1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 struct range { 50 u64 start; 51 u64 end; 52 }; 53 54 struct intel_pt { 55 struct auxtrace auxtrace; 56 struct auxtrace_queues queues; 57 struct auxtrace_heap heap; 58 u32 auxtrace_type; 59 struct perf_session *session; 60 struct machine *machine; 61 struct evsel *switch_evsel; 62 struct thread *unknown_thread; 63 bool timeless_decoding; 64 bool sampling_mode; 65 bool snapshot_mode; 66 bool per_cpu_mmaps; 67 bool have_tsc; 68 bool data_queued; 69 bool est_tsc; 70 bool sync_switch; 71 bool mispred_all; 72 bool use_thread_stack; 73 bool callstack; 74 unsigned int br_stack_sz; 75 unsigned int br_stack_sz_plus; 76 int have_sched_switch; 77 u32 pmu_type; 78 u64 kernel_start; 79 u64 switch_ip; 80 u64 ptss_ip; 81 u64 first_timestamp; 82 83 struct perf_tsc_conversion tc; 84 bool cap_user_time_zero; 85 86 struct itrace_synth_opts synth_opts; 87 88 bool sample_instructions; 89 u64 instructions_sample_type; 90 u64 instructions_id; 91 92 bool sample_branches; 93 u32 branches_filter; 94 u64 branches_sample_type; 95 u64 branches_id; 96 97 bool sample_transactions; 98 u64 transactions_sample_type; 99 u64 transactions_id; 100 101 bool sample_ptwrites; 102 u64 ptwrites_sample_type; 103 u64 ptwrites_id; 104 105 bool sample_pwr_events; 106 u64 pwr_events_sample_type; 107 u64 mwait_id; 108 u64 pwre_id; 109 u64 exstop_id; 110 u64 pwrx_id; 111 u64 cbr_id; 112 u64 psb_id; 113 114 bool sample_pebs; 115 struct evsel *pebs_evsel; 116 117 u64 tsc_bit; 118 u64 mtc_bit; 119 u64 mtc_freq_bits; 120 u32 tsc_ctc_ratio_n; 121 u32 tsc_ctc_ratio_d; 122 u64 cyc_bit; 123 u64 noretcomp_bit; 124 unsigned max_non_turbo_ratio; 125 unsigned cbr2khz; 126 127 unsigned long num_events; 128 129 char *filter; 130 struct addr_filters filts; 131 132 struct range *time_ranges; 133 unsigned int range_cnt; 134 135 struct ip_callchain *chain; 136 struct branch_stack *br_stack; 137 138 u64 dflt_tsc_offset; 139 struct rb_root vmcs_info; 140 }; 141 142 enum switch_state { 143 INTEL_PT_SS_NOT_TRACING, 144 INTEL_PT_SS_UNKNOWN, 145 INTEL_PT_SS_TRACING, 146 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 147 INTEL_PT_SS_EXPECTING_SWITCH_IP, 148 }; 149 150 struct intel_pt_queue { 151 struct intel_pt *pt; 152 unsigned int queue_nr; 153 struct auxtrace_buffer *buffer; 154 struct auxtrace_buffer *old_buffer; 155 void *decoder; 156 const struct intel_pt_state *state; 157 struct ip_callchain *chain; 158 struct branch_stack *last_branch; 159 union perf_event *event_buf; 160 bool on_heap; 161 bool stop; 162 bool step_through_buffers; 163 bool use_buffer_pid_tid; 164 bool sync_switch; 165 pid_t pid, tid; 166 int cpu; 167 int switch_state; 168 pid_t next_tid; 169 struct thread *thread; 170 struct machine *guest_machine; 171 struct thread *unknown_guest_thread; 172 pid_t guest_machine_pid; 173 bool exclude_kernel; 174 bool have_sample; 175 u64 time; 176 u64 timestamp; 177 u64 sel_timestamp; 178 bool sel_start; 179 unsigned int sel_idx; 180 u32 flags; 181 u16 insn_len; 182 u64 last_insn_cnt; 183 u64 ipc_insn_cnt; 184 u64 ipc_cyc_cnt; 185 u64 last_in_insn_cnt; 186 u64 last_in_cyc_cnt; 187 u64 last_br_insn_cnt; 188 u64 last_br_cyc_cnt; 189 unsigned int cbr_seen; 190 char insn[INTEL_PT_INSN_BUF_SZ]; 191 }; 192 193 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 194 unsigned char *buf, size_t len) 195 { 196 struct intel_pt_pkt packet; 197 size_t pos = 0; 198 int ret, pkt_len, i; 199 char desc[INTEL_PT_PKT_DESC_MAX]; 200 const char *color = PERF_COLOR_BLUE; 201 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 202 203 color_fprintf(stdout, color, 204 ". ... Intel Processor Trace data: size %zu bytes\n", 205 len); 206 207 while (len) { 208 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 209 if (ret > 0) 210 pkt_len = ret; 211 else 212 pkt_len = 1; 213 printf("."); 214 color_fprintf(stdout, color, " %08x: ", pos); 215 for (i = 0; i < pkt_len; i++) 216 color_fprintf(stdout, color, " %02x", buf[i]); 217 for (; i < 16; i++) 218 color_fprintf(stdout, color, " "); 219 if (ret > 0) { 220 ret = intel_pt_pkt_desc(&packet, desc, 221 INTEL_PT_PKT_DESC_MAX); 222 if (ret > 0) 223 color_fprintf(stdout, color, " %s\n", desc); 224 } else { 225 color_fprintf(stdout, color, " Bad packet!\n"); 226 } 227 pos += pkt_len; 228 buf += pkt_len; 229 len -= pkt_len; 230 } 231 } 232 233 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 234 size_t len) 235 { 236 printf(".\n"); 237 intel_pt_dump(pt, buf, len); 238 } 239 240 static void intel_pt_log_event(union perf_event *event) 241 { 242 FILE *f = intel_pt_log_fp(); 243 244 if (!intel_pt_enable_logging || !f) 245 return; 246 247 perf_event__fprintf(event, NULL, f); 248 } 249 250 static void intel_pt_dump_sample(struct perf_session *session, 251 struct perf_sample *sample) 252 { 253 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 254 auxtrace); 255 256 printf("\n"); 257 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 258 } 259 260 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 261 { 262 struct perf_time_interval *range = pt->synth_opts.ptime_range; 263 int n = pt->synth_opts.range_num; 264 265 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 266 return true; 267 268 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 269 return false; 270 271 /* perf_time__ranges_skip_sample does not work if time is zero */ 272 if (!tm) 273 tm = 1; 274 275 return !n || !perf_time__ranges_skip_sample(range, n, tm); 276 } 277 278 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, 279 u64 vmcs, 280 u64 dflt_tsc_offset) 281 { 282 struct rb_node **p = &rb_root->rb_node; 283 struct rb_node *parent = NULL; 284 struct intel_pt_vmcs_info *v; 285 286 while (*p) { 287 parent = *p; 288 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); 289 290 if (v->vmcs == vmcs) 291 return v; 292 293 if (vmcs < v->vmcs) 294 p = &(*p)->rb_left; 295 else 296 p = &(*p)->rb_right; 297 } 298 299 v = zalloc(sizeof(*v)); 300 if (v) { 301 v->vmcs = vmcs; 302 v->tsc_offset = dflt_tsc_offset; 303 v->reliable = dflt_tsc_offset; 304 305 rb_link_node(&v->rb_node, parent, p); 306 rb_insert_color(&v->rb_node, rb_root); 307 } 308 309 return v; 310 } 311 312 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) 313 { 314 struct intel_pt_queue *ptq = data; 315 struct intel_pt *pt = ptq->pt; 316 317 if (!vmcs && !pt->dflt_tsc_offset) 318 return NULL; 319 320 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); 321 } 322 323 static void intel_pt_free_vmcs_info(struct intel_pt *pt) 324 { 325 struct intel_pt_vmcs_info *v; 326 struct rb_node *n; 327 328 n = rb_first(&pt->vmcs_info); 329 while (n) { 330 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); 331 n = rb_next(n); 332 rb_erase(&v->rb_node, &pt->vmcs_info); 333 free(v); 334 } 335 } 336 337 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 338 struct auxtrace_buffer *b) 339 { 340 bool consecutive = false; 341 void *start; 342 343 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 344 pt->have_tsc, &consecutive, 345 pt->synth_opts.vm_time_correlation); 346 if (!start) 347 return -EINVAL; 348 /* 349 * In the case of vm_time_correlation, the overlap might contain TSC 350 * packets that will not be fixed, and that will then no longer work for 351 * overlap detection. Avoid that by zeroing out the overlap. 352 */ 353 if (pt->synth_opts.vm_time_correlation) 354 memset(b->data, 0, start - b->data); 355 b->use_size = b->data + b->size - start; 356 b->use_data = start; 357 if (b->use_size && consecutive) 358 b->consecutive = true; 359 return 0; 360 } 361 362 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 363 struct auxtrace_buffer *buffer, 364 struct auxtrace_buffer *old_buffer, 365 struct intel_pt_buffer *b) 366 { 367 bool might_overlap; 368 369 if (!buffer->data) { 370 int fd = perf_data__fd(ptq->pt->session->data); 371 372 buffer->data = auxtrace_buffer__get_data(buffer, fd); 373 if (!buffer->data) 374 return -ENOMEM; 375 } 376 377 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 378 if (might_overlap && !buffer->consecutive && old_buffer && 379 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 380 return -ENOMEM; 381 382 if (buffer->use_data) { 383 b->len = buffer->use_size; 384 b->buf = buffer->use_data; 385 } else { 386 b->len = buffer->size; 387 b->buf = buffer->data; 388 } 389 b->ref_timestamp = buffer->reference; 390 391 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 392 b->consecutive = false; 393 b->trace_nr = buffer->buffer_nr + 1; 394 } else { 395 b->consecutive = true; 396 } 397 398 return 0; 399 } 400 401 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 402 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 403 struct auxtrace_buffer *buffer) 404 { 405 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 406 return; 407 408 auxtrace_buffer__drop_data(buffer); 409 } 410 411 /* Must be serialized with respect to intel_pt_get_trace() */ 412 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 413 void *cb_data) 414 { 415 struct intel_pt_queue *ptq = data; 416 struct auxtrace_buffer *buffer = ptq->buffer; 417 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 418 struct auxtrace_queue *queue; 419 int err = 0; 420 421 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 422 423 while (1) { 424 struct intel_pt_buffer b = { .len = 0 }; 425 426 buffer = auxtrace_buffer__next(queue, buffer); 427 if (!buffer) 428 break; 429 430 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 431 if (err) 432 break; 433 434 if (b.len) { 435 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 436 old_buffer = buffer; 437 } else { 438 intel_pt_lookahead_drop_buffer(ptq, buffer); 439 continue; 440 } 441 442 err = cb(&b, cb_data); 443 if (err) 444 break; 445 } 446 447 if (buffer != old_buffer) 448 intel_pt_lookahead_drop_buffer(ptq, buffer); 449 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 450 451 return err; 452 } 453 454 /* 455 * This function assumes data is processed sequentially only. 456 * Must be serialized with respect to intel_pt_lookahead() 457 */ 458 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 459 { 460 struct intel_pt_queue *ptq = data; 461 struct auxtrace_buffer *buffer = ptq->buffer; 462 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 463 struct auxtrace_queue *queue; 464 int err; 465 466 if (ptq->stop) { 467 b->len = 0; 468 return 0; 469 } 470 471 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 472 473 buffer = auxtrace_buffer__next(queue, buffer); 474 if (!buffer) { 475 if (old_buffer) 476 auxtrace_buffer__drop_data(old_buffer); 477 b->len = 0; 478 return 0; 479 } 480 481 ptq->buffer = buffer; 482 483 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 484 if (err) 485 return err; 486 487 if (ptq->step_through_buffers) 488 ptq->stop = true; 489 490 if (b->len) { 491 if (old_buffer) 492 auxtrace_buffer__drop_data(old_buffer); 493 ptq->old_buffer = buffer; 494 } else { 495 auxtrace_buffer__drop_data(buffer); 496 return intel_pt_get_trace(b, data); 497 } 498 499 return 0; 500 } 501 502 struct intel_pt_cache_entry { 503 struct auxtrace_cache_entry entry; 504 u64 insn_cnt; 505 u64 byte_cnt; 506 enum intel_pt_insn_op op; 507 enum intel_pt_insn_branch branch; 508 int length; 509 int32_t rel; 510 char insn[INTEL_PT_INSN_BUF_SZ]; 511 }; 512 513 static int intel_pt_config_div(const char *var, const char *value, void *data) 514 { 515 int *d = data; 516 long val; 517 518 if (!strcmp(var, "intel-pt.cache-divisor")) { 519 val = strtol(value, NULL, 0); 520 if (val > 0 && val <= INT_MAX) 521 *d = val; 522 } 523 524 return 0; 525 } 526 527 static int intel_pt_cache_divisor(void) 528 { 529 static int d; 530 531 if (d) 532 return d; 533 534 perf_config(intel_pt_config_div, &d); 535 536 if (!d) 537 d = 64; 538 539 return d; 540 } 541 542 static unsigned int intel_pt_cache_size(struct dso *dso, 543 struct machine *machine) 544 { 545 off_t size; 546 547 size = dso__data_size(dso, machine); 548 size /= intel_pt_cache_divisor(); 549 if (size < 1000) 550 return 10; 551 if (size > (1 << 21)) 552 return 21; 553 return 32 - __builtin_clz(size); 554 } 555 556 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 557 struct machine *machine) 558 { 559 struct auxtrace_cache *c; 560 unsigned int bits; 561 562 if (dso->auxtrace_cache) 563 return dso->auxtrace_cache; 564 565 bits = intel_pt_cache_size(dso, machine); 566 567 /* Ignoring cache creation failure */ 568 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 569 570 dso->auxtrace_cache = c; 571 572 return c; 573 } 574 575 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 576 u64 offset, u64 insn_cnt, u64 byte_cnt, 577 struct intel_pt_insn *intel_pt_insn) 578 { 579 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 580 struct intel_pt_cache_entry *e; 581 int err; 582 583 if (!c) 584 return -ENOMEM; 585 586 e = auxtrace_cache__alloc_entry(c); 587 if (!e) 588 return -ENOMEM; 589 590 e->insn_cnt = insn_cnt; 591 e->byte_cnt = byte_cnt; 592 e->op = intel_pt_insn->op; 593 e->branch = intel_pt_insn->branch; 594 e->length = intel_pt_insn->length; 595 e->rel = intel_pt_insn->rel; 596 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 597 598 err = auxtrace_cache__add(c, offset, &e->entry); 599 if (err) 600 auxtrace_cache__free_entry(c, e); 601 602 return err; 603 } 604 605 static struct intel_pt_cache_entry * 606 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 607 { 608 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 609 610 if (!c) 611 return NULL; 612 613 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 614 } 615 616 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 617 u64 offset) 618 { 619 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 620 621 if (!c) 622 return; 623 624 auxtrace_cache__remove(dso->auxtrace_cache, offset); 625 } 626 627 static inline bool intel_pt_guest_kernel_ip(uint64_t ip) 628 { 629 /* Assumes 64-bit kernel */ 630 return ip & (1ULL << 63); 631 } 632 633 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) 634 { 635 if (nr) { 636 return intel_pt_guest_kernel_ip(ip) ? 637 PERF_RECORD_MISC_GUEST_KERNEL : 638 PERF_RECORD_MISC_GUEST_USER; 639 } 640 641 return ip >= ptq->pt->kernel_start ? 642 PERF_RECORD_MISC_KERNEL : 643 PERF_RECORD_MISC_USER; 644 } 645 646 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) 647 { 648 /* No support for non-zero CS base */ 649 if (from_ip) 650 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); 651 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); 652 } 653 654 static int intel_pt_get_guest(struct intel_pt_queue *ptq) 655 { 656 struct machines *machines = &ptq->pt->session->machines; 657 struct machine *machine; 658 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; 659 660 if (ptq->guest_machine && pid == ptq->guest_machine_pid) 661 return 0; 662 663 ptq->guest_machine = NULL; 664 thread__zput(ptq->unknown_guest_thread); 665 666 machine = machines__find_guest(machines, pid); 667 if (!machine) 668 return -1; 669 670 ptq->unknown_guest_thread = machine__idle_thread(machine); 671 if (!ptq->unknown_guest_thread) 672 return -1; 673 674 ptq->guest_machine = machine; 675 ptq->guest_machine_pid = pid; 676 677 return 0; 678 } 679 680 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 681 uint64_t *insn_cnt_ptr, uint64_t *ip, 682 uint64_t to_ip, uint64_t max_insn_cnt, 683 void *data) 684 { 685 struct intel_pt_queue *ptq = data; 686 struct machine *machine = ptq->pt->machine; 687 struct thread *thread; 688 struct addr_location al; 689 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 690 ssize_t len; 691 int x86_64; 692 u8 cpumode; 693 u64 offset, start_offset, start_ip; 694 u64 insn_cnt = 0; 695 bool one_map = true; 696 bool nr; 697 698 intel_pt_insn->length = 0; 699 700 if (to_ip && *ip == to_ip) 701 goto out_no_cache; 702 703 nr = ptq->state->to_nr; 704 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); 705 706 if (nr) { 707 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL || 708 intel_pt_get_guest(ptq)) 709 return -EINVAL; 710 machine = ptq->guest_machine; 711 thread = ptq->unknown_guest_thread; 712 } else { 713 thread = ptq->thread; 714 if (!thread) { 715 if (cpumode != PERF_RECORD_MISC_KERNEL) 716 return -EINVAL; 717 thread = ptq->pt->unknown_thread; 718 } 719 } 720 721 while (1) { 722 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 723 return -EINVAL; 724 725 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 726 dso__data_status_seen(al.map->dso, 727 DSO_DATA_STATUS_SEEN_ITRACE)) 728 return -ENOENT; 729 730 offset = al.map->map_ip(al.map, *ip); 731 732 if (!to_ip && one_map) { 733 struct intel_pt_cache_entry *e; 734 735 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 736 if (e && 737 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 738 *insn_cnt_ptr = e->insn_cnt; 739 *ip += e->byte_cnt; 740 intel_pt_insn->op = e->op; 741 intel_pt_insn->branch = e->branch; 742 intel_pt_insn->length = e->length; 743 intel_pt_insn->rel = e->rel; 744 memcpy(intel_pt_insn->buf, e->insn, 745 INTEL_PT_INSN_BUF_SZ); 746 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 747 return 0; 748 } 749 } 750 751 start_offset = offset; 752 start_ip = *ip; 753 754 /* Load maps to ensure dso->is_64_bit has been updated */ 755 map__load(al.map); 756 757 x86_64 = al.map->dso->is_64_bit; 758 759 while (1) { 760 len = dso__data_read_offset(al.map->dso, machine, 761 offset, buf, 762 INTEL_PT_INSN_BUF_SZ); 763 if (len <= 0) 764 return -EINVAL; 765 766 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 767 return -EINVAL; 768 769 intel_pt_log_insn(intel_pt_insn, *ip); 770 771 insn_cnt += 1; 772 773 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 774 goto out; 775 776 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 777 goto out_no_cache; 778 779 *ip += intel_pt_insn->length; 780 781 if (to_ip && *ip == to_ip) { 782 intel_pt_insn->length = 0; 783 goto out_no_cache; 784 } 785 786 if (*ip >= al.map->end) 787 break; 788 789 offset += intel_pt_insn->length; 790 } 791 one_map = false; 792 } 793 out: 794 *insn_cnt_ptr = insn_cnt; 795 796 if (!one_map) 797 goto out_no_cache; 798 799 /* 800 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 801 * entries. 802 */ 803 if (to_ip) { 804 struct intel_pt_cache_entry *e; 805 806 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 807 if (e) 808 return 0; 809 } 810 811 /* Ignore cache errors */ 812 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 813 *ip - start_ip, intel_pt_insn); 814 815 return 0; 816 817 out_no_cache: 818 *insn_cnt_ptr = insn_cnt; 819 return 0; 820 } 821 822 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 823 uint64_t offset, const char *filename) 824 { 825 struct addr_filter *filt; 826 bool have_filter = false; 827 bool hit_tracestop = false; 828 bool hit_filter = false; 829 830 list_for_each_entry(filt, &pt->filts.head, list) { 831 if (filt->start) 832 have_filter = true; 833 834 if ((filename && !filt->filename) || 835 (!filename && filt->filename) || 836 (filename && strcmp(filename, filt->filename))) 837 continue; 838 839 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 840 continue; 841 842 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 843 ip, offset, filename ? filename : "[kernel]", 844 filt->start ? "filter" : "stop", 845 filt->addr, filt->size); 846 847 if (filt->start) 848 hit_filter = true; 849 else 850 hit_tracestop = true; 851 } 852 853 if (!hit_tracestop && !hit_filter) 854 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 855 ip, offset, filename ? filename : "[kernel]"); 856 857 return hit_tracestop || (have_filter && !hit_filter); 858 } 859 860 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 861 { 862 struct intel_pt_queue *ptq = data; 863 struct thread *thread; 864 struct addr_location al; 865 u8 cpumode; 866 u64 offset; 867 868 if (ptq->state->to_nr) { 869 if (intel_pt_guest_kernel_ip(ip)) 870 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 871 /* No support for decoding guest user space */ 872 return -EINVAL; 873 } else if (ip >= ptq->pt->kernel_start) { 874 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 875 } 876 877 cpumode = PERF_RECORD_MISC_USER; 878 879 thread = ptq->thread; 880 if (!thread) 881 return -EINVAL; 882 883 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 884 return -EINVAL; 885 886 offset = al.map->map_ip(al.map, ip); 887 888 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 889 al.map->dso->long_name); 890 } 891 892 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 893 { 894 return __intel_pt_pgd_ip(ip, data) > 0; 895 } 896 897 static bool intel_pt_get_config(struct intel_pt *pt, 898 struct perf_event_attr *attr, u64 *config) 899 { 900 if (attr->type == pt->pmu_type) { 901 if (config) 902 *config = attr->config; 903 return true; 904 } 905 906 return false; 907 } 908 909 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 910 { 911 struct evsel *evsel; 912 913 evlist__for_each_entry(pt->session->evlist, evsel) { 914 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 915 !evsel->core.attr.exclude_kernel) 916 return false; 917 } 918 return true; 919 } 920 921 static bool intel_pt_return_compression(struct intel_pt *pt) 922 { 923 struct evsel *evsel; 924 u64 config; 925 926 if (!pt->noretcomp_bit) 927 return true; 928 929 evlist__for_each_entry(pt->session->evlist, evsel) { 930 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 931 (config & pt->noretcomp_bit)) 932 return false; 933 } 934 return true; 935 } 936 937 static bool intel_pt_branch_enable(struct intel_pt *pt) 938 { 939 struct evsel *evsel; 940 u64 config; 941 942 evlist__for_each_entry(pt->session->evlist, evsel) { 943 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 944 (config & 1) && !(config & 0x2000)) 945 return false; 946 } 947 return true; 948 } 949 950 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 951 { 952 struct evsel *evsel; 953 unsigned int shift; 954 u64 config; 955 956 if (!pt->mtc_freq_bits) 957 return 0; 958 959 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 960 config >>= 1; 961 962 evlist__for_each_entry(pt->session->evlist, evsel) { 963 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 964 return (config & pt->mtc_freq_bits) >> shift; 965 } 966 return 0; 967 } 968 969 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 970 { 971 struct evsel *evsel; 972 bool timeless_decoding = true; 973 u64 config; 974 975 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) 976 return true; 977 978 evlist__for_each_entry(pt->session->evlist, evsel) { 979 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 980 return true; 981 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 982 if (config & pt->tsc_bit) 983 timeless_decoding = false; 984 else 985 return true; 986 } 987 } 988 return timeless_decoding; 989 } 990 991 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 992 { 993 struct evsel *evsel; 994 995 evlist__for_each_entry(pt->session->evlist, evsel) { 996 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 997 !evsel->core.attr.exclude_kernel) 998 return true; 999 } 1000 return false; 1001 } 1002 1003 static bool intel_pt_have_tsc(struct intel_pt *pt) 1004 { 1005 struct evsel *evsel; 1006 bool have_tsc = false; 1007 u64 config; 1008 1009 if (!pt->tsc_bit) 1010 return false; 1011 1012 evlist__for_each_entry(pt->session->evlist, evsel) { 1013 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1014 if (config & pt->tsc_bit) 1015 have_tsc = true; 1016 else 1017 return false; 1018 } 1019 } 1020 return have_tsc; 1021 } 1022 1023 static bool intel_pt_have_mtc(struct intel_pt *pt) 1024 { 1025 struct evsel *evsel; 1026 u64 config; 1027 1028 evlist__for_each_entry(pt->session->evlist, evsel) { 1029 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1030 (config & pt->mtc_bit)) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 static bool intel_pt_sampling_mode(struct intel_pt *pt) 1037 { 1038 struct evsel *evsel; 1039 1040 evlist__for_each_entry(pt->session->evlist, evsel) { 1041 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 1042 evsel->core.attr.aux_sample_size) 1043 return true; 1044 } 1045 return false; 1046 } 1047 1048 static u64 intel_pt_ctl(struct intel_pt *pt) 1049 { 1050 struct evsel *evsel; 1051 u64 config; 1052 1053 evlist__for_each_entry(pt->session->evlist, evsel) { 1054 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1055 return config; 1056 } 1057 return 0; 1058 } 1059 1060 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 1061 { 1062 u64 quot, rem; 1063 1064 quot = ns / pt->tc.time_mult; 1065 rem = ns % pt->tc.time_mult; 1066 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 1067 pt->tc.time_mult; 1068 } 1069 1070 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 1071 { 1072 size_t sz = sizeof(struct ip_callchain); 1073 1074 /* Add 1 to callchain_sz for callchain context */ 1075 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 1076 return zalloc(sz); 1077 } 1078 1079 static int intel_pt_callchain_init(struct intel_pt *pt) 1080 { 1081 struct evsel *evsel; 1082 1083 evlist__for_each_entry(pt->session->evlist, evsel) { 1084 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1085 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 1086 } 1087 1088 pt->chain = intel_pt_alloc_chain(pt); 1089 if (!pt->chain) 1090 return -ENOMEM; 1091 1092 return 0; 1093 } 1094 1095 static void intel_pt_add_callchain(struct intel_pt *pt, 1096 struct perf_sample *sample) 1097 { 1098 struct thread *thread = machine__findnew_thread(pt->machine, 1099 sample->pid, 1100 sample->tid); 1101 1102 thread_stack__sample_late(thread, sample->cpu, pt->chain, 1103 pt->synth_opts.callchain_sz + 1, sample->ip, 1104 pt->kernel_start); 1105 1106 sample->callchain = pt->chain; 1107 } 1108 1109 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 1110 { 1111 size_t sz = sizeof(struct branch_stack); 1112 1113 sz += entry_cnt * sizeof(struct branch_entry); 1114 return zalloc(sz); 1115 } 1116 1117 static int intel_pt_br_stack_init(struct intel_pt *pt) 1118 { 1119 struct evsel *evsel; 1120 1121 evlist__for_each_entry(pt->session->evlist, evsel) { 1122 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 1123 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 1124 } 1125 1126 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 1127 if (!pt->br_stack) 1128 return -ENOMEM; 1129 1130 return 0; 1131 } 1132 1133 static void intel_pt_add_br_stack(struct intel_pt *pt, 1134 struct perf_sample *sample) 1135 { 1136 struct thread *thread = machine__findnew_thread(pt->machine, 1137 sample->pid, 1138 sample->tid); 1139 1140 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 1141 pt->br_stack_sz, sample->ip, 1142 pt->kernel_start); 1143 1144 sample->branch_stack = pt->br_stack; 1145 } 1146 1147 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1148 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 1149 1150 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 1151 unsigned int queue_nr) 1152 { 1153 struct intel_pt_params params = { .get_trace = 0, }; 1154 struct perf_env *env = pt->machine->env; 1155 struct intel_pt_queue *ptq; 1156 1157 ptq = zalloc(sizeof(struct intel_pt_queue)); 1158 if (!ptq) 1159 return NULL; 1160 1161 if (pt->synth_opts.callchain) { 1162 ptq->chain = intel_pt_alloc_chain(pt); 1163 if (!ptq->chain) 1164 goto out_free; 1165 } 1166 1167 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1168 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1169 1170 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1171 if (!ptq->last_branch) 1172 goto out_free; 1173 } 1174 1175 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1176 if (!ptq->event_buf) 1177 goto out_free; 1178 1179 ptq->pt = pt; 1180 ptq->queue_nr = queue_nr; 1181 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1182 ptq->pid = -1; 1183 ptq->tid = -1; 1184 ptq->cpu = -1; 1185 ptq->next_tid = -1; 1186 1187 params.get_trace = intel_pt_get_trace; 1188 params.walk_insn = intel_pt_walk_next_insn; 1189 params.lookahead = intel_pt_lookahead; 1190 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; 1191 params.data = ptq; 1192 params.return_compression = intel_pt_return_compression(pt); 1193 params.branch_enable = intel_pt_branch_enable(pt); 1194 params.ctl = intel_pt_ctl(pt); 1195 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1196 params.mtc_period = intel_pt_mtc_period(pt); 1197 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1198 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1199 params.quick = pt->synth_opts.quick; 1200 params.vm_time_correlation = pt->synth_opts.vm_time_correlation; 1201 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; 1202 params.first_timestamp = pt->first_timestamp; 1203 1204 if (pt->filts.cnt > 0) 1205 params.pgd_ip = intel_pt_pgd_ip; 1206 1207 if (pt->synth_opts.instructions) { 1208 if (pt->synth_opts.period) { 1209 switch (pt->synth_opts.period_type) { 1210 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1211 params.period_type = 1212 INTEL_PT_PERIOD_INSTRUCTIONS; 1213 params.period = pt->synth_opts.period; 1214 break; 1215 case PERF_ITRACE_PERIOD_TICKS: 1216 params.period_type = INTEL_PT_PERIOD_TICKS; 1217 params.period = pt->synth_opts.period; 1218 break; 1219 case PERF_ITRACE_PERIOD_NANOSECS: 1220 params.period_type = INTEL_PT_PERIOD_TICKS; 1221 params.period = intel_pt_ns_to_ticks(pt, 1222 pt->synth_opts.period); 1223 break; 1224 default: 1225 break; 1226 } 1227 } 1228 1229 if (!params.period) { 1230 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1231 params.period = 1; 1232 } 1233 } 1234 1235 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1236 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1237 1238 ptq->decoder = intel_pt_decoder_new(¶ms); 1239 if (!ptq->decoder) 1240 goto out_free; 1241 1242 return ptq; 1243 1244 out_free: 1245 zfree(&ptq->event_buf); 1246 zfree(&ptq->last_branch); 1247 zfree(&ptq->chain); 1248 free(ptq); 1249 return NULL; 1250 } 1251 1252 static void intel_pt_free_queue(void *priv) 1253 { 1254 struct intel_pt_queue *ptq = priv; 1255 1256 if (!ptq) 1257 return; 1258 thread__zput(ptq->thread); 1259 thread__zput(ptq->unknown_guest_thread); 1260 intel_pt_decoder_free(ptq->decoder); 1261 zfree(&ptq->event_buf); 1262 zfree(&ptq->last_branch); 1263 zfree(&ptq->chain); 1264 free(ptq); 1265 } 1266 1267 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) 1268 { 1269 unsigned int i; 1270 1271 pt->first_timestamp = timestamp; 1272 1273 for (i = 0; i < pt->queues.nr_queues; i++) { 1274 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1275 struct intel_pt_queue *ptq = queue->priv; 1276 1277 if (ptq && ptq->decoder) 1278 intel_pt_set_first_timestamp(ptq->decoder, timestamp); 1279 } 1280 } 1281 1282 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1283 struct auxtrace_queue *queue) 1284 { 1285 struct intel_pt_queue *ptq = queue->priv; 1286 1287 if (queue->tid == -1 || pt->have_sched_switch) { 1288 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1289 if (ptq->tid == -1) 1290 ptq->pid = -1; 1291 thread__zput(ptq->thread); 1292 } 1293 1294 if (!ptq->thread && ptq->tid != -1) 1295 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1296 1297 if (ptq->thread) { 1298 ptq->pid = ptq->thread->pid_; 1299 if (queue->cpu == -1) 1300 ptq->cpu = ptq->thread->cpu; 1301 } 1302 } 1303 1304 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1305 { 1306 ptq->insn_len = 0; 1307 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1308 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1309 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1310 if (!ptq->state->to_ip) 1311 ptq->flags = PERF_IP_FLAG_BRANCH | 1312 PERF_IP_FLAG_TRACE_END; 1313 else if (ptq->state->from_nr && !ptq->state->to_nr) 1314 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1315 PERF_IP_FLAG_VMEXIT; 1316 else 1317 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1318 PERF_IP_FLAG_ASYNC | 1319 PERF_IP_FLAG_INTERRUPT; 1320 } else { 1321 if (ptq->state->from_ip) 1322 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1323 else 1324 ptq->flags = PERF_IP_FLAG_BRANCH | 1325 PERF_IP_FLAG_TRACE_BEGIN; 1326 if (ptq->state->flags & INTEL_PT_IN_TX) 1327 ptq->flags |= PERF_IP_FLAG_IN_TX; 1328 ptq->insn_len = ptq->state->insn_len; 1329 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1330 } 1331 1332 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1333 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1334 if (ptq->state->type & INTEL_PT_TRACE_END) 1335 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1336 } 1337 1338 static void intel_pt_setup_time_range(struct intel_pt *pt, 1339 struct intel_pt_queue *ptq) 1340 { 1341 if (!pt->range_cnt) 1342 return; 1343 1344 ptq->sel_timestamp = pt->time_ranges[0].start; 1345 ptq->sel_idx = 0; 1346 1347 if (ptq->sel_timestamp) { 1348 ptq->sel_start = true; 1349 } else { 1350 ptq->sel_timestamp = pt->time_ranges[0].end; 1351 ptq->sel_start = false; 1352 } 1353 } 1354 1355 static int intel_pt_setup_queue(struct intel_pt *pt, 1356 struct auxtrace_queue *queue, 1357 unsigned int queue_nr) 1358 { 1359 struct intel_pt_queue *ptq = queue->priv; 1360 1361 if (list_empty(&queue->head)) 1362 return 0; 1363 1364 if (!ptq) { 1365 ptq = intel_pt_alloc_queue(pt, queue_nr); 1366 if (!ptq) 1367 return -ENOMEM; 1368 queue->priv = ptq; 1369 1370 if (queue->cpu != -1) 1371 ptq->cpu = queue->cpu; 1372 ptq->tid = queue->tid; 1373 1374 ptq->cbr_seen = UINT_MAX; 1375 1376 if (pt->sampling_mode && !pt->snapshot_mode && 1377 pt->timeless_decoding) 1378 ptq->step_through_buffers = true; 1379 1380 ptq->sync_switch = pt->sync_switch; 1381 1382 intel_pt_setup_time_range(pt, ptq); 1383 } 1384 1385 if (!ptq->on_heap && 1386 (!ptq->sync_switch || 1387 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1388 const struct intel_pt_state *state; 1389 int ret; 1390 1391 if (pt->timeless_decoding) 1392 return 0; 1393 1394 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1395 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1396 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1397 1398 if (ptq->sel_start && ptq->sel_timestamp) { 1399 ret = intel_pt_fast_forward(ptq->decoder, 1400 ptq->sel_timestamp); 1401 if (ret) 1402 return ret; 1403 } 1404 1405 while (1) { 1406 state = intel_pt_decode(ptq->decoder); 1407 if (state->err) { 1408 if (state->err == INTEL_PT_ERR_NODATA) { 1409 intel_pt_log("queue %u has no timestamp\n", 1410 queue_nr); 1411 return 0; 1412 } 1413 continue; 1414 } 1415 if (state->timestamp) 1416 break; 1417 } 1418 1419 ptq->timestamp = state->timestamp; 1420 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1421 queue_nr, ptq->timestamp); 1422 ptq->state = state; 1423 ptq->have_sample = true; 1424 if (ptq->sel_start && ptq->sel_timestamp && 1425 ptq->timestamp < ptq->sel_timestamp) 1426 ptq->have_sample = false; 1427 intel_pt_sample_flags(ptq); 1428 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1429 if (ret) 1430 return ret; 1431 ptq->on_heap = true; 1432 } 1433 1434 return 0; 1435 } 1436 1437 static int intel_pt_setup_queues(struct intel_pt *pt) 1438 { 1439 unsigned int i; 1440 int ret; 1441 1442 for (i = 0; i < pt->queues.nr_queues; i++) { 1443 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1444 if (ret) 1445 return ret; 1446 } 1447 return 0; 1448 } 1449 1450 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1451 { 1452 return pt->synth_opts.initial_skip && 1453 pt->num_events++ < pt->synth_opts.initial_skip; 1454 } 1455 1456 /* 1457 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1458 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1459 * from this decoder state. 1460 */ 1461 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1462 { 1463 return pt->synth_opts.initial_skip && 1464 pt->num_events + 4 < pt->synth_opts.initial_skip; 1465 } 1466 1467 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1468 union perf_event *event, 1469 struct perf_sample *sample) 1470 { 1471 event->sample.header.type = PERF_RECORD_SAMPLE; 1472 event->sample.header.size = sizeof(struct perf_event_header); 1473 1474 sample->pid = ptq->pid; 1475 sample->tid = ptq->tid; 1476 sample->cpu = ptq->cpu; 1477 sample->insn_len = ptq->insn_len; 1478 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1479 } 1480 1481 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1482 struct intel_pt_queue *ptq, 1483 union perf_event *event, 1484 struct perf_sample *sample) 1485 { 1486 intel_pt_prep_a_sample(ptq, event, sample); 1487 1488 if (!pt->timeless_decoding) 1489 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1490 1491 sample->ip = ptq->state->from_ip; 1492 sample->addr = ptq->state->to_ip; 1493 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); 1494 sample->period = 1; 1495 sample->flags = ptq->flags; 1496 1497 event->sample.header.misc = sample->cpumode; 1498 } 1499 1500 static int intel_pt_inject_event(union perf_event *event, 1501 struct perf_sample *sample, u64 type) 1502 { 1503 event->header.size = perf_event__sample_event_size(sample, type, 0); 1504 return perf_event__synthesize_sample(event, type, 0, sample); 1505 } 1506 1507 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1508 union perf_event *event, 1509 struct perf_sample *sample, u64 type) 1510 { 1511 if (!pt->synth_opts.inject) 1512 return 0; 1513 1514 return intel_pt_inject_event(event, sample, type); 1515 } 1516 1517 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1518 union perf_event *event, 1519 struct perf_sample *sample, u64 type) 1520 { 1521 int ret; 1522 1523 ret = intel_pt_opt_inject(pt, event, sample, type); 1524 if (ret) 1525 return ret; 1526 1527 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1528 if (ret) 1529 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1530 1531 return ret; 1532 } 1533 1534 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1535 { 1536 struct intel_pt *pt = ptq->pt; 1537 union perf_event *event = ptq->event_buf; 1538 struct perf_sample sample = { .ip = 0, }; 1539 struct dummy_branch_stack { 1540 u64 nr; 1541 u64 hw_idx; 1542 struct branch_entry entries; 1543 } dummy_bs; 1544 1545 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1546 return 0; 1547 1548 if (intel_pt_skip_event(pt)) 1549 return 0; 1550 1551 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1552 1553 sample.id = ptq->pt->branches_id; 1554 sample.stream_id = ptq->pt->branches_id; 1555 1556 /* 1557 * perf report cannot handle events without a branch stack when using 1558 * SORT_MODE__BRANCH so make a dummy one. 1559 */ 1560 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1561 dummy_bs = (struct dummy_branch_stack){ 1562 .nr = 1, 1563 .hw_idx = -1ULL, 1564 .entries = { 1565 .from = sample.ip, 1566 .to = sample.addr, 1567 }, 1568 }; 1569 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1570 } 1571 1572 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC) 1573 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1574 if (sample.cyc_cnt) { 1575 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1576 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1577 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1578 } 1579 1580 return intel_pt_deliver_synth_event(pt, event, &sample, 1581 pt->branches_sample_type); 1582 } 1583 1584 static void intel_pt_prep_sample(struct intel_pt *pt, 1585 struct intel_pt_queue *ptq, 1586 union perf_event *event, 1587 struct perf_sample *sample) 1588 { 1589 intel_pt_prep_b_sample(pt, ptq, event, sample); 1590 1591 if (pt->synth_opts.callchain) { 1592 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1593 pt->synth_opts.callchain_sz + 1, 1594 sample->ip, pt->kernel_start); 1595 sample->callchain = ptq->chain; 1596 } 1597 1598 if (pt->synth_opts.last_branch) { 1599 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1600 pt->br_stack_sz); 1601 sample->branch_stack = ptq->last_branch; 1602 } 1603 } 1604 1605 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1606 { 1607 struct intel_pt *pt = ptq->pt; 1608 union perf_event *event = ptq->event_buf; 1609 struct perf_sample sample = { .ip = 0, }; 1610 1611 if (intel_pt_skip_event(pt)) 1612 return 0; 1613 1614 intel_pt_prep_sample(pt, ptq, event, &sample); 1615 1616 sample.id = ptq->pt->instructions_id; 1617 sample.stream_id = ptq->pt->instructions_id; 1618 if (pt->synth_opts.quick) 1619 sample.period = 1; 1620 else 1621 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1622 1623 if (ptq->state->flags & INTEL_PT_SAMPLE_IPC) 1624 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1625 if (sample.cyc_cnt) { 1626 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1627 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1628 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1629 } 1630 1631 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1632 1633 return intel_pt_deliver_synth_event(pt, event, &sample, 1634 pt->instructions_sample_type); 1635 } 1636 1637 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1638 { 1639 struct intel_pt *pt = ptq->pt; 1640 union perf_event *event = ptq->event_buf; 1641 struct perf_sample sample = { .ip = 0, }; 1642 1643 if (intel_pt_skip_event(pt)) 1644 return 0; 1645 1646 intel_pt_prep_sample(pt, ptq, event, &sample); 1647 1648 sample.id = ptq->pt->transactions_id; 1649 sample.stream_id = ptq->pt->transactions_id; 1650 1651 return intel_pt_deliver_synth_event(pt, event, &sample, 1652 pt->transactions_sample_type); 1653 } 1654 1655 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1656 struct intel_pt_queue *ptq, 1657 union perf_event *event, 1658 struct perf_sample *sample) 1659 { 1660 intel_pt_prep_sample(pt, ptq, event, sample); 1661 1662 /* 1663 * Zero IP is used to mean "trace start" but that is not the case for 1664 * power or PTWRITE events with no IP, so clear the flags. 1665 */ 1666 if (!sample->ip) 1667 sample->flags = 0; 1668 } 1669 1670 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1671 { 1672 struct intel_pt *pt = ptq->pt; 1673 union perf_event *event = ptq->event_buf; 1674 struct perf_sample sample = { .ip = 0, }; 1675 struct perf_synth_intel_ptwrite raw; 1676 1677 if (intel_pt_skip_event(pt)) 1678 return 0; 1679 1680 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1681 1682 sample.id = ptq->pt->ptwrites_id; 1683 sample.stream_id = ptq->pt->ptwrites_id; 1684 1685 raw.flags = 0; 1686 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1687 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1688 1689 sample.raw_size = perf_synth__raw_size(raw); 1690 sample.raw_data = perf_synth__raw_data(&raw); 1691 1692 return intel_pt_deliver_synth_event(pt, event, &sample, 1693 pt->ptwrites_sample_type); 1694 } 1695 1696 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1697 { 1698 struct intel_pt *pt = ptq->pt; 1699 union perf_event *event = ptq->event_buf; 1700 struct perf_sample sample = { .ip = 0, }; 1701 struct perf_synth_intel_cbr raw; 1702 u32 flags; 1703 1704 if (intel_pt_skip_cbr_event(pt)) 1705 return 0; 1706 1707 ptq->cbr_seen = ptq->state->cbr; 1708 1709 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1710 1711 sample.id = ptq->pt->cbr_id; 1712 sample.stream_id = ptq->pt->cbr_id; 1713 1714 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1715 raw.flags = cpu_to_le32(flags); 1716 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1717 raw.reserved3 = 0; 1718 1719 sample.raw_size = perf_synth__raw_size(raw); 1720 sample.raw_data = perf_synth__raw_data(&raw); 1721 1722 return intel_pt_deliver_synth_event(pt, event, &sample, 1723 pt->pwr_events_sample_type); 1724 } 1725 1726 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) 1727 { 1728 struct intel_pt *pt = ptq->pt; 1729 union perf_event *event = ptq->event_buf; 1730 struct perf_sample sample = { .ip = 0, }; 1731 struct perf_synth_intel_psb raw; 1732 1733 if (intel_pt_skip_event(pt)) 1734 return 0; 1735 1736 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1737 1738 sample.id = ptq->pt->psb_id; 1739 sample.stream_id = ptq->pt->psb_id; 1740 sample.flags = 0; 1741 1742 raw.reserved = 0; 1743 raw.offset = ptq->state->psb_offset; 1744 1745 sample.raw_size = perf_synth__raw_size(raw); 1746 sample.raw_data = perf_synth__raw_data(&raw); 1747 1748 return intel_pt_deliver_synth_event(pt, event, &sample, 1749 pt->pwr_events_sample_type); 1750 } 1751 1752 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1753 { 1754 struct intel_pt *pt = ptq->pt; 1755 union perf_event *event = ptq->event_buf; 1756 struct perf_sample sample = { .ip = 0, }; 1757 struct perf_synth_intel_mwait raw; 1758 1759 if (intel_pt_skip_event(pt)) 1760 return 0; 1761 1762 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1763 1764 sample.id = ptq->pt->mwait_id; 1765 sample.stream_id = ptq->pt->mwait_id; 1766 1767 raw.reserved = 0; 1768 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1769 1770 sample.raw_size = perf_synth__raw_size(raw); 1771 sample.raw_data = perf_synth__raw_data(&raw); 1772 1773 return intel_pt_deliver_synth_event(pt, event, &sample, 1774 pt->pwr_events_sample_type); 1775 } 1776 1777 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1778 { 1779 struct intel_pt *pt = ptq->pt; 1780 union perf_event *event = ptq->event_buf; 1781 struct perf_sample sample = { .ip = 0, }; 1782 struct perf_synth_intel_pwre raw; 1783 1784 if (intel_pt_skip_event(pt)) 1785 return 0; 1786 1787 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1788 1789 sample.id = ptq->pt->pwre_id; 1790 sample.stream_id = ptq->pt->pwre_id; 1791 1792 raw.reserved = 0; 1793 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1794 1795 sample.raw_size = perf_synth__raw_size(raw); 1796 sample.raw_data = perf_synth__raw_data(&raw); 1797 1798 return intel_pt_deliver_synth_event(pt, event, &sample, 1799 pt->pwr_events_sample_type); 1800 } 1801 1802 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1803 { 1804 struct intel_pt *pt = ptq->pt; 1805 union perf_event *event = ptq->event_buf; 1806 struct perf_sample sample = { .ip = 0, }; 1807 struct perf_synth_intel_exstop raw; 1808 1809 if (intel_pt_skip_event(pt)) 1810 return 0; 1811 1812 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1813 1814 sample.id = ptq->pt->exstop_id; 1815 sample.stream_id = ptq->pt->exstop_id; 1816 1817 raw.flags = 0; 1818 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1819 1820 sample.raw_size = perf_synth__raw_size(raw); 1821 sample.raw_data = perf_synth__raw_data(&raw); 1822 1823 return intel_pt_deliver_synth_event(pt, event, &sample, 1824 pt->pwr_events_sample_type); 1825 } 1826 1827 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1828 { 1829 struct intel_pt *pt = ptq->pt; 1830 union perf_event *event = ptq->event_buf; 1831 struct perf_sample sample = { .ip = 0, }; 1832 struct perf_synth_intel_pwrx raw; 1833 1834 if (intel_pt_skip_event(pt)) 1835 return 0; 1836 1837 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1838 1839 sample.id = ptq->pt->pwrx_id; 1840 sample.stream_id = ptq->pt->pwrx_id; 1841 1842 raw.reserved = 0; 1843 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1844 1845 sample.raw_size = perf_synth__raw_size(raw); 1846 sample.raw_data = perf_synth__raw_data(&raw); 1847 1848 return intel_pt_deliver_synth_event(pt, event, &sample, 1849 pt->pwr_events_sample_type); 1850 } 1851 1852 /* 1853 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1854 * intel_pt_add_gp_regs(). 1855 */ 1856 static const int pebs_gp_regs[] = { 1857 [PERF_REG_X86_FLAGS] = 1, 1858 [PERF_REG_X86_IP] = 2, 1859 [PERF_REG_X86_AX] = 3, 1860 [PERF_REG_X86_CX] = 4, 1861 [PERF_REG_X86_DX] = 5, 1862 [PERF_REG_X86_BX] = 6, 1863 [PERF_REG_X86_SP] = 7, 1864 [PERF_REG_X86_BP] = 8, 1865 [PERF_REG_X86_SI] = 9, 1866 [PERF_REG_X86_DI] = 10, 1867 [PERF_REG_X86_R8] = 11, 1868 [PERF_REG_X86_R9] = 12, 1869 [PERF_REG_X86_R10] = 13, 1870 [PERF_REG_X86_R11] = 14, 1871 [PERF_REG_X86_R12] = 15, 1872 [PERF_REG_X86_R13] = 16, 1873 [PERF_REG_X86_R14] = 17, 1874 [PERF_REG_X86_R15] = 18, 1875 }; 1876 1877 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1878 const struct intel_pt_blk_items *items, 1879 u64 regs_mask) 1880 { 1881 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1882 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1883 u32 bit; 1884 int i; 1885 1886 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1887 /* Get the PEBS gp_regs array index */ 1888 int n = pebs_gp_regs[i] - 1; 1889 1890 if (n < 0) 1891 continue; 1892 /* 1893 * Add only registers that were requested (i.e. 'regs_mask') and 1894 * that were provided (i.e. 'mask'), and update the resulting 1895 * mask (i.e. 'intr_regs->mask') accordingly. 1896 */ 1897 if (mask & 1 << n && regs_mask & bit) { 1898 intr_regs->mask |= bit; 1899 *pos++ = gp_regs[n]; 1900 } 1901 } 1902 1903 return pos; 1904 } 1905 1906 #ifndef PERF_REG_X86_XMM0 1907 #define PERF_REG_X86_XMM0 32 1908 #endif 1909 1910 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1911 const struct intel_pt_blk_items *items, 1912 u64 regs_mask) 1913 { 1914 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1915 const u64 *xmm = items->xmm; 1916 1917 /* 1918 * If there are any XMM registers, then there should be all of them. 1919 * Nevertheless, follow the logic to add only registers that were 1920 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1921 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1922 */ 1923 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1924 1925 for (; mask; mask >>= 1, xmm++) { 1926 if (mask & 1) 1927 *pos++ = *xmm; 1928 } 1929 } 1930 1931 #define LBR_INFO_MISPRED (1ULL << 63) 1932 #define LBR_INFO_IN_TX (1ULL << 62) 1933 #define LBR_INFO_ABORT (1ULL << 61) 1934 #define LBR_INFO_CYCLES 0xffff 1935 1936 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1937 static u64 intel_pt_lbr_flags(u64 info) 1938 { 1939 union { 1940 struct branch_flags flags; 1941 u64 result; 1942 } u; 1943 1944 u.result = 0; 1945 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 1946 u.flags.predicted = !(info & LBR_INFO_MISPRED); 1947 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 1948 u.flags.abort = !!(info & LBR_INFO_ABORT); 1949 u.flags.cycles = info & LBR_INFO_CYCLES; 1950 1951 return u.result; 1952 } 1953 1954 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 1955 const struct intel_pt_blk_items *items) 1956 { 1957 u64 *to; 1958 int i; 1959 1960 br_stack->nr = 0; 1961 1962 to = &br_stack->entries[0].from; 1963 1964 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 1965 u32 mask = items->mask[i]; 1966 const u64 *from = items->val[i]; 1967 1968 for (; mask; mask >>= 3, from += 3) { 1969 if ((mask & 7) == 7) { 1970 *to++ = from[0]; 1971 *to++ = from[1]; 1972 *to++ = intel_pt_lbr_flags(from[2]); 1973 br_stack->nr += 1; 1974 } 1975 } 1976 } 1977 } 1978 1979 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 1980 { 1981 const struct intel_pt_blk_items *items = &ptq->state->items; 1982 struct perf_sample sample = { .ip = 0, }; 1983 union perf_event *event = ptq->event_buf; 1984 struct intel_pt *pt = ptq->pt; 1985 struct evsel *evsel = pt->pebs_evsel; 1986 u64 sample_type = evsel->core.attr.sample_type; 1987 u64 id = evsel->core.id[0]; 1988 u8 cpumode; 1989 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 1990 1991 if (intel_pt_skip_event(pt)) 1992 return 0; 1993 1994 intel_pt_prep_a_sample(ptq, event, &sample); 1995 1996 sample.id = id; 1997 sample.stream_id = id; 1998 1999 if (!evsel->core.attr.freq) 2000 sample.period = evsel->core.attr.sample_period; 2001 2002 /* No support for non-zero CS base */ 2003 if (items->has_ip) 2004 sample.ip = items->ip; 2005 else if (items->has_rip) 2006 sample.ip = items->rip; 2007 else 2008 sample.ip = ptq->state->from_ip; 2009 2010 cpumode = intel_pt_cpumode(ptq, sample.ip, 0); 2011 2012 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 2013 2014 sample.cpumode = cpumode; 2015 2016 if (sample_type & PERF_SAMPLE_TIME) { 2017 u64 timestamp = 0; 2018 2019 if (items->has_timestamp) 2020 timestamp = items->timestamp; 2021 else if (!pt->timeless_decoding) 2022 timestamp = ptq->timestamp; 2023 if (timestamp) 2024 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 2025 } 2026 2027 if (sample_type & PERF_SAMPLE_CALLCHAIN && 2028 pt->synth_opts.callchain) { 2029 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 2030 pt->synth_opts.callchain_sz, sample.ip, 2031 pt->kernel_start); 2032 sample.callchain = ptq->chain; 2033 } 2034 2035 if (sample_type & PERF_SAMPLE_REGS_INTR && 2036 (items->mask[INTEL_PT_GP_REGS_POS] || 2037 items->mask[INTEL_PT_XMM_POS])) { 2038 u64 regs_mask = evsel->core.attr.sample_regs_intr; 2039 u64 *pos; 2040 2041 sample.intr_regs.abi = items->is_32_bit ? 2042 PERF_SAMPLE_REGS_ABI_32 : 2043 PERF_SAMPLE_REGS_ABI_64; 2044 sample.intr_regs.regs = regs; 2045 2046 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 2047 2048 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 2049 } 2050 2051 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 2052 if (items->mask[INTEL_PT_LBR_0_POS] || 2053 items->mask[INTEL_PT_LBR_1_POS] || 2054 items->mask[INTEL_PT_LBR_2_POS]) { 2055 intel_pt_add_lbrs(ptq->last_branch, items); 2056 } else if (pt->synth_opts.last_branch) { 2057 thread_stack__br_sample(ptq->thread, ptq->cpu, 2058 ptq->last_branch, 2059 pt->br_stack_sz); 2060 } else { 2061 ptq->last_branch->nr = 0; 2062 } 2063 sample.branch_stack = ptq->last_branch; 2064 } 2065 2066 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 2067 sample.addr = items->mem_access_address; 2068 2069 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2070 /* 2071 * Refer kernel's setup_pebs_adaptive_sample_data() and 2072 * intel_hsw_weight(). 2073 */ 2074 if (items->has_mem_access_latency) { 2075 u64 weight = items->mem_access_latency >> 32; 2076 2077 /* 2078 * Starts from SPR, the mem access latency field 2079 * contains both cache latency [47:32] and instruction 2080 * latency [15:0]. The cache latency is the same as the 2081 * mem access latency on previous platforms. 2082 * 2083 * In practice, no memory access could last than 4G 2084 * cycles. Use latency >> 32 to distinguish the 2085 * different format of the mem access latency field. 2086 */ 2087 if (weight > 0) { 2088 sample.weight = weight & 0xffff; 2089 sample.ins_lat = items->mem_access_latency & 0xffff; 2090 } else 2091 sample.weight = items->mem_access_latency; 2092 } 2093 if (!sample.weight && items->has_tsx_aux_info) { 2094 /* Cycles last block */ 2095 sample.weight = (u32)items->tsx_aux_info; 2096 } 2097 } 2098 2099 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 2100 u64 ax = items->has_rax ? items->rax : 0; 2101 /* Refer kernel's intel_hsw_transaction() */ 2102 u64 txn = (u8)(items->tsx_aux_info >> 32); 2103 2104 /* For RTM XABORTs also log the abort code from AX */ 2105 if (txn & PERF_TXN_TRANSACTION && ax & 1) 2106 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 2107 sample.transaction = txn; 2108 } 2109 2110 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 2111 } 2112 2113 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 2114 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 2115 { 2116 union perf_event event; 2117 char msg[MAX_AUXTRACE_ERROR_MSG]; 2118 int err; 2119 2120 if (pt->synth_opts.error_minus_flags) { 2121 if (code == INTEL_PT_ERR_OVR && 2122 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 2123 return 0; 2124 if (code == INTEL_PT_ERR_LOST && 2125 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 2126 return 0; 2127 } 2128 2129 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 2130 2131 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 2132 code, cpu, pid, tid, ip, msg, timestamp); 2133 2134 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 2135 if (err) 2136 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 2137 err); 2138 2139 return err; 2140 } 2141 2142 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 2143 const struct intel_pt_state *state) 2144 { 2145 struct intel_pt *pt = ptq->pt; 2146 u64 tm = ptq->timestamp; 2147 2148 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 2149 2150 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 2151 ptq->tid, state->from_ip, tm); 2152 } 2153 2154 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 2155 { 2156 struct auxtrace_queue *queue; 2157 pid_t tid = ptq->next_tid; 2158 int err; 2159 2160 if (tid == -1) 2161 return 0; 2162 2163 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 2164 2165 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 2166 2167 queue = &pt->queues.queue_array[ptq->queue_nr]; 2168 intel_pt_set_pid_tid_cpu(pt, queue); 2169 2170 ptq->next_tid = -1; 2171 2172 return err; 2173 } 2174 2175 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 2176 { 2177 struct intel_pt *pt = ptq->pt; 2178 2179 return ip == pt->switch_ip && 2180 (ptq->flags & PERF_IP_FLAG_BRANCH) && 2181 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 2182 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 2183 } 2184 2185 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 2186 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 2187 2188 static int intel_pt_sample(struct intel_pt_queue *ptq) 2189 { 2190 const struct intel_pt_state *state = ptq->state; 2191 struct intel_pt *pt = ptq->pt; 2192 int err; 2193 2194 if (!ptq->have_sample) 2195 return 0; 2196 2197 ptq->have_sample = false; 2198 2199 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2200 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 2201 2202 /* 2203 * Do PEBS first to allow for the possibility that the PEBS timestamp 2204 * precedes the current timestamp. 2205 */ 2206 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 2207 err = intel_pt_synth_pebs_sample(ptq); 2208 if (err) 2209 return err; 2210 } 2211 2212 if (pt->sample_pwr_events) { 2213 if (state->type & INTEL_PT_PSB_EVT) { 2214 err = intel_pt_synth_psb_sample(ptq); 2215 if (err) 2216 return err; 2217 } 2218 if (ptq->state->cbr != ptq->cbr_seen) { 2219 err = intel_pt_synth_cbr_sample(ptq); 2220 if (err) 2221 return err; 2222 } 2223 if (state->type & INTEL_PT_PWR_EVT) { 2224 if (state->type & INTEL_PT_MWAIT_OP) { 2225 err = intel_pt_synth_mwait_sample(ptq); 2226 if (err) 2227 return err; 2228 } 2229 if (state->type & INTEL_PT_PWR_ENTRY) { 2230 err = intel_pt_synth_pwre_sample(ptq); 2231 if (err) 2232 return err; 2233 } 2234 if (state->type & INTEL_PT_EX_STOP) { 2235 err = intel_pt_synth_exstop_sample(ptq); 2236 if (err) 2237 return err; 2238 } 2239 if (state->type & INTEL_PT_PWR_EXIT) { 2240 err = intel_pt_synth_pwrx_sample(ptq); 2241 if (err) 2242 return err; 2243 } 2244 } 2245 } 2246 2247 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 2248 err = intel_pt_synth_instruction_sample(ptq); 2249 if (err) 2250 return err; 2251 } 2252 2253 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2254 err = intel_pt_synth_transaction_sample(ptq); 2255 if (err) 2256 return err; 2257 } 2258 2259 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2260 err = intel_pt_synth_ptwrite_sample(ptq); 2261 if (err) 2262 return err; 2263 } 2264 2265 if (!(state->type & INTEL_PT_BRANCH)) 2266 return 0; 2267 2268 if (pt->use_thread_stack) { 2269 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2270 state->from_ip, state->to_ip, ptq->insn_len, 2271 state->trace_nr, pt->callstack, 2272 pt->br_stack_sz_plus, 2273 pt->mispred_all); 2274 } else { 2275 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2276 } 2277 2278 if (pt->sample_branches) { 2279 if (state->from_nr != state->to_nr && 2280 state->from_ip && state->to_ip) { 2281 struct intel_pt_state *st = (struct intel_pt_state *)state; 2282 u64 to_ip = st->to_ip; 2283 u64 from_ip = st->from_ip; 2284 2285 /* 2286 * perf cannot handle having different machines for ip 2287 * and addr, so create 2 branches. 2288 */ 2289 st->to_ip = 0; 2290 err = intel_pt_synth_branch_sample(ptq); 2291 if (err) 2292 return err; 2293 st->from_ip = 0; 2294 st->to_ip = to_ip; 2295 err = intel_pt_synth_branch_sample(ptq); 2296 st->from_ip = from_ip; 2297 } else { 2298 err = intel_pt_synth_branch_sample(ptq); 2299 } 2300 if (err) 2301 return err; 2302 } 2303 2304 if (!ptq->sync_switch) 2305 return 0; 2306 2307 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2308 switch (ptq->switch_state) { 2309 case INTEL_PT_SS_NOT_TRACING: 2310 case INTEL_PT_SS_UNKNOWN: 2311 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2312 err = intel_pt_next_tid(pt, ptq); 2313 if (err) 2314 return err; 2315 ptq->switch_state = INTEL_PT_SS_TRACING; 2316 break; 2317 default: 2318 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2319 return 1; 2320 } 2321 } else if (!state->to_ip) { 2322 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2323 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2324 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2325 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2326 state->to_ip == pt->ptss_ip && 2327 (ptq->flags & PERF_IP_FLAG_CALL)) { 2328 ptq->switch_state = INTEL_PT_SS_TRACING; 2329 } 2330 2331 return 0; 2332 } 2333 2334 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2335 { 2336 struct machine *machine = pt->machine; 2337 struct map *map; 2338 struct symbol *sym, *start; 2339 u64 ip, switch_ip = 0; 2340 const char *ptss; 2341 2342 if (ptss_ip) 2343 *ptss_ip = 0; 2344 2345 map = machine__kernel_map(machine); 2346 if (!map) 2347 return 0; 2348 2349 if (map__load(map)) 2350 return 0; 2351 2352 start = dso__first_symbol(map->dso); 2353 2354 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2355 if (sym->binding == STB_GLOBAL && 2356 !strcmp(sym->name, "__switch_to")) { 2357 ip = map->unmap_ip(map, sym->start); 2358 if (ip >= map->start && ip < map->end) { 2359 switch_ip = ip; 2360 break; 2361 } 2362 } 2363 } 2364 2365 if (!switch_ip || !ptss_ip) 2366 return 0; 2367 2368 if (pt->have_sched_switch == 1) 2369 ptss = "perf_trace_sched_switch"; 2370 else 2371 ptss = "__perf_event_task_sched_out"; 2372 2373 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2374 if (!strcmp(sym->name, ptss)) { 2375 ip = map->unmap_ip(map, sym->start); 2376 if (ip >= map->start && ip < map->end) { 2377 *ptss_ip = ip; 2378 break; 2379 } 2380 } 2381 } 2382 2383 return switch_ip; 2384 } 2385 2386 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2387 { 2388 unsigned int i; 2389 2390 pt->sync_switch = true; 2391 2392 for (i = 0; i < pt->queues.nr_queues; i++) { 2393 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2394 struct intel_pt_queue *ptq = queue->priv; 2395 2396 if (ptq) 2397 ptq->sync_switch = true; 2398 } 2399 } 2400 2401 /* 2402 * To filter against time ranges, it is only necessary to look at the next start 2403 * or end time. 2404 */ 2405 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2406 { 2407 struct intel_pt *pt = ptq->pt; 2408 2409 if (ptq->sel_start) { 2410 /* Next time is an end time */ 2411 ptq->sel_start = false; 2412 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2413 return true; 2414 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2415 /* Next time is a start time */ 2416 ptq->sel_start = true; 2417 ptq->sel_idx += 1; 2418 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2419 return true; 2420 } 2421 2422 /* No next time */ 2423 return false; 2424 } 2425 2426 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2427 { 2428 int err; 2429 2430 while (1) { 2431 if (ptq->sel_start) { 2432 if (ptq->timestamp >= ptq->sel_timestamp) { 2433 /* After start time, so consider next time */ 2434 intel_pt_next_time(ptq); 2435 if (!ptq->sel_timestamp) { 2436 /* No end time */ 2437 return 0; 2438 } 2439 /* Check against end time */ 2440 continue; 2441 } 2442 /* Before start time, so fast forward */ 2443 ptq->have_sample = false; 2444 if (ptq->sel_timestamp > *ff_timestamp) { 2445 if (ptq->sync_switch) { 2446 intel_pt_next_tid(ptq->pt, ptq); 2447 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2448 } 2449 *ff_timestamp = ptq->sel_timestamp; 2450 err = intel_pt_fast_forward(ptq->decoder, 2451 ptq->sel_timestamp); 2452 if (err) 2453 return err; 2454 } 2455 return 0; 2456 } else if (ptq->timestamp > ptq->sel_timestamp) { 2457 /* After end time, so consider next time */ 2458 if (!intel_pt_next_time(ptq)) { 2459 /* No next time range, so stop decoding */ 2460 ptq->have_sample = false; 2461 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2462 return 1; 2463 } 2464 /* Check against next start time */ 2465 continue; 2466 } else { 2467 /* Before end time */ 2468 return 0; 2469 } 2470 } 2471 } 2472 2473 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2474 { 2475 const struct intel_pt_state *state = ptq->state; 2476 struct intel_pt *pt = ptq->pt; 2477 u64 ff_timestamp = 0; 2478 int err; 2479 2480 if (!pt->kernel_start) { 2481 pt->kernel_start = machine__kernel_start(pt->machine); 2482 if (pt->per_cpu_mmaps && 2483 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2484 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2485 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { 2486 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2487 if (pt->switch_ip) { 2488 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2489 pt->switch_ip, pt->ptss_ip); 2490 intel_pt_enable_sync_switch(pt); 2491 } 2492 } 2493 } 2494 2495 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2496 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2497 while (1) { 2498 err = intel_pt_sample(ptq); 2499 if (err) 2500 return err; 2501 2502 state = intel_pt_decode(ptq->decoder); 2503 if (state->err) { 2504 if (state->err == INTEL_PT_ERR_NODATA) 2505 return 1; 2506 if (ptq->sync_switch && 2507 state->from_ip >= pt->kernel_start) { 2508 ptq->sync_switch = false; 2509 intel_pt_next_tid(pt, ptq); 2510 } 2511 if (pt->synth_opts.errors) { 2512 err = intel_ptq_synth_error(ptq, state); 2513 if (err) 2514 return err; 2515 } 2516 continue; 2517 } 2518 2519 ptq->state = state; 2520 ptq->have_sample = true; 2521 intel_pt_sample_flags(ptq); 2522 2523 /* Use estimated TSC upon return to user space */ 2524 if (pt->est_tsc && 2525 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2526 state->to_ip && state->to_ip < pt->kernel_start) { 2527 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2528 state->timestamp, state->est_timestamp); 2529 ptq->timestamp = state->est_timestamp; 2530 /* Use estimated TSC in unknown switch state */ 2531 } else if (ptq->sync_switch && 2532 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2533 intel_pt_is_switch_ip(ptq, state->to_ip) && 2534 ptq->next_tid == -1) { 2535 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2536 state->timestamp, state->est_timestamp); 2537 ptq->timestamp = state->est_timestamp; 2538 } else if (state->timestamp > ptq->timestamp) { 2539 ptq->timestamp = state->timestamp; 2540 } 2541 2542 if (ptq->sel_timestamp) { 2543 err = intel_pt_time_filter(ptq, &ff_timestamp); 2544 if (err) 2545 return err; 2546 } 2547 2548 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2549 *timestamp = ptq->timestamp; 2550 return 0; 2551 } 2552 } 2553 return 0; 2554 } 2555 2556 static inline int intel_pt_update_queues(struct intel_pt *pt) 2557 { 2558 if (pt->queues.new_data) { 2559 pt->queues.new_data = false; 2560 return intel_pt_setup_queues(pt); 2561 } 2562 return 0; 2563 } 2564 2565 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2566 { 2567 unsigned int queue_nr; 2568 u64 ts; 2569 int ret; 2570 2571 while (1) { 2572 struct auxtrace_queue *queue; 2573 struct intel_pt_queue *ptq; 2574 2575 if (!pt->heap.heap_cnt) 2576 return 0; 2577 2578 if (pt->heap.heap_array[0].ordinal >= timestamp) 2579 return 0; 2580 2581 queue_nr = pt->heap.heap_array[0].queue_nr; 2582 queue = &pt->queues.queue_array[queue_nr]; 2583 ptq = queue->priv; 2584 2585 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2586 queue_nr, pt->heap.heap_array[0].ordinal, 2587 timestamp); 2588 2589 auxtrace_heap__pop(&pt->heap); 2590 2591 if (pt->heap.heap_cnt) { 2592 ts = pt->heap.heap_array[0].ordinal + 1; 2593 if (ts > timestamp) 2594 ts = timestamp; 2595 } else { 2596 ts = timestamp; 2597 } 2598 2599 intel_pt_set_pid_tid_cpu(pt, queue); 2600 2601 ret = intel_pt_run_decoder(ptq, &ts); 2602 2603 if (ret < 0) { 2604 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2605 return ret; 2606 } 2607 2608 if (!ret) { 2609 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2610 if (ret < 0) 2611 return ret; 2612 } else { 2613 ptq->on_heap = false; 2614 } 2615 } 2616 2617 return 0; 2618 } 2619 2620 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2621 u64 time_) 2622 { 2623 struct auxtrace_queues *queues = &pt->queues; 2624 unsigned int i; 2625 u64 ts = 0; 2626 2627 for (i = 0; i < queues->nr_queues; i++) { 2628 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2629 struct intel_pt_queue *ptq = queue->priv; 2630 2631 if (ptq && (tid == -1 || ptq->tid == tid)) { 2632 ptq->time = time_; 2633 intel_pt_set_pid_tid_cpu(pt, queue); 2634 intel_pt_run_decoder(ptq, &ts); 2635 } 2636 } 2637 return 0; 2638 } 2639 2640 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2641 struct auxtrace_queue *queue, 2642 struct perf_sample *sample) 2643 { 2644 struct machine *m = ptq->pt->machine; 2645 2646 ptq->pid = sample->pid; 2647 ptq->tid = sample->tid; 2648 ptq->cpu = queue->cpu; 2649 2650 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2651 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2652 2653 thread__zput(ptq->thread); 2654 2655 if (ptq->tid == -1) 2656 return; 2657 2658 if (ptq->pid == -1) { 2659 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2660 if (ptq->thread) 2661 ptq->pid = ptq->thread->pid_; 2662 return; 2663 } 2664 2665 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2666 } 2667 2668 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2669 struct perf_sample *sample) 2670 { 2671 struct auxtrace_queue *queue; 2672 struct intel_pt_queue *ptq; 2673 u64 ts = 0; 2674 2675 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2676 if (!queue) 2677 return -EINVAL; 2678 2679 ptq = queue->priv; 2680 if (!ptq) 2681 return 0; 2682 2683 ptq->stop = false; 2684 ptq->time = sample->time; 2685 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2686 intel_pt_run_decoder(ptq, &ts); 2687 return 0; 2688 } 2689 2690 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2691 { 2692 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2693 sample->pid, sample->tid, 0, sample->time); 2694 } 2695 2696 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2697 { 2698 unsigned i, j; 2699 2700 if (cpu < 0 || !pt->queues.nr_queues) 2701 return NULL; 2702 2703 if ((unsigned)cpu >= pt->queues.nr_queues) 2704 i = pt->queues.nr_queues - 1; 2705 else 2706 i = cpu; 2707 2708 if (pt->queues.queue_array[i].cpu == cpu) 2709 return pt->queues.queue_array[i].priv; 2710 2711 for (j = 0; i > 0; j++) { 2712 if (pt->queues.queue_array[--i].cpu == cpu) 2713 return pt->queues.queue_array[i].priv; 2714 } 2715 2716 for (; j < pt->queues.nr_queues; j++) { 2717 if (pt->queues.queue_array[j].cpu == cpu) 2718 return pt->queues.queue_array[j].priv; 2719 } 2720 2721 return NULL; 2722 } 2723 2724 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2725 u64 timestamp) 2726 { 2727 struct intel_pt_queue *ptq; 2728 int err; 2729 2730 if (!pt->sync_switch) 2731 return 1; 2732 2733 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2734 if (!ptq || !ptq->sync_switch) 2735 return 1; 2736 2737 switch (ptq->switch_state) { 2738 case INTEL_PT_SS_NOT_TRACING: 2739 break; 2740 case INTEL_PT_SS_UNKNOWN: 2741 case INTEL_PT_SS_TRACING: 2742 ptq->next_tid = tid; 2743 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2744 return 0; 2745 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2746 if (!ptq->on_heap) { 2747 ptq->timestamp = perf_time_to_tsc(timestamp, 2748 &pt->tc); 2749 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2750 ptq->timestamp); 2751 if (err) 2752 return err; 2753 ptq->on_heap = true; 2754 } 2755 ptq->switch_state = INTEL_PT_SS_TRACING; 2756 break; 2757 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2758 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2759 break; 2760 default: 2761 break; 2762 } 2763 2764 ptq->next_tid = -1; 2765 2766 return 1; 2767 } 2768 2769 static int intel_pt_process_switch(struct intel_pt *pt, 2770 struct perf_sample *sample) 2771 { 2772 pid_t tid; 2773 int cpu, ret; 2774 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); 2775 2776 if (evsel != pt->switch_evsel) 2777 return 0; 2778 2779 tid = evsel__intval(evsel, sample, "next_pid"); 2780 cpu = sample->cpu; 2781 2782 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2783 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2784 &pt->tc)); 2785 2786 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2787 if (ret <= 0) 2788 return ret; 2789 2790 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2791 } 2792 2793 static int intel_pt_context_switch_in(struct intel_pt *pt, 2794 struct perf_sample *sample) 2795 { 2796 pid_t pid = sample->pid; 2797 pid_t tid = sample->tid; 2798 int cpu = sample->cpu; 2799 2800 if (pt->sync_switch) { 2801 struct intel_pt_queue *ptq; 2802 2803 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2804 if (ptq && ptq->sync_switch) { 2805 ptq->next_tid = -1; 2806 switch (ptq->switch_state) { 2807 case INTEL_PT_SS_NOT_TRACING: 2808 case INTEL_PT_SS_UNKNOWN: 2809 case INTEL_PT_SS_TRACING: 2810 break; 2811 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2812 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2813 ptq->switch_state = INTEL_PT_SS_TRACING; 2814 break; 2815 default: 2816 break; 2817 } 2818 } 2819 } 2820 2821 /* 2822 * If the current tid has not been updated yet, ensure it is now that 2823 * a "switch in" event has occurred. 2824 */ 2825 if (machine__get_current_tid(pt->machine, cpu) == tid) 2826 return 0; 2827 2828 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2829 } 2830 2831 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 2832 struct perf_sample *sample) 2833 { 2834 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2835 pid_t pid, tid; 2836 int cpu, ret; 2837 2838 cpu = sample->cpu; 2839 2840 if (pt->have_sched_switch == 3) { 2841 if (!out) 2842 return intel_pt_context_switch_in(pt, sample); 2843 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 2844 pr_err("Expecting CPU-wide context switch event\n"); 2845 return -EINVAL; 2846 } 2847 pid = event->context_switch.next_prev_pid; 2848 tid = event->context_switch.next_prev_tid; 2849 } else { 2850 if (out) 2851 return 0; 2852 pid = sample->pid; 2853 tid = sample->tid; 2854 } 2855 2856 if (tid == -1) 2857 intel_pt_log("context_switch event has no tid\n"); 2858 2859 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2860 if (ret <= 0) 2861 return ret; 2862 2863 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2864 } 2865 2866 static int intel_pt_process_itrace_start(struct intel_pt *pt, 2867 union perf_event *event, 2868 struct perf_sample *sample) 2869 { 2870 if (!pt->per_cpu_mmaps) 2871 return 0; 2872 2873 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2874 sample->cpu, event->itrace_start.pid, 2875 event->itrace_start.tid, sample->time, 2876 perf_time_to_tsc(sample->time, &pt->tc)); 2877 2878 return machine__set_current_tid(pt->machine, sample->cpu, 2879 event->itrace_start.pid, 2880 event->itrace_start.tid); 2881 } 2882 2883 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 2884 struct addr_location *al) 2885 { 2886 if (!al->map || addr < al->map->start || addr >= al->map->end) { 2887 if (!thread__find_map(thread, cpumode, addr, al)) 2888 return -1; 2889 } 2890 2891 return 0; 2892 } 2893 2894 /* Invalidate all instruction cache entries that overlap the text poke */ 2895 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 2896 { 2897 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2898 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 2899 /* Assume text poke begins in a basic block no more than 4096 bytes */ 2900 int cnt = 4096 + event->text_poke.new_len; 2901 struct thread *thread = pt->unknown_thread; 2902 struct addr_location al = { .map = NULL }; 2903 struct machine *machine = pt->machine; 2904 struct intel_pt_cache_entry *e; 2905 u64 offset; 2906 2907 if (!event->text_poke.new_len) 2908 return 0; 2909 2910 for (; cnt; cnt--, addr--) { 2911 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 2912 if (addr < event->text_poke.addr) 2913 return 0; 2914 continue; 2915 } 2916 2917 if (!al.map->dso || !al.map->dso->auxtrace_cache) 2918 continue; 2919 2920 offset = al.map->map_ip(al.map, addr); 2921 2922 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 2923 if (!e) 2924 continue; 2925 2926 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 2927 /* 2928 * No overlap. Working backwards there cannot be another 2929 * basic block that overlaps the text poke if there is a 2930 * branch instruction before the text poke address. 2931 */ 2932 if (e->branch != INTEL_PT_BR_NO_BRANCH) 2933 return 0; 2934 } else { 2935 intel_pt_cache_invalidate(al.map->dso, machine, offset); 2936 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 2937 al.map->dso->long_name, addr); 2938 } 2939 } 2940 2941 return 0; 2942 } 2943 2944 static int intel_pt_process_event(struct perf_session *session, 2945 union perf_event *event, 2946 struct perf_sample *sample, 2947 struct perf_tool *tool) 2948 { 2949 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2950 auxtrace); 2951 u64 timestamp; 2952 int err = 0; 2953 2954 if (dump_trace) 2955 return 0; 2956 2957 if (!tool->ordered_events) { 2958 pr_err("Intel Processor Trace requires ordered events\n"); 2959 return -EINVAL; 2960 } 2961 2962 if (sample->time && sample->time != (u64)-1) 2963 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2964 else 2965 timestamp = 0; 2966 2967 if (timestamp || pt->timeless_decoding) { 2968 err = intel_pt_update_queues(pt); 2969 if (err) 2970 return err; 2971 } 2972 2973 if (pt->timeless_decoding) { 2974 if (pt->sampling_mode) { 2975 if (sample->aux_sample.size) 2976 err = intel_pt_process_timeless_sample(pt, 2977 sample); 2978 } else if (event->header.type == PERF_RECORD_EXIT) { 2979 err = intel_pt_process_timeless_queues(pt, 2980 event->fork.tid, 2981 sample->time); 2982 } 2983 } else if (timestamp) { 2984 if (!pt->first_timestamp) 2985 intel_pt_first_timestamp(pt, timestamp); 2986 err = intel_pt_process_queues(pt, timestamp); 2987 } 2988 if (err) 2989 return err; 2990 2991 if (event->header.type == PERF_RECORD_SAMPLE) { 2992 if (pt->synth_opts.add_callchain && !sample->callchain) 2993 intel_pt_add_callchain(pt, sample); 2994 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 2995 intel_pt_add_br_stack(pt, sample); 2996 } 2997 2998 if (event->header.type == PERF_RECORD_AUX && 2999 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 3000 pt->synth_opts.errors) { 3001 err = intel_pt_lost(pt, sample); 3002 if (err) 3003 return err; 3004 } 3005 3006 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 3007 err = intel_pt_process_switch(pt, sample); 3008 else if (event->header.type == PERF_RECORD_ITRACE_START) 3009 err = intel_pt_process_itrace_start(pt, event, sample); 3010 else if (event->header.type == PERF_RECORD_SWITCH || 3011 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 3012 err = intel_pt_context_switch(pt, event, sample); 3013 3014 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 3015 err = intel_pt_text_poke(pt, event); 3016 3017 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 3018 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 3019 event->header.type, sample->cpu, sample->time, timestamp); 3020 intel_pt_log_event(event); 3021 } 3022 3023 return err; 3024 } 3025 3026 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 3027 { 3028 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3029 auxtrace); 3030 int ret; 3031 3032 if (dump_trace) 3033 return 0; 3034 3035 if (!tool->ordered_events) 3036 return -EINVAL; 3037 3038 ret = intel_pt_update_queues(pt); 3039 if (ret < 0) 3040 return ret; 3041 3042 if (pt->timeless_decoding) 3043 return intel_pt_process_timeless_queues(pt, -1, 3044 MAX_TIMESTAMP - 1); 3045 3046 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 3047 } 3048 3049 static void intel_pt_free_events(struct perf_session *session) 3050 { 3051 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3052 auxtrace); 3053 struct auxtrace_queues *queues = &pt->queues; 3054 unsigned int i; 3055 3056 for (i = 0; i < queues->nr_queues; i++) { 3057 intel_pt_free_queue(queues->queue_array[i].priv); 3058 queues->queue_array[i].priv = NULL; 3059 } 3060 intel_pt_log_disable(); 3061 auxtrace_queues__free(queues); 3062 } 3063 3064 static void intel_pt_free(struct perf_session *session) 3065 { 3066 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3067 auxtrace); 3068 3069 auxtrace_heap__free(&pt->heap); 3070 intel_pt_free_events(session); 3071 session->auxtrace = NULL; 3072 intel_pt_free_vmcs_info(pt); 3073 thread__put(pt->unknown_thread); 3074 addr_filters__exit(&pt->filts); 3075 zfree(&pt->chain); 3076 zfree(&pt->filter); 3077 zfree(&pt->time_ranges); 3078 free(pt); 3079 } 3080 3081 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 3082 struct evsel *evsel) 3083 { 3084 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3085 auxtrace); 3086 3087 return evsel->core.attr.type == pt->pmu_type; 3088 } 3089 3090 static int intel_pt_process_auxtrace_event(struct perf_session *session, 3091 union perf_event *event, 3092 struct perf_tool *tool __maybe_unused) 3093 { 3094 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3095 auxtrace); 3096 3097 if (!pt->data_queued) { 3098 struct auxtrace_buffer *buffer; 3099 off_t data_offset; 3100 int fd = perf_data__fd(session->data); 3101 int err; 3102 3103 if (perf_data__is_pipe(session->data)) { 3104 data_offset = 0; 3105 } else { 3106 data_offset = lseek(fd, 0, SEEK_CUR); 3107 if (data_offset == -1) 3108 return -errno; 3109 } 3110 3111 err = auxtrace_queues__add_event(&pt->queues, session, event, 3112 data_offset, &buffer); 3113 if (err) 3114 return err; 3115 3116 /* Dump here now we have copied a piped trace out of the pipe */ 3117 if (dump_trace) { 3118 if (auxtrace_buffer__get_data(buffer, fd)) { 3119 intel_pt_dump_event(pt, buffer->data, 3120 buffer->size); 3121 auxtrace_buffer__put_data(buffer); 3122 } 3123 } 3124 } 3125 3126 return 0; 3127 } 3128 3129 static int intel_pt_queue_data(struct perf_session *session, 3130 struct perf_sample *sample, 3131 union perf_event *event, u64 data_offset) 3132 { 3133 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3134 auxtrace); 3135 u64 timestamp; 3136 3137 if (event) { 3138 return auxtrace_queues__add_event(&pt->queues, session, event, 3139 data_offset, NULL); 3140 } 3141 3142 if (sample->time && sample->time != (u64)-1) 3143 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3144 else 3145 timestamp = 0; 3146 3147 return auxtrace_queues__add_sample(&pt->queues, session, sample, 3148 data_offset, timestamp); 3149 } 3150 3151 struct intel_pt_synth { 3152 struct perf_tool dummy_tool; 3153 struct perf_session *session; 3154 }; 3155 3156 static int intel_pt_event_synth(struct perf_tool *tool, 3157 union perf_event *event, 3158 struct perf_sample *sample __maybe_unused, 3159 struct machine *machine __maybe_unused) 3160 { 3161 struct intel_pt_synth *intel_pt_synth = 3162 container_of(tool, struct intel_pt_synth, dummy_tool); 3163 3164 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 3165 NULL); 3166 } 3167 3168 static int intel_pt_synth_event(struct perf_session *session, const char *name, 3169 struct perf_event_attr *attr, u64 id) 3170 { 3171 struct intel_pt_synth intel_pt_synth; 3172 int err; 3173 3174 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 3175 name, id, (u64)attr->sample_type); 3176 3177 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 3178 intel_pt_synth.session = session; 3179 3180 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 3181 &id, intel_pt_event_synth); 3182 if (err) 3183 pr_err("%s: failed to synthesize '%s' event type\n", 3184 __func__, name); 3185 3186 return err; 3187 } 3188 3189 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 3190 const char *name) 3191 { 3192 struct evsel *evsel; 3193 3194 evlist__for_each_entry(evlist, evsel) { 3195 if (evsel->core.id && evsel->core.id[0] == id) { 3196 if (evsel->name) 3197 zfree(&evsel->name); 3198 evsel->name = strdup(name); 3199 break; 3200 } 3201 } 3202 } 3203 3204 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 3205 struct evlist *evlist) 3206 { 3207 struct evsel *evsel; 3208 3209 evlist__for_each_entry(evlist, evsel) { 3210 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 3211 return evsel; 3212 } 3213 3214 return NULL; 3215 } 3216 3217 static int intel_pt_synth_events(struct intel_pt *pt, 3218 struct perf_session *session) 3219 { 3220 struct evlist *evlist = session->evlist; 3221 struct evsel *evsel = intel_pt_evsel(pt, evlist); 3222 struct perf_event_attr attr; 3223 u64 id; 3224 int err; 3225 3226 if (!evsel) { 3227 pr_debug("There are no selected events with Intel Processor Trace data\n"); 3228 return 0; 3229 } 3230 3231 memset(&attr, 0, sizeof(struct perf_event_attr)); 3232 attr.size = sizeof(struct perf_event_attr); 3233 attr.type = PERF_TYPE_HARDWARE; 3234 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 3235 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 3236 PERF_SAMPLE_PERIOD; 3237 if (pt->timeless_decoding) 3238 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 3239 else 3240 attr.sample_type |= PERF_SAMPLE_TIME; 3241 if (!pt->per_cpu_mmaps) 3242 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 3243 attr.exclude_user = evsel->core.attr.exclude_user; 3244 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 3245 attr.exclude_hv = evsel->core.attr.exclude_hv; 3246 attr.exclude_host = evsel->core.attr.exclude_host; 3247 attr.exclude_guest = evsel->core.attr.exclude_guest; 3248 attr.sample_id_all = evsel->core.attr.sample_id_all; 3249 attr.read_format = evsel->core.attr.read_format; 3250 3251 id = evsel->core.id[0] + 1000000000; 3252 if (!id) 3253 id = 1; 3254 3255 if (pt->synth_opts.branches) { 3256 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3257 attr.sample_period = 1; 3258 attr.sample_type |= PERF_SAMPLE_ADDR; 3259 err = intel_pt_synth_event(session, "branches", &attr, id); 3260 if (err) 3261 return err; 3262 pt->sample_branches = true; 3263 pt->branches_sample_type = attr.sample_type; 3264 pt->branches_id = id; 3265 id += 1; 3266 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3267 } 3268 3269 if (pt->synth_opts.callchain) 3270 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3271 if (pt->synth_opts.last_branch) { 3272 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3273 /* 3274 * We don't use the hardware index, but the sample generation 3275 * code uses the new format branch_stack with this field, 3276 * so the event attributes must indicate that it's present. 3277 */ 3278 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3279 } 3280 3281 if (pt->synth_opts.instructions) { 3282 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3283 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3284 attr.sample_period = 3285 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3286 else 3287 attr.sample_period = pt->synth_opts.period; 3288 err = intel_pt_synth_event(session, "instructions", &attr, id); 3289 if (err) 3290 return err; 3291 pt->sample_instructions = true; 3292 pt->instructions_sample_type = attr.sample_type; 3293 pt->instructions_id = id; 3294 id += 1; 3295 } 3296 3297 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3298 attr.sample_period = 1; 3299 3300 if (pt->synth_opts.transactions) { 3301 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3302 err = intel_pt_synth_event(session, "transactions", &attr, id); 3303 if (err) 3304 return err; 3305 pt->sample_transactions = true; 3306 pt->transactions_sample_type = attr.sample_type; 3307 pt->transactions_id = id; 3308 intel_pt_set_event_name(evlist, id, "transactions"); 3309 id += 1; 3310 } 3311 3312 attr.type = PERF_TYPE_SYNTH; 3313 attr.sample_type |= PERF_SAMPLE_RAW; 3314 3315 if (pt->synth_opts.ptwrites) { 3316 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3317 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3318 if (err) 3319 return err; 3320 pt->sample_ptwrites = true; 3321 pt->ptwrites_sample_type = attr.sample_type; 3322 pt->ptwrites_id = id; 3323 intel_pt_set_event_name(evlist, id, "ptwrite"); 3324 id += 1; 3325 } 3326 3327 if (pt->synth_opts.pwr_events) { 3328 pt->sample_pwr_events = true; 3329 pt->pwr_events_sample_type = attr.sample_type; 3330 3331 attr.config = PERF_SYNTH_INTEL_CBR; 3332 err = intel_pt_synth_event(session, "cbr", &attr, id); 3333 if (err) 3334 return err; 3335 pt->cbr_id = id; 3336 intel_pt_set_event_name(evlist, id, "cbr"); 3337 id += 1; 3338 3339 attr.config = PERF_SYNTH_INTEL_PSB; 3340 err = intel_pt_synth_event(session, "psb", &attr, id); 3341 if (err) 3342 return err; 3343 pt->psb_id = id; 3344 intel_pt_set_event_name(evlist, id, "psb"); 3345 id += 1; 3346 } 3347 3348 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { 3349 attr.config = PERF_SYNTH_INTEL_MWAIT; 3350 err = intel_pt_synth_event(session, "mwait", &attr, id); 3351 if (err) 3352 return err; 3353 pt->mwait_id = id; 3354 intel_pt_set_event_name(evlist, id, "mwait"); 3355 id += 1; 3356 3357 attr.config = PERF_SYNTH_INTEL_PWRE; 3358 err = intel_pt_synth_event(session, "pwre", &attr, id); 3359 if (err) 3360 return err; 3361 pt->pwre_id = id; 3362 intel_pt_set_event_name(evlist, id, "pwre"); 3363 id += 1; 3364 3365 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3366 err = intel_pt_synth_event(session, "exstop", &attr, id); 3367 if (err) 3368 return err; 3369 pt->exstop_id = id; 3370 intel_pt_set_event_name(evlist, id, "exstop"); 3371 id += 1; 3372 3373 attr.config = PERF_SYNTH_INTEL_PWRX; 3374 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3375 if (err) 3376 return err; 3377 pt->pwrx_id = id; 3378 intel_pt_set_event_name(evlist, id, "pwrx"); 3379 id += 1; 3380 } 3381 3382 return 0; 3383 } 3384 3385 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3386 { 3387 struct evsel *evsel; 3388 3389 if (!pt->synth_opts.other_events) 3390 return; 3391 3392 evlist__for_each_entry(pt->session->evlist, evsel) { 3393 if (evsel->core.attr.aux_output && evsel->core.id) { 3394 pt->sample_pebs = true; 3395 pt->pebs_evsel = evsel; 3396 return; 3397 } 3398 } 3399 } 3400 3401 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3402 { 3403 struct evsel *evsel; 3404 3405 evlist__for_each_entry_reverse(evlist, evsel) { 3406 const char *name = evsel__name(evsel); 3407 3408 if (!strcmp(name, "sched:sched_switch")) 3409 return evsel; 3410 } 3411 3412 return NULL; 3413 } 3414 3415 static bool intel_pt_find_switch(struct evlist *evlist) 3416 { 3417 struct evsel *evsel; 3418 3419 evlist__for_each_entry(evlist, evsel) { 3420 if (evsel->core.attr.context_switch) 3421 return true; 3422 } 3423 3424 return false; 3425 } 3426 3427 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3428 { 3429 struct intel_pt *pt = data; 3430 3431 if (!strcmp(var, "intel-pt.mispred-all")) 3432 pt->mispred_all = perf_config_bool(var, value); 3433 3434 return 0; 3435 } 3436 3437 /* Find least TSC which converts to ns or later */ 3438 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3439 { 3440 u64 tsc, tm; 3441 3442 tsc = perf_time_to_tsc(ns, &pt->tc); 3443 3444 while (1) { 3445 tm = tsc_to_perf_time(tsc, &pt->tc); 3446 if (tm < ns) 3447 break; 3448 tsc -= 1; 3449 } 3450 3451 while (tm < ns) 3452 tm = tsc_to_perf_time(++tsc, &pt->tc); 3453 3454 return tsc; 3455 } 3456 3457 /* Find greatest TSC which converts to ns or earlier */ 3458 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3459 { 3460 u64 tsc, tm; 3461 3462 tsc = perf_time_to_tsc(ns, &pt->tc); 3463 3464 while (1) { 3465 tm = tsc_to_perf_time(tsc, &pt->tc); 3466 if (tm > ns) 3467 break; 3468 tsc += 1; 3469 } 3470 3471 while (tm > ns) 3472 tm = tsc_to_perf_time(--tsc, &pt->tc); 3473 3474 return tsc; 3475 } 3476 3477 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3478 struct itrace_synth_opts *opts) 3479 { 3480 struct perf_time_interval *p = opts->ptime_range; 3481 int n = opts->range_num; 3482 int i; 3483 3484 if (!n || !p || pt->timeless_decoding) 3485 return 0; 3486 3487 pt->time_ranges = calloc(n, sizeof(struct range)); 3488 if (!pt->time_ranges) 3489 return -ENOMEM; 3490 3491 pt->range_cnt = n; 3492 3493 intel_pt_log("%s: %u range(s)\n", __func__, n); 3494 3495 for (i = 0; i < n; i++) { 3496 struct range *r = &pt->time_ranges[i]; 3497 u64 ts = p[i].start; 3498 u64 te = p[i].end; 3499 3500 /* 3501 * Take care to ensure the TSC range matches the perf-time range 3502 * when converted back to perf-time. 3503 */ 3504 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3505 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3506 3507 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3508 i, ts, te); 3509 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3510 i, r->start, r->end); 3511 } 3512 3513 return 0; 3514 } 3515 3516 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) 3517 { 3518 struct intel_pt_vmcs_info *vmcs_info; 3519 u64 tsc_offset, vmcs; 3520 char *p = *args; 3521 3522 errno = 0; 3523 3524 p = skip_spaces(p); 3525 if (!*p) 3526 return 1; 3527 3528 tsc_offset = strtoull(p, &p, 0); 3529 if (errno) 3530 return -errno; 3531 p = skip_spaces(p); 3532 if (*p != ':') { 3533 pt->dflt_tsc_offset = tsc_offset; 3534 *args = p; 3535 return 0; 3536 } 3537 while (1) { 3538 vmcs = strtoull(p, &p, 0); 3539 if (errno) 3540 return -errno; 3541 if (!vmcs) 3542 return -EINVAL; 3543 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); 3544 if (!vmcs_info) 3545 return -ENOMEM; 3546 p = skip_spaces(p); 3547 if (*p != ',') 3548 break; 3549 p += 1; 3550 } 3551 *args = p; 3552 return 0; 3553 } 3554 3555 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) 3556 { 3557 char *args = pt->synth_opts.vm_tm_corr_args; 3558 int ret; 3559 3560 if (!args) 3561 return 0; 3562 3563 do { 3564 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); 3565 } while (!ret); 3566 3567 if (ret < 0) { 3568 pr_err("Failed to parse VM Time Correlation options\n"); 3569 return ret; 3570 } 3571 3572 return 0; 3573 } 3574 3575 static const char * const intel_pt_info_fmts[] = { 3576 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3577 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3578 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3579 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3580 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3581 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3582 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3583 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3584 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3585 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3586 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3587 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3588 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3589 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3590 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3591 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3592 }; 3593 3594 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3595 { 3596 int i; 3597 3598 if (!dump_trace) 3599 return; 3600 3601 for (i = start; i <= finish; i++) 3602 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3603 } 3604 3605 static void intel_pt_print_info_str(const char *name, const char *str) 3606 { 3607 if (!dump_trace) 3608 return; 3609 3610 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3611 } 3612 3613 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3614 { 3615 return auxtrace_info->header.size >= 3616 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3617 } 3618 3619 int intel_pt_process_auxtrace_info(union perf_event *event, 3620 struct perf_session *session) 3621 { 3622 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3623 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3624 struct intel_pt *pt; 3625 void *info_end; 3626 __u64 *info; 3627 int err; 3628 3629 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3630 min_sz) 3631 return -EINVAL; 3632 3633 pt = zalloc(sizeof(struct intel_pt)); 3634 if (!pt) 3635 return -ENOMEM; 3636 3637 pt->vmcs_info = RB_ROOT; 3638 3639 addr_filters__init(&pt->filts); 3640 3641 err = perf_config(intel_pt_perf_config, pt); 3642 if (err) 3643 goto err_free; 3644 3645 err = auxtrace_queues__init(&pt->queues); 3646 if (err) 3647 goto err_free; 3648 3649 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3650 3651 if (session->itrace_synth_opts->set) { 3652 pt->synth_opts = *session->itrace_synth_opts; 3653 } else { 3654 struct itrace_synth_opts *opts = session->itrace_synth_opts; 3655 3656 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); 3657 if (!opts->default_no_sample && !opts->inject) { 3658 pt->synth_opts.branches = false; 3659 pt->synth_opts.callchain = true; 3660 pt->synth_opts.add_callchain = true; 3661 } 3662 pt->synth_opts.thread_stack = opts->thread_stack; 3663 } 3664 3665 pt->session = session; 3666 pt->machine = &session->machines.host; /* No kvm support */ 3667 pt->auxtrace_type = auxtrace_info->type; 3668 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3669 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3670 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3671 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3672 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3673 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3674 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3675 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3676 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3677 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3678 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3679 INTEL_PT_PER_CPU_MMAPS); 3680 3681 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3682 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3683 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3684 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3685 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3686 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3687 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3688 INTEL_PT_CYC_BIT); 3689 } 3690 3691 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3692 pt->max_non_turbo_ratio = 3693 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3694 intel_pt_print_info(&auxtrace_info->priv[0], 3695 INTEL_PT_MAX_NONTURBO_RATIO, 3696 INTEL_PT_MAX_NONTURBO_RATIO); 3697 } 3698 3699 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3700 info_end = (void *)info + auxtrace_info->header.size; 3701 3702 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3703 size_t len; 3704 3705 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3706 intel_pt_print_info(&auxtrace_info->priv[0], 3707 INTEL_PT_FILTER_STR_LEN, 3708 INTEL_PT_FILTER_STR_LEN); 3709 if (len) { 3710 const char *filter = (const char *)info; 3711 3712 len = roundup(len + 1, 8); 3713 info += len >> 3; 3714 if ((void *)info > info_end) { 3715 pr_err("%s: bad filter string length\n", __func__); 3716 err = -EINVAL; 3717 goto err_free_queues; 3718 } 3719 pt->filter = memdup(filter, len); 3720 if (!pt->filter) { 3721 err = -ENOMEM; 3722 goto err_free_queues; 3723 } 3724 if (session->header.needs_swap) 3725 mem_bswap_64(pt->filter, len); 3726 if (pt->filter[len - 1]) { 3727 pr_err("%s: filter string not null terminated\n", __func__); 3728 err = -EINVAL; 3729 goto err_free_queues; 3730 } 3731 err = addr_filters__parse_bare_filter(&pt->filts, 3732 filter); 3733 if (err) 3734 goto err_free_queues; 3735 } 3736 intel_pt_print_info_str("Filter string", pt->filter); 3737 } 3738 3739 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3740 if (pt->timeless_decoding && !pt->tc.time_mult) 3741 pt->tc.time_mult = 1; 3742 pt->have_tsc = intel_pt_have_tsc(pt); 3743 pt->sampling_mode = intel_pt_sampling_mode(pt); 3744 pt->est_tsc = !pt->timeless_decoding; 3745 3746 if (pt->synth_opts.vm_time_correlation) { 3747 if (pt->timeless_decoding) { 3748 pr_err("Intel PT has no time information for VM Time Correlation\n"); 3749 err = -EINVAL; 3750 goto err_free_queues; 3751 } 3752 if (session->itrace_synth_opts->ptime_range) { 3753 pr_err("Time ranges cannot be specified with VM Time Correlation\n"); 3754 err = -EINVAL; 3755 goto err_free_queues; 3756 } 3757 /* Currently TSC Offset is calculated using MTC packets */ 3758 if (!intel_pt_have_mtc(pt)) { 3759 pr_err("MTC packets must have been enabled for VM Time Correlation\n"); 3760 err = -EINVAL; 3761 goto err_free_queues; 3762 } 3763 err = intel_pt_parse_vm_tm_corr_args(pt); 3764 if (err) 3765 goto err_free_queues; 3766 } 3767 3768 pt->unknown_thread = thread__new(999999999, 999999999); 3769 if (!pt->unknown_thread) { 3770 err = -ENOMEM; 3771 goto err_free_queues; 3772 } 3773 3774 /* 3775 * Since this thread will not be kept in any rbtree not in a 3776 * list, initialize its list node so that at thread__put() the 3777 * current thread lifetime assumption is kept and we don't segfault 3778 * at list_del_init(). 3779 */ 3780 INIT_LIST_HEAD(&pt->unknown_thread->node); 3781 3782 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 3783 if (err) 3784 goto err_delete_thread; 3785 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 3786 err = -ENOMEM; 3787 goto err_delete_thread; 3788 } 3789 3790 pt->auxtrace.process_event = intel_pt_process_event; 3791 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 3792 pt->auxtrace.queue_data = intel_pt_queue_data; 3793 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 3794 pt->auxtrace.flush_events = intel_pt_flush; 3795 pt->auxtrace.free_events = intel_pt_free_events; 3796 pt->auxtrace.free = intel_pt_free; 3797 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 3798 session->auxtrace = &pt->auxtrace; 3799 3800 if (dump_trace) 3801 return 0; 3802 3803 if (pt->have_sched_switch == 1) { 3804 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 3805 if (!pt->switch_evsel) { 3806 pr_err("%s: missing sched_switch event\n", __func__); 3807 err = -EINVAL; 3808 goto err_delete_thread; 3809 } 3810 } else if (pt->have_sched_switch == 2 && 3811 !intel_pt_find_switch(session->evlist)) { 3812 pr_err("%s: missing context_switch attribute flag\n", __func__); 3813 err = -EINVAL; 3814 goto err_delete_thread; 3815 } 3816 3817 if (pt->synth_opts.log) 3818 intel_pt_log_enable(); 3819 3820 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 3821 if (pt->tc.time_mult) { 3822 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 3823 3824 if (!pt->max_non_turbo_ratio) 3825 pt->max_non_turbo_ratio = 3826 (tsc_freq + 50000000) / 100000000; 3827 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 3828 intel_pt_log("Maximum non-turbo ratio %u\n", 3829 pt->max_non_turbo_ratio); 3830 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 3831 } 3832 3833 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 3834 if (err) 3835 goto err_delete_thread; 3836 3837 if (pt->synth_opts.calls) 3838 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 3839 PERF_IP_FLAG_TRACE_END; 3840 if (pt->synth_opts.returns) 3841 pt->branches_filter |= PERF_IP_FLAG_RETURN | 3842 PERF_IP_FLAG_TRACE_BEGIN; 3843 3844 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 3845 !symbol_conf.use_callchain) { 3846 symbol_conf.use_callchain = true; 3847 if (callchain_register_param(&callchain_param) < 0) { 3848 symbol_conf.use_callchain = false; 3849 pt->synth_opts.callchain = false; 3850 pt->synth_opts.add_callchain = false; 3851 } 3852 } 3853 3854 if (pt->synth_opts.add_callchain) { 3855 err = intel_pt_callchain_init(pt); 3856 if (err) 3857 goto err_delete_thread; 3858 } 3859 3860 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 3861 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 3862 pt->br_stack_sz_plus = pt->br_stack_sz; 3863 } 3864 3865 if (pt->synth_opts.add_last_branch) { 3866 err = intel_pt_br_stack_init(pt); 3867 if (err) 3868 goto err_delete_thread; 3869 /* 3870 * Additional branch stack size to cater for tracing from the 3871 * actual sample ip to where the sample time is recorded. 3872 * Measured at about 200 branches, but generously set to 1024. 3873 * If kernel space is not being traced, then add just 1 for the 3874 * branch to kernel space. 3875 */ 3876 if (intel_pt_tracing_kernel(pt)) 3877 pt->br_stack_sz_plus += 1024; 3878 else 3879 pt->br_stack_sz_plus += 1; 3880 } 3881 3882 pt->use_thread_stack = pt->synth_opts.callchain || 3883 pt->synth_opts.add_callchain || 3884 pt->synth_opts.thread_stack || 3885 pt->synth_opts.last_branch || 3886 pt->synth_opts.add_last_branch; 3887 3888 pt->callstack = pt->synth_opts.callchain || 3889 pt->synth_opts.add_callchain || 3890 pt->synth_opts.thread_stack; 3891 3892 err = intel_pt_synth_events(pt, session); 3893 if (err) 3894 goto err_delete_thread; 3895 3896 intel_pt_setup_pebs_events(pt); 3897 3898 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 3899 err = auxtrace_queue_data(session, true, true); 3900 else 3901 err = auxtrace_queues__process_index(&pt->queues, session); 3902 if (err) 3903 goto err_delete_thread; 3904 3905 if (pt->queues.populated) 3906 pt->data_queued = true; 3907 3908 if (pt->timeless_decoding) 3909 pr_debug2("Intel PT decoding without timestamps\n"); 3910 3911 return 0; 3912 3913 err_delete_thread: 3914 zfree(&pt->chain); 3915 thread__zput(pt->unknown_thread); 3916 err_free_queues: 3917 intel_pt_log_disable(); 3918 auxtrace_queues__free(&pt->queues); 3919 session->auxtrace = NULL; 3920 err_free: 3921 addr_filters__exit(&pt->filts); 3922 zfree(&pt->filter); 3923 zfree(&pt->time_ranges); 3924 free(pt); 3925 return err; 3926 } 3927