwre_id;
1882 	sample.stream_id = ptq->pt->pwre_id;
1883 
1884 	raw.reserved = 0;
1885 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1886 
1887 	sample.raw_size = perf_synth__raw_size(raw);
1888 	sample.raw_data = perf_synth__raw_data(&raw);
1889 
1890 	return intel_pt_deliver_synth_event(pt, event, &sample,
1891 					    pt->pwr_events_sample_type);
1892 }
1893 
1894 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1895 {
1896 	struct intel_pt *pt = ptq->pt;
1897 	union perf_event *event = ptq->event_buf;
1898 	struct perf_sample sample = { .ip = 0, };
1899 	struct perf_synth_intel_exstop raw;
1900 
1901 	if (intel_pt_skip_event(pt))
1902 		return 0;
1903 
1904 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1905 
1906 	sample.id = ptq->pt->exstop_id;
1907 	sample.stream_id = ptq->pt->exstop_id;
1908 
1909 	raw.flags = 0;
1910 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1911 
1912 	sample.raw_size = perf_synth__raw_size(raw);
1913 	sample.raw_data = perf_synth__raw_data(&raw);
1914 
1915 	return intel_pt_deliver_synth_event(pt, event, &sample,
1916 					    pt->pwr_events_sample_type);
1917 }
1918 
1919 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1920 {
1921 	struct intel_pt *pt = ptq->pt;
1922 	union perf_event *event = ptq->event_buf;
1923 	struct perf_sample sample = { .ip = 0, };
1924 	struct perf_synth_intel_pwrx raw;
1925 
1926 	if (intel_pt_skip_event(pt))
1927 		return 0;
1928 
1929 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1930 
1931 	sample.id = ptq->pt->pwrx_id;
1932 	sample.stream_id = ptq->pt->pwrx_id;
1933 
1934 	raw.reserved = 0;
1935 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1936 
1937 	sample.raw_size = perf_synth__raw_size(raw);
1938 	sample.raw_data = perf_synth__raw_data(&raw);
1939 
1940 	return intel_pt_deliver_synth_event(pt, event, &sample,
1941 					    pt->pwr_events_sample_type);
1942 }
1943 
1944 /*
1945  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1946  * intel_pt_add_gp_regs().
1947  */
1948 static const int pebs_gp_regs[] = {
1949 	[PERF_REG_X86_FLAGS]	= 1,
1950 	[PERF_REG_X86_IP]	= 2,
1951 	[PERF_REG_X86_AX]	= 3,
1952 	[PERF_REG_X86_CX]	= 4,
1953 	[PERF_REG_X86_DX]	= 5,
1954 	[PERF_REG_X86_BX]	= 6,
1955 	[PERF_REG_X86_SP]	= 7,
1956 	[PERF_REG_X86_BP]	= 8,
1957 	[PERF_REG_X86_SI]	= 9,
1958 	[PERF_REG_X86_DI]	= 10,
1959 	[PERF_REG_X86_R8]	= 11,
1960 	[PERF_REG_X86_R9]	= 12,
1961 	[PERF_REG_X86_R10]	= 13,
1962 	[PERF_REG_X86_R11]	= 14,
1963 	[PERF_REG_X86_R12]	= 15,
1964 	[PERF_REG_X86_R13]	= 16,
1965 	[PERF_REG_X86_R14]	= 17,
1966 	[PERF_REG_X86_R15]	= 18,
1967 };
1968 
1969 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1970 				 const struct intel_pt_blk_items *items,
1971 				 u64 regs_mask)
1972 {
1973 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1974 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1975 	u32 bit;
1976 	int i;
1977 
1978 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1979 		/* Get the PEBS gp_regs array index */
1980 		int n = pebs_gp_regs[i] - 1;
1981 
1982 		if (n < 0)
1983 			continue;
1984 		/*
1985 		 * Add only registers that were requested (i.e. 'regs_mask') and
1986 		 * that were provided (i.e. 'mask'), and update the resulting
1987 		 * mask (i.e. 'intr_regs->mask') accordingly.
1988 		 */
1989 		if (mask & 1 << n && regs_mask & bit) {
1990 			intr_regs->mask |= bit;
1991 			*pos++ = gp_regs[n];
1992 		}
1993 	}
1994 
1995 	return pos;
1996 }
1997 
1998 #ifndef PERF_REG_X86_XMM0
1999 #define PERF_REG_X86_XMM0 32
2000 #endif
2001 
2002 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2003 			     const struct intel_pt_blk_items *items,
2004 			     u64 regs_mask)
2005 {
2006 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2007 	const u64 *xmm = items->xmm;
2008 
2009 	/*
2010 	 * If there are any XMM registers, then there should be all of them.
2011 	 * Nevertheless, follow the logic to add only registers that were
2012 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2013 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2014 	 */
2015 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2016 
2017 	for (; mask; mask >>= 1, xmm++) {
2018 		if (mask & 1)
2019 			*pos++ = *xmm;
2020 	}
2021 }
2022 
2023 #define LBR_INFO_MISPRED	(1ULL << 63)
2024 #define LBR_INFO_IN_TX		(1ULL << 62)
2025 #define LBR_INFO_ABORT		(1ULL << 61)
2026 #define LBR_INFO_CYCLES		0xffff
2027 
2028 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2029 static u64 intel_pt_lbr_flags(u64 info)
2030 {
2031 	union {
2032 		struct branch_flags flags;
2033 		u64 result;
2034 	} u;
2035 
2036 	u.result	  = 0;
2037 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2038 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2039 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2040 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2041 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2042 
2043 	return u.result;
2044 }
2045 
2046 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2047 			      const struct intel_pt_blk_items *items)
2048 {
2049 	u64 *to;
2050 	int i;
2051 
2052 	br_stack->nr = 0;
2053 
2054 	to = &br_stack->entries[0].from;
2055 
2056 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2057 		u32 mask = items->mask[i];
2058 		const u64 *from = items->val[i];
2059 
2060 		for (; mask; mask >>= 3, from += 3) {
2061 			if ((mask & 7) == 7) {
2062 				*to++ = from[0];
2063 				*to++ = from[1];
2064 				*to++ = intel_pt_lbr_flags(from[2]);
2065 				br_stack->nr += 1;
2066 			}
2067 		}
2068 	}
2069 }
2070 
2071 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2072 {
2073 	const struct intel_pt_blk_items *items = &ptq->state->items;
2074 	struct perf_sample sample = { .ip = 0, };
2075 	union perf_event *event = ptq->event_buf;
2076 	struct intel_pt *pt = ptq->pt;
2077 	u64 sample_type = evsel->core.attr.sample_type;
2078 	u8 cpumode;
2079 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2080 
2081 	if (intel_pt_skip_event(pt))
2082 		return 0;
2083 
2084 	intel_pt_prep_a_sample(ptq, event, &sample);
2085 
2086 	sample.id = id;
2087 	sample.stream_id = id;
2088 
2089 	if (!evsel->core.attr.freq)
2090 		sample.period = evsel->core.attr.sample_period;
2091 
2092 	/* No support for non-zero CS base */
2093 	if (items->has_ip)
2094 		sample.ip = items->ip;
2095 	else if (items->has_rip)
2096 		sample.ip = items->rip;
2097 	else
2098 		sample.ip = ptq->state->from_ip;
2099 
2100 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2101 
2102 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2103 
2104 	sample.cpumode = cpumode;
2105 
2106 	if (sample_type & PERF_SAMPLE_TIME) {
2107 		u64 timestamp = 0;
2108 
2109 		if (items->has_timestamp)
2110 			timestamp = items->timestamp;
2111 		else if (!pt->timeless_decoding)
2112 			timestamp = ptq->timestamp;
2113 		if (timestamp)
2114 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2115 	}
2116 
2117 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2118 	    pt->synth_opts.callchain) {
2119 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2120 				     pt->synth_opts.callchain_sz, sample.ip,
2121 				     pt->kernel_start);
2122 		sample.callchain = ptq->chain;
2123 	}
2124 
2125 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2126 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2127 	     items->mask[INTEL_PT_XMM_POS])) {
2128 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2129 		u64 *pos;
2130 
2131 		sample.intr_regs.abi = items->is_32_bit ?
2132 				       PERF_SAMPLE_REGS_ABI_32 :
2133 				       PERF_SAMPLE_REGS_ABI_64;
2134 		sample.intr_regs.regs = regs;
2135 
2136 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2137 
2138 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2139 	}
2140 
2141 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2142 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2143 		    items->mask[INTEL_PT_LBR_1_POS] ||
2144 		    items->mask[INTEL_PT_LBR_2_POS]) {
2145 			intel_pt_add_lbrs(ptq->last_branch, items);
2146 		} else if (pt->synth_opts.last_branch) {
2147 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2148 						ptq->last_branch,
2149 						pt->br_stack_sz);
2150 		} else {
2151 			ptq->last_branch->nr = 0;
2152 		}
2153 		sample.branch_stack = ptq->last_branch;
2154 	}
2155 
2156 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2157 		sample.addr = items->mem_access_address;
2158 
2159 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2160 		/*
2161 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2162 		 * intel_hsw_weight().
2163 		 */
2164 		if (items->has_mem_access_latency) {
2165 			u64 weight = items->mem_access_latency >> 32;
2166 
2167 			/*
2168 			 * Starts from SPR, the mem access latency field
2169 			 * contains both cache latency [47:32] and instruction
2170 			 * latency [15:0]. The cache latency is the same as the
2171 			 * mem access latency on previous platforms.
2172 			 *
2173 			 * In practice, no memory access could last than 4G
2174 			 * cycles. Use latency >> 32 to distinguish the
2175 			 * different format of the mem access latency field.
2176 			 */
2177 			if (weight > 0) {
2178 				sample.weight = weight & 0xffff;
2179 				sample.ins_lat = items->mem_access_latency & 0xffff;
2180 			} else
2181 				sample.weight = items->mem_access_latency;
2182 		}
2183 		if (!sample.weight && items->has_tsx_aux_info) {
2184 			/* Cycles last block */
2185 			sample.weight = (u32)items->tsx_aux_info;
2186 		}
2187 	}
2188 
2189 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2190 		u64 ax = items->has_rax ? items->rax : 0;
2191 		/* Refer kernel's intel_hsw_transaction() */
2192 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2193 
2194 		/* For RTM XABORTs also log the abort code from AX */
2195 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2196 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2197 		sample.transaction = txn;
2198 	}
2199 
2200 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2201 }
2202 
2203 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2204 {
2205 	struct intel_pt *pt = ptq->pt;
2206 	struct evsel *evsel = pt->pebs_evsel;
2207 	u64 id = evsel->core.id[0];
2208 
2209 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2210 }
2211 
2212 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2213 {
2214 	const struct intel_pt_blk_items *items = &ptq->state->items;
2215 	struct intel_pt_pebs_event *pe;
2216 	struct intel_pt *pt = ptq->pt;
2217 	int err = -EINVAL;
2218 	int hw_id;
2219 
2220 	if (!items->has_applicable_counters || !items->applicable_counters) {
2221 		if (!pt->single_pebs)
2222 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2223 		return intel_pt_synth_single_pebs_sample(ptq);
2224 	}
2225 
2226 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2227 		pe = &ptq->pebs[hw_id];
2228 		if (!pe->evsel) {
2229 			if (!pt->single_pebs)
2230 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2231 				       hw_id);
2232 			return intel_pt_synth_single_pebs_sample(ptq);
2233 		}
2234 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2235 		if (err)
2236 			return err;
2237 	}
2238 
2239 	return err;
2240 }
2241 
2242 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2243 {
2244 	struct intel_pt *pt = ptq->pt;
2245 	union perf_event *event = ptq->event_buf;
2246 	struct perf_sample sample = { .ip = 0, };
2247 	struct {
2248 		struct perf_synth_intel_evt cfe;
2249 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2250 	} raw;
2251 	int i;
2252 
2253 	if (intel_pt_skip_event(pt))
2254 		return 0;
2255 
2256 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2257 
2258 	sample.id        = ptq->pt->evt_id;
2259 	sample.stream_id = ptq->pt->evt_id;
2260 
2261 	raw.cfe.type     = ptq->state->cfe_type;
2262 	raw.cfe.reserved = 0;
2263 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2264 	raw.cfe.vector   = ptq->state->cfe_vector;
2265 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2266 
2267 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2268 		raw.evd[i].et       = 0;
2269 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2270 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2271 	}
2272 
2273 	sample.raw_size = perf_synth__raw_size(raw) +
2274 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2275 	sample.raw_data = perf_synth__raw_data(&raw);
2276 
2277 	return intel_pt_deliver_synth_event(pt, event, &sample,
2278 					    pt->evt_sample_type);
2279 }
2280 
2281 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2282 {
2283 	struct intel_pt *pt = ptq->pt;
2284 	union perf_event *event = ptq->event_buf;
2285 	struct perf_sample sample = { .ip = 0, };
2286 	struct perf_synth_intel_iflag_chg raw;
2287 
2288 	if (intel_pt_skip_event(pt))
2289 		return 0;
2290 
2291 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2292 
2293 	sample.id = ptq->pt->iflag_chg_id;
2294 	sample.stream_id = ptq->pt->iflag_chg_id;
2295 
2296 	raw.flags = 0;
2297 	raw.iflag = ptq->state->to_iflag;
2298 
2299 	if (ptq->state->type & INTEL_PT_BRANCH) {
2300 		raw.via_branch = 1;
2301 		raw.branch_ip = ptq->state->to_ip;
2302 	} else {
2303 		sample.addr = 0;
2304 	}
2305 	sample.flags = ptq->flags;
2306 
2307 	sample.raw_size = perf_synth__raw_size(raw);
2308 	sample.raw_data = perf_synth__raw_data(&raw);
2309 
2310 	return intel_pt_deliver_synth_event(pt, event, &sample,
2311 					    pt->iflag_chg_sample_type);
2312 }
2313 
2314 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2315 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2316 {
2317 	union perf_event event;
2318 	char msg[MAX_AUXTRACE_ERROR_MSG];
2319 	int err;
2320 
2321 	if (pt->synth_opts.error_minus_flags) {
2322 		if (code == INTEL_PT_ERR_OVR &&
2323 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2324 			return 0;
2325 		if (code == INTEL_PT_ERR_LOST &&
2326 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2327 			return 0;
2328 	}
2329 
2330 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2331 
2332 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2333 			     code, cpu, pid, tid, ip, msg, timestamp);
2334 
2335 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2336 	if (err)
2337 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2338 		       err);
2339 
2340 	return err;
2341 }
2342 
2343 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2344 				 const struct intel_pt_state *state)
2345 {
2346 	struct intel_pt *pt = ptq->pt;
2347 	u64 tm = ptq->timestamp;
2348 
2349 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2350 
2351 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2352 				    ptq->tid, state->from_ip, tm);
2353 }
2354 
2355 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2356 {
2357 	struct auxtrace_queue *queue;
2358 	pid_t tid = ptq->next_tid;
2359 	int err;
2360 
2361 	if (tid == -1)
2362 		return 0;
2363 
2364 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2365 
2366 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2367 
2368 	queue = &pt->queues.queue_array[ptq->queue_nr];
2369 	intel_pt_set_pid_tid_cpu(pt, queue);
2370 
2371 	ptq->next_tid = -1;
2372 
2373 	return err;
2374 }
2375 
2376 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2377 {
2378 	struct intel_pt *pt = ptq->pt;
2379 
2380 	return ip == pt->switch_ip &&
2381 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2382 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2383 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2384 }
2385 
2386 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2387 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2388 
2389 static int intel_pt_sample(struct intel_pt_queue *ptq)
2390 {
2391 	const struct intel_pt_state *state = ptq->state;
2392 	struct intel_pt *pt = ptq->pt;
2393 	int err;
2394 
2395 	if (!ptq->have_sample)
2396 		return 0;
2397 
2398 	ptq->have_sample = false;
2399 
2400 	if (pt->synth_opts.approx_ipc) {
2401 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2402 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2403 		ptq->sample_ipc = true;
2404 	} else {
2405 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2406 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2407 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2408 	}
2409 
2410 	/*
2411 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2412 	 * precedes the current timestamp.
2413 	 */
2414 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2415 		err = intel_pt_synth_pebs_sample(ptq);
2416 		if (err)
2417 			return err;
2418 	}
2419 
2420 	if (pt->synth_opts.intr_events) {
2421 		if (state->type & INTEL_PT_EVT) {
2422 			err = intel_pt_synth_events_sample(ptq);
2423 			if (err)
2424 				return err;
2425 		}
2426 		if (state->type & INTEL_PT_IFLAG_CHG) {
2427 			err = intel_pt_synth_iflag_chg_sample(ptq);
2428 			if (err)
2429 				return err;
2430 		}
2431 	}
2432 
2433 	if (pt->sample_pwr_events) {
2434 		if (state->type & INTEL_PT_PSB_EVT) {
2435 			err = intel_pt_synth_psb_sample(ptq);
2436 			if (err)
2437 				return err;
2438 		}
2439 		if (ptq->state->cbr != ptq->cbr_seen) {
2440 			err = intel_pt_synth_cbr_sample(ptq);
2441 			if (err)
2442 				return err;
2443 		}
2444 		if (state->type & INTEL_PT_PWR_EVT) {
2445 			if (state->type & INTEL_PT_MWAIT_OP) {
2446 				err = intel_pt_synth_mwait_sample(ptq);
2447 				if (err)
2448 					return err;
2449 			}
2450 			if (state->type & INTEL_PT_PWR_ENTRY) {
2451 				err = intel_pt_synth_pwre_sample(ptq);
2452 				if (err)
2453 					return err;
2454 			}
2455 			if (state->type & INTEL_PT_EX_STOP) {
2456 				err = intel_pt_synth_exstop_sample(ptq);
2457 				if (err)
2458 					return err;
2459 			}
2460 			if (state->type & INTEL_PT_PWR_EXIT) {
2461 				err = intel_pt_synth_pwrx_sample(ptq);
2462 				if (err)
2463 					return err;
2464 			}
2465 		}
2466 	}
2467 
2468 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2469 		err = intel_pt_synth_instruction_sample(ptq);
2470 		if (err)
2471 			return err;
2472 	}
2473 
2474 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2475 		err = intel_pt_synth_transaction_sample(ptq);
2476 		if (err)
2477 			return err;
2478 	}
2479 
2480 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2481 		err = intel_pt_synth_ptwrite_sample(ptq);
2482 		if (err)
2483 			return err;
2484 	}
2485 
2486 	if (!(state->type & INTEL_PT_BRANCH))
2487 		return 0;
2488 
2489 	if (pt->use_thread_stack) {
2490 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2491 				    state->from_ip, state->to_ip, ptq->insn_len,
2492 				    state->trace_nr, pt->callstack,
2493 				    pt->br_stack_sz_plus,
2494 				    pt->mispred_all);
2495 	} else {
2496 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2497 	}
2498 
2499 	if (pt->sample_branches) {
2500 		if (state->from_nr != state->to_nr &&
2501 		    state->from_ip && state->to_ip) {
2502 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2503 			u64 to_ip = st->to_ip;
2504 			u64 from_ip = st->from_ip;
2505 
2506 			/*
2507 			 * perf cannot handle having different machines for ip
2508 			 * and addr, so create 2 branches.
2509 			 */
2510 			st->to_ip = 0;
2511 			err = intel_pt_synth_branch_sample(ptq);
2512 			if (err)
2513 				return err;
2514 			st->from_ip = 0;
2515 			st->to_ip = to_ip;
2516 			err = intel_pt_synth_branch_sample(ptq);
2517 			st->from_ip = from_ip;
2518 		} else {
2519 			err = intel_pt_synth_branch_sample(ptq);
2520 		}
2521 		if (err)
2522 			return err;
2523 	}
2524 
2525 	if (!ptq->sync_switch)
2526 		return 0;
2527 
2528 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2529 		switch (ptq->switch_state) {
2530 		case INTEL_PT_SS_NOT_TRACING:
2531 		case INTEL_PT_SS_UNKNOWN:
2532 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2533 			err = intel_pt_next_tid(pt, ptq);
2534 			if (err)
2535 				return err;
2536 			ptq->switch_state = INTEL_PT_SS_TRACING;
2537 			break;
2538 		default:
2539 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2540 			return 1;
2541 		}
2542 	} else if (!state->to_ip) {
2543 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2544 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2545 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2546 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2547 		   state->to_ip == pt->ptss_ip &&
2548 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2549 		ptq->switch_state = INTEL_PT_SS_TRACING;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2556 {
2557 	struct machine *machine = pt->machine;
2558 	struct map *map;
2559 	struct symbol *sym, *start;
2560 	u64 ip, switch_ip = 0;
2561 	const char *ptss;
2562 
2563 	if (ptss_ip)
2564 		*ptss_ip = 0;
2565 
2566 	map = machine__kernel_map(machine);
2567 	if (!map)
2568 		return 0;
2569 
2570 	if (map__load(map))
2571 		return 0;
2572 
2573 	start = dso__first_symbol(map->dso);
2574 
2575 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2576 		if (sym->binding == STB_GLOBAL &&
2577 		    !strcmp(sym->name, "__switch_to")) {
2578 			ip = map->unmap_ip(map, sym->start);
2579 			if (ip >= map->start && ip < map->end) {
2580 				switch_ip = ip;
2581 				break;
2582 			}
2583 		}
2584 	}
2585 
2586 	if (!switch_ip || !ptss_ip)
2587 		return 0;
2588 
2589 	if (pt->have_sched_switch == 1)
2590 		ptss = "perf_trace_sched_switch";
2591 	else
2592 		ptss = "__perf_event_task_sched_out";
2593 
2594 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2595 		if (!strcmp(sym->name, ptss)) {
2596 			ip = map->unmap_ip(map, sym->start);
2597 			if (ip >= map->start && ip < map->end) {
2598 				*ptss_ip = ip;
2599 				break;
2600 			}
2601 		}
2602 	}
2603 
2604 	return switch_ip;
2605 }
2606 
2607 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2608 {
2609 	unsigned int i;
2610 
2611 	pt->sync_switch = true;
2612 
2613 	for (i = 0; i < pt->queues.nr_queues; i++) {
2614 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2615 		struct intel_pt_queue *ptq = queue->priv;
2616 
2617 		if (ptq)
2618 			ptq->sync_switch = true;
2619 	}
2620 }
2621 
2622 /*
2623  * To filter against time ranges, it is only necessary to look at the next start
2624  * or end time.
2625  */
2626 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2627 {
2628 	struct intel_pt *pt = ptq->pt;
2629 
2630 	if (ptq->sel_start) {
2631 		/* Next time is an end time */
2632 		ptq->sel_start = false;
2633 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2634 		return true;
2635 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2636 		/* Next time is a start time */
2637 		ptq->sel_start = true;
2638 		ptq->sel_idx += 1;
2639 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2640 		return true;
2641 	}
2642 
2643 	/* No next time */
2644 	return false;
2645 }
2646 
2647 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2648 {
2649 	int err;
2650 
2651 	while (1) {
2652 		if (ptq->sel_start) {
2653 			if (ptq->timestamp >= ptq->sel_timestamp) {
2654 				/* After start time, so consider next time */
2655 				intel_pt_next_time(ptq);
2656 				if (!ptq->sel_timestamp) {
2657 					/* No end time */
2658 					return 0;
2659 				}
2660 				/* Check against end time */
2661 				continue;
2662 			}
2663 			/* Before start time, so fast forward */
2664 			ptq->have_sample = false;
2665 			if (ptq->sel_timestamp > *ff_timestamp) {
2666 				if (ptq->sync_switch) {
2667 					intel_pt_next_tid(ptq->pt, ptq);
2668 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2669 				}
2670 				*ff_timestamp = ptq->sel_timestamp;
2671 				err = intel_pt_fast_forward(ptq->decoder,
2672 							    ptq->sel_timestamp);
2673 				if (err)
2674 					return err;
2675 			}
2676 			return 0;
2677 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2678 			/* After end time, so consider next time */
2679 			if (!intel_pt_next_time(ptq)) {
2680 				/* No next time range, so stop decoding */
2681 				ptq->have_sample = false;
2682 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2683 				return 1;
2684 			}
2685 			/* Check against next start time */
2686 			continue;
2687 		} else {
2688 			/* Before end time */
2689 			return 0;
2690 		}
2691 	}
2692 }
2693 
2694 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2695 {
2696 	const struct intel_pt_state *state = ptq->state;
2697 	struct intel_pt *pt = ptq->pt;
2698 	u64 ff_timestamp = 0;
2699 	int err;
2700 
2701 	if (!pt->kernel_start) {
2702 		pt->kernel_start = machine__kernel_start(pt->machine);
2703 		if (pt->per_cpu_mmaps &&
2704 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2705 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2706 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2707 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2708 			if (pt->switch_ip) {
2709 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2710 					     pt->switch_ip, pt->ptss_ip);
2711 				intel_pt_enable_sync_switch(pt);
2712 			}
2713 		}
2714 	}
2715 
2716 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2717 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2718 	while (1) {
2719 		err = intel_pt_sample(ptq);
2720 		if (err)
2721 			return err;
2722 
2723 		state = intel_pt_decode(ptq->decoder);
2724 		if (state->err) {
2725 			if (state->err == INTEL_PT_ERR_NODATA)
2726 				return 1;
2727 			if (ptq->sync_switch &&
2728 			    state->from_ip >= pt->kernel_start) {
2729 				ptq->sync_switch = false;
2730 				intel_pt_next_tid(pt, ptq);
2731 			}
2732 			ptq->timestamp = state->est_timestamp;
2733 			if (pt->synth_opts.errors) {
2734 				err = intel_ptq_synth_error(ptq, state);
2735 				if (err)
2736 					return err;
2737 			}
2738 			continue;
2739 		}
2740 
2741 		ptq->state = state;
2742 		ptq->have_sample = true;
2743 		intel_pt_sample_flags(ptq);
2744 
2745 		/* Use estimated TSC upon return to user space */
2746 		if (pt->est_tsc &&
2747 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2748 		    state->to_ip && state->to_ip < pt->kernel_start) {
2749 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2750 				     state->timestamp, state->est_timestamp);
2751 			ptq->timestamp = state->est_timestamp;
2752 		/* Use estimated TSC in unknown switch state */
2753 		} else if (ptq->sync_switch &&
2754 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2755 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2756 			   ptq->next_tid == -1) {
2757 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2758 				     state->timestamp, state->est_timestamp);
2759 			ptq->timestamp = state->est_timestamp;
2760 		} else if (state->timestamp > ptq->timestamp) {
2761 			ptq->timestamp = state->timestamp;
2762 		}
2763 
2764 		if (ptq->sel_timestamp) {
2765 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2766 			if (err)
2767 				return err;
2768 		}
2769 
2770 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2771 			*timestamp = ptq->timestamp;
2772 			return 0;
2773 		}
2774 	}
2775 	return 0;
2776 }
2777 
2778 static inline int intel_pt_update_queues(struct intel_pt *pt)
2779 {
2780 	if (pt->queues.new_data) {
2781 		pt->queues.new_data = false;
2782 		return intel_pt_setup_queues(pt);
2783 	}
2784 	return 0;
2785 }
2786 
2787 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2788 {
2789 	unsigned int queue_nr;
2790 	u64 ts;
2791 	int ret;
2792 
2793 	while (1) {
2794 		struct auxtrace_queue *queue;
2795 		struct intel_pt_queue *ptq;
2796 
2797 		if (!pt->heap.heap_cnt)
2798 			return 0;
2799 
2800 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2801 			return 0;
2802 
2803 		queue_nr = pt->heap.heap_array[0].queue_nr;
2804 		queue = &pt->queues.queue_array[queue_nr];
2805 		ptq = queue->priv;
2806 
2807 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2808 			     queue_nr, pt->heap.heap_array[0].ordinal,
2809 			     timestamp);
2810 
2811 		auxtrace_heap__pop(&pt->heap);
2812 
2813 		if (pt->heap.heap_cnt) {
2814 			ts = pt->heap.heap_array[0].ordinal + 1;
2815 			if (ts > timestamp)
2816 				ts = timestamp;
2817 		} else {
2818 			ts = timestamp;
2819 		}
2820 
2821 		intel_pt_set_pid_tid_cpu(pt, queue);
2822 
2823 		ret = intel_pt_run_decoder(ptq, &ts);
2824 
2825 		if (ret < 0) {
2826 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2827 			return ret;
2828 		}
2829 
2830 		if (!ret) {
2831 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2832 			if (ret < 0)
2833 				return ret;
2834 		} else {
2835 			ptq->on_heap = false;
2836 		}
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2843 					    u64 time_)
2844 {
2845 	struct auxtrace_queues *queues = &pt->queues;
2846 	unsigned int i;
2847 	u64 ts = 0;
2848 
2849 	for (i = 0; i < queues->nr_queues; i++) {
2850 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2851 		struct intel_pt_queue *ptq = queue->priv;
2852 
2853 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2854 			ptq->time = time_;
2855 			intel_pt_set_pid_tid_cpu(pt, queue);
2856 			intel_pt_run_decoder(ptq, &ts);
2857 		}
2858 	}
2859 	return 0;
2860 }
2861 
2862 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2863 					    struct auxtrace_queue *queue,
2864 					    struct perf_sample *sample)
2865 {
2866 	struct machine *m = ptq->pt->machine;
2867 
2868 	ptq->pid = sample->pid;
2869 	ptq->tid = sample->tid;
2870 	ptq->cpu = queue->cpu;
2871 
2872 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2873 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2874 
2875 	thread__zput(ptq->thread);
2876 
2877 	if (ptq->tid == -1)
2878 		return;
2879 
2880 	if (ptq->pid == -1) {
2881 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2882 		if (ptq->thread)
2883 			ptq->pid = ptq->thread->pid_;
2884 		return;
2885 	}
2886 
2887 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2888 }
2889 
2890 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2891 					    struct perf_sample *sample)
2892 {
2893 	struct auxtrace_queue *queue;
2894 	struct intel_pt_queue *ptq;
2895 	u64 ts = 0;
2896 
2897 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2898 	if (!queue)
2899 		return -EINVAL;
2900 
2901 	ptq = queue->priv;
2902 	if (!ptq)
2903 		return 0;
2904 
2905 	ptq->stop = false;
2906 	ptq->time = sample->time;
2907 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2908 	intel_pt_run_decoder(ptq, &ts);
2909 	return 0;
2910 }
2911 
2912 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2913 {
2914 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2915 				    sample->pid, sample->tid, 0, sample->time);
2916 }
2917 
2918 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2919 {
2920 	unsigned i, j;
2921 
2922 	if (cpu < 0 || !pt->queues.nr_queues)
2923 		return NULL;
2924 
2925 	if ((unsigned)cpu >= pt->queues.nr_queues)
2926 		i = pt->queues.nr_queues - 1;
2927 	else
2928 		i = cpu;
2929 
2930 	if (pt->queues.queue_array[i].cpu == cpu)
2931 		return pt->queues.queue_array[i].priv;
2932 
2933 	for (j = 0; i > 0; j++) {
2934 		if (pt->queues.queue_array[--i].cpu == cpu)
2935 			return pt->queues.queue_array[i].priv;
2936 	}
2937 
2938 	for (; j < pt->queues.nr_queues; j++) {
2939 		if (pt->queues.queue_array[j].cpu == cpu)
2940 			return pt->queues.queue_array[j].priv;
2941 	}
2942 
2943 	return NULL;
2944 }
2945 
2946 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2947 				u64 timestamp)
2948 {
2949 	struct intel_pt_queue *ptq;
2950 	int err;
2951 
2952 	if (!pt->sync_switch)
2953 		return 1;
2954 
2955 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2956 	if (!ptq || !ptq->sync_switch)
2957 		return 1;
2958 
2959 	switch (ptq->switch_state) {
2960 	case INTEL_PT_SS_NOT_TRACING:
2961 		break;
2962 	case INTEL_PT_SS_UNKNOWN:
2963 	case INTEL_PT_SS_TRACING:
2964 		ptq->next_tid = tid;
2965 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2966 		return 0;
2967 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2968 		if (!ptq->on_heap) {
2969 			ptq->timestamp = perf_time_to_tsc(timestamp,
2970 							  &pt->tc);
2971 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2972 						 ptq->timestamp);
2973 			if (err)
2974 				return err;
2975 			ptq->on_heap = true;
2976 		}
2977 		ptq->switch_state = INTEL_PT_SS_TRACING;
2978 		break;
2979 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2980 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2981 		break;
2982 	default:
2983 		break;
2984 	}
2985 
2986 	ptq->next_tid = -1;
2987 
2988 	return 1;
2989 }
2990 
2991 static int intel_pt_process_switch(struct intel_pt *pt,
2992 				   struct perf_sample *sample)
2993 {
2994 	pid_t tid;
2995 	int cpu, ret;
2996 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2997 
2998 	if (evsel != pt->switch_evsel)
2999 		return 0;
3000 
3001 	tid = evsel__intval(evsel, sample, "next_pid");
3002 	cpu = sample->cpu;
3003 
3004 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3005 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3006 		     &pt->tc));
3007 
3008 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3009 	if (ret <= 0)
3010 		return ret;
3011 
3012 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3013 }
3014 
3015 static int intel_pt_context_switch_in(struct intel_pt *pt,
3016 				      struct perf_sample *sample)
3017 {
3018 	pid_t pid = sample->pid;
3019 	pid_t tid = sample->tid;
3020 	int cpu = sample->cpu;
3021 
3022 	if (pt->sync_switch) {
3023 		struct intel_pt_queue *ptq;
3024 
3025 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3026 		if (ptq && ptq->sync_switch) {
3027 			ptq->next_tid = -1;
3028 			switch (ptq->switch_state) {
3029 			case INTEL_PT_SS_NOT_TRACING:
3030 			case INTEL_PT_SS_UNKNOWN:
3031 			case INTEL_PT_SS_TRACING:
3032 				break;
3033 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3034 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3035 				ptq->switch_state = INTEL_PT_SS_TRACING;
3036 				break;
3037 			default:
3038 				break;
3039 			}
3040 		}
3041 	}
3042 
3043 	/*
3044 	 * If the current tid has not been updated yet, ensure it is now that
3045 	 * a "switch in" event has occurred.
3046 	 */
3047 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3048 		return 0;
3049 
3050 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3051 }
3052 
3053 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3054 				   struct perf_sample *sample)
3055 {
3056 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3057 	pid_t pid, tid;
3058 	int cpu, ret;
3059 
3060 	cpu = sample->cpu;
3061 
3062 	if (pt->have_sched_switch == 3) {
3063 		if (!out)
3064 			return intel_pt_context_switch_in(pt, sample);
3065 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3066 			pr_err("Expecting CPU-wide context switch event\n");
3067 			return -EINVAL;
3068 		}
3069 		pid = event->context_switch.next_prev_pid;
3070 		tid = event->context_switch.next_prev_tid;
3071 	} else {
3072 		if (out)
3073 			return 0;
3074 		pid = sample->pid;
3075 		tid = sample->tid;
3076 	}
3077 
3078 	if (tid == -1)
3079 		intel_pt_log("context_switch event has no tid\n");
3080 
3081 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3082 	if (ret <= 0)
3083 		return ret;
3084 
3085 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3086 }
3087 
3088 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3089 					 union perf_event *event,
3090 					 struct perf_sample *sample)
3091 {
3092 	if (!pt->per_cpu_mmaps)
3093 		return 0;
3094 
3095 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3096 		     sample->cpu, event->itrace_start.pid,
3097 		     event->itrace_start.tid, sample->time,
3098 		     perf_time_to_tsc(sample->time, &pt->tc));
3099 
3100 	return machine__set_current_tid(pt->machine, sample->cpu,
3101 					event->itrace_start.pid,
3102 					event->itrace_start.tid);
3103 }
3104 
3105 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3106 					     union perf_event *event,
3107 					     struct perf_sample *sample)
3108 {
3109 	u64 hw_id = event->aux_output_hw_id.hw_id;
3110 	struct auxtrace_queue *queue;
3111 	struct intel_pt_queue *ptq;
3112 	struct evsel *evsel;
3113 
3114 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3115 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3116 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3117 		pr_err("Bad AUX output hardware ID\n");
3118 		return -EINVAL;
3119 	}
3120 
3121 	ptq = queue->priv;
3122 
3123 	ptq->pebs[hw_id].evsel = evsel;
3124 	ptq->pebs[hw_id].id = sample->id;
3125 
3126 	return 0;
3127 }
3128 
3129 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3130 			     struct addr_location *al)
3131 {
3132 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3133 		if (!thread__find_map(thread, cpumode, addr, al))
3134 			return -1;
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 /* Invalidate all instruction cache entries that overlap the text poke */
3141 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3142 {
3143 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3144 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3145 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3146 	int cnt = 4096 + event->text_poke.new_len;
3147 	struct thread *thread = pt->unknown_thread;
3148 	struct addr_location al = { .map = NULL };
3149 	struct machine *machine = pt->machine;
3150 	struct intel_pt_cache_entry *e;
3151 	u64 offset;
3152 
3153 	if (!event->text_poke.new_len)
3154 		return 0;
3155 
3156 	for (; cnt; cnt--, addr--) {
3157 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3158 			if (addr < event->text_poke.addr)
3159 				return 0;
3160 			continue;
3161 		}
3162 
3163 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3164 			continue;
3165 
3166 		offset = al.map->map_ip(al.map, addr);
3167 
3168 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3169 		if (!e)
3170 			continue;
3171 
3172 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3173 			/*
3174 			 * No overlap. Working backwards there cannot be another
3175 			 * basic block that overlaps the text poke if there is a
3176 			 * branch instruction before the text poke address.
3177 			 */
3178 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3179 				return 0;
3180 		} else {
3181 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3182 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3183 				     al.map->dso->long_name, addr);
3184 		}
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int intel_pt_process_event(struct perf_session *session,
3191 				  union perf_event *event,
3192 				  struct perf_sample *sample,
3193 				  struct perf_tool *tool)
3194 {
3195 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3196 					   auxtrace);
3197 	u64 timestamp;
3198 	int err = 0;
3199 
3200 	if (dump_trace)
3201 		return 0;
3202 
3203 	if (!tool->ordered_events) {
3204 		pr_err("Intel Processor Trace requires ordered events\n");
3205 		return -EINVAL;
3206 	}
3207 
3208 	if (sample->time && sample->time != (u64)-1)
3209 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3210 	else
3211 		timestamp = 0;
3212 
3213 	if (timestamp || pt->timeless_decoding) {
3214 		err = intel_pt_update_queues(pt);
3215 		if (err)
3216 			return err;
3217 	}
3218 
3219 	if (pt->timeless_decoding) {
3220 		if (pt->sampling_mode) {
3221 			if (sample->aux_sample.size)
3222 				err = intel_pt_process_timeless_sample(pt,
3223 								       sample);
3224 		} else if (event->header.type == PERF_RECORD_EXIT) {
3225 			err = intel_pt_process_timeless_queues(pt,
3226 							       event->fork.tid,
3227 							       sample->time);
3228 		}
3229 	} else if (timestamp) {
3230 		if (!pt->first_timestamp)
3231 			intel_pt_first_timestamp(pt, timestamp);
3232 		err = intel_pt_process_queues(pt, timestamp);
3233 	}
3234 	if (err)
3235 		return err;
3236 
3237 	if (event->header.type == PERF_RECORD_SAMPLE) {
3238 		if (pt->synth_opts.add_callchain && !sample->callchain)
3239 			intel_pt_add_callchain(pt, sample);
3240 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3241 			intel_pt_add_br_stack(pt, sample);
3242 	}
3243 
3244 	if (event->header.type == PERF_RECORD_AUX &&
3245 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3246 	    pt->synth_opts.errors) {
3247 		err = intel_pt_lost(pt, sample);
3248 		if (err)
3249 			return err;
3250 	}
3251 
3252 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3253 		err = intel_pt_process_switch(pt, sample);
3254 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3255 		err = intel_pt_process_itrace_start(pt, event, sample);
3256 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3257 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3258 	else if (event->header.type == PERF_RECORD_SWITCH ||
3259 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3260 		err = intel_pt_context_switch(pt, event, sample);
3261 
3262 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3263 		err = intel_pt_text_poke(pt, event);
3264 
3265 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3266 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3267 			     event->header.type, sample->cpu, sample->time, timestamp);
3268 		intel_pt_log_event(event);
3269 	}
3270 
3271 	return err;
3272 }
3273 
3274 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3275 {
3276 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3277 					   auxtrace);
3278 	int ret;
3279 
3280 	if (dump_trace)
3281 		return 0;
3282 
3283 	if (!tool->ordered_events)
3284 		return -EINVAL;
3285 
3286 	ret = intel_pt_update_queues(pt);
3287 	if (ret < 0)
3288 		return ret;
3289 
3290 	if (pt->timeless_decoding)
3291 		return intel_pt_process_timeless_queues(pt, -1,
3292 							MAX_TIMESTAMP - 1);
3293 
3294 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3295 }
3296 
3297 static void intel_pt_free_events(struct perf_session *session)
3298 {
3299 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3300 					   auxtrace);
3301 	struct auxtrace_queues *queues = &pt->queues;
3302 	unsigned int i;
3303 
3304 	for (i = 0; i < queues->nr_queues; i++) {
3305 		intel_pt_free_queue(queues->queue_array[i].priv);
3306 		queues->queue_array[i].priv = NULL;
3307 	}
3308 	intel_pt_log_disable();
3309 	auxtrace_queues__free(queues);
3310 }
3311 
3312 static void intel_pt_free(struct perf_session *session)
3313 {
3314 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3315 					   auxtrace);
3316 
3317 	auxtrace_heap__free(&pt->heap);
3318 	intel_pt_free_events(session);
3319 	session->auxtrace = NULL;
3320 	intel_pt_free_vmcs_info(pt);
3321 	thread__put(pt->unknown_thread);
3322 	addr_filters__exit(&pt->filts);
3323 	zfree(&pt->chain);
3324 	zfree(&pt->filter);
3325 	zfree(&pt->time_ranges);
3326 	free(pt);
3327 }
3328 
3329 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3330 				       struct evsel *evsel)
3331 {
3332 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3333 					   auxtrace);
3334 
3335 	return evsel->core.attr.type == pt->pmu_type;
3336 }
3337 
3338 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3339 					   union perf_event *event,
3340 					   struct perf_tool *tool __maybe_unused)
3341 {
3342 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3343 					   auxtrace);
3344 
3345 	if (!pt->data_queued) {
3346 		struct auxtrace_buffer *buffer;
3347 		off_t data_offset;
3348 		int fd = perf_data__fd(session->data);
3349 		int err;
3350 
3351 		if (perf_data__is_pipe(session->data)) {
3352 			data_offset = 0;
3353 		} else {
3354 			data_offset = lseek(fd, 0, SEEK_CUR);
3355 			if (data_offset == -1)
3356 				return -errno;
3357 		}
3358 
3359 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3360 						 data_offset, &buffer);
3361 		if (err)
3362 			return err;
3363 
3364 		/* Dump here now we have copied a piped trace out of the pipe */
3365 		if (dump_trace) {
3366 			if (auxtrace_buffer__get_data(buffer, fd)) {
3367 				intel_pt_dump_event(pt, buffer->data,
3368 						    buffer->size);
3369 				auxtrace_buffer__put_data(buffer);
3370 			}
3371 		}
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static int intel_pt_queue_data(struct perf_session *session,
3378 			       struct perf_sample *sample,
3379 			       union perf_event *event, u64 data_offset)
3380 {
3381 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3382 					   auxtrace);
3383 	u64 timestamp;
3384 
3385 	if (event) {
3386 		return auxtrace_queues__add_event(&pt->queues, session, event,
3387 						  data_offset, NULL);
3388 	}
3389 
3390 	if (sample->time && sample->time != (u64)-1)
3391 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3392 	else
3393 		timestamp = 0;
3394 
3395 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3396 					   data_offset, timestamp);
3397 }
3398 
3399 struct intel_pt_synth {
3400 	struct perf_tool dummy_tool;
3401 	struct perf_session *session;
3402 };
3403 
3404 static int intel_pt_event_synth(struct perf_tool *tool,
3405 				union perf_event *event,
3406 				struct perf_sample *sample __maybe_unused,
3407 				struct machine *machine __maybe_unused)
3408 {
3409 	struct intel_pt_synth *intel_pt_synth =
3410 			container_of(tool, struct intel_pt_synth, dummy_tool);
3411 
3412 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3413 						 NULL);
3414 }
3415 
3416 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3417 				struct perf_event_attr *attr, u64 id)
3418 {
3419 	struct intel_pt_synth intel_pt_synth;
3420 	int err;
3421 
3422 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3423 		 name, id, (u64)attr->sample_type);
3424 
3425 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3426 	intel_pt_synth.session = session;
3427 
3428 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3429 					  &id, intel_pt_event_synth);
3430 	if (err)
3431 		pr_err("%s: failed to synthesize '%s' event type\n",
3432 		       __func__, name);
3433 
3434 	return err;
3435 }
3436 
3437 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3438 				    const char *name)
3439 {
3440 	struct evsel *evsel;
3441 
3442 	evlist__for_each_entry(evlist, evsel) {
3443 		if (evsel->core.id && evsel->core.id[0] == id) {
3444 			if (evsel->name)
3445 				zfree(&evsel->name);
3446 			evsel->name = strdup(name);
3447 			break;
3448 		}
3449 	}
3450 }
3451 
3452 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3453 					 struct evlist *evlist)
3454 {
3455 	struct evsel *evsel;
3456 
3457 	evlist__for_each_entry(evlist, evsel) {
3458 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3459 			return evsel;
3460 	}
3461 
3462 	return NULL;
3463 }
3464 
3465 static int intel_pt_synth_events(struct intel_pt *pt,
3466 				 struct perf_session *session)
3467 {
3468 	struct evlist *evlist = session->evlist;
3469 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3470 	struct perf_event_attr attr;
3471 	u64 id;
3472 	int err;
3473 
3474 	if (!evsel) {
3475 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3476 		return 0;
3477 	}
3478 
3479 	memset(&attr, 0, sizeof(struct perf_event_attr));
3480 	attr.size = sizeof(struct perf_event_attr);
3481 	attr.type = PERF_TYPE_HARDWARE;
3482 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3483 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3484 			    PERF_SAMPLE_PERIOD;
3485 	if (pt->timeless_decoding)
3486 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3487 	else
3488 		attr.sample_type |= PERF_SAMPLE_TIME;
3489 	if (!pt->per_cpu_mmaps)
3490 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3491 	attr.exclude_user = evsel->core.attr.exclude_user;
3492 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3493 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3494 	attr.exclude_host = evsel->core.attr.exclude_host;
3495 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3496 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3497 	attr.read_format = evsel->core.attr.read_format;
3498 
3499 	id = evsel->core.id[0] + 1000000000;
3500 	if (!id)
3501 		id = 1;
3502 
3503 	if (pt->synth_opts.branches) {
3504 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3505 		attr.sample_period = 1;
3506 		attr.sample_type |= PERF_SAMPLE_ADDR;
3507 		err = intel_pt_synth_event(session, "branches", &attr, id);
3508 		if (err)
3509 			return err;
3510 		pt->sample_branches = true;
3511 		pt->branches_sample_type = attr.sample_type;
3512 		pt->branches_id = id;
3513 		id += 1;
3514 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3515 	}
3516 
3517 	if (pt->synth_opts.callchain)
3518 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3519 	if (pt->synth_opts.last_branch) {
3520 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3521 		/*
3522 		 * We don't use the hardware index, but the sample generation
3523 		 * code uses the new format branch_stack with this field,
3524 		 * so the event attributes must indicate that it's present.
3525 		 */
3526 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3527 	}
3528 
3529 	if (pt->synth_opts.instructions) {
3530 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3531 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3532 			attr.sample_period =
3533 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3534 		else
3535 			attr.sample_period = pt->synth_opts.period;
3536 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3537 		if (err)
3538 			return err;
3539 		pt->sample_instructions = true;
3540 		pt->instructions_sample_type = attr.sample_type;
3541 		pt->instructions_id = id;
3542 		id += 1;
3543 	}
3544 
3545 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3546 	attr.sample_period = 1;
3547 
3548 	if (pt->synth_opts.transactions) {
3549 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3550 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3551 		if (err)
3552 			return err;
3553 		pt->sample_transactions = true;
3554 		pt->transactions_sample_type = attr.sample_type;
3555 		pt->transactions_id = id;
3556 		intel_pt_set_event_name(evlist, id, "transactions");
3557 		id += 1;
3558 	}
3559 
3560 	attr.type = PERF_TYPE_SYNTH;
3561 	attr.sample_type |= PERF_SAMPLE_RAW;
3562 
3563 	if (pt->synth_opts.ptwrites) {
3564 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3565 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3566 		if (err)
3567 			return err;
3568 		pt->sample_ptwrites = true;
3569 		pt->ptwrites_sample_type = attr.sample_type;
3570 		pt->ptwrites_id = id;
3571 		intel_pt_set_event_name(evlist, id, "ptwrite");
3572 		id += 1;
3573 	}
3574 
3575 	if (pt->synth_opts.pwr_events) {
3576 		pt->sample_pwr_events = true;
3577 		pt->pwr_events_sample_type = attr.sample_type;
3578 
3579 		attr.config = PERF_SYNTH_INTEL_CBR;
3580 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3581 		if (err)
3582 			return err;
3583 		pt->cbr_id = id;
3584 		intel_pt_set_event_name(evlist, id, "cbr");
3585 		id += 1;
3586 
3587 		attr.config = PERF_SYNTH_INTEL_PSB;
3588 		err = intel_pt_synth_event(session, "psb", &attr, id);
3589 		if (err)
3590 			return err;
3591 		pt->psb_id = id;
3592 		intel_pt_set_event_name(evlist, id, "psb");
3593 		id += 1;
3594 	}
3595 
3596 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3597 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3598 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3599 		if (err)
3600 			return err;
3601 		pt->mwait_id = id;
3602 		intel_pt_set_event_name(evlist, id, "mwait");
3603 		id += 1;
3604 
3605 		attr.config = PERF_SYNTH_INTEL_PWRE;
3606 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3607 		if (err)
3608 			return err;
3609 		pt->pwre_id = id;
3610 		intel_pt_set_event_name(evlist, id, "pwre");
3611 		id += 1;
3612 
3613 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3614 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3615 		if (err)
3616 			return err;
3617 		pt->exstop_id = id;
3618 		intel_pt_set_event_name(evlist, id, "exstop");
3619 		id += 1;
3620 
3621 		attr.config = PERF_SYNTH_INTEL_PWRX;
3622 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3623 		if (err)
3624 			return err;
3625 		pt->pwrx_id = id;
3626 		intel_pt_set_event_name(evlist, id, "pwrx");
3627 		id += 1;
3628 	}
3629 
3630 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3631 		attr.config = PERF_SYNTH_INTEL_EVT;
3632 		err = intel_pt_synth_event(session, "evt", &attr, id);
3633 		if (err)
3634 			return err;
3635 		pt->evt_sample_type = attr.sample_type;
3636 		pt->evt_id = id;
3637 		intel_pt_set_event_name(evlist, id, "evt");
3638 		id += 1;
3639 	}
3640 
3641 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3642 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3643 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3644 		if (err)
3645 			return err;
3646 		pt->iflag_chg_sample_type = attr.sample_type;
3647 		pt->iflag_chg_id = id;
3648 		intel_pt_set_event_name(evlist, id, "iflag");
3649 		id += 1;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3656 {
3657 	struct evsel *evsel;
3658 
3659 	if (!pt->synth_opts.other_events)
3660 		return;
3661 
3662 	evlist__for_each_entry(pt->session->evlist, evsel) {
3663 		if (evsel->core.attr.aux_output && evsel->core.id) {
3664 			if (pt->single_pebs) {
3665 				pt->single_pebs = false;
3666 				return;
3667 			}
3668 			pt->single_pebs = true;
3669 			pt->sample_pebs = true;
3670 			pt->pebs_evsel = evsel;
3671 		}
3672 	}
3673 }
3674 
3675 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3676 {
3677 	struct evsel *evsel;
3678 
3679 	evlist__for_each_entry_reverse(evlist, evsel) {
3680 		const char *name = evsel__name(evsel);
3681 
3682 		if (!strcmp(name, "sched:sched_switch"))
3683 			return evsel;
3684 	}
3685 
3686 	return NULL;
3687 }
3688 
3689 static bool intel_pt_find_switch(struct evlist *evlist)
3690 {
3691 	struct evsel *evsel;
3692 
3693 	evlist__for_each_entry(evlist, evsel) {
3694 		if (evsel->core.attr.context_switch)
3695 			return true;
3696 	}
3697 
3698 	return false;
3699 }
3700 
3701 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3702 {
3703 	struct intel_pt *pt = data;
3704 
3705 	if (!strcmp(var, "intel-pt.mispred-all"))
3706 		pt->mispred_all = perf_config_bool(var, value);
3707 
3708 	if (!strcmp(var, "intel-pt.max-loops"))
3709 		perf_config_int(&pt->max_loops, var, value);
3710 
3711 	return 0;
3712 }
3713 
3714 /* Find least TSC which converts to ns or later */
3715 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3716 {
3717 	u64 tsc, tm;
3718 
3719 	tsc = perf_time_to_tsc(ns, &pt->tc);
3720 
3721 	while (1) {
3722 		tm = tsc_to_perf_time(tsc, &pt->tc);
3723 		if (tm < ns)
3724 			break;
3725 		tsc -= 1;
3726 	}
3727 
3728 	while (tm < ns)
3729 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3730 
3731 	return tsc;
3732 }
3733 
3734 /* Find greatest TSC which converts to ns or earlier */
3735 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3736 {
3737 	u64 tsc, tm;
3738 
3739 	tsc = perf_time_to_tsc(ns, &pt->tc);
3740 
3741 	while (1) {
3742 		tm = tsc_to_perf_time(tsc, &pt->tc);
3743 		if (tm > ns)
3744 			break;
3745 		tsc += 1;
3746 	}
3747 
3748 	while (tm > ns)
3749 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3750 
3751 	return tsc;
3752 }
3753 
3754 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3755 				      struct itrace_synth_opts *opts)
3756 {
3757 	struct perf_time_interval *p = opts->ptime_range;
3758 	int n = opts->range_num;
3759 	int i;
3760 
3761 	if (!n || !p || pt->timeless_decoding)
3762 		return 0;
3763 
3764 	pt->time_ranges = calloc(n, sizeof(struct range));
3765 	if (!pt->time_ranges)
3766 		return -ENOMEM;
3767 
3768 	pt->range_cnt = n;
3769 
3770 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3771 
3772 	for (i = 0; i < n; i++) {
3773 		struct range *r = &pt->time_ranges[i];
3774 		u64 ts = p[i].start;
3775 		u64 te = p[i].end;
3776 
3777 		/*
3778 		 * Take care to ensure the TSC range matches the perf-time range
3779 		 * when converted back to perf-time.
3780 		 */
3781 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3782 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3783 
3784 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3785 			     i, ts, te);
3786 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3787 			     i, r->start, r->end);
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3794 {
3795 	struct intel_pt_vmcs_info *vmcs_info;
3796 	u64 tsc_offset, vmcs;
3797 	char *p = *args;
3798 
3799 	errno = 0;
3800 
3801 	p = skip_spaces(p);
3802 	if (!*p)
3803 		return 1;
3804 
3805 	tsc_offset = strtoull(p, &p, 0);
3806 	if (errno)
3807 		return -errno;
3808 	p = skip_spaces(p);
3809 	if (*p != ':') {
3810 		pt->dflt_tsc_offset = tsc_offset;
3811 		*args = p;
3812 		return 0;
3813 	}
3814 	p += 1;
3815 	while (1) {
3816 		vmcs = strtoull(p, &p, 0);
3817 		if (errno)
3818 			return -errno;
3819 		if (!vmcs)
3820 			return -EINVAL;
3821 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3822 		if (!vmcs_info)
3823 			return -ENOMEM;
3824 		p = skip_spaces(p);
3825 		if (*p != ',')
3826 			break;
3827 		p += 1;
3828 	}
3829 	*args = p;
3830 	return 0;
3831 }
3832 
3833 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3834 {
3835 	char *args = pt->synth_opts.vm_tm_corr_args;
3836 	int ret;
3837 
3838 	if (!args)
3839 		return 0;
3840 
3841 	do {
3842 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3843 	} while (!ret);
3844 
3845 	if (ret < 0) {
3846 		pr_err("Failed to parse VM Time Correlation options\n");
3847 		return ret;
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static const char * const intel_pt_info_fmts[] = {
3854 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3855 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3856 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3857 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3858 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3859 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3860 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3861 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3862 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3863 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3864 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3865 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3866 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3867 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3868 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3869 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3870 };
3871 
3872 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3873 {
3874 	int i;
3875 
3876 	if (!dump_trace)
3877 		return;
3878 
3879 	for (i = start; i <= finish; i++)
3880 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3881 }
3882 
3883 static void intel_pt_print_info_str(const char *name, const char *str)
3884 {
3885 	if (!dump_trace)
3886 		return;
3887 
3888 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3889 }
3890 
3891 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3892 {
3893 	return auxtrace_info->header.size >=
3894 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3895 }
3896 
3897 int intel_pt_process_auxtrace_info(union perf_event *event,
3898 				   struct perf_session *session)
3899 {
3900 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3901 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3902 	struct intel_pt *pt;
3903 	void *info_end;
3904 	__u64 *info;
3905 	int err;
3906 
3907 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3908 					min_sz)
3909 		return -EINVAL;
3910 
3911 	pt = zalloc(sizeof(struct intel_pt));
3912 	if (!pt)
3913 		return -ENOMEM;
3914 
3915 	pt->vmcs_info = RB_ROOT;
3916 
3917 	addr_filters__init(&pt->filts);
3918 
3919 	err = perf_config(intel_pt_perf_config, pt);
3920 	if (err)
3921 		goto err_free;
3922 
3923 	err = auxtrace_queues__init(&pt->queues);
3924 	if (err)
3925 		goto err_free;
3926 
3927 	if (session->itrace_synth_opts->set) {
3928 		pt->synth_opts = *session->itrace_synth_opts;
3929 	} else {
3930 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3931 
3932 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3933 		if (!opts->default_no_sample && !opts->inject) {
3934 			pt->synth_opts.branches = false;
3935 			pt->synth_opts.callchain = true;
3936 			pt->synth_opts.add_callchain = true;
3937 		}
3938 		pt->synth_opts.thread_stack = opts->thread_stack;
3939 	}
3940 
3941 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
3942 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3943 
3944 	pt->session = session;
3945 	pt->machine = &session->machines.host; /* No kvm support */
3946 	pt->auxtrace_type = auxtrace_info->type;
3947 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3948 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3949 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3950 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3951 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3952 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3953 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3954 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3955 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3956 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3957 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3958 			    INTEL_PT_PER_CPU_MMAPS);
3959 
3960 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3961 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3962 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3963 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3964 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3965 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3966 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3967 				    INTEL_PT_CYC_BIT);
3968 	}
3969 
3970 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3971 		pt->max_non_turbo_ratio =
3972 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3973 		intel_pt_print_info(&auxtrace_info->priv[0],
3974 				    INTEL_PT_MAX_NONTURBO_RATIO,
3975 				    INTEL_PT_MAX_NONTURBO_RATIO);
3976 	}
3977 
3978 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3979 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
3980 
3981 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3982 		size_t len;
3983 
3984 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3985 		intel_pt_print_info(&auxtrace_info->priv[0],
3986 				    INTEL_PT_FILTER_STR_LEN,
3987 				    INTEL_PT_FILTER_STR_LEN);
3988 		if (len) {
3989 			const char *filter = (const char *)info;
3990 
3991 			len = roundup(len + 1, 8);
3992 			info += len >> 3;
3993 			if ((void *)info > info_end) {
3994 				pr_err("%s: bad filter string length\n", __func__);
3995 				err = -EINVAL;
3996 				goto err_free_queues;
3997 			}
3998 			pt->filter = memdup(filter, len);
3999 			if (!pt->filter) {
4000 				err = -ENOMEM;
4001 				goto err_free_queues;
4002 			}
4003 			if (session->header.needs_swap)
4004 				mem_bswap_64(pt->filter, len);
4005 			if (pt->filter[len - 1]) {
4006 				pr_err("%s: filter string not null terminated\n", __func__);
4007 				err = -EINVAL;
4008 				goto err_free_queues;
4009 			}
4010 			err = addr_filters__parse_bare_filter(&pt->filts,
4011 							      filter);
4012 			if (err)
4013 				goto err_free_queues;
4014 		}
4015 		intel_pt_print_info_str("Filter string", pt->filter);
4016 	}
4017 
4018 	if ((void *)info < info_end) {
4019 		pt->cap_event_trace = *info++;
4020 		if (dump_trace)
4021 			fprintf(stdout, "  Cap Event Trace     %d\n",
4022 				pt->cap_event_trace);
4023 	}
4024 
4025 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4026 	if (pt->timeless_decoding && !pt->tc.time_mult)
4027 		pt->tc.time_mult = 1;
4028 	pt->have_tsc = intel_pt_have_tsc(pt);
4029 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4030 	pt->est_tsc = !pt->timeless_decoding;
4031 
4032 	if (pt->synth_opts.vm_time_correlation) {
4033 		if (pt->timeless_decoding) {
4034 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4035 			err = -EINVAL;
4036 			goto err_free_queues;
4037 		}
4038 		if (session->itrace_synth_opts->ptime_range) {
4039 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4040 			err = -EINVAL;
4041 			goto err_free_queues;
4042 		}
4043 		/* Currently TSC Offset is calculated using MTC packets */
4044 		if (!intel_pt_have_mtc(pt)) {
4045 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4046 			err = -EINVAL;
4047 			goto err_free_queues;
4048 		}
4049 		err = intel_pt_parse_vm_tm_corr_args(pt);
4050 		if (err)
4051 			goto err_free_queues;
4052 	}
4053 
4054 	pt->unknown_thread = thread__new(999999999, 999999999);
4055 	if (!pt->unknown_thread) {
4056 		err = -ENOMEM;
4057 		goto err_free_queues;
4058 	}
4059 
4060 	/*
4061 	 * Since this thread will not be kept in any rbtree not in a
4062 	 * list, initialize its list node so that at thread__put() the
4063 	 * current thread lifetime assumption is kept and we don't segfault
4064 	 * at list_del_init().
4065 	 */
4066 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4067 
4068 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4069 	if (err)
4070 		goto err_delete_thread;
4071 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4072 		err = -ENOMEM;
4073 		goto err_delete_thread;
4074 	}
4075 
4076 	pt->auxtrace.process_event = intel_pt_process_event;
4077 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4078 	pt->auxtrace.queue_data = intel_pt_queue_data;
4079 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4080 	pt->auxtrace.flush_events = intel_pt_flush;
4081 	pt->auxtrace.free_events = intel_pt_free_events;
4082 	pt->auxtrace.free = intel_pt_free;
4083 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4084 	session->auxtrace = &pt->auxtrace;
4085 
4086 	if (dump_trace)
4087 		return 0;
4088 
4089 	if (pt->have_sched_switch == 1) {
4090 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4091 		if (!pt->switch_evsel) {
4092 			pr_err("%s: missing sched_switch event\n", __func__);
4093 			err = -EINVAL;
4094 			goto err_delete_thread;
4095 		}
4096 	} else if (pt->have_sched_switch == 2 &&
4097 		   !intel_pt_find_switch(session->evlist)) {
4098 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4099 		err = -EINVAL;
4100 		goto err_delete_thread;
4101 	}
4102 
4103 	if (pt->synth_opts.log)
4104 		intel_pt_log_enable();
4105 
4106 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4107 	if (pt->tc.time_mult) {
4108 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4109 
4110 		if (!pt->max_non_turbo_ratio)
4111 			pt->max_non_turbo_ratio =
4112 					(tsc_freq + 50000000) / 100000000;
4113 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4114 		intel_pt_log("Maximum non-turbo ratio %u\n",
4115 			     pt->max_non_turbo_ratio);
4116 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4117 	}
4118 
4119 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4120 	if (err)
4121 		goto err_delete_thread;
4122 
4123 	if (pt->synth_opts.calls)
4124 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4125 				       PERF_IP_FLAG_TRACE_END;
4126 	if (pt->synth_opts.returns)
4127 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4128 				       PERF_IP_FLAG_TRACE_BEGIN;
4129 
4130 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4131 	    !symbol_conf.use_callchain) {
4132 		symbol_conf.use_callchain = true;
4133 		if (callchain_register_param(&callchain_param) < 0) {
4134 			symbol_conf.use_callchain = false;
4135 			pt->synth_opts.callchain = false;
4136 			pt->synth_opts.add_callchain = false;
4137 		}
4138 	}
4139 
4140 	if (pt->synth_opts.add_callchain) {
4141 		err = intel_pt_callchain_init(pt);
4142 		if (err)
4143 			goto err_delete_thread;
4144 	}
4145 
4146 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4147 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4148 		pt->br_stack_sz_plus = pt->br_stack_sz;
4149 	}
4150 
4151 	if (pt->synth_opts.add_last_branch) {
4152 		err = intel_pt_br_stack_init(pt);
4153 		if (err)
4154 			goto err_delete_thread;
4155 		/*
4156 		 * Additional branch stack size to cater for tracing from the
4157 		 * actual sample ip to where the sample time is recorded.
4158 		 * Measured at about 200 branches, but generously set to 1024.
4159 		 * If kernel space is not being traced, then add just 1 for the
4160 		 * branch to kernel space.
4161 		 */
4162 		if (intel_pt_tracing_kernel(pt))
4163 			pt->br_stack_sz_plus += 1024;
4164 		else
4165 			pt->br_stack_sz_plus += 1;
4166 	}
4167 
4168 	pt->use_thread_stack = pt->synth_opts.callchain ||
4169 			       pt->synth_opts.add_callchain ||
4170 			       pt->synth_opts.thread_stack ||
4171 			       pt->synth_opts.last_branch ||
4172 			       pt->synth_opts.add_last_branch;
4173 
4174 	pt->callstack = pt->synth_opts.callchain ||
4175 			pt->synth_opts.add_callchain ||
4176 			pt->synth_opts.thread_stack;
4177 
4178 	err = intel_pt_synth_events(pt, session);
4179 	if (err)
4180 		goto err_delete_thread;
4181 
4182 	intel_pt_setup_pebs_events(pt);
4183 
4184 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4185 		err = auxtrace_queue_data(session, true, true);
4186 	else
4187 		err = auxtrace_queues__process_index(&pt->queues, session);
4188 	if (err)
4189 		goto err_delete_thread;
4190 
4191 	if (pt->queues.populated)
4192 		pt->data_queued = true;
4193 
4194 	if (pt->timeless_decoding)
4195 		pr_debug2("Intel PT decoding without timestamps\n");
4196 
4197 	return 0;
4198 
4199 err_delete_thread:
4200 	zfree(&pt->chain);
4201 	thread__zput(pt->unknown_thread);
4202 err_free_queues:
4203 	intel_pt_log_disable();
4204 	auxtrace_queues__free(&pt->queues);
4205 	session->auxtrace = NULL;
4206 err_free:
4207 	addr_filters__exit(&pt->filts);
4208 	zfree(&pt->filter);
4209 	zfree(&pt->time_ranges);
4210 	free(pt);
4211 	return err;
4212 }
4213