xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 458a445deb9c9fb13cec46fe9b179a84d2ff514f)
1 /*
2  * intel_pt.c: Intel Processor Trace support
3  * Copyright (c) 2013-2015, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 
16 #include <inttypes.h>
17 #include <stdio.h>
18 #include <stdbool.h>
19 #include <errno.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 
23 #include "../perf.h"
24 #include "session.h"
25 #include "machine.h"
26 #include "memswap.h"
27 #include "sort.h"
28 #include "tool.h"
29 #include "event.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "map.h"
33 #include "color.h"
34 #include "util.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "symbol.h"
38 #include "callchain.h"
39 #include "dso.h"
40 #include "debug.h"
41 #include "auxtrace.h"
42 #include "tsc.h"
43 #include "intel-pt.h"
44 #include "config.h"
45 
46 #include "intel-pt-decoder/intel-pt-log.h"
47 #include "intel-pt-decoder/intel-pt-decoder.h"
48 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
50 
51 #define MAX_TIMESTAMP (~0ULL)
52 
53 struct intel_pt {
54 	struct auxtrace auxtrace;
55 	struct auxtrace_queues queues;
56 	struct auxtrace_heap heap;
57 	u32 auxtrace_type;
58 	struct perf_session *session;
59 	struct machine *machine;
60 	struct perf_evsel *switch_evsel;
61 	struct thread *unknown_thread;
62 	bool timeless_decoding;
63 	bool sampling_mode;
64 	bool snapshot_mode;
65 	bool per_cpu_mmaps;
66 	bool have_tsc;
67 	bool data_queued;
68 	bool est_tsc;
69 	bool sync_switch;
70 	bool mispred_all;
71 	int have_sched_switch;
72 	u32 pmu_type;
73 	u64 kernel_start;
74 	u64 switch_ip;
75 	u64 ptss_ip;
76 
77 	struct perf_tsc_conversion tc;
78 	bool cap_user_time_zero;
79 
80 	struct itrace_synth_opts synth_opts;
81 
82 	bool sample_instructions;
83 	u64 instructions_sample_type;
84 	u64 instructions_id;
85 
86 	bool sample_branches;
87 	u32 branches_filter;
88 	u64 branches_sample_type;
89 	u64 branches_id;
90 
91 	bool sample_transactions;
92 	u64 transactions_sample_type;
93 	u64 transactions_id;
94 
95 	bool sample_ptwrites;
96 	u64 ptwrites_sample_type;
97 	u64 ptwrites_id;
98 
99 	bool sample_pwr_events;
100 	u64 pwr_events_sample_type;
101 	u64 mwait_id;
102 	u64 pwre_id;
103 	u64 exstop_id;
104 	u64 pwrx_id;
105 	u64 cbr_id;
106 
107 	u64 tsc_bit;
108 	u64 mtc_bit;
109 	u64 mtc_freq_bits;
110 	u32 tsc_ctc_ratio_n;
111 	u32 tsc_ctc_ratio_d;
112 	u64 cyc_bit;
113 	u64 noretcomp_bit;
114 	unsigned max_non_turbo_ratio;
115 	unsigned cbr2khz;
116 
117 	unsigned long num_events;
118 
119 	char *filter;
120 	struct addr_filters filts;
121 };
122 
123 enum switch_state {
124 	INTEL_PT_SS_NOT_TRACING,
125 	INTEL_PT_SS_UNKNOWN,
126 	INTEL_PT_SS_TRACING,
127 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
128 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
129 };
130 
131 struct intel_pt_queue {
132 	struct intel_pt *pt;
133 	unsigned int queue_nr;
134 	struct auxtrace_buffer *buffer;
135 	struct auxtrace_buffer *old_buffer;
136 	void *decoder;
137 	const struct intel_pt_state *state;
138 	struct ip_callchain *chain;
139 	struct branch_stack *last_branch;
140 	struct branch_stack *last_branch_rb;
141 	size_t last_branch_pos;
142 	union perf_event *event_buf;
143 	bool on_heap;
144 	bool stop;
145 	bool step_through_buffers;
146 	bool use_buffer_pid_tid;
147 	bool sync_switch;
148 	pid_t pid, tid;
149 	int cpu;
150 	int switch_state;
151 	pid_t next_tid;
152 	struct thread *thread;
153 	bool exclude_kernel;
154 	bool have_sample;
155 	u64 time;
156 	u64 timestamp;
157 	u32 flags;
158 	u16 insn_len;
159 	u64 last_insn_cnt;
160 	char insn[INTEL_PT_INSN_BUF_SZ];
161 };
162 
163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
164 			  unsigned char *buf, size_t len)
165 {
166 	struct intel_pt_pkt packet;
167 	size_t pos = 0;
168 	int ret, pkt_len, i;
169 	char desc[INTEL_PT_PKT_DESC_MAX];
170 	const char *color = PERF_COLOR_BLUE;
171 
172 	color_fprintf(stdout, color,
173 		      ". ... Intel Processor Trace data: size %zu bytes\n",
174 		      len);
175 
176 	while (len) {
177 		ret = intel_pt_get_packet(buf, len, &packet);
178 		if (ret > 0)
179 			pkt_len = ret;
180 		else
181 			pkt_len = 1;
182 		printf(".");
183 		color_fprintf(stdout, color, "  %08x: ", pos);
184 		for (i = 0; i < pkt_len; i++)
185 			color_fprintf(stdout, color, " %02x", buf[i]);
186 		for (; i < 16; i++)
187 			color_fprintf(stdout, color, "   ");
188 		if (ret > 0) {
189 			ret = intel_pt_pkt_desc(&packet, desc,
190 						INTEL_PT_PKT_DESC_MAX);
191 			if (ret > 0)
192 				color_fprintf(stdout, color, " %s\n", desc);
193 		} else {
194 			color_fprintf(stdout, color, " Bad packet!\n");
195 		}
196 		pos += pkt_len;
197 		buf += pkt_len;
198 		len -= pkt_len;
199 	}
200 }
201 
202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
203 				size_t len)
204 {
205 	printf(".\n");
206 	intel_pt_dump(pt, buf, len);
207 }
208 
209 static void intel_pt_log_event(union perf_event *event)
210 {
211 	FILE *f = intel_pt_log_fp();
212 
213 	if (!intel_pt_enable_logging || !f)
214 		return;
215 
216 	perf_event__fprintf(event, f);
217 }
218 
219 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
220 				   struct auxtrace_buffer *b)
221 {
222 	bool consecutive = false;
223 	void *start;
224 
225 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
226 				      pt->have_tsc, &consecutive);
227 	if (!start)
228 		return -EINVAL;
229 	b->use_size = b->data + b->size - start;
230 	b->use_data = start;
231 	if (b->use_size && consecutive)
232 		b->consecutive = true;
233 	return 0;
234 }
235 
236 /* This function assumes data is processed sequentially only */
237 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
238 {
239 	struct intel_pt_queue *ptq = data;
240 	struct auxtrace_buffer *buffer = ptq->buffer;
241 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
242 	struct auxtrace_queue *queue;
243 	bool might_overlap;
244 
245 	if (ptq->stop) {
246 		b->len = 0;
247 		return 0;
248 	}
249 
250 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
251 
252 	buffer = auxtrace_buffer__next(queue, buffer);
253 	if (!buffer) {
254 		if (old_buffer)
255 			auxtrace_buffer__drop_data(old_buffer);
256 		b->len = 0;
257 		return 0;
258 	}
259 
260 	ptq->buffer = buffer;
261 
262 	if (!buffer->data) {
263 		int fd = perf_data__fd(ptq->pt->session->data);
264 
265 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
266 		if (!buffer->data)
267 			return -ENOMEM;
268 	}
269 
270 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
271 	if (might_overlap && !buffer->consecutive && old_buffer &&
272 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
273 		return -ENOMEM;
274 
275 	if (buffer->use_data) {
276 		b->len = buffer->use_size;
277 		b->buf = buffer->use_data;
278 	} else {
279 		b->len = buffer->size;
280 		b->buf = buffer->data;
281 	}
282 	b->ref_timestamp = buffer->reference;
283 
284 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
285 		b->consecutive = false;
286 		b->trace_nr = buffer->buffer_nr + 1;
287 	} else {
288 		b->consecutive = true;
289 	}
290 
291 	if (ptq->step_through_buffers)
292 		ptq->stop = true;
293 
294 	if (b->len) {
295 		if (old_buffer)
296 			auxtrace_buffer__drop_data(old_buffer);
297 		ptq->old_buffer = buffer;
298 	} else {
299 		auxtrace_buffer__drop_data(buffer);
300 		return intel_pt_get_trace(b, data);
301 	}
302 
303 	return 0;
304 }
305 
306 struct intel_pt_cache_entry {
307 	struct auxtrace_cache_entry	entry;
308 	u64				insn_cnt;
309 	u64				byte_cnt;
310 	enum intel_pt_insn_op		op;
311 	enum intel_pt_insn_branch	branch;
312 	int				length;
313 	int32_t				rel;
314 	char				insn[INTEL_PT_INSN_BUF_SZ];
315 };
316 
317 static int intel_pt_config_div(const char *var, const char *value, void *data)
318 {
319 	int *d = data;
320 	long val;
321 
322 	if (!strcmp(var, "intel-pt.cache-divisor")) {
323 		val = strtol(value, NULL, 0);
324 		if (val > 0 && val <= INT_MAX)
325 			*d = val;
326 	}
327 
328 	return 0;
329 }
330 
331 static int intel_pt_cache_divisor(void)
332 {
333 	static int d;
334 
335 	if (d)
336 		return d;
337 
338 	perf_config(intel_pt_config_div, &d);
339 
340 	if (!d)
341 		d = 64;
342 
343 	return d;
344 }
345 
346 static unsigned int intel_pt_cache_size(struct dso *dso,
347 					struct machine *machine)
348 {
349 	off_t size;
350 
351 	size = dso__data_size(dso, machine);
352 	size /= intel_pt_cache_divisor();
353 	if (size < 1000)
354 		return 10;
355 	if (size > (1 << 21))
356 		return 21;
357 	return 32 - __builtin_clz(size);
358 }
359 
360 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
361 					     struct machine *machine)
362 {
363 	struct auxtrace_cache *c;
364 	unsigned int bits;
365 
366 	if (dso->auxtrace_cache)
367 		return dso->auxtrace_cache;
368 
369 	bits = intel_pt_cache_size(dso, machine);
370 
371 	/* Ignoring cache creation failure */
372 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
373 
374 	dso->auxtrace_cache = c;
375 
376 	return c;
377 }
378 
379 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
380 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
381 			      struct intel_pt_insn *intel_pt_insn)
382 {
383 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
384 	struct intel_pt_cache_entry *e;
385 	int err;
386 
387 	if (!c)
388 		return -ENOMEM;
389 
390 	e = auxtrace_cache__alloc_entry(c);
391 	if (!e)
392 		return -ENOMEM;
393 
394 	e->insn_cnt = insn_cnt;
395 	e->byte_cnt = byte_cnt;
396 	e->op = intel_pt_insn->op;
397 	e->branch = intel_pt_insn->branch;
398 	e->length = intel_pt_insn->length;
399 	e->rel = intel_pt_insn->rel;
400 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
401 
402 	err = auxtrace_cache__add(c, offset, &e->entry);
403 	if (err)
404 		auxtrace_cache__free_entry(c, e);
405 
406 	return err;
407 }
408 
409 static struct intel_pt_cache_entry *
410 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
411 {
412 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
413 
414 	if (!c)
415 		return NULL;
416 
417 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
418 }
419 
420 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
421 {
422 	return ip >= pt->kernel_start ?
423 	       PERF_RECORD_MISC_KERNEL :
424 	       PERF_RECORD_MISC_USER;
425 }
426 
427 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
428 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
429 				   uint64_t to_ip, uint64_t max_insn_cnt,
430 				   void *data)
431 {
432 	struct intel_pt_queue *ptq = data;
433 	struct machine *machine = ptq->pt->machine;
434 	struct thread *thread;
435 	struct addr_location al;
436 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
437 	ssize_t len;
438 	int x86_64;
439 	u8 cpumode;
440 	u64 offset, start_offset, start_ip;
441 	u64 insn_cnt = 0;
442 	bool one_map = true;
443 
444 	intel_pt_insn->length = 0;
445 
446 	if (to_ip && *ip == to_ip)
447 		goto out_no_cache;
448 
449 	cpumode = intel_pt_cpumode(ptq->pt, *ip);
450 
451 	thread = ptq->thread;
452 	if (!thread) {
453 		if (cpumode != PERF_RECORD_MISC_KERNEL)
454 			return -EINVAL;
455 		thread = ptq->pt->unknown_thread;
456 	}
457 
458 	while (1) {
459 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
460 			return -EINVAL;
461 
462 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
463 		    dso__data_status_seen(al.map->dso,
464 					  DSO_DATA_STATUS_SEEN_ITRACE))
465 			return -ENOENT;
466 
467 		offset = al.map->map_ip(al.map, *ip);
468 
469 		if (!to_ip && one_map) {
470 			struct intel_pt_cache_entry *e;
471 
472 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
473 			if (e &&
474 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
475 				*insn_cnt_ptr = e->insn_cnt;
476 				*ip += e->byte_cnt;
477 				intel_pt_insn->op = e->op;
478 				intel_pt_insn->branch = e->branch;
479 				intel_pt_insn->length = e->length;
480 				intel_pt_insn->rel = e->rel;
481 				memcpy(intel_pt_insn->buf, e->insn,
482 				       INTEL_PT_INSN_BUF_SZ);
483 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
484 				return 0;
485 			}
486 		}
487 
488 		start_offset = offset;
489 		start_ip = *ip;
490 
491 		/* Load maps to ensure dso->is_64_bit has been updated */
492 		map__load(al.map);
493 
494 		x86_64 = al.map->dso->is_64_bit;
495 
496 		while (1) {
497 			len = dso__data_read_offset(al.map->dso, machine,
498 						    offset, buf,
499 						    INTEL_PT_INSN_BUF_SZ);
500 			if (len <= 0)
501 				return -EINVAL;
502 
503 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
504 				return -EINVAL;
505 
506 			intel_pt_log_insn(intel_pt_insn, *ip);
507 
508 			insn_cnt += 1;
509 
510 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
511 				goto out;
512 
513 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
514 				goto out_no_cache;
515 
516 			*ip += intel_pt_insn->length;
517 
518 			if (to_ip && *ip == to_ip)
519 				goto out_no_cache;
520 
521 			if (*ip >= al.map->end)
522 				break;
523 
524 			offset += intel_pt_insn->length;
525 		}
526 		one_map = false;
527 	}
528 out:
529 	*insn_cnt_ptr = insn_cnt;
530 
531 	if (!one_map)
532 		goto out_no_cache;
533 
534 	/*
535 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
536 	 * entries.
537 	 */
538 	if (to_ip) {
539 		struct intel_pt_cache_entry *e;
540 
541 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
542 		if (e)
543 			return 0;
544 	}
545 
546 	/* Ignore cache errors */
547 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
548 			   *ip - start_ip, intel_pt_insn);
549 
550 	return 0;
551 
552 out_no_cache:
553 	*insn_cnt_ptr = insn_cnt;
554 	return 0;
555 }
556 
557 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
558 				  uint64_t offset, const char *filename)
559 {
560 	struct addr_filter *filt;
561 	bool have_filter   = false;
562 	bool hit_tracestop = false;
563 	bool hit_filter    = false;
564 
565 	list_for_each_entry(filt, &pt->filts.head, list) {
566 		if (filt->start)
567 			have_filter = true;
568 
569 		if ((filename && !filt->filename) ||
570 		    (!filename && filt->filename) ||
571 		    (filename && strcmp(filename, filt->filename)))
572 			continue;
573 
574 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
575 			continue;
576 
577 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
578 			     ip, offset, filename ? filename : "[kernel]",
579 			     filt->start ? "filter" : "stop",
580 			     filt->addr, filt->size);
581 
582 		if (filt->start)
583 			hit_filter = true;
584 		else
585 			hit_tracestop = true;
586 	}
587 
588 	if (!hit_tracestop && !hit_filter)
589 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
590 			     ip, offset, filename ? filename : "[kernel]");
591 
592 	return hit_tracestop || (have_filter && !hit_filter);
593 }
594 
595 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
596 {
597 	struct intel_pt_queue *ptq = data;
598 	struct thread *thread;
599 	struct addr_location al;
600 	u8 cpumode;
601 	u64 offset;
602 
603 	if (ip >= ptq->pt->kernel_start)
604 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
605 
606 	cpumode = PERF_RECORD_MISC_USER;
607 
608 	thread = ptq->thread;
609 	if (!thread)
610 		return -EINVAL;
611 
612 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
613 		return -EINVAL;
614 
615 	offset = al.map->map_ip(al.map, ip);
616 
617 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
618 				     al.map->dso->long_name);
619 }
620 
621 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
622 {
623 	return __intel_pt_pgd_ip(ip, data) > 0;
624 }
625 
626 static bool intel_pt_get_config(struct intel_pt *pt,
627 				struct perf_event_attr *attr, u64 *config)
628 {
629 	if (attr->type == pt->pmu_type) {
630 		if (config)
631 			*config = attr->config;
632 		return true;
633 	}
634 
635 	return false;
636 }
637 
638 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
639 {
640 	struct perf_evsel *evsel;
641 
642 	evlist__for_each_entry(pt->session->evlist, evsel) {
643 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
644 		    !evsel->attr.exclude_kernel)
645 			return false;
646 	}
647 	return true;
648 }
649 
650 static bool intel_pt_return_compression(struct intel_pt *pt)
651 {
652 	struct perf_evsel *evsel;
653 	u64 config;
654 
655 	if (!pt->noretcomp_bit)
656 		return true;
657 
658 	evlist__for_each_entry(pt->session->evlist, evsel) {
659 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
660 		    (config & pt->noretcomp_bit))
661 			return false;
662 	}
663 	return true;
664 }
665 
666 static bool intel_pt_branch_enable(struct intel_pt *pt)
667 {
668 	struct perf_evsel *evsel;
669 	u64 config;
670 
671 	evlist__for_each_entry(pt->session->evlist, evsel) {
672 		if (intel_pt_get_config(pt, &evsel->attr, &config) &&
673 		    (config & 1) && !(config & 0x2000))
674 			return false;
675 	}
676 	return true;
677 }
678 
679 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
680 {
681 	struct perf_evsel *evsel;
682 	unsigned int shift;
683 	u64 config;
684 
685 	if (!pt->mtc_freq_bits)
686 		return 0;
687 
688 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
689 		config >>= 1;
690 
691 	evlist__for_each_entry(pt->session->evlist, evsel) {
692 		if (intel_pt_get_config(pt, &evsel->attr, &config))
693 			return (config & pt->mtc_freq_bits) >> shift;
694 	}
695 	return 0;
696 }
697 
698 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
699 {
700 	struct perf_evsel *evsel;
701 	bool timeless_decoding = true;
702 	u64 config;
703 
704 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
705 		return true;
706 
707 	evlist__for_each_entry(pt->session->evlist, evsel) {
708 		if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
709 			return true;
710 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
711 			if (config & pt->tsc_bit)
712 				timeless_decoding = false;
713 			else
714 				return true;
715 		}
716 	}
717 	return timeless_decoding;
718 }
719 
720 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
721 {
722 	struct perf_evsel *evsel;
723 
724 	evlist__for_each_entry(pt->session->evlist, evsel) {
725 		if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
726 		    !evsel->attr.exclude_kernel)
727 			return true;
728 	}
729 	return false;
730 }
731 
732 static bool intel_pt_have_tsc(struct intel_pt *pt)
733 {
734 	struct perf_evsel *evsel;
735 	bool have_tsc = false;
736 	u64 config;
737 
738 	if (!pt->tsc_bit)
739 		return false;
740 
741 	evlist__for_each_entry(pt->session->evlist, evsel) {
742 		if (intel_pt_get_config(pt, &evsel->attr, &config)) {
743 			if (config & pt->tsc_bit)
744 				have_tsc = true;
745 			else
746 				return false;
747 		}
748 	}
749 	return have_tsc;
750 }
751 
752 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
753 {
754 	u64 quot, rem;
755 
756 	quot = ns / pt->tc.time_mult;
757 	rem  = ns % pt->tc.time_mult;
758 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
759 		pt->tc.time_mult;
760 }
761 
762 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
763 						   unsigned int queue_nr)
764 {
765 	struct intel_pt_params params = { .get_trace = 0, };
766 	struct perf_env *env = pt->machine->env;
767 	struct intel_pt_queue *ptq;
768 
769 	ptq = zalloc(sizeof(struct intel_pt_queue));
770 	if (!ptq)
771 		return NULL;
772 
773 	if (pt->synth_opts.callchain) {
774 		size_t sz = sizeof(struct ip_callchain);
775 
776 		/* Add 1 to callchain_sz for callchain context */
777 		sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
778 		ptq->chain = zalloc(sz);
779 		if (!ptq->chain)
780 			goto out_free;
781 	}
782 
783 	if (pt->synth_opts.last_branch) {
784 		size_t sz = sizeof(struct branch_stack);
785 
786 		sz += pt->synth_opts.last_branch_sz *
787 		      sizeof(struct branch_entry);
788 		ptq->last_branch = zalloc(sz);
789 		if (!ptq->last_branch)
790 			goto out_free;
791 		ptq->last_branch_rb = zalloc(sz);
792 		if (!ptq->last_branch_rb)
793 			goto out_free;
794 	}
795 
796 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
797 	if (!ptq->event_buf)
798 		goto out_free;
799 
800 	ptq->pt = pt;
801 	ptq->queue_nr = queue_nr;
802 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
803 	ptq->pid = -1;
804 	ptq->tid = -1;
805 	ptq->cpu = -1;
806 	ptq->next_tid = -1;
807 
808 	params.get_trace = intel_pt_get_trace;
809 	params.walk_insn = intel_pt_walk_next_insn;
810 	params.data = ptq;
811 	params.return_compression = intel_pt_return_compression(pt);
812 	params.branch_enable = intel_pt_branch_enable(pt);
813 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
814 	params.mtc_period = intel_pt_mtc_period(pt);
815 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
816 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
817 
818 	if (pt->filts.cnt > 0)
819 		params.pgd_ip = intel_pt_pgd_ip;
820 
821 	if (pt->synth_opts.instructions) {
822 		if (pt->synth_opts.period) {
823 			switch (pt->synth_opts.period_type) {
824 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
825 				params.period_type =
826 						INTEL_PT_PERIOD_INSTRUCTIONS;
827 				params.period = pt->synth_opts.period;
828 				break;
829 			case PERF_ITRACE_PERIOD_TICKS:
830 				params.period_type = INTEL_PT_PERIOD_TICKS;
831 				params.period = pt->synth_opts.period;
832 				break;
833 			case PERF_ITRACE_PERIOD_NANOSECS:
834 				params.period_type = INTEL_PT_PERIOD_TICKS;
835 				params.period = intel_pt_ns_to_ticks(pt,
836 							pt->synth_opts.period);
837 				break;
838 			default:
839 				break;
840 			}
841 		}
842 
843 		if (!params.period) {
844 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
845 			params.period = 1;
846 		}
847 	}
848 
849 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
850 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
851 
852 	ptq->decoder = intel_pt_decoder_new(&params);
853 	if (!ptq->decoder)
854 		goto out_free;
855 
856 	return ptq;
857 
858 out_free:
859 	zfree(&ptq->event_buf);
860 	zfree(&ptq->last_branch);
861 	zfree(&ptq->last_branch_rb);
862 	zfree(&ptq->chain);
863 	free(ptq);
864 	return NULL;
865 }
866 
867 static void intel_pt_free_queue(void *priv)
868 {
869 	struct intel_pt_queue *ptq = priv;
870 
871 	if (!ptq)
872 		return;
873 	thread__zput(ptq->thread);
874 	intel_pt_decoder_free(ptq->decoder);
875 	zfree(&ptq->event_buf);
876 	zfree(&ptq->last_branch);
877 	zfree(&ptq->last_branch_rb);
878 	zfree(&ptq->chain);
879 	free(ptq);
880 }
881 
882 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
883 				     struct auxtrace_queue *queue)
884 {
885 	struct intel_pt_queue *ptq = queue->priv;
886 
887 	if (queue->tid == -1 || pt->have_sched_switch) {
888 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
889 		thread__zput(ptq->thread);
890 	}
891 
892 	if (!ptq->thread && ptq->tid != -1)
893 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
894 
895 	if (ptq->thread) {
896 		ptq->pid = ptq->thread->pid_;
897 		if (queue->cpu == -1)
898 			ptq->cpu = ptq->thread->cpu;
899 	}
900 }
901 
902 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
903 {
904 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
905 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
906 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
907 		if (ptq->state->to_ip)
908 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
909 				     PERF_IP_FLAG_ASYNC |
910 				     PERF_IP_FLAG_INTERRUPT;
911 		else
912 			ptq->flags = PERF_IP_FLAG_BRANCH |
913 				     PERF_IP_FLAG_TRACE_END;
914 		ptq->insn_len = 0;
915 	} else {
916 		if (ptq->state->from_ip)
917 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
918 		else
919 			ptq->flags = PERF_IP_FLAG_BRANCH |
920 				     PERF_IP_FLAG_TRACE_BEGIN;
921 		if (ptq->state->flags & INTEL_PT_IN_TX)
922 			ptq->flags |= PERF_IP_FLAG_IN_TX;
923 		ptq->insn_len = ptq->state->insn_len;
924 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
925 	}
926 
927 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
928 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
929 	if (ptq->state->type & INTEL_PT_TRACE_END)
930 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
931 }
932 
933 static int intel_pt_setup_queue(struct intel_pt *pt,
934 				struct auxtrace_queue *queue,
935 				unsigned int queue_nr)
936 {
937 	struct intel_pt_queue *ptq = queue->priv;
938 
939 	if (list_empty(&queue->head))
940 		return 0;
941 
942 	if (!ptq) {
943 		ptq = intel_pt_alloc_queue(pt, queue_nr);
944 		if (!ptq)
945 			return -ENOMEM;
946 		queue->priv = ptq;
947 
948 		if (queue->cpu != -1)
949 			ptq->cpu = queue->cpu;
950 		ptq->tid = queue->tid;
951 
952 		if (pt->sampling_mode && !pt->snapshot_mode &&
953 		    pt->timeless_decoding)
954 			ptq->step_through_buffers = true;
955 
956 		ptq->sync_switch = pt->sync_switch;
957 	}
958 
959 	if (!ptq->on_heap &&
960 	    (!ptq->sync_switch ||
961 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
962 		const struct intel_pt_state *state;
963 		int ret;
964 
965 		if (pt->timeless_decoding)
966 			return 0;
967 
968 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
969 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
970 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
971 		while (1) {
972 			state = intel_pt_decode(ptq->decoder);
973 			if (state->err) {
974 				if (state->err == INTEL_PT_ERR_NODATA) {
975 					intel_pt_log("queue %u has no timestamp\n",
976 						     queue_nr);
977 					return 0;
978 				}
979 				continue;
980 			}
981 			if (state->timestamp)
982 				break;
983 		}
984 
985 		ptq->timestamp = state->timestamp;
986 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
987 			     queue_nr, ptq->timestamp);
988 		ptq->state = state;
989 		ptq->have_sample = true;
990 		intel_pt_sample_flags(ptq);
991 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
992 		if (ret)
993 			return ret;
994 		ptq->on_heap = true;
995 	}
996 
997 	return 0;
998 }
999 
1000 static int intel_pt_setup_queues(struct intel_pt *pt)
1001 {
1002 	unsigned int i;
1003 	int ret;
1004 
1005 	for (i = 0; i < pt->queues.nr_queues; i++) {
1006 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 	return 0;
1011 }
1012 
1013 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
1014 {
1015 	struct branch_stack *bs_src = ptq->last_branch_rb;
1016 	struct branch_stack *bs_dst = ptq->last_branch;
1017 	size_t nr = 0;
1018 
1019 	bs_dst->nr = bs_src->nr;
1020 
1021 	if (!bs_src->nr)
1022 		return;
1023 
1024 	nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1025 	memcpy(&bs_dst->entries[0],
1026 	       &bs_src->entries[ptq->last_branch_pos],
1027 	       sizeof(struct branch_entry) * nr);
1028 
1029 	if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1030 		memcpy(&bs_dst->entries[nr],
1031 		       &bs_src->entries[0],
1032 		       sizeof(struct branch_entry) * ptq->last_branch_pos);
1033 	}
1034 }
1035 
1036 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1037 {
1038 	ptq->last_branch_pos = 0;
1039 	ptq->last_branch_rb->nr = 0;
1040 }
1041 
1042 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1043 {
1044 	const struct intel_pt_state *state = ptq->state;
1045 	struct branch_stack *bs = ptq->last_branch_rb;
1046 	struct branch_entry *be;
1047 
1048 	if (!ptq->last_branch_pos)
1049 		ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1050 
1051 	ptq->last_branch_pos -= 1;
1052 
1053 	be              = &bs->entries[ptq->last_branch_pos];
1054 	be->from        = state->from_ip;
1055 	be->to          = state->to_ip;
1056 	be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1057 	be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1058 	/* No support for mispredict */
1059 	be->flags.mispred = ptq->pt->mispred_all;
1060 
1061 	if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1062 		bs->nr += 1;
1063 }
1064 
1065 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1066 {
1067 	return pt->synth_opts.initial_skip &&
1068 	       pt->num_events++ < pt->synth_opts.initial_skip;
1069 }
1070 
1071 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1072 				   struct intel_pt_queue *ptq,
1073 				   union perf_event *event,
1074 				   struct perf_sample *sample)
1075 {
1076 	if (!pt->timeless_decoding)
1077 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1078 
1079 	sample->ip = ptq->state->from_ip;
1080 	sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1081 	sample->pid = ptq->pid;
1082 	sample->tid = ptq->tid;
1083 	sample->addr = ptq->state->to_ip;
1084 	sample->period = 1;
1085 	sample->cpu = ptq->cpu;
1086 	sample->flags = ptq->flags;
1087 	sample->insn_len = ptq->insn_len;
1088 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1089 
1090 	event->sample.header.type = PERF_RECORD_SAMPLE;
1091 	event->sample.header.misc = sample->cpumode;
1092 	event->sample.header.size = sizeof(struct perf_event_header);
1093 }
1094 
1095 static int intel_pt_inject_event(union perf_event *event,
1096 				 struct perf_sample *sample, u64 type)
1097 {
1098 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1099 	return perf_event__synthesize_sample(event, type, 0, sample);
1100 }
1101 
1102 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1103 				      union perf_event *event,
1104 				      struct perf_sample *sample, u64 type)
1105 {
1106 	if (!pt->synth_opts.inject)
1107 		return 0;
1108 
1109 	return intel_pt_inject_event(event, sample, type);
1110 }
1111 
1112 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1113 					  union perf_event *event,
1114 					  struct perf_sample *sample, u64 type)
1115 {
1116 	int ret;
1117 
1118 	ret = intel_pt_opt_inject(pt, event, sample, type);
1119 	if (ret)
1120 		return ret;
1121 
1122 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1123 	if (ret)
1124 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1125 
1126 	return ret;
1127 }
1128 
1129 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1130 {
1131 	struct intel_pt *pt = ptq->pt;
1132 	union perf_event *event = ptq->event_buf;
1133 	struct perf_sample sample = { .ip = 0, };
1134 	struct dummy_branch_stack {
1135 		u64			nr;
1136 		struct branch_entry	entries;
1137 	} dummy_bs;
1138 
1139 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1140 		return 0;
1141 
1142 	if (intel_pt_skip_event(pt))
1143 		return 0;
1144 
1145 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1146 
1147 	sample.id = ptq->pt->branches_id;
1148 	sample.stream_id = ptq->pt->branches_id;
1149 
1150 	/*
1151 	 * perf report cannot handle events without a branch stack when using
1152 	 * SORT_MODE__BRANCH so make a dummy one.
1153 	 */
1154 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1155 		dummy_bs = (struct dummy_branch_stack){
1156 			.nr = 1,
1157 			.entries = {
1158 				.from = sample.ip,
1159 				.to = sample.addr,
1160 			},
1161 		};
1162 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1163 	}
1164 
1165 	return intel_pt_deliver_synth_b_event(pt, event, &sample,
1166 					      pt->branches_sample_type);
1167 }
1168 
1169 static void intel_pt_prep_sample(struct intel_pt *pt,
1170 				 struct intel_pt_queue *ptq,
1171 				 union perf_event *event,
1172 				 struct perf_sample *sample)
1173 {
1174 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1175 
1176 	if (pt->synth_opts.callchain) {
1177 		thread_stack__sample(ptq->thread, ptq->chain,
1178 				     pt->synth_opts.callchain_sz + 1,
1179 				     sample->ip, pt->kernel_start);
1180 		sample->callchain = ptq->chain;
1181 	}
1182 
1183 	if (pt->synth_opts.last_branch) {
1184 		intel_pt_copy_last_branch_rb(ptq);
1185 		sample->branch_stack = ptq->last_branch;
1186 	}
1187 }
1188 
1189 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1190 					       struct intel_pt_queue *ptq,
1191 					       union perf_event *event,
1192 					       struct perf_sample *sample,
1193 					       u64 type)
1194 {
1195 	int ret;
1196 
1197 	ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1198 
1199 	if (pt->synth_opts.last_branch)
1200 		intel_pt_reset_last_branch_rb(ptq);
1201 
1202 	return ret;
1203 }
1204 
1205 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1206 {
1207 	struct intel_pt *pt = ptq->pt;
1208 	union perf_event *event = ptq->event_buf;
1209 	struct perf_sample sample = { .ip = 0, };
1210 
1211 	if (intel_pt_skip_event(pt))
1212 		return 0;
1213 
1214 	intel_pt_prep_sample(pt, ptq, event, &sample);
1215 
1216 	sample.id = ptq->pt->instructions_id;
1217 	sample.stream_id = ptq->pt->instructions_id;
1218 	sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1219 
1220 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1221 
1222 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1223 					    pt->instructions_sample_type);
1224 }
1225 
1226 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1227 {
1228 	struct intel_pt *pt = ptq->pt;
1229 	union perf_event *event = ptq->event_buf;
1230 	struct perf_sample sample = { .ip = 0, };
1231 
1232 	if (intel_pt_skip_event(pt))
1233 		return 0;
1234 
1235 	intel_pt_prep_sample(pt, ptq, event, &sample);
1236 
1237 	sample.id = ptq->pt->transactions_id;
1238 	sample.stream_id = ptq->pt->transactions_id;
1239 
1240 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1241 					    pt->transactions_sample_type);
1242 }
1243 
1244 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1245 				   struct intel_pt_queue *ptq,
1246 				   union perf_event *event,
1247 				   struct perf_sample *sample)
1248 {
1249 	intel_pt_prep_sample(pt, ptq, event, sample);
1250 
1251 	/*
1252 	 * Zero IP is used to mean "trace start" but that is not the case for
1253 	 * power or PTWRITE events with no IP, so clear the flags.
1254 	 */
1255 	if (!sample->ip)
1256 		sample->flags = 0;
1257 }
1258 
1259 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1260 {
1261 	struct intel_pt *pt = ptq->pt;
1262 	union perf_event *event = ptq->event_buf;
1263 	struct perf_sample sample = { .ip = 0, };
1264 	struct perf_synth_intel_ptwrite raw;
1265 
1266 	if (intel_pt_skip_event(pt))
1267 		return 0;
1268 
1269 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1270 
1271 	sample.id = ptq->pt->ptwrites_id;
1272 	sample.stream_id = ptq->pt->ptwrites_id;
1273 
1274 	raw.flags = 0;
1275 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1276 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1277 
1278 	sample.raw_size = perf_synth__raw_size(raw);
1279 	sample.raw_data = perf_synth__raw_data(&raw);
1280 
1281 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1282 					    pt->ptwrites_sample_type);
1283 }
1284 
1285 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1286 {
1287 	struct intel_pt *pt = ptq->pt;
1288 	union perf_event *event = ptq->event_buf;
1289 	struct perf_sample sample = { .ip = 0, };
1290 	struct perf_synth_intel_cbr raw;
1291 	u32 flags;
1292 
1293 	if (intel_pt_skip_event(pt))
1294 		return 0;
1295 
1296 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1297 
1298 	sample.id = ptq->pt->cbr_id;
1299 	sample.stream_id = ptq->pt->cbr_id;
1300 
1301 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1302 	raw.flags = cpu_to_le32(flags);
1303 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1304 	raw.reserved3 = 0;
1305 
1306 	sample.raw_size = perf_synth__raw_size(raw);
1307 	sample.raw_data = perf_synth__raw_data(&raw);
1308 
1309 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1310 					    pt->pwr_events_sample_type);
1311 }
1312 
1313 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1314 {
1315 	struct intel_pt *pt = ptq->pt;
1316 	union perf_event *event = ptq->event_buf;
1317 	struct perf_sample sample = { .ip = 0, };
1318 	struct perf_synth_intel_mwait raw;
1319 
1320 	if (intel_pt_skip_event(pt))
1321 		return 0;
1322 
1323 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1324 
1325 	sample.id = ptq->pt->mwait_id;
1326 	sample.stream_id = ptq->pt->mwait_id;
1327 
1328 	raw.reserved = 0;
1329 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1330 
1331 	sample.raw_size = perf_synth__raw_size(raw);
1332 	sample.raw_data = perf_synth__raw_data(&raw);
1333 
1334 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1335 					    pt->pwr_events_sample_type);
1336 }
1337 
1338 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1339 {
1340 	struct intel_pt *pt = ptq->pt;
1341 	union perf_event *event = ptq->event_buf;
1342 	struct perf_sample sample = { .ip = 0, };
1343 	struct perf_synth_intel_pwre raw;
1344 
1345 	if (intel_pt_skip_event(pt))
1346 		return 0;
1347 
1348 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1349 
1350 	sample.id = ptq->pt->pwre_id;
1351 	sample.stream_id = ptq->pt->pwre_id;
1352 
1353 	raw.reserved = 0;
1354 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1355 
1356 	sample.raw_size = perf_synth__raw_size(raw);
1357 	sample.raw_data = perf_synth__raw_data(&raw);
1358 
1359 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1360 					    pt->pwr_events_sample_type);
1361 }
1362 
1363 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1364 {
1365 	struct intel_pt *pt = ptq->pt;
1366 	union perf_event *event = ptq->event_buf;
1367 	struct perf_sample sample = { .ip = 0, };
1368 	struct perf_synth_intel_exstop raw;
1369 
1370 	if (intel_pt_skip_event(pt))
1371 		return 0;
1372 
1373 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1374 
1375 	sample.id = ptq->pt->exstop_id;
1376 	sample.stream_id = ptq->pt->exstop_id;
1377 
1378 	raw.flags = 0;
1379 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1380 
1381 	sample.raw_size = perf_synth__raw_size(raw);
1382 	sample.raw_data = perf_synth__raw_data(&raw);
1383 
1384 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1385 					    pt->pwr_events_sample_type);
1386 }
1387 
1388 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1389 {
1390 	struct intel_pt *pt = ptq->pt;
1391 	union perf_event *event = ptq->event_buf;
1392 	struct perf_sample sample = { .ip = 0, };
1393 	struct perf_synth_intel_pwrx raw;
1394 
1395 	if (intel_pt_skip_event(pt))
1396 		return 0;
1397 
1398 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1399 
1400 	sample.id = ptq->pt->pwrx_id;
1401 	sample.stream_id = ptq->pt->pwrx_id;
1402 
1403 	raw.reserved = 0;
1404 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1405 
1406 	sample.raw_size = perf_synth__raw_size(raw);
1407 	sample.raw_data = perf_synth__raw_data(&raw);
1408 
1409 	return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1410 					    pt->pwr_events_sample_type);
1411 }
1412 
1413 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1414 				pid_t pid, pid_t tid, u64 ip)
1415 {
1416 	union perf_event event;
1417 	char msg[MAX_AUXTRACE_ERROR_MSG];
1418 	int err;
1419 
1420 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1421 
1422 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1423 			     code, cpu, pid, tid, ip, msg);
1424 
1425 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1426 	if (err)
1427 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1428 		       err);
1429 
1430 	return err;
1431 }
1432 
1433 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1434 {
1435 	struct auxtrace_queue *queue;
1436 	pid_t tid = ptq->next_tid;
1437 	int err;
1438 
1439 	if (tid == -1)
1440 		return 0;
1441 
1442 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1443 
1444 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1445 
1446 	queue = &pt->queues.queue_array[ptq->queue_nr];
1447 	intel_pt_set_pid_tid_cpu(pt, queue);
1448 
1449 	ptq->next_tid = -1;
1450 
1451 	return err;
1452 }
1453 
1454 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1455 {
1456 	struct intel_pt *pt = ptq->pt;
1457 
1458 	return ip == pt->switch_ip &&
1459 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1460 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1461 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1462 }
1463 
1464 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1465 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1466 			  INTEL_PT_CBR_CHG)
1467 
1468 static int intel_pt_sample(struct intel_pt_queue *ptq)
1469 {
1470 	const struct intel_pt_state *state = ptq->state;
1471 	struct intel_pt *pt = ptq->pt;
1472 	int err;
1473 
1474 	if (!ptq->have_sample)
1475 		return 0;
1476 
1477 	ptq->have_sample = false;
1478 
1479 	if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1480 		if (state->type & INTEL_PT_CBR_CHG) {
1481 			err = intel_pt_synth_cbr_sample(ptq);
1482 			if (err)
1483 				return err;
1484 		}
1485 		if (state->type & INTEL_PT_MWAIT_OP) {
1486 			err = intel_pt_synth_mwait_sample(ptq);
1487 			if (err)
1488 				return err;
1489 		}
1490 		if (state->type & INTEL_PT_PWR_ENTRY) {
1491 			err = intel_pt_synth_pwre_sample(ptq);
1492 			if (err)
1493 				return err;
1494 		}
1495 		if (state->type & INTEL_PT_EX_STOP) {
1496 			err = intel_pt_synth_exstop_sample(ptq);
1497 			if (err)
1498 				return err;
1499 		}
1500 		if (state->type & INTEL_PT_PWR_EXIT) {
1501 			err = intel_pt_synth_pwrx_sample(ptq);
1502 			if (err)
1503 				return err;
1504 		}
1505 	}
1506 
1507 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1508 		err = intel_pt_synth_instruction_sample(ptq);
1509 		if (err)
1510 			return err;
1511 	}
1512 
1513 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1514 		err = intel_pt_synth_transaction_sample(ptq);
1515 		if (err)
1516 			return err;
1517 	}
1518 
1519 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1520 		err = intel_pt_synth_ptwrite_sample(ptq);
1521 		if (err)
1522 			return err;
1523 	}
1524 
1525 	if (!(state->type & INTEL_PT_BRANCH))
1526 		return 0;
1527 
1528 	if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1529 		thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1530 				    state->to_ip, ptq->insn_len,
1531 				    state->trace_nr);
1532 	else
1533 		thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1534 
1535 	if (pt->sample_branches) {
1536 		err = intel_pt_synth_branch_sample(ptq);
1537 		if (err)
1538 			return err;
1539 	}
1540 
1541 	if (pt->synth_opts.last_branch)
1542 		intel_pt_update_last_branch_rb(ptq);
1543 
1544 	if (!ptq->sync_switch)
1545 		return 0;
1546 
1547 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1548 		switch (ptq->switch_state) {
1549 		case INTEL_PT_SS_NOT_TRACING:
1550 		case INTEL_PT_SS_UNKNOWN:
1551 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1552 			err = intel_pt_next_tid(pt, ptq);
1553 			if (err)
1554 				return err;
1555 			ptq->switch_state = INTEL_PT_SS_TRACING;
1556 			break;
1557 		default:
1558 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1559 			return 1;
1560 		}
1561 	} else if (!state->to_ip) {
1562 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1563 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1564 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1565 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1566 		   state->to_ip == pt->ptss_ip &&
1567 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
1568 		ptq->switch_state = INTEL_PT_SS_TRACING;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1575 {
1576 	struct machine *machine = pt->machine;
1577 	struct map *map;
1578 	struct symbol *sym, *start;
1579 	u64 ip, switch_ip = 0;
1580 	const char *ptss;
1581 
1582 	if (ptss_ip)
1583 		*ptss_ip = 0;
1584 
1585 	map = machine__kernel_map(machine);
1586 	if (!map)
1587 		return 0;
1588 
1589 	if (map__load(map))
1590 		return 0;
1591 
1592 	start = dso__first_symbol(map->dso);
1593 
1594 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1595 		if (sym->binding == STB_GLOBAL &&
1596 		    !strcmp(sym->name, "__switch_to")) {
1597 			ip = map->unmap_ip(map, sym->start);
1598 			if (ip >= map->start && ip < map->end) {
1599 				switch_ip = ip;
1600 				break;
1601 			}
1602 		}
1603 	}
1604 
1605 	if (!switch_ip || !ptss_ip)
1606 		return 0;
1607 
1608 	if (pt->have_sched_switch == 1)
1609 		ptss = "perf_trace_sched_switch";
1610 	else
1611 		ptss = "__perf_event_task_sched_out";
1612 
1613 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
1614 		if (!strcmp(sym->name, ptss)) {
1615 			ip = map->unmap_ip(map, sym->start);
1616 			if (ip >= map->start && ip < map->end) {
1617 				*ptss_ip = ip;
1618 				break;
1619 			}
1620 		}
1621 	}
1622 
1623 	return switch_ip;
1624 }
1625 
1626 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1627 {
1628 	unsigned int i;
1629 
1630 	pt->sync_switch = true;
1631 
1632 	for (i = 0; i < pt->queues.nr_queues; i++) {
1633 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1634 		struct intel_pt_queue *ptq = queue->priv;
1635 
1636 		if (ptq)
1637 			ptq->sync_switch = true;
1638 	}
1639 }
1640 
1641 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1642 {
1643 	const struct intel_pt_state *state = ptq->state;
1644 	struct intel_pt *pt = ptq->pt;
1645 	int err;
1646 
1647 	if (!pt->kernel_start) {
1648 		pt->kernel_start = machine__kernel_start(pt->machine);
1649 		if (pt->per_cpu_mmaps &&
1650 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1651 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1652 		    !pt->sampling_mode) {
1653 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1654 			if (pt->switch_ip) {
1655 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1656 					     pt->switch_ip, pt->ptss_ip);
1657 				intel_pt_enable_sync_switch(pt);
1658 			}
1659 		}
1660 	}
1661 
1662 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1663 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1664 	while (1) {
1665 		err = intel_pt_sample(ptq);
1666 		if (err)
1667 			return err;
1668 
1669 		state = intel_pt_decode(ptq->decoder);
1670 		if (state->err) {
1671 			if (state->err == INTEL_PT_ERR_NODATA)
1672 				return 1;
1673 			if (ptq->sync_switch &&
1674 			    state->from_ip >= pt->kernel_start) {
1675 				ptq->sync_switch = false;
1676 				intel_pt_next_tid(pt, ptq);
1677 			}
1678 			if (pt->synth_opts.errors) {
1679 				err = intel_pt_synth_error(pt, state->err,
1680 							   ptq->cpu, ptq->pid,
1681 							   ptq->tid,
1682 							   state->from_ip);
1683 				if (err)
1684 					return err;
1685 			}
1686 			continue;
1687 		}
1688 
1689 		ptq->state = state;
1690 		ptq->have_sample = true;
1691 		intel_pt_sample_flags(ptq);
1692 
1693 		/* Use estimated TSC upon return to user space */
1694 		if (pt->est_tsc &&
1695 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1696 		    state->to_ip && state->to_ip < pt->kernel_start) {
1697 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1698 				     state->timestamp, state->est_timestamp);
1699 			ptq->timestamp = state->est_timestamp;
1700 		/* Use estimated TSC in unknown switch state */
1701 		} else if (ptq->sync_switch &&
1702 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1703 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
1704 			   ptq->next_tid == -1) {
1705 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1706 				     state->timestamp, state->est_timestamp);
1707 			ptq->timestamp = state->est_timestamp;
1708 		} else if (state->timestamp > ptq->timestamp) {
1709 			ptq->timestamp = state->timestamp;
1710 		}
1711 
1712 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1713 			*timestamp = ptq->timestamp;
1714 			return 0;
1715 		}
1716 	}
1717 	return 0;
1718 }
1719 
1720 static inline int intel_pt_update_queues(struct intel_pt *pt)
1721 {
1722 	if (pt->queues.new_data) {
1723 		pt->queues.new_data = false;
1724 		return intel_pt_setup_queues(pt);
1725 	}
1726 	return 0;
1727 }
1728 
1729 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1730 {
1731 	unsigned int queue_nr;
1732 	u64 ts;
1733 	int ret;
1734 
1735 	while (1) {
1736 		struct auxtrace_queue *queue;
1737 		struct intel_pt_queue *ptq;
1738 
1739 		if (!pt->heap.heap_cnt)
1740 			return 0;
1741 
1742 		if (pt->heap.heap_array[0].ordinal >= timestamp)
1743 			return 0;
1744 
1745 		queue_nr = pt->heap.heap_array[0].queue_nr;
1746 		queue = &pt->queues.queue_array[queue_nr];
1747 		ptq = queue->priv;
1748 
1749 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1750 			     queue_nr, pt->heap.heap_array[0].ordinal,
1751 			     timestamp);
1752 
1753 		auxtrace_heap__pop(&pt->heap);
1754 
1755 		if (pt->heap.heap_cnt) {
1756 			ts = pt->heap.heap_array[0].ordinal + 1;
1757 			if (ts > timestamp)
1758 				ts = timestamp;
1759 		} else {
1760 			ts = timestamp;
1761 		}
1762 
1763 		intel_pt_set_pid_tid_cpu(pt, queue);
1764 
1765 		ret = intel_pt_run_decoder(ptq, &ts);
1766 
1767 		if (ret < 0) {
1768 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
1769 			return ret;
1770 		}
1771 
1772 		if (!ret) {
1773 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1774 			if (ret < 0)
1775 				return ret;
1776 		} else {
1777 			ptq->on_heap = false;
1778 		}
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1785 					    u64 time_)
1786 {
1787 	struct auxtrace_queues *queues = &pt->queues;
1788 	unsigned int i;
1789 	u64 ts = 0;
1790 
1791 	for (i = 0; i < queues->nr_queues; i++) {
1792 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1793 		struct intel_pt_queue *ptq = queue->priv;
1794 
1795 		if (ptq && (tid == -1 || ptq->tid == tid)) {
1796 			ptq->time = time_;
1797 			intel_pt_set_pid_tid_cpu(pt, queue);
1798 			intel_pt_run_decoder(ptq, &ts);
1799 		}
1800 	}
1801 	return 0;
1802 }
1803 
1804 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1805 {
1806 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1807 				    sample->pid, sample->tid, 0);
1808 }
1809 
1810 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1811 {
1812 	unsigned i, j;
1813 
1814 	if (cpu < 0 || !pt->queues.nr_queues)
1815 		return NULL;
1816 
1817 	if ((unsigned)cpu >= pt->queues.nr_queues)
1818 		i = pt->queues.nr_queues - 1;
1819 	else
1820 		i = cpu;
1821 
1822 	if (pt->queues.queue_array[i].cpu == cpu)
1823 		return pt->queues.queue_array[i].priv;
1824 
1825 	for (j = 0; i > 0; j++) {
1826 		if (pt->queues.queue_array[--i].cpu == cpu)
1827 			return pt->queues.queue_array[i].priv;
1828 	}
1829 
1830 	for (; j < pt->queues.nr_queues; j++) {
1831 		if (pt->queues.queue_array[j].cpu == cpu)
1832 			return pt->queues.queue_array[j].priv;
1833 	}
1834 
1835 	return NULL;
1836 }
1837 
1838 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1839 				u64 timestamp)
1840 {
1841 	struct intel_pt_queue *ptq;
1842 	int err;
1843 
1844 	if (!pt->sync_switch)
1845 		return 1;
1846 
1847 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
1848 	if (!ptq || !ptq->sync_switch)
1849 		return 1;
1850 
1851 	switch (ptq->switch_state) {
1852 	case INTEL_PT_SS_NOT_TRACING:
1853 		ptq->next_tid = -1;
1854 		break;
1855 	case INTEL_PT_SS_UNKNOWN:
1856 	case INTEL_PT_SS_TRACING:
1857 		ptq->next_tid = tid;
1858 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1859 		return 0;
1860 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1861 		if (!ptq->on_heap) {
1862 			ptq->timestamp = perf_time_to_tsc(timestamp,
1863 							  &pt->tc);
1864 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1865 						 ptq->timestamp);
1866 			if (err)
1867 				return err;
1868 			ptq->on_heap = true;
1869 		}
1870 		ptq->switch_state = INTEL_PT_SS_TRACING;
1871 		break;
1872 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1873 		ptq->next_tid = tid;
1874 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1875 		break;
1876 	default:
1877 		break;
1878 	}
1879 
1880 	return 1;
1881 }
1882 
1883 static int intel_pt_process_switch(struct intel_pt *pt,
1884 				   struct perf_sample *sample)
1885 {
1886 	struct perf_evsel *evsel;
1887 	pid_t tid;
1888 	int cpu, ret;
1889 
1890 	evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1891 	if (evsel != pt->switch_evsel)
1892 		return 0;
1893 
1894 	tid = perf_evsel__intval(evsel, sample, "next_pid");
1895 	cpu = sample->cpu;
1896 
1897 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1898 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1899 		     &pt->tc));
1900 
1901 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1902 	if (ret <= 0)
1903 		return ret;
1904 
1905 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
1906 }
1907 
1908 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1909 				   struct perf_sample *sample)
1910 {
1911 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1912 	pid_t pid, tid;
1913 	int cpu, ret;
1914 
1915 	cpu = sample->cpu;
1916 
1917 	if (pt->have_sched_switch == 3) {
1918 		if (!out)
1919 			return 0;
1920 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1921 			pr_err("Expecting CPU-wide context switch event\n");
1922 			return -EINVAL;
1923 		}
1924 		pid = event->context_switch.next_prev_pid;
1925 		tid = event->context_switch.next_prev_tid;
1926 	} else {
1927 		if (out)
1928 			return 0;
1929 		pid = sample->pid;
1930 		tid = sample->tid;
1931 	}
1932 
1933 	if (tid == -1) {
1934 		pr_err("context_switch event has no tid\n");
1935 		return -EINVAL;
1936 	}
1937 
1938 	intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1939 		     cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1940 		     &pt->tc));
1941 
1942 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1943 	if (ret <= 0)
1944 		return ret;
1945 
1946 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
1947 }
1948 
1949 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1950 					 union perf_event *event,
1951 					 struct perf_sample *sample)
1952 {
1953 	if (!pt->per_cpu_mmaps)
1954 		return 0;
1955 
1956 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1957 		     sample->cpu, event->itrace_start.pid,
1958 		     event->itrace_start.tid, sample->time,
1959 		     perf_time_to_tsc(sample->time, &pt->tc));
1960 
1961 	return machine__set_current_tid(pt->machine, sample->cpu,
1962 					event->itrace_start.pid,
1963 					event->itrace_start.tid);
1964 }
1965 
1966 static int intel_pt_process_event(struct perf_session *session,
1967 				  union perf_event *event,
1968 				  struct perf_sample *sample,
1969 				  struct perf_tool *tool)
1970 {
1971 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1972 					   auxtrace);
1973 	u64 timestamp;
1974 	int err = 0;
1975 
1976 	if (dump_trace)
1977 		return 0;
1978 
1979 	if (!tool->ordered_events) {
1980 		pr_err("Intel Processor Trace requires ordered events\n");
1981 		return -EINVAL;
1982 	}
1983 
1984 	if (sample->time && sample->time != (u64)-1)
1985 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1986 	else
1987 		timestamp = 0;
1988 
1989 	if (timestamp || pt->timeless_decoding) {
1990 		err = intel_pt_update_queues(pt);
1991 		if (err)
1992 			return err;
1993 	}
1994 
1995 	if (pt->timeless_decoding) {
1996 		if (event->header.type == PERF_RECORD_EXIT) {
1997 			err = intel_pt_process_timeless_queues(pt,
1998 							       event->fork.tid,
1999 							       sample->time);
2000 		}
2001 	} else if (timestamp) {
2002 		err = intel_pt_process_queues(pt, timestamp);
2003 	}
2004 	if (err)
2005 		return err;
2006 
2007 	if (event->header.type == PERF_RECORD_AUX &&
2008 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2009 	    pt->synth_opts.errors) {
2010 		err = intel_pt_lost(pt, sample);
2011 		if (err)
2012 			return err;
2013 	}
2014 
2015 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2016 		err = intel_pt_process_switch(pt, sample);
2017 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2018 		err = intel_pt_process_itrace_start(pt, event, sample);
2019 	else if (event->header.type == PERF_RECORD_SWITCH ||
2020 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2021 		err = intel_pt_context_switch(pt, event, sample);
2022 
2023 	intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2024 		     event->header.type, sample->cpu, sample->time, timestamp);
2025 	intel_pt_log_event(event);
2026 
2027 	return err;
2028 }
2029 
2030 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2031 {
2032 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2033 					   auxtrace);
2034 	int ret;
2035 
2036 	if (dump_trace)
2037 		return 0;
2038 
2039 	if (!tool->ordered_events)
2040 		return -EINVAL;
2041 
2042 	ret = intel_pt_update_queues(pt);
2043 	if (ret < 0)
2044 		return ret;
2045 
2046 	if (pt->timeless_decoding)
2047 		return intel_pt_process_timeless_queues(pt, -1,
2048 							MAX_TIMESTAMP - 1);
2049 
2050 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2051 }
2052 
2053 static void intel_pt_free_events(struct perf_session *session)
2054 {
2055 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2056 					   auxtrace);
2057 	struct auxtrace_queues *queues = &pt->queues;
2058 	unsigned int i;
2059 
2060 	for (i = 0; i < queues->nr_queues; i++) {
2061 		intel_pt_free_queue(queues->queue_array[i].priv);
2062 		queues->queue_array[i].priv = NULL;
2063 	}
2064 	intel_pt_log_disable();
2065 	auxtrace_queues__free(queues);
2066 }
2067 
2068 static void intel_pt_free(struct perf_session *session)
2069 {
2070 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2071 					   auxtrace);
2072 
2073 	auxtrace_heap__free(&pt->heap);
2074 	intel_pt_free_events(session);
2075 	session->auxtrace = NULL;
2076 	thread__put(pt->unknown_thread);
2077 	addr_filters__exit(&pt->filts);
2078 	zfree(&pt->filter);
2079 	free(pt);
2080 }
2081 
2082 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2083 					   union perf_event *event,
2084 					   struct perf_tool *tool __maybe_unused)
2085 {
2086 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2087 					   auxtrace);
2088 
2089 	if (!pt->data_queued) {
2090 		struct auxtrace_buffer *buffer;
2091 		off_t data_offset;
2092 		int fd = perf_data__fd(session->data);
2093 		int err;
2094 
2095 		if (perf_data__is_pipe(session->data)) {
2096 			data_offset = 0;
2097 		} else {
2098 			data_offset = lseek(fd, 0, SEEK_CUR);
2099 			if (data_offset == -1)
2100 				return -errno;
2101 		}
2102 
2103 		err = auxtrace_queues__add_event(&pt->queues, session, event,
2104 						 data_offset, &buffer);
2105 		if (err)
2106 			return err;
2107 
2108 		/* Dump here now we have copied a piped trace out of the pipe */
2109 		if (dump_trace) {
2110 			if (auxtrace_buffer__get_data(buffer, fd)) {
2111 				intel_pt_dump_event(pt, buffer->data,
2112 						    buffer->size);
2113 				auxtrace_buffer__put_data(buffer);
2114 			}
2115 		}
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 struct intel_pt_synth {
2122 	struct perf_tool dummy_tool;
2123 	struct perf_session *session;
2124 };
2125 
2126 static int intel_pt_event_synth(struct perf_tool *tool,
2127 				union perf_event *event,
2128 				struct perf_sample *sample __maybe_unused,
2129 				struct machine *machine __maybe_unused)
2130 {
2131 	struct intel_pt_synth *intel_pt_synth =
2132 			container_of(tool, struct intel_pt_synth, dummy_tool);
2133 
2134 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2135 						 NULL);
2136 }
2137 
2138 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2139 				struct perf_event_attr *attr, u64 id)
2140 {
2141 	struct intel_pt_synth intel_pt_synth;
2142 	int err;
2143 
2144 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2145 		 name, id, (u64)attr->sample_type);
2146 
2147 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2148 	intel_pt_synth.session = session;
2149 
2150 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2151 					  &id, intel_pt_event_synth);
2152 	if (err)
2153 		pr_err("%s: failed to synthesize '%s' event type\n",
2154 		       __func__, name);
2155 
2156 	return err;
2157 }
2158 
2159 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2160 				    const char *name)
2161 {
2162 	struct perf_evsel *evsel;
2163 
2164 	evlist__for_each_entry(evlist, evsel) {
2165 		if (evsel->id && evsel->id[0] == id) {
2166 			if (evsel->name)
2167 				zfree(&evsel->name);
2168 			evsel->name = strdup(name);
2169 			break;
2170 		}
2171 	}
2172 }
2173 
2174 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2175 					 struct perf_evlist *evlist)
2176 {
2177 	struct perf_evsel *evsel;
2178 
2179 	evlist__for_each_entry(evlist, evsel) {
2180 		if (evsel->attr.type == pt->pmu_type && evsel->ids)
2181 			return evsel;
2182 	}
2183 
2184 	return NULL;
2185 }
2186 
2187 static int intel_pt_synth_events(struct intel_pt *pt,
2188 				 struct perf_session *session)
2189 {
2190 	struct perf_evlist *evlist = session->evlist;
2191 	struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2192 	struct perf_event_attr attr;
2193 	u64 id;
2194 	int err;
2195 
2196 	if (!evsel) {
2197 		pr_debug("There are no selected events with Intel Processor Trace data\n");
2198 		return 0;
2199 	}
2200 
2201 	memset(&attr, 0, sizeof(struct perf_event_attr));
2202 	attr.size = sizeof(struct perf_event_attr);
2203 	attr.type = PERF_TYPE_HARDWARE;
2204 	attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2205 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2206 			    PERF_SAMPLE_PERIOD;
2207 	if (pt->timeless_decoding)
2208 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2209 	else
2210 		attr.sample_type |= PERF_SAMPLE_TIME;
2211 	if (!pt->per_cpu_mmaps)
2212 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2213 	attr.exclude_user = evsel->attr.exclude_user;
2214 	attr.exclude_kernel = evsel->attr.exclude_kernel;
2215 	attr.exclude_hv = evsel->attr.exclude_hv;
2216 	attr.exclude_host = evsel->attr.exclude_host;
2217 	attr.exclude_guest = evsel->attr.exclude_guest;
2218 	attr.sample_id_all = evsel->attr.sample_id_all;
2219 	attr.read_format = evsel->attr.read_format;
2220 
2221 	id = evsel->id[0] + 1000000000;
2222 	if (!id)
2223 		id = 1;
2224 
2225 	if (pt->synth_opts.branches) {
2226 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2227 		attr.sample_period = 1;
2228 		attr.sample_type |= PERF_SAMPLE_ADDR;
2229 		err = intel_pt_synth_event(session, "branches", &attr, id);
2230 		if (err)
2231 			return err;
2232 		pt->sample_branches = true;
2233 		pt->branches_sample_type = attr.sample_type;
2234 		pt->branches_id = id;
2235 		id += 1;
2236 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2237 	}
2238 
2239 	if (pt->synth_opts.callchain)
2240 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2241 	if (pt->synth_opts.last_branch)
2242 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2243 
2244 	if (pt->synth_opts.instructions) {
2245 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2246 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2247 			attr.sample_period =
2248 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2249 		else
2250 			attr.sample_period = pt->synth_opts.period;
2251 		err = intel_pt_synth_event(session, "instructions", &attr, id);
2252 		if (err)
2253 			return err;
2254 		pt->sample_instructions = true;
2255 		pt->instructions_sample_type = attr.sample_type;
2256 		pt->instructions_id = id;
2257 		id += 1;
2258 	}
2259 
2260 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2261 	attr.sample_period = 1;
2262 
2263 	if (pt->synth_opts.transactions) {
2264 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2265 		err = intel_pt_synth_event(session, "transactions", &attr, id);
2266 		if (err)
2267 			return err;
2268 		pt->sample_transactions = true;
2269 		pt->transactions_sample_type = attr.sample_type;
2270 		pt->transactions_id = id;
2271 		intel_pt_set_event_name(evlist, id, "transactions");
2272 		id += 1;
2273 	}
2274 
2275 	attr.type = PERF_TYPE_SYNTH;
2276 	attr.sample_type |= PERF_SAMPLE_RAW;
2277 
2278 	if (pt->synth_opts.ptwrites) {
2279 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
2280 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2281 		if (err)
2282 			return err;
2283 		pt->sample_ptwrites = true;
2284 		pt->ptwrites_sample_type = attr.sample_type;
2285 		pt->ptwrites_id = id;
2286 		intel_pt_set_event_name(evlist, id, "ptwrite");
2287 		id += 1;
2288 	}
2289 
2290 	if (pt->synth_opts.pwr_events) {
2291 		pt->sample_pwr_events = true;
2292 		pt->pwr_events_sample_type = attr.sample_type;
2293 
2294 		attr.config = PERF_SYNTH_INTEL_CBR;
2295 		err = intel_pt_synth_event(session, "cbr", &attr, id);
2296 		if (err)
2297 			return err;
2298 		pt->cbr_id = id;
2299 		intel_pt_set_event_name(evlist, id, "cbr");
2300 		id += 1;
2301 	}
2302 
2303 	if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2304 		attr.config = PERF_SYNTH_INTEL_MWAIT;
2305 		err = intel_pt_synth_event(session, "mwait", &attr, id);
2306 		if (err)
2307 			return err;
2308 		pt->mwait_id = id;
2309 		intel_pt_set_event_name(evlist, id, "mwait");
2310 		id += 1;
2311 
2312 		attr.config = PERF_SYNTH_INTEL_PWRE;
2313 		err = intel_pt_synth_event(session, "pwre", &attr, id);
2314 		if (err)
2315 			return err;
2316 		pt->pwre_id = id;
2317 		intel_pt_set_event_name(evlist, id, "pwre");
2318 		id += 1;
2319 
2320 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
2321 		err = intel_pt_synth_event(session, "exstop", &attr, id);
2322 		if (err)
2323 			return err;
2324 		pt->exstop_id = id;
2325 		intel_pt_set_event_name(evlist, id, "exstop");
2326 		id += 1;
2327 
2328 		attr.config = PERF_SYNTH_INTEL_PWRX;
2329 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
2330 		if (err)
2331 			return err;
2332 		pt->pwrx_id = id;
2333 		intel_pt_set_event_name(evlist, id, "pwrx");
2334 		id += 1;
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2341 {
2342 	struct perf_evsel *evsel;
2343 
2344 	evlist__for_each_entry_reverse(evlist, evsel) {
2345 		const char *name = perf_evsel__name(evsel);
2346 
2347 		if (!strcmp(name, "sched:sched_switch"))
2348 			return evsel;
2349 	}
2350 
2351 	return NULL;
2352 }
2353 
2354 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2355 {
2356 	struct perf_evsel *evsel;
2357 
2358 	evlist__for_each_entry(evlist, evsel) {
2359 		if (evsel->attr.context_switch)
2360 			return true;
2361 	}
2362 
2363 	return false;
2364 }
2365 
2366 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2367 {
2368 	struct intel_pt *pt = data;
2369 
2370 	if (!strcmp(var, "intel-pt.mispred-all"))
2371 		pt->mispred_all = perf_config_bool(var, value);
2372 
2373 	return 0;
2374 }
2375 
2376 static const char * const intel_pt_info_fmts[] = {
2377 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
2378 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
2379 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
2380 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
2381 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
2382 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
2383 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
2384 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
2385 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
2386 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
2387 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
2388 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
2389 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
2390 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
2391 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
2392 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
2393 };
2394 
2395 static void intel_pt_print_info(u64 *arr, int start, int finish)
2396 {
2397 	int i;
2398 
2399 	if (!dump_trace)
2400 		return;
2401 
2402 	for (i = start; i <= finish; i++)
2403 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2404 }
2405 
2406 static void intel_pt_print_info_str(const char *name, const char *str)
2407 {
2408 	if (!dump_trace)
2409 		return;
2410 
2411 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
2412 }
2413 
2414 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2415 {
2416 	return auxtrace_info->header.size >=
2417 		sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2418 }
2419 
2420 int intel_pt_process_auxtrace_info(union perf_event *event,
2421 				   struct perf_session *session)
2422 {
2423 	struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2424 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2425 	struct intel_pt *pt;
2426 	void *info_end;
2427 	u64 *info;
2428 	int err;
2429 
2430 	if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2431 					min_sz)
2432 		return -EINVAL;
2433 
2434 	pt = zalloc(sizeof(struct intel_pt));
2435 	if (!pt)
2436 		return -ENOMEM;
2437 
2438 	addr_filters__init(&pt->filts);
2439 
2440 	err = perf_config(intel_pt_perf_config, pt);
2441 	if (err)
2442 		goto err_free;
2443 
2444 	err = auxtrace_queues__init(&pt->queues);
2445 	if (err)
2446 		goto err_free;
2447 
2448 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2449 
2450 	pt->session = session;
2451 	pt->machine = &session->machines.host; /* No kvm support */
2452 	pt->auxtrace_type = auxtrace_info->type;
2453 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2454 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2455 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2456 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2457 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2458 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2459 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2460 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2461 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2462 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2463 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2464 			    INTEL_PT_PER_CPU_MMAPS);
2465 
2466 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2467 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2468 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2469 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2470 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2471 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2472 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2473 				    INTEL_PT_CYC_BIT);
2474 	}
2475 
2476 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2477 		pt->max_non_turbo_ratio =
2478 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2479 		intel_pt_print_info(&auxtrace_info->priv[0],
2480 				    INTEL_PT_MAX_NONTURBO_RATIO,
2481 				    INTEL_PT_MAX_NONTURBO_RATIO);
2482 	}
2483 
2484 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2485 	info_end = (void *)info + auxtrace_info->header.size;
2486 
2487 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2488 		size_t len;
2489 
2490 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2491 		intel_pt_print_info(&auxtrace_info->priv[0],
2492 				    INTEL_PT_FILTER_STR_LEN,
2493 				    INTEL_PT_FILTER_STR_LEN);
2494 		if (len) {
2495 			const char *filter = (const char *)info;
2496 
2497 			len = roundup(len + 1, 8);
2498 			info += len >> 3;
2499 			if ((void *)info > info_end) {
2500 				pr_err("%s: bad filter string length\n", __func__);
2501 				err = -EINVAL;
2502 				goto err_free_queues;
2503 			}
2504 			pt->filter = memdup(filter, len);
2505 			if (!pt->filter) {
2506 				err = -ENOMEM;
2507 				goto err_free_queues;
2508 			}
2509 			if (session->header.needs_swap)
2510 				mem_bswap_64(pt->filter, len);
2511 			if (pt->filter[len - 1]) {
2512 				pr_err("%s: filter string not null terminated\n", __func__);
2513 				err = -EINVAL;
2514 				goto err_free_queues;
2515 			}
2516 			err = addr_filters__parse_bare_filter(&pt->filts,
2517 							      filter);
2518 			if (err)
2519 				goto err_free_queues;
2520 		}
2521 		intel_pt_print_info_str("Filter string", pt->filter);
2522 	}
2523 
2524 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2525 	pt->have_tsc = intel_pt_have_tsc(pt);
2526 	pt->sampling_mode = false;
2527 	pt->est_tsc = !pt->timeless_decoding;
2528 
2529 	pt->unknown_thread = thread__new(999999999, 999999999);
2530 	if (!pt->unknown_thread) {
2531 		err = -ENOMEM;
2532 		goto err_free_queues;
2533 	}
2534 
2535 	/*
2536 	 * Since this thread will not be kept in any rbtree not in a
2537 	 * list, initialize its list node so that at thread__put() the
2538 	 * current thread lifetime assuption is kept and we don't segfault
2539 	 * at list_del_init().
2540 	 */
2541 	INIT_LIST_HEAD(&pt->unknown_thread->node);
2542 
2543 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2544 	if (err)
2545 		goto err_delete_thread;
2546 	if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2547 		err = -ENOMEM;
2548 		goto err_delete_thread;
2549 	}
2550 
2551 	pt->auxtrace.process_event = intel_pt_process_event;
2552 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2553 	pt->auxtrace.flush_events = intel_pt_flush;
2554 	pt->auxtrace.free_events = intel_pt_free_events;
2555 	pt->auxtrace.free = intel_pt_free;
2556 	session->auxtrace = &pt->auxtrace;
2557 
2558 	if (dump_trace)
2559 		return 0;
2560 
2561 	if (pt->have_sched_switch == 1) {
2562 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2563 		if (!pt->switch_evsel) {
2564 			pr_err("%s: missing sched_switch event\n", __func__);
2565 			err = -EINVAL;
2566 			goto err_delete_thread;
2567 		}
2568 	} else if (pt->have_sched_switch == 2 &&
2569 		   !intel_pt_find_switch(session->evlist)) {
2570 		pr_err("%s: missing context_switch attribute flag\n", __func__);
2571 		err = -EINVAL;
2572 		goto err_delete_thread;
2573 	}
2574 
2575 	if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2576 		pt->synth_opts = *session->itrace_synth_opts;
2577 	} else {
2578 		itrace_synth_opts__set_default(&pt->synth_opts,
2579 				session->itrace_synth_opts->default_no_sample);
2580 		if (use_browser != -1) {
2581 			pt->synth_opts.branches = false;
2582 			pt->synth_opts.callchain = true;
2583 		}
2584 		if (session->itrace_synth_opts)
2585 			pt->synth_opts.thread_stack =
2586 				session->itrace_synth_opts->thread_stack;
2587 	}
2588 
2589 	if (pt->synth_opts.log)
2590 		intel_pt_log_enable();
2591 
2592 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
2593 	if (pt->tc.time_mult) {
2594 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2595 
2596 		if (!pt->max_non_turbo_ratio)
2597 			pt->max_non_turbo_ratio =
2598 					(tsc_freq + 50000000) / 100000000;
2599 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2600 		intel_pt_log("Maximum non-turbo ratio %u\n",
2601 			     pt->max_non_turbo_ratio);
2602 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2603 	}
2604 
2605 	if (pt->synth_opts.calls)
2606 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2607 				       PERF_IP_FLAG_TRACE_END;
2608 	if (pt->synth_opts.returns)
2609 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
2610 				       PERF_IP_FLAG_TRACE_BEGIN;
2611 
2612 	if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2613 		symbol_conf.use_callchain = true;
2614 		if (callchain_register_param(&callchain_param) < 0) {
2615 			symbol_conf.use_callchain = false;
2616 			pt->synth_opts.callchain = false;
2617 		}
2618 	}
2619 
2620 	err = intel_pt_synth_events(pt, session);
2621 	if (err)
2622 		goto err_delete_thread;
2623 
2624 	err = auxtrace_queues__process_index(&pt->queues, session);
2625 	if (err)
2626 		goto err_delete_thread;
2627 
2628 	if (pt->queues.populated)
2629 		pt->data_queued = true;
2630 
2631 	if (pt->timeless_decoding)
2632 		pr_debug2("Intel PT decoding without timestamps\n");
2633 
2634 	return 0;
2635 
2636 err_delete_thread:
2637 	thread__zput(pt->unknown_thread);
2638 err_free_queues:
2639 	intel_pt_log_disable();
2640 	auxtrace_queues__free(&pt->queues);
2641 	session->auxtrace = NULL;
2642 err_free:
2643 	addr_filters__exit(&pt->filts);
2644 	zfree(&pt->filter);
2645 	free(pt);
2646 	return err;
2647 }
2648