1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/synthetic-events.h" 37 #include "time-utils.h" 38 39 #include "../arch/x86/include/uapi/asm/perf_regs.h" 40 41 #include "intel-pt-decoder/intel-pt-log.h" 42 #include "intel-pt-decoder/intel-pt-decoder.h" 43 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 44 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 45 46 #define MAX_TIMESTAMP (~0ULL) 47 48 struct range { 49 u64 start; 50 u64 end; 51 }; 52 53 struct intel_pt { 54 struct auxtrace auxtrace; 55 struct auxtrace_queues queues; 56 struct auxtrace_heap heap; 57 u32 auxtrace_type; 58 struct perf_session *session; 59 struct machine *machine; 60 struct evsel *switch_evsel; 61 struct thread *unknown_thread; 62 bool timeless_decoding; 63 bool sampling_mode; 64 bool snapshot_mode; 65 bool per_cpu_mmaps; 66 bool have_tsc; 67 bool data_queued; 68 bool est_tsc; 69 bool sync_switch; 70 bool mispred_all; 71 int have_sched_switch; 72 u32 pmu_type; 73 u64 kernel_start; 74 u64 switch_ip; 75 u64 ptss_ip; 76 77 struct perf_tsc_conversion tc; 78 bool cap_user_time_zero; 79 80 struct itrace_synth_opts synth_opts; 81 82 bool sample_instructions; 83 u64 instructions_sample_type; 84 u64 instructions_id; 85 86 bool sample_branches; 87 u32 branches_filter; 88 u64 branches_sample_type; 89 u64 branches_id; 90 91 bool sample_transactions; 92 u64 transactions_sample_type; 93 u64 transactions_id; 94 95 bool sample_ptwrites; 96 u64 ptwrites_sample_type; 97 u64 ptwrites_id; 98 99 bool sample_pwr_events; 100 u64 pwr_events_sample_type; 101 u64 mwait_id; 102 u64 pwre_id; 103 u64 exstop_id; 104 u64 pwrx_id; 105 u64 cbr_id; 106 107 bool sample_pebs; 108 struct evsel *pebs_evsel; 109 110 u64 tsc_bit; 111 u64 mtc_bit; 112 u64 mtc_freq_bits; 113 u32 tsc_ctc_ratio_n; 114 u32 tsc_ctc_ratio_d; 115 u64 cyc_bit; 116 u64 noretcomp_bit; 117 unsigned max_non_turbo_ratio; 118 unsigned cbr2khz; 119 120 unsigned long num_events; 121 122 char *filter; 123 struct addr_filters filts; 124 125 struct range *time_ranges; 126 unsigned int range_cnt; 127 }; 128 129 enum switch_state { 130 INTEL_PT_SS_NOT_TRACING, 131 INTEL_PT_SS_UNKNOWN, 132 INTEL_PT_SS_TRACING, 133 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 134 INTEL_PT_SS_EXPECTING_SWITCH_IP, 135 }; 136 137 struct intel_pt_queue { 138 struct intel_pt *pt; 139 unsigned int queue_nr; 140 struct auxtrace_buffer *buffer; 141 struct auxtrace_buffer *old_buffer; 142 void *decoder; 143 const struct intel_pt_state *state; 144 struct ip_callchain *chain; 145 struct branch_stack *last_branch; 146 struct branch_stack *last_branch_rb; 147 size_t last_branch_pos; 148 union perf_event *event_buf; 149 bool on_heap; 150 bool stop; 151 bool step_through_buffers; 152 bool use_buffer_pid_tid; 153 bool sync_switch; 154 pid_t pid, tid; 155 int cpu; 156 int switch_state; 157 pid_t next_tid; 158 struct thread *thread; 159 bool exclude_kernel; 160 bool have_sample; 161 u64 time; 162 u64 timestamp; 163 u64 sel_timestamp; 164 bool sel_start; 165 unsigned int sel_idx; 166 u32 flags; 167 u16 insn_len; 168 u64 last_insn_cnt; 169 u64 ipc_insn_cnt; 170 u64 ipc_cyc_cnt; 171 u64 last_in_insn_cnt; 172 u64 last_in_cyc_cnt; 173 u64 last_br_insn_cnt; 174 u64 last_br_cyc_cnt; 175 unsigned int cbr_seen; 176 char insn[INTEL_PT_INSN_BUF_SZ]; 177 }; 178 179 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 180 unsigned char *buf, size_t len) 181 { 182 struct intel_pt_pkt packet; 183 size_t pos = 0; 184 int ret, pkt_len, i; 185 char desc[INTEL_PT_PKT_DESC_MAX]; 186 const char *color = PERF_COLOR_BLUE; 187 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 188 189 color_fprintf(stdout, color, 190 ". ... Intel Processor Trace data: size %zu bytes\n", 191 len); 192 193 while (len) { 194 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 195 if (ret > 0) 196 pkt_len = ret; 197 else 198 pkt_len = 1; 199 printf("."); 200 color_fprintf(stdout, color, " %08x: ", pos); 201 for (i = 0; i < pkt_len; i++) 202 color_fprintf(stdout, color, " %02x", buf[i]); 203 for (; i < 16; i++) 204 color_fprintf(stdout, color, " "); 205 if (ret > 0) { 206 ret = intel_pt_pkt_desc(&packet, desc, 207 INTEL_PT_PKT_DESC_MAX); 208 if (ret > 0) 209 color_fprintf(stdout, color, " %s\n", desc); 210 } else { 211 color_fprintf(stdout, color, " Bad packet!\n"); 212 } 213 pos += pkt_len; 214 buf += pkt_len; 215 len -= pkt_len; 216 } 217 } 218 219 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 220 size_t len) 221 { 222 printf(".\n"); 223 intel_pt_dump(pt, buf, len); 224 } 225 226 static void intel_pt_log_event(union perf_event *event) 227 { 228 FILE *f = intel_pt_log_fp(); 229 230 if (!intel_pt_enable_logging || !f) 231 return; 232 233 perf_event__fprintf(event, f); 234 } 235 236 static void intel_pt_dump_sample(struct perf_session *session, 237 struct perf_sample *sample) 238 { 239 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 240 auxtrace); 241 242 printf("\n"); 243 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 244 } 245 246 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 247 struct auxtrace_buffer *b) 248 { 249 bool consecutive = false; 250 void *start; 251 252 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 253 pt->have_tsc, &consecutive); 254 if (!start) 255 return -EINVAL; 256 b->use_size = b->data + b->size - start; 257 b->use_data = start; 258 if (b->use_size && consecutive) 259 b->consecutive = true; 260 return 0; 261 } 262 263 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 264 struct auxtrace_buffer *buffer, 265 struct auxtrace_buffer *old_buffer, 266 struct intel_pt_buffer *b) 267 { 268 bool might_overlap; 269 270 if (!buffer->data) { 271 int fd = perf_data__fd(ptq->pt->session->data); 272 273 buffer->data = auxtrace_buffer__get_data(buffer, fd); 274 if (!buffer->data) 275 return -ENOMEM; 276 } 277 278 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 279 if (might_overlap && !buffer->consecutive && old_buffer && 280 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 281 return -ENOMEM; 282 283 if (buffer->use_data) { 284 b->len = buffer->use_size; 285 b->buf = buffer->use_data; 286 } else { 287 b->len = buffer->size; 288 b->buf = buffer->data; 289 } 290 b->ref_timestamp = buffer->reference; 291 292 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 293 b->consecutive = false; 294 b->trace_nr = buffer->buffer_nr + 1; 295 } else { 296 b->consecutive = true; 297 } 298 299 return 0; 300 } 301 302 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 303 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 304 struct auxtrace_buffer *buffer) 305 { 306 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 307 return; 308 309 auxtrace_buffer__drop_data(buffer); 310 } 311 312 /* Must be serialized with respect to intel_pt_get_trace() */ 313 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 314 void *cb_data) 315 { 316 struct intel_pt_queue *ptq = data; 317 struct auxtrace_buffer *buffer = ptq->buffer; 318 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 319 struct auxtrace_queue *queue; 320 int err = 0; 321 322 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 323 324 while (1) { 325 struct intel_pt_buffer b = { .len = 0 }; 326 327 buffer = auxtrace_buffer__next(queue, buffer); 328 if (!buffer) 329 break; 330 331 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 332 if (err) 333 break; 334 335 if (b.len) { 336 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 337 old_buffer = buffer; 338 } else { 339 intel_pt_lookahead_drop_buffer(ptq, buffer); 340 continue; 341 } 342 343 err = cb(&b, cb_data); 344 if (err) 345 break; 346 } 347 348 if (buffer != old_buffer) 349 intel_pt_lookahead_drop_buffer(ptq, buffer); 350 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 351 352 return err; 353 } 354 355 /* 356 * This function assumes data is processed sequentially only. 357 * Must be serialized with respect to intel_pt_lookahead() 358 */ 359 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 360 { 361 struct intel_pt_queue *ptq = data; 362 struct auxtrace_buffer *buffer = ptq->buffer; 363 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 364 struct auxtrace_queue *queue; 365 int err; 366 367 if (ptq->stop) { 368 b->len = 0; 369 return 0; 370 } 371 372 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 373 374 buffer = auxtrace_buffer__next(queue, buffer); 375 if (!buffer) { 376 if (old_buffer) 377 auxtrace_buffer__drop_data(old_buffer); 378 b->len = 0; 379 return 0; 380 } 381 382 ptq->buffer = buffer; 383 384 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 385 if (err) 386 return err; 387 388 if (ptq->step_through_buffers) 389 ptq->stop = true; 390 391 if (b->len) { 392 if (old_buffer) 393 auxtrace_buffer__drop_data(old_buffer); 394 ptq->old_buffer = buffer; 395 } else { 396 auxtrace_buffer__drop_data(buffer); 397 return intel_pt_get_trace(b, data); 398 } 399 400 return 0; 401 } 402 403 struct intel_pt_cache_entry { 404 struct auxtrace_cache_entry entry; 405 u64 insn_cnt; 406 u64 byte_cnt; 407 enum intel_pt_insn_op op; 408 enum intel_pt_insn_branch branch; 409 int length; 410 int32_t rel; 411 char insn[INTEL_PT_INSN_BUF_SZ]; 412 }; 413 414 static int intel_pt_config_div(const char *var, const char *value, void *data) 415 { 416 int *d = data; 417 long val; 418 419 if (!strcmp(var, "intel-pt.cache-divisor")) { 420 val = strtol(value, NULL, 0); 421 if (val > 0 && val <= INT_MAX) 422 *d = val; 423 } 424 425 return 0; 426 } 427 428 static int intel_pt_cache_divisor(void) 429 { 430 static int d; 431 432 if (d) 433 return d; 434 435 perf_config(intel_pt_config_div, &d); 436 437 if (!d) 438 d = 64; 439 440 return d; 441 } 442 443 static unsigned int intel_pt_cache_size(struct dso *dso, 444 struct machine *machine) 445 { 446 off_t size; 447 448 size = dso__data_size(dso, machine); 449 size /= intel_pt_cache_divisor(); 450 if (size < 1000) 451 return 10; 452 if (size > (1 << 21)) 453 return 21; 454 return 32 - __builtin_clz(size); 455 } 456 457 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 458 struct machine *machine) 459 { 460 struct auxtrace_cache *c; 461 unsigned int bits; 462 463 if (dso->auxtrace_cache) 464 return dso->auxtrace_cache; 465 466 bits = intel_pt_cache_size(dso, machine); 467 468 /* Ignoring cache creation failure */ 469 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 470 471 dso->auxtrace_cache = c; 472 473 return c; 474 } 475 476 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 477 u64 offset, u64 insn_cnt, u64 byte_cnt, 478 struct intel_pt_insn *intel_pt_insn) 479 { 480 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 481 struct intel_pt_cache_entry *e; 482 int err; 483 484 if (!c) 485 return -ENOMEM; 486 487 e = auxtrace_cache__alloc_entry(c); 488 if (!e) 489 return -ENOMEM; 490 491 e->insn_cnt = insn_cnt; 492 e->byte_cnt = byte_cnt; 493 e->op = intel_pt_insn->op; 494 e->branch = intel_pt_insn->branch; 495 e->length = intel_pt_insn->length; 496 e->rel = intel_pt_insn->rel; 497 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 498 499 err = auxtrace_cache__add(c, offset, &e->entry); 500 if (err) 501 auxtrace_cache__free_entry(c, e); 502 503 return err; 504 } 505 506 static struct intel_pt_cache_entry * 507 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 508 { 509 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 510 511 if (!c) 512 return NULL; 513 514 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 515 } 516 517 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip) 518 { 519 return ip >= pt->kernel_start ? 520 PERF_RECORD_MISC_KERNEL : 521 PERF_RECORD_MISC_USER; 522 } 523 524 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 525 uint64_t *insn_cnt_ptr, uint64_t *ip, 526 uint64_t to_ip, uint64_t max_insn_cnt, 527 void *data) 528 { 529 struct intel_pt_queue *ptq = data; 530 struct machine *machine = ptq->pt->machine; 531 struct thread *thread; 532 struct addr_location al; 533 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 534 ssize_t len; 535 int x86_64; 536 u8 cpumode; 537 u64 offset, start_offset, start_ip; 538 u64 insn_cnt = 0; 539 bool one_map = true; 540 541 intel_pt_insn->length = 0; 542 543 if (to_ip && *ip == to_ip) 544 goto out_no_cache; 545 546 cpumode = intel_pt_cpumode(ptq->pt, *ip); 547 548 thread = ptq->thread; 549 if (!thread) { 550 if (cpumode != PERF_RECORD_MISC_KERNEL) 551 return -EINVAL; 552 thread = ptq->pt->unknown_thread; 553 } 554 555 while (1) { 556 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 557 return -EINVAL; 558 559 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 560 dso__data_status_seen(al.map->dso, 561 DSO_DATA_STATUS_SEEN_ITRACE)) 562 return -ENOENT; 563 564 offset = al.map->map_ip(al.map, *ip); 565 566 if (!to_ip && one_map) { 567 struct intel_pt_cache_entry *e; 568 569 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 570 if (e && 571 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 572 *insn_cnt_ptr = e->insn_cnt; 573 *ip += e->byte_cnt; 574 intel_pt_insn->op = e->op; 575 intel_pt_insn->branch = e->branch; 576 intel_pt_insn->length = e->length; 577 intel_pt_insn->rel = e->rel; 578 memcpy(intel_pt_insn->buf, e->insn, 579 INTEL_PT_INSN_BUF_SZ); 580 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 581 return 0; 582 } 583 } 584 585 start_offset = offset; 586 start_ip = *ip; 587 588 /* Load maps to ensure dso->is_64_bit has been updated */ 589 map__load(al.map); 590 591 x86_64 = al.map->dso->is_64_bit; 592 593 while (1) { 594 len = dso__data_read_offset(al.map->dso, machine, 595 offset, buf, 596 INTEL_PT_INSN_BUF_SZ); 597 if (len <= 0) 598 return -EINVAL; 599 600 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 601 return -EINVAL; 602 603 intel_pt_log_insn(intel_pt_insn, *ip); 604 605 insn_cnt += 1; 606 607 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 608 goto out; 609 610 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 611 goto out_no_cache; 612 613 *ip += intel_pt_insn->length; 614 615 if (to_ip && *ip == to_ip) 616 goto out_no_cache; 617 618 if (*ip >= al.map->end) 619 break; 620 621 offset += intel_pt_insn->length; 622 } 623 one_map = false; 624 } 625 out: 626 *insn_cnt_ptr = insn_cnt; 627 628 if (!one_map) 629 goto out_no_cache; 630 631 /* 632 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 633 * entries. 634 */ 635 if (to_ip) { 636 struct intel_pt_cache_entry *e; 637 638 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 639 if (e) 640 return 0; 641 } 642 643 /* Ignore cache errors */ 644 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 645 *ip - start_ip, intel_pt_insn); 646 647 return 0; 648 649 out_no_cache: 650 *insn_cnt_ptr = insn_cnt; 651 return 0; 652 } 653 654 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 655 uint64_t offset, const char *filename) 656 { 657 struct addr_filter *filt; 658 bool have_filter = false; 659 bool hit_tracestop = false; 660 bool hit_filter = false; 661 662 list_for_each_entry(filt, &pt->filts.head, list) { 663 if (filt->start) 664 have_filter = true; 665 666 if ((filename && !filt->filename) || 667 (!filename && filt->filename) || 668 (filename && strcmp(filename, filt->filename))) 669 continue; 670 671 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 672 continue; 673 674 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 675 ip, offset, filename ? filename : "[kernel]", 676 filt->start ? "filter" : "stop", 677 filt->addr, filt->size); 678 679 if (filt->start) 680 hit_filter = true; 681 else 682 hit_tracestop = true; 683 } 684 685 if (!hit_tracestop && !hit_filter) 686 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 687 ip, offset, filename ? filename : "[kernel]"); 688 689 return hit_tracestop || (have_filter && !hit_filter); 690 } 691 692 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 693 { 694 struct intel_pt_queue *ptq = data; 695 struct thread *thread; 696 struct addr_location al; 697 u8 cpumode; 698 u64 offset; 699 700 if (ip >= ptq->pt->kernel_start) 701 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 702 703 cpumode = PERF_RECORD_MISC_USER; 704 705 thread = ptq->thread; 706 if (!thread) 707 return -EINVAL; 708 709 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 710 return -EINVAL; 711 712 offset = al.map->map_ip(al.map, ip); 713 714 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 715 al.map->dso->long_name); 716 } 717 718 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 719 { 720 return __intel_pt_pgd_ip(ip, data) > 0; 721 } 722 723 static bool intel_pt_get_config(struct intel_pt *pt, 724 struct perf_event_attr *attr, u64 *config) 725 { 726 if (attr->type == pt->pmu_type) { 727 if (config) 728 *config = attr->config; 729 return true; 730 } 731 732 return false; 733 } 734 735 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 736 { 737 struct evsel *evsel; 738 739 evlist__for_each_entry(pt->session->evlist, evsel) { 740 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 741 !evsel->core.attr.exclude_kernel) 742 return false; 743 } 744 return true; 745 } 746 747 static bool intel_pt_return_compression(struct intel_pt *pt) 748 { 749 struct evsel *evsel; 750 u64 config; 751 752 if (!pt->noretcomp_bit) 753 return true; 754 755 evlist__for_each_entry(pt->session->evlist, evsel) { 756 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 757 (config & pt->noretcomp_bit)) 758 return false; 759 } 760 return true; 761 } 762 763 static bool intel_pt_branch_enable(struct intel_pt *pt) 764 { 765 struct evsel *evsel; 766 u64 config; 767 768 evlist__for_each_entry(pt->session->evlist, evsel) { 769 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 770 (config & 1) && !(config & 0x2000)) 771 return false; 772 } 773 return true; 774 } 775 776 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 777 { 778 struct evsel *evsel; 779 unsigned int shift; 780 u64 config; 781 782 if (!pt->mtc_freq_bits) 783 return 0; 784 785 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 786 config >>= 1; 787 788 evlist__for_each_entry(pt->session->evlist, evsel) { 789 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 790 return (config & pt->mtc_freq_bits) >> shift; 791 } 792 return 0; 793 } 794 795 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 796 { 797 struct evsel *evsel; 798 bool timeless_decoding = true; 799 u64 config; 800 801 if (!pt->tsc_bit || !pt->cap_user_time_zero) 802 return true; 803 804 evlist__for_each_entry(pt->session->evlist, evsel) { 805 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 806 return true; 807 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 808 if (config & pt->tsc_bit) 809 timeless_decoding = false; 810 else 811 return true; 812 } 813 } 814 return timeless_decoding; 815 } 816 817 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 818 { 819 struct evsel *evsel; 820 821 evlist__for_each_entry(pt->session->evlist, evsel) { 822 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 823 !evsel->core.attr.exclude_kernel) 824 return true; 825 } 826 return false; 827 } 828 829 static bool intel_pt_have_tsc(struct intel_pt *pt) 830 { 831 struct evsel *evsel; 832 bool have_tsc = false; 833 u64 config; 834 835 if (!pt->tsc_bit) 836 return false; 837 838 evlist__for_each_entry(pt->session->evlist, evsel) { 839 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 840 if (config & pt->tsc_bit) 841 have_tsc = true; 842 else 843 return false; 844 } 845 } 846 return have_tsc; 847 } 848 849 static bool intel_pt_sampling_mode(struct intel_pt *pt) 850 { 851 struct evsel *evsel; 852 853 evlist__for_each_entry(pt->session->evlist, evsel) { 854 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 855 evsel->core.attr.aux_sample_size) 856 return true; 857 } 858 return false; 859 } 860 861 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 862 { 863 u64 quot, rem; 864 865 quot = ns / pt->tc.time_mult; 866 rem = ns % pt->tc.time_mult; 867 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 868 pt->tc.time_mult; 869 } 870 871 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 872 unsigned int queue_nr) 873 { 874 struct intel_pt_params params = { .get_trace = 0, }; 875 struct perf_env *env = pt->machine->env; 876 struct intel_pt_queue *ptq; 877 878 ptq = zalloc(sizeof(struct intel_pt_queue)); 879 if (!ptq) 880 return NULL; 881 882 if (pt->synth_opts.callchain) { 883 size_t sz = sizeof(struct ip_callchain); 884 885 /* Add 1 to callchain_sz for callchain context */ 886 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 887 ptq->chain = zalloc(sz); 888 if (!ptq->chain) 889 goto out_free; 890 } 891 892 if (pt->synth_opts.last_branch) { 893 size_t sz = sizeof(struct branch_stack); 894 895 sz += pt->synth_opts.last_branch_sz * 896 sizeof(struct branch_entry); 897 ptq->last_branch = zalloc(sz); 898 if (!ptq->last_branch) 899 goto out_free; 900 ptq->last_branch_rb = zalloc(sz); 901 if (!ptq->last_branch_rb) 902 goto out_free; 903 } 904 905 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 906 if (!ptq->event_buf) 907 goto out_free; 908 909 ptq->pt = pt; 910 ptq->queue_nr = queue_nr; 911 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 912 ptq->pid = -1; 913 ptq->tid = -1; 914 ptq->cpu = -1; 915 ptq->next_tid = -1; 916 917 params.get_trace = intel_pt_get_trace; 918 params.walk_insn = intel_pt_walk_next_insn; 919 params.lookahead = intel_pt_lookahead; 920 params.data = ptq; 921 params.return_compression = intel_pt_return_compression(pt); 922 params.branch_enable = intel_pt_branch_enable(pt); 923 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 924 params.mtc_period = intel_pt_mtc_period(pt); 925 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 926 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 927 928 if (pt->filts.cnt > 0) 929 params.pgd_ip = intel_pt_pgd_ip; 930 931 if (pt->synth_opts.instructions) { 932 if (pt->synth_opts.period) { 933 switch (pt->synth_opts.period_type) { 934 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 935 params.period_type = 936 INTEL_PT_PERIOD_INSTRUCTIONS; 937 params.period = pt->synth_opts.period; 938 break; 939 case PERF_ITRACE_PERIOD_TICKS: 940 params.period_type = INTEL_PT_PERIOD_TICKS; 941 params.period = pt->synth_opts.period; 942 break; 943 case PERF_ITRACE_PERIOD_NANOSECS: 944 params.period_type = INTEL_PT_PERIOD_TICKS; 945 params.period = intel_pt_ns_to_ticks(pt, 946 pt->synth_opts.period); 947 break; 948 default: 949 break; 950 } 951 } 952 953 if (!params.period) { 954 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 955 params.period = 1; 956 } 957 } 958 959 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 960 params.flags |= INTEL_PT_FUP_WITH_NLIP; 961 962 ptq->decoder = intel_pt_decoder_new(¶ms); 963 if (!ptq->decoder) 964 goto out_free; 965 966 return ptq; 967 968 out_free: 969 zfree(&ptq->event_buf); 970 zfree(&ptq->last_branch); 971 zfree(&ptq->last_branch_rb); 972 zfree(&ptq->chain); 973 free(ptq); 974 return NULL; 975 } 976 977 static void intel_pt_free_queue(void *priv) 978 { 979 struct intel_pt_queue *ptq = priv; 980 981 if (!ptq) 982 return; 983 thread__zput(ptq->thread); 984 intel_pt_decoder_free(ptq->decoder); 985 zfree(&ptq->event_buf); 986 zfree(&ptq->last_branch); 987 zfree(&ptq->last_branch_rb); 988 zfree(&ptq->chain); 989 free(ptq); 990 } 991 992 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 993 struct auxtrace_queue *queue) 994 { 995 struct intel_pt_queue *ptq = queue->priv; 996 997 if (queue->tid == -1 || pt->have_sched_switch) { 998 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 999 thread__zput(ptq->thread); 1000 } 1001 1002 if (!ptq->thread && ptq->tid != -1) 1003 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1004 1005 if (ptq->thread) { 1006 ptq->pid = ptq->thread->pid_; 1007 if (queue->cpu == -1) 1008 ptq->cpu = ptq->thread->cpu; 1009 } 1010 } 1011 1012 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1013 { 1014 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1015 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1016 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1017 if (ptq->state->to_ip) 1018 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1019 PERF_IP_FLAG_ASYNC | 1020 PERF_IP_FLAG_INTERRUPT; 1021 else 1022 ptq->flags = PERF_IP_FLAG_BRANCH | 1023 PERF_IP_FLAG_TRACE_END; 1024 ptq->insn_len = 0; 1025 } else { 1026 if (ptq->state->from_ip) 1027 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1028 else 1029 ptq->flags = PERF_IP_FLAG_BRANCH | 1030 PERF_IP_FLAG_TRACE_BEGIN; 1031 if (ptq->state->flags & INTEL_PT_IN_TX) 1032 ptq->flags |= PERF_IP_FLAG_IN_TX; 1033 ptq->insn_len = ptq->state->insn_len; 1034 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1035 } 1036 1037 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1038 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1039 if (ptq->state->type & INTEL_PT_TRACE_END) 1040 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1041 } 1042 1043 static void intel_pt_setup_time_range(struct intel_pt *pt, 1044 struct intel_pt_queue *ptq) 1045 { 1046 if (!pt->range_cnt) 1047 return; 1048 1049 ptq->sel_timestamp = pt->time_ranges[0].start; 1050 ptq->sel_idx = 0; 1051 1052 if (ptq->sel_timestamp) { 1053 ptq->sel_start = true; 1054 } else { 1055 ptq->sel_timestamp = pt->time_ranges[0].end; 1056 ptq->sel_start = false; 1057 } 1058 } 1059 1060 static int intel_pt_setup_queue(struct intel_pt *pt, 1061 struct auxtrace_queue *queue, 1062 unsigned int queue_nr) 1063 { 1064 struct intel_pt_queue *ptq = queue->priv; 1065 1066 if (list_empty(&queue->head)) 1067 return 0; 1068 1069 if (!ptq) { 1070 ptq = intel_pt_alloc_queue(pt, queue_nr); 1071 if (!ptq) 1072 return -ENOMEM; 1073 queue->priv = ptq; 1074 1075 if (queue->cpu != -1) 1076 ptq->cpu = queue->cpu; 1077 ptq->tid = queue->tid; 1078 1079 ptq->cbr_seen = UINT_MAX; 1080 1081 if (pt->sampling_mode && !pt->snapshot_mode && 1082 pt->timeless_decoding) 1083 ptq->step_through_buffers = true; 1084 1085 ptq->sync_switch = pt->sync_switch; 1086 1087 intel_pt_setup_time_range(pt, ptq); 1088 } 1089 1090 if (!ptq->on_heap && 1091 (!ptq->sync_switch || 1092 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1093 const struct intel_pt_state *state; 1094 int ret; 1095 1096 if (pt->timeless_decoding) 1097 return 0; 1098 1099 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1100 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1101 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1102 1103 if (ptq->sel_start && ptq->sel_timestamp) { 1104 ret = intel_pt_fast_forward(ptq->decoder, 1105 ptq->sel_timestamp); 1106 if (ret) 1107 return ret; 1108 } 1109 1110 while (1) { 1111 state = intel_pt_decode(ptq->decoder); 1112 if (state->err) { 1113 if (state->err == INTEL_PT_ERR_NODATA) { 1114 intel_pt_log("queue %u has no timestamp\n", 1115 queue_nr); 1116 return 0; 1117 } 1118 continue; 1119 } 1120 if (state->timestamp) 1121 break; 1122 } 1123 1124 ptq->timestamp = state->timestamp; 1125 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1126 queue_nr, ptq->timestamp); 1127 ptq->state = state; 1128 ptq->have_sample = true; 1129 if (ptq->sel_start && ptq->sel_timestamp && 1130 ptq->timestamp < ptq->sel_timestamp) 1131 ptq->have_sample = false; 1132 intel_pt_sample_flags(ptq); 1133 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1134 if (ret) 1135 return ret; 1136 ptq->on_heap = true; 1137 } 1138 1139 return 0; 1140 } 1141 1142 static int intel_pt_setup_queues(struct intel_pt *pt) 1143 { 1144 unsigned int i; 1145 int ret; 1146 1147 for (i = 0; i < pt->queues.nr_queues; i++) { 1148 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1149 if (ret) 1150 return ret; 1151 } 1152 return 0; 1153 } 1154 1155 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq) 1156 { 1157 struct branch_stack *bs_src = ptq->last_branch_rb; 1158 struct branch_stack *bs_dst = ptq->last_branch; 1159 size_t nr = 0; 1160 1161 bs_dst->nr = bs_src->nr; 1162 1163 if (!bs_src->nr) 1164 return; 1165 1166 nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos; 1167 memcpy(&bs_dst->entries[0], 1168 &bs_src->entries[ptq->last_branch_pos], 1169 sizeof(struct branch_entry) * nr); 1170 1171 if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) { 1172 memcpy(&bs_dst->entries[nr], 1173 &bs_src->entries[0], 1174 sizeof(struct branch_entry) * ptq->last_branch_pos); 1175 } 1176 } 1177 1178 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq) 1179 { 1180 ptq->last_branch_pos = 0; 1181 ptq->last_branch_rb->nr = 0; 1182 } 1183 1184 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq) 1185 { 1186 const struct intel_pt_state *state = ptq->state; 1187 struct branch_stack *bs = ptq->last_branch_rb; 1188 struct branch_entry *be; 1189 1190 if (!ptq->last_branch_pos) 1191 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz; 1192 1193 ptq->last_branch_pos -= 1; 1194 1195 be = &bs->entries[ptq->last_branch_pos]; 1196 be->from = state->from_ip; 1197 be->to = state->to_ip; 1198 be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX); 1199 be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX); 1200 /* No support for mispredict */ 1201 be->flags.mispred = ptq->pt->mispred_all; 1202 1203 if (bs->nr < ptq->pt->synth_opts.last_branch_sz) 1204 bs->nr += 1; 1205 } 1206 1207 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1208 { 1209 return pt->synth_opts.initial_skip && 1210 pt->num_events++ < pt->synth_opts.initial_skip; 1211 } 1212 1213 /* 1214 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1215 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1216 * from this decoder state. 1217 */ 1218 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1219 { 1220 return pt->synth_opts.initial_skip && 1221 pt->num_events + 4 < pt->synth_opts.initial_skip; 1222 } 1223 1224 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1225 union perf_event *event, 1226 struct perf_sample *sample) 1227 { 1228 event->sample.header.type = PERF_RECORD_SAMPLE; 1229 event->sample.header.size = sizeof(struct perf_event_header); 1230 1231 sample->pid = ptq->pid; 1232 sample->tid = ptq->tid; 1233 sample->cpu = ptq->cpu; 1234 sample->insn_len = ptq->insn_len; 1235 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1236 } 1237 1238 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1239 struct intel_pt_queue *ptq, 1240 union perf_event *event, 1241 struct perf_sample *sample) 1242 { 1243 intel_pt_prep_a_sample(ptq, event, sample); 1244 1245 if (!pt->timeless_decoding) 1246 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1247 1248 sample->ip = ptq->state->from_ip; 1249 sample->cpumode = intel_pt_cpumode(pt, sample->ip); 1250 sample->addr = ptq->state->to_ip; 1251 sample->period = 1; 1252 sample->flags = ptq->flags; 1253 1254 event->sample.header.misc = sample->cpumode; 1255 } 1256 1257 static int intel_pt_inject_event(union perf_event *event, 1258 struct perf_sample *sample, u64 type) 1259 { 1260 event->header.size = perf_event__sample_event_size(sample, type, 0); 1261 return perf_event__synthesize_sample(event, type, 0, sample); 1262 } 1263 1264 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1265 union perf_event *event, 1266 struct perf_sample *sample, u64 type) 1267 { 1268 if (!pt->synth_opts.inject) 1269 return 0; 1270 1271 return intel_pt_inject_event(event, sample, type); 1272 } 1273 1274 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt, 1275 union perf_event *event, 1276 struct perf_sample *sample, u64 type) 1277 { 1278 int ret; 1279 1280 ret = intel_pt_opt_inject(pt, event, sample, type); 1281 if (ret) 1282 return ret; 1283 1284 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1285 if (ret) 1286 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1287 1288 return ret; 1289 } 1290 1291 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1292 { 1293 struct intel_pt *pt = ptq->pt; 1294 union perf_event *event = ptq->event_buf; 1295 struct perf_sample sample = { .ip = 0, }; 1296 struct dummy_branch_stack { 1297 u64 nr; 1298 u64 hw_idx; 1299 struct branch_entry entries; 1300 } dummy_bs; 1301 1302 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1303 return 0; 1304 1305 if (intel_pt_skip_event(pt)) 1306 return 0; 1307 1308 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1309 1310 sample.id = ptq->pt->branches_id; 1311 sample.stream_id = ptq->pt->branches_id; 1312 1313 /* 1314 * perf report cannot handle events without a branch stack when using 1315 * SORT_MODE__BRANCH so make a dummy one. 1316 */ 1317 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1318 dummy_bs = (struct dummy_branch_stack){ 1319 .nr = 1, 1320 .hw_idx = -1ULL, 1321 .entries = { 1322 .from = sample.ip, 1323 .to = sample.addr, 1324 }, 1325 }; 1326 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1327 } 1328 1329 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1330 if (sample.cyc_cnt) { 1331 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1332 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1333 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1334 } 1335 1336 return intel_pt_deliver_synth_b_event(pt, event, &sample, 1337 pt->branches_sample_type); 1338 } 1339 1340 static void intel_pt_prep_sample(struct intel_pt *pt, 1341 struct intel_pt_queue *ptq, 1342 union perf_event *event, 1343 struct perf_sample *sample) 1344 { 1345 intel_pt_prep_b_sample(pt, ptq, event, sample); 1346 1347 if (pt->synth_opts.callchain) { 1348 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1349 pt->synth_opts.callchain_sz + 1, 1350 sample->ip, pt->kernel_start); 1351 sample->callchain = ptq->chain; 1352 } 1353 1354 if (pt->synth_opts.last_branch) { 1355 intel_pt_copy_last_branch_rb(ptq); 1356 sample->branch_stack = ptq->last_branch; 1357 } 1358 } 1359 1360 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt, 1361 struct intel_pt_queue *ptq, 1362 union perf_event *event, 1363 struct perf_sample *sample, 1364 u64 type) 1365 { 1366 int ret; 1367 1368 ret = intel_pt_deliver_synth_b_event(pt, event, sample, type); 1369 1370 if (pt->synth_opts.last_branch) 1371 intel_pt_reset_last_branch_rb(ptq); 1372 1373 return ret; 1374 } 1375 1376 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1377 { 1378 struct intel_pt *pt = ptq->pt; 1379 union perf_event *event = ptq->event_buf; 1380 struct perf_sample sample = { .ip = 0, }; 1381 1382 if (intel_pt_skip_event(pt)) 1383 return 0; 1384 1385 intel_pt_prep_sample(pt, ptq, event, &sample); 1386 1387 sample.id = ptq->pt->instructions_id; 1388 sample.stream_id = ptq->pt->instructions_id; 1389 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1390 1391 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1392 if (sample.cyc_cnt) { 1393 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1394 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1395 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1396 } 1397 1398 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1399 1400 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1401 pt->instructions_sample_type); 1402 } 1403 1404 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1405 { 1406 struct intel_pt *pt = ptq->pt; 1407 union perf_event *event = ptq->event_buf; 1408 struct perf_sample sample = { .ip = 0, }; 1409 1410 if (intel_pt_skip_event(pt)) 1411 return 0; 1412 1413 intel_pt_prep_sample(pt, ptq, event, &sample); 1414 1415 sample.id = ptq->pt->transactions_id; 1416 sample.stream_id = ptq->pt->transactions_id; 1417 1418 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1419 pt->transactions_sample_type); 1420 } 1421 1422 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1423 struct intel_pt_queue *ptq, 1424 union perf_event *event, 1425 struct perf_sample *sample) 1426 { 1427 intel_pt_prep_sample(pt, ptq, event, sample); 1428 1429 /* 1430 * Zero IP is used to mean "trace start" but that is not the case for 1431 * power or PTWRITE events with no IP, so clear the flags. 1432 */ 1433 if (!sample->ip) 1434 sample->flags = 0; 1435 } 1436 1437 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1438 { 1439 struct intel_pt *pt = ptq->pt; 1440 union perf_event *event = ptq->event_buf; 1441 struct perf_sample sample = { .ip = 0, }; 1442 struct perf_synth_intel_ptwrite raw; 1443 1444 if (intel_pt_skip_event(pt)) 1445 return 0; 1446 1447 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1448 1449 sample.id = ptq->pt->ptwrites_id; 1450 sample.stream_id = ptq->pt->ptwrites_id; 1451 1452 raw.flags = 0; 1453 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1454 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1455 1456 sample.raw_size = perf_synth__raw_size(raw); 1457 sample.raw_data = perf_synth__raw_data(&raw); 1458 1459 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1460 pt->ptwrites_sample_type); 1461 } 1462 1463 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1464 { 1465 struct intel_pt *pt = ptq->pt; 1466 union perf_event *event = ptq->event_buf; 1467 struct perf_sample sample = { .ip = 0, }; 1468 struct perf_synth_intel_cbr raw; 1469 u32 flags; 1470 1471 if (intel_pt_skip_cbr_event(pt)) 1472 return 0; 1473 1474 ptq->cbr_seen = ptq->state->cbr; 1475 1476 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1477 1478 sample.id = ptq->pt->cbr_id; 1479 sample.stream_id = ptq->pt->cbr_id; 1480 1481 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1482 raw.flags = cpu_to_le32(flags); 1483 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1484 raw.reserved3 = 0; 1485 1486 sample.raw_size = perf_synth__raw_size(raw); 1487 sample.raw_data = perf_synth__raw_data(&raw); 1488 1489 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1490 pt->pwr_events_sample_type); 1491 } 1492 1493 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1494 { 1495 struct intel_pt *pt = ptq->pt; 1496 union perf_event *event = ptq->event_buf; 1497 struct perf_sample sample = { .ip = 0, }; 1498 struct perf_synth_intel_mwait raw; 1499 1500 if (intel_pt_skip_event(pt)) 1501 return 0; 1502 1503 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1504 1505 sample.id = ptq->pt->mwait_id; 1506 sample.stream_id = ptq->pt->mwait_id; 1507 1508 raw.reserved = 0; 1509 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1510 1511 sample.raw_size = perf_synth__raw_size(raw); 1512 sample.raw_data = perf_synth__raw_data(&raw); 1513 1514 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1515 pt->pwr_events_sample_type); 1516 } 1517 1518 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1519 { 1520 struct intel_pt *pt = ptq->pt; 1521 union perf_event *event = ptq->event_buf; 1522 struct perf_sample sample = { .ip = 0, }; 1523 struct perf_synth_intel_pwre raw; 1524 1525 if (intel_pt_skip_event(pt)) 1526 return 0; 1527 1528 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1529 1530 sample.id = ptq->pt->pwre_id; 1531 sample.stream_id = ptq->pt->pwre_id; 1532 1533 raw.reserved = 0; 1534 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1535 1536 sample.raw_size = perf_synth__raw_size(raw); 1537 sample.raw_data = perf_synth__raw_data(&raw); 1538 1539 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1540 pt->pwr_events_sample_type); 1541 } 1542 1543 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1544 { 1545 struct intel_pt *pt = ptq->pt; 1546 union perf_event *event = ptq->event_buf; 1547 struct perf_sample sample = { .ip = 0, }; 1548 struct perf_synth_intel_exstop raw; 1549 1550 if (intel_pt_skip_event(pt)) 1551 return 0; 1552 1553 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1554 1555 sample.id = ptq->pt->exstop_id; 1556 sample.stream_id = ptq->pt->exstop_id; 1557 1558 raw.flags = 0; 1559 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1560 1561 sample.raw_size = perf_synth__raw_size(raw); 1562 sample.raw_data = perf_synth__raw_data(&raw); 1563 1564 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1565 pt->pwr_events_sample_type); 1566 } 1567 1568 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1569 { 1570 struct intel_pt *pt = ptq->pt; 1571 union perf_event *event = ptq->event_buf; 1572 struct perf_sample sample = { .ip = 0, }; 1573 struct perf_synth_intel_pwrx raw; 1574 1575 if (intel_pt_skip_event(pt)) 1576 return 0; 1577 1578 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1579 1580 sample.id = ptq->pt->pwrx_id; 1581 sample.stream_id = ptq->pt->pwrx_id; 1582 1583 raw.reserved = 0; 1584 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1585 1586 sample.raw_size = perf_synth__raw_size(raw); 1587 sample.raw_data = perf_synth__raw_data(&raw); 1588 1589 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, 1590 pt->pwr_events_sample_type); 1591 } 1592 1593 /* 1594 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1595 * intel_pt_add_gp_regs(). 1596 */ 1597 static const int pebs_gp_regs[] = { 1598 [PERF_REG_X86_FLAGS] = 1, 1599 [PERF_REG_X86_IP] = 2, 1600 [PERF_REG_X86_AX] = 3, 1601 [PERF_REG_X86_CX] = 4, 1602 [PERF_REG_X86_DX] = 5, 1603 [PERF_REG_X86_BX] = 6, 1604 [PERF_REG_X86_SP] = 7, 1605 [PERF_REG_X86_BP] = 8, 1606 [PERF_REG_X86_SI] = 9, 1607 [PERF_REG_X86_DI] = 10, 1608 [PERF_REG_X86_R8] = 11, 1609 [PERF_REG_X86_R9] = 12, 1610 [PERF_REG_X86_R10] = 13, 1611 [PERF_REG_X86_R11] = 14, 1612 [PERF_REG_X86_R12] = 15, 1613 [PERF_REG_X86_R13] = 16, 1614 [PERF_REG_X86_R14] = 17, 1615 [PERF_REG_X86_R15] = 18, 1616 }; 1617 1618 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1619 const struct intel_pt_blk_items *items, 1620 u64 regs_mask) 1621 { 1622 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1623 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1624 u32 bit; 1625 int i; 1626 1627 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1628 /* Get the PEBS gp_regs array index */ 1629 int n = pebs_gp_regs[i] - 1; 1630 1631 if (n < 0) 1632 continue; 1633 /* 1634 * Add only registers that were requested (i.e. 'regs_mask') and 1635 * that were provided (i.e. 'mask'), and update the resulting 1636 * mask (i.e. 'intr_regs->mask') accordingly. 1637 */ 1638 if (mask & 1 << n && regs_mask & bit) { 1639 intr_regs->mask |= bit; 1640 *pos++ = gp_regs[n]; 1641 } 1642 } 1643 1644 return pos; 1645 } 1646 1647 #ifndef PERF_REG_X86_XMM0 1648 #define PERF_REG_X86_XMM0 32 1649 #endif 1650 1651 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1652 const struct intel_pt_blk_items *items, 1653 u64 regs_mask) 1654 { 1655 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1656 const u64 *xmm = items->xmm; 1657 1658 /* 1659 * If there are any XMM registers, then there should be all of them. 1660 * Nevertheless, follow the logic to add only registers that were 1661 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1662 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1663 */ 1664 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1665 1666 for (; mask; mask >>= 1, xmm++) { 1667 if (mask & 1) 1668 *pos++ = *xmm; 1669 } 1670 } 1671 1672 #define LBR_INFO_MISPRED (1ULL << 63) 1673 #define LBR_INFO_IN_TX (1ULL << 62) 1674 #define LBR_INFO_ABORT (1ULL << 61) 1675 #define LBR_INFO_CYCLES 0xffff 1676 1677 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1678 static u64 intel_pt_lbr_flags(u64 info) 1679 { 1680 union { 1681 struct branch_flags flags; 1682 u64 result; 1683 } u = { 1684 .flags = { 1685 .mispred = !!(info & LBR_INFO_MISPRED), 1686 .predicted = !(info & LBR_INFO_MISPRED), 1687 .in_tx = !!(info & LBR_INFO_IN_TX), 1688 .abort = !!(info & LBR_INFO_ABORT), 1689 .cycles = info & LBR_INFO_CYCLES, 1690 } 1691 }; 1692 1693 return u.result; 1694 } 1695 1696 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 1697 const struct intel_pt_blk_items *items) 1698 { 1699 u64 *to; 1700 int i; 1701 1702 br_stack->nr = 0; 1703 1704 to = &br_stack->entries[0].from; 1705 1706 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 1707 u32 mask = items->mask[i]; 1708 const u64 *from = items->val[i]; 1709 1710 for (; mask; mask >>= 3, from += 3) { 1711 if ((mask & 7) == 7) { 1712 *to++ = from[0]; 1713 *to++ = from[1]; 1714 *to++ = intel_pt_lbr_flags(from[2]); 1715 br_stack->nr += 1; 1716 } 1717 } 1718 } 1719 } 1720 1721 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1722 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3) 1723 1724 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 1725 { 1726 const struct intel_pt_blk_items *items = &ptq->state->items; 1727 struct perf_sample sample = { .ip = 0, }; 1728 union perf_event *event = ptq->event_buf; 1729 struct intel_pt *pt = ptq->pt; 1730 struct evsel *evsel = pt->pebs_evsel; 1731 u64 sample_type = evsel->core.attr.sample_type; 1732 u64 id = evsel->core.id[0]; 1733 u8 cpumode; 1734 1735 if (intel_pt_skip_event(pt)) 1736 return 0; 1737 1738 intel_pt_prep_a_sample(ptq, event, &sample); 1739 1740 sample.id = id; 1741 sample.stream_id = id; 1742 1743 if (!evsel->core.attr.freq) 1744 sample.period = evsel->core.attr.sample_period; 1745 1746 /* No support for non-zero CS base */ 1747 if (items->has_ip) 1748 sample.ip = items->ip; 1749 else if (items->has_rip) 1750 sample.ip = items->rip; 1751 else 1752 sample.ip = ptq->state->from_ip; 1753 1754 /* No support for guest mode at this time */ 1755 cpumode = sample.ip < ptq->pt->kernel_start ? 1756 PERF_RECORD_MISC_USER : 1757 PERF_RECORD_MISC_KERNEL; 1758 1759 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 1760 1761 sample.cpumode = cpumode; 1762 1763 if (sample_type & PERF_SAMPLE_TIME) { 1764 u64 timestamp = 0; 1765 1766 if (items->has_timestamp) 1767 timestamp = items->timestamp; 1768 else if (!pt->timeless_decoding) 1769 timestamp = ptq->timestamp; 1770 if (timestamp) 1771 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 1772 } 1773 1774 if (sample_type & PERF_SAMPLE_CALLCHAIN && 1775 pt->synth_opts.callchain) { 1776 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1777 pt->synth_opts.callchain_sz, sample.ip, 1778 pt->kernel_start); 1779 sample.callchain = ptq->chain; 1780 } 1781 1782 if (sample_type & PERF_SAMPLE_REGS_INTR && 1783 items->mask[INTEL_PT_GP_REGS_POS]) { 1784 u64 regs[sizeof(sample.intr_regs.mask)]; 1785 u64 regs_mask = evsel->core.attr.sample_regs_intr; 1786 u64 *pos; 1787 1788 sample.intr_regs.abi = items->is_32_bit ? 1789 PERF_SAMPLE_REGS_ABI_32 : 1790 PERF_SAMPLE_REGS_ABI_64; 1791 sample.intr_regs.regs = regs; 1792 1793 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 1794 1795 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 1796 } 1797 1798 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1799 struct { 1800 struct branch_stack br_stack; 1801 struct branch_entry entries[LBRS_MAX]; 1802 } br; 1803 1804 if (items->mask[INTEL_PT_LBR_0_POS] || 1805 items->mask[INTEL_PT_LBR_1_POS] || 1806 items->mask[INTEL_PT_LBR_2_POS]) { 1807 intel_pt_add_lbrs(&br.br_stack, items); 1808 sample.branch_stack = &br.br_stack; 1809 } else if (pt->synth_opts.last_branch) { 1810 intel_pt_copy_last_branch_rb(ptq); 1811 sample.branch_stack = ptq->last_branch; 1812 } else { 1813 br.br_stack.nr = 0; 1814 sample.branch_stack = &br.br_stack; 1815 } 1816 } 1817 1818 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 1819 sample.addr = items->mem_access_address; 1820 1821 if (sample_type & PERF_SAMPLE_WEIGHT) { 1822 /* 1823 * Refer kernel's setup_pebs_adaptive_sample_data() and 1824 * intel_hsw_weight(). 1825 */ 1826 if (items->has_mem_access_latency) 1827 sample.weight = items->mem_access_latency; 1828 if (!sample.weight && items->has_tsx_aux_info) { 1829 /* Cycles last block */ 1830 sample.weight = (u32)items->tsx_aux_info; 1831 } 1832 } 1833 1834 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 1835 u64 ax = items->has_rax ? items->rax : 0; 1836 /* Refer kernel's intel_hsw_transaction() */ 1837 u64 txn = (u8)(items->tsx_aux_info >> 32); 1838 1839 /* For RTM XABORTs also log the abort code from AX */ 1840 if (txn & PERF_TXN_TRANSACTION && ax & 1) 1841 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1842 sample.transaction = txn; 1843 } 1844 1845 return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type); 1846 } 1847 1848 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 1849 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 1850 { 1851 union perf_event event; 1852 char msg[MAX_AUXTRACE_ERROR_MSG]; 1853 int err; 1854 1855 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 1856 1857 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 1858 code, cpu, pid, tid, ip, msg, timestamp); 1859 1860 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 1861 if (err) 1862 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 1863 err); 1864 1865 return err; 1866 } 1867 1868 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 1869 const struct intel_pt_state *state) 1870 { 1871 struct intel_pt *pt = ptq->pt; 1872 u64 tm = ptq->timestamp; 1873 1874 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 1875 1876 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 1877 ptq->tid, state->from_ip, tm); 1878 } 1879 1880 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 1881 { 1882 struct auxtrace_queue *queue; 1883 pid_t tid = ptq->next_tid; 1884 int err; 1885 1886 if (tid == -1) 1887 return 0; 1888 1889 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 1890 1891 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 1892 1893 queue = &pt->queues.queue_array[ptq->queue_nr]; 1894 intel_pt_set_pid_tid_cpu(pt, queue); 1895 1896 ptq->next_tid = -1; 1897 1898 return err; 1899 } 1900 1901 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 1902 { 1903 struct intel_pt *pt = ptq->pt; 1904 1905 return ip == pt->switch_ip && 1906 (ptq->flags & PERF_IP_FLAG_BRANCH) && 1907 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 1908 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 1909 } 1910 1911 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 1912 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 1913 1914 static int intel_pt_sample(struct intel_pt_queue *ptq) 1915 { 1916 const struct intel_pt_state *state = ptq->state; 1917 struct intel_pt *pt = ptq->pt; 1918 int err; 1919 1920 if (!ptq->have_sample) 1921 return 0; 1922 1923 ptq->have_sample = false; 1924 1925 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) { 1926 /* 1927 * Cycle count and instruction count only go together to create 1928 * a valid IPC ratio when the cycle count changes. 1929 */ 1930 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 1931 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 1932 } 1933 1934 /* 1935 * Do PEBS first to allow for the possibility that the PEBS timestamp 1936 * precedes the current timestamp. 1937 */ 1938 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 1939 err = intel_pt_synth_pebs_sample(ptq); 1940 if (err) 1941 return err; 1942 } 1943 1944 if (pt->sample_pwr_events) { 1945 if (ptq->state->cbr != ptq->cbr_seen) { 1946 err = intel_pt_synth_cbr_sample(ptq); 1947 if (err) 1948 return err; 1949 } 1950 if (state->type & INTEL_PT_PWR_EVT) { 1951 if (state->type & INTEL_PT_MWAIT_OP) { 1952 err = intel_pt_synth_mwait_sample(ptq); 1953 if (err) 1954 return err; 1955 } 1956 if (state->type & INTEL_PT_PWR_ENTRY) { 1957 err = intel_pt_synth_pwre_sample(ptq); 1958 if (err) 1959 return err; 1960 } 1961 if (state->type & INTEL_PT_EX_STOP) { 1962 err = intel_pt_synth_exstop_sample(ptq); 1963 if (err) 1964 return err; 1965 } 1966 if (state->type & INTEL_PT_PWR_EXIT) { 1967 err = intel_pt_synth_pwrx_sample(ptq); 1968 if (err) 1969 return err; 1970 } 1971 } 1972 } 1973 1974 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 1975 err = intel_pt_synth_instruction_sample(ptq); 1976 if (err) 1977 return err; 1978 } 1979 1980 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 1981 err = intel_pt_synth_transaction_sample(ptq); 1982 if (err) 1983 return err; 1984 } 1985 1986 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 1987 err = intel_pt_synth_ptwrite_sample(ptq); 1988 if (err) 1989 return err; 1990 } 1991 1992 if (!(state->type & INTEL_PT_BRANCH)) 1993 return 0; 1994 1995 if (pt->synth_opts.callchain || pt->synth_opts.thread_stack) 1996 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip, 1997 state->to_ip, ptq->insn_len, 1998 state->trace_nr); 1999 else 2000 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2001 2002 if (pt->sample_branches) { 2003 err = intel_pt_synth_branch_sample(ptq); 2004 if (err) 2005 return err; 2006 } 2007 2008 if (pt->synth_opts.last_branch) 2009 intel_pt_update_last_branch_rb(ptq); 2010 2011 if (!ptq->sync_switch) 2012 return 0; 2013 2014 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2015 switch (ptq->switch_state) { 2016 case INTEL_PT_SS_NOT_TRACING: 2017 case INTEL_PT_SS_UNKNOWN: 2018 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2019 err = intel_pt_next_tid(pt, ptq); 2020 if (err) 2021 return err; 2022 ptq->switch_state = INTEL_PT_SS_TRACING; 2023 break; 2024 default: 2025 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2026 return 1; 2027 } 2028 } else if (!state->to_ip) { 2029 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2030 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2031 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2032 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2033 state->to_ip == pt->ptss_ip && 2034 (ptq->flags & PERF_IP_FLAG_CALL)) { 2035 ptq->switch_state = INTEL_PT_SS_TRACING; 2036 } 2037 2038 return 0; 2039 } 2040 2041 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2042 { 2043 struct machine *machine = pt->machine; 2044 struct map *map; 2045 struct symbol *sym, *start; 2046 u64 ip, switch_ip = 0; 2047 const char *ptss; 2048 2049 if (ptss_ip) 2050 *ptss_ip = 0; 2051 2052 map = machine__kernel_map(machine); 2053 if (!map) 2054 return 0; 2055 2056 if (map__load(map)) 2057 return 0; 2058 2059 start = dso__first_symbol(map->dso); 2060 2061 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2062 if (sym->binding == STB_GLOBAL && 2063 !strcmp(sym->name, "__switch_to")) { 2064 ip = map->unmap_ip(map, sym->start); 2065 if (ip >= map->start && ip < map->end) { 2066 switch_ip = ip; 2067 break; 2068 } 2069 } 2070 } 2071 2072 if (!switch_ip || !ptss_ip) 2073 return 0; 2074 2075 if (pt->have_sched_switch == 1) 2076 ptss = "perf_trace_sched_switch"; 2077 else 2078 ptss = "__perf_event_task_sched_out"; 2079 2080 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2081 if (!strcmp(sym->name, ptss)) { 2082 ip = map->unmap_ip(map, sym->start); 2083 if (ip >= map->start && ip < map->end) { 2084 *ptss_ip = ip; 2085 break; 2086 } 2087 } 2088 } 2089 2090 return switch_ip; 2091 } 2092 2093 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2094 { 2095 unsigned int i; 2096 2097 pt->sync_switch = true; 2098 2099 for (i = 0; i < pt->queues.nr_queues; i++) { 2100 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2101 struct intel_pt_queue *ptq = queue->priv; 2102 2103 if (ptq) 2104 ptq->sync_switch = true; 2105 } 2106 } 2107 2108 /* 2109 * To filter against time ranges, it is only necessary to look at the next start 2110 * or end time. 2111 */ 2112 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2113 { 2114 struct intel_pt *pt = ptq->pt; 2115 2116 if (ptq->sel_start) { 2117 /* Next time is an end time */ 2118 ptq->sel_start = false; 2119 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2120 return true; 2121 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2122 /* Next time is a start time */ 2123 ptq->sel_start = true; 2124 ptq->sel_idx += 1; 2125 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2126 return true; 2127 } 2128 2129 /* No next time */ 2130 return false; 2131 } 2132 2133 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2134 { 2135 int err; 2136 2137 while (1) { 2138 if (ptq->sel_start) { 2139 if (ptq->timestamp >= ptq->sel_timestamp) { 2140 /* After start time, so consider next time */ 2141 intel_pt_next_time(ptq); 2142 if (!ptq->sel_timestamp) { 2143 /* No end time */ 2144 return 0; 2145 } 2146 /* Check against end time */ 2147 continue; 2148 } 2149 /* Before start time, so fast forward */ 2150 ptq->have_sample = false; 2151 if (ptq->sel_timestamp > *ff_timestamp) { 2152 if (ptq->sync_switch) { 2153 intel_pt_next_tid(ptq->pt, ptq); 2154 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2155 } 2156 *ff_timestamp = ptq->sel_timestamp; 2157 err = intel_pt_fast_forward(ptq->decoder, 2158 ptq->sel_timestamp); 2159 if (err) 2160 return err; 2161 } 2162 return 0; 2163 } else if (ptq->timestamp > ptq->sel_timestamp) { 2164 /* After end time, so consider next time */ 2165 if (!intel_pt_next_time(ptq)) { 2166 /* No next time range, so stop decoding */ 2167 ptq->have_sample = false; 2168 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2169 return 1; 2170 } 2171 /* Check against next start time */ 2172 continue; 2173 } else { 2174 /* Before end time */ 2175 return 0; 2176 } 2177 } 2178 } 2179 2180 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2181 { 2182 const struct intel_pt_state *state = ptq->state; 2183 struct intel_pt *pt = ptq->pt; 2184 u64 ff_timestamp = 0; 2185 int err; 2186 2187 if (!pt->kernel_start) { 2188 pt->kernel_start = machine__kernel_start(pt->machine); 2189 if (pt->per_cpu_mmaps && 2190 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2191 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2192 !pt->sampling_mode) { 2193 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2194 if (pt->switch_ip) { 2195 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2196 pt->switch_ip, pt->ptss_ip); 2197 intel_pt_enable_sync_switch(pt); 2198 } 2199 } 2200 } 2201 2202 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2203 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2204 while (1) { 2205 err = intel_pt_sample(ptq); 2206 if (err) 2207 return err; 2208 2209 state = intel_pt_decode(ptq->decoder); 2210 if (state->err) { 2211 if (state->err == INTEL_PT_ERR_NODATA) 2212 return 1; 2213 if (ptq->sync_switch && 2214 state->from_ip >= pt->kernel_start) { 2215 ptq->sync_switch = false; 2216 intel_pt_next_tid(pt, ptq); 2217 } 2218 if (pt->synth_opts.errors) { 2219 err = intel_ptq_synth_error(ptq, state); 2220 if (err) 2221 return err; 2222 } 2223 continue; 2224 } 2225 2226 ptq->state = state; 2227 ptq->have_sample = true; 2228 intel_pt_sample_flags(ptq); 2229 2230 /* Use estimated TSC upon return to user space */ 2231 if (pt->est_tsc && 2232 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2233 state->to_ip && state->to_ip < pt->kernel_start) { 2234 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2235 state->timestamp, state->est_timestamp); 2236 ptq->timestamp = state->est_timestamp; 2237 /* Use estimated TSC in unknown switch state */ 2238 } else if (ptq->sync_switch && 2239 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2240 intel_pt_is_switch_ip(ptq, state->to_ip) && 2241 ptq->next_tid == -1) { 2242 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2243 state->timestamp, state->est_timestamp); 2244 ptq->timestamp = state->est_timestamp; 2245 } else if (state->timestamp > ptq->timestamp) { 2246 ptq->timestamp = state->timestamp; 2247 } 2248 2249 if (ptq->sel_timestamp) { 2250 err = intel_pt_time_filter(ptq, &ff_timestamp); 2251 if (err) 2252 return err; 2253 } 2254 2255 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2256 *timestamp = ptq->timestamp; 2257 return 0; 2258 } 2259 } 2260 return 0; 2261 } 2262 2263 static inline int intel_pt_update_queues(struct intel_pt *pt) 2264 { 2265 if (pt->queues.new_data) { 2266 pt->queues.new_data = false; 2267 return intel_pt_setup_queues(pt); 2268 } 2269 return 0; 2270 } 2271 2272 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2273 { 2274 unsigned int queue_nr; 2275 u64 ts; 2276 int ret; 2277 2278 while (1) { 2279 struct auxtrace_queue *queue; 2280 struct intel_pt_queue *ptq; 2281 2282 if (!pt->heap.heap_cnt) 2283 return 0; 2284 2285 if (pt->heap.heap_array[0].ordinal >= timestamp) 2286 return 0; 2287 2288 queue_nr = pt->heap.heap_array[0].queue_nr; 2289 queue = &pt->queues.queue_array[queue_nr]; 2290 ptq = queue->priv; 2291 2292 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2293 queue_nr, pt->heap.heap_array[0].ordinal, 2294 timestamp); 2295 2296 auxtrace_heap__pop(&pt->heap); 2297 2298 if (pt->heap.heap_cnt) { 2299 ts = pt->heap.heap_array[0].ordinal + 1; 2300 if (ts > timestamp) 2301 ts = timestamp; 2302 } else { 2303 ts = timestamp; 2304 } 2305 2306 intel_pt_set_pid_tid_cpu(pt, queue); 2307 2308 ret = intel_pt_run_decoder(ptq, &ts); 2309 2310 if (ret < 0) { 2311 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2312 return ret; 2313 } 2314 2315 if (!ret) { 2316 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2317 if (ret < 0) 2318 return ret; 2319 } else { 2320 ptq->on_heap = false; 2321 } 2322 } 2323 2324 return 0; 2325 } 2326 2327 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2328 u64 time_) 2329 { 2330 struct auxtrace_queues *queues = &pt->queues; 2331 unsigned int i; 2332 u64 ts = 0; 2333 2334 for (i = 0; i < queues->nr_queues; i++) { 2335 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2336 struct intel_pt_queue *ptq = queue->priv; 2337 2338 if (ptq && (tid == -1 || ptq->tid == tid)) { 2339 ptq->time = time_; 2340 intel_pt_set_pid_tid_cpu(pt, queue); 2341 intel_pt_run_decoder(ptq, &ts); 2342 } 2343 } 2344 return 0; 2345 } 2346 2347 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2348 struct auxtrace_queue *queue, 2349 struct perf_sample *sample) 2350 { 2351 struct machine *m = ptq->pt->machine; 2352 2353 ptq->pid = sample->pid; 2354 ptq->tid = sample->tid; 2355 ptq->cpu = queue->cpu; 2356 2357 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2358 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2359 2360 thread__zput(ptq->thread); 2361 2362 if (ptq->tid == -1) 2363 return; 2364 2365 if (ptq->pid == -1) { 2366 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2367 if (ptq->thread) 2368 ptq->pid = ptq->thread->pid_; 2369 return; 2370 } 2371 2372 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2373 } 2374 2375 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2376 struct perf_sample *sample) 2377 { 2378 struct auxtrace_queue *queue; 2379 struct intel_pt_queue *ptq; 2380 u64 ts = 0; 2381 2382 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2383 if (!queue) 2384 return -EINVAL; 2385 2386 ptq = queue->priv; 2387 if (!ptq) 2388 return 0; 2389 2390 ptq->stop = false; 2391 ptq->time = sample->time; 2392 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2393 intel_pt_run_decoder(ptq, &ts); 2394 return 0; 2395 } 2396 2397 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2398 { 2399 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2400 sample->pid, sample->tid, 0, sample->time); 2401 } 2402 2403 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2404 { 2405 unsigned i, j; 2406 2407 if (cpu < 0 || !pt->queues.nr_queues) 2408 return NULL; 2409 2410 if ((unsigned)cpu >= pt->queues.nr_queues) 2411 i = pt->queues.nr_queues - 1; 2412 else 2413 i = cpu; 2414 2415 if (pt->queues.queue_array[i].cpu == cpu) 2416 return pt->queues.queue_array[i].priv; 2417 2418 for (j = 0; i > 0; j++) { 2419 if (pt->queues.queue_array[--i].cpu == cpu) 2420 return pt->queues.queue_array[i].priv; 2421 } 2422 2423 for (; j < pt->queues.nr_queues; j++) { 2424 if (pt->queues.queue_array[j].cpu == cpu) 2425 return pt->queues.queue_array[j].priv; 2426 } 2427 2428 return NULL; 2429 } 2430 2431 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2432 u64 timestamp) 2433 { 2434 struct intel_pt_queue *ptq; 2435 int err; 2436 2437 if (!pt->sync_switch) 2438 return 1; 2439 2440 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2441 if (!ptq || !ptq->sync_switch) 2442 return 1; 2443 2444 switch (ptq->switch_state) { 2445 case INTEL_PT_SS_NOT_TRACING: 2446 break; 2447 case INTEL_PT_SS_UNKNOWN: 2448 case INTEL_PT_SS_TRACING: 2449 ptq->next_tid = tid; 2450 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2451 return 0; 2452 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2453 if (!ptq->on_heap) { 2454 ptq->timestamp = perf_time_to_tsc(timestamp, 2455 &pt->tc); 2456 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2457 ptq->timestamp); 2458 if (err) 2459 return err; 2460 ptq->on_heap = true; 2461 } 2462 ptq->switch_state = INTEL_PT_SS_TRACING; 2463 break; 2464 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2465 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2466 break; 2467 default: 2468 break; 2469 } 2470 2471 ptq->next_tid = -1; 2472 2473 return 1; 2474 } 2475 2476 static int intel_pt_process_switch(struct intel_pt *pt, 2477 struct perf_sample *sample) 2478 { 2479 struct evsel *evsel; 2480 pid_t tid; 2481 int cpu, ret; 2482 2483 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); 2484 if (evsel != pt->switch_evsel) 2485 return 0; 2486 2487 tid = perf_evsel__intval(evsel, sample, "next_pid"); 2488 cpu = sample->cpu; 2489 2490 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2491 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2492 &pt->tc)); 2493 2494 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2495 if (ret <= 0) 2496 return ret; 2497 2498 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2499 } 2500 2501 static int intel_pt_context_switch_in(struct intel_pt *pt, 2502 struct perf_sample *sample) 2503 { 2504 pid_t pid = sample->pid; 2505 pid_t tid = sample->tid; 2506 int cpu = sample->cpu; 2507 2508 if (pt->sync_switch) { 2509 struct intel_pt_queue *ptq; 2510 2511 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2512 if (ptq && ptq->sync_switch) { 2513 ptq->next_tid = -1; 2514 switch (ptq->switch_state) { 2515 case INTEL_PT_SS_NOT_TRACING: 2516 case INTEL_PT_SS_UNKNOWN: 2517 case INTEL_PT_SS_TRACING: 2518 break; 2519 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2520 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2521 ptq->switch_state = INTEL_PT_SS_TRACING; 2522 break; 2523 default: 2524 break; 2525 } 2526 } 2527 } 2528 2529 /* 2530 * If the current tid has not been updated yet, ensure it is now that 2531 * a "switch in" event has occurred. 2532 */ 2533 if (machine__get_current_tid(pt->machine, cpu) == tid) 2534 return 0; 2535 2536 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2537 } 2538 2539 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 2540 struct perf_sample *sample) 2541 { 2542 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2543 pid_t pid, tid; 2544 int cpu, ret; 2545 2546 cpu = sample->cpu; 2547 2548 if (pt->have_sched_switch == 3) { 2549 if (!out) 2550 return intel_pt_context_switch_in(pt, sample); 2551 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 2552 pr_err("Expecting CPU-wide context switch event\n"); 2553 return -EINVAL; 2554 } 2555 pid = event->context_switch.next_prev_pid; 2556 tid = event->context_switch.next_prev_tid; 2557 } else { 2558 if (out) 2559 return 0; 2560 pid = sample->pid; 2561 tid = sample->tid; 2562 } 2563 2564 if (tid == -1) { 2565 pr_err("context_switch event has no tid\n"); 2566 return -EINVAL; 2567 } 2568 2569 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2570 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time, 2571 &pt->tc)); 2572 2573 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2574 if (ret <= 0) 2575 return ret; 2576 2577 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2578 } 2579 2580 static int intel_pt_process_itrace_start(struct intel_pt *pt, 2581 union perf_event *event, 2582 struct perf_sample *sample) 2583 { 2584 if (!pt->per_cpu_mmaps) 2585 return 0; 2586 2587 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2588 sample->cpu, event->itrace_start.pid, 2589 event->itrace_start.tid, sample->time, 2590 perf_time_to_tsc(sample->time, &pt->tc)); 2591 2592 return machine__set_current_tid(pt->machine, sample->cpu, 2593 event->itrace_start.pid, 2594 event->itrace_start.tid); 2595 } 2596 2597 static int intel_pt_process_event(struct perf_session *session, 2598 union perf_event *event, 2599 struct perf_sample *sample, 2600 struct perf_tool *tool) 2601 { 2602 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2603 auxtrace); 2604 u64 timestamp; 2605 int err = 0; 2606 2607 if (dump_trace) 2608 return 0; 2609 2610 if (!tool->ordered_events) { 2611 pr_err("Intel Processor Trace requires ordered events\n"); 2612 return -EINVAL; 2613 } 2614 2615 if (sample->time && sample->time != (u64)-1) 2616 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2617 else 2618 timestamp = 0; 2619 2620 if (timestamp || pt->timeless_decoding) { 2621 err = intel_pt_update_queues(pt); 2622 if (err) 2623 return err; 2624 } 2625 2626 if (pt->timeless_decoding) { 2627 if (pt->sampling_mode) { 2628 if (sample->aux_sample.size) 2629 err = intel_pt_process_timeless_sample(pt, 2630 sample); 2631 } else if (event->header.type == PERF_RECORD_EXIT) { 2632 err = intel_pt_process_timeless_queues(pt, 2633 event->fork.tid, 2634 sample->time); 2635 } 2636 } else if (timestamp) { 2637 err = intel_pt_process_queues(pt, timestamp); 2638 } 2639 if (err) 2640 return err; 2641 2642 if (event->header.type == PERF_RECORD_AUX && 2643 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 2644 pt->synth_opts.errors) { 2645 err = intel_pt_lost(pt, sample); 2646 if (err) 2647 return err; 2648 } 2649 2650 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 2651 err = intel_pt_process_switch(pt, sample); 2652 else if (event->header.type == PERF_RECORD_ITRACE_START) 2653 err = intel_pt_process_itrace_start(pt, event, sample); 2654 else if (event->header.type == PERF_RECORD_SWITCH || 2655 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2656 err = intel_pt_context_switch(pt, event, sample); 2657 2658 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 2659 event->header.type, sample->cpu, sample->time, timestamp); 2660 intel_pt_log_event(event); 2661 2662 return err; 2663 } 2664 2665 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 2666 { 2667 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2668 auxtrace); 2669 int ret; 2670 2671 if (dump_trace) 2672 return 0; 2673 2674 if (!tool->ordered_events) 2675 return -EINVAL; 2676 2677 ret = intel_pt_update_queues(pt); 2678 if (ret < 0) 2679 return ret; 2680 2681 if (pt->timeless_decoding) 2682 return intel_pt_process_timeless_queues(pt, -1, 2683 MAX_TIMESTAMP - 1); 2684 2685 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 2686 } 2687 2688 static void intel_pt_free_events(struct perf_session *session) 2689 { 2690 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2691 auxtrace); 2692 struct auxtrace_queues *queues = &pt->queues; 2693 unsigned int i; 2694 2695 for (i = 0; i < queues->nr_queues; i++) { 2696 intel_pt_free_queue(queues->queue_array[i].priv); 2697 queues->queue_array[i].priv = NULL; 2698 } 2699 intel_pt_log_disable(); 2700 auxtrace_queues__free(queues); 2701 } 2702 2703 static void intel_pt_free(struct perf_session *session) 2704 { 2705 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2706 auxtrace); 2707 2708 auxtrace_heap__free(&pt->heap); 2709 intel_pt_free_events(session); 2710 session->auxtrace = NULL; 2711 thread__put(pt->unknown_thread); 2712 addr_filters__exit(&pt->filts); 2713 zfree(&pt->filter); 2714 zfree(&pt->time_ranges); 2715 free(pt); 2716 } 2717 2718 static int intel_pt_process_auxtrace_event(struct perf_session *session, 2719 union perf_event *event, 2720 struct perf_tool *tool __maybe_unused) 2721 { 2722 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2723 auxtrace); 2724 2725 if (!pt->data_queued) { 2726 struct auxtrace_buffer *buffer; 2727 off_t data_offset; 2728 int fd = perf_data__fd(session->data); 2729 int err; 2730 2731 if (perf_data__is_pipe(session->data)) { 2732 data_offset = 0; 2733 } else { 2734 data_offset = lseek(fd, 0, SEEK_CUR); 2735 if (data_offset == -1) 2736 return -errno; 2737 } 2738 2739 err = auxtrace_queues__add_event(&pt->queues, session, event, 2740 data_offset, &buffer); 2741 if (err) 2742 return err; 2743 2744 /* Dump here now we have copied a piped trace out of the pipe */ 2745 if (dump_trace) { 2746 if (auxtrace_buffer__get_data(buffer, fd)) { 2747 intel_pt_dump_event(pt, buffer->data, 2748 buffer->size); 2749 auxtrace_buffer__put_data(buffer); 2750 } 2751 } 2752 } 2753 2754 return 0; 2755 } 2756 2757 static int intel_pt_queue_data(struct perf_session *session, 2758 struct perf_sample *sample, 2759 union perf_event *event, u64 data_offset) 2760 { 2761 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2762 auxtrace); 2763 u64 timestamp; 2764 2765 if (event) { 2766 return auxtrace_queues__add_event(&pt->queues, session, event, 2767 data_offset, NULL); 2768 } 2769 2770 if (sample->time && sample->time != (u64)-1) 2771 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2772 else 2773 timestamp = 0; 2774 2775 return auxtrace_queues__add_sample(&pt->queues, session, sample, 2776 data_offset, timestamp); 2777 } 2778 2779 struct intel_pt_synth { 2780 struct perf_tool dummy_tool; 2781 struct perf_session *session; 2782 }; 2783 2784 static int intel_pt_event_synth(struct perf_tool *tool, 2785 union perf_event *event, 2786 struct perf_sample *sample __maybe_unused, 2787 struct machine *machine __maybe_unused) 2788 { 2789 struct intel_pt_synth *intel_pt_synth = 2790 container_of(tool, struct intel_pt_synth, dummy_tool); 2791 2792 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 2793 NULL); 2794 } 2795 2796 static int intel_pt_synth_event(struct perf_session *session, const char *name, 2797 struct perf_event_attr *attr, u64 id) 2798 { 2799 struct intel_pt_synth intel_pt_synth; 2800 int err; 2801 2802 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 2803 name, id, (u64)attr->sample_type); 2804 2805 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 2806 intel_pt_synth.session = session; 2807 2808 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 2809 &id, intel_pt_event_synth); 2810 if (err) 2811 pr_err("%s: failed to synthesize '%s' event type\n", 2812 __func__, name); 2813 2814 return err; 2815 } 2816 2817 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 2818 const char *name) 2819 { 2820 struct evsel *evsel; 2821 2822 evlist__for_each_entry(evlist, evsel) { 2823 if (evsel->core.id && evsel->core.id[0] == id) { 2824 if (evsel->name) 2825 zfree(&evsel->name); 2826 evsel->name = strdup(name); 2827 break; 2828 } 2829 } 2830 } 2831 2832 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 2833 struct evlist *evlist) 2834 { 2835 struct evsel *evsel; 2836 2837 evlist__for_each_entry(evlist, evsel) { 2838 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 2839 return evsel; 2840 } 2841 2842 return NULL; 2843 } 2844 2845 static int intel_pt_synth_events(struct intel_pt *pt, 2846 struct perf_session *session) 2847 { 2848 struct evlist *evlist = session->evlist; 2849 struct evsel *evsel = intel_pt_evsel(pt, evlist); 2850 struct perf_event_attr attr; 2851 u64 id; 2852 int err; 2853 2854 if (!evsel) { 2855 pr_debug("There are no selected events with Intel Processor Trace data\n"); 2856 return 0; 2857 } 2858 2859 memset(&attr, 0, sizeof(struct perf_event_attr)); 2860 attr.size = sizeof(struct perf_event_attr); 2861 attr.type = PERF_TYPE_HARDWARE; 2862 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 2863 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 2864 PERF_SAMPLE_PERIOD; 2865 if (pt->timeless_decoding) 2866 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 2867 else 2868 attr.sample_type |= PERF_SAMPLE_TIME; 2869 if (!pt->per_cpu_mmaps) 2870 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 2871 attr.exclude_user = evsel->core.attr.exclude_user; 2872 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 2873 attr.exclude_hv = evsel->core.attr.exclude_hv; 2874 attr.exclude_host = evsel->core.attr.exclude_host; 2875 attr.exclude_guest = evsel->core.attr.exclude_guest; 2876 attr.sample_id_all = evsel->core.attr.sample_id_all; 2877 attr.read_format = evsel->core.attr.read_format; 2878 2879 id = evsel->core.id[0] + 1000000000; 2880 if (!id) 2881 id = 1; 2882 2883 if (pt->synth_opts.branches) { 2884 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 2885 attr.sample_period = 1; 2886 attr.sample_type |= PERF_SAMPLE_ADDR; 2887 err = intel_pt_synth_event(session, "branches", &attr, id); 2888 if (err) 2889 return err; 2890 pt->sample_branches = true; 2891 pt->branches_sample_type = attr.sample_type; 2892 pt->branches_id = id; 2893 id += 1; 2894 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 2895 } 2896 2897 if (pt->synth_opts.callchain) 2898 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 2899 if (pt->synth_opts.last_branch) 2900 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 2901 2902 if (pt->synth_opts.instructions) { 2903 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2904 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 2905 attr.sample_period = 2906 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 2907 else 2908 attr.sample_period = pt->synth_opts.period; 2909 err = intel_pt_synth_event(session, "instructions", &attr, id); 2910 if (err) 2911 return err; 2912 pt->sample_instructions = true; 2913 pt->instructions_sample_type = attr.sample_type; 2914 pt->instructions_id = id; 2915 id += 1; 2916 } 2917 2918 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 2919 attr.sample_period = 1; 2920 2921 if (pt->synth_opts.transactions) { 2922 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 2923 err = intel_pt_synth_event(session, "transactions", &attr, id); 2924 if (err) 2925 return err; 2926 pt->sample_transactions = true; 2927 pt->transactions_sample_type = attr.sample_type; 2928 pt->transactions_id = id; 2929 intel_pt_set_event_name(evlist, id, "transactions"); 2930 id += 1; 2931 } 2932 2933 attr.type = PERF_TYPE_SYNTH; 2934 attr.sample_type |= PERF_SAMPLE_RAW; 2935 2936 if (pt->synth_opts.ptwrites) { 2937 attr.config = PERF_SYNTH_INTEL_PTWRITE; 2938 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 2939 if (err) 2940 return err; 2941 pt->sample_ptwrites = true; 2942 pt->ptwrites_sample_type = attr.sample_type; 2943 pt->ptwrites_id = id; 2944 intel_pt_set_event_name(evlist, id, "ptwrite"); 2945 id += 1; 2946 } 2947 2948 if (pt->synth_opts.pwr_events) { 2949 pt->sample_pwr_events = true; 2950 pt->pwr_events_sample_type = attr.sample_type; 2951 2952 attr.config = PERF_SYNTH_INTEL_CBR; 2953 err = intel_pt_synth_event(session, "cbr", &attr, id); 2954 if (err) 2955 return err; 2956 pt->cbr_id = id; 2957 intel_pt_set_event_name(evlist, id, "cbr"); 2958 id += 1; 2959 } 2960 2961 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { 2962 attr.config = PERF_SYNTH_INTEL_MWAIT; 2963 err = intel_pt_synth_event(session, "mwait", &attr, id); 2964 if (err) 2965 return err; 2966 pt->mwait_id = id; 2967 intel_pt_set_event_name(evlist, id, "mwait"); 2968 id += 1; 2969 2970 attr.config = PERF_SYNTH_INTEL_PWRE; 2971 err = intel_pt_synth_event(session, "pwre", &attr, id); 2972 if (err) 2973 return err; 2974 pt->pwre_id = id; 2975 intel_pt_set_event_name(evlist, id, "pwre"); 2976 id += 1; 2977 2978 attr.config = PERF_SYNTH_INTEL_EXSTOP; 2979 err = intel_pt_synth_event(session, "exstop", &attr, id); 2980 if (err) 2981 return err; 2982 pt->exstop_id = id; 2983 intel_pt_set_event_name(evlist, id, "exstop"); 2984 id += 1; 2985 2986 attr.config = PERF_SYNTH_INTEL_PWRX; 2987 err = intel_pt_synth_event(session, "pwrx", &attr, id); 2988 if (err) 2989 return err; 2990 pt->pwrx_id = id; 2991 intel_pt_set_event_name(evlist, id, "pwrx"); 2992 id += 1; 2993 } 2994 2995 return 0; 2996 } 2997 2998 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 2999 { 3000 struct evsel *evsel; 3001 3002 if (!pt->synth_opts.other_events) 3003 return; 3004 3005 evlist__for_each_entry(pt->session->evlist, evsel) { 3006 if (evsel->core.attr.aux_output && evsel->core.id) { 3007 pt->sample_pebs = true; 3008 pt->pebs_evsel = evsel; 3009 return; 3010 } 3011 } 3012 } 3013 3014 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3015 { 3016 struct evsel *evsel; 3017 3018 evlist__for_each_entry_reverse(evlist, evsel) { 3019 const char *name = perf_evsel__name(evsel); 3020 3021 if (!strcmp(name, "sched:sched_switch")) 3022 return evsel; 3023 } 3024 3025 return NULL; 3026 } 3027 3028 static bool intel_pt_find_switch(struct evlist *evlist) 3029 { 3030 struct evsel *evsel; 3031 3032 evlist__for_each_entry(evlist, evsel) { 3033 if (evsel->core.attr.context_switch) 3034 return true; 3035 } 3036 3037 return false; 3038 } 3039 3040 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3041 { 3042 struct intel_pt *pt = data; 3043 3044 if (!strcmp(var, "intel-pt.mispred-all")) 3045 pt->mispred_all = perf_config_bool(var, value); 3046 3047 return 0; 3048 } 3049 3050 /* Find least TSC which converts to ns or later */ 3051 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3052 { 3053 u64 tsc, tm; 3054 3055 tsc = perf_time_to_tsc(ns, &pt->tc); 3056 3057 while (1) { 3058 tm = tsc_to_perf_time(tsc, &pt->tc); 3059 if (tm < ns) 3060 break; 3061 tsc -= 1; 3062 } 3063 3064 while (tm < ns) 3065 tm = tsc_to_perf_time(++tsc, &pt->tc); 3066 3067 return tsc; 3068 } 3069 3070 /* Find greatest TSC which converts to ns or earlier */ 3071 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3072 { 3073 u64 tsc, tm; 3074 3075 tsc = perf_time_to_tsc(ns, &pt->tc); 3076 3077 while (1) { 3078 tm = tsc_to_perf_time(tsc, &pt->tc); 3079 if (tm > ns) 3080 break; 3081 tsc += 1; 3082 } 3083 3084 while (tm > ns) 3085 tm = tsc_to_perf_time(--tsc, &pt->tc); 3086 3087 return tsc; 3088 } 3089 3090 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3091 struct itrace_synth_opts *opts) 3092 { 3093 struct perf_time_interval *p = opts->ptime_range; 3094 int n = opts->range_num; 3095 int i; 3096 3097 if (!n || !p || pt->timeless_decoding) 3098 return 0; 3099 3100 pt->time_ranges = calloc(n, sizeof(struct range)); 3101 if (!pt->time_ranges) 3102 return -ENOMEM; 3103 3104 pt->range_cnt = n; 3105 3106 intel_pt_log("%s: %u range(s)\n", __func__, n); 3107 3108 for (i = 0; i < n; i++) { 3109 struct range *r = &pt->time_ranges[i]; 3110 u64 ts = p[i].start; 3111 u64 te = p[i].end; 3112 3113 /* 3114 * Take care to ensure the TSC range matches the perf-time range 3115 * when converted back to perf-time. 3116 */ 3117 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3118 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3119 3120 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3121 i, ts, te); 3122 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3123 i, r->start, r->end); 3124 } 3125 3126 return 0; 3127 } 3128 3129 static const char * const intel_pt_info_fmts[] = { 3130 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3131 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3132 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3133 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3134 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3135 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3136 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3137 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3138 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3139 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3140 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3141 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3142 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3143 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3144 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3145 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3146 }; 3147 3148 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3149 { 3150 int i; 3151 3152 if (!dump_trace) 3153 return; 3154 3155 for (i = start; i <= finish; i++) 3156 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3157 } 3158 3159 static void intel_pt_print_info_str(const char *name, const char *str) 3160 { 3161 if (!dump_trace) 3162 return; 3163 3164 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3165 } 3166 3167 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3168 { 3169 return auxtrace_info->header.size >= 3170 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3171 } 3172 3173 int intel_pt_process_auxtrace_info(union perf_event *event, 3174 struct perf_session *session) 3175 { 3176 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3177 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3178 struct intel_pt *pt; 3179 void *info_end; 3180 __u64 *info; 3181 int err; 3182 3183 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3184 min_sz) 3185 return -EINVAL; 3186 3187 pt = zalloc(sizeof(struct intel_pt)); 3188 if (!pt) 3189 return -ENOMEM; 3190 3191 addr_filters__init(&pt->filts); 3192 3193 err = perf_config(intel_pt_perf_config, pt); 3194 if (err) 3195 goto err_free; 3196 3197 err = auxtrace_queues__init(&pt->queues); 3198 if (err) 3199 goto err_free; 3200 3201 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3202 3203 pt->session = session; 3204 pt->machine = &session->machines.host; /* No kvm support */ 3205 pt->auxtrace_type = auxtrace_info->type; 3206 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3207 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3208 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3209 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3210 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3211 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3212 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3213 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3214 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3215 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3216 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3217 INTEL_PT_PER_CPU_MMAPS); 3218 3219 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3220 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3221 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3222 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3223 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3224 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3225 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3226 INTEL_PT_CYC_BIT); 3227 } 3228 3229 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3230 pt->max_non_turbo_ratio = 3231 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3232 intel_pt_print_info(&auxtrace_info->priv[0], 3233 INTEL_PT_MAX_NONTURBO_RATIO, 3234 INTEL_PT_MAX_NONTURBO_RATIO); 3235 } 3236 3237 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3238 info_end = (void *)info + auxtrace_info->header.size; 3239 3240 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3241 size_t len; 3242 3243 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3244 intel_pt_print_info(&auxtrace_info->priv[0], 3245 INTEL_PT_FILTER_STR_LEN, 3246 INTEL_PT_FILTER_STR_LEN); 3247 if (len) { 3248 const char *filter = (const char *)info; 3249 3250 len = roundup(len + 1, 8); 3251 info += len >> 3; 3252 if ((void *)info > info_end) { 3253 pr_err("%s: bad filter string length\n", __func__); 3254 err = -EINVAL; 3255 goto err_free_queues; 3256 } 3257 pt->filter = memdup(filter, len); 3258 if (!pt->filter) { 3259 err = -ENOMEM; 3260 goto err_free_queues; 3261 } 3262 if (session->header.needs_swap) 3263 mem_bswap_64(pt->filter, len); 3264 if (pt->filter[len - 1]) { 3265 pr_err("%s: filter string not null terminated\n", __func__); 3266 err = -EINVAL; 3267 goto err_free_queues; 3268 } 3269 err = addr_filters__parse_bare_filter(&pt->filts, 3270 filter); 3271 if (err) 3272 goto err_free_queues; 3273 } 3274 intel_pt_print_info_str("Filter string", pt->filter); 3275 } 3276 3277 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3278 if (pt->timeless_decoding && !pt->tc.time_mult) 3279 pt->tc.time_mult = 1; 3280 pt->have_tsc = intel_pt_have_tsc(pt); 3281 pt->sampling_mode = intel_pt_sampling_mode(pt); 3282 pt->est_tsc = !pt->timeless_decoding; 3283 3284 pt->unknown_thread = thread__new(999999999, 999999999); 3285 if (!pt->unknown_thread) { 3286 err = -ENOMEM; 3287 goto err_free_queues; 3288 } 3289 3290 /* 3291 * Since this thread will not be kept in any rbtree not in a 3292 * list, initialize its list node so that at thread__put() the 3293 * current thread lifetime assuption is kept and we don't segfault 3294 * at list_del_init(). 3295 */ 3296 INIT_LIST_HEAD(&pt->unknown_thread->node); 3297 3298 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 3299 if (err) 3300 goto err_delete_thread; 3301 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 3302 err = -ENOMEM; 3303 goto err_delete_thread; 3304 } 3305 3306 pt->auxtrace.process_event = intel_pt_process_event; 3307 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 3308 pt->auxtrace.queue_data = intel_pt_queue_data; 3309 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 3310 pt->auxtrace.flush_events = intel_pt_flush; 3311 pt->auxtrace.free_events = intel_pt_free_events; 3312 pt->auxtrace.free = intel_pt_free; 3313 session->auxtrace = &pt->auxtrace; 3314 3315 if (dump_trace) 3316 return 0; 3317 3318 if (pt->have_sched_switch == 1) { 3319 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 3320 if (!pt->switch_evsel) { 3321 pr_err("%s: missing sched_switch event\n", __func__); 3322 err = -EINVAL; 3323 goto err_delete_thread; 3324 } 3325 } else if (pt->have_sched_switch == 2 && 3326 !intel_pt_find_switch(session->evlist)) { 3327 pr_err("%s: missing context_switch attribute flag\n", __func__); 3328 err = -EINVAL; 3329 goto err_delete_thread; 3330 } 3331 3332 if (session->itrace_synth_opts->set) { 3333 pt->synth_opts = *session->itrace_synth_opts; 3334 } else { 3335 itrace_synth_opts__set_default(&pt->synth_opts, 3336 session->itrace_synth_opts->default_no_sample); 3337 if (!session->itrace_synth_opts->default_no_sample && 3338 !session->itrace_synth_opts->inject) { 3339 pt->synth_opts.branches = false; 3340 pt->synth_opts.callchain = true; 3341 } 3342 pt->synth_opts.thread_stack = 3343 session->itrace_synth_opts->thread_stack; 3344 } 3345 3346 if (pt->synth_opts.log) 3347 intel_pt_log_enable(); 3348 3349 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 3350 if (pt->tc.time_mult) { 3351 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 3352 3353 if (!pt->max_non_turbo_ratio) 3354 pt->max_non_turbo_ratio = 3355 (tsc_freq + 50000000) / 100000000; 3356 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 3357 intel_pt_log("Maximum non-turbo ratio %u\n", 3358 pt->max_non_turbo_ratio); 3359 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 3360 } 3361 3362 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 3363 if (err) 3364 goto err_delete_thread; 3365 3366 if (pt->synth_opts.calls) 3367 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 3368 PERF_IP_FLAG_TRACE_END; 3369 if (pt->synth_opts.returns) 3370 pt->branches_filter |= PERF_IP_FLAG_RETURN | 3371 PERF_IP_FLAG_TRACE_BEGIN; 3372 3373 if (pt->synth_opts.callchain && !symbol_conf.use_callchain) { 3374 symbol_conf.use_callchain = true; 3375 if (callchain_register_param(&callchain_param) < 0) { 3376 symbol_conf.use_callchain = false; 3377 pt->synth_opts.callchain = false; 3378 } 3379 } 3380 3381 err = intel_pt_synth_events(pt, session); 3382 if (err) 3383 goto err_delete_thread; 3384 3385 intel_pt_setup_pebs_events(pt); 3386 3387 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 3388 err = auxtrace_queue_data(session, true, true); 3389 else 3390 err = auxtrace_queues__process_index(&pt->queues, session); 3391 if (err) 3392 goto err_delete_thread; 3393 3394 if (pt->queues.populated) 3395 pt->data_queued = true; 3396 3397 if (pt->timeless_decoding) 3398 pr_debug2("Intel PT decoding without timestamps\n"); 3399 3400 return 0; 3401 3402 err_delete_thread: 3403 thread__zput(pt->unknown_thread); 3404 err_free_queues: 3405 intel_pt_log_disable(); 3406 auxtrace_queues__free(&pt->queues); 3407 session->auxtrace = NULL; 3408 err_free: 3409 addr_filters__exit(&pt->filts); 3410 zfree(&pt->filter); 3411 zfree(&pt->time_ranges); 3412 free(pt); 3413 return err; 3414 } 3415