xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 40d3b219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40 
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42 
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47 
48 #define MAX_TIMESTAMP (~0ULL)
49 
50 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
55 
56 struct range {
57 	u64 start;
58 	u64 end;
59 };
60 
61 struct intel_pt {
62 	struct auxtrace auxtrace;
63 	struct auxtrace_queues queues;
64 	struct auxtrace_heap heap;
65 	u32 auxtrace_type;
66 	struct perf_session *session;
67 	struct machine *machine;
68 	struct evsel *switch_evsel;
69 	struct thread *unknown_thread;
70 	bool timeless_decoding;
71 	bool sampling_mode;
72 	bool snapshot_mode;
73 	bool per_cpu_mmaps;
74 	bool have_tsc;
75 	bool data_queued;
76 	bool est_tsc;
77 	bool sync_switch;
78 	bool sync_switch_not_supported;
79 	bool mispred_all;
80 	bool use_thread_stack;
81 	bool callstack;
82 	bool cap_event_trace;
83 	bool have_guest_sideband;
84 	unsigned int br_stack_sz;
85 	unsigned int br_stack_sz_plus;
86 	int have_sched_switch;
87 	u32 pmu_type;
88 	u64 kernel_start;
89 	u64 switch_ip;
90 	u64 ptss_ip;
91 	u64 first_timestamp;
92 
93 	struct perf_tsc_conversion tc;
94 	bool cap_user_time_zero;
95 
96 	struct itrace_synth_opts synth_opts;
97 
98 	bool sample_instructions;
99 	u64 instructions_sample_type;
100 	u64 instructions_id;
101 
102 	bool sample_cycles;
103 	u64 cycles_sample_type;
104 	u64 cycles_id;
105 
106 	bool sample_branches;
107 	u32 branches_filter;
108 	u64 branches_sample_type;
109 	u64 branches_id;
110 
111 	bool sample_transactions;
112 	u64 transactions_sample_type;
113 	u64 transactions_id;
114 
115 	bool sample_ptwrites;
116 	u64 ptwrites_sample_type;
117 	u64 ptwrites_id;
118 
119 	bool sample_pwr_events;
120 	u64 pwr_events_sample_type;
121 	u64 mwait_id;
122 	u64 pwre_id;
123 	u64 exstop_id;
124 	u64 pwrx_id;
125 	u64 cbr_id;
126 	u64 psb_id;
127 
128 	bool single_pebs;
129 	bool sample_pebs;
130 	struct evsel *pebs_evsel;
131 
132 	u64 evt_sample_type;
133 	u64 evt_id;
134 
135 	u64 iflag_chg_sample_type;
136 	u64 iflag_chg_id;
137 
138 	u64 tsc_bit;
139 	u64 mtc_bit;
140 	u64 mtc_freq_bits;
141 	u32 tsc_ctc_ratio_n;
142 	u32 tsc_ctc_ratio_d;
143 	u64 cyc_bit;
144 	u64 noretcomp_bit;
145 	unsigned max_non_turbo_ratio;
146 	unsigned cbr2khz;
147 	int max_loops;
148 
149 	unsigned long num_events;
150 
151 	char *filter;
152 	struct addr_filters filts;
153 
154 	struct range *time_ranges;
155 	unsigned int range_cnt;
156 
157 	struct ip_callchain *chain;
158 	struct branch_stack *br_stack;
159 
160 	u64 dflt_tsc_offset;
161 	struct rb_root vmcs_info;
162 };
163 
164 enum switch_state {
165 	INTEL_PT_SS_NOT_TRACING,
166 	INTEL_PT_SS_UNKNOWN,
167 	INTEL_PT_SS_TRACING,
168 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171 
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174 
175 struct intel_pt_pebs_event {
176 	struct evsel *evsel;
177 	u64 id;
178 };
179 
180 struct intel_pt_queue {
181 	struct intel_pt *pt;
182 	unsigned int queue_nr;
183 	struct auxtrace_buffer *buffer;
184 	struct auxtrace_buffer *old_buffer;
185 	void *decoder;
186 	const struct intel_pt_state *state;
187 	struct ip_callchain *chain;
188 	struct branch_stack *last_branch;
189 	union perf_event *event_buf;
190 	bool on_heap;
191 	bool stop;
192 	bool step_through_buffers;
193 	bool use_buffer_pid_tid;
194 	bool sync_switch;
195 	bool sample_ipc;
196 	pid_t pid, tid;
197 	int cpu;
198 	int switch_state;
199 	pid_t next_tid;
200 	struct thread *thread;
201 	struct machine *guest_machine;
202 	struct thread *guest_thread;
203 	struct thread *unknown_guest_thread;
204 	pid_t guest_machine_pid;
205 	pid_t guest_pid;
206 	pid_t guest_tid;
207 	int vcpu;
208 	bool exclude_kernel;
209 	bool have_sample;
210 	u64 time;
211 	u64 timestamp;
212 	u64 sel_timestamp;
213 	bool sel_start;
214 	unsigned int sel_idx;
215 	u32 flags;
216 	u16 insn_len;
217 	u64 last_insn_cnt;
218 	u64 ipc_insn_cnt;
219 	u64 ipc_cyc_cnt;
220 	u64 last_in_insn_cnt;
221 	u64 last_in_cyc_cnt;
222 	u64 last_cy_insn_cnt;
223 	u64 last_cy_cyc_cnt;
224 	u64 last_br_insn_cnt;
225 	u64 last_br_cyc_cnt;
226 	unsigned int cbr_seen;
227 	char insn[INTEL_PT_INSN_BUF_SZ];
228 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230 
231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 			  unsigned char *buf, size_t len)
233 {
234 	struct intel_pt_pkt packet;
235 	size_t pos = 0;
236 	int ret, pkt_len, i;
237 	char desc[INTEL_PT_PKT_DESC_MAX];
238 	const char *color = PERF_COLOR_BLUE;
239 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240 
241 	color_fprintf(stdout, color,
242 		      ". ... Intel Processor Trace data: size %zu bytes\n",
243 		      len);
244 
245 	while (len) {
246 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 		if (ret > 0)
248 			pkt_len = ret;
249 		else
250 			pkt_len = 1;
251 		printf(".");
252 		color_fprintf(stdout, color, "  %08x: ", pos);
253 		for (i = 0; i < pkt_len; i++)
254 			color_fprintf(stdout, color, " %02x", buf[i]);
255 		for (; i < 16; i++)
256 			color_fprintf(stdout, color, "   ");
257 		if (ret > 0) {
258 			ret = intel_pt_pkt_desc(&packet, desc,
259 						INTEL_PT_PKT_DESC_MAX);
260 			if (ret > 0)
261 				color_fprintf(stdout, color, " %s\n", desc);
262 		} else {
263 			color_fprintf(stdout, color, " Bad packet!\n");
264 		}
265 		pos += pkt_len;
266 		buf += pkt_len;
267 		len -= pkt_len;
268 	}
269 }
270 
271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 				size_t len)
273 {
274 	printf(".\n");
275 	intel_pt_dump(pt, buf, len);
276 }
277 
278 static void intel_pt_log_event(union perf_event *event)
279 {
280 	FILE *f = intel_pt_log_fp();
281 
282 	if (!intel_pt_enable_logging || !f)
283 		return;
284 
285 	perf_event__fprintf(event, NULL, f);
286 }
287 
288 static void intel_pt_dump_sample(struct perf_session *session,
289 				 struct perf_sample *sample)
290 {
291 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 					   auxtrace);
293 
294 	printf("\n");
295 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297 
298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 	int n = pt->synth_opts.range_num;
302 
303 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 		return true;
305 
306 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 		return false;
308 
309 	/* perf_time__ranges_skip_sample does not work if time is zero */
310 	if (!tm)
311 		tm = 1;
312 
313 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315 
316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 							u64 vmcs,
318 							u64 dflt_tsc_offset)
319 {
320 	struct rb_node **p = &rb_root->rb_node;
321 	struct rb_node *parent = NULL;
322 	struct intel_pt_vmcs_info *v;
323 
324 	while (*p) {
325 		parent = *p;
326 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327 
328 		if (v->vmcs == vmcs)
329 			return v;
330 
331 		if (vmcs < v->vmcs)
332 			p = &(*p)->rb_left;
333 		else
334 			p = &(*p)->rb_right;
335 	}
336 
337 	v = zalloc(sizeof(*v));
338 	if (v) {
339 		v->vmcs = vmcs;
340 		v->tsc_offset = dflt_tsc_offset;
341 		v->reliable = dflt_tsc_offset;
342 
343 		rb_link_node(&v->rb_node, parent, p);
344 		rb_insert_color(&v->rb_node, rb_root);
345 	}
346 
347 	return v;
348 }
349 
350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 	struct intel_pt_queue *ptq = data;
353 	struct intel_pt *pt = ptq->pt;
354 
355 	if (!vmcs && !pt->dflt_tsc_offset)
356 		return NULL;
357 
358 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360 
361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 	struct intel_pt_vmcs_info *v;
364 	struct rb_node *n;
365 
366 	n = rb_first(&pt->vmcs_info);
367 	while (n) {
368 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 		n = rb_next(n);
370 		rb_erase(&v->rb_node, &pt->vmcs_info);
371 		free(v);
372 	}
373 }
374 
375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 				   struct auxtrace_buffer *b)
377 {
378 	bool consecutive = false;
379 	void *start;
380 
381 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 				      pt->have_tsc, &consecutive,
383 				      pt->synth_opts.vm_time_correlation);
384 	if (!start)
385 		return -EINVAL;
386 	/*
387 	 * In the case of vm_time_correlation, the overlap might contain TSC
388 	 * packets that will not be fixed, and that will then no longer work for
389 	 * overlap detection. Avoid that by zeroing out the overlap.
390 	 */
391 	if (pt->synth_opts.vm_time_correlation)
392 		memset(b->data, 0, start - b->data);
393 	b->use_size = b->data + b->size - start;
394 	b->use_data = start;
395 	if (b->use_size && consecutive)
396 		b->consecutive = true;
397 	return 0;
398 }
399 
400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 			       struct auxtrace_buffer *buffer,
402 			       struct auxtrace_buffer *old_buffer,
403 			       struct intel_pt_buffer *b)
404 {
405 	bool might_overlap;
406 
407 	if (!buffer->data) {
408 		int fd = perf_data__fd(ptq->pt->session->data);
409 
410 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 		if (!buffer->data)
412 			return -ENOMEM;
413 	}
414 
415 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 	if (might_overlap && !buffer->consecutive && old_buffer &&
417 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 		return -ENOMEM;
419 
420 	if (buffer->use_data) {
421 		b->len = buffer->use_size;
422 		b->buf = buffer->use_data;
423 	} else {
424 		b->len = buffer->size;
425 		b->buf = buffer->data;
426 	}
427 	b->ref_timestamp = buffer->reference;
428 
429 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 		b->consecutive = false;
431 		b->trace_nr = buffer->buffer_nr + 1;
432 	} else {
433 		b->consecutive = true;
434 	}
435 
436 	return 0;
437 }
438 
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 					   struct auxtrace_buffer *buffer)
442 {
443 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 		return;
445 
446 	auxtrace_buffer__drop_data(buffer);
447 }
448 
449 /* Must be serialized with respect to intel_pt_get_trace() */
450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 			      void *cb_data)
452 {
453 	struct intel_pt_queue *ptq = data;
454 	struct auxtrace_buffer *buffer = ptq->buffer;
455 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 	struct auxtrace_queue *queue;
457 	int err = 0;
458 
459 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460 
461 	while (1) {
462 		struct intel_pt_buffer b = { .len = 0 };
463 
464 		buffer = auxtrace_buffer__next(queue, buffer);
465 		if (!buffer)
466 			break;
467 
468 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 		if (err)
470 			break;
471 
472 		if (b.len) {
473 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 			old_buffer = buffer;
475 		} else {
476 			intel_pt_lookahead_drop_buffer(ptq, buffer);
477 			continue;
478 		}
479 
480 		err = cb(&b, cb_data);
481 		if (err)
482 			break;
483 	}
484 
485 	if (buffer != old_buffer)
486 		intel_pt_lookahead_drop_buffer(ptq, buffer);
487 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488 
489 	return err;
490 }
491 
492 /*
493  * This function assumes data is processed sequentially only.
494  * Must be serialized with respect to intel_pt_lookahead()
495  */
496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 	struct intel_pt_queue *ptq = data;
499 	struct auxtrace_buffer *buffer = ptq->buffer;
500 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 	struct auxtrace_queue *queue;
502 	int err;
503 
504 	if (ptq->stop) {
505 		b->len = 0;
506 		return 0;
507 	}
508 
509 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510 
511 	buffer = auxtrace_buffer__next(queue, buffer);
512 	if (!buffer) {
513 		if (old_buffer)
514 			auxtrace_buffer__drop_data(old_buffer);
515 		b->len = 0;
516 		return 0;
517 	}
518 
519 	ptq->buffer = buffer;
520 
521 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 	if (err)
523 		return err;
524 
525 	if (ptq->step_through_buffers)
526 		ptq->stop = true;
527 
528 	if (b->len) {
529 		if (old_buffer)
530 			auxtrace_buffer__drop_data(old_buffer);
531 		ptq->old_buffer = buffer;
532 	} else {
533 		auxtrace_buffer__drop_data(buffer);
534 		return intel_pt_get_trace(b, data);
535 	}
536 
537 	return 0;
538 }
539 
540 struct intel_pt_cache_entry {
541 	struct auxtrace_cache_entry	entry;
542 	u64				insn_cnt;
543 	u64				byte_cnt;
544 	enum intel_pt_insn_op		op;
545 	enum intel_pt_insn_branch	branch;
546 	bool				emulated_ptwrite;
547 	int				length;
548 	int32_t				rel;
549 	char				insn[INTEL_PT_INSN_BUF_SZ];
550 };
551 
552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 	int *d = data;
555 	long val;
556 
557 	if (!strcmp(var, "intel-pt.cache-divisor")) {
558 		val = strtol(value, NULL, 0);
559 		if (val > 0 && val <= INT_MAX)
560 			*d = val;
561 	}
562 
563 	return 0;
564 }
565 
566 static int intel_pt_cache_divisor(void)
567 {
568 	static int d;
569 
570 	if (d)
571 		return d;
572 
573 	perf_config(intel_pt_config_div, &d);
574 
575 	if (!d)
576 		d = 64;
577 
578 	return d;
579 }
580 
581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 					struct machine *machine)
583 {
584 	off_t size;
585 
586 	size = dso__data_size(dso, machine);
587 	size /= intel_pt_cache_divisor();
588 	if (size < 1000)
589 		return 10;
590 	if (size > (1 << 21))
591 		return 21;
592 	return 32 - __builtin_clz(size);
593 }
594 
595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 					     struct machine *machine)
597 {
598 	struct auxtrace_cache *c;
599 	unsigned int bits;
600 
601 	if (dso->auxtrace_cache)
602 		return dso->auxtrace_cache;
603 
604 	bits = intel_pt_cache_size(dso, machine);
605 
606 	/* Ignoring cache creation failure */
607 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608 
609 	dso->auxtrace_cache = c;
610 
611 	return c;
612 }
613 
614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
616 			      struct intel_pt_insn *intel_pt_insn)
617 {
618 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 	struct intel_pt_cache_entry *e;
620 	int err;
621 
622 	if (!c)
623 		return -ENOMEM;
624 
625 	e = auxtrace_cache__alloc_entry(c);
626 	if (!e)
627 		return -ENOMEM;
628 
629 	e->insn_cnt = insn_cnt;
630 	e->byte_cnt = byte_cnt;
631 	e->op = intel_pt_insn->op;
632 	e->branch = intel_pt_insn->branch;
633 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 	e->length = intel_pt_insn->length;
635 	e->rel = intel_pt_insn->rel;
636 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637 
638 	err = auxtrace_cache__add(c, offset, &e->entry);
639 	if (err)
640 		auxtrace_cache__free_entry(c, e);
641 
642 	return err;
643 }
644 
645 static struct intel_pt_cache_entry *
646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649 
650 	if (!c)
651 		return NULL;
652 
653 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654 }
655 
656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 				      u64 offset)
658 {
659 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660 
661 	if (!c)
662 		return;
663 
664 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
665 }
666 
667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 	/* Assumes 64-bit kernel */
670 	return ip & (1ULL << 63);
671 }
672 
673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 	if (nr) {
676 		return intel_pt_guest_kernel_ip(ip) ?
677 		       PERF_RECORD_MISC_GUEST_KERNEL :
678 		       PERF_RECORD_MISC_GUEST_USER;
679 	}
680 
681 	return ip >= ptq->pt->kernel_start ?
682 	       PERF_RECORD_MISC_KERNEL :
683 	       PERF_RECORD_MISC_USER;
684 }
685 
686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 	/* No support for non-zero CS base */
689 	if (from_ip)
690 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693 
694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 	struct machines *machines = &ptq->pt->session->machines;
697 	struct machine *machine;
698 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699 
700 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 		return 0;
702 
703 	ptq->guest_machine = NULL;
704 	thread__zput(ptq->unknown_guest_thread);
705 
706 	if (symbol_conf.guest_code) {
707 		thread__zput(ptq->guest_thread);
708 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 	}
710 
711 	machine = machines__find_guest(machines, pid);
712 	if (!machine)
713 		return -1;
714 
715 	ptq->unknown_guest_thread = machine__idle_thread(machine);
716 	if (!ptq->unknown_guest_thread)
717 		return -1;
718 
719 	ptq->guest_machine = machine;
720 
721 	return 0;
722 }
723 
724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728 
729 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
730 #define PTWRITE_MAGIC_LEN	16
731 
732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 	unsigned char buf[PTWRITE_MAGIC_LEN];
735 	ssize_t len;
736 
737 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 		intel_pt_log("Emulated ptwrite signature found\n");
740 		return true;
741 	}
742 	intel_pt_log("Emulated ptwrite signature not found\n");
743 	return false;
744 }
745 
746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
748 				   uint64_t to_ip, uint64_t max_insn_cnt,
749 				   void *data)
750 {
751 	struct intel_pt_queue *ptq = data;
752 	struct machine *machine = ptq->pt->machine;
753 	struct thread *thread;
754 	struct addr_location al;
755 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 	ssize_t len;
757 	int x86_64, ret = 0;
758 	u8 cpumode;
759 	u64 offset, start_offset, start_ip;
760 	u64 insn_cnt = 0;
761 	bool one_map = true;
762 	bool nr;
763 
764 
765 	addr_location__init(&al);
766 	intel_pt_insn->length = 0;
767 	intel_pt_insn->op = INTEL_PT_OP_OTHER;
768 
769 	if (to_ip && *ip == to_ip)
770 		goto out_no_cache;
771 
772 	nr = ptq->state->to_nr;
773 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774 
775 	if (nr) {
776 		if (ptq->pt->have_guest_sideband) {
777 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
779 				ret = -EINVAL;
780 				goto out_ret;
781 			}
782 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783 			   intel_pt_get_guest(ptq)) {
784 			intel_pt_log("ERROR: no guest machine\n");
785 			ret = -EINVAL;
786 			goto out_ret;
787 		}
788 		machine = ptq->guest_machine;
789 		thread = ptq->guest_thread;
790 		if (!thread) {
791 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792 				intel_pt_log("ERROR: no guest thread\n");
793 				ret = -EINVAL;
794 				goto out_ret;
795 			}
796 			thread = ptq->unknown_guest_thread;
797 		}
798 	} else {
799 		thread = ptq->thread;
800 		if (!thread) {
801 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
802 				intel_pt_log("ERROR: no thread\n");
803 				ret = -EINVAL;
804 				goto out_ret;
805 			}
806 			thread = ptq->pt->unknown_thread;
807 		}
808 	}
809 
810 	while (1) {
811 		struct dso *dso;
812 
813 		if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814 			if (al.map)
815 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816 			else
817 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818 			addr_location__exit(&al);
819 			ret = -EINVAL;
820 			goto out_ret;
821 		}
822 		dso = map__dso(al.map);
823 
824 		if (dso->data.status == DSO_DATA_STATUS_ERROR &&
825 			dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826 			ret = -ENOENT;
827 			goto out_ret;
828 		}
829 
830 		offset = map__map_ip(al.map, *ip);
831 
832 		if (!to_ip && one_map) {
833 			struct intel_pt_cache_entry *e;
834 
835 			e = intel_pt_cache_lookup(dso, machine, offset);
836 			if (e &&
837 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838 				*insn_cnt_ptr = e->insn_cnt;
839 				*ip += e->byte_cnt;
840 				intel_pt_insn->op = e->op;
841 				intel_pt_insn->branch = e->branch;
842 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843 				intel_pt_insn->length = e->length;
844 				intel_pt_insn->rel = e->rel;
845 				memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847 				ret = 0;
848 				goto out_ret;
849 			}
850 		}
851 
852 		start_offset = offset;
853 		start_ip = *ip;
854 
855 		/* Load maps to ensure dso->is_64_bit has been updated */
856 		map__load(al.map);
857 
858 		x86_64 = dso->is_64_bit;
859 
860 		while (1) {
861 			len = dso__data_read_offset(dso, machine,
862 						    offset, buf,
863 						    INTEL_PT_INSN_BUF_SZ);
864 			if (len <= 0) {
865 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866 					     offset);
867 				if (intel_pt_enable_logging)
868 					dso__fprintf(dso, intel_pt_log_fp());
869 				ret = -EINVAL;
870 				goto out_ret;
871 			}
872 
873 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874 				ret = -EINVAL;
875 				goto out_ret;
876 			}
877 
878 			intel_pt_log_insn(intel_pt_insn, *ip);
879 
880 			insn_cnt += 1;
881 
882 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883 				bool eptw;
884 				u64 offs;
885 
886 				if (!intel_pt_jmp_16(intel_pt_insn))
887 					goto out;
888 				/* Check for emulated ptwrite */
889 				offs = offset + intel_pt_insn->length;
890 				eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891 				intel_pt_insn->emulated_ptwrite = eptw;
892 				goto out;
893 			}
894 
895 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896 				goto out_no_cache;
897 
898 			*ip += intel_pt_insn->length;
899 
900 			if (to_ip && *ip == to_ip) {
901 				intel_pt_insn->length = 0;
902 				intel_pt_insn->op = INTEL_PT_OP_OTHER;
903 				goto out_no_cache;
904 			}
905 
906 			if (*ip >= map__end(al.map))
907 				break;
908 
909 			offset += intel_pt_insn->length;
910 		}
911 		one_map = false;
912 	}
913 out:
914 	*insn_cnt_ptr = insn_cnt;
915 
916 	if (!one_map)
917 		goto out_no_cache;
918 
919 	/*
920 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921 	 * entries.
922 	 */
923 	if (to_ip) {
924 		struct intel_pt_cache_entry *e;
925 
926 		e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927 		if (e)
928 			goto out_ret;
929 	}
930 
931 	/* Ignore cache errors */
932 	intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933 			   *ip - start_ip, intel_pt_insn);
934 
935 out_ret:
936 	addr_location__exit(&al);
937 	return ret;
938 
939 out_no_cache:
940 	*insn_cnt_ptr = insn_cnt;
941 	addr_location__exit(&al);
942 	return 0;
943 }
944 
945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946 				  uint64_t offset, const char *filename)
947 {
948 	struct addr_filter *filt;
949 	bool have_filter   = false;
950 	bool hit_tracestop = false;
951 	bool hit_filter    = false;
952 
953 	list_for_each_entry(filt, &pt->filts.head, list) {
954 		if (filt->start)
955 			have_filter = true;
956 
957 		if ((filename && !filt->filename) ||
958 		    (!filename && filt->filename) ||
959 		    (filename && strcmp(filename, filt->filename)))
960 			continue;
961 
962 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963 			continue;
964 
965 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966 			     ip, offset, filename ? filename : "[kernel]",
967 			     filt->start ? "filter" : "stop",
968 			     filt->addr, filt->size);
969 
970 		if (filt->start)
971 			hit_filter = true;
972 		else
973 			hit_tracestop = true;
974 	}
975 
976 	if (!hit_tracestop && !hit_filter)
977 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978 			     ip, offset, filename ? filename : "[kernel]");
979 
980 	return hit_tracestop || (have_filter && !hit_filter);
981 }
982 
983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985 	struct intel_pt_queue *ptq = data;
986 	struct thread *thread;
987 	struct addr_location al;
988 	u8 cpumode;
989 	u64 offset;
990 	int res;
991 
992 	if (ptq->state->to_nr) {
993 		if (intel_pt_guest_kernel_ip(ip))
994 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995 		/* No support for decoding guest user space */
996 		return -EINVAL;
997 	} else if (ip >= ptq->pt->kernel_start) {
998 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999 	}
1000 
1001 	cpumode = PERF_RECORD_MISC_USER;
1002 
1003 	thread = ptq->thread;
1004 	if (!thread)
1005 		return -EINVAL;
1006 
1007 	addr_location__init(&al);
1008 	if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009 		return -EINVAL;
1010 
1011 	offset = map__map_ip(al.map, ip);
1012 
1013 	res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1014 	addr_location__exit(&al);
1015 	return res;
1016 }
1017 
1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020 	return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022 
1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024 				struct perf_event_attr *attr, u64 *config)
1025 {
1026 	if (attr->type == pt->pmu_type) {
1027 		if (config)
1028 			*config = attr->config;
1029 		return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037 	struct evsel *evsel;
1038 
1039 	evlist__for_each_entry(pt->session->evlist, evsel) {
1040 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041 		    !evsel->core.attr.exclude_kernel)
1042 			return false;
1043 	}
1044 	return true;
1045 }
1046 
1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049 	struct evsel *evsel;
1050 	u64 config;
1051 
1052 	if (!pt->noretcomp_bit)
1053 		return true;
1054 
1055 	evlist__for_each_entry(pt->session->evlist, evsel) {
1056 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057 		    (config & pt->noretcomp_bit))
1058 			return false;
1059 	}
1060 	return true;
1061 }
1062 
1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065 	struct evsel *evsel;
1066 	u64 config;
1067 
1068 	evlist__for_each_entry(pt->session->evlist, evsel) {
1069 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1071 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1072 			return false;
1073 	}
1074 	return true;
1075 }
1076 
1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079 	struct evsel *evsel;
1080 	u64 config;
1081 
1082 	evlist__for_each_entry(pt->session->evlist, evsel) {
1083 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084 		    config & INTEL_PT_CFG_TNT_DIS)
1085 			return true;
1086 	}
1087 	return false;
1088 }
1089 
1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092 	struct evsel *evsel;
1093 	unsigned int shift;
1094 	u64 config;
1095 
1096 	if (!pt->mtc_freq_bits)
1097 		return 0;
1098 
1099 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100 		config >>= 1;
1101 
1102 	evlist__for_each_entry(pt->session->evlist, evsel) {
1103 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104 			return (config & pt->mtc_freq_bits) >> shift;
1105 	}
1106 	return 0;
1107 }
1108 
1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111 	struct evsel *evsel;
1112 	bool timeless_decoding = true;
1113 	u64 config;
1114 
1115 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116 		return true;
1117 
1118 	evlist__for_each_entry(pt->session->evlist, evsel) {
1119 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120 			return true;
1121 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122 			if (config & pt->tsc_bit)
1123 				timeless_decoding = false;
1124 			else
1125 				return true;
1126 		}
1127 	}
1128 	return timeless_decoding;
1129 }
1130 
1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133 	struct evsel *evsel;
1134 
1135 	evlist__for_each_entry(pt->session->evlist, evsel) {
1136 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137 		    !evsel->core.attr.exclude_kernel)
1138 			return true;
1139 	}
1140 	return false;
1141 }
1142 
1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145 	struct evsel *evsel;
1146 	bool have_tsc = false;
1147 	u64 config;
1148 
1149 	if (!pt->tsc_bit)
1150 		return false;
1151 
1152 	evlist__for_each_entry(pt->session->evlist, evsel) {
1153 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154 			if (config & pt->tsc_bit)
1155 				have_tsc = true;
1156 			else
1157 				return false;
1158 		}
1159 	}
1160 	return have_tsc;
1161 }
1162 
1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165 	struct evsel *evsel;
1166 	u64 config;
1167 
1168 	evlist__for_each_entry(pt->session->evlist, evsel) {
1169 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170 		    (config & pt->mtc_bit))
1171 			return true;
1172 	}
1173 	return false;
1174 }
1175 
1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178 	struct evsel *evsel;
1179 
1180 	evlist__for_each_entry(pt->session->evlist, evsel) {
1181 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182 		    evsel->core.attr.aux_sample_size)
1183 			return true;
1184 	}
1185 	return false;
1186 }
1187 
1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190 	struct evsel *evsel;
1191 	u64 config;
1192 
1193 	evlist__for_each_entry(pt->session->evlist, evsel) {
1194 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195 			return config;
1196 	}
1197 	return 0;
1198 }
1199 
1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202 	u64 quot, rem;
1203 
1204 	quot = ns / pt->tc.time_mult;
1205 	rem  = ns % pt->tc.time_mult;
1206 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207 		pt->tc.time_mult;
1208 }
1209 
1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212 	size_t sz = sizeof(struct ip_callchain);
1213 
1214 	/* Add 1 to callchain_sz for callchain context */
1215 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216 	return zalloc(sz);
1217 }
1218 
1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221 	struct evsel *evsel;
1222 
1223 	evlist__for_each_entry(pt->session->evlist, evsel) {
1224 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226 	}
1227 
1228 	pt->chain = intel_pt_alloc_chain(pt);
1229 	if (!pt->chain)
1230 		return -ENOMEM;
1231 
1232 	return 0;
1233 }
1234 
1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236 				   struct perf_sample *sample)
1237 {
1238 	struct thread *thread = machine__findnew_thread(pt->machine,
1239 							sample->pid,
1240 							sample->tid);
1241 
1242 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1244 				  pt->kernel_start);
1245 
1246 	sample->callchain = pt->chain;
1247 }
1248 
1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251 	size_t sz = sizeof(struct branch_stack);
1252 
1253 	sz += entry_cnt * sizeof(struct branch_entry);
1254 	return zalloc(sz);
1255 }
1256 
1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259 	struct evsel *evsel;
1260 
1261 	evlist__for_each_entry(pt->session->evlist, evsel) {
1262 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264 	}
1265 
1266 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267 	if (!pt->br_stack)
1268 		return -ENOMEM;
1269 
1270 	return 0;
1271 }
1272 
1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274 				  struct perf_sample *sample)
1275 {
1276 	struct thread *thread = machine__findnew_thread(pt->machine,
1277 							sample->pid,
1278 							sample->tid);
1279 
1280 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281 				     pt->br_stack_sz, sample->ip,
1282 				     pt->kernel_start);
1283 
1284 	sample->branch_stack = pt->br_stack;
1285 	thread__put(thread);
1286 }
1287 
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290 
1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292 						   unsigned int queue_nr)
1293 {
1294 	struct intel_pt_params params = { .get_trace = 0, };
1295 	struct perf_env *env = pt->machine->env;
1296 	struct intel_pt_queue *ptq;
1297 
1298 	ptq = zalloc(sizeof(struct intel_pt_queue));
1299 	if (!ptq)
1300 		return NULL;
1301 
1302 	if (pt->synth_opts.callchain) {
1303 		ptq->chain = intel_pt_alloc_chain(pt);
1304 		if (!ptq->chain)
1305 			goto out_free;
1306 	}
1307 
1308 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310 
1311 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312 		if (!ptq->last_branch)
1313 			goto out_free;
1314 	}
1315 
1316 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317 	if (!ptq->event_buf)
1318 		goto out_free;
1319 
1320 	ptq->pt = pt;
1321 	ptq->queue_nr = queue_nr;
1322 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323 	ptq->pid = -1;
1324 	ptq->tid = -1;
1325 	ptq->cpu = -1;
1326 	ptq->next_tid = -1;
1327 
1328 	params.get_trace = intel_pt_get_trace;
1329 	params.walk_insn = intel_pt_walk_next_insn;
1330 	params.lookahead = intel_pt_lookahead;
1331 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332 	params.data = ptq;
1333 	params.return_compression = intel_pt_return_compression(pt);
1334 	params.branch_enable = intel_pt_branch_enable(pt);
1335 	params.ctl = intel_pt_ctl(pt);
1336 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337 	params.mtc_period = intel_pt_mtc_period(pt);
1338 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340 	params.quick = pt->synth_opts.quick;
1341 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343 	params.first_timestamp = pt->first_timestamp;
1344 	params.max_loops = pt->max_loops;
1345 
1346 	/* Cannot walk code without TNT, so force 'quick' mode */
1347 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348 		params.quick = 1;
1349 
1350 	if (pt->filts.cnt > 0)
1351 		params.pgd_ip = intel_pt_pgd_ip;
1352 
1353 	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354 		if (pt->synth_opts.period) {
1355 			switch (pt->synth_opts.period_type) {
1356 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357 				params.period_type =
1358 						INTEL_PT_PERIOD_INSTRUCTIONS;
1359 				params.period = pt->synth_opts.period;
1360 				break;
1361 			case PERF_ITRACE_PERIOD_TICKS:
1362 				params.period_type = INTEL_PT_PERIOD_TICKS;
1363 				params.period = pt->synth_opts.period;
1364 				break;
1365 			case PERF_ITRACE_PERIOD_NANOSECS:
1366 				params.period_type = INTEL_PT_PERIOD_TICKS;
1367 				params.period = intel_pt_ns_to_ticks(pt,
1368 							pt->synth_opts.period);
1369 				break;
1370 			default:
1371 				break;
1372 			}
1373 		}
1374 
1375 		if (!params.period) {
1376 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377 			params.period = 1;
1378 		}
1379 	}
1380 
1381 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383 
1384 	ptq->decoder = intel_pt_decoder_new(&params);
1385 	if (!ptq->decoder)
1386 		goto out_free;
1387 
1388 	return ptq;
1389 
1390 out_free:
1391 	zfree(&ptq->event_buf);
1392 	zfree(&ptq->last_branch);
1393 	zfree(&ptq->chain);
1394 	free(ptq);
1395 	return NULL;
1396 }
1397 
1398 static void intel_pt_free_queue(void *priv)
1399 {
1400 	struct intel_pt_queue *ptq = priv;
1401 
1402 	if (!ptq)
1403 		return;
1404 	thread__zput(ptq->thread);
1405 	thread__zput(ptq->guest_thread);
1406 	thread__zput(ptq->unknown_guest_thread);
1407 	intel_pt_decoder_free(ptq->decoder);
1408 	zfree(&ptq->event_buf);
1409 	zfree(&ptq->last_branch);
1410 	zfree(&ptq->chain);
1411 	free(ptq);
1412 }
1413 
1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416 	unsigned int i;
1417 
1418 	pt->first_timestamp = timestamp;
1419 
1420 	for (i = 0; i < pt->queues.nr_queues; i++) {
1421 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422 		struct intel_pt_queue *ptq = queue->priv;
1423 
1424 		if (ptq && ptq->decoder)
1425 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426 	}
1427 }
1428 
1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431 	struct machines *machines = &ptq->pt->session->machines;
1432 	struct machine *machine;
1433 	pid_t machine_pid = ptq->pid;
1434 	pid_t tid;
1435 	int vcpu;
1436 
1437 	if (machine_pid <= 0)
1438 		return 0; /* Not a guest machine */
1439 
1440 	machine = machines__find(machines, machine_pid);
1441 	if (!machine)
1442 		return 0; /* Not a guest machine */
1443 
1444 	if (ptq->guest_machine != machine) {
1445 		ptq->guest_machine = NULL;
1446 		thread__zput(ptq->guest_thread);
1447 		thread__zput(ptq->unknown_guest_thread);
1448 
1449 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450 		if (!ptq->unknown_guest_thread)
1451 			return -1;
1452 		ptq->guest_machine = machine;
1453 	}
1454 
1455 	vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456 	if (vcpu < 0)
1457 		return -1;
1458 
1459 	tid = machine__get_current_tid(machine, vcpu);
1460 
1461 	if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462 		thread__zput(ptq->guest_thread);
1463 
1464 	if (!ptq->guest_thread) {
1465 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466 		if (!ptq->guest_thread)
1467 			return -1;
1468 	}
1469 
1470 	ptq->guest_machine_pid = machine_pid;
1471 	ptq->guest_pid = thread__pid(ptq->guest_thread);
1472 	ptq->guest_tid = tid;
1473 	ptq->vcpu = vcpu;
1474 
1475 	return 0;
1476 }
1477 
1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479 				     struct auxtrace_queue *queue)
1480 {
1481 	struct intel_pt_queue *ptq = queue->priv;
1482 
1483 	if (queue->tid == -1 || pt->have_sched_switch) {
1484 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485 		if (ptq->tid == -1)
1486 			ptq->pid = -1;
1487 		thread__zput(ptq->thread);
1488 	}
1489 
1490 	if (!ptq->thread && ptq->tid != -1)
1491 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492 
1493 	if (ptq->thread) {
1494 		ptq->pid = thread__pid(ptq->thread);
1495 		if (queue->cpu == -1)
1496 			ptq->cpu = thread__cpu(ptq->thread);
1497 	}
1498 
1499 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500 		ptq->guest_machine_pid = 0;
1501 		ptq->guest_pid = -1;
1502 		ptq->guest_tid = -1;
1503 		ptq->vcpu = -1;
1504 	}
1505 }
1506 
1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509 	struct intel_pt *pt = ptq->pt;
1510 
1511 	ptq->insn_len = 0;
1512 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515 		if (!ptq->state->to_ip)
1516 			ptq->flags = PERF_IP_FLAG_BRANCH |
1517 				     PERF_IP_FLAG_ASYNC |
1518 				     PERF_IP_FLAG_TRACE_END;
1519 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1520 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521 				     PERF_IP_FLAG_ASYNC |
1522 				     PERF_IP_FLAG_VMEXIT;
1523 		else
1524 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525 				     PERF_IP_FLAG_ASYNC |
1526 				     PERF_IP_FLAG_INTERRUPT;
1527 	} else {
1528 		if (ptq->state->from_ip)
1529 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530 		else
1531 			ptq->flags = PERF_IP_FLAG_BRANCH |
1532 				     PERF_IP_FLAG_TRACE_BEGIN;
1533 		if (ptq->state->flags & INTEL_PT_IN_TX)
1534 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1535 		ptq->insn_len = ptq->state->insn_len;
1536 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537 	}
1538 
1539 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541 	if (ptq->state->type & INTEL_PT_TRACE_END)
1542 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543 
1544 	if (pt->cap_event_trace) {
1545 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546 			if (!ptq->state->from_iflag)
1547 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1549 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550 		} else if (!ptq->state->to_iflag) {
1551 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552 		}
1553 	}
1554 }
1555 
1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557 				      struct intel_pt_queue *ptq)
1558 {
1559 	if (!pt->range_cnt)
1560 		return;
1561 
1562 	ptq->sel_timestamp = pt->time_ranges[0].start;
1563 	ptq->sel_idx = 0;
1564 
1565 	if (ptq->sel_timestamp) {
1566 		ptq->sel_start = true;
1567 	} else {
1568 		ptq->sel_timestamp = pt->time_ranges[0].end;
1569 		ptq->sel_start = false;
1570 	}
1571 }
1572 
1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574 				struct auxtrace_queue *queue,
1575 				unsigned int queue_nr)
1576 {
1577 	struct intel_pt_queue *ptq = queue->priv;
1578 
1579 	if (list_empty(&queue->head))
1580 		return 0;
1581 
1582 	if (!ptq) {
1583 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1584 		if (!ptq)
1585 			return -ENOMEM;
1586 		queue->priv = ptq;
1587 
1588 		if (queue->cpu != -1)
1589 			ptq->cpu = queue->cpu;
1590 		ptq->tid = queue->tid;
1591 
1592 		ptq->cbr_seen = UINT_MAX;
1593 
1594 		if (pt->sampling_mode && !pt->snapshot_mode &&
1595 		    pt->timeless_decoding)
1596 			ptq->step_through_buffers = true;
1597 
1598 		ptq->sync_switch = pt->sync_switch;
1599 
1600 		intel_pt_setup_time_range(pt, ptq);
1601 	}
1602 
1603 	if (!ptq->on_heap &&
1604 	    (!ptq->sync_switch ||
1605 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606 		const struct intel_pt_state *state;
1607 		int ret;
1608 
1609 		if (pt->timeless_decoding)
1610 			return 0;
1611 
1612 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615 
1616 		if (ptq->sel_start && ptq->sel_timestamp) {
1617 			ret = intel_pt_fast_forward(ptq->decoder,
1618 						    ptq->sel_timestamp);
1619 			if (ret)
1620 				return ret;
1621 		}
1622 
1623 		while (1) {
1624 			state = intel_pt_decode(ptq->decoder);
1625 			if (state->err) {
1626 				if (state->err == INTEL_PT_ERR_NODATA) {
1627 					intel_pt_log("queue %u has no timestamp\n",
1628 						     queue_nr);
1629 					return 0;
1630 				}
1631 				continue;
1632 			}
1633 			if (state->timestamp)
1634 				break;
1635 		}
1636 
1637 		ptq->timestamp = state->timestamp;
1638 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639 			     queue_nr, ptq->timestamp);
1640 		ptq->state = state;
1641 		ptq->have_sample = true;
1642 		if (ptq->sel_start && ptq->sel_timestamp &&
1643 		    ptq->timestamp < ptq->sel_timestamp)
1644 			ptq->have_sample = false;
1645 		intel_pt_sample_flags(ptq);
1646 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647 		if (ret)
1648 			return ret;
1649 		ptq->on_heap = true;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657 	unsigned int i;
1658 	int ret;
1659 
1660 	for (i = 0; i < pt->queues.nr_queues; i++) {
1661 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662 		if (ret)
1663 			return ret;
1664 	}
1665 	return 0;
1666 }
1667 
1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670 	return pt->synth_opts.initial_skip &&
1671 	       pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673 
1674 /*
1675  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677  * from this decoder state.
1678  */
1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681 	return pt->synth_opts.initial_skip &&
1682 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684 
1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686 				   union perf_event *event,
1687 				   struct perf_sample *sample)
1688 {
1689 	event->sample.header.type = PERF_RECORD_SAMPLE;
1690 	event->sample.header.size = sizeof(struct perf_event_header);
1691 
1692 	sample->pid = ptq->pid;
1693 	sample->tid = ptq->tid;
1694 
1695 	if (ptq->pt->have_guest_sideband) {
1696 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1698 			sample->pid = ptq->guest_pid;
1699 			sample->tid = ptq->guest_tid;
1700 			sample->machine_pid = ptq->guest_machine_pid;
1701 			sample->vcpu = ptq->vcpu;
1702 		}
1703 	}
1704 
1705 	sample->cpu = ptq->cpu;
1706 	sample->insn_len = ptq->insn_len;
1707 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709 
1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711 				   struct intel_pt_queue *ptq,
1712 				   union perf_event *event,
1713 				   struct perf_sample *sample)
1714 {
1715 	intel_pt_prep_a_sample(ptq, event, sample);
1716 
1717 	if (!pt->timeless_decoding)
1718 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719 
1720 	sample->ip = ptq->state->from_ip;
1721 	sample->addr = ptq->state->to_ip;
1722 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723 	sample->period = 1;
1724 	sample->flags = ptq->flags;
1725 
1726 	event->sample.header.misc = sample->cpumode;
1727 }
1728 
1729 static int intel_pt_inject_event(union perf_event *event,
1730 				 struct perf_sample *sample, u64 type)
1731 {
1732 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1733 	return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735 
1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737 				      union perf_event *event,
1738 				      struct perf_sample *sample, u64 type)
1739 {
1740 	if (!pt->synth_opts.inject)
1741 		return 0;
1742 
1743 	return intel_pt_inject_event(event, sample, type);
1744 }
1745 
1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747 					union perf_event *event,
1748 					struct perf_sample *sample, u64 type)
1749 {
1750 	int ret;
1751 
1752 	ret = intel_pt_opt_inject(pt, event, sample, type);
1753 	if (ret)
1754 		return ret;
1755 
1756 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757 	if (ret)
1758 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759 
1760 	return ret;
1761 }
1762 
1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765 	struct intel_pt *pt = ptq->pt;
1766 	union perf_event *event = ptq->event_buf;
1767 	struct perf_sample sample = { .ip = 0, };
1768 	struct dummy_branch_stack {
1769 		u64			nr;
1770 		u64			hw_idx;
1771 		struct branch_entry	entries;
1772 	} dummy_bs;
1773 
1774 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1775 		return 0;
1776 
1777 	if (intel_pt_skip_event(pt))
1778 		return 0;
1779 
1780 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1781 
1782 	sample.id = ptq->pt->branches_id;
1783 	sample.stream_id = ptq->pt->branches_id;
1784 
1785 	/*
1786 	 * perf report cannot handle events without a branch stack when using
1787 	 * SORT_MODE__BRANCH so make a dummy one.
1788 	 */
1789 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1790 		dummy_bs = (struct dummy_branch_stack){
1791 			.nr = 1,
1792 			.hw_idx = -1ULL,
1793 			.entries = {
1794 				.from = sample.ip,
1795 				.to = sample.addr,
1796 			},
1797 		};
1798 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1799 	}
1800 
1801 	if (ptq->sample_ipc)
1802 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1803 	if (sample.cyc_cnt) {
1804 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1805 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1806 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1807 	}
1808 
1809 	return intel_pt_deliver_synth_event(pt, event, &sample,
1810 					    pt->branches_sample_type);
1811 }
1812 
1813 static void intel_pt_prep_sample(struct intel_pt *pt,
1814 				 struct intel_pt_queue *ptq,
1815 				 union perf_event *event,
1816 				 struct perf_sample *sample)
1817 {
1818 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1819 
1820 	if (pt->synth_opts.callchain) {
1821 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1822 				     pt->synth_opts.callchain_sz + 1,
1823 				     sample->ip, pt->kernel_start);
1824 		sample->callchain = ptq->chain;
1825 	}
1826 
1827 	if (pt->synth_opts.last_branch) {
1828 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1829 					pt->br_stack_sz);
1830 		sample->branch_stack = ptq->last_branch;
1831 	}
1832 }
1833 
1834 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1835 {
1836 	struct intel_pt *pt = ptq->pt;
1837 	union perf_event *event = ptq->event_buf;
1838 	struct perf_sample sample = { .ip = 0, };
1839 
1840 	if (intel_pt_skip_event(pt))
1841 		return 0;
1842 
1843 	intel_pt_prep_sample(pt, ptq, event, &sample);
1844 
1845 	sample.id = ptq->pt->instructions_id;
1846 	sample.stream_id = ptq->pt->instructions_id;
1847 	if (pt->synth_opts.quick)
1848 		sample.period = 1;
1849 	else
1850 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1851 
1852 	if (ptq->sample_ipc)
1853 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1854 	if (sample.cyc_cnt) {
1855 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1856 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1857 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1858 	}
1859 
1860 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1861 
1862 	return intel_pt_deliver_synth_event(pt, event, &sample,
1863 					    pt->instructions_sample_type);
1864 }
1865 
1866 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1867 {
1868 	struct intel_pt *pt = ptq->pt;
1869 	union perf_event *event = ptq->event_buf;
1870 	struct perf_sample sample = { .ip = 0, };
1871 	u64 period = 0;
1872 
1873 	if (ptq->sample_ipc)
1874 		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1875 
1876 	if (!period || intel_pt_skip_event(pt))
1877 		return 0;
1878 
1879 	intel_pt_prep_sample(pt, ptq, event, &sample);
1880 
1881 	sample.id = ptq->pt->cycles_id;
1882 	sample.stream_id = ptq->pt->cycles_id;
1883 	sample.period = period;
1884 
1885 	sample.cyc_cnt = period;
1886 	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1887 	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1888 	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1889 
1890 	return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1891 }
1892 
1893 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1894 {
1895 	struct intel_pt *pt = ptq->pt;
1896 	union perf_event *event = ptq->event_buf;
1897 	struct perf_sample sample = { .ip = 0, };
1898 
1899 	if (intel_pt_skip_event(pt))
1900 		return 0;
1901 
1902 	intel_pt_prep_sample(pt, ptq, event, &sample);
1903 
1904 	sample.id = ptq->pt->transactions_id;
1905 	sample.stream_id = ptq->pt->transactions_id;
1906 
1907 	return intel_pt_deliver_synth_event(pt, event, &sample,
1908 					    pt->transactions_sample_type);
1909 }
1910 
1911 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1912 				   struct intel_pt_queue *ptq,
1913 				   union perf_event *event,
1914 				   struct perf_sample *sample)
1915 {
1916 	intel_pt_prep_sample(pt, ptq, event, sample);
1917 
1918 	/*
1919 	 * Zero IP is used to mean "trace start" but that is not the case for
1920 	 * power or PTWRITE events with no IP, so clear the flags.
1921 	 */
1922 	if (!sample->ip)
1923 		sample->flags = 0;
1924 }
1925 
1926 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1927 {
1928 	struct intel_pt *pt = ptq->pt;
1929 	union perf_event *event = ptq->event_buf;
1930 	struct perf_sample sample = { .ip = 0, };
1931 	struct perf_synth_intel_ptwrite raw;
1932 
1933 	if (intel_pt_skip_event(pt))
1934 		return 0;
1935 
1936 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1937 
1938 	sample.id = ptq->pt->ptwrites_id;
1939 	sample.stream_id = ptq->pt->ptwrites_id;
1940 
1941 	raw.flags = 0;
1942 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1943 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1944 
1945 	sample.raw_size = perf_synth__raw_size(raw);
1946 	sample.raw_data = perf_synth__raw_data(&raw);
1947 
1948 	return intel_pt_deliver_synth_event(pt, event, &sample,
1949 					    pt->ptwrites_sample_type);
1950 }
1951 
1952 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1953 {
1954 	struct intel_pt *pt = ptq->pt;
1955 	union perf_event *event = ptq->event_buf;
1956 	struct perf_sample sample = { .ip = 0, };
1957 	struct perf_synth_intel_cbr raw;
1958 	u32 flags;
1959 
1960 	if (intel_pt_skip_cbr_event(pt))
1961 		return 0;
1962 
1963 	ptq->cbr_seen = ptq->state->cbr;
1964 
1965 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1966 
1967 	sample.id = ptq->pt->cbr_id;
1968 	sample.stream_id = ptq->pt->cbr_id;
1969 
1970 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1971 	raw.flags = cpu_to_le32(flags);
1972 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1973 	raw.reserved3 = 0;
1974 
1975 	sample.raw_size = perf_synth__raw_size(raw);
1976 	sample.raw_data = perf_synth__raw_data(&raw);
1977 
1978 	return intel_pt_deliver_synth_event(pt, event, &sample,
1979 					    pt->pwr_events_sample_type);
1980 }
1981 
1982 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1983 {
1984 	struct intel_pt *pt = ptq->pt;
1985 	union perf_event *event = ptq->event_buf;
1986 	struct perf_sample sample = { .ip = 0, };
1987 	struct perf_synth_intel_psb raw;
1988 
1989 	if (intel_pt_skip_event(pt))
1990 		return 0;
1991 
1992 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1993 
1994 	sample.id = ptq->pt->psb_id;
1995 	sample.stream_id = ptq->pt->psb_id;
1996 	sample.flags = 0;
1997 
1998 	raw.reserved = 0;
1999 	raw.offset = ptq->state->psb_offset;
2000 
2001 	sample.raw_size = perf_synth__raw_size(raw);
2002 	sample.raw_data = perf_synth__raw_data(&raw);
2003 
2004 	return intel_pt_deliver_synth_event(pt, event, &sample,
2005 					    pt->pwr_events_sample_type);
2006 }
2007 
2008 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2009 {
2010 	struct intel_pt *pt = ptq->pt;
2011 	union perf_event *event = ptq->event_buf;
2012 	struct perf_sample sample = { .ip = 0, };
2013 	struct perf_synth_intel_mwait raw;
2014 
2015 	if (intel_pt_skip_event(pt))
2016 		return 0;
2017 
2018 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2019 
2020 	sample.id = ptq->pt->mwait_id;
2021 	sample.stream_id = ptq->pt->mwait_id;
2022 
2023 	raw.reserved = 0;
2024 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2025 
2026 	sample.raw_size = perf_synth__raw_size(raw);
2027 	sample.raw_data = perf_synth__raw_data(&raw);
2028 
2029 	return intel_pt_deliver_synth_event(pt, event, &sample,
2030 					    pt->pwr_events_sample_type);
2031 }
2032 
2033 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2034 {
2035 	struct intel_pt *pt = ptq->pt;
2036 	union perf_event *event = ptq->event_buf;
2037 	struct perf_sample sample = { .ip = 0, };
2038 	struct perf_synth_intel_pwre raw;
2039 
2040 	if (intel_pt_skip_event(pt))
2041 		return 0;
2042 
2043 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2044 
2045 	sample.id = ptq->pt->pwre_id;
2046 	sample.stream_id = ptq->pt->pwre_id;
2047 
2048 	raw.reserved = 0;
2049 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2050 
2051 	sample.raw_size = perf_synth__raw_size(raw);
2052 	sample.raw_data = perf_synth__raw_data(&raw);
2053 
2054 	return intel_pt_deliver_synth_event(pt, event, &sample,
2055 					    pt->pwr_events_sample_type);
2056 }
2057 
2058 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2059 {
2060 	struct intel_pt *pt = ptq->pt;
2061 	union perf_event *event = ptq->event_buf;
2062 	struct perf_sample sample = { .ip = 0, };
2063 	struct perf_synth_intel_exstop raw;
2064 
2065 	if (intel_pt_skip_event(pt))
2066 		return 0;
2067 
2068 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2069 
2070 	sample.id = ptq->pt->exstop_id;
2071 	sample.stream_id = ptq->pt->exstop_id;
2072 
2073 	raw.flags = 0;
2074 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2075 
2076 	sample.raw_size = perf_synth__raw_size(raw);
2077 	sample.raw_data = perf_synth__raw_data(&raw);
2078 
2079 	return intel_pt_deliver_synth_event(pt, event, &sample,
2080 					    pt->pwr_events_sample_type);
2081 }
2082 
2083 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2084 {
2085 	struct intel_pt *pt = ptq->pt;
2086 	union perf_event *event = ptq->event_buf;
2087 	struct perf_sample sample = { .ip = 0, };
2088 	struct perf_synth_intel_pwrx raw;
2089 
2090 	if (intel_pt_skip_event(pt))
2091 		return 0;
2092 
2093 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2094 
2095 	sample.id = ptq->pt->pwrx_id;
2096 	sample.stream_id = ptq->pt->pwrx_id;
2097 
2098 	raw.reserved = 0;
2099 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2100 
2101 	sample.raw_size = perf_synth__raw_size(raw);
2102 	sample.raw_data = perf_synth__raw_data(&raw);
2103 
2104 	return intel_pt_deliver_synth_event(pt, event, &sample,
2105 					    pt->pwr_events_sample_type);
2106 }
2107 
2108 /*
2109  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2110  * intel_pt_add_gp_regs().
2111  */
2112 static const int pebs_gp_regs[] = {
2113 	[PERF_REG_X86_FLAGS]	= 1,
2114 	[PERF_REG_X86_IP]	= 2,
2115 	[PERF_REG_X86_AX]	= 3,
2116 	[PERF_REG_X86_CX]	= 4,
2117 	[PERF_REG_X86_DX]	= 5,
2118 	[PERF_REG_X86_BX]	= 6,
2119 	[PERF_REG_X86_SP]	= 7,
2120 	[PERF_REG_X86_BP]	= 8,
2121 	[PERF_REG_X86_SI]	= 9,
2122 	[PERF_REG_X86_DI]	= 10,
2123 	[PERF_REG_X86_R8]	= 11,
2124 	[PERF_REG_X86_R9]	= 12,
2125 	[PERF_REG_X86_R10]	= 13,
2126 	[PERF_REG_X86_R11]	= 14,
2127 	[PERF_REG_X86_R12]	= 15,
2128 	[PERF_REG_X86_R13]	= 16,
2129 	[PERF_REG_X86_R14]	= 17,
2130 	[PERF_REG_X86_R15]	= 18,
2131 };
2132 
2133 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2134 				 const struct intel_pt_blk_items *items,
2135 				 u64 regs_mask)
2136 {
2137 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2138 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2139 	u32 bit;
2140 	int i;
2141 
2142 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2143 		/* Get the PEBS gp_regs array index */
2144 		int n = pebs_gp_regs[i] - 1;
2145 
2146 		if (n < 0)
2147 			continue;
2148 		/*
2149 		 * Add only registers that were requested (i.e. 'regs_mask') and
2150 		 * that were provided (i.e. 'mask'), and update the resulting
2151 		 * mask (i.e. 'intr_regs->mask') accordingly.
2152 		 */
2153 		if (mask & 1 << n && regs_mask & bit) {
2154 			intr_regs->mask |= bit;
2155 			*pos++ = gp_regs[n];
2156 		}
2157 	}
2158 
2159 	return pos;
2160 }
2161 
2162 #ifndef PERF_REG_X86_XMM0
2163 #define PERF_REG_X86_XMM0 32
2164 #endif
2165 
2166 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2167 			     const struct intel_pt_blk_items *items,
2168 			     u64 regs_mask)
2169 {
2170 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2171 	const u64 *xmm = items->xmm;
2172 
2173 	/*
2174 	 * If there are any XMM registers, then there should be all of them.
2175 	 * Nevertheless, follow the logic to add only registers that were
2176 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2177 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2178 	 */
2179 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2180 
2181 	for (; mask; mask >>= 1, xmm++) {
2182 		if (mask & 1)
2183 			*pos++ = *xmm;
2184 	}
2185 }
2186 
2187 #define LBR_INFO_MISPRED	(1ULL << 63)
2188 #define LBR_INFO_IN_TX		(1ULL << 62)
2189 #define LBR_INFO_ABORT		(1ULL << 61)
2190 #define LBR_INFO_CYCLES		0xffff
2191 
2192 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2193 static u64 intel_pt_lbr_flags(u64 info)
2194 {
2195 	union {
2196 		struct branch_flags flags;
2197 		u64 result;
2198 	} u;
2199 
2200 	u.result	  = 0;
2201 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2202 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2203 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2204 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2205 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2206 
2207 	return u.result;
2208 }
2209 
2210 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2211 			      const struct intel_pt_blk_items *items)
2212 {
2213 	u64 *to;
2214 	int i;
2215 
2216 	br_stack->nr = 0;
2217 
2218 	to = &br_stack->entries[0].from;
2219 
2220 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2221 		u32 mask = items->mask[i];
2222 		const u64 *from = items->val[i];
2223 
2224 		for (; mask; mask >>= 3, from += 3) {
2225 			if ((mask & 7) == 7) {
2226 				*to++ = from[0];
2227 				*to++ = from[1];
2228 				*to++ = intel_pt_lbr_flags(from[2]);
2229 				br_stack->nr += 1;
2230 			}
2231 		}
2232 	}
2233 }
2234 
2235 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2236 {
2237 	const struct intel_pt_blk_items *items = &ptq->state->items;
2238 	struct perf_sample sample = { .ip = 0, };
2239 	union perf_event *event = ptq->event_buf;
2240 	struct intel_pt *pt = ptq->pt;
2241 	u64 sample_type = evsel->core.attr.sample_type;
2242 	u8 cpumode;
2243 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2244 
2245 	if (intel_pt_skip_event(pt))
2246 		return 0;
2247 
2248 	intel_pt_prep_a_sample(ptq, event, &sample);
2249 
2250 	sample.id = id;
2251 	sample.stream_id = id;
2252 
2253 	if (!evsel->core.attr.freq)
2254 		sample.period = evsel->core.attr.sample_period;
2255 
2256 	/* No support for non-zero CS base */
2257 	if (items->has_ip)
2258 		sample.ip = items->ip;
2259 	else if (items->has_rip)
2260 		sample.ip = items->rip;
2261 	else
2262 		sample.ip = ptq->state->from_ip;
2263 
2264 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2265 
2266 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2267 
2268 	sample.cpumode = cpumode;
2269 
2270 	if (sample_type & PERF_SAMPLE_TIME) {
2271 		u64 timestamp = 0;
2272 
2273 		if (items->has_timestamp)
2274 			timestamp = items->timestamp;
2275 		else if (!pt->timeless_decoding)
2276 			timestamp = ptq->timestamp;
2277 		if (timestamp)
2278 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2279 	}
2280 
2281 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2282 	    pt->synth_opts.callchain) {
2283 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2284 				     pt->synth_opts.callchain_sz, sample.ip,
2285 				     pt->kernel_start);
2286 		sample.callchain = ptq->chain;
2287 	}
2288 
2289 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2290 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2291 	     items->mask[INTEL_PT_XMM_POS])) {
2292 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2293 		u64 *pos;
2294 
2295 		sample.intr_regs.abi = items->is_32_bit ?
2296 				       PERF_SAMPLE_REGS_ABI_32 :
2297 				       PERF_SAMPLE_REGS_ABI_64;
2298 		sample.intr_regs.regs = regs;
2299 
2300 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2301 
2302 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2303 	}
2304 
2305 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2306 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2307 		    items->mask[INTEL_PT_LBR_1_POS] ||
2308 		    items->mask[INTEL_PT_LBR_2_POS]) {
2309 			intel_pt_add_lbrs(ptq->last_branch, items);
2310 		} else if (pt->synth_opts.last_branch) {
2311 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2312 						ptq->last_branch,
2313 						pt->br_stack_sz);
2314 		} else {
2315 			ptq->last_branch->nr = 0;
2316 		}
2317 		sample.branch_stack = ptq->last_branch;
2318 	}
2319 
2320 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2321 		sample.addr = items->mem_access_address;
2322 
2323 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2324 		/*
2325 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2326 		 * intel_hsw_weight().
2327 		 */
2328 		if (items->has_mem_access_latency) {
2329 			u64 weight = items->mem_access_latency >> 32;
2330 
2331 			/*
2332 			 * Starts from SPR, the mem access latency field
2333 			 * contains both cache latency [47:32] and instruction
2334 			 * latency [15:0]. The cache latency is the same as the
2335 			 * mem access latency on previous platforms.
2336 			 *
2337 			 * In practice, no memory access could last than 4G
2338 			 * cycles. Use latency >> 32 to distinguish the
2339 			 * different format of the mem access latency field.
2340 			 */
2341 			if (weight > 0) {
2342 				sample.weight = weight & 0xffff;
2343 				sample.ins_lat = items->mem_access_latency & 0xffff;
2344 			} else
2345 				sample.weight = items->mem_access_latency;
2346 		}
2347 		if (!sample.weight && items->has_tsx_aux_info) {
2348 			/* Cycles last block */
2349 			sample.weight = (u32)items->tsx_aux_info;
2350 		}
2351 	}
2352 
2353 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2354 		u64 ax = items->has_rax ? items->rax : 0;
2355 		/* Refer kernel's intel_hsw_transaction() */
2356 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2357 
2358 		/* For RTM XABORTs also log the abort code from AX */
2359 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2360 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2361 		sample.transaction = txn;
2362 	}
2363 
2364 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2365 }
2366 
2367 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2368 {
2369 	struct intel_pt *pt = ptq->pt;
2370 	struct evsel *evsel = pt->pebs_evsel;
2371 	u64 id = evsel->core.id[0];
2372 
2373 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2374 }
2375 
2376 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2377 {
2378 	const struct intel_pt_blk_items *items = &ptq->state->items;
2379 	struct intel_pt_pebs_event *pe;
2380 	struct intel_pt *pt = ptq->pt;
2381 	int err = -EINVAL;
2382 	int hw_id;
2383 
2384 	if (!items->has_applicable_counters || !items->applicable_counters) {
2385 		if (!pt->single_pebs)
2386 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2387 		return intel_pt_synth_single_pebs_sample(ptq);
2388 	}
2389 
2390 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2391 		pe = &ptq->pebs[hw_id];
2392 		if (!pe->evsel) {
2393 			if (!pt->single_pebs)
2394 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2395 				       hw_id);
2396 			return intel_pt_synth_single_pebs_sample(ptq);
2397 		}
2398 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2399 		if (err)
2400 			return err;
2401 	}
2402 
2403 	return err;
2404 }
2405 
2406 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2407 {
2408 	struct intel_pt *pt = ptq->pt;
2409 	union perf_event *event = ptq->event_buf;
2410 	struct perf_sample sample = { .ip = 0, };
2411 	struct {
2412 		struct perf_synth_intel_evt cfe;
2413 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2414 	} raw;
2415 	int i;
2416 
2417 	if (intel_pt_skip_event(pt))
2418 		return 0;
2419 
2420 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2421 
2422 	sample.id        = ptq->pt->evt_id;
2423 	sample.stream_id = ptq->pt->evt_id;
2424 
2425 	raw.cfe.type     = ptq->state->cfe_type;
2426 	raw.cfe.reserved = 0;
2427 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2428 	raw.cfe.vector   = ptq->state->cfe_vector;
2429 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2430 
2431 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2432 		raw.evd[i].et       = 0;
2433 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2434 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2435 	}
2436 
2437 	sample.raw_size = perf_synth__raw_size(raw) +
2438 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2439 	sample.raw_data = perf_synth__raw_data(&raw);
2440 
2441 	return intel_pt_deliver_synth_event(pt, event, &sample,
2442 					    pt->evt_sample_type);
2443 }
2444 
2445 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2446 {
2447 	struct intel_pt *pt = ptq->pt;
2448 	union perf_event *event = ptq->event_buf;
2449 	struct perf_sample sample = { .ip = 0, };
2450 	struct perf_synth_intel_iflag_chg raw;
2451 
2452 	if (intel_pt_skip_event(pt))
2453 		return 0;
2454 
2455 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2456 
2457 	sample.id = ptq->pt->iflag_chg_id;
2458 	sample.stream_id = ptq->pt->iflag_chg_id;
2459 
2460 	raw.flags = 0;
2461 	raw.iflag = ptq->state->to_iflag;
2462 
2463 	if (ptq->state->type & INTEL_PT_BRANCH) {
2464 		raw.via_branch = 1;
2465 		raw.branch_ip = ptq->state->to_ip;
2466 	} else {
2467 		sample.addr = 0;
2468 	}
2469 	sample.flags = ptq->flags;
2470 
2471 	sample.raw_size = perf_synth__raw_size(raw);
2472 	sample.raw_data = perf_synth__raw_data(&raw);
2473 
2474 	return intel_pt_deliver_synth_event(pt, event, &sample,
2475 					    pt->iflag_chg_sample_type);
2476 }
2477 
2478 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2479 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2480 				pid_t machine_pid, int vcpu)
2481 {
2482 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2483 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2484 	union perf_event event;
2485 	char msg[MAX_AUXTRACE_ERROR_MSG];
2486 	int err;
2487 
2488 	if (pt->synth_opts.error_minus_flags) {
2489 		if (code == INTEL_PT_ERR_OVR &&
2490 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2491 			return 0;
2492 		if (code == INTEL_PT_ERR_LOST &&
2493 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2494 			return 0;
2495 	}
2496 
2497 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2498 
2499 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2500 				   code, cpu, pid, tid, ip, msg, timestamp,
2501 				   machine_pid, vcpu);
2502 
2503 	if (intel_pt_enable_logging && !log_on_stdout) {
2504 		FILE *fp = intel_pt_log_fp();
2505 
2506 		if (fp)
2507 			perf_event__fprintf_auxtrace_error(&event, fp);
2508 	}
2509 
2510 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2511 		intel_pt_log_dump_buf();
2512 
2513 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2514 	if (err)
2515 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2516 		       err);
2517 
2518 	return err;
2519 }
2520 
2521 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2522 				 const struct intel_pt_state *state)
2523 {
2524 	struct intel_pt *pt = ptq->pt;
2525 	u64 tm = ptq->timestamp;
2526 	pid_t machine_pid = 0;
2527 	pid_t pid = ptq->pid;
2528 	pid_t tid = ptq->tid;
2529 	int vcpu = -1;
2530 
2531 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2532 
2533 	if (pt->have_guest_sideband && state->from_nr) {
2534 		machine_pid = ptq->guest_machine_pid;
2535 		vcpu = ptq->vcpu;
2536 		pid = ptq->guest_pid;
2537 		tid = ptq->guest_tid;
2538 	}
2539 
2540 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2541 				    state->from_ip, tm, machine_pid, vcpu);
2542 }
2543 
2544 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2545 {
2546 	struct auxtrace_queue *queue;
2547 	pid_t tid = ptq->next_tid;
2548 	int err;
2549 
2550 	if (tid == -1)
2551 		return 0;
2552 
2553 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2554 
2555 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2556 
2557 	queue = &pt->queues.queue_array[ptq->queue_nr];
2558 	intel_pt_set_pid_tid_cpu(pt, queue);
2559 
2560 	ptq->next_tid = -1;
2561 
2562 	return err;
2563 }
2564 
2565 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2566 {
2567 	struct intel_pt *pt = ptq->pt;
2568 
2569 	return ip == pt->switch_ip &&
2570 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2571 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2572 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2573 }
2574 
2575 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2576 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2577 
2578 static int intel_pt_sample(struct intel_pt_queue *ptq)
2579 {
2580 	const struct intel_pt_state *state = ptq->state;
2581 	struct intel_pt *pt = ptq->pt;
2582 	int err;
2583 
2584 	if (!ptq->have_sample)
2585 		return 0;
2586 
2587 	ptq->have_sample = false;
2588 
2589 	if (pt->synth_opts.approx_ipc) {
2590 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2591 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2592 		ptq->sample_ipc = true;
2593 	} else {
2594 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2595 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2596 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2597 	}
2598 
2599 	/* Ensure guest code maps are set up */
2600 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2601 		intel_pt_get_guest(ptq);
2602 
2603 	/*
2604 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2605 	 * precedes the current timestamp.
2606 	 */
2607 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2608 		err = intel_pt_synth_pebs_sample(ptq);
2609 		if (err)
2610 			return err;
2611 	}
2612 
2613 	if (pt->synth_opts.intr_events) {
2614 		if (state->type & INTEL_PT_EVT) {
2615 			err = intel_pt_synth_events_sample(ptq);
2616 			if (err)
2617 				return err;
2618 		}
2619 		if (state->type & INTEL_PT_IFLAG_CHG) {
2620 			err = intel_pt_synth_iflag_chg_sample(ptq);
2621 			if (err)
2622 				return err;
2623 		}
2624 	}
2625 
2626 	if (pt->sample_pwr_events) {
2627 		if (state->type & INTEL_PT_PSB_EVT) {
2628 			err = intel_pt_synth_psb_sample(ptq);
2629 			if (err)
2630 				return err;
2631 		}
2632 		if (ptq->state->cbr != ptq->cbr_seen) {
2633 			err = intel_pt_synth_cbr_sample(ptq);
2634 			if (err)
2635 				return err;
2636 		}
2637 		if (state->type & INTEL_PT_PWR_EVT) {
2638 			if (state->type & INTEL_PT_MWAIT_OP) {
2639 				err = intel_pt_synth_mwait_sample(ptq);
2640 				if (err)
2641 					return err;
2642 			}
2643 			if (state->type & INTEL_PT_PWR_ENTRY) {
2644 				err = intel_pt_synth_pwre_sample(ptq);
2645 				if (err)
2646 					return err;
2647 			}
2648 			if (state->type & INTEL_PT_EX_STOP) {
2649 				err = intel_pt_synth_exstop_sample(ptq);
2650 				if (err)
2651 					return err;
2652 			}
2653 			if (state->type & INTEL_PT_PWR_EXIT) {
2654 				err = intel_pt_synth_pwrx_sample(ptq);
2655 				if (err)
2656 					return err;
2657 			}
2658 		}
2659 	}
2660 
2661 	if (state->type & INTEL_PT_INSTRUCTION) {
2662 		if (pt->sample_instructions) {
2663 			err = intel_pt_synth_instruction_sample(ptq);
2664 			if (err)
2665 				return err;
2666 		}
2667 		if (pt->sample_cycles) {
2668 			err = intel_pt_synth_cycle_sample(ptq);
2669 			if (err)
2670 				return err;
2671 		}
2672 	}
2673 
2674 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2675 		err = intel_pt_synth_transaction_sample(ptq);
2676 		if (err)
2677 			return err;
2678 	}
2679 
2680 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2681 		err = intel_pt_synth_ptwrite_sample(ptq);
2682 		if (err)
2683 			return err;
2684 	}
2685 
2686 	if (!(state->type & INTEL_PT_BRANCH))
2687 		return 0;
2688 
2689 	if (pt->use_thread_stack) {
2690 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2691 				    state->from_ip, state->to_ip, ptq->insn_len,
2692 				    state->trace_nr, pt->callstack,
2693 				    pt->br_stack_sz_plus,
2694 				    pt->mispred_all);
2695 	} else {
2696 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2697 	}
2698 
2699 	if (pt->sample_branches) {
2700 		if (state->from_nr != state->to_nr &&
2701 		    state->from_ip && state->to_ip) {
2702 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2703 			u64 to_ip = st->to_ip;
2704 			u64 from_ip = st->from_ip;
2705 
2706 			/*
2707 			 * perf cannot handle having different machines for ip
2708 			 * and addr, so create 2 branches.
2709 			 */
2710 			st->to_ip = 0;
2711 			err = intel_pt_synth_branch_sample(ptq);
2712 			if (err)
2713 				return err;
2714 			st->from_ip = 0;
2715 			st->to_ip = to_ip;
2716 			err = intel_pt_synth_branch_sample(ptq);
2717 			st->from_ip = from_ip;
2718 		} else {
2719 			err = intel_pt_synth_branch_sample(ptq);
2720 		}
2721 		if (err)
2722 			return err;
2723 	}
2724 
2725 	if (!ptq->sync_switch)
2726 		return 0;
2727 
2728 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2729 		switch (ptq->switch_state) {
2730 		case INTEL_PT_SS_NOT_TRACING:
2731 		case INTEL_PT_SS_UNKNOWN:
2732 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2733 			err = intel_pt_next_tid(pt, ptq);
2734 			if (err)
2735 				return err;
2736 			ptq->switch_state = INTEL_PT_SS_TRACING;
2737 			break;
2738 		default:
2739 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2740 			return 1;
2741 		}
2742 	} else if (!state->to_ip) {
2743 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2744 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2745 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2746 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2747 		   state->to_ip == pt->ptss_ip &&
2748 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2749 		ptq->switch_state = INTEL_PT_SS_TRACING;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2756 {
2757 	struct machine *machine = pt->machine;
2758 	struct map *map;
2759 	struct symbol *sym, *start;
2760 	u64 ip, switch_ip = 0;
2761 	const char *ptss;
2762 
2763 	if (ptss_ip)
2764 		*ptss_ip = 0;
2765 
2766 	map = machine__kernel_map(machine);
2767 	if (!map)
2768 		return 0;
2769 
2770 	if (map__load(map))
2771 		return 0;
2772 
2773 	start = dso__first_symbol(map__dso(map));
2774 
2775 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2776 		if (sym->binding == STB_GLOBAL &&
2777 		    !strcmp(sym->name, "__switch_to")) {
2778 			ip = map__unmap_ip(map, sym->start);
2779 			if (ip >= map__start(map) && ip < map__end(map)) {
2780 				switch_ip = ip;
2781 				break;
2782 			}
2783 		}
2784 	}
2785 
2786 	if (!switch_ip || !ptss_ip)
2787 		return 0;
2788 
2789 	if (pt->have_sched_switch == 1)
2790 		ptss = "perf_trace_sched_switch";
2791 	else
2792 		ptss = "__perf_event_task_sched_out";
2793 
2794 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2795 		if (!strcmp(sym->name, ptss)) {
2796 			ip = map__unmap_ip(map, sym->start);
2797 			if (ip >= map__start(map) && ip < map__end(map)) {
2798 				*ptss_ip = ip;
2799 				break;
2800 			}
2801 		}
2802 	}
2803 
2804 	return switch_ip;
2805 }
2806 
2807 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2808 {
2809 	unsigned int i;
2810 
2811 	if (pt->sync_switch_not_supported)
2812 		return;
2813 
2814 	pt->sync_switch = true;
2815 
2816 	for (i = 0; i < pt->queues.nr_queues; i++) {
2817 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2818 		struct intel_pt_queue *ptq = queue->priv;
2819 
2820 		if (ptq)
2821 			ptq->sync_switch = true;
2822 	}
2823 }
2824 
2825 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2826 {
2827 	unsigned int i;
2828 
2829 	pt->sync_switch = false;
2830 
2831 	for (i = 0; i < pt->queues.nr_queues; i++) {
2832 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2833 		struct intel_pt_queue *ptq = queue->priv;
2834 
2835 		if (ptq) {
2836 			ptq->sync_switch = false;
2837 			intel_pt_next_tid(pt, ptq);
2838 		}
2839 	}
2840 }
2841 
2842 /*
2843  * To filter against time ranges, it is only necessary to look at the next start
2844  * or end time.
2845  */
2846 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2847 {
2848 	struct intel_pt *pt = ptq->pt;
2849 
2850 	if (ptq->sel_start) {
2851 		/* Next time is an end time */
2852 		ptq->sel_start = false;
2853 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2854 		return true;
2855 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2856 		/* Next time is a start time */
2857 		ptq->sel_start = true;
2858 		ptq->sel_idx += 1;
2859 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2860 		return true;
2861 	}
2862 
2863 	/* No next time */
2864 	return false;
2865 }
2866 
2867 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2868 {
2869 	int err;
2870 
2871 	while (1) {
2872 		if (ptq->sel_start) {
2873 			if (ptq->timestamp >= ptq->sel_timestamp) {
2874 				/* After start time, so consider next time */
2875 				intel_pt_next_time(ptq);
2876 				if (!ptq->sel_timestamp) {
2877 					/* No end time */
2878 					return 0;
2879 				}
2880 				/* Check against end time */
2881 				continue;
2882 			}
2883 			/* Before start time, so fast forward */
2884 			ptq->have_sample = false;
2885 			if (ptq->sel_timestamp > *ff_timestamp) {
2886 				if (ptq->sync_switch) {
2887 					intel_pt_next_tid(ptq->pt, ptq);
2888 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2889 				}
2890 				*ff_timestamp = ptq->sel_timestamp;
2891 				err = intel_pt_fast_forward(ptq->decoder,
2892 							    ptq->sel_timestamp);
2893 				if (err)
2894 					return err;
2895 			}
2896 			return 0;
2897 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2898 			/* After end time, so consider next time */
2899 			if (!intel_pt_next_time(ptq)) {
2900 				/* No next time range, so stop decoding */
2901 				ptq->have_sample = false;
2902 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2903 				return 1;
2904 			}
2905 			/* Check against next start time */
2906 			continue;
2907 		} else {
2908 			/* Before end time */
2909 			return 0;
2910 		}
2911 	}
2912 }
2913 
2914 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2915 {
2916 	const struct intel_pt_state *state = ptq->state;
2917 	struct intel_pt *pt = ptq->pt;
2918 	u64 ff_timestamp = 0;
2919 	int err;
2920 
2921 	if (!pt->kernel_start) {
2922 		pt->kernel_start = machine__kernel_start(pt->machine);
2923 		if (pt->per_cpu_mmaps &&
2924 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2925 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2926 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2927 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2928 			if (pt->switch_ip) {
2929 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2930 					     pt->switch_ip, pt->ptss_ip);
2931 				intel_pt_enable_sync_switch(pt);
2932 			}
2933 		}
2934 	}
2935 
2936 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2937 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2938 	while (1) {
2939 		err = intel_pt_sample(ptq);
2940 		if (err)
2941 			return err;
2942 
2943 		state = intel_pt_decode(ptq->decoder);
2944 		if (state->err) {
2945 			if (state->err == INTEL_PT_ERR_NODATA)
2946 				return 1;
2947 			if (ptq->sync_switch &&
2948 			    state->from_ip >= pt->kernel_start) {
2949 				ptq->sync_switch = false;
2950 				intel_pt_next_tid(pt, ptq);
2951 			}
2952 			ptq->timestamp = state->est_timestamp;
2953 			if (pt->synth_opts.errors) {
2954 				err = intel_ptq_synth_error(ptq, state);
2955 				if (err)
2956 					return err;
2957 			}
2958 			continue;
2959 		}
2960 
2961 		ptq->state = state;
2962 		ptq->have_sample = true;
2963 		intel_pt_sample_flags(ptq);
2964 
2965 		/* Use estimated TSC upon return to user space */
2966 		if (pt->est_tsc &&
2967 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2968 		    state->to_ip && state->to_ip < pt->kernel_start) {
2969 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2970 				     state->timestamp, state->est_timestamp);
2971 			ptq->timestamp = state->est_timestamp;
2972 		/* Use estimated TSC in unknown switch state */
2973 		} else if (ptq->sync_switch &&
2974 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2975 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2976 			   ptq->next_tid == -1) {
2977 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2978 				     state->timestamp, state->est_timestamp);
2979 			ptq->timestamp = state->est_timestamp;
2980 		} else if (state->timestamp > ptq->timestamp) {
2981 			ptq->timestamp = state->timestamp;
2982 		}
2983 
2984 		if (ptq->sel_timestamp) {
2985 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2986 			if (err)
2987 				return err;
2988 		}
2989 
2990 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2991 			*timestamp = ptq->timestamp;
2992 			return 0;
2993 		}
2994 	}
2995 	return 0;
2996 }
2997 
2998 static inline int intel_pt_update_queues(struct intel_pt *pt)
2999 {
3000 	if (pt->queues.new_data) {
3001 		pt->queues.new_data = false;
3002 		return intel_pt_setup_queues(pt);
3003 	}
3004 	return 0;
3005 }
3006 
3007 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3008 {
3009 	unsigned int queue_nr;
3010 	u64 ts;
3011 	int ret;
3012 
3013 	while (1) {
3014 		struct auxtrace_queue *queue;
3015 		struct intel_pt_queue *ptq;
3016 
3017 		if (!pt->heap.heap_cnt)
3018 			return 0;
3019 
3020 		if (pt->heap.heap_array[0].ordinal >= timestamp)
3021 			return 0;
3022 
3023 		queue_nr = pt->heap.heap_array[0].queue_nr;
3024 		queue = &pt->queues.queue_array[queue_nr];
3025 		ptq = queue->priv;
3026 
3027 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3028 			     queue_nr, pt->heap.heap_array[0].ordinal,
3029 			     timestamp);
3030 
3031 		auxtrace_heap__pop(&pt->heap);
3032 
3033 		if (pt->heap.heap_cnt) {
3034 			ts = pt->heap.heap_array[0].ordinal + 1;
3035 			if (ts > timestamp)
3036 				ts = timestamp;
3037 		} else {
3038 			ts = timestamp;
3039 		}
3040 
3041 		intel_pt_set_pid_tid_cpu(pt, queue);
3042 
3043 		ret = intel_pt_run_decoder(ptq, &ts);
3044 
3045 		if (ret < 0) {
3046 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3047 			return ret;
3048 		}
3049 
3050 		if (!ret) {
3051 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3052 			if (ret < 0)
3053 				return ret;
3054 		} else {
3055 			ptq->on_heap = false;
3056 		}
3057 	}
3058 
3059 	return 0;
3060 }
3061 
3062 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3063 					    u64 time_)
3064 {
3065 	struct auxtrace_queues *queues = &pt->queues;
3066 	unsigned int i;
3067 	u64 ts = 0;
3068 
3069 	for (i = 0; i < queues->nr_queues; i++) {
3070 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3071 		struct intel_pt_queue *ptq = queue->priv;
3072 
3073 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3074 			ptq->time = time_;
3075 			intel_pt_set_pid_tid_cpu(pt, queue);
3076 			intel_pt_run_decoder(ptq, &ts);
3077 		}
3078 	}
3079 	return 0;
3080 }
3081 
3082 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3083 					    struct auxtrace_queue *queue,
3084 					    struct perf_sample *sample)
3085 {
3086 	struct machine *m = ptq->pt->machine;
3087 
3088 	ptq->pid = sample->pid;
3089 	ptq->tid = sample->tid;
3090 	ptq->cpu = queue->cpu;
3091 
3092 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3093 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3094 
3095 	thread__zput(ptq->thread);
3096 
3097 	if (ptq->tid == -1)
3098 		return;
3099 
3100 	if (ptq->pid == -1) {
3101 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3102 		if (ptq->thread)
3103 			ptq->pid = thread__pid(ptq->thread);
3104 		return;
3105 	}
3106 
3107 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3108 }
3109 
3110 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3111 					    struct perf_sample *sample)
3112 {
3113 	struct auxtrace_queue *queue;
3114 	struct intel_pt_queue *ptq;
3115 	u64 ts = 0;
3116 
3117 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3118 	if (!queue)
3119 		return -EINVAL;
3120 
3121 	ptq = queue->priv;
3122 	if (!ptq)
3123 		return 0;
3124 
3125 	ptq->stop = false;
3126 	ptq->time = sample->time;
3127 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3128 	intel_pt_run_decoder(ptq, &ts);
3129 	return 0;
3130 }
3131 
3132 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3133 {
3134 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3135 				    sample->pid, sample->tid, 0, sample->time,
3136 				    sample->machine_pid, sample->vcpu);
3137 }
3138 
3139 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3140 {
3141 	unsigned i, j;
3142 
3143 	if (cpu < 0 || !pt->queues.nr_queues)
3144 		return NULL;
3145 
3146 	if ((unsigned)cpu >= pt->queues.nr_queues)
3147 		i = pt->queues.nr_queues - 1;
3148 	else
3149 		i = cpu;
3150 
3151 	if (pt->queues.queue_array[i].cpu == cpu)
3152 		return pt->queues.queue_array[i].priv;
3153 
3154 	for (j = 0; i > 0; j++) {
3155 		if (pt->queues.queue_array[--i].cpu == cpu)
3156 			return pt->queues.queue_array[i].priv;
3157 	}
3158 
3159 	for (; j < pt->queues.nr_queues; j++) {
3160 		if (pt->queues.queue_array[j].cpu == cpu)
3161 			return pt->queues.queue_array[j].priv;
3162 	}
3163 
3164 	return NULL;
3165 }
3166 
3167 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3168 				u64 timestamp)
3169 {
3170 	struct intel_pt_queue *ptq;
3171 	int err;
3172 
3173 	if (!pt->sync_switch)
3174 		return 1;
3175 
3176 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3177 	if (!ptq || !ptq->sync_switch)
3178 		return 1;
3179 
3180 	switch (ptq->switch_state) {
3181 	case INTEL_PT_SS_NOT_TRACING:
3182 		break;
3183 	case INTEL_PT_SS_UNKNOWN:
3184 	case INTEL_PT_SS_TRACING:
3185 		ptq->next_tid = tid;
3186 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3187 		return 0;
3188 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3189 		if (!ptq->on_heap) {
3190 			ptq->timestamp = perf_time_to_tsc(timestamp,
3191 							  &pt->tc);
3192 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3193 						 ptq->timestamp);
3194 			if (err)
3195 				return err;
3196 			ptq->on_heap = true;
3197 		}
3198 		ptq->switch_state = INTEL_PT_SS_TRACING;
3199 		break;
3200 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3201 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3202 		break;
3203 	default:
3204 		break;
3205 	}
3206 
3207 	ptq->next_tid = -1;
3208 
3209 	return 1;
3210 }
3211 
3212 #ifdef HAVE_LIBTRACEEVENT
3213 static int intel_pt_process_switch(struct intel_pt *pt,
3214 				   struct perf_sample *sample)
3215 {
3216 	pid_t tid;
3217 	int cpu, ret;
3218 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3219 
3220 	if (evsel != pt->switch_evsel)
3221 		return 0;
3222 
3223 	tid = evsel__intval(evsel, sample, "next_pid");
3224 	cpu = sample->cpu;
3225 
3226 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3227 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3228 		     &pt->tc));
3229 
3230 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3231 	if (ret <= 0)
3232 		return ret;
3233 
3234 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3235 }
3236 #endif /* HAVE_LIBTRACEEVENT */
3237 
3238 static int intel_pt_context_switch_in(struct intel_pt *pt,
3239 				      struct perf_sample *sample)
3240 {
3241 	pid_t pid = sample->pid;
3242 	pid_t tid = sample->tid;
3243 	int cpu = sample->cpu;
3244 
3245 	if (pt->sync_switch) {
3246 		struct intel_pt_queue *ptq;
3247 
3248 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3249 		if (ptq && ptq->sync_switch) {
3250 			ptq->next_tid = -1;
3251 			switch (ptq->switch_state) {
3252 			case INTEL_PT_SS_NOT_TRACING:
3253 			case INTEL_PT_SS_UNKNOWN:
3254 			case INTEL_PT_SS_TRACING:
3255 				break;
3256 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3257 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3258 				ptq->switch_state = INTEL_PT_SS_TRACING;
3259 				break;
3260 			default:
3261 				break;
3262 			}
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * If the current tid has not been updated yet, ensure it is now that
3268 	 * a "switch in" event has occurred.
3269 	 */
3270 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3271 		return 0;
3272 
3273 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3274 }
3275 
3276 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3277 					 union perf_event *event,
3278 					 struct perf_sample *sample)
3279 {
3280 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3281 	struct machines *machines = &pt->session->machines;
3282 	struct machine *machine = machines__find(machines, sample->machine_pid);
3283 
3284 	pt->have_guest_sideband = true;
3285 
3286 	/*
3287 	 * sync_switch cannot handle guest machines at present, so just disable
3288 	 * it.
3289 	 */
3290 	pt->sync_switch_not_supported = true;
3291 	if (pt->sync_switch)
3292 		intel_pt_disable_sync_switch(pt);
3293 
3294 	if (out)
3295 		return 0;
3296 
3297 	if (!machine)
3298 		return -EINVAL;
3299 
3300 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3301 }
3302 
3303 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3304 				   struct perf_sample *sample)
3305 {
3306 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3307 	pid_t pid, tid;
3308 	int cpu, ret;
3309 
3310 	if (perf_event__is_guest(event))
3311 		return intel_pt_guest_context_switch(pt, event, sample);
3312 
3313 	cpu = sample->cpu;
3314 
3315 	if (pt->have_sched_switch == 3) {
3316 		if (!out)
3317 			return intel_pt_context_switch_in(pt, sample);
3318 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3319 			pr_err("Expecting CPU-wide context switch event\n");
3320 			return -EINVAL;
3321 		}
3322 		pid = event->context_switch.next_prev_pid;
3323 		tid = event->context_switch.next_prev_tid;
3324 	} else {
3325 		if (out)
3326 			return 0;
3327 		pid = sample->pid;
3328 		tid = sample->tid;
3329 	}
3330 
3331 	if (tid == -1)
3332 		intel_pt_log("context_switch event has no tid\n");
3333 
3334 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3335 	if (ret <= 0)
3336 		return ret;
3337 
3338 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3339 }
3340 
3341 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3342 					 union perf_event *event,
3343 					 struct perf_sample *sample)
3344 {
3345 	if (!pt->per_cpu_mmaps)
3346 		return 0;
3347 
3348 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3349 		     sample->cpu, event->itrace_start.pid,
3350 		     event->itrace_start.tid, sample->time,
3351 		     perf_time_to_tsc(sample->time, &pt->tc));
3352 
3353 	return machine__set_current_tid(pt->machine, sample->cpu,
3354 					event->itrace_start.pid,
3355 					event->itrace_start.tid);
3356 }
3357 
3358 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3359 					     union perf_event *event,
3360 					     struct perf_sample *sample)
3361 {
3362 	u64 hw_id = event->aux_output_hw_id.hw_id;
3363 	struct auxtrace_queue *queue;
3364 	struct intel_pt_queue *ptq;
3365 	struct evsel *evsel;
3366 
3367 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3368 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3369 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3370 		pr_err("Bad AUX output hardware ID\n");
3371 		return -EINVAL;
3372 	}
3373 
3374 	ptq = queue->priv;
3375 
3376 	ptq->pebs[hw_id].evsel = evsel;
3377 	ptq->pebs[hw_id].id = sample->id;
3378 
3379 	return 0;
3380 }
3381 
3382 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3383 			     struct addr_location *al)
3384 {
3385 	if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3386 		if (!thread__find_map(thread, cpumode, addr, al))
3387 			return -1;
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 /* Invalidate all instruction cache entries that overlap the text poke */
3394 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3395 {
3396 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3397 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3398 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3399 	int cnt = 4096 + event->text_poke.new_len;
3400 	struct thread *thread = pt->unknown_thread;
3401 	struct addr_location al;
3402 	struct machine *machine = pt->machine;
3403 	struct intel_pt_cache_entry *e;
3404 	u64 offset;
3405 	int ret = 0;
3406 
3407 	addr_location__init(&al);
3408 	if (!event->text_poke.new_len)
3409 		goto out;
3410 
3411 	for (; cnt; cnt--, addr--) {
3412 		struct dso *dso;
3413 
3414 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3415 			if (addr < event->text_poke.addr)
3416 				goto out;
3417 			continue;
3418 		}
3419 
3420 		dso = map__dso(al.map);
3421 		if (!dso || !dso->auxtrace_cache)
3422 			continue;
3423 
3424 		offset = map__map_ip(al.map, addr);
3425 
3426 		e = intel_pt_cache_lookup(dso, machine, offset);
3427 		if (!e)
3428 			continue;
3429 
3430 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3431 			/*
3432 			 * No overlap. Working backwards there cannot be another
3433 			 * basic block that overlaps the text poke if there is a
3434 			 * branch instruction before the text poke address.
3435 			 */
3436 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3437 				goto out;
3438 		} else {
3439 			intel_pt_cache_invalidate(dso, machine, offset);
3440 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3441 				     dso->long_name, addr);
3442 		}
3443 	}
3444 out:
3445 	addr_location__exit(&al);
3446 	return ret;
3447 }
3448 
3449 static int intel_pt_process_event(struct perf_session *session,
3450 				  union perf_event *event,
3451 				  struct perf_sample *sample,
3452 				  struct perf_tool *tool)
3453 {
3454 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3455 					   auxtrace);
3456 	u64 timestamp;
3457 	int err = 0;
3458 
3459 	if (dump_trace)
3460 		return 0;
3461 
3462 	if (!tool->ordered_events) {
3463 		pr_err("Intel Processor Trace requires ordered events\n");
3464 		return -EINVAL;
3465 	}
3466 
3467 	if (sample->time && sample->time != (u64)-1)
3468 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3469 	else
3470 		timestamp = 0;
3471 
3472 	if (timestamp || pt->timeless_decoding) {
3473 		err = intel_pt_update_queues(pt);
3474 		if (err)
3475 			return err;
3476 	}
3477 
3478 	if (pt->timeless_decoding) {
3479 		if (pt->sampling_mode) {
3480 			if (sample->aux_sample.size)
3481 				err = intel_pt_process_timeless_sample(pt,
3482 								       sample);
3483 		} else if (event->header.type == PERF_RECORD_EXIT) {
3484 			err = intel_pt_process_timeless_queues(pt,
3485 							       event->fork.tid,
3486 							       sample->time);
3487 		}
3488 	} else if (timestamp) {
3489 		if (!pt->first_timestamp)
3490 			intel_pt_first_timestamp(pt, timestamp);
3491 		err = intel_pt_process_queues(pt, timestamp);
3492 	}
3493 	if (err)
3494 		return err;
3495 
3496 	if (event->header.type == PERF_RECORD_SAMPLE) {
3497 		if (pt->synth_opts.add_callchain && !sample->callchain)
3498 			intel_pt_add_callchain(pt, sample);
3499 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3500 			intel_pt_add_br_stack(pt, sample);
3501 	}
3502 
3503 	if (event->header.type == PERF_RECORD_AUX &&
3504 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3505 	    pt->synth_opts.errors) {
3506 		err = intel_pt_lost(pt, sample);
3507 		if (err)
3508 			return err;
3509 	}
3510 
3511 #ifdef HAVE_LIBTRACEEVENT
3512 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3513 		err = intel_pt_process_switch(pt, sample);
3514 	else
3515 #endif
3516 	if (event->header.type == PERF_RECORD_ITRACE_START)
3517 		err = intel_pt_process_itrace_start(pt, event, sample);
3518 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3519 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3520 	else if (event->header.type == PERF_RECORD_SWITCH ||
3521 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3522 		err = intel_pt_context_switch(pt, event, sample);
3523 
3524 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3525 		err = intel_pt_text_poke(pt, event);
3526 
3527 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3528 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3529 			     event->header.type, sample->cpu, sample->time, timestamp);
3530 		intel_pt_log_event(event);
3531 	}
3532 
3533 	return err;
3534 }
3535 
3536 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3537 {
3538 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3539 					   auxtrace);
3540 	int ret;
3541 
3542 	if (dump_trace)
3543 		return 0;
3544 
3545 	if (!tool->ordered_events)
3546 		return -EINVAL;
3547 
3548 	ret = intel_pt_update_queues(pt);
3549 	if (ret < 0)
3550 		return ret;
3551 
3552 	if (pt->timeless_decoding)
3553 		return intel_pt_process_timeless_queues(pt, -1,
3554 							MAX_TIMESTAMP - 1);
3555 
3556 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3557 }
3558 
3559 static void intel_pt_free_events(struct perf_session *session)
3560 {
3561 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3562 					   auxtrace);
3563 	struct auxtrace_queues *queues = &pt->queues;
3564 	unsigned int i;
3565 
3566 	for (i = 0; i < queues->nr_queues; i++) {
3567 		intel_pt_free_queue(queues->queue_array[i].priv);
3568 		queues->queue_array[i].priv = NULL;
3569 	}
3570 	intel_pt_log_disable();
3571 	auxtrace_queues__free(queues);
3572 }
3573 
3574 static void intel_pt_free(struct perf_session *session)
3575 {
3576 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3577 					   auxtrace);
3578 
3579 	auxtrace_heap__free(&pt->heap);
3580 	intel_pt_free_events(session);
3581 	session->auxtrace = NULL;
3582 	intel_pt_free_vmcs_info(pt);
3583 	thread__put(pt->unknown_thread);
3584 	addr_filters__exit(&pt->filts);
3585 	zfree(&pt->chain);
3586 	zfree(&pt->filter);
3587 	zfree(&pt->time_ranges);
3588 	zfree(&pt->br_stack);
3589 	free(pt);
3590 }
3591 
3592 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3593 				       struct evsel *evsel)
3594 {
3595 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3596 					   auxtrace);
3597 
3598 	return evsel->core.attr.type == pt->pmu_type;
3599 }
3600 
3601 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3602 					   union perf_event *event,
3603 					   struct perf_tool *tool __maybe_unused)
3604 {
3605 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3606 					   auxtrace);
3607 
3608 	if (!pt->data_queued) {
3609 		struct auxtrace_buffer *buffer;
3610 		off_t data_offset;
3611 		int fd = perf_data__fd(session->data);
3612 		int err;
3613 
3614 		if (perf_data__is_pipe(session->data)) {
3615 			data_offset = 0;
3616 		} else {
3617 			data_offset = lseek(fd, 0, SEEK_CUR);
3618 			if (data_offset == -1)
3619 				return -errno;
3620 		}
3621 
3622 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3623 						 data_offset, &buffer);
3624 		if (err)
3625 			return err;
3626 
3627 		/* Dump here now we have copied a piped trace out of the pipe */
3628 		if (dump_trace) {
3629 			if (auxtrace_buffer__get_data(buffer, fd)) {
3630 				intel_pt_dump_event(pt, buffer->data,
3631 						    buffer->size);
3632 				auxtrace_buffer__put_data(buffer);
3633 			}
3634 		}
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 static int intel_pt_queue_data(struct perf_session *session,
3641 			       struct perf_sample *sample,
3642 			       union perf_event *event, u64 data_offset)
3643 {
3644 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3645 					   auxtrace);
3646 	u64 timestamp;
3647 
3648 	if (event) {
3649 		return auxtrace_queues__add_event(&pt->queues, session, event,
3650 						  data_offset, NULL);
3651 	}
3652 
3653 	if (sample->time && sample->time != (u64)-1)
3654 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3655 	else
3656 		timestamp = 0;
3657 
3658 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3659 					   data_offset, timestamp);
3660 }
3661 
3662 struct intel_pt_synth {
3663 	struct perf_tool dummy_tool;
3664 	struct perf_session *session;
3665 };
3666 
3667 static int intel_pt_event_synth(struct perf_tool *tool,
3668 				union perf_event *event,
3669 				struct perf_sample *sample __maybe_unused,
3670 				struct machine *machine __maybe_unused)
3671 {
3672 	struct intel_pt_synth *intel_pt_synth =
3673 			container_of(tool, struct intel_pt_synth, dummy_tool);
3674 
3675 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3676 						 NULL);
3677 }
3678 
3679 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3680 				struct perf_event_attr *attr, u64 id)
3681 {
3682 	struct intel_pt_synth intel_pt_synth;
3683 	int err;
3684 
3685 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3686 		 name, id, (u64)attr->sample_type);
3687 
3688 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3689 	intel_pt_synth.session = session;
3690 
3691 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3692 					  &id, intel_pt_event_synth);
3693 	if (err)
3694 		pr_err("%s: failed to synthesize '%s' event type\n",
3695 		       __func__, name);
3696 
3697 	return err;
3698 }
3699 
3700 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3701 				    const char *name)
3702 {
3703 	struct evsel *evsel;
3704 
3705 	evlist__for_each_entry(evlist, evsel) {
3706 		if (evsel->core.id && evsel->core.id[0] == id) {
3707 			if (evsel->name)
3708 				zfree(&evsel->name);
3709 			evsel->name = strdup(name);
3710 			break;
3711 		}
3712 	}
3713 }
3714 
3715 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3716 					 struct evlist *evlist)
3717 {
3718 	struct evsel *evsel;
3719 
3720 	evlist__for_each_entry(evlist, evsel) {
3721 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3722 			return evsel;
3723 	}
3724 
3725 	return NULL;
3726 }
3727 
3728 static int intel_pt_synth_events(struct intel_pt *pt,
3729 				 struct perf_session *session)
3730 {
3731 	struct evlist *evlist = session->evlist;
3732 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3733 	struct perf_event_attr attr;
3734 	u64 id;
3735 	int err;
3736 
3737 	if (!evsel) {
3738 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3739 		return 0;
3740 	}
3741 
3742 	memset(&attr, 0, sizeof(struct perf_event_attr));
3743 	attr.size = sizeof(struct perf_event_attr);
3744 	attr.type = PERF_TYPE_HARDWARE;
3745 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3746 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3747 			    PERF_SAMPLE_PERIOD;
3748 	if (pt->timeless_decoding)
3749 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3750 	else
3751 		attr.sample_type |= PERF_SAMPLE_TIME;
3752 	if (!pt->per_cpu_mmaps)
3753 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3754 	attr.exclude_user = evsel->core.attr.exclude_user;
3755 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3756 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3757 	attr.exclude_host = evsel->core.attr.exclude_host;
3758 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3759 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3760 	attr.read_format = evsel->core.attr.read_format;
3761 
3762 	id = evsel->core.id[0] + 1000000000;
3763 	if (!id)
3764 		id = 1;
3765 
3766 	if (pt->synth_opts.branches) {
3767 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3768 		attr.sample_period = 1;
3769 		attr.sample_type |= PERF_SAMPLE_ADDR;
3770 		err = intel_pt_synth_event(session, "branches", &attr, id);
3771 		if (err)
3772 			return err;
3773 		pt->sample_branches = true;
3774 		pt->branches_sample_type = attr.sample_type;
3775 		pt->branches_id = id;
3776 		id += 1;
3777 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3778 	}
3779 
3780 	if (pt->synth_opts.callchain)
3781 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3782 	if (pt->synth_opts.last_branch) {
3783 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3784 		/*
3785 		 * We don't use the hardware index, but the sample generation
3786 		 * code uses the new format branch_stack with this field,
3787 		 * so the event attributes must indicate that it's present.
3788 		 */
3789 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3790 	}
3791 
3792 	if (pt->synth_opts.instructions) {
3793 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3794 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3795 			attr.sample_period =
3796 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3797 		else
3798 			attr.sample_period = pt->synth_opts.period;
3799 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3800 		if (err)
3801 			return err;
3802 		pt->sample_instructions = true;
3803 		pt->instructions_sample_type = attr.sample_type;
3804 		pt->instructions_id = id;
3805 		id += 1;
3806 	}
3807 
3808 	if (pt->synth_opts.cycles) {
3809 		attr.config = PERF_COUNT_HW_CPU_CYCLES;
3810 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3811 			attr.sample_period =
3812 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3813 		else
3814 			attr.sample_period = pt->synth_opts.period;
3815 		err = intel_pt_synth_event(session, "cycles", &attr, id);
3816 		if (err)
3817 			return err;
3818 		pt->sample_cycles = true;
3819 		pt->cycles_sample_type = attr.sample_type;
3820 		pt->cycles_id = id;
3821 		id += 1;
3822 	}
3823 
3824 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3825 	attr.sample_period = 1;
3826 
3827 	if (pt->synth_opts.transactions) {
3828 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3829 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3830 		if (err)
3831 			return err;
3832 		pt->sample_transactions = true;
3833 		pt->transactions_sample_type = attr.sample_type;
3834 		pt->transactions_id = id;
3835 		intel_pt_set_event_name(evlist, id, "transactions");
3836 		id += 1;
3837 	}
3838 
3839 	attr.type = PERF_TYPE_SYNTH;
3840 	attr.sample_type |= PERF_SAMPLE_RAW;
3841 
3842 	if (pt->synth_opts.ptwrites) {
3843 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3844 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3845 		if (err)
3846 			return err;
3847 		pt->sample_ptwrites = true;
3848 		pt->ptwrites_sample_type = attr.sample_type;
3849 		pt->ptwrites_id = id;
3850 		intel_pt_set_event_name(evlist, id, "ptwrite");
3851 		id += 1;
3852 	}
3853 
3854 	if (pt->synth_opts.pwr_events) {
3855 		pt->sample_pwr_events = true;
3856 		pt->pwr_events_sample_type = attr.sample_type;
3857 
3858 		attr.config = PERF_SYNTH_INTEL_CBR;
3859 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3860 		if (err)
3861 			return err;
3862 		pt->cbr_id = id;
3863 		intel_pt_set_event_name(evlist, id, "cbr");
3864 		id += 1;
3865 
3866 		attr.config = PERF_SYNTH_INTEL_PSB;
3867 		err = intel_pt_synth_event(session, "psb", &attr, id);
3868 		if (err)
3869 			return err;
3870 		pt->psb_id = id;
3871 		intel_pt_set_event_name(evlist, id, "psb");
3872 		id += 1;
3873 	}
3874 
3875 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3876 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3877 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3878 		if (err)
3879 			return err;
3880 		pt->mwait_id = id;
3881 		intel_pt_set_event_name(evlist, id, "mwait");
3882 		id += 1;
3883 
3884 		attr.config = PERF_SYNTH_INTEL_PWRE;
3885 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3886 		if (err)
3887 			return err;
3888 		pt->pwre_id = id;
3889 		intel_pt_set_event_name(evlist, id, "pwre");
3890 		id += 1;
3891 
3892 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3893 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3894 		if (err)
3895 			return err;
3896 		pt->exstop_id = id;
3897 		intel_pt_set_event_name(evlist, id, "exstop");
3898 		id += 1;
3899 
3900 		attr.config = PERF_SYNTH_INTEL_PWRX;
3901 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3902 		if (err)
3903 			return err;
3904 		pt->pwrx_id = id;
3905 		intel_pt_set_event_name(evlist, id, "pwrx");
3906 		id += 1;
3907 	}
3908 
3909 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3910 		attr.config = PERF_SYNTH_INTEL_EVT;
3911 		err = intel_pt_synth_event(session, "evt", &attr, id);
3912 		if (err)
3913 			return err;
3914 		pt->evt_sample_type = attr.sample_type;
3915 		pt->evt_id = id;
3916 		intel_pt_set_event_name(evlist, id, "evt");
3917 		id += 1;
3918 	}
3919 
3920 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3921 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3922 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3923 		if (err)
3924 			return err;
3925 		pt->iflag_chg_sample_type = attr.sample_type;
3926 		pt->iflag_chg_id = id;
3927 		intel_pt_set_event_name(evlist, id, "iflag");
3928 		id += 1;
3929 	}
3930 
3931 	return 0;
3932 }
3933 
3934 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3935 {
3936 	struct evsel *evsel;
3937 
3938 	if (!pt->synth_opts.other_events)
3939 		return;
3940 
3941 	evlist__for_each_entry(pt->session->evlist, evsel) {
3942 		if (evsel->core.attr.aux_output && evsel->core.id) {
3943 			if (pt->single_pebs) {
3944 				pt->single_pebs = false;
3945 				return;
3946 			}
3947 			pt->single_pebs = true;
3948 			pt->sample_pebs = true;
3949 			pt->pebs_evsel = evsel;
3950 		}
3951 	}
3952 }
3953 
3954 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3955 {
3956 	struct evsel *evsel;
3957 
3958 	evlist__for_each_entry_reverse(evlist, evsel) {
3959 		const char *name = evsel__name(evsel);
3960 
3961 		if (!strcmp(name, "sched:sched_switch"))
3962 			return evsel;
3963 	}
3964 
3965 	return NULL;
3966 }
3967 
3968 static bool intel_pt_find_switch(struct evlist *evlist)
3969 {
3970 	struct evsel *evsel;
3971 
3972 	evlist__for_each_entry(evlist, evsel) {
3973 		if (evsel->core.attr.context_switch)
3974 			return true;
3975 	}
3976 
3977 	return false;
3978 }
3979 
3980 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3981 {
3982 	struct intel_pt *pt = data;
3983 
3984 	if (!strcmp(var, "intel-pt.mispred-all"))
3985 		pt->mispred_all = perf_config_bool(var, value);
3986 
3987 	if (!strcmp(var, "intel-pt.max-loops"))
3988 		perf_config_int(&pt->max_loops, var, value);
3989 
3990 	return 0;
3991 }
3992 
3993 /* Find least TSC which converts to ns or later */
3994 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3995 {
3996 	u64 tsc, tm;
3997 
3998 	tsc = perf_time_to_tsc(ns, &pt->tc);
3999 
4000 	while (1) {
4001 		tm = tsc_to_perf_time(tsc, &pt->tc);
4002 		if (tm < ns)
4003 			break;
4004 		tsc -= 1;
4005 	}
4006 
4007 	while (tm < ns)
4008 		tm = tsc_to_perf_time(++tsc, &pt->tc);
4009 
4010 	return tsc;
4011 }
4012 
4013 /* Find greatest TSC which converts to ns or earlier */
4014 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4015 {
4016 	u64 tsc, tm;
4017 
4018 	tsc = perf_time_to_tsc(ns, &pt->tc);
4019 
4020 	while (1) {
4021 		tm = tsc_to_perf_time(tsc, &pt->tc);
4022 		if (tm > ns)
4023 			break;
4024 		tsc += 1;
4025 	}
4026 
4027 	while (tm > ns)
4028 		tm = tsc_to_perf_time(--tsc, &pt->tc);
4029 
4030 	return tsc;
4031 }
4032 
4033 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4034 				      struct itrace_synth_opts *opts)
4035 {
4036 	struct perf_time_interval *p = opts->ptime_range;
4037 	int n = opts->range_num;
4038 	int i;
4039 
4040 	if (!n || !p || pt->timeless_decoding)
4041 		return 0;
4042 
4043 	pt->time_ranges = calloc(n, sizeof(struct range));
4044 	if (!pt->time_ranges)
4045 		return -ENOMEM;
4046 
4047 	pt->range_cnt = n;
4048 
4049 	intel_pt_log("%s: %u range(s)\n", __func__, n);
4050 
4051 	for (i = 0; i < n; i++) {
4052 		struct range *r = &pt->time_ranges[i];
4053 		u64 ts = p[i].start;
4054 		u64 te = p[i].end;
4055 
4056 		/*
4057 		 * Take care to ensure the TSC range matches the perf-time range
4058 		 * when converted back to perf-time.
4059 		 */
4060 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4061 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4062 
4063 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4064 			     i, ts, te);
4065 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4066 			     i, r->start, r->end);
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4073 {
4074 	struct intel_pt_vmcs_info *vmcs_info;
4075 	u64 tsc_offset, vmcs;
4076 	char *p = *args;
4077 
4078 	errno = 0;
4079 
4080 	p = skip_spaces(p);
4081 	if (!*p)
4082 		return 1;
4083 
4084 	tsc_offset = strtoull(p, &p, 0);
4085 	if (errno)
4086 		return -errno;
4087 	p = skip_spaces(p);
4088 	if (*p != ':') {
4089 		pt->dflt_tsc_offset = tsc_offset;
4090 		*args = p;
4091 		return 0;
4092 	}
4093 	p += 1;
4094 	while (1) {
4095 		vmcs = strtoull(p, &p, 0);
4096 		if (errno)
4097 			return -errno;
4098 		if (!vmcs)
4099 			return -EINVAL;
4100 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4101 		if (!vmcs_info)
4102 			return -ENOMEM;
4103 		p = skip_spaces(p);
4104 		if (*p != ',')
4105 			break;
4106 		p += 1;
4107 	}
4108 	*args = p;
4109 	return 0;
4110 }
4111 
4112 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4113 {
4114 	char *args = pt->synth_opts.vm_tm_corr_args;
4115 	int ret;
4116 
4117 	if (!args)
4118 		return 0;
4119 
4120 	do {
4121 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4122 	} while (!ret);
4123 
4124 	if (ret < 0) {
4125 		pr_err("Failed to parse VM Time Correlation options\n");
4126 		return ret;
4127 	}
4128 
4129 	return 0;
4130 }
4131 
4132 static const char * const intel_pt_info_fmts[] = {
4133 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4134 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4135 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4136 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4137 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4138 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4139 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4140 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4141 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4142 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4143 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4144 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4145 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4146 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4147 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4148 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4149 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4150 };
4151 
4152 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4153 {
4154 	int i;
4155 
4156 	if (!dump_trace)
4157 		return;
4158 
4159 	for (i = start; i <= finish; i++) {
4160 		const char *fmt = intel_pt_info_fmts[i];
4161 
4162 		if (fmt)
4163 			fprintf(stdout, fmt, arr[i]);
4164 	}
4165 }
4166 
4167 static void intel_pt_print_info_str(const char *name, const char *str)
4168 {
4169 	if (!dump_trace)
4170 		return;
4171 
4172 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4173 }
4174 
4175 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4176 {
4177 	return auxtrace_info->header.size >=
4178 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4179 }
4180 
4181 int intel_pt_process_auxtrace_info(union perf_event *event,
4182 				   struct perf_session *session)
4183 {
4184 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4185 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4186 	struct intel_pt *pt;
4187 	void *info_end;
4188 	__u64 *info;
4189 	int err;
4190 
4191 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4192 					min_sz)
4193 		return -EINVAL;
4194 
4195 	pt = zalloc(sizeof(struct intel_pt));
4196 	if (!pt)
4197 		return -ENOMEM;
4198 
4199 	pt->vmcs_info = RB_ROOT;
4200 
4201 	addr_filters__init(&pt->filts);
4202 
4203 	err = perf_config(intel_pt_perf_config, pt);
4204 	if (err)
4205 		goto err_free;
4206 
4207 	err = auxtrace_queues__init(&pt->queues);
4208 	if (err)
4209 		goto err_free;
4210 
4211 	if (session->itrace_synth_opts->set) {
4212 		pt->synth_opts = *session->itrace_synth_opts;
4213 	} else {
4214 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4215 
4216 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4217 		if (!opts->default_no_sample && !opts->inject) {
4218 			pt->synth_opts.branches = false;
4219 			pt->synth_opts.callchain = true;
4220 			pt->synth_opts.add_callchain = true;
4221 		}
4222 		pt->synth_opts.thread_stack = opts->thread_stack;
4223 	}
4224 
4225 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4226 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4227 
4228 	pt->session = session;
4229 	pt->machine = &session->machines.host; /* No kvm support */
4230 	pt->auxtrace_type = auxtrace_info->type;
4231 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4232 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4233 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4234 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4235 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4236 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4237 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4238 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4239 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4240 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4241 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4242 			    INTEL_PT_PER_CPU_MMAPS);
4243 
4244 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4245 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4246 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4247 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4248 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4249 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4250 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4251 				    INTEL_PT_CYC_BIT);
4252 	}
4253 
4254 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4255 		pt->max_non_turbo_ratio =
4256 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4257 		intel_pt_print_info(&auxtrace_info->priv[0],
4258 				    INTEL_PT_MAX_NONTURBO_RATIO,
4259 				    INTEL_PT_MAX_NONTURBO_RATIO);
4260 	}
4261 
4262 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4263 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4264 
4265 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4266 		size_t len;
4267 
4268 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4269 		intel_pt_print_info(&auxtrace_info->priv[0],
4270 				    INTEL_PT_FILTER_STR_LEN,
4271 				    INTEL_PT_FILTER_STR_LEN);
4272 		if (len) {
4273 			const char *filter = (const char *)info;
4274 
4275 			len = roundup(len + 1, 8);
4276 			info += len >> 3;
4277 			if ((void *)info > info_end) {
4278 				pr_err("%s: bad filter string length\n", __func__);
4279 				err = -EINVAL;
4280 				goto err_free_queues;
4281 			}
4282 			pt->filter = memdup(filter, len);
4283 			if (!pt->filter) {
4284 				err = -ENOMEM;
4285 				goto err_free_queues;
4286 			}
4287 			if (session->header.needs_swap)
4288 				mem_bswap_64(pt->filter, len);
4289 			if (pt->filter[len - 1]) {
4290 				pr_err("%s: filter string not null terminated\n", __func__);
4291 				err = -EINVAL;
4292 				goto err_free_queues;
4293 			}
4294 			err = addr_filters__parse_bare_filter(&pt->filts,
4295 							      filter);
4296 			if (err)
4297 				goto err_free_queues;
4298 		}
4299 		intel_pt_print_info_str("Filter string", pt->filter);
4300 	}
4301 
4302 	if ((void *)info < info_end) {
4303 		pt->cap_event_trace = *info++;
4304 		if (dump_trace)
4305 			fprintf(stdout, "  Cap Event Trace     %d\n",
4306 				pt->cap_event_trace);
4307 	}
4308 
4309 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4310 	if (pt->timeless_decoding && !pt->tc.time_mult)
4311 		pt->tc.time_mult = 1;
4312 	pt->have_tsc = intel_pt_have_tsc(pt);
4313 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4314 	pt->est_tsc = !pt->timeless_decoding;
4315 
4316 	if (pt->synth_opts.vm_time_correlation) {
4317 		if (pt->timeless_decoding) {
4318 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4319 			err = -EINVAL;
4320 			goto err_free_queues;
4321 		}
4322 		if (session->itrace_synth_opts->ptime_range) {
4323 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4324 			err = -EINVAL;
4325 			goto err_free_queues;
4326 		}
4327 		/* Currently TSC Offset is calculated using MTC packets */
4328 		if (!intel_pt_have_mtc(pt)) {
4329 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4330 			err = -EINVAL;
4331 			goto err_free_queues;
4332 		}
4333 		err = intel_pt_parse_vm_tm_corr_args(pt);
4334 		if (err)
4335 			goto err_free_queues;
4336 	}
4337 
4338 	pt->unknown_thread = thread__new(999999999, 999999999);
4339 	if (!pt->unknown_thread) {
4340 		err = -ENOMEM;
4341 		goto err_free_queues;
4342 	}
4343 
4344 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4345 	if (err)
4346 		goto err_delete_thread;
4347 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4348 		err = -ENOMEM;
4349 		goto err_delete_thread;
4350 	}
4351 
4352 	pt->auxtrace.process_event = intel_pt_process_event;
4353 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4354 	pt->auxtrace.queue_data = intel_pt_queue_data;
4355 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4356 	pt->auxtrace.flush_events = intel_pt_flush;
4357 	pt->auxtrace.free_events = intel_pt_free_events;
4358 	pt->auxtrace.free = intel_pt_free;
4359 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4360 	session->auxtrace = &pt->auxtrace;
4361 
4362 	if (dump_trace)
4363 		return 0;
4364 
4365 	if (pt->have_sched_switch == 1) {
4366 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4367 		if (!pt->switch_evsel) {
4368 			pr_err("%s: missing sched_switch event\n", __func__);
4369 			err = -EINVAL;
4370 			goto err_delete_thread;
4371 		}
4372 	} else if (pt->have_sched_switch == 2 &&
4373 		   !intel_pt_find_switch(session->evlist)) {
4374 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4375 		err = -EINVAL;
4376 		goto err_delete_thread;
4377 	}
4378 
4379 	if (pt->synth_opts.log) {
4380 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4381 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4382 
4383 		intel_pt_log_enable(log_on_error, log_on_error_size);
4384 	}
4385 
4386 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4387 	if (pt->tc.time_mult) {
4388 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4389 
4390 		if (!pt->max_non_turbo_ratio)
4391 			pt->max_non_turbo_ratio =
4392 					(tsc_freq + 50000000) / 100000000;
4393 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4394 		intel_pt_log("Maximum non-turbo ratio %u\n",
4395 			     pt->max_non_turbo_ratio);
4396 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4397 	}
4398 
4399 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4400 	if (err)
4401 		goto err_delete_thread;
4402 
4403 	if (pt->synth_opts.calls)
4404 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4405 				       PERF_IP_FLAG_TRACE_END;
4406 	if (pt->synth_opts.returns)
4407 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4408 				       PERF_IP_FLAG_TRACE_BEGIN;
4409 
4410 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4411 	    !symbol_conf.use_callchain) {
4412 		symbol_conf.use_callchain = true;
4413 		if (callchain_register_param(&callchain_param) < 0) {
4414 			symbol_conf.use_callchain = false;
4415 			pt->synth_opts.callchain = false;
4416 			pt->synth_opts.add_callchain = false;
4417 		}
4418 	}
4419 
4420 	if (pt->synth_opts.add_callchain) {
4421 		err = intel_pt_callchain_init(pt);
4422 		if (err)
4423 			goto err_delete_thread;
4424 	}
4425 
4426 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4427 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4428 		pt->br_stack_sz_plus = pt->br_stack_sz;
4429 	}
4430 
4431 	if (pt->synth_opts.add_last_branch) {
4432 		err = intel_pt_br_stack_init(pt);
4433 		if (err)
4434 			goto err_delete_thread;
4435 		/*
4436 		 * Additional branch stack size to cater for tracing from the
4437 		 * actual sample ip to where the sample time is recorded.
4438 		 * Measured at about 200 branches, but generously set to 1024.
4439 		 * If kernel space is not being traced, then add just 1 for the
4440 		 * branch to kernel space.
4441 		 */
4442 		if (intel_pt_tracing_kernel(pt))
4443 			pt->br_stack_sz_plus += 1024;
4444 		else
4445 			pt->br_stack_sz_plus += 1;
4446 	}
4447 
4448 	pt->use_thread_stack = pt->synth_opts.callchain ||
4449 			       pt->synth_opts.add_callchain ||
4450 			       pt->synth_opts.thread_stack ||
4451 			       pt->synth_opts.last_branch ||
4452 			       pt->synth_opts.add_last_branch;
4453 
4454 	pt->callstack = pt->synth_opts.callchain ||
4455 			pt->synth_opts.add_callchain ||
4456 			pt->synth_opts.thread_stack;
4457 
4458 	err = intel_pt_synth_events(pt, session);
4459 	if (err)
4460 		goto err_delete_thread;
4461 
4462 	intel_pt_setup_pebs_events(pt);
4463 
4464 	if (perf_data__is_pipe(session->data)) {
4465 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4466 			   "         The output cannot relied upon.  In particular,\n"
4467 			   "         timestamps and the order of events may be incorrect.\n");
4468 	}
4469 
4470 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4471 		err = auxtrace_queue_data(session, true, true);
4472 	else
4473 		err = auxtrace_queues__process_index(&pt->queues, session);
4474 	if (err)
4475 		goto err_delete_thread;
4476 
4477 	if (pt->queues.populated)
4478 		pt->data_queued = true;
4479 
4480 	if (pt->timeless_decoding)
4481 		pr_debug2("Intel PT decoding without timestamps\n");
4482 
4483 	return 0;
4484 
4485 err_delete_thread:
4486 	zfree(&pt->chain);
4487 	thread__zput(pt->unknown_thread);
4488 err_free_queues:
4489 	intel_pt_log_disable();
4490 	auxtrace_queues__free(&pt->queues);
4491 	session->auxtrace = NULL;
4492 err_free:
4493 	addr_filters__exit(&pt->filts);
4494 	zfree(&pt->filter);
4495 	zfree(&pt->time_ranges);
4496 	free(pt);
4497 	return err;
4498 }
4499