1 /* 2 * intel_pt.c: Intel Processor Trace support 3 * Copyright (c) 2013-2015, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 16 #include <inttypes.h> 17 #include <stdio.h> 18 #include <stdbool.h> 19 #include <errno.h> 20 #include <linux/kernel.h> 21 #include <linux/types.h> 22 23 #include "../perf.h" 24 #include "session.h" 25 #include "machine.h" 26 #include "memswap.h" 27 #include "sort.h" 28 #include "tool.h" 29 #include "event.h" 30 #include "evlist.h" 31 #include "evsel.h" 32 #include "map.h" 33 #include "color.h" 34 #include "util.h" 35 #include "thread.h" 36 #include "thread-stack.h" 37 #include "symbol.h" 38 #include "callchain.h" 39 #include "dso.h" 40 #include "debug.h" 41 #include "auxtrace.h" 42 #include "tsc.h" 43 #include "intel-pt.h" 44 #include "config.h" 45 46 #include "intel-pt-decoder/intel-pt-log.h" 47 #include "intel-pt-decoder/intel-pt-decoder.h" 48 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 50 51 #define MAX_TIMESTAMP (~0ULL) 52 53 struct intel_pt { 54 struct auxtrace auxtrace; 55 struct auxtrace_queues queues; 56 struct auxtrace_heap heap; 57 u32 auxtrace_type; 58 struct perf_session *session; 59 struct machine *machine; 60 struct perf_evsel *switch_evsel; 61 struct thread *unknown_thread; 62 bool timeless_decoding; 63 bool sampling_mode; 64 bool snapshot_mode; 65 bool per_cpu_mmaps; 66 bool have_tsc; 67 bool data_queued; 68 bool est_tsc; 69 bool sync_switch; 70 bool mispred_all; 71 int have_sched_switch; 72 u32 pmu_type; 73 u64 kernel_start; 74 u64 switch_ip; 75 u64 ptss_ip; 76 77 struct perf_tsc_conversion tc; 78 bool cap_user_time_zero; 79 80 struct itrace_synth_opts synth_opts; 81 82 bool sample_instructions; 83 u64 instructions_sample_type; 84 u64 instructions_id; 85 86 bool sample_branches; 87 u32 branches_filter; 88 u64 branches_sample_type; 89 u64 branches_id; 90 91 bool sample_transactions; 92 u64 transactions_sample_type; 93 u64 transactions_id; 94 95 bool sample_ptwrites; 96 u64 ptwrites_sample_type; 97 u64 ptwrites_id; 98 99 bool sample_pwr_events; 100 u64 pwr_events_sample_type; 101 u64 mwait_id; 102 u64 pwre_id; 103 u64 exstop_id; 104 u64 pwrx_id; 105 u64 cbr_id; 106 107 u64 tsc_bit; 108 u64 mtc_bit; 109 u64 mtc_freq_bits; 110 u32 tsc_ctc_ratio_n; 111 u32 tsc_ctc_ratio_d; 112 u64 cyc_bit; 113 u64 noretcomp_bit; 114 unsigned max_non_turbo_ratio; 115 unsigned cbr2khz; 116 117 unsigned long num_events; 118 119 char *filter; 120 struct addr_filters filts; 121 }; 122 123 enum switch_state { 124 INTEL_PT_SS_NOT_TRACING, 125 INTEL_PT_SS_UNKNOWN, 126 INTEL_PT_SS_TRACING, 127 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 128 INTEL_PT_SS_EXPECTING_SWITCH_IP, 129 }; 130 131 struct intel_pt_queue { 132 struct intel_pt *pt; 133 unsigned int queue_nr; 134 struct auxtrace_buffer *buffer; 135 struct auxtrace_buffer *old_buffer; 136 void *decoder; 137 const struct intel_pt_state *state; 138 struct ip_callchain *chain; 139 struct branch_stack *last_branch; 140 struct branch_stack *last_branch_rb; 141 size_t last_branch_pos; 142 union perf_event *event_buf; 143 bool on_heap; 144 bool stop; 145 bool step_through_buffers; 146 bool use_buffer_pid_tid; 147 bool sync_switch; 148 pid_t pid, tid; 149 int cpu; 150 int switch_state; 151 pid_t next_tid; 152 struct thread *thread; 153 bool exclude_kernel; 154 bool have_sample; 155 u64 time; 156 u64 timestamp; 157 u32 flags; 158 u16 insn_len; 159 u64 last_insn_cnt; 160 char insn[INTEL_PT_INSN_BUF_SZ]; 161 }; 162 163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 164 unsigned char *buf, size_t len) 165 { 166 struct intel_pt_pkt packet; 167 size_t pos = 0; 168 int ret, pkt_len, i; 169 char desc[INTEL_PT_PKT_DESC_MAX]; 170 const char *color = PERF_COLOR_BLUE; 171 172 color_fprintf(stdout, color, 173 ". ... Intel Processor Trace data: size %zu bytes\n", 174 len); 175 176 while (len) { 177 ret = intel_pt_get_packet(buf, len, &packet); 178 if (ret > 0) 179 pkt_len = ret; 180 else 181 pkt_len = 1; 182 printf("."); 183 color_fprintf(stdout, color, " %08x: ", pos); 184 for (i = 0; i < pkt_len; i++) 185 color_fprintf(stdout, color, " %02x", buf[i]); 186 for (; i < 16; i++) 187 color_fprintf(stdout, color, " "); 188 if (ret > 0) { 189 ret = intel_pt_pkt_desc(&packet, desc, 190 INTEL_PT_PKT_DESC_MAX); 191 if (ret > 0) 192 color_fprintf(stdout, color, " %s\n", desc); 193 } else { 194 color_fprintf(stdout, color, " Bad packet!\n"); 195 } 196 pos += pkt_len; 197 buf += pkt_len; 198 len -= pkt_len; 199 } 200 } 201 202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 203 size_t len) 204 { 205 printf(".\n"); 206 intel_pt_dump(pt, buf, len); 207 } 208 209 static void intel_pt_log_event(union perf_event *event) 210 { 211 FILE *f = intel_pt_log_fp(); 212 213 if (!intel_pt_enable_logging || !f) 214 return; 215 216 perf_event__fprintf(event, f); 217 } 218 219 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 220 struct auxtrace_buffer *b) 221 { 222 bool consecutive = false; 223 void *start; 224 225 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 226 pt->have_tsc, &consecutive); 227 if (!start) 228 return -EINVAL; 229 b->use_size = b->data + b->size - start; 230 b->use_data = start; 231 if (b->use_size && consecutive) 232 b->consecutive = true; 233 return 0; 234 } 235 236 /* This function assumes data is processed sequentially only */ 237 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 238 { 239 struct intel_pt_queue *ptq = data; 240 struct auxtrace_buffer *buffer = ptq->buffer; 241 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 242 struct auxtrace_queue *queue; 243 bool might_overlap; 244 245 if (ptq->stop) { 246 b->len = 0; 247 return 0; 248 } 249 250 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 251 252 buffer = auxtrace_buffer__next(queue, buffer); 253 if (!buffer) { 254 if (old_buffer) 255 auxtrace_buffer__drop_data(old_buffer); 256 b->len = 0; 257 return 0; 258 } 259 260 ptq->buffer = buffer; 261 262 if (!buffer->data) { 263 int fd = perf_data__fd(ptq->pt->session->data); 264 265 buffer->data = auxtrace_buffer__get_data(buffer, fd); 266 if (!buffer->data) 267 return -ENOMEM; 268 } 269 270 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 271 if (might_overlap && !buffer->consecutive && old_buffer && 272 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 273 return -ENOMEM; 274 275 if (buffer->use_data) { 276 b->len = buffer->use_size; 277 b->buf = buffer->use_data; 278 } else { 279 b->len = buffer->size; 280 b->buf = buffer->data; 281 } 282 b->ref_timestamp = buffer->reference; 283 284 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 285 b->consecutive = false; 286 b->trace_nr = buffer->buffer_nr + 1; 287 } else { 288 b->consecutive = true; 289 } 290 291 if (ptq->step_through_buffers) 292 ptq->stop = true; 293 294 if (b->len) { 295 if (old_buffer) 296 auxtrace_buffer__drop_data(old_buffer); 297 ptq->old_buffer = buffer; 298 } else { 299 auxtrace_buffer__drop_data(buffer); 300 return intel_pt_get_trace(b, data); 301 } 302 303 return 0; 304 } 305 306 struct intel_pt_cache_entry { 307 struct auxtrace_cache_entry entry; 308 u64 insn_cnt; 309 u64 byte_cnt; 310 enum intel_pt_insn_op op; 311 enum intel_pt_insn_branch branch; 312 int length; 313 int32_t rel; 314 char insn[INTEL_PT_INSN_BUF_SZ]; 315 }; 316 317 static int intel_pt_config_div(const char *var, const char *value, void *data) 318 { 319 int *d = data; 320 long val; 321 322 if (!strcmp(var, "intel-pt.cache-divisor")) { 323 val = strtol(value, NULL, 0); 324 if (val > 0 && val <= INT_MAX) 325 *d = val; 326 } 327 328 return 0; 329 } 330 331 static int intel_pt_cache_divisor(void) 332 { 333 static int d; 334 335 if (d) 336 return d; 337 338 perf_config(intel_pt_config_div, &d); 339 340 if (!d) 341 d = 64; 342 343 return d; 344 } 345 346 static unsigned int intel_pt_cache_size(struct dso *dso, 347 struct machine *machine) 348 { 349 off_t size; 350 351 size = dso__data_size(dso, machine); 352 size /= intel_pt_cache_divisor(); 353 if (size < 1000) 354 return 10; 355 if (size > (1 << 21)) 356 return 21; 357 return 32 - __builtin_clz(size); 358 } 359 360 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 361 struct machine *machine) 362 { 363 struct auxtrace_cache *c; 364 unsigned int bits; 365 366 if (dso->auxtrace_cache) 367 return dso->auxtrace_cache; 368 369 bits = intel_pt_cache_size(dso, machine); 370 371 /* Ignoring cache creation failure */ 372 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 373 374 dso->auxtrace_cache = c; 375 376 return c; 377 } 378 379 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 380 u64 offset, u64 insn_cnt, u64 byte_cnt, 381 struct intel_pt_insn *intel_pt_insn) 382 { 383 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 384 struct intel_pt_cache_entry *e; 385 int err; 386 387 if (!c) 388 return -ENOMEM; 389 390 e = auxtrace_cache__alloc_entry(c); 391 if (!e) 392 return -ENOMEM; 393 394 e->insn_cnt = insn_cnt; 395 e->byte_cnt = byte_cnt; 396 e->op = intel_pt_insn->op; 397 e->branch = intel_pt_insn->branch; 398 e->length = intel_pt_insn->length; 399 e->rel = intel_pt_insn->rel; 400 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 401 402 err = auxtrace_cache__add(c, offset, &e->entry); 403 if (err) 404 auxtrace_cache__free_entry(c, e); 405 406 return err; 407 } 408 409 static struct intel_pt_cache_entry * 410 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 411 { 412 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 413 414 if (!c) 415 return NULL; 416 417 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 418 } 419 420 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip) 421 { 422 return ip >= pt->kernel_start ? 423 PERF_RECORD_MISC_KERNEL : 424 PERF_RECORD_MISC_USER; 425 } 426 427 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 428 uint64_t *insn_cnt_ptr, uint64_t *ip, 429 uint64_t to_ip, uint64_t max_insn_cnt, 430 void *data) 431 { 432 struct intel_pt_queue *ptq = data; 433 struct machine *machine = ptq->pt->machine; 434 struct thread *thread; 435 struct addr_location al; 436 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 437 ssize_t len; 438 int x86_64; 439 u8 cpumode; 440 u64 offset, start_offset, start_ip; 441 u64 insn_cnt = 0; 442 bool one_map = true; 443 444 intel_pt_insn->length = 0; 445 446 if (to_ip && *ip == to_ip) 447 goto out_no_cache; 448 449 cpumode = intel_pt_cpumode(ptq->pt, *ip); 450 451 thread = ptq->thread; 452 if (!thread) { 453 if (cpumode != PERF_RECORD_MISC_KERNEL) 454 return -EINVAL; 455 thread = ptq->pt->unknown_thread; 456 } 457 458 while (1) { 459 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 460 return -EINVAL; 461 462 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 463 dso__data_status_seen(al.map->dso, 464 DSO_DATA_STATUS_SEEN_ITRACE)) 465 return -ENOENT; 466 467 offset = al.map->map_ip(al.map, *ip); 468 469 if (!to_ip && one_map) { 470 struct intel_pt_cache_entry *e; 471 472 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 473 if (e && 474 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 475 *insn_cnt_ptr = e->insn_cnt; 476 *ip += e->byte_cnt; 477 intel_pt_insn->op = e->op; 478 intel_pt_insn->branch = e->branch; 479 intel_pt_insn->length = e->length; 480 intel_pt_insn->rel = e->rel; 481 memcpy(intel_pt_insn->buf, e->insn, 482 INTEL_PT_INSN_BUF_SZ); 483 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 484 return 0; 485 } 486 } 487 488 start_offset = offset; 489 start_ip = *ip; 490 491 /* Load maps to ensure dso->is_64_bit has been updated */ 492 map__load(al.map); 493 494 x86_64 = al.map->dso->is_64_bit; 495 496 while (1) { 497 len = dso__data_read_offset(al.map->dso, machine, 498 offset, buf, 499 INTEL_PT_INSN_BUF_SZ); 500 if (len <= 0) 501 return -EINVAL; 502 503 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 504 return -EINVAL; 505 506 intel_pt_log_insn(intel_pt_insn, *ip); 507 508 insn_cnt += 1; 509 510 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 511 goto out; 512 513 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 514 goto out_no_cache; 515 516 *ip += intel_pt_insn->length; 517 518 if (to_ip && *ip == to_ip) 519 goto out_no_cache; 520 521 if (*ip >= al.map->end) 522 break; 523 524 offset += intel_pt_insn->length; 525 } 526 one_map = false; 527 } 528 out: 529 *insn_cnt_ptr = insn_cnt; 530 531 if (!one_map) 532 goto out_no_cache; 533 534 /* 535 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 536 * entries. 537 */ 538 if (to_ip) { 539 struct intel_pt_cache_entry *e; 540 541 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 542 if (e) 543 return 0; 544 } 545 546 /* Ignore cache errors */ 547 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 548 *ip - start_ip, intel_pt_insn); 549 550 return 0; 551 552 out_no_cache: 553 *insn_cnt_ptr = insn_cnt; 554 return 0; 555 } 556 557 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 558 uint64_t offset, const char *filename) 559 { 560 struct addr_filter *filt; 561 bool have_filter = false; 562 bool hit_tracestop = false; 563 bool hit_filter = false; 564 565 list_for_each_entry(filt, &pt->filts.head, list) { 566 if (filt->start) 567 have_filter = true; 568 569 if ((filename && !filt->filename) || 570 (!filename && filt->filename) || 571 (filename && strcmp(filename, filt->filename))) 572 continue; 573 574 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 575 continue; 576 577 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 578 ip, offset, filename ? filename : "[kernel]", 579 filt->start ? "filter" : "stop", 580 filt->addr, filt->size); 581 582 if (filt->start) 583 hit_filter = true; 584 else 585 hit_tracestop = true; 586 } 587 588 if (!hit_tracestop && !hit_filter) 589 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 590 ip, offset, filename ? filename : "[kernel]"); 591 592 return hit_tracestop || (have_filter && !hit_filter); 593 } 594 595 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 596 { 597 struct intel_pt_queue *ptq = data; 598 struct thread *thread; 599 struct addr_location al; 600 u8 cpumode; 601 u64 offset; 602 603 if (ip >= ptq->pt->kernel_start) 604 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 605 606 cpumode = PERF_RECORD_MISC_USER; 607 608 thread = ptq->thread; 609 if (!thread) 610 return -EINVAL; 611 612 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 613 return -EINVAL; 614 615 offset = al.map->map_ip(al.map, ip); 616 617 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 618 al.map->dso->long_name); 619 } 620 621 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 622 { 623 return __intel_pt_pgd_ip(ip, data) > 0; 624 } 625 626 static bool intel_pt_get_config(struct intel_pt *pt, 627 struct perf_event_attr *attr, u64 *config) 628 { 629 if (attr->type == pt->pmu_type) { 630 if (config) 631 *config = attr->config; 632 return true; 633 } 634 635 return false; 636 } 637 638 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 639 { 640 struct perf_evsel *evsel; 641 642 evlist__for_each_entry(pt->session->evlist, evsel) { 643 if (intel_pt_get_config(pt, &evsel->attr, NULL) && 644 !evsel->attr.exclude_kernel) 645 return false; 646 } 647 return true; 648 } 649 650 static bool intel_pt_return_compression(struct intel_pt *pt) 651 { 652 struct perf_evsel *evsel; 653 u64 config; 654 655 if (!pt->noretcomp_bit) 656 return true; 657 658 evlist__for_each_entry(pt->session->evlist, evsel) { 659 if (intel_pt_get_config(pt, &evsel->attr, &config) && 660 (config & pt->noretcomp_bit)) 661 return false; 662 } 663 return true; 664 } 665 666 static bool intel_pt_branch_enable(struct intel_pt *pt) 667 { 668 struct perf_evsel *evsel; 669 u64 config; 670 671 evlist__for_each_entry(pt->session->evlist, evsel) { 672 if (intel_pt_get_config(pt, &evsel->attr, &config) && 673 (config & 1) && !(config & 0x2000)) 674 return false; 675 } 676 return true; 677 } 678 679 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 680 { 681 struct perf_evsel *evsel; 682 unsigned int shift; 683 u64 config; 684 685 if (!pt->mtc_freq_bits) 686 return 0; 687 688 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 689 config >>= 1; 690 691 evlist__for_each_entry(pt->session->evlist, evsel) { 692 if (intel_pt_get_config(pt, &evsel->attr, &config)) 693 return (config & pt->mtc_freq_bits) >> shift; 694 } 695 return 0; 696 } 697 698 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 699 { 700 struct perf_evsel *evsel; 701 bool timeless_decoding = true; 702 u64 config; 703 704 if (!pt->tsc_bit || !pt->cap_user_time_zero) 705 return true; 706 707 evlist__for_each_entry(pt->session->evlist, evsel) { 708 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME)) 709 return true; 710 if (intel_pt_get_config(pt, &evsel->attr, &config)) { 711 if (config & pt->tsc_bit) 712 timeless_decoding = false; 713 else 714 return true; 715 } 716 } 717 return timeless_decoding; 718 } 719 720 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 721 { 722 struct perf_evsel *evsel; 723 724 evlist__for_each_entry(pt->session->evlist, evsel) { 725 if (intel_pt_get_config(pt, &evsel->attr, NULL) && 726 !evsel->attr.exclude_kernel) 727 return true; 728 } 729 return false; 730 } 731 732 static bool intel_pt_have_tsc(struct intel_pt *pt) 733 { 734 struct perf_evsel *evsel; 735 bool have_tsc = false; 736 u64 config; 737 738 if (!pt->tsc_bit) 739 return false; 740 741 evlist__for_each_entry(pt->session->evlist, evsel) { 742 if (intel_pt_get_config(pt, &evsel->attr, &config)) { 743 if (config & pt->tsc_bit) 744 have_tsc = true; 745 else 746 return false; 747 } 748 } 749 return have_tsc; 750 } 751 752 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 753 { 754 u64 quot, rem; 755 756 quot = ns / pt->tc.time_mult; 757 rem = ns % pt->tc.time_mult; 758 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 759 pt->tc.time_mult; 760 } 761 762 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 763 unsigned int queue_nr) 764 { 765 struct intel_pt_params params = { .get_trace = 0, }; 766 struct perf_env *env = pt->machine->env; 767 struct intel_pt_queue *ptq; 768 769 ptq = zalloc(sizeof(struct intel_pt_queue)); 770 if (!ptq) 771 return NULL; 772 773 if (pt->synth_opts.callchain) { 774 size_t sz = sizeof(struct ip_callchain); 775 776 /* Add 1 to callchain_sz for callchain context */ 777 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 778 ptq->chain = zalloc(sz); 779 if (!ptq->chain) 780 goto out_free; 781 } 782 783 if (pt->synth_opts.last_branch) { 784 size_t sz = sizeof(struct branch_stack); 785 786 sz += pt->synth_opts.last_branch_sz * 787 sizeof(struct branch_entry); 788 ptq->last_branch = zalloc(sz); 789 if (!ptq->last_branch) 790 goto out_free; 791 ptq->last_branch_rb = zalloc(sz); 792 if (!ptq->last_branch_rb) 793 goto out_free; 794 } 795 796 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 797 if (!ptq->event_buf) 798 goto out_free; 799 800 ptq->pt = pt; 801 ptq->queue_nr = queue_nr; 802 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 803 ptq->pid = -1; 804 ptq->tid = -1; 805 ptq->cpu = -1; 806 ptq->next_tid = -1; 807 808 params.get_trace = intel_pt_get_trace; 809 params.walk_insn = intel_pt_walk_next_insn; 810 params.data = ptq; 811 params.return_compression = intel_pt_return_compression(pt); 812 params.branch_enable = intel_pt_branch_enable(pt); 813 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 814 params.mtc_period = intel_pt_mtc_period(pt); 815 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 816 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 817 818 if (pt->filts.cnt > 0) 819 params.pgd_ip = intel_pt_pgd_ip; 820 821 if (pt->synth_opts.instructions) { 822 if (pt->synth_opts.period) { 823 switch (pt->synth_opts.period_type) { 824 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 825 params.period_type = 826 INTEL_PT_PERIOD_INSTRUCTIONS; 827 params.period = pt->synth_opts.period; 828 break; 829 case PERF_ITRACE_PERIOD_TICKS: 830 params.period_type = INTEL_PT_PERIOD_TICKS; 831 params.period = pt->synth_opts.period; 832 break; 833 case PERF_ITRACE_PERIOD_NANOSECS: 834 params.period_type = INTEL_PT_PERIOD_TICKS; 835 params.period = intel_pt_ns_to_ticks(pt, 836 pt->synth_opts.period); 837 break; 838 default: 839 break; 840 } 841 } 842 843 if (!params.period) { 844 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 845 params.period = 1; 846 } 847 } 848 849 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 850 params.flags |= INTEL_PT_FUP_WITH_NLIP; 851 852 ptq->decoder = intel_pt_decoder_new(¶ms); 853 if (!ptq->decoder) 854 goto out_free; 855 856 return ptq; 857 858 out_free: 859 zfree(&ptq->event_buf); 860 zfree(&ptq->last_branch); 861 zfree(&ptq->last_branch_rb); 862 zfree(&ptq->chain); 863 free(ptq); 864 return NULL; 865 } 866 867 static void intel_pt_free_queue(void *priv) 868 { 869 struct intel_pt_queue *ptq = priv; 870 871 if (!ptq) 872 return; 873 thread__zput(ptq->thread); 874 intel_pt_decoder_free(ptq->decoder); 875 zfree(&ptq->event_buf); 876 zfree(&ptq->last_branch); 877 zfree(&ptq->last_branch_rb); 878 zfree(&ptq->chain); 879 free(ptq); 880 } 881 882 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 883 struct auxtrace_queue *queue) 884 { 885 struct intel_pt_queue *ptq = queue->priv; 886 887 if (queue->tid == -1 || pt->have_sched_switch) { 888 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 889 thread__zput(ptq->thread); 890 } 891 892 if (!ptq->thread && ptq->tid != -1) 893 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 894 895 if (ptq->thread) { 896 ptq->pid = ptq->thread->pid_; 897 if (queue->cpu == -1) 898 ptq->cpu = ptq->thread->cpu; 899 } 900 } 901 902 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 903 { 904 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 905 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 906 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 907 if (ptq->state->to_ip) 908 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 909 PERF_IP_FLAG_ASYNC | 910 PERF_IP_FLAG_INTERRUPT; 911 else 912 ptq->flags = PERF_IP_FLAG_BRANCH | 913 PERF_IP_FLAG_TRACE_END; 914 ptq->insn_len = 0; 915 } else { 916 if (ptq->state->from_ip) 917 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 918 else 919 ptq->flags = PERF_IP_FLAG_BRANCH | 920 PERF_IP_FLAG_TRACE_BEGIN; 921 if (ptq->state->flags & INTEL_PT_IN_TX) 922 ptq->flags |= PERF_IP_FLAG_IN_TX; 923 ptq->insn_len = ptq->state->insn_len; 924 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 925 } 926 927 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 928 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 929 if (ptq->state->type & INTEL_PT_TRACE_END) 930 ptq->flags |= PERF_IP_FLAG_TRACE_END; 931 } 932 933 static int intel_pt_setup_queue(struct intel_pt *pt, 934 struct auxtrace_queue *queue, 935 unsigned int queue_nr) 936 { 937 struct intel_pt_queue *ptq = queue->priv; 938 939 if (list_empty(&queue->head)) 940 return 0; 941 942 if (!ptq) { 943 ptq = intel_pt_alloc_queue(pt, queue_nr); 944 if (!ptq) 945 return -ENOMEM; 946 queue->priv = ptq; 947 948 if (queue->cpu != -1) 949 ptq->cpu = queue->cpu; 950 ptq->tid = queue->tid; 951 952 if (pt->sampling_mode && !pt->snapshot_mode && 953 pt->timeless_decoding) 954 ptq->step_through_buffers = true; 955 956 ptq->sync_switch = pt->sync_switch; 957 } 958 959 if (!ptq->on_heap && 960 (!ptq->sync_switch || 961 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 962 const struct intel_pt_state *state; 963 int ret; 964 965 if (pt->timeless_decoding) 966 return 0; 967 968 intel_pt_log("queue %u getting timestamp\n", queue_nr); 969 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 970 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 971 while (1) { 972 state = intel_pt_decode(ptq->decoder); 973 if (state->err) { 974 if (state->err == INTEL_PT_ERR_NODATA) { 975 intel_pt_log("queue %u has no timestamp\n", 976 queue_nr); 977 return 0; 978 } 979 continue; 980 } 981 if (state->timestamp) 982 break; 983 } 984 985 ptq->timestamp = state->timestamp; 986 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 987 queue_nr, ptq->timestamp); 988 ptq->state = state; 989 ptq->have_sample = true; 990 intel_pt_sample_flags(ptq); 991 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 992 if (ret) 993 return ret; 994 ptq->on_heap = true; 995 } 996 997 return 0; 998 } 999 1000 static int intel_pt_setup_queues(struct intel_pt *pt) 1001 { 1002 unsigned int i; 1003 int ret; 1004 1005 for (i = 0; i < pt->queues.nr_queues; i++) { 1006 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1007 if (ret) 1008 return ret; 1009 } 1010 return 0; 1011 } 1012 1013 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq) 1014 { 1015 struct branch_stack *bs_src = ptq->last_branch_rb; 1016 struct branch_stack *bs_dst = ptq->last_branch; 1017 size_t nr = 0; 1018 1019 bs_dst->nr = bs_src->nr; 1020 1021 if (!bs_src->nr) 1022 return; 1023 1024 nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos; 1025 memcpy(&bs_dst->entries[0], 1026 &bs_src->entries[ptq->last_branch_pos], 1027 sizeof(struct branch_entry) * nr); 1028 1029 if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) { 1030 memcpy(&bs_dst->entries[nr], 1031 &bs_src->entries[0], 1032 sizeof(struct branch_entry) * ptq->last_branch_pos); 1033 } 1034 } 1035 1036 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq) 1037 { 1038 ptq->last_branch_pos = 0; 1039 ptq->last_branch_rb->nr = 0; 1040 } 1041 1042 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq) 1043 { 1044 const struct intel_pt_state *state = ptq->state; 1045 struct branch_stack *bs = ptq->last_branch_rb; 1046 struct branch_entry *be; 1047 1048 if (!ptq->last_branch_pos) 1049 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz; 1050 1051 ptq->last_branch_pos -= 1; 1052 1053 be = &bs->entries[ptq->last_branch_pos]; 1054 be->from = state->from_ip; 1055 be->to = state->to_ip; 1056 be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX); 1057 be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX); 1058 /* No support for mispredict */ 1059 be->flags.mispred = ptq->pt->mispred_all; 1060 1061 if (bs->nr < ptq->pt->synth_opts.last_branch_sz) 1062 bs->nr += 1; 1063 } 1064 1065 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1066 { 1067 return pt->synth_opts.initial_skip && 1068 pt->num_events++ < pt->synth_opts.initial_skip; 1069 } 1070 1071 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1072 struct intel_pt_queue *ptq, 1073 union perf_event *event, 1074 struct perf_sample *sample) 1075 { 1076 if (!pt->timeless_decoding) 1077 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1078 1079 sample->ip = ptq->state->from_ip; 1080 sample->cpumode = intel_pt_cpumode(pt, sample->ip); 1081 sample->pid = ptq->pid; 1082 sample->tid = ptq->tid; 1083 sample->addr = ptq->state->to_ip; 1084 sample->period = 1; 1085 sample->cpu = ptq->cpu; 1086 sample->flags = ptq->flags; 1087 sample->insn_len = ptq->insn_len; 1088 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1089 1090 event->sample.header.type = PERF_RECORD_SAMPLE; 1091 event->sample.header.misc = sample->cpumode; 1092 event->sample.header.size = sizeof(struct perf_event_header); 1093 } 1094 1095 static int intel_pt_inject_event(union perf_event *event, 1096 struct perf_sample *sample, u64 type) 1097 { 1098 event->header.size = perf_event__sample_event_size(sample, type, 0); 1099 return perf_event__synthesize_sample(event, type, 0, sample); 1100 } 1101 1102 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1103 union perf_event *event, 1104 struct perf_sample *sample, u64 type) 1105 { 1106 if (!pt->synth_opts.inject) 1107 return 0; 1108 1109 return intel_pt_inject_event(event, sample, type); 1110 } 1111 1112 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt, 1113 union perf_event *event, 1114 struct perf_sample *sample, u64 type) 1115 { 1116 int ret; 1117 1118 ret = intel_pt_opt_inject(pt, event, sample, type); 1119 if (ret) 1120 return ret; 1121 1122 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1123 if (ret) 1124 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1125 1126 return ret; 1127 } 1128 1129 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1130 { 1131 struct intel_pt *pt = ptq->pt; 1132 union perf_event *event = ptq->event_buf; 1133 struct perf_sample sample = { .ip = 0, }; 1134 struct dummy_branch_stack { 1135 u64 nr; 1136 struct branch_entry entries; 1137 } dummy_bs; 1138 1139 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1140 return 0; 1141 1142 if (intel_pt_skip_event(pt)) 1143 return 0; 1144 1145 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1146 1147 sample.id = ptq->pt->branches_id; 1148 sample.stream_id = ptq->pt->branches_id; 1149 1150 /* 1151 * perf report cannot handle events without a branch stack when using 1152 * SORT_MODE__BRANCH so make a dummy one. 1153 */ 1154 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1155 dummy_bs = (struct dummy_branch_stack){ 1156 .nr = 1, 1157 .entries = { 1158 .from = sample.ip, 1159 .to = sample.addr, 1160 }, 1161 }; 1162 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1163 } 1164 1165 return intel_pt_deliver_synth_b_event(pt, event, &sample, 1166 pt->branches_sample_type); 1167 } 1168 1169 static void intel_pt_prep_sample(struct intel_pt *pt, 1170 struct intel_pt_queue *ptq, 1171 union perf_event *event, 1172 struct perf_sample *sample) 1173 { 1174 intel_pt_prep_b_sample(pt, ptq, event, sample); 1175 1176 if (pt->synth_opts.callchain) { 1177 thread_stack__sample(ptq->thread, ptq->chain, 1178 pt->synth_opts.callchain_sz + 1, 1179 sample->ip, pt->kernel_start); 1180 sample->callchain = ptq->chain; 1181 } 1182 1183 if (pt->synth_opts.last_branch) { 1184 intel_pt_copy_last_branch_rb(ptq); 1185 sample->branch_stack = ptq->last_branch; 1186 } 1187 } 1188 1189 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt, 1190 struct intel_pt_queue *ptq, 1191 union perf_event *event, 1192 struct perf_sample *sample, 1193 u64 type) 1194 { 1195 int ret; 1196 1197 ret = intel_pt_deliver_synth_b_event(pt, event, sample, type); 1198 1199 if (pt->synth_opts.last_branch) 1200 intel_pt_reset_last_branch_rb(ptq); 1201 1202 return ret; 1203 } 1204 1205 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1206 { 1207 struct intel_pt *pt = ptq->pt; 1208 union perf_event *event = ptq->event_buf; 1209 struct perf_sample sample = { .ip = 0, }; 1210 1211 if (intel_pt_skip_event(pt)) 1212 return 0; 1213 1214 intel_pt_prep_sample(pt, ptq, event, &sample); 1215 1216 sample.id = ptq->pt->instructions_id; 1217 sample.stream_id = ptq->pt->instructions_id; 1218 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1219 1220 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1221 1222 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1223 pt->instructions_sample_type); 1224 } 1225 1226 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1227 { 1228 struct intel_pt *pt = ptq->pt; 1229 union perf_event *event = ptq->event_buf; 1230 struct perf_sample sample = { .ip = 0, }; 1231 1232 if (intel_pt_skip_event(pt)) 1233 return 0; 1234 1235 intel_pt_prep_sample(pt, ptq, event, &sample); 1236 1237 sample.id = ptq->pt->transactions_id; 1238 sample.stream_id = ptq->pt->transactions_id; 1239 1240 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1241 pt->transactions_sample_type); 1242 } 1243 1244 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1245 struct intel_pt_queue *ptq, 1246 union perf_event *event, 1247 struct perf_sample *sample) 1248 { 1249 intel_pt_prep_sample(pt, ptq, event, sample); 1250 1251 /* 1252 * Zero IP is used to mean "trace start" but that is not the case for 1253 * power or PTWRITE events with no IP, so clear the flags. 1254 */ 1255 if (!sample->ip) 1256 sample->flags = 0; 1257 } 1258 1259 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1260 { 1261 struct intel_pt *pt = ptq->pt; 1262 union perf_event *event = ptq->event_buf; 1263 struct perf_sample sample = { .ip = 0, }; 1264 struct perf_synth_intel_ptwrite raw; 1265 1266 if (intel_pt_skip_event(pt)) 1267 return 0; 1268 1269 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1270 1271 sample.id = ptq->pt->ptwrites_id; 1272 sample.stream_id = ptq->pt->ptwrites_id; 1273 1274 raw.flags = 0; 1275 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1276 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1277 1278 sample.raw_size = perf_synth__raw_size(raw); 1279 sample.raw_data = perf_synth__raw_data(&raw); 1280 1281 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1282 pt->ptwrites_sample_type); 1283 } 1284 1285 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1286 { 1287 struct intel_pt *pt = ptq->pt; 1288 union perf_event *event = ptq->event_buf; 1289 struct perf_sample sample = { .ip = 0, }; 1290 struct perf_synth_intel_cbr raw; 1291 u32 flags; 1292 1293 if (intel_pt_skip_event(pt)) 1294 return 0; 1295 1296 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1297 1298 sample.id = ptq->pt->cbr_id; 1299 sample.stream_id = ptq->pt->cbr_id; 1300 1301 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1302 raw.flags = cpu_to_le32(flags); 1303 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1304 raw.reserved3 = 0; 1305 1306 sample.raw_size = perf_synth__raw_size(raw); 1307 sample.raw_data = perf_synth__raw_data(&raw); 1308 1309 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1310 pt->pwr_events_sample_type); 1311 } 1312 1313 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1314 { 1315 struct intel_pt *pt = ptq->pt; 1316 union perf_event *event = ptq->event_buf; 1317 struct perf_sample sample = { .ip = 0, }; 1318 struct perf_synth_intel_mwait raw; 1319 1320 if (intel_pt_skip_event(pt)) 1321 return 0; 1322 1323 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1324 1325 sample.id = ptq->pt->mwait_id; 1326 sample.stream_id = ptq->pt->mwait_id; 1327 1328 raw.reserved = 0; 1329 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1330 1331 sample.raw_size = perf_synth__raw_size(raw); 1332 sample.raw_data = perf_synth__raw_data(&raw); 1333 1334 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1335 pt->pwr_events_sample_type); 1336 } 1337 1338 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1339 { 1340 struct intel_pt *pt = ptq->pt; 1341 union perf_event *event = ptq->event_buf; 1342 struct perf_sample sample = { .ip = 0, }; 1343 struct perf_synth_intel_pwre raw; 1344 1345 if (intel_pt_skip_event(pt)) 1346 return 0; 1347 1348 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1349 1350 sample.id = ptq->pt->pwre_id; 1351 sample.stream_id = ptq->pt->pwre_id; 1352 1353 raw.reserved = 0; 1354 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1355 1356 sample.raw_size = perf_synth__raw_size(raw); 1357 sample.raw_data = perf_synth__raw_data(&raw); 1358 1359 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1360 pt->pwr_events_sample_type); 1361 } 1362 1363 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1364 { 1365 struct intel_pt *pt = ptq->pt; 1366 union perf_event *event = ptq->event_buf; 1367 struct perf_sample sample = { .ip = 0, }; 1368 struct perf_synth_intel_exstop raw; 1369 1370 if (intel_pt_skip_event(pt)) 1371 return 0; 1372 1373 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1374 1375 sample.id = ptq->pt->exstop_id; 1376 sample.stream_id = ptq->pt->exstop_id; 1377 1378 raw.flags = 0; 1379 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1380 1381 sample.raw_size = perf_synth__raw_size(raw); 1382 sample.raw_data = perf_synth__raw_data(&raw); 1383 1384 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1385 pt->pwr_events_sample_type); 1386 } 1387 1388 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1389 { 1390 struct intel_pt *pt = ptq->pt; 1391 union perf_event *event = ptq->event_buf; 1392 struct perf_sample sample = { .ip = 0, }; 1393 struct perf_synth_intel_pwrx raw; 1394 1395 if (intel_pt_skip_event(pt)) 1396 return 0; 1397 1398 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1399 1400 sample.id = ptq->pt->pwrx_id; 1401 sample.stream_id = ptq->pt->pwrx_id; 1402 1403 raw.reserved = 0; 1404 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1405 1406 sample.raw_size = perf_synth__raw_size(raw); 1407 sample.raw_data = perf_synth__raw_data(&raw); 1408 1409 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1410 pt->pwr_events_sample_type); 1411 } 1412 1413 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 1414 pid_t pid, pid_t tid, u64 ip) 1415 { 1416 union perf_event event; 1417 char msg[MAX_AUXTRACE_ERROR_MSG]; 1418 int err; 1419 1420 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 1421 1422 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 1423 code, cpu, pid, tid, ip, msg); 1424 1425 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 1426 if (err) 1427 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 1428 err); 1429 1430 return err; 1431 } 1432 1433 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 1434 { 1435 struct auxtrace_queue *queue; 1436 pid_t tid = ptq->next_tid; 1437 int err; 1438 1439 if (tid == -1) 1440 return 0; 1441 1442 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 1443 1444 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 1445 1446 queue = &pt->queues.queue_array[ptq->queue_nr]; 1447 intel_pt_set_pid_tid_cpu(pt, queue); 1448 1449 ptq->next_tid = -1; 1450 1451 return err; 1452 } 1453 1454 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 1455 { 1456 struct intel_pt *pt = ptq->pt; 1457 1458 return ip == pt->switch_ip && 1459 (ptq->flags & PERF_IP_FLAG_BRANCH) && 1460 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 1461 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 1462 } 1463 1464 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 1465 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \ 1466 INTEL_PT_CBR_CHG) 1467 1468 static int intel_pt_sample(struct intel_pt_queue *ptq) 1469 { 1470 const struct intel_pt_state *state = ptq->state; 1471 struct intel_pt *pt = ptq->pt; 1472 int err; 1473 1474 if (!ptq->have_sample) 1475 return 0; 1476 1477 ptq->have_sample = false; 1478 1479 if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) { 1480 if (state->type & INTEL_PT_CBR_CHG) { 1481 err = intel_pt_synth_cbr_sample(ptq); 1482 if (err) 1483 return err; 1484 } 1485 if (state->type & INTEL_PT_MWAIT_OP) { 1486 err = intel_pt_synth_mwait_sample(ptq); 1487 if (err) 1488 return err; 1489 } 1490 if (state->type & INTEL_PT_PWR_ENTRY) { 1491 err = intel_pt_synth_pwre_sample(ptq); 1492 if (err) 1493 return err; 1494 } 1495 if (state->type & INTEL_PT_EX_STOP) { 1496 err = intel_pt_synth_exstop_sample(ptq); 1497 if (err) 1498 return err; 1499 } 1500 if (state->type & INTEL_PT_PWR_EXIT) { 1501 err = intel_pt_synth_pwrx_sample(ptq); 1502 if (err) 1503 return err; 1504 } 1505 } 1506 1507 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 1508 err = intel_pt_synth_instruction_sample(ptq); 1509 if (err) 1510 return err; 1511 } 1512 1513 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 1514 err = intel_pt_synth_transaction_sample(ptq); 1515 if (err) 1516 return err; 1517 } 1518 1519 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 1520 err = intel_pt_synth_ptwrite_sample(ptq); 1521 if (err) 1522 return err; 1523 } 1524 1525 if (!(state->type & INTEL_PT_BRANCH)) 1526 return 0; 1527 1528 if (pt->synth_opts.callchain || pt->synth_opts.thread_stack) 1529 thread_stack__event(ptq->thread, ptq->flags, state->from_ip, 1530 state->to_ip, ptq->insn_len, 1531 state->trace_nr); 1532 else 1533 thread_stack__set_trace_nr(ptq->thread, state->trace_nr); 1534 1535 if (pt->sample_branches) { 1536 err = intel_pt_synth_branch_sample(ptq); 1537 if (err) 1538 return err; 1539 } 1540 1541 if (pt->synth_opts.last_branch) 1542 intel_pt_update_last_branch_rb(ptq); 1543 1544 if (!ptq->sync_switch) 1545 return 0; 1546 1547 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 1548 switch (ptq->switch_state) { 1549 case INTEL_PT_SS_NOT_TRACING: 1550 case INTEL_PT_SS_UNKNOWN: 1551 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 1552 err = intel_pt_next_tid(pt, ptq); 1553 if (err) 1554 return err; 1555 ptq->switch_state = INTEL_PT_SS_TRACING; 1556 break; 1557 default: 1558 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 1559 return 1; 1560 } 1561 } else if (!state->to_ip) { 1562 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 1563 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 1564 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 1565 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 1566 state->to_ip == pt->ptss_ip && 1567 (ptq->flags & PERF_IP_FLAG_CALL)) { 1568 ptq->switch_state = INTEL_PT_SS_TRACING; 1569 } 1570 1571 return 0; 1572 } 1573 1574 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 1575 { 1576 struct machine *machine = pt->machine; 1577 struct map *map; 1578 struct symbol *sym, *start; 1579 u64 ip, switch_ip = 0; 1580 const char *ptss; 1581 1582 if (ptss_ip) 1583 *ptss_ip = 0; 1584 1585 map = machine__kernel_map(machine); 1586 if (!map) 1587 return 0; 1588 1589 if (map__load(map)) 1590 return 0; 1591 1592 start = dso__first_symbol(map->dso); 1593 1594 for (sym = start; sym; sym = dso__next_symbol(sym)) { 1595 if (sym->binding == STB_GLOBAL && 1596 !strcmp(sym->name, "__switch_to")) { 1597 ip = map->unmap_ip(map, sym->start); 1598 if (ip >= map->start && ip < map->end) { 1599 switch_ip = ip; 1600 break; 1601 } 1602 } 1603 } 1604 1605 if (!switch_ip || !ptss_ip) 1606 return 0; 1607 1608 if (pt->have_sched_switch == 1) 1609 ptss = "perf_trace_sched_switch"; 1610 else 1611 ptss = "__perf_event_task_sched_out"; 1612 1613 for (sym = start; sym; sym = dso__next_symbol(sym)) { 1614 if (!strcmp(sym->name, ptss)) { 1615 ip = map->unmap_ip(map, sym->start); 1616 if (ip >= map->start && ip < map->end) { 1617 *ptss_ip = ip; 1618 break; 1619 } 1620 } 1621 } 1622 1623 return switch_ip; 1624 } 1625 1626 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 1627 { 1628 unsigned int i; 1629 1630 pt->sync_switch = true; 1631 1632 for (i = 0; i < pt->queues.nr_queues; i++) { 1633 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1634 struct intel_pt_queue *ptq = queue->priv; 1635 1636 if (ptq) 1637 ptq->sync_switch = true; 1638 } 1639 } 1640 1641 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 1642 { 1643 const struct intel_pt_state *state = ptq->state; 1644 struct intel_pt *pt = ptq->pt; 1645 int err; 1646 1647 if (!pt->kernel_start) { 1648 pt->kernel_start = machine__kernel_start(pt->machine); 1649 if (pt->per_cpu_mmaps && 1650 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 1651 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 1652 !pt->sampling_mode) { 1653 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 1654 if (pt->switch_ip) { 1655 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 1656 pt->switch_ip, pt->ptss_ip); 1657 intel_pt_enable_sync_switch(pt); 1658 } 1659 } 1660 } 1661 1662 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1663 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1664 while (1) { 1665 err = intel_pt_sample(ptq); 1666 if (err) 1667 return err; 1668 1669 state = intel_pt_decode(ptq->decoder); 1670 if (state->err) { 1671 if (state->err == INTEL_PT_ERR_NODATA) 1672 return 1; 1673 if (ptq->sync_switch && 1674 state->from_ip >= pt->kernel_start) { 1675 ptq->sync_switch = false; 1676 intel_pt_next_tid(pt, ptq); 1677 } 1678 if (pt->synth_opts.errors) { 1679 err = intel_pt_synth_error(pt, state->err, 1680 ptq->cpu, ptq->pid, 1681 ptq->tid, 1682 state->from_ip); 1683 if (err) 1684 return err; 1685 } 1686 continue; 1687 } 1688 1689 ptq->state = state; 1690 ptq->have_sample = true; 1691 intel_pt_sample_flags(ptq); 1692 1693 /* Use estimated TSC upon return to user space */ 1694 if (pt->est_tsc && 1695 (state->from_ip >= pt->kernel_start || !state->from_ip) && 1696 state->to_ip && state->to_ip < pt->kernel_start) { 1697 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 1698 state->timestamp, state->est_timestamp); 1699 ptq->timestamp = state->est_timestamp; 1700 /* Use estimated TSC in unknown switch state */ 1701 } else if (ptq->sync_switch && 1702 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 1703 intel_pt_is_switch_ip(ptq, state->to_ip) && 1704 ptq->next_tid == -1) { 1705 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 1706 state->timestamp, state->est_timestamp); 1707 ptq->timestamp = state->est_timestamp; 1708 } else if (state->timestamp > ptq->timestamp) { 1709 ptq->timestamp = state->timestamp; 1710 } 1711 1712 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 1713 *timestamp = ptq->timestamp; 1714 return 0; 1715 } 1716 } 1717 return 0; 1718 } 1719 1720 static inline int intel_pt_update_queues(struct intel_pt *pt) 1721 { 1722 if (pt->queues.new_data) { 1723 pt->queues.new_data = false; 1724 return intel_pt_setup_queues(pt); 1725 } 1726 return 0; 1727 } 1728 1729 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 1730 { 1731 unsigned int queue_nr; 1732 u64 ts; 1733 int ret; 1734 1735 while (1) { 1736 struct auxtrace_queue *queue; 1737 struct intel_pt_queue *ptq; 1738 1739 if (!pt->heap.heap_cnt) 1740 return 0; 1741 1742 if (pt->heap.heap_array[0].ordinal >= timestamp) 1743 return 0; 1744 1745 queue_nr = pt->heap.heap_array[0].queue_nr; 1746 queue = &pt->queues.queue_array[queue_nr]; 1747 ptq = queue->priv; 1748 1749 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 1750 queue_nr, pt->heap.heap_array[0].ordinal, 1751 timestamp); 1752 1753 auxtrace_heap__pop(&pt->heap); 1754 1755 if (pt->heap.heap_cnt) { 1756 ts = pt->heap.heap_array[0].ordinal + 1; 1757 if (ts > timestamp) 1758 ts = timestamp; 1759 } else { 1760 ts = timestamp; 1761 } 1762 1763 intel_pt_set_pid_tid_cpu(pt, queue); 1764 1765 ret = intel_pt_run_decoder(ptq, &ts); 1766 1767 if (ret < 0) { 1768 auxtrace_heap__add(&pt->heap, queue_nr, ts); 1769 return ret; 1770 } 1771 1772 if (!ret) { 1773 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 1774 if (ret < 0) 1775 return ret; 1776 } else { 1777 ptq->on_heap = false; 1778 } 1779 } 1780 1781 return 0; 1782 } 1783 1784 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 1785 u64 time_) 1786 { 1787 struct auxtrace_queues *queues = &pt->queues; 1788 unsigned int i; 1789 u64 ts = 0; 1790 1791 for (i = 0; i < queues->nr_queues; i++) { 1792 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1793 struct intel_pt_queue *ptq = queue->priv; 1794 1795 if (ptq && (tid == -1 || ptq->tid == tid)) { 1796 ptq->time = time_; 1797 intel_pt_set_pid_tid_cpu(pt, queue); 1798 intel_pt_run_decoder(ptq, &ts); 1799 } 1800 } 1801 return 0; 1802 } 1803 1804 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 1805 { 1806 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 1807 sample->pid, sample->tid, 0); 1808 } 1809 1810 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 1811 { 1812 unsigned i, j; 1813 1814 if (cpu < 0 || !pt->queues.nr_queues) 1815 return NULL; 1816 1817 if ((unsigned)cpu >= pt->queues.nr_queues) 1818 i = pt->queues.nr_queues - 1; 1819 else 1820 i = cpu; 1821 1822 if (pt->queues.queue_array[i].cpu == cpu) 1823 return pt->queues.queue_array[i].priv; 1824 1825 for (j = 0; i > 0; j++) { 1826 if (pt->queues.queue_array[--i].cpu == cpu) 1827 return pt->queues.queue_array[i].priv; 1828 } 1829 1830 for (; j < pt->queues.nr_queues; j++) { 1831 if (pt->queues.queue_array[j].cpu == cpu) 1832 return pt->queues.queue_array[j].priv; 1833 } 1834 1835 return NULL; 1836 } 1837 1838 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 1839 u64 timestamp) 1840 { 1841 struct intel_pt_queue *ptq; 1842 int err; 1843 1844 if (!pt->sync_switch) 1845 return 1; 1846 1847 ptq = intel_pt_cpu_to_ptq(pt, cpu); 1848 if (!ptq || !ptq->sync_switch) 1849 return 1; 1850 1851 switch (ptq->switch_state) { 1852 case INTEL_PT_SS_NOT_TRACING: 1853 ptq->next_tid = -1; 1854 break; 1855 case INTEL_PT_SS_UNKNOWN: 1856 case INTEL_PT_SS_TRACING: 1857 ptq->next_tid = tid; 1858 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 1859 return 0; 1860 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 1861 if (!ptq->on_heap) { 1862 ptq->timestamp = perf_time_to_tsc(timestamp, 1863 &pt->tc); 1864 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 1865 ptq->timestamp); 1866 if (err) 1867 return err; 1868 ptq->on_heap = true; 1869 } 1870 ptq->switch_state = INTEL_PT_SS_TRACING; 1871 break; 1872 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 1873 ptq->next_tid = tid; 1874 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 1875 break; 1876 default: 1877 break; 1878 } 1879 1880 return 1; 1881 } 1882 1883 static int intel_pt_process_switch(struct intel_pt *pt, 1884 struct perf_sample *sample) 1885 { 1886 struct perf_evsel *evsel; 1887 pid_t tid; 1888 int cpu, ret; 1889 1890 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); 1891 if (evsel != pt->switch_evsel) 1892 return 0; 1893 1894 tid = perf_evsel__intval(evsel, sample, "next_pid"); 1895 cpu = sample->cpu; 1896 1897 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 1898 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 1899 &pt->tc)); 1900 1901 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 1902 if (ret <= 0) 1903 return ret; 1904 1905 return machine__set_current_tid(pt->machine, cpu, -1, tid); 1906 } 1907 1908 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 1909 struct perf_sample *sample) 1910 { 1911 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 1912 pid_t pid, tid; 1913 int cpu, ret; 1914 1915 cpu = sample->cpu; 1916 1917 if (pt->have_sched_switch == 3) { 1918 if (!out) 1919 return 0; 1920 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 1921 pr_err("Expecting CPU-wide context switch event\n"); 1922 return -EINVAL; 1923 } 1924 pid = event->context_switch.next_prev_pid; 1925 tid = event->context_switch.next_prev_tid; 1926 } else { 1927 if (out) 1928 return 0; 1929 pid = sample->pid; 1930 tid = sample->tid; 1931 } 1932 1933 if (tid == -1) { 1934 pr_err("context_switch event has no tid\n"); 1935 return -EINVAL; 1936 } 1937 1938 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 1939 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time, 1940 &pt->tc)); 1941 1942 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 1943 if (ret <= 0) 1944 return ret; 1945 1946 return machine__set_current_tid(pt->machine, cpu, pid, tid); 1947 } 1948 1949 static int intel_pt_process_itrace_start(struct intel_pt *pt, 1950 union perf_event *event, 1951 struct perf_sample *sample) 1952 { 1953 if (!pt->per_cpu_mmaps) 1954 return 0; 1955 1956 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 1957 sample->cpu, event->itrace_start.pid, 1958 event->itrace_start.tid, sample->time, 1959 perf_time_to_tsc(sample->time, &pt->tc)); 1960 1961 return machine__set_current_tid(pt->machine, sample->cpu, 1962 event->itrace_start.pid, 1963 event->itrace_start.tid); 1964 } 1965 1966 static int intel_pt_process_event(struct perf_session *session, 1967 union perf_event *event, 1968 struct perf_sample *sample, 1969 struct perf_tool *tool) 1970 { 1971 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 1972 auxtrace); 1973 u64 timestamp; 1974 int err = 0; 1975 1976 if (dump_trace) 1977 return 0; 1978 1979 if (!tool->ordered_events) { 1980 pr_err("Intel Processor Trace requires ordered events\n"); 1981 return -EINVAL; 1982 } 1983 1984 if (sample->time && sample->time != (u64)-1) 1985 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 1986 else 1987 timestamp = 0; 1988 1989 if (timestamp || pt->timeless_decoding) { 1990 err = intel_pt_update_queues(pt); 1991 if (err) 1992 return err; 1993 } 1994 1995 if (pt->timeless_decoding) { 1996 if (event->header.type == PERF_RECORD_EXIT) { 1997 err = intel_pt_process_timeless_queues(pt, 1998 event->fork.tid, 1999 sample->time); 2000 } 2001 } else if (timestamp) { 2002 err = intel_pt_process_queues(pt, timestamp); 2003 } 2004 if (err) 2005 return err; 2006 2007 if (event->header.type == PERF_RECORD_AUX && 2008 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 2009 pt->synth_opts.errors) { 2010 err = intel_pt_lost(pt, sample); 2011 if (err) 2012 return err; 2013 } 2014 2015 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 2016 err = intel_pt_process_switch(pt, sample); 2017 else if (event->header.type == PERF_RECORD_ITRACE_START) 2018 err = intel_pt_process_itrace_start(pt, event, sample); 2019 else if (event->header.type == PERF_RECORD_SWITCH || 2020 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2021 err = intel_pt_context_switch(pt, event, sample); 2022 2023 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 2024 event->header.type, sample->cpu, sample->time, timestamp); 2025 intel_pt_log_event(event); 2026 2027 return err; 2028 } 2029 2030 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 2031 { 2032 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2033 auxtrace); 2034 int ret; 2035 2036 if (dump_trace) 2037 return 0; 2038 2039 if (!tool->ordered_events) 2040 return -EINVAL; 2041 2042 ret = intel_pt_update_queues(pt); 2043 if (ret < 0) 2044 return ret; 2045 2046 if (pt->timeless_decoding) 2047 return intel_pt_process_timeless_queues(pt, -1, 2048 MAX_TIMESTAMP - 1); 2049 2050 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 2051 } 2052 2053 static void intel_pt_free_events(struct perf_session *session) 2054 { 2055 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2056 auxtrace); 2057 struct auxtrace_queues *queues = &pt->queues; 2058 unsigned int i; 2059 2060 for (i = 0; i < queues->nr_queues; i++) { 2061 intel_pt_free_queue(queues->queue_array[i].priv); 2062 queues->queue_array[i].priv = NULL; 2063 } 2064 intel_pt_log_disable(); 2065 auxtrace_queues__free(queues); 2066 } 2067 2068 static void intel_pt_free(struct perf_session *session) 2069 { 2070 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2071 auxtrace); 2072 2073 auxtrace_heap__free(&pt->heap); 2074 intel_pt_free_events(session); 2075 session->auxtrace = NULL; 2076 thread__put(pt->unknown_thread); 2077 addr_filters__exit(&pt->filts); 2078 zfree(&pt->filter); 2079 free(pt); 2080 } 2081 2082 static int intel_pt_process_auxtrace_event(struct perf_session *session, 2083 union perf_event *event, 2084 struct perf_tool *tool __maybe_unused) 2085 { 2086 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2087 auxtrace); 2088 2089 if (!pt->data_queued) { 2090 struct auxtrace_buffer *buffer; 2091 off_t data_offset; 2092 int fd = perf_data__fd(session->data); 2093 int err; 2094 2095 if (perf_data__is_pipe(session->data)) { 2096 data_offset = 0; 2097 } else { 2098 data_offset = lseek(fd, 0, SEEK_CUR); 2099 if (data_offset == -1) 2100 return -errno; 2101 } 2102 2103 err = auxtrace_queues__add_event(&pt->queues, session, event, 2104 data_offset, &buffer); 2105 if (err) 2106 return err; 2107 2108 /* Dump here now we have copied a piped trace out of the pipe */ 2109 if (dump_trace) { 2110 if (auxtrace_buffer__get_data(buffer, fd)) { 2111 intel_pt_dump_event(pt, buffer->data, 2112 buffer->size); 2113 auxtrace_buffer__put_data(buffer); 2114 } 2115 } 2116 } 2117 2118 return 0; 2119 } 2120 2121 struct intel_pt_synth { 2122 struct perf_tool dummy_tool; 2123 struct perf_session *session; 2124 }; 2125 2126 static int intel_pt_event_synth(struct perf_tool *tool, 2127 union perf_event *event, 2128 struct perf_sample *sample __maybe_unused, 2129 struct machine *machine __maybe_unused) 2130 { 2131 struct intel_pt_synth *intel_pt_synth = 2132 container_of(tool, struct intel_pt_synth, dummy_tool); 2133 2134 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 2135 NULL); 2136 } 2137 2138 static int intel_pt_synth_event(struct perf_session *session, const char *name, 2139 struct perf_event_attr *attr, u64 id) 2140 { 2141 struct intel_pt_synth intel_pt_synth; 2142 int err; 2143 2144 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 2145 name, id, (u64)attr->sample_type); 2146 2147 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 2148 intel_pt_synth.session = session; 2149 2150 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 2151 &id, intel_pt_event_synth); 2152 if (err) 2153 pr_err("%s: failed to synthesize '%s' event type\n", 2154 __func__, name); 2155 2156 return err; 2157 } 2158 2159 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id, 2160 const char *name) 2161 { 2162 struct perf_evsel *evsel; 2163 2164 evlist__for_each_entry(evlist, evsel) { 2165 if (evsel->id && evsel->id[0] == id) { 2166 if (evsel->name) 2167 zfree(&evsel->name); 2168 evsel->name = strdup(name); 2169 break; 2170 } 2171 } 2172 } 2173 2174 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt, 2175 struct perf_evlist *evlist) 2176 { 2177 struct perf_evsel *evsel; 2178 2179 evlist__for_each_entry(evlist, evsel) { 2180 if (evsel->attr.type == pt->pmu_type && evsel->ids) 2181 return evsel; 2182 } 2183 2184 return NULL; 2185 } 2186 2187 static int intel_pt_synth_events(struct intel_pt *pt, 2188 struct perf_session *session) 2189 { 2190 struct perf_evlist *evlist = session->evlist; 2191 struct perf_evsel *evsel = intel_pt_evsel(pt, evlist); 2192 struct perf_event_attr attr; 2193 u64 id; 2194 int err; 2195 2196 if (!evsel) { 2197 pr_debug("There are no selected events with Intel Processor Trace data\n"); 2198 return 0; 2199 } 2200 2201 memset(&attr, 0, sizeof(struct perf_event_attr)); 2202 attr.size = sizeof(struct perf_event_attr); 2203 attr.type = PERF_TYPE_HARDWARE; 2204 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; 2205 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 2206 PERF_SAMPLE_PERIOD; 2207 if (pt->timeless_decoding) 2208 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 2209 else 2210 attr.sample_type |= PERF_SAMPLE_TIME; 2211 if (!pt->per_cpu_mmaps) 2212 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 2213 attr.exclude_user = evsel->attr.exclude_user; 2214 attr.exclude_kernel = evsel->attr.exclude_kernel; 2215 attr.exclude_hv = evsel->attr.exclude_hv; 2216 attr.exclude_host = evsel->attr.exclude_host; 2217 attr.exclude_guest = evsel->attr.exclude_guest; 2218 attr.sample_id_all = evsel->attr.sample_id_all; 2219 attr.read_format = evsel->attr.read_format; 2220 2221 id = evsel->id[0] + 1000000000; 2222 if (!id) 2223 id = 1; 2224 2225 if (pt->synth_opts.branches) { 2226 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 2227 attr.sample_period = 1; 2228 attr.sample_type |= PERF_SAMPLE_ADDR; 2229 err = intel_pt_synth_event(session, "branches", &attr, id); 2230 if (err) 2231 return err; 2232 pt->sample_branches = true; 2233 pt->branches_sample_type = attr.sample_type; 2234 pt->branches_id = id; 2235 id += 1; 2236 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 2237 } 2238 2239 if (pt->synth_opts.callchain) 2240 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 2241 if (pt->synth_opts.last_branch) 2242 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 2243 2244 if (pt->synth_opts.instructions) { 2245 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2246 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 2247 attr.sample_period = 2248 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 2249 else 2250 attr.sample_period = pt->synth_opts.period; 2251 err = intel_pt_synth_event(session, "instructions", &attr, id); 2252 if (err) 2253 return err; 2254 pt->sample_instructions = true; 2255 pt->instructions_sample_type = attr.sample_type; 2256 pt->instructions_id = id; 2257 id += 1; 2258 } 2259 2260 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 2261 attr.sample_period = 1; 2262 2263 if (pt->synth_opts.transactions) { 2264 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2265 err = intel_pt_synth_event(session, "transactions", &attr, id); 2266 if (err) 2267 return err; 2268 pt->sample_transactions = true; 2269 pt->transactions_sample_type = attr.sample_type; 2270 pt->transactions_id = id; 2271 intel_pt_set_event_name(evlist, id, "transactions"); 2272 id += 1; 2273 } 2274 2275 attr.type = PERF_TYPE_SYNTH; 2276 attr.sample_type |= PERF_SAMPLE_RAW; 2277 2278 if (pt->synth_opts.ptwrites) { 2279 attr.config = PERF_SYNTH_INTEL_PTWRITE; 2280 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 2281 if (err) 2282 return err; 2283 pt->sample_ptwrites = true; 2284 pt->ptwrites_sample_type = attr.sample_type; 2285 pt->ptwrites_id = id; 2286 intel_pt_set_event_name(evlist, id, "ptwrite"); 2287 id += 1; 2288 } 2289 2290 if (pt->synth_opts.pwr_events) { 2291 pt->sample_pwr_events = true; 2292 pt->pwr_events_sample_type = attr.sample_type; 2293 2294 attr.config = PERF_SYNTH_INTEL_CBR; 2295 err = intel_pt_synth_event(session, "cbr", &attr, id); 2296 if (err) 2297 return err; 2298 pt->cbr_id = id; 2299 intel_pt_set_event_name(evlist, id, "cbr"); 2300 id += 1; 2301 } 2302 2303 if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) { 2304 attr.config = PERF_SYNTH_INTEL_MWAIT; 2305 err = intel_pt_synth_event(session, "mwait", &attr, id); 2306 if (err) 2307 return err; 2308 pt->mwait_id = id; 2309 intel_pt_set_event_name(evlist, id, "mwait"); 2310 id += 1; 2311 2312 attr.config = PERF_SYNTH_INTEL_PWRE; 2313 err = intel_pt_synth_event(session, "pwre", &attr, id); 2314 if (err) 2315 return err; 2316 pt->pwre_id = id; 2317 intel_pt_set_event_name(evlist, id, "pwre"); 2318 id += 1; 2319 2320 attr.config = PERF_SYNTH_INTEL_EXSTOP; 2321 err = intel_pt_synth_event(session, "exstop", &attr, id); 2322 if (err) 2323 return err; 2324 pt->exstop_id = id; 2325 intel_pt_set_event_name(evlist, id, "exstop"); 2326 id += 1; 2327 2328 attr.config = PERF_SYNTH_INTEL_PWRX; 2329 err = intel_pt_synth_event(session, "pwrx", &attr, id); 2330 if (err) 2331 return err; 2332 pt->pwrx_id = id; 2333 intel_pt_set_event_name(evlist, id, "pwrx"); 2334 id += 1; 2335 } 2336 2337 return 0; 2338 } 2339 2340 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist) 2341 { 2342 struct perf_evsel *evsel; 2343 2344 evlist__for_each_entry_reverse(evlist, evsel) { 2345 const char *name = perf_evsel__name(evsel); 2346 2347 if (!strcmp(name, "sched:sched_switch")) 2348 return evsel; 2349 } 2350 2351 return NULL; 2352 } 2353 2354 static bool intel_pt_find_switch(struct perf_evlist *evlist) 2355 { 2356 struct perf_evsel *evsel; 2357 2358 evlist__for_each_entry(evlist, evsel) { 2359 if (evsel->attr.context_switch) 2360 return true; 2361 } 2362 2363 return false; 2364 } 2365 2366 static int intel_pt_perf_config(const char *var, const char *value, void *data) 2367 { 2368 struct intel_pt *pt = data; 2369 2370 if (!strcmp(var, "intel-pt.mispred-all")) 2371 pt->mispred_all = perf_config_bool(var, value); 2372 2373 return 0; 2374 } 2375 2376 static const char * const intel_pt_info_fmts[] = { 2377 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 2378 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 2379 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 2380 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 2381 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 2382 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 2383 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 2384 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 2385 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 2386 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 2387 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 2388 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 2389 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 2390 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 2391 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 2392 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 2393 }; 2394 2395 static void intel_pt_print_info(u64 *arr, int start, int finish) 2396 { 2397 int i; 2398 2399 if (!dump_trace) 2400 return; 2401 2402 for (i = start; i <= finish; i++) 2403 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 2404 } 2405 2406 static void intel_pt_print_info_str(const char *name, const char *str) 2407 { 2408 if (!dump_trace) 2409 return; 2410 2411 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 2412 } 2413 2414 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos) 2415 { 2416 return auxtrace_info->header.size >= 2417 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1)); 2418 } 2419 2420 int intel_pt_process_auxtrace_info(union perf_event *event, 2421 struct perf_session *session) 2422 { 2423 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; 2424 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 2425 struct intel_pt *pt; 2426 void *info_end; 2427 u64 *info; 2428 int err; 2429 2430 if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) + 2431 min_sz) 2432 return -EINVAL; 2433 2434 pt = zalloc(sizeof(struct intel_pt)); 2435 if (!pt) 2436 return -ENOMEM; 2437 2438 addr_filters__init(&pt->filts); 2439 2440 err = perf_config(intel_pt_perf_config, pt); 2441 if (err) 2442 goto err_free; 2443 2444 err = auxtrace_queues__init(&pt->queues); 2445 if (err) 2446 goto err_free; 2447 2448 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 2449 2450 pt->session = session; 2451 pt->machine = &session->machines.host; /* No kvm support */ 2452 pt->auxtrace_type = auxtrace_info->type; 2453 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 2454 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 2455 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 2456 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 2457 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 2458 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 2459 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 2460 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 2461 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 2462 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 2463 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 2464 INTEL_PT_PER_CPU_MMAPS); 2465 2466 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 2467 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 2468 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 2469 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 2470 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 2471 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 2472 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 2473 INTEL_PT_CYC_BIT); 2474 } 2475 2476 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 2477 pt->max_non_turbo_ratio = 2478 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 2479 intel_pt_print_info(&auxtrace_info->priv[0], 2480 INTEL_PT_MAX_NONTURBO_RATIO, 2481 INTEL_PT_MAX_NONTURBO_RATIO); 2482 } 2483 2484 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 2485 info_end = (void *)info + auxtrace_info->header.size; 2486 2487 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 2488 size_t len; 2489 2490 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 2491 intel_pt_print_info(&auxtrace_info->priv[0], 2492 INTEL_PT_FILTER_STR_LEN, 2493 INTEL_PT_FILTER_STR_LEN); 2494 if (len) { 2495 const char *filter = (const char *)info; 2496 2497 len = roundup(len + 1, 8); 2498 info += len >> 3; 2499 if ((void *)info > info_end) { 2500 pr_err("%s: bad filter string length\n", __func__); 2501 err = -EINVAL; 2502 goto err_free_queues; 2503 } 2504 pt->filter = memdup(filter, len); 2505 if (!pt->filter) { 2506 err = -ENOMEM; 2507 goto err_free_queues; 2508 } 2509 if (session->header.needs_swap) 2510 mem_bswap_64(pt->filter, len); 2511 if (pt->filter[len - 1]) { 2512 pr_err("%s: filter string not null terminated\n", __func__); 2513 err = -EINVAL; 2514 goto err_free_queues; 2515 } 2516 err = addr_filters__parse_bare_filter(&pt->filts, 2517 filter); 2518 if (err) 2519 goto err_free_queues; 2520 } 2521 intel_pt_print_info_str("Filter string", pt->filter); 2522 } 2523 2524 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 2525 pt->have_tsc = intel_pt_have_tsc(pt); 2526 pt->sampling_mode = false; 2527 pt->est_tsc = !pt->timeless_decoding; 2528 2529 pt->unknown_thread = thread__new(999999999, 999999999); 2530 if (!pt->unknown_thread) { 2531 err = -ENOMEM; 2532 goto err_free_queues; 2533 } 2534 2535 /* 2536 * Since this thread will not be kept in any rbtree not in a 2537 * list, initialize its list node so that at thread__put() the 2538 * current thread lifetime assuption is kept and we don't segfault 2539 * at list_del_init(). 2540 */ 2541 INIT_LIST_HEAD(&pt->unknown_thread->node); 2542 2543 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 2544 if (err) 2545 goto err_delete_thread; 2546 if (thread__init_map_groups(pt->unknown_thread, pt->machine)) { 2547 err = -ENOMEM; 2548 goto err_delete_thread; 2549 } 2550 2551 pt->auxtrace.process_event = intel_pt_process_event; 2552 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 2553 pt->auxtrace.flush_events = intel_pt_flush; 2554 pt->auxtrace.free_events = intel_pt_free_events; 2555 pt->auxtrace.free = intel_pt_free; 2556 session->auxtrace = &pt->auxtrace; 2557 2558 if (dump_trace) 2559 return 0; 2560 2561 if (pt->have_sched_switch == 1) { 2562 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 2563 if (!pt->switch_evsel) { 2564 pr_err("%s: missing sched_switch event\n", __func__); 2565 err = -EINVAL; 2566 goto err_delete_thread; 2567 } 2568 } else if (pt->have_sched_switch == 2 && 2569 !intel_pt_find_switch(session->evlist)) { 2570 pr_err("%s: missing context_switch attribute flag\n", __func__); 2571 err = -EINVAL; 2572 goto err_delete_thread; 2573 } 2574 2575 if (session->itrace_synth_opts && session->itrace_synth_opts->set) { 2576 pt->synth_opts = *session->itrace_synth_opts; 2577 } else { 2578 itrace_synth_opts__set_default(&pt->synth_opts, 2579 session->itrace_synth_opts->default_no_sample); 2580 if (use_browser != -1) { 2581 pt->synth_opts.branches = false; 2582 pt->synth_opts.callchain = true; 2583 } 2584 if (session->itrace_synth_opts) 2585 pt->synth_opts.thread_stack = 2586 session->itrace_synth_opts->thread_stack; 2587 } 2588 2589 if (pt->synth_opts.log) 2590 intel_pt_log_enable(); 2591 2592 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 2593 if (pt->tc.time_mult) { 2594 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 2595 2596 if (!pt->max_non_turbo_ratio) 2597 pt->max_non_turbo_ratio = 2598 (tsc_freq + 50000000) / 100000000; 2599 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 2600 intel_pt_log("Maximum non-turbo ratio %u\n", 2601 pt->max_non_turbo_ratio); 2602 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 2603 } 2604 2605 if (pt->synth_opts.calls) 2606 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 2607 PERF_IP_FLAG_TRACE_END; 2608 if (pt->synth_opts.returns) 2609 pt->branches_filter |= PERF_IP_FLAG_RETURN | 2610 PERF_IP_FLAG_TRACE_BEGIN; 2611 2612 if (pt->synth_opts.callchain && !symbol_conf.use_callchain) { 2613 symbol_conf.use_callchain = true; 2614 if (callchain_register_param(&callchain_param) < 0) { 2615 symbol_conf.use_callchain = false; 2616 pt->synth_opts.callchain = false; 2617 } 2618 } 2619 2620 err = intel_pt_synth_events(pt, session); 2621 if (err) 2622 goto err_delete_thread; 2623 2624 err = auxtrace_queues__process_index(&pt->queues, session); 2625 if (err) 2626 goto err_delete_thread; 2627 2628 if (pt->queues.populated) 2629 pt->data_queued = true; 2630 2631 if (pt->timeless_decoding) 2632 pr_debug2("Intel PT decoding without timestamps\n"); 2633 2634 return 0; 2635 2636 err_delete_thread: 2637 thread__zput(pt->unknown_thread); 2638 err_free_queues: 2639 intel_pt_log_disable(); 2640 auxtrace_queues__free(&pt->queues); 2641 session->auxtrace = NULL; 2642 err_free: 2643 addr_filters__exit(&pt->filts); 2644 zfree(&pt->filter); 2645 free(pt); 2646 return err; 2647 } 2648