xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40 
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42 
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47 
48 #define MAX_TIMESTAMP (~0ULL)
49 
50 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
55 
56 struct range {
57 	u64 start;
58 	u64 end;
59 };
60 
61 struct intel_pt {
62 	struct auxtrace auxtrace;
63 	struct auxtrace_queues queues;
64 	struct auxtrace_heap heap;
65 	u32 auxtrace_type;
66 	struct perf_session *session;
67 	struct machine *machine;
68 	struct evsel *switch_evsel;
69 	struct thread *unknown_thread;
70 	bool timeless_decoding;
71 	bool sampling_mode;
72 	bool snapshot_mode;
73 	bool per_cpu_mmaps;
74 	bool have_tsc;
75 	bool data_queued;
76 	bool est_tsc;
77 	bool sync_switch;
78 	bool sync_switch_not_supported;
79 	bool mispred_all;
80 	bool use_thread_stack;
81 	bool callstack;
82 	bool cap_event_trace;
83 	bool have_guest_sideband;
84 	unsigned int br_stack_sz;
85 	unsigned int br_stack_sz_plus;
86 	int have_sched_switch;
87 	u32 pmu_type;
88 	u64 kernel_start;
89 	u64 switch_ip;
90 	u64 ptss_ip;
91 	u64 first_timestamp;
92 
93 	struct perf_tsc_conversion tc;
94 	bool cap_user_time_zero;
95 
96 	struct itrace_synth_opts synth_opts;
97 
98 	bool sample_instructions;
99 	u64 instructions_sample_type;
100 	u64 instructions_id;
101 
102 	bool sample_cycles;
103 	u64 cycles_sample_type;
104 	u64 cycles_id;
105 
106 	bool sample_branches;
107 	u32 branches_filter;
108 	u64 branches_sample_type;
109 	u64 branches_id;
110 
111 	bool sample_transactions;
112 	u64 transactions_sample_type;
113 	u64 transactions_id;
114 
115 	bool sample_ptwrites;
116 	u64 ptwrites_sample_type;
117 	u64 ptwrites_id;
118 
119 	bool sample_pwr_events;
120 	u64 pwr_events_sample_type;
121 	u64 mwait_id;
122 	u64 pwre_id;
123 	u64 exstop_id;
124 	u64 pwrx_id;
125 	u64 cbr_id;
126 	u64 psb_id;
127 
128 	bool single_pebs;
129 	bool sample_pebs;
130 	struct evsel *pebs_evsel;
131 
132 	u64 evt_sample_type;
133 	u64 evt_id;
134 
135 	u64 iflag_chg_sample_type;
136 	u64 iflag_chg_id;
137 
138 	u64 tsc_bit;
139 	u64 mtc_bit;
140 	u64 mtc_freq_bits;
141 	u32 tsc_ctc_ratio_n;
142 	u32 tsc_ctc_ratio_d;
143 	u64 cyc_bit;
144 	u64 noretcomp_bit;
145 	unsigned max_non_turbo_ratio;
146 	unsigned cbr2khz;
147 	int max_loops;
148 
149 	unsigned long num_events;
150 
151 	char *filter;
152 	struct addr_filters filts;
153 
154 	struct range *time_ranges;
155 	unsigned int range_cnt;
156 
157 	struct ip_callchain *chain;
158 	struct branch_stack *br_stack;
159 
160 	u64 dflt_tsc_offset;
161 	struct rb_root vmcs_info;
162 };
163 
164 enum switch_state {
165 	INTEL_PT_SS_NOT_TRACING,
166 	INTEL_PT_SS_UNKNOWN,
167 	INTEL_PT_SS_TRACING,
168 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171 
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174 
175 struct intel_pt_pebs_event {
176 	struct evsel *evsel;
177 	u64 id;
178 };
179 
180 struct intel_pt_queue {
181 	struct intel_pt *pt;
182 	unsigned int queue_nr;
183 	struct auxtrace_buffer *buffer;
184 	struct auxtrace_buffer *old_buffer;
185 	void *decoder;
186 	const struct intel_pt_state *state;
187 	struct ip_callchain *chain;
188 	struct branch_stack *last_branch;
189 	union perf_event *event_buf;
190 	bool on_heap;
191 	bool stop;
192 	bool step_through_buffers;
193 	bool use_buffer_pid_tid;
194 	bool sync_switch;
195 	bool sample_ipc;
196 	pid_t pid, tid;
197 	int cpu;
198 	int switch_state;
199 	pid_t next_tid;
200 	struct thread *thread;
201 	struct machine *guest_machine;
202 	struct thread *guest_thread;
203 	struct thread *unknown_guest_thread;
204 	pid_t guest_machine_pid;
205 	pid_t guest_pid;
206 	pid_t guest_tid;
207 	int vcpu;
208 	bool exclude_kernel;
209 	bool have_sample;
210 	u64 time;
211 	u64 timestamp;
212 	u64 sel_timestamp;
213 	bool sel_start;
214 	unsigned int sel_idx;
215 	u32 flags;
216 	u16 insn_len;
217 	u64 last_insn_cnt;
218 	u64 ipc_insn_cnt;
219 	u64 ipc_cyc_cnt;
220 	u64 last_in_insn_cnt;
221 	u64 last_in_cyc_cnt;
222 	u64 last_cy_insn_cnt;
223 	u64 last_cy_cyc_cnt;
224 	u64 last_br_insn_cnt;
225 	u64 last_br_cyc_cnt;
226 	unsigned int cbr_seen;
227 	char insn[INTEL_PT_INSN_BUF_SZ];
228 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230 
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 			  unsigned char *buf, size_t len)
233 {
234 	struct intel_pt_pkt packet;
235 	size_t pos = 0;
236 	int ret, pkt_len, i;
237 	char desc[INTEL_PT_PKT_DESC_MAX];
238 	const char *color = PERF_COLOR_BLUE;
239 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240 
241 	color_fprintf(stdout, color,
242 		      ". ... Intel Processor Trace data: size %zu bytes\n",
243 		      len);
244 
245 	while (len) {
246 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 		if (ret > 0)
248 			pkt_len = ret;
249 		else
250 			pkt_len = 1;
251 		printf(".");
252 		color_fprintf(stdout, color, "  %08x: ", pos);
253 		for (i = 0; i < pkt_len; i++)
254 			color_fprintf(stdout, color, " %02x", buf[i]);
255 		for (; i < 16; i++)
256 			color_fprintf(stdout, color, "   ");
257 		if (ret > 0) {
258 			ret = intel_pt_pkt_desc(&packet, desc,
259 						INTEL_PT_PKT_DESC_MAX);
260 			if (ret > 0)
261 				color_fprintf(stdout, color, " %s\n", desc);
262 		} else {
263 			color_fprintf(stdout, color, " Bad packet!\n");
264 		}
265 		pos += pkt_len;
266 		buf += pkt_len;
267 		len -= pkt_len;
268 	}
269 }
270 
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 				size_t len)
273 {
274 	printf(".\n");
275 	intel_pt_dump(pt, buf, len);
276 }
277 
278 static void intel_pt_log_event(union perf_event *event)
279 {
280 	FILE *f = intel_pt_log_fp();
281 
282 	if (!intel_pt_enable_logging || !f)
283 		return;
284 
285 	perf_event__fprintf(event, NULL, f);
286 }
287 
288 static void intel_pt_dump_sample(struct perf_session *session,
289 				 struct perf_sample *sample)
290 {
291 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 					   auxtrace);
293 
294 	printf("\n");
295 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297 
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 	int n = pt->synth_opts.range_num;
302 
303 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 		return true;
305 
306 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 		return false;
308 
309 	/* perf_time__ranges_skip_sample does not work if time is zero */
310 	if (!tm)
311 		tm = 1;
312 
313 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315 
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 							u64 vmcs,
318 							u64 dflt_tsc_offset)
319 {
320 	struct rb_node **p = &rb_root->rb_node;
321 	struct rb_node *parent = NULL;
322 	struct intel_pt_vmcs_info *v;
323 
324 	while (*p) {
325 		parent = *p;
326 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327 
328 		if (v->vmcs == vmcs)
329 			return v;
330 
331 		if (vmcs < v->vmcs)
332 			p = &(*p)->rb_left;
333 		else
334 			p = &(*p)->rb_right;
335 	}
336 
337 	v = zalloc(sizeof(*v));
338 	if (v) {
339 		v->vmcs = vmcs;
340 		v->tsc_offset = dflt_tsc_offset;
341 		v->reliable = dflt_tsc_offset;
342 
343 		rb_link_node(&v->rb_node, parent, p);
344 		rb_insert_color(&v->rb_node, rb_root);
345 	}
346 
347 	return v;
348 }
349 
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 	struct intel_pt_queue *ptq = data;
353 	struct intel_pt *pt = ptq->pt;
354 
355 	if (!vmcs && !pt->dflt_tsc_offset)
356 		return NULL;
357 
358 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360 
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 	struct intel_pt_vmcs_info *v;
364 	struct rb_node *n;
365 
366 	n = rb_first(&pt->vmcs_info);
367 	while (n) {
368 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 		n = rb_next(n);
370 		rb_erase(&v->rb_node, &pt->vmcs_info);
371 		free(v);
372 	}
373 }
374 
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 				   struct auxtrace_buffer *b)
377 {
378 	bool consecutive = false;
379 	void *start;
380 
381 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 				      pt->have_tsc, &consecutive,
383 				      pt->synth_opts.vm_time_correlation);
384 	if (!start)
385 		return -EINVAL;
386 	/*
387 	 * In the case of vm_time_correlation, the overlap might contain TSC
388 	 * packets that will not be fixed, and that will then no longer work for
389 	 * overlap detection. Avoid that by zeroing out the overlap.
390 	 */
391 	if (pt->synth_opts.vm_time_correlation)
392 		memset(b->data, 0, start - b->data);
393 	b->use_size = b->data + b->size - start;
394 	b->use_data = start;
395 	if (b->use_size && consecutive)
396 		b->consecutive = true;
397 	return 0;
398 }
399 
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 			       struct auxtrace_buffer *buffer,
402 			       struct auxtrace_buffer *old_buffer,
403 			       struct intel_pt_buffer *b)
404 {
405 	bool might_overlap;
406 
407 	if (!buffer->data) {
408 		int fd = perf_data__fd(ptq->pt->session->data);
409 
410 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 		if (!buffer->data)
412 			return -ENOMEM;
413 	}
414 
415 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 	if (might_overlap && !buffer->consecutive && old_buffer &&
417 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 		return -ENOMEM;
419 
420 	if (buffer->use_data) {
421 		b->len = buffer->use_size;
422 		b->buf = buffer->use_data;
423 	} else {
424 		b->len = buffer->size;
425 		b->buf = buffer->data;
426 	}
427 	b->ref_timestamp = buffer->reference;
428 
429 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 		b->consecutive = false;
431 		b->trace_nr = buffer->buffer_nr + 1;
432 	} else {
433 		b->consecutive = true;
434 	}
435 
436 	return 0;
437 }
438 
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 					   struct auxtrace_buffer *buffer)
442 {
443 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 		return;
445 
446 	auxtrace_buffer__drop_data(buffer);
447 }
448 
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 			      void *cb_data)
452 {
453 	struct intel_pt_queue *ptq = data;
454 	struct auxtrace_buffer *buffer = ptq->buffer;
455 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 	struct auxtrace_queue *queue;
457 	int err = 0;
458 
459 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460 
461 	while (1) {
462 		struct intel_pt_buffer b = { .len = 0 };
463 
464 		buffer = auxtrace_buffer__next(queue, buffer);
465 		if (!buffer)
466 			break;
467 
468 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 		if (err)
470 			break;
471 
472 		if (b.len) {
473 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 			old_buffer = buffer;
475 		} else {
476 			intel_pt_lookahead_drop_buffer(ptq, buffer);
477 			continue;
478 		}
479 
480 		err = cb(&b, cb_data);
481 		if (err)
482 			break;
483 	}
484 
485 	if (buffer != old_buffer)
486 		intel_pt_lookahead_drop_buffer(ptq, buffer);
487 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488 
489 	return err;
490 }
491 
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 	struct intel_pt_queue *ptq = data;
499 	struct auxtrace_buffer *buffer = ptq->buffer;
500 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 	struct auxtrace_queue *queue;
502 	int err;
503 
504 	if (ptq->stop) {
505 		b->len = 0;
506 		return 0;
507 	}
508 
509 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510 
511 	buffer = auxtrace_buffer__next(queue, buffer);
512 	if (!buffer) {
513 		if (old_buffer)
514 			auxtrace_buffer__drop_data(old_buffer);
515 		b->len = 0;
516 		return 0;
517 	}
518 
519 	ptq->buffer = buffer;
520 
521 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 	if (err)
523 		return err;
524 
525 	if (ptq->step_through_buffers)
526 		ptq->stop = true;
527 
528 	if (b->len) {
529 		if (old_buffer)
530 			auxtrace_buffer__drop_data(old_buffer);
531 		ptq->old_buffer = buffer;
532 	} else {
533 		auxtrace_buffer__drop_data(buffer);
534 		return intel_pt_get_trace(b, data);
535 	}
536 
537 	return 0;
538 }
539 
540 struct intel_pt_cache_entry {
541 	struct auxtrace_cache_entry	entry;
542 	u64				insn_cnt;
543 	u64				byte_cnt;
544 	enum intel_pt_insn_op		op;
545 	enum intel_pt_insn_branch	branch;
546 	bool				emulated_ptwrite;
547 	int				length;
548 	int32_t				rel;
549 	char				insn[INTEL_PT_INSN_BUF_SZ];
550 };
551 
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 	int *d = data;
555 	long val;
556 
557 	if (!strcmp(var, "intel-pt.cache-divisor")) {
558 		val = strtol(value, NULL, 0);
559 		if (val > 0 && val <= INT_MAX)
560 			*d = val;
561 	}
562 
563 	return 0;
564 }
565 
566 static int intel_pt_cache_divisor(void)
567 {
568 	static int d;
569 
570 	if (d)
571 		return d;
572 
573 	perf_config(intel_pt_config_div, &d);
574 
575 	if (!d)
576 		d = 64;
577 
578 	return d;
579 }
580 
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 					struct machine *machine)
583 {
584 	off_t size;
585 
586 	size = dso__data_size(dso, machine);
587 	size /= intel_pt_cache_divisor();
588 	if (size < 1000)
589 		return 10;
590 	if (size > (1 << 21))
591 		return 21;
592 	return 32 - __builtin_clz(size);
593 }
594 
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 					     struct machine *machine)
597 {
598 	struct auxtrace_cache *c;
599 	unsigned int bits;
600 
601 	if (dso->auxtrace_cache)
602 		return dso->auxtrace_cache;
603 
604 	bits = intel_pt_cache_size(dso, machine);
605 
606 	/* Ignoring cache creation failure */
607 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608 
609 	dso->auxtrace_cache = c;
610 
611 	return c;
612 }
613 
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
616 			      struct intel_pt_insn *intel_pt_insn)
617 {
618 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 	struct intel_pt_cache_entry *e;
620 	int err;
621 
622 	if (!c)
623 		return -ENOMEM;
624 
625 	e = auxtrace_cache__alloc_entry(c);
626 	if (!e)
627 		return -ENOMEM;
628 
629 	e->insn_cnt = insn_cnt;
630 	e->byte_cnt = byte_cnt;
631 	e->op = intel_pt_insn->op;
632 	e->branch = intel_pt_insn->branch;
633 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 	e->length = intel_pt_insn->length;
635 	e->rel = intel_pt_insn->rel;
636 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637 
638 	err = auxtrace_cache__add(c, offset, &e->entry);
639 	if (err)
640 		auxtrace_cache__free_entry(c, e);
641 
642 	return err;
643 }
644 
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649 
650 	if (!c)
651 		return NULL;
652 
653 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654 }
655 
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 				      u64 offset)
658 {
659 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660 
661 	if (!c)
662 		return;
663 
664 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
665 }
666 
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 	/* Assumes 64-bit kernel */
670 	return ip & (1ULL << 63);
671 }
672 
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 	if (nr) {
676 		return intel_pt_guest_kernel_ip(ip) ?
677 		       PERF_RECORD_MISC_GUEST_KERNEL :
678 		       PERF_RECORD_MISC_GUEST_USER;
679 	}
680 
681 	return ip >= ptq->pt->kernel_start ?
682 	       PERF_RECORD_MISC_KERNEL :
683 	       PERF_RECORD_MISC_USER;
684 }
685 
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 	/* No support for non-zero CS base */
689 	if (from_ip)
690 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693 
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 	struct machines *machines = &ptq->pt->session->machines;
697 	struct machine *machine;
698 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699 
700 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 		return 0;
702 
703 	ptq->guest_machine = NULL;
704 	thread__zput(ptq->unknown_guest_thread);
705 
706 	if (symbol_conf.guest_code) {
707 		thread__zput(ptq->guest_thread);
708 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 	}
710 
711 	machine = machines__find_guest(machines, pid);
712 	if (!machine)
713 		return -1;
714 
715 	ptq->unknown_guest_thread = machine__idle_thread(machine);
716 	if (!ptq->unknown_guest_thread)
717 		return -1;
718 
719 	ptq->guest_machine = machine;
720 
721 	return 0;
722 }
723 
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728 
729 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN	16
731 
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 	unsigned char buf[PTWRITE_MAGIC_LEN];
735 	ssize_t len;
736 
737 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 		intel_pt_log("Emulated ptwrite signature found\n");
740 		return true;
741 	}
742 	intel_pt_log("Emulated ptwrite signature not found\n");
743 	return false;
744 }
745 
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
748 				   uint64_t to_ip, uint64_t max_insn_cnt,
749 				   void *data)
750 {
751 	struct intel_pt_queue *ptq = data;
752 	struct machine *machine = ptq->pt->machine;
753 	struct thread *thread;
754 	struct addr_location al;
755 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 	ssize_t len;
757 	int x86_64, ret = 0;
758 	u8 cpumode;
759 	u64 offset, start_offset, start_ip;
760 	u64 insn_cnt = 0;
761 	bool one_map = true;
762 	bool nr;
763 
764 
765 	addr_location__init(&al);
766 	intel_pt_insn->length = 0;
767 
768 	if (to_ip && *ip == to_ip)
769 		goto out_no_cache;
770 
771 	nr = ptq->state->to_nr;
772 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
773 
774 	if (nr) {
775 		if (ptq->pt->have_guest_sideband) {
776 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
777 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
778 				ret = -EINVAL;
779 				goto out_ret;
780 			}
781 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
782 			   intel_pt_get_guest(ptq)) {
783 			intel_pt_log("ERROR: no guest machine\n");
784 			ret = -EINVAL;
785 			goto out_ret;
786 		}
787 		machine = ptq->guest_machine;
788 		thread = ptq->guest_thread;
789 		if (!thread) {
790 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
791 				intel_pt_log("ERROR: no guest thread\n");
792 				ret = -EINVAL;
793 				goto out_ret;
794 			}
795 			thread = ptq->unknown_guest_thread;
796 		}
797 	} else {
798 		thread = ptq->thread;
799 		if (!thread) {
800 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
801 				intel_pt_log("ERROR: no thread\n");
802 				ret = -EINVAL;
803 				goto out_ret;
804 			}
805 			thread = ptq->pt->unknown_thread;
806 		}
807 	}
808 
809 	while (1) {
810 		struct dso *dso;
811 
812 		if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
813 			if (al.map)
814 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
815 			else
816 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
817 			addr_location__exit(&al);
818 			ret = -EINVAL;
819 			goto out_ret;
820 		}
821 		dso = map__dso(al.map);
822 
823 		if (dso->data.status == DSO_DATA_STATUS_ERROR &&
824 			dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
825 			ret = -ENOENT;
826 			goto out_ret;
827 		}
828 
829 		offset = map__map_ip(al.map, *ip);
830 
831 		if (!to_ip && one_map) {
832 			struct intel_pt_cache_entry *e;
833 
834 			e = intel_pt_cache_lookup(dso, machine, offset);
835 			if (e &&
836 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
837 				*insn_cnt_ptr = e->insn_cnt;
838 				*ip += e->byte_cnt;
839 				intel_pt_insn->op = e->op;
840 				intel_pt_insn->branch = e->branch;
841 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
842 				intel_pt_insn->length = e->length;
843 				intel_pt_insn->rel = e->rel;
844 				memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
845 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
846 				ret = 0;
847 				goto out_ret;
848 			}
849 		}
850 
851 		start_offset = offset;
852 		start_ip = *ip;
853 
854 		/* Load maps to ensure dso->is_64_bit has been updated */
855 		map__load(al.map);
856 
857 		x86_64 = dso->is_64_bit;
858 
859 		while (1) {
860 			len = dso__data_read_offset(dso, machine,
861 						    offset, buf,
862 						    INTEL_PT_INSN_BUF_SZ);
863 			if (len <= 0) {
864 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
865 					     offset);
866 				if (intel_pt_enable_logging)
867 					dso__fprintf(dso, intel_pt_log_fp());
868 				ret = -EINVAL;
869 				goto out_ret;
870 			}
871 
872 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
873 				ret = -EINVAL;
874 				goto out_ret;
875 			}
876 
877 			intel_pt_log_insn(intel_pt_insn, *ip);
878 
879 			insn_cnt += 1;
880 
881 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
882 				bool eptw;
883 				u64 offs;
884 
885 				if (!intel_pt_jmp_16(intel_pt_insn))
886 					goto out;
887 				/* Check for emulated ptwrite */
888 				offs = offset + intel_pt_insn->length;
889 				eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
890 				intel_pt_insn->emulated_ptwrite = eptw;
891 				goto out;
892 			}
893 
894 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
895 				goto out_no_cache;
896 
897 			*ip += intel_pt_insn->length;
898 
899 			if (to_ip && *ip == to_ip) {
900 				intel_pt_insn->length = 0;
901 				goto out_no_cache;
902 			}
903 
904 			if (*ip >= map__end(al.map))
905 				break;
906 
907 			offset += intel_pt_insn->length;
908 		}
909 		one_map = false;
910 	}
911 out:
912 	*insn_cnt_ptr = insn_cnt;
913 
914 	if (!one_map)
915 		goto out_no_cache;
916 
917 	/*
918 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
919 	 * entries.
920 	 */
921 	if (to_ip) {
922 		struct intel_pt_cache_entry *e;
923 
924 		e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
925 		if (e)
926 			goto out_ret;
927 	}
928 
929 	/* Ignore cache errors */
930 	intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
931 			   *ip - start_ip, intel_pt_insn);
932 
933 out_ret:
934 	addr_location__exit(&al);
935 	return ret;
936 
937 out_no_cache:
938 	*insn_cnt_ptr = insn_cnt;
939 	addr_location__exit(&al);
940 	return 0;
941 }
942 
943 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
944 				  uint64_t offset, const char *filename)
945 {
946 	struct addr_filter *filt;
947 	bool have_filter   = false;
948 	bool hit_tracestop = false;
949 	bool hit_filter    = false;
950 
951 	list_for_each_entry(filt, &pt->filts.head, list) {
952 		if (filt->start)
953 			have_filter = true;
954 
955 		if ((filename && !filt->filename) ||
956 		    (!filename && filt->filename) ||
957 		    (filename && strcmp(filename, filt->filename)))
958 			continue;
959 
960 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
961 			continue;
962 
963 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
964 			     ip, offset, filename ? filename : "[kernel]",
965 			     filt->start ? "filter" : "stop",
966 			     filt->addr, filt->size);
967 
968 		if (filt->start)
969 			hit_filter = true;
970 		else
971 			hit_tracestop = true;
972 	}
973 
974 	if (!hit_tracestop && !hit_filter)
975 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
976 			     ip, offset, filename ? filename : "[kernel]");
977 
978 	return hit_tracestop || (have_filter && !hit_filter);
979 }
980 
981 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
982 {
983 	struct intel_pt_queue *ptq = data;
984 	struct thread *thread;
985 	struct addr_location al;
986 	u8 cpumode;
987 	u64 offset;
988 	int res;
989 
990 	if (ptq->state->to_nr) {
991 		if (intel_pt_guest_kernel_ip(ip))
992 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
993 		/* No support for decoding guest user space */
994 		return -EINVAL;
995 	} else if (ip >= ptq->pt->kernel_start) {
996 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
997 	}
998 
999 	cpumode = PERF_RECORD_MISC_USER;
1000 
1001 	thread = ptq->thread;
1002 	if (!thread)
1003 		return -EINVAL;
1004 
1005 	addr_location__init(&al);
1006 	if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1007 		return -EINVAL;
1008 
1009 	offset = map__map_ip(al.map, ip);
1010 
1011 	res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1012 	addr_location__exit(&al);
1013 	return res;
1014 }
1015 
1016 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1017 {
1018 	return __intel_pt_pgd_ip(ip, data) > 0;
1019 }
1020 
1021 static bool intel_pt_get_config(struct intel_pt *pt,
1022 				struct perf_event_attr *attr, u64 *config)
1023 {
1024 	if (attr->type == pt->pmu_type) {
1025 		if (config)
1026 			*config = attr->config;
1027 		return true;
1028 	}
1029 
1030 	return false;
1031 }
1032 
1033 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1034 {
1035 	struct evsel *evsel;
1036 
1037 	evlist__for_each_entry(pt->session->evlist, evsel) {
1038 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1039 		    !evsel->core.attr.exclude_kernel)
1040 			return false;
1041 	}
1042 	return true;
1043 }
1044 
1045 static bool intel_pt_return_compression(struct intel_pt *pt)
1046 {
1047 	struct evsel *evsel;
1048 	u64 config;
1049 
1050 	if (!pt->noretcomp_bit)
1051 		return true;
1052 
1053 	evlist__for_each_entry(pt->session->evlist, evsel) {
1054 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1055 		    (config & pt->noretcomp_bit))
1056 			return false;
1057 	}
1058 	return true;
1059 }
1060 
1061 static bool intel_pt_branch_enable(struct intel_pt *pt)
1062 {
1063 	struct evsel *evsel;
1064 	u64 config;
1065 
1066 	evlist__for_each_entry(pt->session->evlist, evsel) {
1067 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1068 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1069 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1070 			return false;
1071 	}
1072 	return true;
1073 }
1074 
1075 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1076 {
1077 	struct evsel *evsel;
1078 	u64 config;
1079 
1080 	evlist__for_each_entry(pt->session->evlist, evsel) {
1081 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1082 		    config & INTEL_PT_CFG_TNT_DIS)
1083 			return true;
1084 	}
1085 	return false;
1086 }
1087 
1088 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1089 {
1090 	struct evsel *evsel;
1091 	unsigned int shift;
1092 	u64 config;
1093 
1094 	if (!pt->mtc_freq_bits)
1095 		return 0;
1096 
1097 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1098 		config >>= 1;
1099 
1100 	evlist__for_each_entry(pt->session->evlist, evsel) {
1101 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1102 			return (config & pt->mtc_freq_bits) >> shift;
1103 	}
1104 	return 0;
1105 }
1106 
1107 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1108 {
1109 	struct evsel *evsel;
1110 	bool timeless_decoding = true;
1111 	u64 config;
1112 
1113 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1114 		return true;
1115 
1116 	evlist__for_each_entry(pt->session->evlist, evsel) {
1117 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1118 			return true;
1119 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1120 			if (config & pt->tsc_bit)
1121 				timeless_decoding = false;
1122 			else
1123 				return true;
1124 		}
1125 	}
1126 	return timeless_decoding;
1127 }
1128 
1129 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1130 {
1131 	struct evsel *evsel;
1132 
1133 	evlist__for_each_entry(pt->session->evlist, evsel) {
1134 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1135 		    !evsel->core.attr.exclude_kernel)
1136 			return true;
1137 	}
1138 	return false;
1139 }
1140 
1141 static bool intel_pt_have_tsc(struct intel_pt *pt)
1142 {
1143 	struct evsel *evsel;
1144 	bool have_tsc = false;
1145 	u64 config;
1146 
1147 	if (!pt->tsc_bit)
1148 		return false;
1149 
1150 	evlist__for_each_entry(pt->session->evlist, evsel) {
1151 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1152 			if (config & pt->tsc_bit)
1153 				have_tsc = true;
1154 			else
1155 				return false;
1156 		}
1157 	}
1158 	return have_tsc;
1159 }
1160 
1161 static bool intel_pt_have_mtc(struct intel_pt *pt)
1162 {
1163 	struct evsel *evsel;
1164 	u64 config;
1165 
1166 	evlist__for_each_entry(pt->session->evlist, evsel) {
1167 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1168 		    (config & pt->mtc_bit))
1169 			return true;
1170 	}
1171 	return false;
1172 }
1173 
1174 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1175 {
1176 	struct evsel *evsel;
1177 
1178 	evlist__for_each_entry(pt->session->evlist, evsel) {
1179 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1180 		    evsel->core.attr.aux_sample_size)
1181 			return true;
1182 	}
1183 	return false;
1184 }
1185 
1186 static u64 intel_pt_ctl(struct intel_pt *pt)
1187 {
1188 	struct evsel *evsel;
1189 	u64 config;
1190 
1191 	evlist__for_each_entry(pt->session->evlist, evsel) {
1192 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1193 			return config;
1194 	}
1195 	return 0;
1196 }
1197 
1198 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1199 {
1200 	u64 quot, rem;
1201 
1202 	quot = ns / pt->tc.time_mult;
1203 	rem  = ns % pt->tc.time_mult;
1204 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1205 		pt->tc.time_mult;
1206 }
1207 
1208 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1209 {
1210 	size_t sz = sizeof(struct ip_callchain);
1211 
1212 	/* Add 1 to callchain_sz for callchain context */
1213 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1214 	return zalloc(sz);
1215 }
1216 
1217 static int intel_pt_callchain_init(struct intel_pt *pt)
1218 {
1219 	struct evsel *evsel;
1220 
1221 	evlist__for_each_entry(pt->session->evlist, evsel) {
1222 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1223 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1224 	}
1225 
1226 	pt->chain = intel_pt_alloc_chain(pt);
1227 	if (!pt->chain)
1228 		return -ENOMEM;
1229 
1230 	return 0;
1231 }
1232 
1233 static void intel_pt_add_callchain(struct intel_pt *pt,
1234 				   struct perf_sample *sample)
1235 {
1236 	struct thread *thread = machine__findnew_thread(pt->machine,
1237 							sample->pid,
1238 							sample->tid);
1239 
1240 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1241 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1242 				  pt->kernel_start);
1243 
1244 	sample->callchain = pt->chain;
1245 }
1246 
1247 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1248 {
1249 	size_t sz = sizeof(struct branch_stack);
1250 
1251 	sz += entry_cnt * sizeof(struct branch_entry);
1252 	return zalloc(sz);
1253 }
1254 
1255 static int intel_pt_br_stack_init(struct intel_pt *pt)
1256 {
1257 	struct evsel *evsel;
1258 
1259 	evlist__for_each_entry(pt->session->evlist, evsel) {
1260 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1261 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1262 	}
1263 
1264 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1265 	if (!pt->br_stack)
1266 		return -ENOMEM;
1267 
1268 	return 0;
1269 }
1270 
1271 static void intel_pt_add_br_stack(struct intel_pt *pt,
1272 				  struct perf_sample *sample)
1273 {
1274 	struct thread *thread = machine__findnew_thread(pt->machine,
1275 							sample->pid,
1276 							sample->tid);
1277 
1278 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1279 				     pt->br_stack_sz, sample->ip,
1280 				     pt->kernel_start);
1281 
1282 	sample->branch_stack = pt->br_stack;
1283 	thread__put(thread);
1284 }
1285 
1286 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1287 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1288 
1289 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1290 						   unsigned int queue_nr)
1291 {
1292 	struct intel_pt_params params = { .get_trace = 0, };
1293 	struct perf_env *env = pt->machine->env;
1294 	struct intel_pt_queue *ptq;
1295 
1296 	ptq = zalloc(sizeof(struct intel_pt_queue));
1297 	if (!ptq)
1298 		return NULL;
1299 
1300 	if (pt->synth_opts.callchain) {
1301 		ptq->chain = intel_pt_alloc_chain(pt);
1302 		if (!ptq->chain)
1303 			goto out_free;
1304 	}
1305 
1306 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1307 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1308 
1309 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1310 		if (!ptq->last_branch)
1311 			goto out_free;
1312 	}
1313 
1314 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1315 	if (!ptq->event_buf)
1316 		goto out_free;
1317 
1318 	ptq->pt = pt;
1319 	ptq->queue_nr = queue_nr;
1320 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1321 	ptq->pid = -1;
1322 	ptq->tid = -1;
1323 	ptq->cpu = -1;
1324 	ptq->next_tid = -1;
1325 
1326 	params.get_trace = intel_pt_get_trace;
1327 	params.walk_insn = intel_pt_walk_next_insn;
1328 	params.lookahead = intel_pt_lookahead;
1329 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1330 	params.data = ptq;
1331 	params.return_compression = intel_pt_return_compression(pt);
1332 	params.branch_enable = intel_pt_branch_enable(pt);
1333 	params.ctl = intel_pt_ctl(pt);
1334 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1335 	params.mtc_period = intel_pt_mtc_period(pt);
1336 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1337 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1338 	params.quick = pt->synth_opts.quick;
1339 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1340 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1341 	params.first_timestamp = pt->first_timestamp;
1342 	params.max_loops = pt->max_loops;
1343 
1344 	/* Cannot walk code without TNT, so force 'quick' mode */
1345 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1346 		params.quick = 1;
1347 
1348 	if (pt->filts.cnt > 0)
1349 		params.pgd_ip = intel_pt_pgd_ip;
1350 
1351 	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1352 		if (pt->synth_opts.period) {
1353 			switch (pt->synth_opts.period_type) {
1354 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1355 				params.period_type =
1356 						INTEL_PT_PERIOD_INSTRUCTIONS;
1357 				params.period = pt->synth_opts.period;
1358 				break;
1359 			case PERF_ITRACE_PERIOD_TICKS:
1360 				params.period_type = INTEL_PT_PERIOD_TICKS;
1361 				params.period = pt->synth_opts.period;
1362 				break;
1363 			case PERF_ITRACE_PERIOD_NANOSECS:
1364 				params.period_type = INTEL_PT_PERIOD_TICKS;
1365 				params.period = intel_pt_ns_to_ticks(pt,
1366 							pt->synth_opts.period);
1367 				break;
1368 			default:
1369 				break;
1370 			}
1371 		}
1372 
1373 		if (!params.period) {
1374 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1375 			params.period = 1;
1376 		}
1377 	}
1378 
1379 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1380 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1381 
1382 	ptq->decoder = intel_pt_decoder_new(&params);
1383 	if (!ptq->decoder)
1384 		goto out_free;
1385 
1386 	return ptq;
1387 
1388 out_free:
1389 	zfree(&ptq->event_buf);
1390 	zfree(&ptq->last_branch);
1391 	zfree(&ptq->chain);
1392 	free(ptq);
1393 	return NULL;
1394 }
1395 
1396 static void intel_pt_free_queue(void *priv)
1397 {
1398 	struct intel_pt_queue *ptq = priv;
1399 
1400 	if (!ptq)
1401 		return;
1402 	thread__zput(ptq->thread);
1403 	thread__zput(ptq->guest_thread);
1404 	thread__zput(ptq->unknown_guest_thread);
1405 	intel_pt_decoder_free(ptq->decoder);
1406 	zfree(&ptq->event_buf);
1407 	zfree(&ptq->last_branch);
1408 	zfree(&ptq->chain);
1409 	free(ptq);
1410 }
1411 
1412 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1413 {
1414 	unsigned int i;
1415 
1416 	pt->first_timestamp = timestamp;
1417 
1418 	for (i = 0; i < pt->queues.nr_queues; i++) {
1419 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1420 		struct intel_pt_queue *ptq = queue->priv;
1421 
1422 		if (ptq && ptq->decoder)
1423 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1424 	}
1425 }
1426 
1427 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1428 {
1429 	struct machines *machines = &ptq->pt->session->machines;
1430 	struct machine *machine;
1431 	pid_t machine_pid = ptq->pid;
1432 	pid_t tid;
1433 	int vcpu;
1434 
1435 	if (machine_pid <= 0)
1436 		return 0; /* Not a guest machine */
1437 
1438 	machine = machines__find(machines, machine_pid);
1439 	if (!machine)
1440 		return 0; /* Not a guest machine */
1441 
1442 	if (ptq->guest_machine != machine) {
1443 		ptq->guest_machine = NULL;
1444 		thread__zput(ptq->guest_thread);
1445 		thread__zput(ptq->unknown_guest_thread);
1446 
1447 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1448 		if (!ptq->unknown_guest_thread)
1449 			return -1;
1450 		ptq->guest_machine = machine;
1451 	}
1452 
1453 	vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1454 	if (vcpu < 0)
1455 		return -1;
1456 
1457 	tid = machine__get_current_tid(machine, vcpu);
1458 
1459 	if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1460 		thread__zput(ptq->guest_thread);
1461 
1462 	if (!ptq->guest_thread) {
1463 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1464 		if (!ptq->guest_thread)
1465 			return -1;
1466 	}
1467 
1468 	ptq->guest_machine_pid = machine_pid;
1469 	ptq->guest_pid = thread__pid(ptq->guest_thread);
1470 	ptq->guest_tid = tid;
1471 	ptq->vcpu = vcpu;
1472 
1473 	return 0;
1474 }
1475 
1476 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1477 				     struct auxtrace_queue *queue)
1478 {
1479 	struct intel_pt_queue *ptq = queue->priv;
1480 
1481 	if (queue->tid == -1 || pt->have_sched_switch) {
1482 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1483 		if (ptq->tid == -1)
1484 			ptq->pid = -1;
1485 		thread__zput(ptq->thread);
1486 	}
1487 
1488 	if (!ptq->thread && ptq->tid != -1)
1489 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1490 
1491 	if (ptq->thread) {
1492 		ptq->pid = thread__pid(ptq->thread);
1493 		if (queue->cpu == -1)
1494 			ptq->cpu = thread__cpu(ptq->thread);
1495 	}
1496 
1497 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1498 		ptq->guest_machine_pid = 0;
1499 		ptq->guest_pid = -1;
1500 		ptq->guest_tid = -1;
1501 		ptq->vcpu = -1;
1502 	}
1503 }
1504 
1505 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1506 {
1507 	struct intel_pt *pt = ptq->pt;
1508 
1509 	ptq->insn_len = 0;
1510 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1511 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1512 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1513 		if (!ptq->state->to_ip)
1514 			ptq->flags = PERF_IP_FLAG_BRANCH |
1515 				     PERF_IP_FLAG_ASYNC |
1516 				     PERF_IP_FLAG_TRACE_END;
1517 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1518 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1519 				     PERF_IP_FLAG_ASYNC |
1520 				     PERF_IP_FLAG_VMEXIT;
1521 		else
1522 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523 				     PERF_IP_FLAG_ASYNC |
1524 				     PERF_IP_FLAG_INTERRUPT;
1525 	} else {
1526 		if (ptq->state->from_ip)
1527 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1528 		else
1529 			ptq->flags = PERF_IP_FLAG_BRANCH |
1530 				     PERF_IP_FLAG_TRACE_BEGIN;
1531 		if (ptq->state->flags & INTEL_PT_IN_TX)
1532 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1533 		ptq->insn_len = ptq->state->insn_len;
1534 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1535 	}
1536 
1537 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1538 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1539 	if (ptq->state->type & INTEL_PT_TRACE_END)
1540 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1541 
1542 	if (pt->cap_event_trace) {
1543 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1544 			if (!ptq->state->from_iflag)
1545 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1546 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1547 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1548 		} else if (!ptq->state->to_iflag) {
1549 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550 		}
1551 	}
1552 }
1553 
1554 static void intel_pt_setup_time_range(struct intel_pt *pt,
1555 				      struct intel_pt_queue *ptq)
1556 {
1557 	if (!pt->range_cnt)
1558 		return;
1559 
1560 	ptq->sel_timestamp = pt->time_ranges[0].start;
1561 	ptq->sel_idx = 0;
1562 
1563 	if (ptq->sel_timestamp) {
1564 		ptq->sel_start = true;
1565 	} else {
1566 		ptq->sel_timestamp = pt->time_ranges[0].end;
1567 		ptq->sel_start = false;
1568 	}
1569 }
1570 
1571 static int intel_pt_setup_queue(struct intel_pt *pt,
1572 				struct auxtrace_queue *queue,
1573 				unsigned int queue_nr)
1574 {
1575 	struct intel_pt_queue *ptq = queue->priv;
1576 
1577 	if (list_empty(&queue->head))
1578 		return 0;
1579 
1580 	if (!ptq) {
1581 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1582 		if (!ptq)
1583 			return -ENOMEM;
1584 		queue->priv = ptq;
1585 
1586 		if (queue->cpu != -1)
1587 			ptq->cpu = queue->cpu;
1588 		ptq->tid = queue->tid;
1589 
1590 		ptq->cbr_seen = UINT_MAX;
1591 
1592 		if (pt->sampling_mode && !pt->snapshot_mode &&
1593 		    pt->timeless_decoding)
1594 			ptq->step_through_buffers = true;
1595 
1596 		ptq->sync_switch = pt->sync_switch;
1597 
1598 		intel_pt_setup_time_range(pt, ptq);
1599 	}
1600 
1601 	if (!ptq->on_heap &&
1602 	    (!ptq->sync_switch ||
1603 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1604 		const struct intel_pt_state *state;
1605 		int ret;
1606 
1607 		if (pt->timeless_decoding)
1608 			return 0;
1609 
1610 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1611 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1612 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1613 
1614 		if (ptq->sel_start && ptq->sel_timestamp) {
1615 			ret = intel_pt_fast_forward(ptq->decoder,
1616 						    ptq->sel_timestamp);
1617 			if (ret)
1618 				return ret;
1619 		}
1620 
1621 		while (1) {
1622 			state = intel_pt_decode(ptq->decoder);
1623 			if (state->err) {
1624 				if (state->err == INTEL_PT_ERR_NODATA) {
1625 					intel_pt_log("queue %u has no timestamp\n",
1626 						     queue_nr);
1627 					return 0;
1628 				}
1629 				continue;
1630 			}
1631 			if (state->timestamp)
1632 				break;
1633 		}
1634 
1635 		ptq->timestamp = state->timestamp;
1636 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1637 			     queue_nr, ptq->timestamp);
1638 		ptq->state = state;
1639 		ptq->have_sample = true;
1640 		if (ptq->sel_start && ptq->sel_timestamp &&
1641 		    ptq->timestamp < ptq->sel_timestamp)
1642 			ptq->have_sample = false;
1643 		intel_pt_sample_flags(ptq);
1644 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1645 		if (ret)
1646 			return ret;
1647 		ptq->on_heap = true;
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static int intel_pt_setup_queues(struct intel_pt *pt)
1654 {
1655 	unsigned int i;
1656 	int ret;
1657 
1658 	for (i = 0; i < pt->queues.nr_queues; i++) {
1659 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1660 		if (ret)
1661 			return ret;
1662 	}
1663 	return 0;
1664 }
1665 
1666 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1667 {
1668 	return pt->synth_opts.initial_skip &&
1669 	       pt->num_events++ < pt->synth_opts.initial_skip;
1670 }
1671 
1672 /*
1673  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1674  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1675  * from this decoder state.
1676  */
1677 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1678 {
1679 	return pt->synth_opts.initial_skip &&
1680 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1681 }
1682 
1683 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1684 				   union perf_event *event,
1685 				   struct perf_sample *sample)
1686 {
1687 	event->sample.header.type = PERF_RECORD_SAMPLE;
1688 	event->sample.header.size = sizeof(struct perf_event_header);
1689 
1690 	sample->pid = ptq->pid;
1691 	sample->tid = ptq->tid;
1692 
1693 	if (ptq->pt->have_guest_sideband) {
1694 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1695 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1696 			sample->pid = ptq->guest_pid;
1697 			sample->tid = ptq->guest_tid;
1698 			sample->machine_pid = ptq->guest_machine_pid;
1699 			sample->vcpu = ptq->vcpu;
1700 		}
1701 	}
1702 
1703 	sample->cpu = ptq->cpu;
1704 	sample->insn_len = ptq->insn_len;
1705 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1706 }
1707 
1708 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1709 				   struct intel_pt_queue *ptq,
1710 				   union perf_event *event,
1711 				   struct perf_sample *sample)
1712 {
1713 	intel_pt_prep_a_sample(ptq, event, sample);
1714 
1715 	if (!pt->timeless_decoding)
1716 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1717 
1718 	sample->ip = ptq->state->from_ip;
1719 	sample->addr = ptq->state->to_ip;
1720 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1721 	sample->period = 1;
1722 	sample->flags = ptq->flags;
1723 
1724 	event->sample.header.misc = sample->cpumode;
1725 }
1726 
1727 static int intel_pt_inject_event(union perf_event *event,
1728 				 struct perf_sample *sample, u64 type)
1729 {
1730 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1731 	return perf_event__synthesize_sample(event, type, 0, sample);
1732 }
1733 
1734 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1735 				      union perf_event *event,
1736 				      struct perf_sample *sample, u64 type)
1737 {
1738 	if (!pt->synth_opts.inject)
1739 		return 0;
1740 
1741 	return intel_pt_inject_event(event, sample, type);
1742 }
1743 
1744 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1745 					union perf_event *event,
1746 					struct perf_sample *sample, u64 type)
1747 {
1748 	int ret;
1749 
1750 	ret = intel_pt_opt_inject(pt, event, sample, type);
1751 	if (ret)
1752 		return ret;
1753 
1754 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1755 	if (ret)
1756 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1757 
1758 	return ret;
1759 }
1760 
1761 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1762 {
1763 	struct intel_pt *pt = ptq->pt;
1764 	union perf_event *event = ptq->event_buf;
1765 	struct perf_sample sample = { .ip = 0, };
1766 	struct dummy_branch_stack {
1767 		u64			nr;
1768 		u64			hw_idx;
1769 		struct branch_entry	entries;
1770 	} dummy_bs;
1771 
1772 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1773 		return 0;
1774 
1775 	if (intel_pt_skip_event(pt))
1776 		return 0;
1777 
1778 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1779 
1780 	sample.id = ptq->pt->branches_id;
1781 	sample.stream_id = ptq->pt->branches_id;
1782 
1783 	/*
1784 	 * perf report cannot handle events without a branch stack when using
1785 	 * SORT_MODE__BRANCH so make a dummy one.
1786 	 */
1787 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1788 		dummy_bs = (struct dummy_branch_stack){
1789 			.nr = 1,
1790 			.hw_idx = -1ULL,
1791 			.entries = {
1792 				.from = sample.ip,
1793 				.to = sample.addr,
1794 			},
1795 		};
1796 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1797 	}
1798 
1799 	if (ptq->sample_ipc)
1800 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1801 	if (sample.cyc_cnt) {
1802 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1803 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1804 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1805 	}
1806 
1807 	return intel_pt_deliver_synth_event(pt, event, &sample,
1808 					    pt->branches_sample_type);
1809 }
1810 
1811 static void intel_pt_prep_sample(struct intel_pt *pt,
1812 				 struct intel_pt_queue *ptq,
1813 				 union perf_event *event,
1814 				 struct perf_sample *sample)
1815 {
1816 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1817 
1818 	if (pt->synth_opts.callchain) {
1819 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1820 				     pt->synth_opts.callchain_sz + 1,
1821 				     sample->ip, pt->kernel_start);
1822 		sample->callchain = ptq->chain;
1823 	}
1824 
1825 	if (pt->synth_opts.last_branch) {
1826 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1827 					pt->br_stack_sz);
1828 		sample->branch_stack = ptq->last_branch;
1829 	}
1830 }
1831 
1832 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1833 {
1834 	struct intel_pt *pt = ptq->pt;
1835 	union perf_event *event = ptq->event_buf;
1836 	struct perf_sample sample = { .ip = 0, };
1837 
1838 	if (intel_pt_skip_event(pt))
1839 		return 0;
1840 
1841 	intel_pt_prep_sample(pt, ptq, event, &sample);
1842 
1843 	sample.id = ptq->pt->instructions_id;
1844 	sample.stream_id = ptq->pt->instructions_id;
1845 	if (pt->synth_opts.quick)
1846 		sample.period = 1;
1847 	else
1848 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1849 
1850 	if (ptq->sample_ipc)
1851 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1852 	if (sample.cyc_cnt) {
1853 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1854 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1855 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1856 	}
1857 
1858 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1859 
1860 	return intel_pt_deliver_synth_event(pt, event, &sample,
1861 					    pt->instructions_sample_type);
1862 }
1863 
1864 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1865 {
1866 	struct intel_pt *pt = ptq->pt;
1867 	union perf_event *event = ptq->event_buf;
1868 	struct perf_sample sample = { .ip = 0, };
1869 	u64 period = 0;
1870 
1871 	if (ptq->sample_ipc)
1872 		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1873 
1874 	if (!period || intel_pt_skip_event(pt))
1875 		return 0;
1876 
1877 	intel_pt_prep_sample(pt, ptq, event, &sample);
1878 
1879 	sample.id = ptq->pt->cycles_id;
1880 	sample.stream_id = ptq->pt->cycles_id;
1881 	sample.period = period;
1882 
1883 	sample.cyc_cnt = period;
1884 	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1885 	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1886 	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1887 
1888 	return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1889 }
1890 
1891 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1892 {
1893 	struct intel_pt *pt = ptq->pt;
1894 	union perf_event *event = ptq->event_buf;
1895 	struct perf_sample sample = { .ip = 0, };
1896 
1897 	if (intel_pt_skip_event(pt))
1898 		return 0;
1899 
1900 	intel_pt_prep_sample(pt, ptq, event, &sample);
1901 
1902 	sample.id = ptq->pt->transactions_id;
1903 	sample.stream_id = ptq->pt->transactions_id;
1904 
1905 	return intel_pt_deliver_synth_event(pt, event, &sample,
1906 					    pt->transactions_sample_type);
1907 }
1908 
1909 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1910 				   struct intel_pt_queue *ptq,
1911 				   union perf_event *event,
1912 				   struct perf_sample *sample)
1913 {
1914 	intel_pt_prep_sample(pt, ptq, event, sample);
1915 
1916 	/*
1917 	 * Zero IP is used to mean "trace start" but that is not the case for
1918 	 * power or PTWRITE events with no IP, so clear the flags.
1919 	 */
1920 	if (!sample->ip)
1921 		sample->flags = 0;
1922 }
1923 
1924 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1925 {
1926 	struct intel_pt *pt = ptq->pt;
1927 	union perf_event *event = ptq->event_buf;
1928 	struct perf_sample sample = { .ip = 0, };
1929 	struct perf_synth_intel_ptwrite raw;
1930 
1931 	if (intel_pt_skip_event(pt))
1932 		return 0;
1933 
1934 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1935 
1936 	sample.id = ptq->pt->ptwrites_id;
1937 	sample.stream_id = ptq->pt->ptwrites_id;
1938 
1939 	raw.flags = 0;
1940 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1941 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1942 
1943 	sample.raw_size = perf_synth__raw_size(raw);
1944 	sample.raw_data = perf_synth__raw_data(&raw);
1945 
1946 	return intel_pt_deliver_synth_event(pt, event, &sample,
1947 					    pt->ptwrites_sample_type);
1948 }
1949 
1950 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1951 {
1952 	struct intel_pt *pt = ptq->pt;
1953 	union perf_event *event = ptq->event_buf;
1954 	struct perf_sample sample = { .ip = 0, };
1955 	struct perf_synth_intel_cbr raw;
1956 	u32 flags;
1957 
1958 	if (intel_pt_skip_cbr_event(pt))
1959 		return 0;
1960 
1961 	ptq->cbr_seen = ptq->state->cbr;
1962 
1963 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1964 
1965 	sample.id = ptq->pt->cbr_id;
1966 	sample.stream_id = ptq->pt->cbr_id;
1967 
1968 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1969 	raw.flags = cpu_to_le32(flags);
1970 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1971 	raw.reserved3 = 0;
1972 
1973 	sample.raw_size = perf_synth__raw_size(raw);
1974 	sample.raw_data = perf_synth__raw_data(&raw);
1975 
1976 	return intel_pt_deliver_synth_event(pt, event, &sample,
1977 					    pt->pwr_events_sample_type);
1978 }
1979 
1980 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1981 {
1982 	struct intel_pt *pt = ptq->pt;
1983 	union perf_event *event = ptq->event_buf;
1984 	struct perf_sample sample = { .ip = 0, };
1985 	struct perf_synth_intel_psb raw;
1986 
1987 	if (intel_pt_skip_event(pt))
1988 		return 0;
1989 
1990 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1991 
1992 	sample.id = ptq->pt->psb_id;
1993 	sample.stream_id = ptq->pt->psb_id;
1994 	sample.flags = 0;
1995 
1996 	raw.reserved = 0;
1997 	raw.offset = ptq->state->psb_offset;
1998 
1999 	sample.raw_size = perf_synth__raw_size(raw);
2000 	sample.raw_data = perf_synth__raw_data(&raw);
2001 
2002 	return intel_pt_deliver_synth_event(pt, event, &sample,
2003 					    pt->pwr_events_sample_type);
2004 }
2005 
2006 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2007 {
2008 	struct intel_pt *pt = ptq->pt;
2009 	union perf_event *event = ptq->event_buf;
2010 	struct perf_sample sample = { .ip = 0, };
2011 	struct perf_synth_intel_mwait raw;
2012 
2013 	if (intel_pt_skip_event(pt))
2014 		return 0;
2015 
2016 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2017 
2018 	sample.id = ptq->pt->mwait_id;
2019 	sample.stream_id = ptq->pt->mwait_id;
2020 
2021 	raw.reserved = 0;
2022 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2023 
2024 	sample.raw_size = perf_synth__raw_size(raw);
2025 	sample.raw_data = perf_synth__raw_data(&raw);
2026 
2027 	return intel_pt_deliver_synth_event(pt, event, &sample,
2028 					    pt->pwr_events_sample_type);
2029 }
2030 
2031 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2032 {
2033 	struct intel_pt *pt = ptq->pt;
2034 	union perf_event *event = ptq->event_buf;
2035 	struct perf_sample sample = { .ip = 0, };
2036 	struct perf_synth_intel_pwre raw;
2037 
2038 	if (intel_pt_skip_event(pt))
2039 		return 0;
2040 
2041 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2042 
2043 	sample.id = ptq->pt->pwre_id;
2044 	sample.stream_id = ptq->pt->pwre_id;
2045 
2046 	raw.reserved = 0;
2047 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2048 
2049 	sample.raw_size = perf_synth__raw_size(raw);
2050 	sample.raw_data = perf_synth__raw_data(&raw);
2051 
2052 	return intel_pt_deliver_synth_event(pt, event, &sample,
2053 					    pt->pwr_events_sample_type);
2054 }
2055 
2056 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2057 {
2058 	struct intel_pt *pt = ptq->pt;
2059 	union perf_event *event = ptq->event_buf;
2060 	struct perf_sample sample = { .ip = 0, };
2061 	struct perf_synth_intel_exstop raw;
2062 
2063 	if (intel_pt_skip_event(pt))
2064 		return 0;
2065 
2066 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2067 
2068 	sample.id = ptq->pt->exstop_id;
2069 	sample.stream_id = ptq->pt->exstop_id;
2070 
2071 	raw.flags = 0;
2072 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2073 
2074 	sample.raw_size = perf_synth__raw_size(raw);
2075 	sample.raw_data = perf_synth__raw_data(&raw);
2076 
2077 	return intel_pt_deliver_synth_event(pt, event, &sample,
2078 					    pt->pwr_events_sample_type);
2079 }
2080 
2081 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2082 {
2083 	struct intel_pt *pt = ptq->pt;
2084 	union perf_event *event = ptq->event_buf;
2085 	struct perf_sample sample = { .ip = 0, };
2086 	struct perf_synth_intel_pwrx raw;
2087 
2088 	if (intel_pt_skip_event(pt))
2089 		return 0;
2090 
2091 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2092 
2093 	sample.id = ptq->pt->pwrx_id;
2094 	sample.stream_id = ptq->pt->pwrx_id;
2095 
2096 	raw.reserved = 0;
2097 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2098 
2099 	sample.raw_size = perf_synth__raw_size(raw);
2100 	sample.raw_data = perf_synth__raw_data(&raw);
2101 
2102 	return intel_pt_deliver_synth_event(pt, event, &sample,
2103 					    pt->pwr_events_sample_type);
2104 }
2105 
2106 /*
2107  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2108  * intel_pt_add_gp_regs().
2109  */
2110 static const int pebs_gp_regs[] = {
2111 	[PERF_REG_X86_FLAGS]	= 1,
2112 	[PERF_REG_X86_IP]	= 2,
2113 	[PERF_REG_X86_AX]	= 3,
2114 	[PERF_REG_X86_CX]	= 4,
2115 	[PERF_REG_X86_DX]	= 5,
2116 	[PERF_REG_X86_BX]	= 6,
2117 	[PERF_REG_X86_SP]	= 7,
2118 	[PERF_REG_X86_BP]	= 8,
2119 	[PERF_REG_X86_SI]	= 9,
2120 	[PERF_REG_X86_DI]	= 10,
2121 	[PERF_REG_X86_R8]	= 11,
2122 	[PERF_REG_X86_R9]	= 12,
2123 	[PERF_REG_X86_R10]	= 13,
2124 	[PERF_REG_X86_R11]	= 14,
2125 	[PERF_REG_X86_R12]	= 15,
2126 	[PERF_REG_X86_R13]	= 16,
2127 	[PERF_REG_X86_R14]	= 17,
2128 	[PERF_REG_X86_R15]	= 18,
2129 };
2130 
2131 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2132 				 const struct intel_pt_blk_items *items,
2133 				 u64 regs_mask)
2134 {
2135 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2136 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2137 	u32 bit;
2138 	int i;
2139 
2140 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2141 		/* Get the PEBS gp_regs array index */
2142 		int n = pebs_gp_regs[i] - 1;
2143 
2144 		if (n < 0)
2145 			continue;
2146 		/*
2147 		 * Add only registers that were requested (i.e. 'regs_mask') and
2148 		 * that were provided (i.e. 'mask'), and update the resulting
2149 		 * mask (i.e. 'intr_regs->mask') accordingly.
2150 		 */
2151 		if (mask & 1 << n && regs_mask & bit) {
2152 			intr_regs->mask |= bit;
2153 			*pos++ = gp_regs[n];
2154 		}
2155 	}
2156 
2157 	return pos;
2158 }
2159 
2160 #ifndef PERF_REG_X86_XMM0
2161 #define PERF_REG_X86_XMM0 32
2162 #endif
2163 
2164 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2165 			     const struct intel_pt_blk_items *items,
2166 			     u64 regs_mask)
2167 {
2168 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2169 	const u64 *xmm = items->xmm;
2170 
2171 	/*
2172 	 * If there are any XMM registers, then there should be all of them.
2173 	 * Nevertheless, follow the logic to add only registers that were
2174 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2175 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2176 	 */
2177 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2178 
2179 	for (; mask; mask >>= 1, xmm++) {
2180 		if (mask & 1)
2181 			*pos++ = *xmm;
2182 	}
2183 }
2184 
2185 #define LBR_INFO_MISPRED	(1ULL << 63)
2186 #define LBR_INFO_IN_TX		(1ULL << 62)
2187 #define LBR_INFO_ABORT		(1ULL << 61)
2188 #define LBR_INFO_CYCLES		0xffff
2189 
2190 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2191 static u64 intel_pt_lbr_flags(u64 info)
2192 {
2193 	union {
2194 		struct branch_flags flags;
2195 		u64 result;
2196 	} u;
2197 
2198 	u.result	  = 0;
2199 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2200 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2201 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2202 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2203 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2204 
2205 	return u.result;
2206 }
2207 
2208 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2209 			      const struct intel_pt_blk_items *items)
2210 {
2211 	u64 *to;
2212 	int i;
2213 
2214 	br_stack->nr = 0;
2215 
2216 	to = &br_stack->entries[0].from;
2217 
2218 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2219 		u32 mask = items->mask[i];
2220 		const u64 *from = items->val[i];
2221 
2222 		for (; mask; mask >>= 3, from += 3) {
2223 			if ((mask & 7) == 7) {
2224 				*to++ = from[0];
2225 				*to++ = from[1];
2226 				*to++ = intel_pt_lbr_flags(from[2]);
2227 				br_stack->nr += 1;
2228 			}
2229 		}
2230 	}
2231 }
2232 
2233 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2234 {
2235 	const struct intel_pt_blk_items *items = &ptq->state->items;
2236 	struct perf_sample sample = { .ip = 0, };
2237 	union perf_event *event = ptq->event_buf;
2238 	struct intel_pt *pt = ptq->pt;
2239 	u64 sample_type = evsel->core.attr.sample_type;
2240 	u8 cpumode;
2241 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2242 
2243 	if (intel_pt_skip_event(pt))
2244 		return 0;
2245 
2246 	intel_pt_prep_a_sample(ptq, event, &sample);
2247 
2248 	sample.id = id;
2249 	sample.stream_id = id;
2250 
2251 	if (!evsel->core.attr.freq)
2252 		sample.period = evsel->core.attr.sample_period;
2253 
2254 	/* No support for non-zero CS base */
2255 	if (items->has_ip)
2256 		sample.ip = items->ip;
2257 	else if (items->has_rip)
2258 		sample.ip = items->rip;
2259 	else
2260 		sample.ip = ptq->state->from_ip;
2261 
2262 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2263 
2264 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2265 
2266 	sample.cpumode = cpumode;
2267 
2268 	if (sample_type & PERF_SAMPLE_TIME) {
2269 		u64 timestamp = 0;
2270 
2271 		if (items->has_timestamp)
2272 			timestamp = items->timestamp;
2273 		else if (!pt->timeless_decoding)
2274 			timestamp = ptq->timestamp;
2275 		if (timestamp)
2276 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2277 	}
2278 
2279 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2280 	    pt->synth_opts.callchain) {
2281 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2282 				     pt->synth_opts.callchain_sz, sample.ip,
2283 				     pt->kernel_start);
2284 		sample.callchain = ptq->chain;
2285 	}
2286 
2287 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2288 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2289 	     items->mask[INTEL_PT_XMM_POS])) {
2290 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2291 		u64 *pos;
2292 
2293 		sample.intr_regs.abi = items->is_32_bit ?
2294 				       PERF_SAMPLE_REGS_ABI_32 :
2295 				       PERF_SAMPLE_REGS_ABI_64;
2296 		sample.intr_regs.regs = regs;
2297 
2298 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2299 
2300 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2301 	}
2302 
2303 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2304 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2305 		    items->mask[INTEL_PT_LBR_1_POS] ||
2306 		    items->mask[INTEL_PT_LBR_2_POS]) {
2307 			intel_pt_add_lbrs(ptq->last_branch, items);
2308 		} else if (pt->synth_opts.last_branch) {
2309 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2310 						ptq->last_branch,
2311 						pt->br_stack_sz);
2312 		} else {
2313 			ptq->last_branch->nr = 0;
2314 		}
2315 		sample.branch_stack = ptq->last_branch;
2316 	}
2317 
2318 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2319 		sample.addr = items->mem_access_address;
2320 
2321 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2322 		/*
2323 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2324 		 * intel_hsw_weight().
2325 		 */
2326 		if (items->has_mem_access_latency) {
2327 			u64 weight = items->mem_access_latency >> 32;
2328 
2329 			/*
2330 			 * Starts from SPR, the mem access latency field
2331 			 * contains both cache latency [47:32] and instruction
2332 			 * latency [15:0]. The cache latency is the same as the
2333 			 * mem access latency on previous platforms.
2334 			 *
2335 			 * In practice, no memory access could last than 4G
2336 			 * cycles. Use latency >> 32 to distinguish the
2337 			 * different format of the mem access latency field.
2338 			 */
2339 			if (weight > 0) {
2340 				sample.weight = weight & 0xffff;
2341 				sample.ins_lat = items->mem_access_latency & 0xffff;
2342 			} else
2343 				sample.weight = items->mem_access_latency;
2344 		}
2345 		if (!sample.weight && items->has_tsx_aux_info) {
2346 			/* Cycles last block */
2347 			sample.weight = (u32)items->tsx_aux_info;
2348 		}
2349 	}
2350 
2351 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2352 		u64 ax = items->has_rax ? items->rax : 0;
2353 		/* Refer kernel's intel_hsw_transaction() */
2354 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2355 
2356 		/* For RTM XABORTs also log the abort code from AX */
2357 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2358 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2359 		sample.transaction = txn;
2360 	}
2361 
2362 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2363 }
2364 
2365 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2366 {
2367 	struct intel_pt *pt = ptq->pt;
2368 	struct evsel *evsel = pt->pebs_evsel;
2369 	u64 id = evsel->core.id[0];
2370 
2371 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2372 }
2373 
2374 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2375 {
2376 	const struct intel_pt_blk_items *items = &ptq->state->items;
2377 	struct intel_pt_pebs_event *pe;
2378 	struct intel_pt *pt = ptq->pt;
2379 	int err = -EINVAL;
2380 	int hw_id;
2381 
2382 	if (!items->has_applicable_counters || !items->applicable_counters) {
2383 		if (!pt->single_pebs)
2384 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2385 		return intel_pt_synth_single_pebs_sample(ptq);
2386 	}
2387 
2388 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2389 		pe = &ptq->pebs[hw_id];
2390 		if (!pe->evsel) {
2391 			if (!pt->single_pebs)
2392 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2393 				       hw_id);
2394 			return intel_pt_synth_single_pebs_sample(ptq);
2395 		}
2396 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2397 		if (err)
2398 			return err;
2399 	}
2400 
2401 	return err;
2402 }
2403 
2404 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2405 {
2406 	struct intel_pt *pt = ptq->pt;
2407 	union perf_event *event = ptq->event_buf;
2408 	struct perf_sample sample = { .ip = 0, };
2409 	struct {
2410 		struct perf_synth_intel_evt cfe;
2411 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2412 	} raw;
2413 	int i;
2414 
2415 	if (intel_pt_skip_event(pt))
2416 		return 0;
2417 
2418 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2419 
2420 	sample.id        = ptq->pt->evt_id;
2421 	sample.stream_id = ptq->pt->evt_id;
2422 
2423 	raw.cfe.type     = ptq->state->cfe_type;
2424 	raw.cfe.reserved = 0;
2425 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2426 	raw.cfe.vector   = ptq->state->cfe_vector;
2427 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2428 
2429 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2430 		raw.evd[i].et       = 0;
2431 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2432 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2433 	}
2434 
2435 	sample.raw_size = perf_synth__raw_size(raw) +
2436 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2437 	sample.raw_data = perf_synth__raw_data(&raw);
2438 
2439 	return intel_pt_deliver_synth_event(pt, event, &sample,
2440 					    pt->evt_sample_type);
2441 }
2442 
2443 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2444 {
2445 	struct intel_pt *pt = ptq->pt;
2446 	union perf_event *event = ptq->event_buf;
2447 	struct perf_sample sample = { .ip = 0, };
2448 	struct perf_synth_intel_iflag_chg raw;
2449 
2450 	if (intel_pt_skip_event(pt))
2451 		return 0;
2452 
2453 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2454 
2455 	sample.id = ptq->pt->iflag_chg_id;
2456 	sample.stream_id = ptq->pt->iflag_chg_id;
2457 
2458 	raw.flags = 0;
2459 	raw.iflag = ptq->state->to_iflag;
2460 
2461 	if (ptq->state->type & INTEL_PT_BRANCH) {
2462 		raw.via_branch = 1;
2463 		raw.branch_ip = ptq->state->to_ip;
2464 	} else {
2465 		sample.addr = 0;
2466 	}
2467 	sample.flags = ptq->flags;
2468 
2469 	sample.raw_size = perf_synth__raw_size(raw);
2470 	sample.raw_data = perf_synth__raw_data(&raw);
2471 
2472 	return intel_pt_deliver_synth_event(pt, event, &sample,
2473 					    pt->iflag_chg_sample_type);
2474 }
2475 
2476 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2477 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2478 				pid_t machine_pid, int vcpu)
2479 {
2480 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2481 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2482 	union perf_event event;
2483 	char msg[MAX_AUXTRACE_ERROR_MSG];
2484 	int err;
2485 
2486 	if (pt->synth_opts.error_minus_flags) {
2487 		if (code == INTEL_PT_ERR_OVR &&
2488 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2489 			return 0;
2490 		if (code == INTEL_PT_ERR_LOST &&
2491 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2492 			return 0;
2493 	}
2494 
2495 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2496 
2497 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2498 				   code, cpu, pid, tid, ip, msg, timestamp,
2499 				   machine_pid, vcpu);
2500 
2501 	if (intel_pt_enable_logging && !log_on_stdout) {
2502 		FILE *fp = intel_pt_log_fp();
2503 
2504 		if (fp)
2505 			perf_event__fprintf_auxtrace_error(&event, fp);
2506 	}
2507 
2508 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2509 		intel_pt_log_dump_buf();
2510 
2511 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2512 	if (err)
2513 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2514 		       err);
2515 
2516 	return err;
2517 }
2518 
2519 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2520 				 const struct intel_pt_state *state)
2521 {
2522 	struct intel_pt *pt = ptq->pt;
2523 	u64 tm = ptq->timestamp;
2524 	pid_t machine_pid = 0;
2525 	pid_t pid = ptq->pid;
2526 	pid_t tid = ptq->tid;
2527 	int vcpu = -1;
2528 
2529 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2530 
2531 	if (pt->have_guest_sideband && state->from_nr) {
2532 		machine_pid = ptq->guest_machine_pid;
2533 		vcpu = ptq->vcpu;
2534 		pid = ptq->guest_pid;
2535 		tid = ptq->guest_tid;
2536 	}
2537 
2538 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2539 				    state->from_ip, tm, machine_pid, vcpu);
2540 }
2541 
2542 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2543 {
2544 	struct auxtrace_queue *queue;
2545 	pid_t tid = ptq->next_tid;
2546 	int err;
2547 
2548 	if (tid == -1)
2549 		return 0;
2550 
2551 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2552 
2553 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2554 
2555 	queue = &pt->queues.queue_array[ptq->queue_nr];
2556 	intel_pt_set_pid_tid_cpu(pt, queue);
2557 
2558 	ptq->next_tid = -1;
2559 
2560 	return err;
2561 }
2562 
2563 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2564 {
2565 	struct intel_pt *pt = ptq->pt;
2566 
2567 	return ip == pt->switch_ip &&
2568 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2569 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2570 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2571 }
2572 
2573 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2574 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2575 
2576 static int intel_pt_sample(struct intel_pt_queue *ptq)
2577 {
2578 	const struct intel_pt_state *state = ptq->state;
2579 	struct intel_pt *pt = ptq->pt;
2580 	int err;
2581 
2582 	if (!ptq->have_sample)
2583 		return 0;
2584 
2585 	ptq->have_sample = false;
2586 
2587 	if (pt->synth_opts.approx_ipc) {
2588 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2589 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2590 		ptq->sample_ipc = true;
2591 	} else {
2592 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2593 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2594 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2595 	}
2596 
2597 	/* Ensure guest code maps are set up */
2598 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2599 		intel_pt_get_guest(ptq);
2600 
2601 	/*
2602 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2603 	 * precedes the current timestamp.
2604 	 */
2605 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2606 		err = intel_pt_synth_pebs_sample(ptq);
2607 		if (err)
2608 			return err;
2609 	}
2610 
2611 	if (pt->synth_opts.intr_events) {
2612 		if (state->type & INTEL_PT_EVT) {
2613 			err = intel_pt_synth_events_sample(ptq);
2614 			if (err)
2615 				return err;
2616 		}
2617 		if (state->type & INTEL_PT_IFLAG_CHG) {
2618 			err = intel_pt_synth_iflag_chg_sample(ptq);
2619 			if (err)
2620 				return err;
2621 		}
2622 	}
2623 
2624 	if (pt->sample_pwr_events) {
2625 		if (state->type & INTEL_PT_PSB_EVT) {
2626 			err = intel_pt_synth_psb_sample(ptq);
2627 			if (err)
2628 				return err;
2629 		}
2630 		if (ptq->state->cbr != ptq->cbr_seen) {
2631 			err = intel_pt_synth_cbr_sample(ptq);
2632 			if (err)
2633 				return err;
2634 		}
2635 		if (state->type & INTEL_PT_PWR_EVT) {
2636 			if (state->type & INTEL_PT_MWAIT_OP) {
2637 				err = intel_pt_synth_mwait_sample(ptq);
2638 				if (err)
2639 					return err;
2640 			}
2641 			if (state->type & INTEL_PT_PWR_ENTRY) {
2642 				err = intel_pt_synth_pwre_sample(ptq);
2643 				if (err)
2644 					return err;
2645 			}
2646 			if (state->type & INTEL_PT_EX_STOP) {
2647 				err = intel_pt_synth_exstop_sample(ptq);
2648 				if (err)
2649 					return err;
2650 			}
2651 			if (state->type & INTEL_PT_PWR_EXIT) {
2652 				err = intel_pt_synth_pwrx_sample(ptq);
2653 				if (err)
2654 					return err;
2655 			}
2656 		}
2657 	}
2658 
2659 	if (state->type & INTEL_PT_INSTRUCTION) {
2660 		if (pt->sample_instructions) {
2661 			err = intel_pt_synth_instruction_sample(ptq);
2662 			if (err)
2663 				return err;
2664 		}
2665 		if (pt->sample_cycles) {
2666 			err = intel_pt_synth_cycle_sample(ptq);
2667 			if (err)
2668 				return err;
2669 		}
2670 	}
2671 
2672 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2673 		err = intel_pt_synth_transaction_sample(ptq);
2674 		if (err)
2675 			return err;
2676 	}
2677 
2678 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2679 		err = intel_pt_synth_ptwrite_sample(ptq);
2680 		if (err)
2681 			return err;
2682 	}
2683 
2684 	if (!(state->type & INTEL_PT_BRANCH))
2685 		return 0;
2686 
2687 	if (pt->use_thread_stack) {
2688 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2689 				    state->from_ip, state->to_ip, ptq->insn_len,
2690 				    state->trace_nr, pt->callstack,
2691 				    pt->br_stack_sz_plus,
2692 				    pt->mispred_all);
2693 	} else {
2694 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2695 	}
2696 
2697 	if (pt->sample_branches) {
2698 		if (state->from_nr != state->to_nr &&
2699 		    state->from_ip && state->to_ip) {
2700 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2701 			u64 to_ip = st->to_ip;
2702 			u64 from_ip = st->from_ip;
2703 
2704 			/*
2705 			 * perf cannot handle having different machines for ip
2706 			 * and addr, so create 2 branches.
2707 			 */
2708 			st->to_ip = 0;
2709 			err = intel_pt_synth_branch_sample(ptq);
2710 			if (err)
2711 				return err;
2712 			st->from_ip = 0;
2713 			st->to_ip = to_ip;
2714 			err = intel_pt_synth_branch_sample(ptq);
2715 			st->from_ip = from_ip;
2716 		} else {
2717 			err = intel_pt_synth_branch_sample(ptq);
2718 		}
2719 		if (err)
2720 			return err;
2721 	}
2722 
2723 	if (!ptq->sync_switch)
2724 		return 0;
2725 
2726 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2727 		switch (ptq->switch_state) {
2728 		case INTEL_PT_SS_NOT_TRACING:
2729 		case INTEL_PT_SS_UNKNOWN:
2730 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2731 			err = intel_pt_next_tid(pt, ptq);
2732 			if (err)
2733 				return err;
2734 			ptq->switch_state = INTEL_PT_SS_TRACING;
2735 			break;
2736 		default:
2737 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2738 			return 1;
2739 		}
2740 	} else if (!state->to_ip) {
2741 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2742 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2743 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2744 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2745 		   state->to_ip == pt->ptss_ip &&
2746 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2747 		ptq->switch_state = INTEL_PT_SS_TRACING;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2754 {
2755 	struct machine *machine = pt->machine;
2756 	struct map *map;
2757 	struct symbol *sym, *start;
2758 	u64 ip, switch_ip = 0;
2759 	const char *ptss;
2760 
2761 	if (ptss_ip)
2762 		*ptss_ip = 0;
2763 
2764 	map = machine__kernel_map(machine);
2765 	if (!map)
2766 		return 0;
2767 
2768 	if (map__load(map))
2769 		return 0;
2770 
2771 	start = dso__first_symbol(map__dso(map));
2772 
2773 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2774 		if (sym->binding == STB_GLOBAL &&
2775 		    !strcmp(sym->name, "__switch_to")) {
2776 			ip = map__unmap_ip(map, sym->start);
2777 			if (ip >= map__start(map) && ip < map__end(map)) {
2778 				switch_ip = ip;
2779 				break;
2780 			}
2781 		}
2782 	}
2783 
2784 	if (!switch_ip || !ptss_ip)
2785 		return 0;
2786 
2787 	if (pt->have_sched_switch == 1)
2788 		ptss = "perf_trace_sched_switch";
2789 	else
2790 		ptss = "__perf_event_task_sched_out";
2791 
2792 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2793 		if (!strcmp(sym->name, ptss)) {
2794 			ip = map__unmap_ip(map, sym->start);
2795 			if (ip >= map__start(map) && ip < map__end(map)) {
2796 				*ptss_ip = ip;
2797 				break;
2798 			}
2799 		}
2800 	}
2801 
2802 	return switch_ip;
2803 }
2804 
2805 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2806 {
2807 	unsigned int i;
2808 
2809 	if (pt->sync_switch_not_supported)
2810 		return;
2811 
2812 	pt->sync_switch = true;
2813 
2814 	for (i = 0; i < pt->queues.nr_queues; i++) {
2815 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2816 		struct intel_pt_queue *ptq = queue->priv;
2817 
2818 		if (ptq)
2819 			ptq->sync_switch = true;
2820 	}
2821 }
2822 
2823 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2824 {
2825 	unsigned int i;
2826 
2827 	pt->sync_switch = false;
2828 
2829 	for (i = 0; i < pt->queues.nr_queues; i++) {
2830 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2831 		struct intel_pt_queue *ptq = queue->priv;
2832 
2833 		if (ptq) {
2834 			ptq->sync_switch = false;
2835 			intel_pt_next_tid(pt, ptq);
2836 		}
2837 	}
2838 }
2839 
2840 /*
2841  * To filter against time ranges, it is only necessary to look at the next start
2842  * or end time.
2843  */
2844 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2845 {
2846 	struct intel_pt *pt = ptq->pt;
2847 
2848 	if (ptq->sel_start) {
2849 		/* Next time is an end time */
2850 		ptq->sel_start = false;
2851 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2852 		return true;
2853 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2854 		/* Next time is a start time */
2855 		ptq->sel_start = true;
2856 		ptq->sel_idx += 1;
2857 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2858 		return true;
2859 	}
2860 
2861 	/* No next time */
2862 	return false;
2863 }
2864 
2865 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2866 {
2867 	int err;
2868 
2869 	while (1) {
2870 		if (ptq->sel_start) {
2871 			if (ptq->timestamp >= ptq->sel_timestamp) {
2872 				/* After start time, so consider next time */
2873 				intel_pt_next_time(ptq);
2874 				if (!ptq->sel_timestamp) {
2875 					/* No end time */
2876 					return 0;
2877 				}
2878 				/* Check against end time */
2879 				continue;
2880 			}
2881 			/* Before start time, so fast forward */
2882 			ptq->have_sample = false;
2883 			if (ptq->sel_timestamp > *ff_timestamp) {
2884 				if (ptq->sync_switch) {
2885 					intel_pt_next_tid(ptq->pt, ptq);
2886 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2887 				}
2888 				*ff_timestamp = ptq->sel_timestamp;
2889 				err = intel_pt_fast_forward(ptq->decoder,
2890 							    ptq->sel_timestamp);
2891 				if (err)
2892 					return err;
2893 			}
2894 			return 0;
2895 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2896 			/* After end time, so consider next time */
2897 			if (!intel_pt_next_time(ptq)) {
2898 				/* No next time range, so stop decoding */
2899 				ptq->have_sample = false;
2900 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2901 				return 1;
2902 			}
2903 			/* Check against next start time */
2904 			continue;
2905 		} else {
2906 			/* Before end time */
2907 			return 0;
2908 		}
2909 	}
2910 }
2911 
2912 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2913 {
2914 	const struct intel_pt_state *state = ptq->state;
2915 	struct intel_pt *pt = ptq->pt;
2916 	u64 ff_timestamp = 0;
2917 	int err;
2918 
2919 	if (!pt->kernel_start) {
2920 		pt->kernel_start = machine__kernel_start(pt->machine);
2921 		if (pt->per_cpu_mmaps &&
2922 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2923 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2924 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2925 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2926 			if (pt->switch_ip) {
2927 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2928 					     pt->switch_ip, pt->ptss_ip);
2929 				intel_pt_enable_sync_switch(pt);
2930 			}
2931 		}
2932 	}
2933 
2934 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2935 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2936 	while (1) {
2937 		err = intel_pt_sample(ptq);
2938 		if (err)
2939 			return err;
2940 
2941 		state = intel_pt_decode(ptq->decoder);
2942 		if (state->err) {
2943 			if (state->err == INTEL_PT_ERR_NODATA)
2944 				return 1;
2945 			if (ptq->sync_switch &&
2946 			    state->from_ip >= pt->kernel_start) {
2947 				ptq->sync_switch = false;
2948 				intel_pt_next_tid(pt, ptq);
2949 			}
2950 			ptq->timestamp = state->est_timestamp;
2951 			if (pt->synth_opts.errors) {
2952 				err = intel_ptq_synth_error(ptq, state);
2953 				if (err)
2954 					return err;
2955 			}
2956 			continue;
2957 		}
2958 
2959 		ptq->state = state;
2960 		ptq->have_sample = true;
2961 		intel_pt_sample_flags(ptq);
2962 
2963 		/* Use estimated TSC upon return to user space */
2964 		if (pt->est_tsc &&
2965 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2966 		    state->to_ip && state->to_ip < pt->kernel_start) {
2967 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2968 				     state->timestamp, state->est_timestamp);
2969 			ptq->timestamp = state->est_timestamp;
2970 		/* Use estimated TSC in unknown switch state */
2971 		} else if (ptq->sync_switch &&
2972 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2973 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2974 			   ptq->next_tid == -1) {
2975 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2976 				     state->timestamp, state->est_timestamp);
2977 			ptq->timestamp = state->est_timestamp;
2978 		} else if (state->timestamp > ptq->timestamp) {
2979 			ptq->timestamp = state->timestamp;
2980 		}
2981 
2982 		if (ptq->sel_timestamp) {
2983 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2984 			if (err)
2985 				return err;
2986 		}
2987 
2988 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2989 			*timestamp = ptq->timestamp;
2990 			return 0;
2991 		}
2992 	}
2993 	return 0;
2994 }
2995 
2996 static inline int intel_pt_update_queues(struct intel_pt *pt)
2997 {
2998 	if (pt->queues.new_data) {
2999 		pt->queues.new_data = false;
3000 		return intel_pt_setup_queues(pt);
3001 	}
3002 	return 0;
3003 }
3004 
3005 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3006 {
3007 	unsigned int queue_nr;
3008 	u64 ts;
3009 	int ret;
3010 
3011 	while (1) {
3012 		struct auxtrace_queue *queue;
3013 		struct intel_pt_queue *ptq;
3014 
3015 		if (!pt->heap.heap_cnt)
3016 			return 0;
3017 
3018 		if (pt->heap.heap_array[0].ordinal >= timestamp)
3019 			return 0;
3020 
3021 		queue_nr = pt->heap.heap_array[0].queue_nr;
3022 		queue = &pt->queues.queue_array[queue_nr];
3023 		ptq = queue->priv;
3024 
3025 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3026 			     queue_nr, pt->heap.heap_array[0].ordinal,
3027 			     timestamp);
3028 
3029 		auxtrace_heap__pop(&pt->heap);
3030 
3031 		if (pt->heap.heap_cnt) {
3032 			ts = pt->heap.heap_array[0].ordinal + 1;
3033 			if (ts > timestamp)
3034 				ts = timestamp;
3035 		} else {
3036 			ts = timestamp;
3037 		}
3038 
3039 		intel_pt_set_pid_tid_cpu(pt, queue);
3040 
3041 		ret = intel_pt_run_decoder(ptq, &ts);
3042 
3043 		if (ret < 0) {
3044 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3045 			return ret;
3046 		}
3047 
3048 		if (!ret) {
3049 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3050 			if (ret < 0)
3051 				return ret;
3052 		} else {
3053 			ptq->on_heap = false;
3054 		}
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3061 					    u64 time_)
3062 {
3063 	struct auxtrace_queues *queues = &pt->queues;
3064 	unsigned int i;
3065 	u64 ts = 0;
3066 
3067 	for (i = 0; i < queues->nr_queues; i++) {
3068 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3069 		struct intel_pt_queue *ptq = queue->priv;
3070 
3071 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3072 			ptq->time = time_;
3073 			intel_pt_set_pid_tid_cpu(pt, queue);
3074 			intel_pt_run_decoder(ptq, &ts);
3075 		}
3076 	}
3077 	return 0;
3078 }
3079 
3080 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3081 					    struct auxtrace_queue *queue,
3082 					    struct perf_sample *sample)
3083 {
3084 	struct machine *m = ptq->pt->machine;
3085 
3086 	ptq->pid = sample->pid;
3087 	ptq->tid = sample->tid;
3088 	ptq->cpu = queue->cpu;
3089 
3090 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3091 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3092 
3093 	thread__zput(ptq->thread);
3094 
3095 	if (ptq->tid == -1)
3096 		return;
3097 
3098 	if (ptq->pid == -1) {
3099 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3100 		if (ptq->thread)
3101 			ptq->pid = thread__pid(ptq->thread);
3102 		return;
3103 	}
3104 
3105 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3106 }
3107 
3108 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3109 					    struct perf_sample *sample)
3110 {
3111 	struct auxtrace_queue *queue;
3112 	struct intel_pt_queue *ptq;
3113 	u64 ts = 0;
3114 
3115 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3116 	if (!queue)
3117 		return -EINVAL;
3118 
3119 	ptq = queue->priv;
3120 	if (!ptq)
3121 		return 0;
3122 
3123 	ptq->stop = false;
3124 	ptq->time = sample->time;
3125 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3126 	intel_pt_run_decoder(ptq, &ts);
3127 	return 0;
3128 }
3129 
3130 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3131 {
3132 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3133 				    sample->pid, sample->tid, 0, sample->time,
3134 				    sample->machine_pid, sample->vcpu);
3135 }
3136 
3137 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3138 {
3139 	unsigned i, j;
3140 
3141 	if (cpu < 0 || !pt->queues.nr_queues)
3142 		return NULL;
3143 
3144 	if ((unsigned)cpu >= pt->queues.nr_queues)
3145 		i = pt->queues.nr_queues - 1;
3146 	else
3147 		i = cpu;
3148 
3149 	if (pt->queues.queue_array[i].cpu == cpu)
3150 		return pt->queues.queue_array[i].priv;
3151 
3152 	for (j = 0; i > 0; j++) {
3153 		if (pt->queues.queue_array[--i].cpu == cpu)
3154 			return pt->queues.queue_array[i].priv;
3155 	}
3156 
3157 	for (; j < pt->queues.nr_queues; j++) {
3158 		if (pt->queues.queue_array[j].cpu == cpu)
3159 			return pt->queues.queue_array[j].priv;
3160 	}
3161 
3162 	return NULL;
3163 }
3164 
3165 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3166 				u64 timestamp)
3167 {
3168 	struct intel_pt_queue *ptq;
3169 	int err;
3170 
3171 	if (!pt->sync_switch)
3172 		return 1;
3173 
3174 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3175 	if (!ptq || !ptq->sync_switch)
3176 		return 1;
3177 
3178 	switch (ptq->switch_state) {
3179 	case INTEL_PT_SS_NOT_TRACING:
3180 		break;
3181 	case INTEL_PT_SS_UNKNOWN:
3182 	case INTEL_PT_SS_TRACING:
3183 		ptq->next_tid = tid;
3184 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3185 		return 0;
3186 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3187 		if (!ptq->on_heap) {
3188 			ptq->timestamp = perf_time_to_tsc(timestamp,
3189 							  &pt->tc);
3190 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3191 						 ptq->timestamp);
3192 			if (err)
3193 				return err;
3194 			ptq->on_heap = true;
3195 		}
3196 		ptq->switch_state = INTEL_PT_SS_TRACING;
3197 		break;
3198 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3199 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3200 		break;
3201 	default:
3202 		break;
3203 	}
3204 
3205 	ptq->next_tid = -1;
3206 
3207 	return 1;
3208 }
3209 
3210 #ifdef HAVE_LIBTRACEEVENT
3211 static int intel_pt_process_switch(struct intel_pt *pt,
3212 				   struct perf_sample *sample)
3213 {
3214 	pid_t tid;
3215 	int cpu, ret;
3216 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3217 
3218 	if (evsel != pt->switch_evsel)
3219 		return 0;
3220 
3221 	tid = evsel__intval(evsel, sample, "next_pid");
3222 	cpu = sample->cpu;
3223 
3224 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3225 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3226 		     &pt->tc));
3227 
3228 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3229 	if (ret <= 0)
3230 		return ret;
3231 
3232 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3233 }
3234 #endif /* HAVE_LIBTRACEEVENT */
3235 
3236 static int intel_pt_context_switch_in(struct intel_pt *pt,
3237 				      struct perf_sample *sample)
3238 {
3239 	pid_t pid = sample->pid;
3240 	pid_t tid = sample->tid;
3241 	int cpu = sample->cpu;
3242 
3243 	if (pt->sync_switch) {
3244 		struct intel_pt_queue *ptq;
3245 
3246 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3247 		if (ptq && ptq->sync_switch) {
3248 			ptq->next_tid = -1;
3249 			switch (ptq->switch_state) {
3250 			case INTEL_PT_SS_NOT_TRACING:
3251 			case INTEL_PT_SS_UNKNOWN:
3252 			case INTEL_PT_SS_TRACING:
3253 				break;
3254 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3255 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3256 				ptq->switch_state = INTEL_PT_SS_TRACING;
3257 				break;
3258 			default:
3259 				break;
3260 			}
3261 		}
3262 	}
3263 
3264 	/*
3265 	 * If the current tid has not been updated yet, ensure it is now that
3266 	 * a "switch in" event has occurred.
3267 	 */
3268 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3269 		return 0;
3270 
3271 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272 }
3273 
3274 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3275 					 union perf_event *event,
3276 					 struct perf_sample *sample)
3277 {
3278 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3279 	struct machines *machines = &pt->session->machines;
3280 	struct machine *machine = machines__find(machines, sample->machine_pid);
3281 
3282 	pt->have_guest_sideband = true;
3283 
3284 	/*
3285 	 * sync_switch cannot handle guest machines at present, so just disable
3286 	 * it.
3287 	 */
3288 	pt->sync_switch_not_supported = true;
3289 	if (pt->sync_switch)
3290 		intel_pt_disable_sync_switch(pt);
3291 
3292 	if (out)
3293 		return 0;
3294 
3295 	if (!machine)
3296 		return -EINVAL;
3297 
3298 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3299 }
3300 
3301 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3302 				   struct perf_sample *sample)
3303 {
3304 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3305 	pid_t pid, tid;
3306 	int cpu, ret;
3307 
3308 	if (perf_event__is_guest(event))
3309 		return intel_pt_guest_context_switch(pt, event, sample);
3310 
3311 	cpu = sample->cpu;
3312 
3313 	if (pt->have_sched_switch == 3) {
3314 		if (!out)
3315 			return intel_pt_context_switch_in(pt, sample);
3316 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3317 			pr_err("Expecting CPU-wide context switch event\n");
3318 			return -EINVAL;
3319 		}
3320 		pid = event->context_switch.next_prev_pid;
3321 		tid = event->context_switch.next_prev_tid;
3322 	} else {
3323 		if (out)
3324 			return 0;
3325 		pid = sample->pid;
3326 		tid = sample->tid;
3327 	}
3328 
3329 	if (tid == -1)
3330 		intel_pt_log("context_switch event has no tid\n");
3331 
3332 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3333 	if (ret <= 0)
3334 		return ret;
3335 
3336 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3337 }
3338 
3339 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3340 					 union perf_event *event,
3341 					 struct perf_sample *sample)
3342 {
3343 	if (!pt->per_cpu_mmaps)
3344 		return 0;
3345 
3346 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3347 		     sample->cpu, event->itrace_start.pid,
3348 		     event->itrace_start.tid, sample->time,
3349 		     perf_time_to_tsc(sample->time, &pt->tc));
3350 
3351 	return machine__set_current_tid(pt->machine, sample->cpu,
3352 					event->itrace_start.pid,
3353 					event->itrace_start.tid);
3354 }
3355 
3356 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3357 					     union perf_event *event,
3358 					     struct perf_sample *sample)
3359 {
3360 	u64 hw_id = event->aux_output_hw_id.hw_id;
3361 	struct auxtrace_queue *queue;
3362 	struct intel_pt_queue *ptq;
3363 	struct evsel *evsel;
3364 
3365 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3366 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3367 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3368 		pr_err("Bad AUX output hardware ID\n");
3369 		return -EINVAL;
3370 	}
3371 
3372 	ptq = queue->priv;
3373 
3374 	ptq->pebs[hw_id].evsel = evsel;
3375 	ptq->pebs[hw_id].id = sample->id;
3376 
3377 	return 0;
3378 }
3379 
3380 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3381 			     struct addr_location *al)
3382 {
3383 	if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3384 		if (!thread__find_map(thread, cpumode, addr, al))
3385 			return -1;
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 /* Invalidate all instruction cache entries that overlap the text poke */
3392 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3393 {
3394 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3395 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3396 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3397 	int cnt = 4096 + event->text_poke.new_len;
3398 	struct thread *thread = pt->unknown_thread;
3399 	struct addr_location al;
3400 	struct machine *machine = pt->machine;
3401 	struct intel_pt_cache_entry *e;
3402 	u64 offset;
3403 	int ret = 0;
3404 
3405 	addr_location__init(&al);
3406 	if (!event->text_poke.new_len)
3407 		goto out;
3408 
3409 	for (; cnt; cnt--, addr--) {
3410 		struct dso *dso;
3411 
3412 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3413 			if (addr < event->text_poke.addr)
3414 				goto out;
3415 			continue;
3416 		}
3417 
3418 		dso = map__dso(al.map);
3419 		if (!dso || !dso->auxtrace_cache)
3420 			continue;
3421 
3422 		offset = map__map_ip(al.map, addr);
3423 
3424 		e = intel_pt_cache_lookup(dso, machine, offset);
3425 		if (!e)
3426 			continue;
3427 
3428 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3429 			/*
3430 			 * No overlap. Working backwards there cannot be another
3431 			 * basic block that overlaps the text poke if there is a
3432 			 * branch instruction before the text poke address.
3433 			 */
3434 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3435 				goto out;
3436 		} else {
3437 			intel_pt_cache_invalidate(dso, machine, offset);
3438 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3439 				     dso->long_name, addr);
3440 		}
3441 	}
3442 out:
3443 	addr_location__exit(&al);
3444 	return ret;
3445 }
3446 
3447 static int intel_pt_process_event(struct perf_session *session,
3448 				  union perf_event *event,
3449 				  struct perf_sample *sample,
3450 				  struct perf_tool *tool)
3451 {
3452 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3453 					   auxtrace);
3454 	u64 timestamp;
3455 	int err = 0;
3456 
3457 	if (dump_trace)
3458 		return 0;
3459 
3460 	if (!tool->ordered_events) {
3461 		pr_err("Intel Processor Trace requires ordered events\n");
3462 		return -EINVAL;
3463 	}
3464 
3465 	if (sample->time && sample->time != (u64)-1)
3466 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3467 	else
3468 		timestamp = 0;
3469 
3470 	if (timestamp || pt->timeless_decoding) {
3471 		err = intel_pt_update_queues(pt);
3472 		if (err)
3473 			return err;
3474 	}
3475 
3476 	if (pt->timeless_decoding) {
3477 		if (pt->sampling_mode) {
3478 			if (sample->aux_sample.size)
3479 				err = intel_pt_process_timeless_sample(pt,
3480 								       sample);
3481 		} else if (event->header.type == PERF_RECORD_EXIT) {
3482 			err = intel_pt_process_timeless_queues(pt,
3483 							       event->fork.tid,
3484 							       sample->time);
3485 		}
3486 	} else if (timestamp) {
3487 		if (!pt->first_timestamp)
3488 			intel_pt_first_timestamp(pt, timestamp);
3489 		err = intel_pt_process_queues(pt, timestamp);
3490 	}
3491 	if (err)
3492 		return err;
3493 
3494 	if (event->header.type == PERF_RECORD_SAMPLE) {
3495 		if (pt->synth_opts.add_callchain && !sample->callchain)
3496 			intel_pt_add_callchain(pt, sample);
3497 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3498 			intel_pt_add_br_stack(pt, sample);
3499 	}
3500 
3501 	if (event->header.type == PERF_RECORD_AUX &&
3502 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3503 	    pt->synth_opts.errors) {
3504 		err = intel_pt_lost(pt, sample);
3505 		if (err)
3506 			return err;
3507 	}
3508 
3509 #ifdef HAVE_LIBTRACEEVENT
3510 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3511 		err = intel_pt_process_switch(pt, sample);
3512 	else
3513 #endif
3514 	if (event->header.type == PERF_RECORD_ITRACE_START)
3515 		err = intel_pt_process_itrace_start(pt, event, sample);
3516 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3517 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3518 	else if (event->header.type == PERF_RECORD_SWITCH ||
3519 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3520 		err = intel_pt_context_switch(pt, event, sample);
3521 
3522 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3523 		err = intel_pt_text_poke(pt, event);
3524 
3525 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3526 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3527 			     event->header.type, sample->cpu, sample->time, timestamp);
3528 		intel_pt_log_event(event);
3529 	}
3530 
3531 	return err;
3532 }
3533 
3534 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3535 {
3536 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3537 					   auxtrace);
3538 	int ret;
3539 
3540 	if (dump_trace)
3541 		return 0;
3542 
3543 	if (!tool->ordered_events)
3544 		return -EINVAL;
3545 
3546 	ret = intel_pt_update_queues(pt);
3547 	if (ret < 0)
3548 		return ret;
3549 
3550 	if (pt->timeless_decoding)
3551 		return intel_pt_process_timeless_queues(pt, -1,
3552 							MAX_TIMESTAMP - 1);
3553 
3554 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3555 }
3556 
3557 static void intel_pt_free_events(struct perf_session *session)
3558 {
3559 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3560 					   auxtrace);
3561 	struct auxtrace_queues *queues = &pt->queues;
3562 	unsigned int i;
3563 
3564 	for (i = 0; i < queues->nr_queues; i++) {
3565 		intel_pt_free_queue(queues->queue_array[i].priv);
3566 		queues->queue_array[i].priv = NULL;
3567 	}
3568 	intel_pt_log_disable();
3569 	auxtrace_queues__free(queues);
3570 }
3571 
3572 static void intel_pt_free(struct perf_session *session)
3573 {
3574 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3575 					   auxtrace);
3576 
3577 	auxtrace_heap__free(&pt->heap);
3578 	intel_pt_free_events(session);
3579 	session->auxtrace = NULL;
3580 	intel_pt_free_vmcs_info(pt);
3581 	thread__put(pt->unknown_thread);
3582 	addr_filters__exit(&pt->filts);
3583 	zfree(&pt->chain);
3584 	zfree(&pt->filter);
3585 	zfree(&pt->time_ranges);
3586 	zfree(&pt->br_stack);
3587 	free(pt);
3588 }
3589 
3590 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3591 				       struct evsel *evsel)
3592 {
3593 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3594 					   auxtrace);
3595 
3596 	return evsel->core.attr.type == pt->pmu_type;
3597 }
3598 
3599 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3600 					   union perf_event *event,
3601 					   struct perf_tool *tool __maybe_unused)
3602 {
3603 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3604 					   auxtrace);
3605 
3606 	if (!pt->data_queued) {
3607 		struct auxtrace_buffer *buffer;
3608 		off_t data_offset;
3609 		int fd = perf_data__fd(session->data);
3610 		int err;
3611 
3612 		if (perf_data__is_pipe(session->data)) {
3613 			data_offset = 0;
3614 		} else {
3615 			data_offset = lseek(fd, 0, SEEK_CUR);
3616 			if (data_offset == -1)
3617 				return -errno;
3618 		}
3619 
3620 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3621 						 data_offset, &buffer);
3622 		if (err)
3623 			return err;
3624 
3625 		/* Dump here now we have copied a piped trace out of the pipe */
3626 		if (dump_trace) {
3627 			if (auxtrace_buffer__get_data(buffer, fd)) {
3628 				intel_pt_dump_event(pt, buffer->data,
3629 						    buffer->size);
3630 				auxtrace_buffer__put_data(buffer);
3631 			}
3632 		}
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static int intel_pt_queue_data(struct perf_session *session,
3639 			       struct perf_sample *sample,
3640 			       union perf_event *event, u64 data_offset)
3641 {
3642 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3643 					   auxtrace);
3644 	u64 timestamp;
3645 
3646 	if (event) {
3647 		return auxtrace_queues__add_event(&pt->queues, session, event,
3648 						  data_offset, NULL);
3649 	}
3650 
3651 	if (sample->time && sample->time != (u64)-1)
3652 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3653 	else
3654 		timestamp = 0;
3655 
3656 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3657 					   data_offset, timestamp);
3658 }
3659 
3660 struct intel_pt_synth {
3661 	struct perf_tool dummy_tool;
3662 	struct perf_session *session;
3663 };
3664 
3665 static int intel_pt_event_synth(struct perf_tool *tool,
3666 				union perf_event *event,
3667 				struct perf_sample *sample __maybe_unused,
3668 				struct machine *machine __maybe_unused)
3669 {
3670 	struct intel_pt_synth *intel_pt_synth =
3671 			container_of(tool, struct intel_pt_synth, dummy_tool);
3672 
3673 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3674 						 NULL);
3675 }
3676 
3677 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3678 				struct perf_event_attr *attr, u64 id)
3679 {
3680 	struct intel_pt_synth intel_pt_synth;
3681 	int err;
3682 
3683 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3684 		 name, id, (u64)attr->sample_type);
3685 
3686 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3687 	intel_pt_synth.session = session;
3688 
3689 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3690 					  &id, intel_pt_event_synth);
3691 	if (err)
3692 		pr_err("%s: failed to synthesize '%s' event type\n",
3693 		       __func__, name);
3694 
3695 	return err;
3696 }
3697 
3698 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3699 				    const char *name)
3700 {
3701 	struct evsel *evsel;
3702 
3703 	evlist__for_each_entry(evlist, evsel) {
3704 		if (evsel->core.id && evsel->core.id[0] == id) {
3705 			if (evsel->name)
3706 				zfree(&evsel->name);
3707 			evsel->name = strdup(name);
3708 			break;
3709 		}
3710 	}
3711 }
3712 
3713 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3714 					 struct evlist *evlist)
3715 {
3716 	struct evsel *evsel;
3717 
3718 	evlist__for_each_entry(evlist, evsel) {
3719 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3720 			return evsel;
3721 	}
3722 
3723 	return NULL;
3724 }
3725 
3726 static int intel_pt_synth_events(struct intel_pt *pt,
3727 				 struct perf_session *session)
3728 {
3729 	struct evlist *evlist = session->evlist;
3730 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3731 	struct perf_event_attr attr;
3732 	u64 id;
3733 	int err;
3734 
3735 	if (!evsel) {
3736 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3737 		return 0;
3738 	}
3739 
3740 	memset(&attr, 0, sizeof(struct perf_event_attr));
3741 	attr.size = sizeof(struct perf_event_attr);
3742 	attr.type = PERF_TYPE_HARDWARE;
3743 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3744 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3745 			    PERF_SAMPLE_PERIOD;
3746 	if (pt->timeless_decoding)
3747 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3748 	else
3749 		attr.sample_type |= PERF_SAMPLE_TIME;
3750 	if (!pt->per_cpu_mmaps)
3751 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3752 	attr.exclude_user = evsel->core.attr.exclude_user;
3753 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3754 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3755 	attr.exclude_host = evsel->core.attr.exclude_host;
3756 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3757 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3758 	attr.read_format = evsel->core.attr.read_format;
3759 
3760 	id = evsel->core.id[0] + 1000000000;
3761 	if (!id)
3762 		id = 1;
3763 
3764 	if (pt->synth_opts.branches) {
3765 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3766 		attr.sample_period = 1;
3767 		attr.sample_type |= PERF_SAMPLE_ADDR;
3768 		err = intel_pt_synth_event(session, "branches", &attr, id);
3769 		if (err)
3770 			return err;
3771 		pt->sample_branches = true;
3772 		pt->branches_sample_type = attr.sample_type;
3773 		pt->branches_id = id;
3774 		id += 1;
3775 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3776 	}
3777 
3778 	if (pt->synth_opts.callchain)
3779 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3780 	if (pt->synth_opts.last_branch) {
3781 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3782 		/*
3783 		 * We don't use the hardware index, but the sample generation
3784 		 * code uses the new format branch_stack with this field,
3785 		 * so the event attributes must indicate that it's present.
3786 		 */
3787 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3788 	}
3789 
3790 	if (pt->synth_opts.instructions) {
3791 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3792 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3793 			attr.sample_period =
3794 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3795 		else
3796 			attr.sample_period = pt->synth_opts.period;
3797 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3798 		if (err)
3799 			return err;
3800 		pt->sample_instructions = true;
3801 		pt->instructions_sample_type = attr.sample_type;
3802 		pt->instructions_id = id;
3803 		id += 1;
3804 	}
3805 
3806 	if (pt->synth_opts.cycles) {
3807 		attr.config = PERF_COUNT_HW_CPU_CYCLES;
3808 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3809 			attr.sample_period =
3810 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3811 		else
3812 			attr.sample_period = pt->synth_opts.period;
3813 		err = intel_pt_synth_event(session, "cycles", &attr, id);
3814 		if (err)
3815 			return err;
3816 		pt->sample_cycles = true;
3817 		pt->cycles_sample_type = attr.sample_type;
3818 		pt->cycles_id = id;
3819 		id += 1;
3820 	}
3821 
3822 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3823 	attr.sample_period = 1;
3824 
3825 	if (pt->synth_opts.transactions) {
3826 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3827 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3828 		if (err)
3829 			return err;
3830 		pt->sample_transactions = true;
3831 		pt->transactions_sample_type = attr.sample_type;
3832 		pt->transactions_id = id;
3833 		intel_pt_set_event_name(evlist, id, "transactions");
3834 		id += 1;
3835 	}
3836 
3837 	attr.type = PERF_TYPE_SYNTH;
3838 	attr.sample_type |= PERF_SAMPLE_RAW;
3839 
3840 	if (pt->synth_opts.ptwrites) {
3841 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3842 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3843 		if (err)
3844 			return err;
3845 		pt->sample_ptwrites = true;
3846 		pt->ptwrites_sample_type = attr.sample_type;
3847 		pt->ptwrites_id = id;
3848 		intel_pt_set_event_name(evlist, id, "ptwrite");
3849 		id += 1;
3850 	}
3851 
3852 	if (pt->synth_opts.pwr_events) {
3853 		pt->sample_pwr_events = true;
3854 		pt->pwr_events_sample_type = attr.sample_type;
3855 
3856 		attr.config = PERF_SYNTH_INTEL_CBR;
3857 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3858 		if (err)
3859 			return err;
3860 		pt->cbr_id = id;
3861 		intel_pt_set_event_name(evlist, id, "cbr");
3862 		id += 1;
3863 
3864 		attr.config = PERF_SYNTH_INTEL_PSB;
3865 		err = intel_pt_synth_event(session, "psb", &attr, id);
3866 		if (err)
3867 			return err;
3868 		pt->psb_id = id;
3869 		intel_pt_set_event_name(evlist, id, "psb");
3870 		id += 1;
3871 	}
3872 
3873 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3874 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3875 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3876 		if (err)
3877 			return err;
3878 		pt->mwait_id = id;
3879 		intel_pt_set_event_name(evlist, id, "mwait");
3880 		id += 1;
3881 
3882 		attr.config = PERF_SYNTH_INTEL_PWRE;
3883 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3884 		if (err)
3885 			return err;
3886 		pt->pwre_id = id;
3887 		intel_pt_set_event_name(evlist, id, "pwre");
3888 		id += 1;
3889 
3890 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3891 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3892 		if (err)
3893 			return err;
3894 		pt->exstop_id = id;
3895 		intel_pt_set_event_name(evlist, id, "exstop");
3896 		id += 1;
3897 
3898 		attr.config = PERF_SYNTH_INTEL_PWRX;
3899 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3900 		if (err)
3901 			return err;
3902 		pt->pwrx_id = id;
3903 		intel_pt_set_event_name(evlist, id, "pwrx");
3904 		id += 1;
3905 	}
3906 
3907 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3908 		attr.config = PERF_SYNTH_INTEL_EVT;
3909 		err = intel_pt_synth_event(session, "evt", &attr, id);
3910 		if (err)
3911 			return err;
3912 		pt->evt_sample_type = attr.sample_type;
3913 		pt->evt_id = id;
3914 		intel_pt_set_event_name(evlist, id, "evt");
3915 		id += 1;
3916 	}
3917 
3918 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3919 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3920 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3921 		if (err)
3922 			return err;
3923 		pt->iflag_chg_sample_type = attr.sample_type;
3924 		pt->iflag_chg_id = id;
3925 		intel_pt_set_event_name(evlist, id, "iflag");
3926 		id += 1;
3927 	}
3928 
3929 	return 0;
3930 }
3931 
3932 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3933 {
3934 	struct evsel *evsel;
3935 
3936 	if (!pt->synth_opts.other_events)
3937 		return;
3938 
3939 	evlist__for_each_entry(pt->session->evlist, evsel) {
3940 		if (evsel->core.attr.aux_output && evsel->core.id) {
3941 			if (pt->single_pebs) {
3942 				pt->single_pebs = false;
3943 				return;
3944 			}
3945 			pt->single_pebs = true;
3946 			pt->sample_pebs = true;
3947 			pt->pebs_evsel = evsel;
3948 		}
3949 	}
3950 }
3951 
3952 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3953 {
3954 	struct evsel *evsel;
3955 
3956 	evlist__for_each_entry_reverse(evlist, evsel) {
3957 		const char *name = evsel__name(evsel);
3958 
3959 		if (!strcmp(name, "sched:sched_switch"))
3960 			return evsel;
3961 	}
3962 
3963 	return NULL;
3964 }
3965 
3966 static bool intel_pt_find_switch(struct evlist *evlist)
3967 {
3968 	struct evsel *evsel;
3969 
3970 	evlist__for_each_entry(evlist, evsel) {
3971 		if (evsel->core.attr.context_switch)
3972 			return true;
3973 	}
3974 
3975 	return false;
3976 }
3977 
3978 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3979 {
3980 	struct intel_pt *pt = data;
3981 
3982 	if (!strcmp(var, "intel-pt.mispred-all"))
3983 		pt->mispred_all = perf_config_bool(var, value);
3984 
3985 	if (!strcmp(var, "intel-pt.max-loops"))
3986 		perf_config_int(&pt->max_loops, var, value);
3987 
3988 	return 0;
3989 }
3990 
3991 /* Find least TSC which converts to ns or later */
3992 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3993 {
3994 	u64 tsc, tm;
3995 
3996 	tsc = perf_time_to_tsc(ns, &pt->tc);
3997 
3998 	while (1) {
3999 		tm = tsc_to_perf_time(tsc, &pt->tc);
4000 		if (tm < ns)
4001 			break;
4002 		tsc -= 1;
4003 	}
4004 
4005 	while (tm < ns)
4006 		tm = tsc_to_perf_time(++tsc, &pt->tc);
4007 
4008 	return tsc;
4009 }
4010 
4011 /* Find greatest TSC which converts to ns or earlier */
4012 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4013 {
4014 	u64 tsc, tm;
4015 
4016 	tsc = perf_time_to_tsc(ns, &pt->tc);
4017 
4018 	while (1) {
4019 		tm = tsc_to_perf_time(tsc, &pt->tc);
4020 		if (tm > ns)
4021 			break;
4022 		tsc += 1;
4023 	}
4024 
4025 	while (tm > ns)
4026 		tm = tsc_to_perf_time(--tsc, &pt->tc);
4027 
4028 	return tsc;
4029 }
4030 
4031 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4032 				      struct itrace_synth_opts *opts)
4033 {
4034 	struct perf_time_interval *p = opts->ptime_range;
4035 	int n = opts->range_num;
4036 	int i;
4037 
4038 	if (!n || !p || pt->timeless_decoding)
4039 		return 0;
4040 
4041 	pt->time_ranges = calloc(n, sizeof(struct range));
4042 	if (!pt->time_ranges)
4043 		return -ENOMEM;
4044 
4045 	pt->range_cnt = n;
4046 
4047 	intel_pt_log("%s: %u range(s)\n", __func__, n);
4048 
4049 	for (i = 0; i < n; i++) {
4050 		struct range *r = &pt->time_ranges[i];
4051 		u64 ts = p[i].start;
4052 		u64 te = p[i].end;
4053 
4054 		/*
4055 		 * Take care to ensure the TSC range matches the perf-time range
4056 		 * when converted back to perf-time.
4057 		 */
4058 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4059 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4060 
4061 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4062 			     i, ts, te);
4063 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4064 			     i, r->start, r->end);
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4071 {
4072 	struct intel_pt_vmcs_info *vmcs_info;
4073 	u64 tsc_offset, vmcs;
4074 	char *p = *args;
4075 
4076 	errno = 0;
4077 
4078 	p = skip_spaces(p);
4079 	if (!*p)
4080 		return 1;
4081 
4082 	tsc_offset = strtoull(p, &p, 0);
4083 	if (errno)
4084 		return -errno;
4085 	p = skip_spaces(p);
4086 	if (*p != ':') {
4087 		pt->dflt_tsc_offset = tsc_offset;
4088 		*args = p;
4089 		return 0;
4090 	}
4091 	p += 1;
4092 	while (1) {
4093 		vmcs = strtoull(p, &p, 0);
4094 		if (errno)
4095 			return -errno;
4096 		if (!vmcs)
4097 			return -EINVAL;
4098 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4099 		if (!vmcs_info)
4100 			return -ENOMEM;
4101 		p = skip_spaces(p);
4102 		if (*p != ',')
4103 			break;
4104 		p += 1;
4105 	}
4106 	*args = p;
4107 	return 0;
4108 }
4109 
4110 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4111 {
4112 	char *args = pt->synth_opts.vm_tm_corr_args;
4113 	int ret;
4114 
4115 	if (!args)
4116 		return 0;
4117 
4118 	do {
4119 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4120 	} while (!ret);
4121 
4122 	if (ret < 0) {
4123 		pr_err("Failed to parse VM Time Correlation options\n");
4124 		return ret;
4125 	}
4126 
4127 	return 0;
4128 }
4129 
4130 static const char * const intel_pt_info_fmts[] = {
4131 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4132 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4133 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4134 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4135 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4136 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4137 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4138 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4139 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4140 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4141 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4142 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4143 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4144 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4145 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4146 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4147 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4148 };
4149 
4150 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4151 {
4152 	int i;
4153 
4154 	if (!dump_trace)
4155 		return;
4156 
4157 	for (i = start; i <= finish; i++) {
4158 		const char *fmt = intel_pt_info_fmts[i];
4159 
4160 		if (fmt)
4161 			fprintf(stdout, fmt, arr[i]);
4162 	}
4163 }
4164 
4165 static void intel_pt_print_info_str(const char *name, const char *str)
4166 {
4167 	if (!dump_trace)
4168 		return;
4169 
4170 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4171 }
4172 
4173 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4174 {
4175 	return auxtrace_info->header.size >=
4176 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4177 }
4178 
4179 int intel_pt_process_auxtrace_info(union perf_event *event,
4180 				   struct perf_session *session)
4181 {
4182 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4183 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4184 	struct intel_pt *pt;
4185 	void *info_end;
4186 	__u64 *info;
4187 	int err;
4188 
4189 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4190 					min_sz)
4191 		return -EINVAL;
4192 
4193 	pt = zalloc(sizeof(struct intel_pt));
4194 	if (!pt)
4195 		return -ENOMEM;
4196 
4197 	pt->vmcs_info = RB_ROOT;
4198 
4199 	addr_filters__init(&pt->filts);
4200 
4201 	err = perf_config(intel_pt_perf_config, pt);
4202 	if (err)
4203 		goto err_free;
4204 
4205 	err = auxtrace_queues__init(&pt->queues);
4206 	if (err)
4207 		goto err_free;
4208 
4209 	if (session->itrace_synth_opts->set) {
4210 		pt->synth_opts = *session->itrace_synth_opts;
4211 	} else {
4212 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4213 
4214 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4215 		if (!opts->default_no_sample && !opts->inject) {
4216 			pt->synth_opts.branches = false;
4217 			pt->synth_opts.callchain = true;
4218 			pt->synth_opts.add_callchain = true;
4219 		}
4220 		pt->synth_opts.thread_stack = opts->thread_stack;
4221 	}
4222 
4223 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4224 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4225 
4226 	pt->session = session;
4227 	pt->machine = &session->machines.host; /* No kvm support */
4228 	pt->auxtrace_type = auxtrace_info->type;
4229 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4230 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4231 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4232 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4233 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4234 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4235 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4236 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4237 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4238 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4239 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4240 			    INTEL_PT_PER_CPU_MMAPS);
4241 
4242 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4243 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4244 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4245 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4246 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4247 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4248 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4249 				    INTEL_PT_CYC_BIT);
4250 	}
4251 
4252 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4253 		pt->max_non_turbo_ratio =
4254 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4255 		intel_pt_print_info(&auxtrace_info->priv[0],
4256 				    INTEL_PT_MAX_NONTURBO_RATIO,
4257 				    INTEL_PT_MAX_NONTURBO_RATIO);
4258 	}
4259 
4260 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4261 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4262 
4263 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4264 		size_t len;
4265 
4266 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4267 		intel_pt_print_info(&auxtrace_info->priv[0],
4268 				    INTEL_PT_FILTER_STR_LEN,
4269 				    INTEL_PT_FILTER_STR_LEN);
4270 		if (len) {
4271 			const char *filter = (const char *)info;
4272 
4273 			len = roundup(len + 1, 8);
4274 			info += len >> 3;
4275 			if ((void *)info > info_end) {
4276 				pr_err("%s: bad filter string length\n", __func__);
4277 				err = -EINVAL;
4278 				goto err_free_queues;
4279 			}
4280 			pt->filter = memdup(filter, len);
4281 			if (!pt->filter) {
4282 				err = -ENOMEM;
4283 				goto err_free_queues;
4284 			}
4285 			if (session->header.needs_swap)
4286 				mem_bswap_64(pt->filter, len);
4287 			if (pt->filter[len - 1]) {
4288 				pr_err("%s: filter string not null terminated\n", __func__);
4289 				err = -EINVAL;
4290 				goto err_free_queues;
4291 			}
4292 			err = addr_filters__parse_bare_filter(&pt->filts,
4293 							      filter);
4294 			if (err)
4295 				goto err_free_queues;
4296 		}
4297 		intel_pt_print_info_str("Filter string", pt->filter);
4298 	}
4299 
4300 	if ((void *)info < info_end) {
4301 		pt->cap_event_trace = *info++;
4302 		if (dump_trace)
4303 			fprintf(stdout, "  Cap Event Trace     %d\n",
4304 				pt->cap_event_trace);
4305 	}
4306 
4307 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4308 	if (pt->timeless_decoding && !pt->tc.time_mult)
4309 		pt->tc.time_mult = 1;
4310 	pt->have_tsc = intel_pt_have_tsc(pt);
4311 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4312 	pt->est_tsc = !pt->timeless_decoding;
4313 
4314 	if (pt->synth_opts.vm_time_correlation) {
4315 		if (pt->timeless_decoding) {
4316 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4317 			err = -EINVAL;
4318 			goto err_free_queues;
4319 		}
4320 		if (session->itrace_synth_opts->ptime_range) {
4321 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4322 			err = -EINVAL;
4323 			goto err_free_queues;
4324 		}
4325 		/* Currently TSC Offset is calculated using MTC packets */
4326 		if (!intel_pt_have_mtc(pt)) {
4327 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4328 			err = -EINVAL;
4329 			goto err_free_queues;
4330 		}
4331 		err = intel_pt_parse_vm_tm_corr_args(pt);
4332 		if (err)
4333 			goto err_free_queues;
4334 	}
4335 
4336 	pt->unknown_thread = thread__new(999999999, 999999999);
4337 	if (!pt->unknown_thread) {
4338 		err = -ENOMEM;
4339 		goto err_free_queues;
4340 	}
4341 
4342 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4343 	if (err)
4344 		goto err_delete_thread;
4345 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4346 		err = -ENOMEM;
4347 		goto err_delete_thread;
4348 	}
4349 
4350 	pt->auxtrace.process_event = intel_pt_process_event;
4351 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4352 	pt->auxtrace.queue_data = intel_pt_queue_data;
4353 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4354 	pt->auxtrace.flush_events = intel_pt_flush;
4355 	pt->auxtrace.free_events = intel_pt_free_events;
4356 	pt->auxtrace.free = intel_pt_free;
4357 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4358 	session->auxtrace = &pt->auxtrace;
4359 
4360 	if (dump_trace)
4361 		return 0;
4362 
4363 	if (pt->have_sched_switch == 1) {
4364 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4365 		if (!pt->switch_evsel) {
4366 			pr_err("%s: missing sched_switch event\n", __func__);
4367 			err = -EINVAL;
4368 			goto err_delete_thread;
4369 		}
4370 	} else if (pt->have_sched_switch == 2 &&
4371 		   !intel_pt_find_switch(session->evlist)) {
4372 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4373 		err = -EINVAL;
4374 		goto err_delete_thread;
4375 	}
4376 
4377 	if (pt->synth_opts.log) {
4378 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4379 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4380 
4381 		intel_pt_log_enable(log_on_error, log_on_error_size);
4382 	}
4383 
4384 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4385 	if (pt->tc.time_mult) {
4386 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4387 
4388 		if (!pt->max_non_turbo_ratio)
4389 			pt->max_non_turbo_ratio =
4390 					(tsc_freq + 50000000) / 100000000;
4391 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4392 		intel_pt_log("Maximum non-turbo ratio %u\n",
4393 			     pt->max_non_turbo_ratio);
4394 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4395 	}
4396 
4397 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4398 	if (err)
4399 		goto err_delete_thread;
4400 
4401 	if (pt->synth_opts.calls)
4402 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4403 				       PERF_IP_FLAG_TRACE_END;
4404 	if (pt->synth_opts.returns)
4405 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4406 				       PERF_IP_FLAG_TRACE_BEGIN;
4407 
4408 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4409 	    !symbol_conf.use_callchain) {
4410 		symbol_conf.use_callchain = true;
4411 		if (callchain_register_param(&callchain_param) < 0) {
4412 			symbol_conf.use_callchain = false;
4413 			pt->synth_opts.callchain = false;
4414 			pt->synth_opts.add_callchain = false;
4415 		}
4416 	}
4417 
4418 	if (pt->synth_opts.add_callchain) {
4419 		err = intel_pt_callchain_init(pt);
4420 		if (err)
4421 			goto err_delete_thread;
4422 	}
4423 
4424 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4425 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4426 		pt->br_stack_sz_plus = pt->br_stack_sz;
4427 	}
4428 
4429 	if (pt->synth_opts.add_last_branch) {
4430 		err = intel_pt_br_stack_init(pt);
4431 		if (err)
4432 			goto err_delete_thread;
4433 		/*
4434 		 * Additional branch stack size to cater for tracing from the
4435 		 * actual sample ip to where the sample time is recorded.
4436 		 * Measured at about 200 branches, but generously set to 1024.
4437 		 * If kernel space is not being traced, then add just 1 for the
4438 		 * branch to kernel space.
4439 		 */
4440 		if (intel_pt_tracing_kernel(pt))
4441 			pt->br_stack_sz_plus += 1024;
4442 		else
4443 			pt->br_stack_sz_plus += 1;
4444 	}
4445 
4446 	pt->use_thread_stack = pt->synth_opts.callchain ||
4447 			       pt->synth_opts.add_callchain ||
4448 			       pt->synth_opts.thread_stack ||
4449 			       pt->synth_opts.last_branch ||
4450 			       pt->synth_opts.add_last_branch;
4451 
4452 	pt->callstack = pt->synth_opts.callchain ||
4453 			pt->synth_opts.add_callchain ||
4454 			pt->synth_opts.thread_stack;
4455 
4456 	err = intel_pt_synth_events(pt, session);
4457 	if (err)
4458 		goto err_delete_thread;
4459 
4460 	intel_pt_setup_pebs_events(pt);
4461 
4462 	if (perf_data__is_pipe(session->data)) {
4463 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4464 			   "         The output cannot relied upon.  In particular,\n"
4465 			   "         timestamps and the order of events may be incorrect.\n");
4466 	}
4467 
4468 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4469 		err = auxtrace_queue_data(session, true, true);
4470 	else
4471 		err = auxtrace_queues__process_index(&pt->queues, session);
4472 	if (err)
4473 		goto err_delete_thread;
4474 
4475 	if (pt->queues.populated)
4476 		pt->data_queued = true;
4477 
4478 	if (pt->timeless_decoding)
4479 		pr_debug2("Intel PT decoding without timestamps\n");
4480 
4481 	return 0;
4482 
4483 err_delete_thread:
4484 	zfree(&pt->chain);
4485 	thread__zput(pt->unknown_thread);
4486 err_free_queues:
4487 	intel_pt_log_disable();
4488 	auxtrace_queues__free(&pt->queues);
4489 	session->auxtrace = NULL;
4490 err_free:
4491 	addr_filters__exit(&pt->filts);
4492 	zfree(&pt->filter);
4493 	zfree(&pt->time_ranges);
4494 	free(pt);
4495 	return err;
4496 }
4497