xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
54 
55 struct range {
56 	u64 start;
57 	u64 end;
58 };
59 
60 struct intel_pt {
61 	struct auxtrace auxtrace;
62 	struct auxtrace_queues queues;
63 	struct auxtrace_heap heap;
64 	u32 auxtrace_type;
65 	struct perf_session *session;
66 	struct machine *machine;
67 	struct evsel *switch_evsel;
68 	struct thread *unknown_thread;
69 	bool timeless_decoding;
70 	bool sampling_mode;
71 	bool snapshot_mode;
72 	bool per_cpu_mmaps;
73 	bool have_tsc;
74 	bool data_queued;
75 	bool est_tsc;
76 	bool sync_switch;
77 	bool mispred_all;
78 	bool use_thread_stack;
79 	bool callstack;
80 	bool cap_event_trace;
81 	unsigned int br_stack_sz;
82 	unsigned int br_stack_sz_plus;
83 	int have_sched_switch;
84 	u32 pmu_type;
85 	u64 kernel_start;
86 	u64 switch_ip;
87 	u64 ptss_ip;
88 	u64 first_timestamp;
89 
90 	struct perf_tsc_conversion tc;
91 	bool cap_user_time_zero;
92 
93 	struct itrace_synth_opts synth_opts;
94 
95 	bool sample_instructions;
96 	u64 instructions_sample_type;
97 	u64 instructions_id;
98 
99 	bool sample_branches;
100 	u32 branches_filter;
101 	u64 branches_sample_type;
102 	u64 branches_id;
103 
104 	bool sample_transactions;
105 	u64 transactions_sample_type;
106 	u64 transactions_id;
107 
108 	bool sample_ptwrites;
109 	u64 ptwrites_sample_type;
110 	u64 ptwrites_id;
111 
112 	bool sample_pwr_events;
113 	u64 pwr_events_sample_type;
114 	u64 mwait_id;
115 	u64 pwre_id;
116 	u64 exstop_id;
117 	u64 pwrx_id;
118 	u64 cbr_id;
119 	u64 psb_id;
120 
121 	bool single_pebs;
122 	bool sample_pebs;
123 	struct evsel *pebs_evsel;
124 
125 	u64 evt_sample_type;
126 	u64 evt_id;
127 
128 	u64 iflag_chg_sample_type;
129 	u64 iflag_chg_id;
130 
131 	u64 tsc_bit;
132 	u64 mtc_bit;
133 	u64 mtc_freq_bits;
134 	u32 tsc_ctc_ratio_n;
135 	u32 tsc_ctc_ratio_d;
136 	u64 cyc_bit;
137 	u64 noretcomp_bit;
138 	unsigned max_non_turbo_ratio;
139 	unsigned cbr2khz;
140 	int max_loops;
141 
142 	unsigned long num_events;
143 
144 	char *filter;
145 	struct addr_filters filts;
146 
147 	struct range *time_ranges;
148 	unsigned int range_cnt;
149 
150 	struct ip_callchain *chain;
151 	struct branch_stack *br_stack;
152 
153 	u64 dflt_tsc_offset;
154 	struct rb_root vmcs_info;
155 };
156 
157 enum switch_state {
158 	INTEL_PT_SS_NOT_TRACING,
159 	INTEL_PT_SS_UNKNOWN,
160 	INTEL_PT_SS_TRACING,
161 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
162 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
163 };
164 
165 /* applicable_counters is 64-bits */
166 #define INTEL_PT_MAX_PEBS 64
167 
168 struct intel_pt_pebs_event {
169 	struct evsel *evsel;
170 	u64 id;
171 };
172 
173 struct intel_pt_queue {
174 	struct intel_pt *pt;
175 	unsigned int queue_nr;
176 	struct auxtrace_buffer *buffer;
177 	struct auxtrace_buffer *old_buffer;
178 	void *decoder;
179 	const struct intel_pt_state *state;
180 	struct ip_callchain *chain;
181 	struct branch_stack *last_branch;
182 	union perf_event *event_buf;
183 	bool on_heap;
184 	bool stop;
185 	bool step_through_buffers;
186 	bool use_buffer_pid_tid;
187 	bool sync_switch;
188 	bool sample_ipc;
189 	pid_t pid, tid;
190 	int cpu;
191 	int switch_state;
192 	pid_t next_tid;
193 	struct thread *thread;
194 	struct machine *guest_machine;
195 	struct thread *unknown_guest_thread;
196 	pid_t guest_machine_pid;
197 	bool exclude_kernel;
198 	bool have_sample;
199 	u64 time;
200 	u64 timestamp;
201 	u64 sel_timestamp;
202 	bool sel_start;
203 	unsigned int sel_idx;
204 	u32 flags;
205 	u16 insn_len;
206 	u64 last_insn_cnt;
207 	u64 ipc_insn_cnt;
208 	u64 ipc_cyc_cnt;
209 	u64 last_in_insn_cnt;
210 	u64 last_in_cyc_cnt;
211 	u64 last_br_insn_cnt;
212 	u64 last_br_cyc_cnt;
213 	unsigned int cbr_seen;
214 	char insn[INTEL_PT_INSN_BUF_SZ];
215 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
216 };
217 
218 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
219 			  unsigned char *buf, size_t len)
220 {
221 	struct intel_pt_pkt packet;
222 	size_t pos = 0;
223 	int ret, pkt_len, i;
224 	char desc[INTEL_PT_PKT_DESC_MAX];
225 	const char *color = PERF_COLOR_BLUE;
226 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
227 
228 	color_fprintf(stdout, color,
229 		      ". ... Intel Processor Trace data: size %zu bytes\n",
230 		      len);
231 
232 	while (len) {
233 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
234 		if (ret > 0)
235 			pkt_len = ret;
236 		else
237 			pkt_len = 1;
238 		printf(".");
239 		color_fprintf(stdout, color, "  %08x: ", pos);
240 		for (i = 0; i < pkt_len; i++)
241 			color_fprintf(stdout, color, " %02x", buf[i]);
242 		for (; i < 16; i++)
243 			color_fprintf(stdout, color, "   ");
244 		if (ret > 0) {
245 			ret = intel_pt_pkt_desc(&packet, desc,
246 						INTEL_PT_PKT_DESC_MAX);
247 			if (ret > 0)
248 				color_fprintf(stdout, color, " %s\n", desc);
249 		} else {
250 			color_fprintf(stdout, color, " Bad packet!\n");
251 		}
252 		pos += pkt_len;
253 		buf += pkt_len;
254 		len -= pkt_len;
255 	}
256 }
257 
258 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
259 				size_t len)
260 {
261 	printf(".\n");
262 	intel_pt_dump(pt, buf, len);
263 }
264 
265 static void intel_pt_log_event(union perf_event *event)
266 {
267 	FILE *f = intel_pt_log_fp();
268 
269 	if (!intel_pt_enable_logging || !f)
270 		return;
271 
272 	perf_event__fprintf(event, NULL, f);
273 }
274 
275 static void intel_pt_dump_sample(struct perf_session *session,
276 				 struct perf_sample *sample)
277 {
278 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
279 					   auxtrace);
280 
281 	printf("\n");
282 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
283 }
284 
285 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
286 {
287 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
288 	int n = pt->synth_opts.range_num;
289 
290 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
291 		return true;
292 
293 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
294 		return false;
295 
296 	/* perf_time__ranges_skip_sample does not work if time is zero */
297 	if (!tm)
298 		tm = 1;
299 
300 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
301 }
302 
303 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
304 							u64 vmcs,
305 							u64 dflt_tsc_offset)
306 {
307 	struct rb_node **p = &rb_root->rb_node;
308 	struct rb_node *parent = NULL;
309 	struct intel_pt_vmcs_info *v;
310 
311 	while (*p) {
312 		parent = *p;
313 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
314 
315 		if (v->vmcs == vmcs)
316 			return v;
317 
318 		if (vmcs < v->vmcs)
319 			p = &(*p)->rb_left;
320 		else
321 			p = &(*p)->rb_right;
322 	}
323 
324 	v = zalloc(sizeof(*v));
325 	if (v) {
326 		v->vmcs = vmcs;
327 		v->tsc_offset = dflt_tsc_offset;
328 		v->reliable = dflt_tsc_offset;
329 
330 		rb_link_node(&v->rb_node, parent, p);
331 		rb_insert_color(&v->rb_node, rb_root);
332 	}
333 
334 	return v;
335 }
336 
337 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
338 {
339 	struct intel_pt_queue *ptq = data;
340 	struct intel_pt *pt = ptq->pt;
341 
342 	if (!vmcs && !pt->dflt_tsc_offset)
343 		return NULL;
344 
345 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
346 }
347 
348 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
349 {
350 	struct intel_pt_vmcs_info *v;
351 	struct rb_node *n;
352 
353 	n = rb_first(&pt->vmcs_info);
354 	while (n) {
355 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
356 		n = rb_next(n);
357 		rb_erase(&v->rb_node, &pt->vmcs_info);
358 		free(v);
359 	}
360 }
361 
362 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
363 				   struct auxtrace_buffer *b)
364 {
365 	bool consecutive = false;
366 	void *start;
367 
368 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
369 				      pt->have_tsc, &consecutive,
370 				      pt->synth_opts.vm_time_correlation);
371 	if (!start)
372 		return -EINVAL;
373 	/*
374 	 * In the case of vm_time_correlation, the overlap might contain TSC
375 	 * packets that will not be fixed, and that will then no longer work for
376 	 * overlap detection. Avoid that by zeroing out the overlap.
377 	 */
378 	if (pt->synth_opts.vm_time_correlation)
379 		memset(b->data, 0, start - b->data);
380 	b->use_size = b->data + b->size - start;
381 	b->use_data = start;
382 	if (b->use_size && consecutive)
383 		b->consecutive = true;
384 	return 0;
385 }
386 
387 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
388 			       struct auxtrace_buffer *buffer,
389 			       struct auxtrace_buffer *old_buffer,
390 			       struct intel_pt_buffer *b)
391 {
392 	bool might_overlap;
393 
394 	if (!buffer->data) {
395 		int fd = perf_data__fd(ptq->pt->session->data);
396 
397 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
398 		if (!buffer->data)
399 			return -ENOMEM;
400 	}
401 
402 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
403 	if (might_overlap && !buffer->consecutive && old_buffer &&
404 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
405 		return -ENOMEM;
406 
407 	if (buffer->use_data) {
408 		b->len = buffer->use_size;
409 		b->buf = buffer->use_data;
410 	} else {
411 		b->len = buffer->size;
412 		b->buf = buffer->data;
413 	}
414 	b->ref_timestamp = buffer->reference;
415 
416 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
417 		b->consecutive = false;
418 		b->trace_nr = buffer->buffer_nr + 1;
419 	} else {
420 		b->consecutive = true;
421 	}
422 
423 	return 0;
424 }
425 
426 /* Do not drop buffers with references - refer intel_pt_get_trace() */
427 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
428 					   struct auxtrace_buffer *buffer)
429 {
430 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
431 		return;
432 
433 	auxtrace_buffer__drop_data(buffer);
434 }
435 
436 /* Must be serialized with respect to intel_pt_get_trace() */
437 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
438 			      void *cb_data)
439 {
440 	struct intel_pt_queue *ptq = data;
441 	struct auxtrace_buffer *buffer = ptq->buffer;
442 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
443 	struct auxtrace_queue *queue;
444 	int err = 0;
445 
446 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
447 
448 	while (1) {
449 		struct intel_pt_buffer b = { .len = 0 };
450 
451 		buffer = auxtrace_buffer__next(queue, buffer);
452 		if (!buffer)
453 			break;
454 
455 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
456 		if (err)
457 			break;
458 
459 		if (b.len) {
460 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
461 			old_buffer = buffer;
462 		} else {
463 			intel_pt_lookahead_drop_buffer(ptq, buffer);
464 			continue;
465 		}
466 
467 		err = cb(&b, cb_data);
468 		if (err)
469 			break;
470 	}
471 
472 	if (buffer != old_buffer)
473 		intel_pt_lookahead_drop_buffer(ptq, buffer);
474 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
475 
476 	return err;
477 }
478 
479 /*
480  * This function assumes data is processed sequentially only.
481  * Must be serialized with respect to intel_pt_lookahead()
482  */
483 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
484 {
485 	struct intel_pt_queue *ptq = data;
486 	struct auxtrace_buffer *buffer = ptq->buffer;
487 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
488 	struct auxtrace_queue *queue;
489 	int err;
490 
491 	if (ptq->stop) {
492 		b->len = 0;
493 		return 0;
494 	}
495 
496 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
497 
498 	buffer = auxtrace_buffer__next(queue, buffer);
499 	if (!buffer) {
500 		if (old_buffer)
501 			auxtrace_buffer__drop_data(old_buffer);
502 		b->len = 0;
503 		return 0;
504 	}
505 
506 	ptq->buffer = buffer;
507 
508 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
509 	if (err)
510 		return err;
511 
512 	if (ptq->step_through_buffers)
513 		ptq->stop = true;
514 
515 	if (b->len) {
516 		if (old_buffer)
517 			auxtrace_buffer__drop_data(old_buffer);
518 		ptq->old_buffer = buffer;
519 	} else {
520 		auxtrace_buffer__drop_data(buffer);
521 		return intel_pt_get_trace(b, data);
522 	}
523 
524 	return 0;
525 }
526 
527 struct intel_pt_cache_entry {
528 	struct auxtrace_cache_entry	entry;
529 	u64				insn_cnt;
530 	u64				byte_cnt;
531 	enum intel_pt_insn_op		op;
532 	enum intel_pt_insn_branch	branch;
533 	int				length;
534 	int32_t				rel;
535 	char				insn[INTEL_PT_INSN_BUF_SZ];
536 };
537 
538 static int intel_pt_config_div(const char *var, const char *value, void *data)
539 {
540 	int *d = data;
541 	long val;
542 
543 	if (!strcmp(var, "intel-pt.cache-divisor")) {
544 		val = strtol(value, NULL, 0);
545 		if (val > 0 && val <= INT_MAX)
546 			*d = val;
547 	}
548 
549 	return 0;
550 }
551 
552 static int intel_pt_cache_divisor(void)
553 {
554 	static int d;
555 
556 	if (d)
557 		return d;
558 
559 	perf_config(intel_pt_config_div, &d);
560 
561 	if (!d)
562 		d = 64;
563 
564 	return d;
565 }
566 
567 static unsigned int intel_pt_cache_size(struct dso *dso,
568 					struct machine *machine)
569 {
570 	off_t size;
571 
572 	size = dso__data_size(dso, machine);
573 	size /= intel_pt_cache_divisor();
574 	if (size < 1000)
575 		return 10;
576 	if (size > (1 << 21))
577 		return 21;
578 	return 32 - __builtin_clz(size);
579 }
580 
581 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
582 					     struct machine *machine)
583 {
584 	struct auxtrace_cache *c;
585 	unsigned int bits;
586 
587 	if (dso->auxtrace_cache)
588 		return dso->auxtrace_cache;
589 
590 	bits = intel_pt_cache_size(dso, machine);
591 
592 	/* Ignoring cache creation failure */
593 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
594 
595 	dso->auxtrace_cache = c;
596 
597 	return c;
598 }
599 
600 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
601 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
602 			      struct intel_pt_insn *intel_pt_insn)
603 {
604 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
605 	struct intel_pt_cache_entry *e;
606 	int err;
607 
608 	if (!c)
609 		return -ENOMEM;
610 
611 	e = auxtrace_cache__alloc_entry(c);
612 	if (!e)
613 		return -ENOMEM;
614 
615 	e->insn_cnt = insn_cnt;
616 	e->byte_cnt = byte_cnt;
617 	e->op = intel_pt_insn->op;
618 	e->branch = intel_pt_insn->branch;
619 	e->length = intel_pt_insn->length;
620 	e->rel = intel_pt_insn->rel;
621 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
622 
623 	err = auxtrace_cache__add(c, offset, &e->entry);
624 	if (err)
625 		auxtrace_cache__free_entry(c, e);
626 
627 	return err;
628 }
629 
630 static struct intel_pt_cache_entry *
631 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
632 {
633 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
634 
635 	if (!c)
636 		return NULL;
637 
638 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
639 }
640 
641 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
642 				      u64 offset)
643 {
644 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
645 
646 	if (!c)
647 		return;
648 
649 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
650 }
651 
652 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
653 {
654 	/* Assumes 64-bit kernel */
655 	return ip & (1ULL << 63);
656 }
657 
658 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
659 {
660 	if (nr) {
661 		return intel_pt_guest_kernel_ip(ip) ?
662 		       PERF_RECORD_MISC_GUEST_KERNEL :
663 		       PERF_RECORD_MISC_GUEST_USER;
664 	}
665 
666 	return ip >= ptq->pt->kernel_start ?
667 	       PERF_RECORD_MISC_KERNEL :
668 	       PERF_RECORD_MISC_USER;
669 }
670 
671 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
672 {
673 	/* No support for non-zero CS base */
674 	if (from_ip)
675 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
676 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
677 }
678 
679 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
680 {
681 	struct machines *machines = &ptq->pt->session->machines;
682 	struct machine *machine;
683 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
684 
685 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
686 		return 0;
687 
688 	ptq->guest_machine = NULL;
689 	thread__zput(ptq->unknown_guest_thread);
690 
691 	machine = machines__find_guest(machines, pid);
692 	if (!machine)
693 		return -1;
694 
695 	ptq->unknown_guest_thread = machine__idle_thread(machine);
696 	if (!ptq->unknown_guest_thread)
697 		return -1;
698 
699 	ptq->guest_machine = machine;
700 	ptq->guest_machine_pid = pid;
701 
702 	return 0;
703 }
704 
705 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
706 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
707 				   uint64_t to_ip, uint64_t max_insn_cnt,
708 				   void *data)
709 {
710 	struct intel_pt_queue *ptq = data;
711 	struct machine *machine = ptq->pt->machine;
712 	struct thread *thread;
713 	struct addr_location al;
714 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
715 	ssize_t len;
716 	int x86_64;
717 	u8 cpumode;
718 	u64 offset, start_offset, start_ip;
719 	u64 insn_cnt = 0;
720 	bool one_map = true;
721 	bool nr;
722 
723 	intel_pt_insn->length = 0;
724 
725 	if (to_ip && *ip == to_ip)
726 		goto out_no_cache;
727 
728 	nr = ptq->state->to_nr;
729 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
730 
731 	if (nr) {
732 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
733 		    intel_pt_get_guest(ptq))
734 			return -EINVAL;
735 		machine = ptq->guest_machine;
736 		thread = ptq->unknown_guest_thread;
737 	} else {
738 		thread = ptq->thread;
739 		if (!thread) {
740 			if (cpumode != PERF_RECORD_MISC_KERNEL)
741 				return -EINVAL;
742 			thread = ptq->pt->unknown_thread;
743 		}
744 	}
745 
746 	while (1) {
747 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
748 			return -EINVAL;
749 
750 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
751 		    dso__data_status_seen(al.map->dso,
752 					  DSO_DATA_STATUS_SEEN_ITRACE))
753 			return -ENOENT;
754 
755 		offset = al.map->map_ip(al.map, *ip);
756 
757 		if (!to_ip && one_map) {
758 			struct intel_pt_cache_entry *e;
759 
760 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
761 			if (e &&
762 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
763 				*insn_cnt_ptr = e->insn_cnt;
764 				*ip += e->byte_cnt;
765 				intel_pt_insn->op = e->op;
766 				intel_pt_insn->branch = e->branch;
767 				intel_pt_insn->length = e->length;
768 				intel_pt_insn->rel = e->rel;
769 				memcpy(intel_pt_insn->buf, e->insn,
770 				       INTEL_PT_INSN_BUF_SZ);
771 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
772 				return 0;
773 			}
774 		}
775 
776 		start_offset = offset;
777 		start_ip = *ip;
778 
779 		/* Load maps to ensure dso->is_64_bit has been updated */
780 		map__load(al.map);
781 
782 		x86_64 = al.map->dso->is_64_bit;
783 
784 		while (1) {
785 			len = dso__data_read_offset(al.map->dso, machine,
786 						    offset, buf,
787 						    INTEL_PT_INSN_BUF_SZ);
788 			if (len <= 0)
789 				return -EINVAL;
790 
791 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
792 				return -EINVAL;
793 
794 			intel_pt_log_insn(intel_pt_insn, *ip);
795 
796 			insn_cnt += 1;
797 
798 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
799 				goto out;
800 
801 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
802 				goto out_no_cache;
803 
804 			*ip += intel_pt_insn->length;
805 
806 			if (to_ip && *ip == to_ip) {
807 				intel_pt_insn->length = 0;
808 				goto out_no_cache;
809 			}
810 
811 			if (*ip >= al.map->end)
812 				break;
813 
814 			offset += intel_pt_insn->length;
815 		}
816 		one_map = false;
817 	}
818 out:
819 	*insn_cnt_ptr = insn_cnt;
820 
821 	if (!one_map)
822 		goto out_no_cache;
823 
824 	/*
825 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
826 	 * entries.
827 	 */
828 	if (to_ip) {
829 		struct intel_pt_cache_entry *e;
830 
831 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
832 		if (e)
833 			return 0;
834 	}
835 
836 	/* Ignore cache errors */
837 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
838 			   *ip - start_ip, intel_pt_insn);
839 
840 	return 0;
841 
842 out_no_cache:
843 	*insn_cnt_ptr = insn_cnt;
844 	return 0;
845 }
846 
847 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
848 				  uint64_t offset, const char *filename)
849 {
850 	struct addr_filter *filt;
851 	bool have_filter   = false;
852 	bool hit_tracestop = false;
853 	bool hit_filter    = false;
854 
855 	list_for_each_entry(filt, &pt->filts.head, list) {
856 		if (filt->start)
857 			have_filter = true;
858 
859 		if ((filename && !filt->filename) ||
860 		    (!filename && filt->filename) ||
861 		    (filename && strcmp(filename, filt->filename)))
862 			continue;
863 
864 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
865 			continue;
866 
867 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
868 			     ip, offset, filename ? filename : "[kernel]",
869 			     filt->start ? "filter" : "stop",
870 			     filt->addr, filt->size);
871 
872 		if (filt->start)
873 			hit_filter = true;
874 		else
875 			hit_tracestop = true;
876 	}
877 
878 	if (!hit_tracestop && !hit_filter)
879 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
880 			     ip, offset, filename ? filename : "[kernel]");
881 
882 	return hit_tracestop || (have_filter && !hit_filter);
883 }
884 
885 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
886 {
887 	struct intel_pt_queue *ptq = data;
888 	struct thread *thread;
889 	struct addr_location al;
890 	u8 cpumode;
891 	u64 offset;
892 
893 	if (ptq->state->to_nr) {
894 		if (intel_pt_guest_kernel_ip(ip))
895 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
896 		/* No support for decoding guest user space */
897 		return -EINVAL;
898 	} else if (ip >= ptq->pt->kernel_start) {
899 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
900 	}
901 
902 	cpumode = PERF_RECORD_MISC_USER;
903 
904 	thread = ptq->thread;
905 	if (!thread)
906 		return -EINVAL;
907 
908 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
909 		return -EINVAL;
910 
911 	offset = al.map->map_ip(al.map, ip);
912 
913 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
914 				     al.map->dso->long_name);
915 }
916 
917 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
918 {
919 	return __intel_pt_pgd_ip(ip, data) > 0;
920 }
921 
922 static bool intel_pt_get_config(struct intel_pt *pt,
923 				struct perf_event_attr *attr, u64 *config)
924 {
925 	if (attr->type == pt->pmu_type) {
926 		if (config)
927 			*config = attr->config;
928 		return true;
929 	}
930 
931 	return false;
932 }
933 
934 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
935 {
936 	struct evsel *evsel;
937 
938 	evlist__for_each_entry(pt->session->evlist, evsel) {
939 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
940 		    !evsel->core.attr.exclude_kernel)
941 			return false;
942 	}
943 	return true;
944 }
945 
946 static bool intel_pt_return_compression(struct intel_pt *pt)
947 {
948 	struct evsel *evsel;
949 	u64 config;
950 
951 	if (!pt->noretcomp_bit)
952 		return true;
953 
954 	evlist__for_each_entry(pt->session->evlist, evsel) {
955 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
956 		    (config & pt->noretcomp_bit))
957 			return false;
958 	}
959 	return true;
960 }
961 
962 static bool intel_pt_branch_enable(struct intel_pt *pt)
963 {
964 	struct evsel *evsel;
965 	u64 config;
966 
967 	evlist__for_each_entry(pt->session->evlist, evsel) {
968 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
969 		    (config & INTEL_PT_CFG_PASS_THRU) &&
970 		    !(config & INTEL_PT_CFG_BRANCH_EN))
971 			return false;
972 	}
973 	return true;
974 }
975 
976 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
977 {
978 	struct evsel *evsel;
979 	u64 config;
980 
981 	evlist__for_each_entry(pt->session->evlist, evsel) {
982 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
983 		    config & INTEL_PT_CFG_TNT_DIS)
984 			return true;
985 	}
986 	return false;
987 }
988 
989 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
990 {
991 	struct evsel *evsel;
992 	unsigned int shift;
993 	u64 config;
994 
995 	if (!pt->mtc_freq_bits)
996 		return 0;
997 
998 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
999 		config >>= 1;
1000 
1001 	evlist__for_each_entry(pt->session->evlist, evsel) {
1002 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1003 			return (config & pt->mtc_freq_bits) >> shift;
1004 	}
1005 	return 0;
1006 }
1007 
1008 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1009 {
1010 	struct evsel *evsel;
1011 	bool timeless_decoding = true;
1012 	u64 config;
1013 
1014 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1015 		return true;
1016 
1017 	evlist__for_each_entry(pt->session->evlist, evsel) {
1018 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1019 			return true;
1020 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1021 			if (config & pt->tsc_bit)
1022 				timeless_decoding = false;
1023 			else
1024 				return true;
1025 		}
1026 	}
1027 	return timeless_decoding;
1028 }
1029 
1030 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1031 {
1032 	struct evsel *evsel;
1033 
1034 	evlist__for_each_entry(pt->session->evlist, evsel) {
1035 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1036 		    !evsel->core.attr.exclude_kernel)
1037 			return true;
1038 	}
1039 	return false;
1040 }
1041 
1042 static bool intel_pt_have_tsc(struct intel_pt *pt)
1043 {
1044 	struct evsel *evsel;
1045 	bool have_tsc = false;
1046 	u64 config;
1047 
1048 	if (!pt->tsc_bit)
1049 		return false;
1050 
1051 	evlist__for_each_entry(pt->session->evlist, evsel) {
1052 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1053 			if (config & pt->tsc_bit)
1054 				have_tsc = true;
1055 			else
1056 				return false;
1057 		}
1058 	}
1059 	return have_tsc;
1060 }
1061 
1062 static bool intel_pt_have_mtc(struct intel_pt *pt)
1063 {
1064 	struct evsel *evsel;
1065 	u64 config;
1066 
1067 	evlist__for_each_entry(pt->session->evlist, evsel) {
1068 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1069 		    (config & pt->mtc_bit))
1070 			return true;
1071 	}
1072 	return false;
1073 }
1074 
1075 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1076 {
1077 	struct evsel *evsel;
1078 
1079 	evlist__for_each_entry(pt->session->evlist, evsel) {
1080 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1081 		    evsel->core.attr.aux_sample_size)
1082 			return true;
1083 	}
1084 	return false;
1085 }
1086 
1087 static u64 intel_pt_ctl(struct intel_pt *pt)
1088 {
1089 	struct evsel *evsel;
1090 	u64 config;
1091 
1092 	evlist__for_each_entry(pt->session->evlist, evsel) {
1093 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1094 			return config;
1095 	}
1096 	return 0;
1097 }
1098 
1099 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1100 {
1101 	u64 quot, rem;
1102 
1103 	quot = ns / pt->tc.time_mult;
1104 	rem  = ns % pt->tc.time_mult;
1105 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1106 		pt->tc.time_mult;
1107 }
1108 
1109 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1110 {
1111 	size_t sz = sizeof(struct ip_callchain);
1112 
1113 	/* Add 1 to callchain_sz for callchain context */
1114 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1115 	return zalloc(sz);
1116 }
1117 
1118 static int intel_pt_callchain_init(struct intel_pt *pt)
1119 {
1120 	struct evsel *evsel;
1121 
1122 	evlist__for_each_entry(pt->session->evlist, evsel) {
1123 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1124 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1125 	}
1126 
1127 	pt->chain = intel_pt_alloc_chain(pt);
1128 	if (!pt->chain)
1129 		return -ENOMEM;
1130 
1131 	return 0;
1132 }
1133 
1134 static void intel_pt_add_callchain(struct intel_pt *pt,
1135 				   struct perf_sample *sample)
1136 {
1137 	struct thread *thread = machine__findnew_thread(pt->machine,
1138 							sample->pid,
1139 							sample->tid);
1140 
1141 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1142 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1143 				  pt->kernel_start);
1144 
1145 	sample->callchain = pt->chain;
1146 }
1147 
1148 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1149 {
1150 	size_t sz = sizeof(struct branch_stack);
1151 
1152 	sz += entry_cnt * sizeof(struct branch_entry);
1153 	return zalloc(sz);
1154 }
1155 
1156 static int intel_pt_br_stack_init(struct intel_pt *pt)
1157 {
1158 	struct evsel *evsel;
1159 
1160 	evlist__for_each_entry(pt->session->evlist, evsel) {
1161 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1162 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1163 	}
1164 
1165 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1166 	if (!pt->br_stack)
1167 		return -ENOMEM;
1168 
1169 	return 0;
1170 }
1171 
1172 static void intel_pt_add_br_stack(struct intel_pt *pt,
1173 				  struct perf_sample *sample)
1174 {
1175 	struct thread *thread = machine__findnew_thread(pt->machine,
1176 							sample->pid,
1177 							sample->tid);
1178 
1179 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1180 				     pt->br_stack_sz, sample->ip,
1181 				     pt->kernel_start);
1182 
1183 	sample->branch_stack = pt->br_stack;
1184 }
1185 
1186 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1187 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1188 
1189 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1190 						   unsigned int queue_nr)
1191 {
1192 	struct intel_pt_params params = { .get_trace = 0, };
1193 	struct perf_env *env = pt->machine->env;
1194 	struct intel_pt_queue *ptq;
1195 
1196 	ptq = zalloc(sizeof(struct intel_pt_queue));
1197 	if (!ptq)
1198 		return NULL;
1199 
1200 	if (pt->synth_opts.callchain) {
1201 		ptq->chain = intel_pt_alloc_chain(pt);
1202 		if (!ptq->chain)
1203 			goto out_free;
1204 	}
1205 
1206 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1207 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1208 
1209 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1210 		if (!ptq->last_branch)
1211 			goto out_free;
1212 	}
1213 
1214 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1215 	if (!ptq->event_buf)
1216 		goto out_free;
1217 
1218 	ptq->pt = pt;
1219 	ptq->queue_nr = queue_nr;
1220 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1221 	ptq->pid = -1;
1222 	ptq->tid = -1;
1223 	ptq->cpu = -1;
1224 	ptq->next_tid = -1;
1225 
1226 	params.get_trace = intel_pt_get_trace;
1227 	params.walk_insn = intel_pt_walk_next_insn;
1228 	params.lookahead = intel_pt_lookahead;
1229 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1230 	params.data = ptq;
1231 	params.return_compression = intel_pt_return_compression(pt);
1232 	params.branch_enable = intel_pt_branch_enable(pt);
1233 	params.ctl = intel_pt_ctl(pt);
1234 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1235 	params.mtc_period = intel_pt_mtc_period(pt);
1236 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1237 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1238 	params.quick = pt->synth_opts.quick;
1239 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1240 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1241 	params.first_timestamp = pt->first_timestamp;
1242 	params.max_loops = pt->max_loops;
1243 
1244 	/* Cannot walk code without TNT, so force 'quick' mode */
1245 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1246 		params.quick = 1;
1247 
1248 	if (pt->filts.cnt > 0)
1249 		params.pgd_ip = intel_pt_pgd_ip;
1250 
1251 	if (pt->synth_opts.instructions) {
1252 		if (pt->synth_opts.period) {
1253 			switch (pt->synth_opts.period_type) {
1254 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1255 				params.period_type =
1256 						INTEL_PT_PERIOD_INSTRUCTIONS;
1257 				params.period = pt->synth_opts.period;
1258 				break;
1259 			case PERF_ITRACE_PERIOD_TICKS:
1260 				params.period_type = INTEL_PT_PERIOD_TICKS;
1261 				params.period = pt->synth_opts.period;
1262 				break;
1263 			case PERF_ITRACE_PERIOD_NANOSECS:
1264 				params.period_type = INTEL_PT_PERIOD_TICKS;
1265 				params.period = intel_pt_ns_to_ticks(pt,
1266 							pt->synth_opts.period);
1267 				break;
1268 			default:
1269 				break;
1270 			}
1271 		}
1272 
1273 		if (!params.period) {
1274 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1275 			params.period = 1;
1276 		}
1277 	}
1278 
1279 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1280 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1281 
1282 	ptq->decoder = intel_pt_decoder_new(&params);
1283 	if (!ptq->decoder)
1284 		goto out_free;
1285 
1286 	return ptq;
1287 
1288 out_free:
1289 	zfree(&ptq->event_buf);
1290 	zfree(&ptq->last_branch);
1291 	zfree(&ptq->chain);
1292 	free(ptq);
1293 	return NULL;
1294 }
1295 
1296 static void intel_pt_free_queue(void *priv)
1297 {
1298 	struct intel_pt_queue *ptq = priv;
1299 
1300 	if (!ptq)
1301 		return;
1302 	thread__zput(ptq->thread);
1303 	thread__zput(ptq->unknown_guest_thread);
1304 	intel_pt_decoder_free(ptq->decoder);
1305 	zfree(&ptq->event_buf);
1306 	zfree(&ptq->last_branch);
1307 	zfree(&ptq->chain);
1308 	free(ptq);
1309 }
1310 
1311 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1312 {
1313 	unsigned int i;
1314 
1315 	pt->first_timestamp = timestamp;
1316 
1317 	for (i = 0; i < pt->queues.nr_queues; i++) {
1318 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1319 		struct intel_pt_queue *ptq = queue->priv;
1320 
1321 		if (ptq && ptq->decoder)
1322 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1323 	}
1324 }
1325 
1326 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1327 				     struct auxtrace_queue *queue)
1328 {
1329 	struct intel_pt_queue *ptq = queue->priv;
1330 
1331 	if (queue->tid == -1 || pt->have_sched_switch) {
1332 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1333 		if (ptq->tid == -1)
1334 			ptq->pid = -1;
1335 		thread__zput(ptq->thread);
1336 	}
1337 
1338 	if (!ptq->thread && ptq->tid != -1)
1339 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1340 
1341 	if (ptq->thread) {
1342 		ptq->pid = ptq->thread->pid_;
1343 		if (queue->cpu == -1)
1344 			ptq->cpu = ptq->thread->cpu;
1345 	}
1346 }
1347 
1348 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1349 {
1350 	struct intel_pt *pt = ptq->pt;
1351 
1352 	ptq->insn_len = 0;
1353 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1354 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1355 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1356 		if (!ptq->state->to_ip)
1357 			ptq->flags = PERF_IP_FLAG_BRANCH |
1358 				     PERF_IP_FLAG_TRACE_END;
1359 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1360 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1361 				     PERF_IP_FLAG_VMEXIT;
1362 		else
1363 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1364 				     PERF_IP_FLAG_ASYNC |
1365 				     PERF_IP_FLAG_INTERRUPT;
1366 	} else {
1367 		if (ptq->state->from_ip)
1368 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1369 		else
1370 			ptq->flags = PERF_IP_FLAG_BRANCH |
1371 				     PERF_IP_FLAG_TRACE_BEGIN;
1372 		if (ptq->state->flags & INTEL_PT_IN_TX)
1373 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1374 		ptq->insn_len = ptq->state->insn_len;
1375 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1376 	}
1377 
1378 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1379 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1380 	if (ptq->state->type & INTEL_PT_TRACE_END)
1381 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1382 
1383 	if (pt->cap_event_trace) {
1384 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1385 			if (!ptq->state->from_iflag)
1386 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1387 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1388 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1389 		} else if (!ptq->state->to_iflag) {
1390 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1391 		}
1392 	}
1393 }
1394 
1395 static void intel_pt_setup_time_range(struct intel_pt *pt,
1396 				      struct intel_pt_queue *ptq)
1397 {
1398 	if (!pt->range_cnt)
1399 		return;
1400 
1401 	ptq->sel_timestamp = pt->time_ranges[0].start;
1402 	ptq->sel_idx = 0;
1403 
1404 	if (ptq->sel_timestamp) {
1405 		ptq->sel_start = true;
1406 	} else {
1407 		ptq->sel_timestamp = pt->time_ranges[0].end;
1408 		ptq->sel_start = false;
1409 	}
1410 }
1411 
1412 static int intel_pt_setup_queue(struct intel_pt *pt,
1413 				struct auxtrace_queue *queue,
1414 				unsigned int queue_nr)
1415 {
1416 	struct intel_pt_queue *ptq = queue->priv;
1417 
1418 	if (list_empty(&queue->head))
1419 		return 0;
1420 
1421 	if (!ptq) {
1422 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1423 		if (!ptq)
1424 			return -ENOMEM;
1425 		queue->priv = ptq;
1426 
1427 		if (queue->cpu != -1)
1428 			ptq->cpu = queue->cpu;
1429 		ptq->tid = queue->tid;
1430 
1431 		ptq->cbr_seen = UINT_MAX;
1432 
1433 		if (pt->sampling_mode && !pt->snapshot_mode &&
1434 		    pt->timeless_decoding)
1435 			ptq->step_through_buffers = true;
1436 
1437 		ptq->sync_switch = pt->sync_switch;
1438 
1439 		intel_pt_setup_time_range(pt, ptq);
1440 	}
1441 
1442 	if (!ptq->on_heap &&
1443 	    (!ptq->sync_switch ||
1444 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1445 		const struct intel_pt_state *state;
1446 		int ret;
1447 
1448 		if (pt->timeless_decoding)
1449 			return 0;
1450 
1451 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1452 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1453 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1454 
1455 		if (ptq->sel_start && ptq->sel_timestamp) {
1456 			ret = intel_pt_fast_forward(ptq->decoder,
1457 						    ptq->sel_timestamp);
1458 			if (ret)
1459 				return ret;
1460 		}
1461 
1462 		while (1) {
1463 			state = intel_pt_decode(ptq->decoder);
1464 			if (state->err) {
1465 				if (state->err == INTEL_PT_ERR_NODATA) {
1466 					intel_pt_log("queue %u has no timestamp\n",
1467 						     queue_nr);
1468 					return 0;
1469 				}
1470 				continue;
1471 			}
1472 			if (state->timestamp)
1473 				break;
1474 		}
1475 
1476 		ptq->timestamp = state->timestamp;
1477 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1478 			     queue_nr, ptq->timestamp);
1479 		ptq->state = state;
1480 		ptq->have_sample = true;
1481 		if (ptq->sel_start && ptq->sel_timestamp &&
1482 		    ptq->timestamp < ptq->sel_timestamp)
1483 			ptq->have_sample = false;
1484 		intel_pt_sample_flags(ptq);
1485 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1486 		if (ret)
1487 			return ret;
1488 		ptq->on_heap = true;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static int intel_pt_setup_queues(struct intel_pt *pt)
1495 {
1496 	unsigned int i;
1497 	int ret;
1498 
1499 	for (i = 0; i < pt->queues.nr_queues; i++) {
1500 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1501 		if (ret)
1502 			return ret;
1503 	}
1504 	return 0;
1505 }
1506 
1507 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1508 {
1509 	return pt->synth_opts.initial_skip &&
1510 	       pt->num_events++ < pt->synth_opts.initial_skip;
1511 }
1512 
1513 /*
1514  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1515  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1516  * from this decoder state.
1517  */
1518 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1519 {
1520 	return pt->synth_opts.initial_skip &&
1521 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1522 }
1523 
1524 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1525 				   union perf_event *event,
1526 				   struct perf_sample *sample)
1527 {
1528 	event->sample.header.type = PERF_RECORD_SAMPLE;
1529 	event->sample.header.size = sizeof(struct perf_event_header);
1530 
1531 	sample->pid = ptq->pid;
1532 	sample->tid = ptq->tid;
1533 	sample->cpu = ptq->cpu;
1534 	sample->insn_len = ptq->insn_len;
1535 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1536 }
1537 
1538 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1539 				   struct intel_pt_queue *ptq,
1540 				   union perf_event *event,
1541 				   struct perf_sample *sample)
1542 {
1543 	intel_pt_prep_a_sample(ptq, event, sample);
1544 
1545 	if (!pt->timeless_decoding)
1546 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1547 
1548 	sample->ip = ptq->state->from_ip;
1549 	sample->addr = ptq->state->to_ip;
1550 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1551 	sample->period = 1;
1552 	sample->flags = ptq->flags;
1553 
1554 	event->sample.header.misc = sample->cpumode;
1555 }
1556 
1557 static int intel_pt_inject_event(union perf_event *event,
1558 				 struct perf_sample *sample, u64 type)
1559 {
1560 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1561 	return perf_event__synthesize_sample(event, type, 0, sample);
1562 }
1563 
1564 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1565 				      union perf_event *event,
1566 				      struct perf_sample *sample, u64 type)
1567 {
1568 	if (!pt->synth_opts.inject)
1569 		return 0;
1570 
1571 	return intel_pt_inject_event(event, sample, type);
1572 }
1573 
1574 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1575 					union perf_event *event,
1576 					struct perf_sample *sample, u64 type)
1577 {
1578 	int ret;
1579 
1580 	ret = intel_pt_opt_inject(pt, event, sample, type);
1581 	if (ret)
1582 		return ret;
1583 
1584 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1585 	if (ret)
1586 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1587 
1588 	return ret;
1589 }
1590 
1591 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1592 {
1593 	struct intel_pt *pt = ptq->pt;
1594 	union perf_event *event = ptq->event_buf;
1595 	struct perf_sample sample = { .ip = 0, };
1596 	struct dummy_branch_stack {
1597 		u64			nr;
1598 		u64			hw_idx;
1599 		struct branch_entry	entries;
1600 	} dummy_bs;
1601 
1602 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1603 		return 0;
1604 
1605 	if (intel_pt_skip_event(pt))
1606 		return 0;
1607 
1608 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1609 
1610 	sample.id = ptq->pt->branches_id;
1611 	sample.stream_id = ptq->pt->branches_id;
1612 
1613 	/*
1614 	 * perf report cannot handle events without a branch stack when using
1615 	 * SORT_MODE__BRANCH so make a dummy one.
1616 	 */
1617 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1618 		dummy_bs = (struct dummy_branch_stack){
1619 			.nr = 1,
1620 			.hw_idx = -1ULL,
1621 			.entries = {
1622 				.from = sample.ip,
1623 				.to = sample.addr,
1624 			},
1625 		};
1626 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1627 	}
1628 
1629 	if (ptq->sample_ipc)
1630 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1631 	if (sample.cyc_cnt) {
1632 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1633 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1634 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1635 	}
1636 
1637 	return intel_pt_deliver_synth_event(pt, event, &sample,
1638 					    pt->branches_sample_type);
1639 }
1640 
1641 static void intel_pt_prep_sample(struct intel_pt *pt,
1642 				 struct intel_pt_queue *ptq,
1643 				 union perf_event *event,
1644 				 struct perf_sample *sample)
1645 {
1646 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1647 
1648 	if (pt->synth_opts.callchain) {
1649 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1650 				     pt->synth_opts.callchain_sz + 1,
1651 				     sample->ip, pt->kernel_start);
1652 		sample->callchain = ptq->chain;
1653 	}
1654 
1655 	if (pt->synth_opts.last_branch) {
1656 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1657 					pt->br_stack_sz);
1658 		sample->branch_stack = ptq->last_branch;
1659 	}
1660 }
1661 
1662 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1663 {
1664 	struct intel_pt *pt = ptq->pt;
1665 	union perf_event *event = ptq->event_buf;
1666 	struct perf_sample sample = { .ip = 0, };
1667 
1668 	if (intel_pt_skip_event(pt))
1669 		return 0;
1670 
1671 	intel_pt_prep_sample(pt, ptq, event, &sample);
1672 
1673 	sample.id = ptq->pt->instructions_id;
1674 	sample.stream_id = ptq->pt->instructions_id;
1675 	if (pt->synth_opts.quick)
1676 		sample.period = 1;
1677 	else
1678 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1679 
1680 	if (ptq->sample_ipc)
1681 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1682 	if (sample.cyc_cnt) {
1683 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1684 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1685 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1686 	}
1687 
1688 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1689 
1690 	return intel_pt_deliver_synth_event(pt, event, &sample,
1691 					    pt->instructions_sample_type);
1692 }
1693 
1694 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1695 {
1696 	struct intel_pt *pt = ptq->pt;
1697 	union perf_event *event = ptq->event_buf;
1698 	struct perf_sample sample = { .ip = 0, };
1699 
1700 	if (intel_pt_skip_event(pt))
1701 		return 0;
1702 
1703 	intel_pt_prep_sample(pt, ptq, event, &sample);
1704 
1705 	sample.id = ptq->pt->transactions_id;
1706 	sample.stream_id = ptq->pt->transactions_id;
1707 
1708 	return intel_pt_deliver_synth_event(pt, event, &sample,
1709 					    pt->transactions_sample_type);
1710 }
1711 
1712 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1713 				   struct intel_pt_queue *ptq,
1714 				   union perf_event *event,
1715 				   struct perf_sample *sample)
1716 {
1717 	intel_pt_prep_sample(pt, ptq, event, sample);
1718 
1719 	/*
1720 	 * Zero IP is used to mean "trace start" but that is not the case for
1721 	 * power or PTWRITE events with no IP, so clear the flags.
1722 	 */
1723 	if (!sample->ip)
1724 		sample->flags = 0;
1725 }
1726 
1727 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1728 {
1729 	struct intel_pt *pt = ptq->pt;
1730 	union perf_event *event = ptq->event_buf;
1731 	struct perf_sample sample = { .ip = 0, };
1732 	struct perf_synth_intel_ptwrite raw;
1733 
1734 	if (intel_pt_skip_event(pt))
1735 		return 0;
1736 
1737 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1738 
1739 	sample.id = ptq->pt->ptwrites_id;
1740 	sample.stream_id = ptq->pt->ptwrites_id;
1741 
1742 	raw.flags = 0;
1743 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1744 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1745 
1746 	sample.raw_size = perf_synth__raw_size(raw);
1747 	sample.raw_data = perf_synth__raw_data(&raw);
1748 
1749 	return intel_pt_deliver_synth_event(pt, event, &sample,
1750 					    pt->ptwrites_sample_type);
1751 }
1752 
1753 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1754 {
1755 	struct intel_pt *pt = ptq->pt;
1756 	union perf_event *event = ptq->event_buf;
1757 	struct perf_sample sample = { .ip = 0, };
1758 	struct perf_synth_intel_cbr raw;
1759 	u32 flags;
1760 
1761 	if (intel_pt_skip_cbr_event(pt))
1762 		return 0;
1763 
1764 	ptq->cbr_seen = ptq->state->cbr;
1765 
1766 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1767 
1768 	sample.id = ptq->pt->cbr_id;
1769 	sample.stream_id = ptq->pt->cbr_id;
1770 
1771 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1772 	raw.flags = cpu_to_le32(flags);
1773 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1774 	raw.reserved3 = 0;
1775 
1776 	sample.raw_size = perf_synth__raw_size(raw);
1777 	sample.raw_data = perf_synth__raw_data(&raw);
1778 
1779 	return intel_pt_deliver_synth_event(pt, event, &sample,
1780 					    pt->pwr_events_sample_type);
1781 }
1782 
1783 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1784 {
1785 	struct intel_pt *pt = ptq->pt;
1786 	union perf_event *event = ptq->event_buf;
1787 	struct perf_sample sample = { .ip = 0, };
1788 	struct perf_synth_intel_psb raw;
1789 
1790 	if (intel_pt_skip_event(pt))
1791 		return 0;
1792 
1793 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1794 
1795 	sample.id = ptq->pt->psb_id;
1796 	sample.stream_id = ptq->pt->psb_id;
1797 	sample.flags = 0;
1798 
1799 	raw.reserved = 0;
1800 	raw.offset = ptq->state->psb_offset;
1801 
1802 	sample.raw_size = perf_synth__raw_size(raw);
1803 	sample.raw_data = perf_synth__raw_data(&raw);
1804 
1805 	return intel_pt_deliver_synth_event(pt, event, &sample,
1806 					    pt->pwr_events_sample_type);
1807 }
1808 
1809 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1810 {
1811 	struct intel_pt *pt = ptq->pt;
1812 	union perf_event *event = ptq->event_buf;
1813 	struct perf_sample sample = { .ip = 0, };
1814 	struct perf_synth_intel_mwait raw;
1815 
1816 	if (intel_pt_skip_event(pt))
1817 		return 0;
1818 
1819 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1820 
1821 	sample.id = ptq->pt->mwait_id;
1822 	sample.stream_id = ptq->pt->mwait_id;
1823 
1824 	raw.reserved = 0;
1825 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1826 
1827 	sample.raw_size = perf_synth__raw_size(raw);
1828 	sample.raw_data = perf_synth__raw_data(&raw);
1829 
1830 	return intel_pt_deliver_synth_event(pt, event, &sample,
1831 					    pt->pwr_events_sample_type);
1832 }
1833 
1834 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1835 {
1836 	struct intel_pt *pt = ptq->pt;
1837 	union perf_event *event = ptq->event_buf;
1838 	struct perf_sample sample = { .ip = 0, };
1839 	struct perf_synth_intel_pwre raw;
1840 
1841 	if (intel_pt_skip_event(pt))
1842 		return 0;
1843 
1844 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1845 
1846 	sample.id = ptq->pt->pwre_id;
1847 	sample.stream_id = ptq->pt->pwre_id;
1848 
1849 	raw.reserved = 0;
1850 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1851 
1852 	sample.raw_size = perf_synth__raw_size(raw);
1853 	sample.raw_data = perf_synth__raw_data(&raw);
1854 
1855 	return intel_pt_deliver_synth_event(pt, event, &sample,
1856 					    pt->pwr_events_sample_type);
1857 }
1858 
1859 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1860 {
1861 	struct intel_pt *pt = ptq->pt;
1862 	union perf_event *event = ptq->event_buf;
1863 	struct perf_sample sample = { .ip = 0, };
1864 	struct perf_synth_intel_exstop raw;
1865 
1866 	if (intel_pt_skip_event(pt))
1867 		return 0;
1868 
1869 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1870 
1871 	sample.id = ptq->pt->exstop_id;
1872 	sample.stream_id = ptq->pt->exstop_id;
1873 
1874 	raw.flags = 0;
1875 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1876 
1877 	sample.raw_size = perf_synth__raw_size(raw);
1878 	sample.raw_data = perf_synth__raw_data(&raw);
1879 
1880 	return intel_pt_deliver_synth_event(pt, event, &sample,
1881 					    pt->pwr_events_sample_type);
1882 }
1883 
1884 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1885 {
1886 	struct intel_pt *pt = ptq->pt;
1887 	union perf_event *event = ptq->event_buf;
1888 	struct perf_sample sample = { .ip = 0, };
1889 	struct perf_synth_intel_pwrx raw;
1890 
1891 	if (intel_pt_skip_event(pt))
1892 		return 0;
1893 
1894 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1895 
1896 	sample.id = ptq->pt->pwrx_id;
1897 	sample.stream_id = ptq->pt->pwrx_id;
1898 
1899 	raw.reserved = 0;
1900 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1901 
1902 	sample.raw_size = perf_synth__raw_size(raw);
1903 	sample.raw_data = perf_synth__raw_data(&raw);
1904 
1905 	return intel_pt_deliver_synth_event(pt, event, &sample,
1906 					    pt->pwr_events_sample_type);
1907 }
1908 
1909 /*
1910  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1911  * intel_pt_add_gp_regs().
1912  */
1913 static const int pebs_gp_regs[] = {
1914 	[PERF_REG_X86_FLAGS]	= 1,
1915 	[PERF_REG_X86_IP]	= 2,
1916 	[PERF_REG_X86_AX]	= 3,
1917 	[PERF_REG_X86_CX]	= 4,
1918 	[PERF_REG_X86_DX]	= 5,
1919 	[PERF_REG_X86_BX]	= 6,
1920 	[PERF_REG_X86_SP]	= 7,
1921 	[PERF_REG_X86_BP]	= 8,
1922 	[PERF_REG_X86_SI]	= 9,
1923 	[PERF_REG_X86_DI]	= 10,
1924 	[PERF_REG_X86_R8]	= 11,
1925 	[PERF_REG_X86_R9]	= 12,
1926 	[PERF_REG_X86_R10]	= 13,
1927 	[PERF_REG_X86_R11]	= 14,
1928 	[PERF_REG_X86_R12]	= 15,
1929 	[PERF_REG_X86_R13]	= 16,
1930 	[PERF_REG_X86_R14]	= 17,
1931 	[PERF_REG_X86_R15]	= 18,
1932 };
1933 
1934 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1935 				 const struct intel_pt_blk_items *items,
1936 				 u64 regs_mask)
1937 {
1938 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1939 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1940 	u32 bit;
1941 	int i;
1942 
1943 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1944 		/* Get the PEBS gp_regs array index */
1945 		int n = pebs_gp_regs[i] - 1;
1946 
1947 		if (n < 0)
1948 			continue;
1949 		/*
1950 		 * Add only registers that were requested (i.e. 'regs_mask') and
1951 		 * that were provided (i.e. 'mask'), and update the resulting
1952 		 * mask (i.e. 'intr_regs->mask') accordingly.
1953 		 */
1954 		if (mask & 1 << n && regs_mask & bit) {
1955 			intr_regs->mask |= bit;
1956 			*pos++ = gp_regs[n];
1957 		}
1958 	}
1959 
1960 	return pos;
1961 }
1962 
1963 #ifndef PERF_REG_X86_XMM0
1964 #define PERF_REG_X86_XMM0 32
1965 #endif
1966 
1967 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1968 			     const struct intel_pt_blk_items *items,
1969 			     u64 regs_mask)
1970 {
1971 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1972 	const u64 *xmm = items->xmm;
1973 
1974 	/*
1975 	 * If there are any XMM registers, then there should be all of them.
1976 	 * Nevertheless, follow the logic to add only registers that were
1977 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1978 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1979 	 */
1980 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1981 
1982 	for (; mask; mask >>= 1, xmm++) {
1983 		if (mask & 1)
1984 			*pos++ = *xmm;
1985 	}
1986 }
1987 
1988 #define LBR_INFO_MISPRED	(1ULL << 63)
1989 #define LBR_INFO_IN_TX		(1ULL << 62)
1990 #define LBR_INFO_ABORT		(1ULL << 61)
1991 #define LBR_INFO_CYCLES		0xffff
1992 
1993 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1994 static u64 intel_pt_lbr_flags(u64 info)
1995 {
1996 	union {
1997 		struct branch_flags flags;
1998 		u64 result;
1999 	} u;
2000 
2001 	u.result	  = 0;
2002 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2003 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2004 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2005 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2006 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2007 
2008 	return u.result;
2009 }
2010 
2011 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2012 			      const struct intel_pt_blk_items *items)
2013 {
2014 	u64 *to;
2015 	int i;
2016 
2017 	br_stack->nr = 0;
2018 
2019 	to = &br_stack->entries[0].from;
2020 
2021 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2022 		u32 mask = items->mask[i];
2023 		const u64 *from = items->val[i];
2024 
2025 		for (; mask; mask >>= 3, from += 3) {
2026 			if ((mask & 7) == 7) {
2027 				*to++ = from[0];
2028 				*to++ = from[1];
2029 				*to++ = intel_pt_lbr_flags(from[2]);
2030 				br_stack->nr += 1;
2031 			}
2032 		}
2033 	}
2034 }
2035 
2036 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2037 {
2038 	const struct intel_pt_blk_items *items = &ptq->state->items;
2039 	struct perf_sample sample = { .ip = 0, };
2040 	union perf_event *event = ptq->event_buf;
2041 	struct intel_pt *pt = ptq->pt;
2042 	u64 sample_type = evsel->core.attr.sample_type;
2043 	u8 cpumode;
2044 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2045 
2046 	if (intel_pt_skip_event(pt))
2047 		return 0;
2048 
2049 	intel_pt_prep_a_sample(ptq, event, &sample);
2050 
2051 	sample.id = id;
2052 	sample.stream_id = id;
2053 
2054 	if (!evsel->core.attr.freq)
2055 		sample.period = evsel->core.attr.sample_period;
2056 
2057 	/* No support for non-zero CS base */
2058 	if (items->has_ip)
2059 		sample.ip = items->ip;
2060 	else if (items->has_rip)
2061 		sample.ip = items->rip;
2062 	else
2063 		sample.ip = ptq->state->from_ip;
2064 
2065 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2066 
2067 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2068 
2069 	sample.cpumode = cpumode;
2070 
2071 	if (sample_type & PERF_SAMPLE_TIME) {
2072 		u64 timestamp = 0;
2073 
2074 		if (items->has_timestamp)
2075 			timestamp = items->timestamp;
2076 		else if (!pt->timeless_decoding)
2077 			timestamp = ptq->timestamp;
2078 		if (timestamp)
2079 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2080 	}
2081 
2082 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2083 	    pt->synth_opts.callchain) {
2084 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2085 				     pt->synth_opts.callchain_sz, sample.ip,
2086 				     pt->kernel_start);
2087 		sample.callchain = ptq->chain;
2088 	}
2089 
2090 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2091 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2092 	     items->mask[INTEL_PT_XMM_POS])) {
2093 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2094 		u64 *pos;
2095 
2096 		sample.intr_regs.abi = items->is_32_bit ?
2097 				       PERF_SAMPLE_REGS_ABI_32 :
2098 				       PERF_SAMPLE_REGS_ABI_64;
2099 		sample.intr_regs.regs = regs;
2100 
2101 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2102 
2103 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2104 	}
2105 
2106 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2107 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2108 		    items->mask[INTEL_PT_LBR_1_POS] ||
2109 		    items->mask[INTEL_PT_LBR_2_POS]) {
2110 			intel_pt_add_lbrs(ptq->last_branch, items);
2111 		} else if (pt->synth_opts.last_branch) {
2112 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2113 						ptq->last_branch,
2114 						pt->br_stack_sz);
2115 		} else {
2116 			ptq->last_branch->nr = 0;
2117 		}
2118 		sample.branch_stack = ptq->last_branch;
2119 	}
2120 
2121 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2122 		sample.addr = items->mem_access_address;
2123 
2124 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2125 		/*
2126 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2127 		 * intel_hsw_weight().
2128 		 */
2129 		if (items->has_mem_access_latency) {
2130 			u64 weight = items->mem_access_latency >> 32;
2131 
2132 			/*
2133 			 * Starts from SPR, the mem access latency field
2134 			 * contains both cache latency [47:32] and instruction
2135 			 * latency [15:0]. The cache latency is the same as the
2136 			 * mem access latency on previous platforms.
2137 			 *
2138 			 * In practice, no memory access could last than 4G
2139 			 * cycles. Use latency >> 32 to distinguish the
2140 			 * different format of the mem access latency field.
2141 			 */
2142 			if (weight > 0) {
2143 				sample.weight = weight & 0xffff;
2144 				sample.ins_lat = items->mem_access_latency & 0xffff;
2145 			} else
2146 				sample.weight = items->mem_access_latency;
2147 		}
2148 		if (!sample.weight && items->has_tsx_aux_info) {
2149 			/* Cycles last block */
2150 			sample.weight = (u32)items->tsx_aux_info;
2151 		}
2152 	}
2153 
2154 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2155 		u64 ax = items->has_rax ? items->rax : 0;
2156 		/* Refer kernel's intel_hsw_transaction() */
2157 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2158 
2159 		/* For RTM XABORTs also log the abort code from AX */
2160 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2161 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2162 		sample.transaction = txn;
2163 	}
2164 
2165 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2166 }
2167 
2168 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2169 {
2170 	struct intel_pt *pt = ptq->pt;
2171 	struct evsel *evsel = pt->pebs_evsel;
2172 	u64 id = evsel->core.id[0];
2173 
2174 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2175 }
2176 
2177 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2178 {
2179 	const struct intel_pt_blk_items *items = &ptq->state->items;
2180 	struct intel_pt_pebs_event *pe;
2181 	struct intel_pt *pt = ptq->pt;
2182 	int err = -EINVAL;
2183 	int hw_id;
2184 
2185 	if (!items->has_applicable_counters || !items->applicable_counters) {
2186 		if (!pt->single_pebs)
2187 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2188 		return intel_pt_synth_single_pebs_sample(ptq);
2189 	}
2190 
2191 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2192 		pe = &ptq->pebs[hw_id];
2193 		if (!pe->evsel) {
2194 			if (!pt->single_pebs)
2195 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2196 				       hw_id);
2197 			return intel_pt_synth_single_pebs_sample(ptq);
2198 		}
2199 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2200 		if (err)
2201 			return err;
2202 	}
2203 
2204 	return err;
2205 }
2206 
2207 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2208 {
2209 	struct intel_pt *pt = ptq->pt;
2210 	union perf_event *event = ptq->event_buf;
2211 	struct perf_sample sample = { .ip = 0, };
2212 	struct {
2213 		struct perf_synth_intel_evt cfe;
2214 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2215 	} raw;
2216 	int i;
2217 
2218 	if (intel_pt_skip_event(pt))
2219 		return 0;
2220 
2221 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2222 
2223 	sample.id        = ptq->pt->evt_id;
2224 	sample.stream_id = ptq->pt->evt_id;
2225 
2226 	raw.cfe.type     = ptq->state->cfe_type;
2227 	raw.cfe.reserved = 0;
2228 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2229 	raw.cfe.vector   = ptq->state->cfe_vector;
2230 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2231 
2232 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2233 		raw.evd[i].et       = 0;
2234 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2235 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2236 	}
2237 
2238 	sample.raw_size = perf_synth__raw_size(raw) +
2239 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2240 	sample.raw_data = perf_synth__raw_data(&raw);
2241 
2242 	return intel_pt_deliver_synth_event(pt, event, &sample,
2243 					    pt->evt_sample_type);
2244 }
2245 
2246 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2247 {
2248 	struct intel_pt *pt = ptq->pt;
2249 	union perf_event *event = ptq->event_buf;
2250 	struct perf_sample sample = { .ip = 0, };
2251 	struct perf_synth_intel_iflag_chg raw;
2252 
2253 	if (intel_pt_skip_event(pt))
2254 		return 0;
2255 
2256 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2257 
2258 	sample.id = ptq->pt->iflag_chg_id;
2259 	sample.stream_id = ptq->pt->iflag_chg_id;
2260 
2261 	raw.flags = 0;
2262 	raw.iflag = ptq->state->to_iflag;
2263 
2264 	if (ptq->state->type & INTEL_PT_BRANCH) {
2265 		raw.via_branch = 1;
2266 		raw.branch_ip = ptq->state->to_ip;
2267 	} else {
2268 		sample.addr = 0;
2269 	}
2270 	sample.flags = ptq->flags;
2271 
2272 	sample.raw_size = perf_synth__raw_size(raw);
2273 	sample.raw_data = perf_synth__raw_data(&raw);
2274 
2275 	return intel_pt_deliver_synth_event(pt, event, &sample,
2276 					    pt->iflag_chg_sample_type);
2277 }
2278 
2279 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2280 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2281 {
2282 	union perf_event event;
2283 	char msg[MAX_AUXTRACE_ERROR_MSG];
2284 	int err;
2285 
2286 	if (pt->synth_opts.error_minus_flags) {
2287 		if (code == INTEL_PT_ERR_OVR &&
2288 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2289 			return 0;
2290 		if (code == INTEL_PT_ERR_LOST &&
2291 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2292 			return 0;
2293 	}
2294 
2295 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2296 
2297 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2298 			     code, cpu, pid, tid, ip, msg, timestamp);
2299 
2300 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2301 	if (err)
2302 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2303 		       err);
2304 
2305 	return err;
2306 }
2307 
2308 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2309 				 const struct intel_pt_state *state)
2310 {
2311 	struct intel_pt *pt = ptq->pt;
2312 	u64 tm = ptq->timestamp;
2313 
2314 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2315 
2316 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2317 				    ptq->tid, state->from_ip, tm);
2318 }
2319 
2320 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2321 {
2322 	struct auxtrace_queue *queue;
2323 	pid_t tid = ptq->next_tid;
2324 	int err;
2325 
2326 	if (tid == -1)
2327 		return 0;
2328 
2329 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2330 
2331 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2332 
2333 	queue = &pt->queues.queue_array[ptq->queue_nr];
2334 	intel_pt_set_pid_tid_cpu(pt, queue);
2335 
2336 	ptq->next_tid = -1;
2337 
2338 	return err;
2339 }
2340 
2341 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2342 {
2343 	struct intel_pt *pt = ptq->pt;
2344 
2345 	return ip == pt->switch_ip &&
2346 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2347 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2348 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2349 }
2350 
2351 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2352 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2353 
2354 static int intel_pt_sample(struct intel_pt_queue *ptq)
2355 {
2356 	const struct intel_pt_state *state = ptq->state;
2357 	struct intel_pt *pt = ptq->pt;
2358 	int err;
2359 
2360 	if (!ptq->have_sample)
2361 		return 0;
2362 
2363 	ptq->have_sample = false;
2364 
2365 	if (pt->synth_opts.approx_ipc) {
2366 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2367 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2368 		ptq->sample_ipc = true;
2369 	} else {
2370 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2371 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2372 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2373 	}
2374 
2375 	/*
2376 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2377 	 * precedes the current timestamp.
2378 	 */
2379 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2380 		err = intel_pt_synth_pebs_sample(ptq);
2381 		if (err)
2382 			return err;
2383 	}
2384 
2385 	if (pt->synth_opts.intr_events) {
2386 		if (state->type & INTEL_PT_EVT) {
2387 			err = intel_pt_synth_events_sample(ptq);
2388 			if (err)
2389 				return err;
2390 		}
2391 		if (state->type & INTEL_PT_IFLAG_CHG) {
2392 			err = intel_pt_synth_iflag_chg_sample(ptq);
2393 			if (err)
2394 				return err;
2395 		}
2396 	}
2397 
2398 	if (pt->sample_pwr_events) {
2399 		if (state->type & INTEL_PT_PSB_EVT) {
2400 			err = intel_pt_synth_psb_sample(ptq);
2401 			if (err)
2402 				return err;
2403 		}
2404 		if (ptq->state->cbr != ptq->cbr_seen) {
2405 			err = intel_pt_synth_cbr_sample(ptq);
2406 			if (err)
2407 				return err;
2408 		}
2409 		if (state->type & INTEL_PT_PWR_EVT) {
2410 			if (state->type & INTEL_PT_MWAIT_OP) {
2411 				err = intel_pt_synth_mwait_sample(ptq);
2412 				if (err)
2413 					return err;
2414 			}
2415 			if (state->type & INTEL_PT_PWR_ENTRY) {
2416 				err = intel_pt_synth_pwre_sample(ptq);
2417 				if (err)
2418 					return err;
2419 			}
2420 			if (state->type & INTEL_PT_EX_STOP) {
2421 				err = intel_pt_synth_exstop_sample(ptq);
2422 				if (err)
2423 					return err;
2424 			}
2425 			if (state->type & INTEL_PT_PWR_EXIT) {
2426 				err = intel_pt_synth_pwrx_sample(ptq);
2427 				if (err)
2428 					return err;
2429 			}
2430 		}
2431 	}
2432 
2433 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2434 		err = intel_pt_synth_instruction_sample(ptq);
2435 		if (err)
2436 			return err;
2437 	}
2438 
2439 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2440 		err = intel_pt_synth_transaction_sample(ptq);
2441 		if (err)
2442 			return err;
2443 	}
2444 
2445 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2446 		err = intel_pt_synth_ptwrite_sample(ptq);
2447 		if (err)
2448 			return err;
2449 	}
2450 
2451 	if (!(state->type & INTEL_PT_BRANCH))
2452 		return 0;
2453 
2454 	if (pt->use_thread_stack) {
2455 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2456 				    state->from_ip, state->to_ip, ptq->insn_len,
2457 				    state->trace_nr, pt->callstack,
2458 				    pt->br_stack_sz_plus,
2459 				    pt->mispred_all);
2460 	} else {
2461 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2462 	}
2463 
2464 	if (pt->sample_branches) {
2465 		if (state->from_nr != state->to_nr &&
2466 		    state->from_ip && state->to_ip) {
2467 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2468 			u64 to_ip = st->to_ip;
2469 			u64 from_ip = st->from_ip;
2470 
2471 			/*
2472 			 * perf cannot handle having different machines for ip
2473 			 * and addr, so create 2 branches.
2474 			 */
2475 			st->to_ip = 0;
2476 			err = intel_pt_synth_branch_sample(ptq);
2477 			if (err)
2478 				return err;
2479 			st->from_ip = 0;
2480 			st->to_ip = to_ip;
2481 			err = intel_pt_synth_branch_sample(ptq);
2482 			st->from_ip = from_ip;
2483 		} else {
2484 			err = intel_pt_synth_branch_sample(ptq);
2485 		}
2486 		if (err)
2487 			return err;
2488 	}
2489 
2490 	if (!ptq->sync_switch)
2491 		return 0;
2492 
2493 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2494 		switch (ptq->switch_state) {
2495 		case INTEL_PT_SS_NOT_TRACING:
2496 		case INTEL_PT_SS_UNKNOWN:
2497 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2498 			err = intel_pt_next_tid(pt, ptq);
2499 			if (err)
2500 				return err;
2501 			ptq->switch_state = INTEL_PT_SS_TRACING;
2502 			break;
2503 		default:
2504 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2505 			return 1;
2506 		}
2507 	} else if (!state->to_ip) {
2508 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2509 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2510 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2511 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2512 		   state->to_ip == pt->ptss_ip &&
2513 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2514 		ptq->switch_state = INTEL_PT_SS_TRACING;
2515 	}
2516 
2517 	return 0;
2518 }
2519 
2520 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2521 {
2522 	struct machine *machine = pt->machine;
2523 	struct map *map;
2524 	struct symbol *sym, *start;
2525 	u64 ip, switch_ip = 0;
2526 	const char *ptss;
2527 
2528 	if (ptss_ip)
2529 		*ptss_ip = 0;
2530 
2531 	map = machine__kernel_map(machine);
2532 	if (!map)
2533 		return 0;
2534 
2535 	if (map__load(map))
2536 		return 0;
2537 
2538 	start = dso__first_symbol(map->dso);
2539 
2540 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2541 		if (sym->binding == STB_GLOBAL &&
2542 		    !strcmp(sym->name, "__switch_to")) {
2543 			ip = map->unmap_ip(map, sym->start);
2544 			if (ip >= map->start && ip < map->end) {
2545 				switch_ip = ip;
2546 				break;
2547 			}
2548 		}
2549 	}
2550 
2551 	if (!switch_ip || !ptss_ip)
2552 		return 0;
2553 
2554 	if (pt->have_sched_switch == 1)
2555 		ptss = "perf_trace_sched_switch";
2556 	else
2557 		ptss = "__perf_event_task_sched_out";
2558 
2559 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2560 		if (!strcmp(sym->name, ptss)) {
2561 			ip = map->unmap_ip(map, sym->start);
2562 			if (ip >= map->start && ip < map->end) {
2563 				*ptss_ip = ip;
2564 				break;
2565 			}
2566 		}
2567 	}
2568 
2569 	return switch_ip;
2570 }
2571 
2572 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2573 {
2574 	unsigned int i;
2575 
2576 	pt->sync_switch = true;
2577 
2578 	for (i = 0; i < pt->queues.nr_queues; i++) {
2579 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2580 		struct intel_pt_queue *ptq = queue->priv;
2581 
2582 		if (ptq)
2583 			ptq->sync_switch = true;
2584 	}
2585 }
2586 
2587 /*
2588  * To filter against time ranges, it is only necessary to look at the next start
2589  * or end time.
2590  */
2591 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2592 {
2593 	struct intel_pt *pt = ptq->pt;
2594 
2595 	if (ptq->sel_start) {
2596 		/* Next time is an end time */
2597 		ptq->sel_start = false;
2598 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2599 		return true;
2600 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2601 		/* Next time is a start time */
2602 		ptq->sel_start = true;
2603 		ptq->sel_idx += 1;
2604 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2605 		return true;
2606 	}
2607 
2608 	/* No next time */
2609 	return false;
2610 }
2611 
2612 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2613 {
2614 	int err;
2615 
2616 	while (1) {
2617 		if (ptq->sel_start) {
2618 			if (ptq->timestamp >= ptq->sel_timestamp) {
2619 				/* After start time, so consider next time */
2620 				intel_pt_next_time(ptq);
2621 				if (!ptq->sel_timestamp) {
2622 					/* No end time */
2623 					return 0;
2624 				}
2625 				/* Check against end time */
2626 				continue;
2627 			}
2628 			/* Before start time, so fast forward */
2629 			ptq->have_sample = false;
2630 			if (ptq->sel_timestamp > *ff_timestamp) {
2631 				if (ptq->sync_switch) {
2632 					intel_pt_next_tid(ptq->pt, ptq);
2633 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2634 				}
2635 				*ff_timestamp = ptq->sel_timestamp;
2636 				err = intel_pt_fast_forward(ptq->decoder,
2637 							    ptq->sel_timestamp);
2638 				if (err)
2639 					return err;
2640 			}
2641 			return 0;
2642 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2643 			/* After end time, so consider next time */
2644 			if (!intel_pt_next_time(ptq)) {
2645 				/* No next time range, so stop decoding */
2646 				ptq->have_sample = false;
2647 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2648 				return 1;
2649 			}
2650 			/* Check against next start time */
2651 			continue;
2652 		} else {
2653 			/* Before end time */
2654 			return 0;
2655 		}
2656 	}
2657 }
2658 
2659 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2660 {
2661 	const struct intel_pt_state *state = ptq->state;
2662 	struct intel_pt *pt = ptq->pt;
2663 	u64 ff_timestamp = 0;
2664 	int err;
2665 
2666 	if (!pt->kernel_start) {
2667 		pt->kernel_start = machine__kernel_start(pt->machine);
2668 		if (pt->per_cpu_mmaps &&
2669 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2670 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2671 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2672 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2673 			if (pt->switch_ip) {
2674 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2675 					     pt->switch_ip, pt->ptss_ip);
2676 				intel_pt_enable_sync_switch(pt);
2677 			}
2678 		}
2679 	}
2680 
2681 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2682 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2683 	while (1) {
2684 		err = intel_pt_sample(ptq);
2685 		if (err)
2686 			return err;
2687 
2688 		state = intel_pt_decode(ptq->decoder);
2689 		if (state->err) {
2690 			if (state->err == INTEL_PT_ERR_NODATA)
2691 				return 1;
2692 			if (ptq->sync_switch &&
2693 			    state->from_ip >= pt->kernel_start) {
2694 				ptq->sync_switch = false;
2695 				intel_pt_next_tid(pt, ptq);
2696 			}
2697 			ptq->timestamp = state->est_timestamp;
2698 			if (pt->synth_opts.errors) {
2699 				err = intel_ptq_synth_error(ptq, state);
2700 				if (err)
2701 					return err;
2702 			}
2703 			continue;
2704 		}
2705 
2706 		ptq->state = state;
2707 		ptq->have_sample = true;
2708 		intel_pt_sample_flags(ptq);
2709 
2710 		/* Use estimated TSC upon return to user space */
2711 		if (pt->est_tsc &&
2712 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2713 		    state->to_ip && state->to_ip < pt->kernel_start) {
2714 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2715 				     state->timestamp, state->est_timestamp);
2716 			ptq->timestamp = state->est_timestamp;
2717 		/* Use estimated TSC in unknown switch state */
2718 		} else if (ptq->sync_switch &&
2719 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2720 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2721 			   ptq->next_tid == -1) {
2722 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2723 				     state->timestamp, state->est_timestamp);
2724 			ptq->timestamp = state->est_timestamp;
2725 		} else if (state->timestamp > ptq->timestamp) {
2726 			ptq->timestamp = state->timestamp;
2727 		}
2728 
2729 		if (ptq->sel_timestamp) {
2730 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2731 			if (err)
2732 				return err;
2733 		}
2734 
2735 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2736 			*timestamp = ptq->timestamp;
2737 			return 0;
2738 		}
2739 	}
2740 	return 0;
2741 }
2742 
2743 static inline int intel_pt_update_queues(struct intel_pt *pt)
2744 {
2745 	if (pt->queues.new_data) {
2746 		pt->queues.new_data = false;
2747 		return intel_pt_setup_queues(pt);
2748 	}
2749 	return 0;
2750 }
2751 
2752 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2753 {
2754 	unsigned int queue_nr;
2755 	u64 ts;
2756 	int ret;
2757 
2758 	while (1) {
2759 		struct auxtrace_queue *queue;
2760 		struct intel_pt_queue *ptq;
2761 
2762 		if (!pt->heap.heap_cnt)
2763 			return 0;
2764 
2765 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2766 			return 0;
2767 
2768 		queue_nr = pt->heap.heap_array[0].queue_nr;
2769 		queue = &pt->queues.queue_array[queue_nr];
2770 		ptq = queue->priv;
2771 
2772 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2773 			     queue_nr, pt->heap.heap_array[0].ordinal,
2774 			     timestamp);
2775 
2776 		auxtrace_heap__pop(&pt->heap);
2777 
2778 		if (pt->heap.heap_cnt) {
2779 			ts = pt->heap.heap_array[0].ordinal + 1;
2780 			if (ts > timestamp)
2781 				ts = timestamp;
2782 		} else {
2783 			ts = timestamp;
2784 		}
2785 
2786 		intel_pt_set_pid_tid_cpu(pt, queue);
2787 
2788 		ret = intel_pt_run_decoder(ptq, &ts);
2789 
2790 		if (ret < 0) {
2791 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2792 			return ret;
2793 		}
2794 
2795 		if (!ret) {
2796 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2797 			if (ret < 0)
2798 				return ret;
2799 		} else {
2800 			ptq->on_heap = false;
2801 		}
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2808 					    u64 time_)
2809 {
2810 	struct auxtrace_queues *queues = &pt->queues;
2811 	unsigned int i;
2812 	u64 ts = 0;
2813 
2814 	for (i = 0; i < queues->nr_queues; i++) {
2815 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2816 		struct intel_pt_queue *ptq = queue->priv;
2817 
2818 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2819 			ptq->time = time_;
2820 			intel_pt_set_pid_tid_cpu(pt, queue);
2821 			intel_pt_run_decoder(ptq, &ts);
2822 		}
2823 	}
2824 	return 0;
2825 }
2826 
2827 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2828 					    struct auxtrace_queue *queue,
2829 					    struct perf_sample *sample)
2830 {
2831 	struct machine *m = ptq->pt->machine;
2832 
2833 	ptq->pid = sample->pid;
2834 	ptq->tid = sample->tid;
2835 	ptq->cpu = queue->cpu;
2836 
2837 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2838 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2839 
2840 	thread__zput(ptq->thread);
2841 
2842 	if (ptq->tid == -1)
2843 		return;
2844 
2845 	if (ptq->pid == -1) {
2846 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2847 		if (ptq->thread)
2848 			ptq->pid = ptq->thread->pid_;
2849 		return;
2850 	}
2851 
2852 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2853 }
2854 
2855 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2856 					    struct perf_sample *sample)
2857 {
2858 	struct auxtrace_queue *queue;
2859 	struct intel_pt_queue *ptq;
2860 	u64 ts = 0;
2861 
2862 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2863 	if (!queue)
2864 		return -EINVAL;
2865 
2866 	ptq = queue->priv;
2867 	if (!ptq)
2868 		return 0;
2869 
2870 	ptq->stop = false;
2871 	ptq->time = sample->time;
2872 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2873 	intel_pt_run_decoder(ptq, &ts);
2874 	return 0;
2875 }
2876 
2877 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2878 {
2879 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2880 				    sample->pid, sample->tid, 0, sample->time);
2881 }
2882 
2883 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2884 {
2885 	unsigned i, j;
2886 
2887 	if (cpu < 0 || !pt->queues.nr_queues)
2888 		return NULL;
2889 
2890 	if ((unsigned)cpu >= pt->queues.nr_queues)
2891 		i = pt->queues.nr_queues - 1;
2892 	else
2893 		i = cpu;
2894 
2895 	if (pt->queues.queue_array[i].cpu == cpu)
2896 		return pt->queues.queue_array[i].priv;
2897 
2898 	for (j = 0; i > 0; j++) {
2899 		if (pt->queues.queue_array[--i].cpu == cpu)
2900 			return pt->queues.queue_array[i].priv;
2901 	}
2902 
2903 	for (; j < pt->queues.nr_queues; j++) {
2904 		if (pt->queues.queue_array[j].cpu == cpu)
2905 			return pt->queues.queue_array[j].priv;
2906 	}
2907 
2908 	return NULL;
2909 }
2910 
2911 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2912 				u64 timestamp)
2913 {
2914 	struct intel_pt_queue *ptq;
2915 	int err;
2916 
2917 	if (!pt->sync_switch)
2918 		return 1;
2919 
2920 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2921 	if (!ptq || !ptq->sync_switch)
2922 		return 1;
2923 
2924 	switch (ptq->switch_state) {
2925 	case INTEL_PT_SS_NOT_TRACING:
2926 		break;
2927 	case INTEL_PT_SS_UNKNOWN:
2928 	case INTEL_PT_SS_TRACING:
2929 		ptq->next_tid = tid;
2930 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2931 		return 0;
2932 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2933 		if (!ptq->on_heap) {
2934 			ptq->timestamp = perf_time_to_tsc(timestamp,
2935 							  &pt->tc);
2936 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2937 						 ptq->timestamp);
2938 			if (err)
2939 				return err;
2940 			ptq->on_heap = true;
2941 		}
2942 		ptq->switch_state = INTEL_PT_SS_TRACING;
2943 		break;
2944 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2945 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2946 		break;
2947 	default:
2948 		break;
2949 	}
2950 
2951 	ptq->next_tid = -1;
2952 
2953 	return 1;
2954 }
2955 
2956 static int intel_pt_process_switch(struct intel_pt *pt,
2957 				   struct perf_sample *sample)
2958 {
2959 	pid_t tid;
2960 	int cpu, ret;
2961 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2962 
2963 	if (evsel != pt->switch_evsel)
2964 		return 0;
2965 
2966 	tid = evsel__intval(evsel, sample, "next_pid");
2967 	cpu = sample->cpu;
2968 
2969 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2970 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2971 		     &pt->tc));
2972 
2973 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2974 	if (ret <= 0)
2975 		return ret;
2976 
2977 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2978 }
2979 
2980 static int intel_pt_context_switch_in(struct intel_pt *pt,
2981 				      struct perf_sample *sample)
2982 {
2983 	pid_t pid = sample->pid;
2984 	pid_t tid = sample->tid;
2985 	int cpu = sample->cpu;
2986 
2987 	if (pt->sync_switch) {
2988 		struct intel_pt_queue *ptq;
2989 
2990 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2991 		if (ptq && ptq->sync_switch) {
2992 			ptq->next_tid = -1;
2993 			switch (ptq->switch_state) {
2994 			case INTEL_PT_SS_NOT_TRACING:
2995 			case INTEL_PT_SS_UNKNOWN:
2996 			case INTEL_PT_SS_TRACING:
2997 				break;
2998 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2999 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3000 				ptq->switch_state = INTEL_PT_SS_TRACING;
3001 				break;
3002 			default:
3003 				break;
3004 			}
3005 		}
3006 	}
3007 
3008 	/*
3009 	 * If the current tid has not been updated yet, ensure it is now that
3010 	 * a "switch in" event has occurred.
3011 	 */
3012 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3013 		return 0;
3014 
3015 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3016 }
3017 
3018 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3019 				   struct perf_sample *sample)
3020 {
3021 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3022 	pid_t pid, tid;
3023 	int cpu, ret;
3024 
3025 	cpu = sample->cpu;
3026 
3027 	if (pt->have_sched_switch == 3) {
3028 		if (!out)
3029 			return intel_pt_context_switch_in(pt, sample);
3030 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3031 			pr_err("Expecting CPU-wide context switch event\n");
3032 			return -EINVAL;
3033 		}
3034 		pid = event->context_switch.next_prev_pid;
3035 		tid = event->context_switch.next_prev_tid;
3036 	} else {
3037 		if (out)
3038 			return 0;
3039 		pid = sample->pid;
3040 		tid = sample->tid;
3041 	}
3042 
3043 	if (tid == -1)
3044 		intel_pt_log("context_switch event has no tid\n");
3045 
3046 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3047 	if (ret <= 0)
3048 		return ret;
3049 
3050 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3051 }
3052 
3053 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3054 					 union perf_event *event,
3055 					 struct perf_sample *sample)
3056 {
3057 	if (!pt->per_cpu_mmaps)
3058 		return 0;
3059 
3060 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3061 		     sample->cpu, event->itrace_start.pid,
3062 		     event->itrace_start.tid, sample->time,
3063 		     perf_time_to_tsc(sample->time, &pt->tc));
3064 
3065 	return machine__set_current_tid(pt->machine, sample->cpu,
3066 					event->itrace_start.pid,
3067 					event->itrace_start.tid);
3068 }
3069 
3070 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3071 					     union perf_event *event,
3072 					     struct perf_sample *sample)
3073 {
3074 	u64 hw_id = event->aux_output_hw_id.hw_id;
3075 	struct auxtrace_queue *queue;
3076 	struct intel_pt_queue *ptq;
3077 	struct evsel *evsel;
3078 
3079 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3080 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3081 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3082 		pr_err("Bad AUX output hardware ID\n");
3083 		return -EINVAL;
3084 	}
3085 
3086 	ptq = queue->priv;
3087 
3088 	ptq->pebs[hw_id].evsel = evsel;
3089 	ptq->pebs[hw_id].id = sample->id;
3090 
3091 	return 0;
3092 }
3093 
3094 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3095 			     struct addr_location *al)
3096 {
3097 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3098 		if (!thread__find_map(thread, cpumode, addr, al))
3099 			return -1;
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 /* Invalidate all instruction cache entries that overlap the text poke */
3106 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3107 {
3108 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3109 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3110 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3111 	int cnt = 4096 + event->text_poke.new_len;
3112 	struct thread *thread = pt->unknown_thread;
3113 	struct addr_location al = { .map = NULL };
3114 	struct machine *machine = pt->machine;
3115 	struct intel_pt_cache_entry *e;
3116 	u64 offset;
3117 
3118 	if (!event->text_poke.new_len)
3119 		return 0;
3120 
3121 	for (; cnt; cnt--, addr--) {
3122 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3123 			if (addr < event->text_poke.addr)
3124 				return 0;
3125 			continue;
3126 		}
3127 
3128 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3129 			continue;
3130 
3131 		offset = al.map->map_ip(al.map, addr);
3132 
3133 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3134 		if (!e)
3135 			continue;
3136 
3137 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3138 			/*
3139 			 * No overlap. Working backwards there cannot be another
3140 			 * basic block that overlaps the text poke if there is a
3141 			 * branch instruction before the text poke address.
3142 			 */
3143 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3144 				return 0;
3145 		} else {
3146 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3147 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3148 				     al.map->dso->long_name, addr);
3149 		}
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 static int intel_pt_process_event(struct perf_session *session,
3156 				  union perf_event *event,
3157 				  struct perf_sample *sample,
3158 				  struct perf_tool *tool)
3159 {
3160 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3161 					   auxtrace);
3162 	u64 timestamp;
3163 	int err = 0;
3164 
3165 	if (dump_trace)
3166 		return 0;
3167 
3168 	if (!tool->ordered_events) {
3169 		pr_err("Intel Processor Trace requires ordered events\n");
3170 		return -EINVAL;
3171 	}
3172 
3173 	if (sample->time && sample->time != (u64)-1)
3174 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3175 	else
3176 		timestamp = 0;
3177 
3178 	if (timestamp || pt->timeless_decoding) {
3179 		err = intel_pt_update_queues(pt);
3180 		if (err)
3181 			return err;
3182 	}
3183 
3184 	if (pt->timeless_decoding) {
3185 		if (pt->sampling_mode) {
3186 			if (sample->aux_sample.size)
3187 				err = intel_pt_process_timeless_sample(pt,
3188 								       sample);
3189 		} else if (event->header.type == PERF_RECORD_EXIT) {
3190 			err = intel_pt_process_timeless_queues(pt,
3191 							       event->fork.tid,
3192 							       sample->time);
3193 		}
3194 	} else if (timestamp) {
3195 		if (!pt->first_timestamp)
3196 			intel_pt_first_timestamp(pt, timestamp);
3197 		err = intel_pt_process_queues(pt, timestamp);
3198 	}
3199 	if (err)
3200 		return err;
3201 
3202 	if (event->header.type == PERF_RECORD_SAMPLE) {
3203 		if (pt->synth_opts.add_callchain && !sample->callchain)
3204 			intel_pt_add_callchain(pt, sample);
3205 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3206 			intel_pt_add_br_stack(pt, sample);
3207 	}
3208 
3209 	if (event->header.type == PERF_RECORD_AUX &&
3210 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3211 	    pt->synth_opts.errors) {
3212 		err = intel_pt_lost(pt, sample);
3213 		if (err)
3214 			return err;
3215 	}
3216 
3217 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3218 		err = intel_pt_process_switch(pt, sample);
3219 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3220 		err = intel_pt_process_itrace_start(pt, event, sample);
3221 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3222 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3223 	else if (event->header.type == PERF_RECORD_SWITCH ||
3224 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3225 		err = intel_pt_context_switch(pt, event, sample);
3226 
3227 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3228 		err = intel_pt_text_poke(pt, event);
3229 
3230 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3231 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3232 			     event->header.type, sample->cpu, sample->time, timestamp);
3233 		intel_pt_log_event(event);
3234 	}
3235 
3236 	return err;
3237 }
3238 
3239 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3240 {
3241 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3242 					   auxtrace);
3243 	int ret;
3244 
3245 	if (dump_trace)
3246 		return 0;
3247 
3248 	if (!tool->ordered_events)
3249 		return -EINVAL;
3250 
3251 	ret = intel_pt_update_queues(pt);
3252 	if (ret < 0)
3253 		return ret;
3254 
3255 	if (pt->timeless_decoding)
3256 		return intel_pt_process_timeless_queues(pt, -1,
3257 							MAX_TIMESTAMP - 1);
3258 
3259 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3260 }
3261 
3262 static void intel_pt_free_events(struct perf_session *session)
3263 {
3264 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3265 					   auxtrace);
3266 	struct auxtrace_queues *queues = &pt->queues;
3267 	unsigned int i;
3268 
3269 	for (i = 0; i < queues->nr_queues; i++) {
3270 		intel_pt_free_queue(queues->queue_array[i].priv);
3271 		queues->queue_array[i].priv = NULL;
3272 	}
3273 	intel_pt_log_disable();
3274 	auxtrace_queues__free(queues);
3275 }
3276 
3277 static void intel_pt_free(struct perf_session *session)
3278 {
3279 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3280 					   auxtrace);
3281 
3282 	auxtrace_heap__free(&pt->heap);
3283 	intel_pt_free_events(session);
3284 	session->auxtrace = NULL;
3285 	intel_pt_free_vmcs_info(pt);
3286 	thread__put(pt->unknown_thread);
3287 	addr_filters__exit(&pt->filts);
3288 	zfree(&pt->chain);
3289 	zfree(&pt->filter);
3290 	zfree(&pt->time_ranges);
3291 	free(pt);
3292 }
3293 
3294 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3295 				       struct evsel *evsel)
3296 {
3297 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3298 					   auxtrace);
3299 
3300 	return evsel->core.attr.type == pt->pmu_type;
3301 }
3302 
3303 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3304 					   union perf_event *event,
3305 					   struct perf_tool *tool __maybe_unused)
3306 {
3307 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3308 					   auxtrace);
3309 
3310 	if (!pt->data_queued) {
3311 		struct auxtrace_buffer *buffer;
3312 		off_t data_offset;
3313 		int fd = perf_data__fd(session->data);
3314 		int err;
3315 
3316 		if (perf_data__is_pipe(session->data)) {
3317 			data_offset = 0;
3318 		} else {
3319 			data_offset = lseek(fd, 0, SEEK_CUR);
3320 			if (data_offset == -1)
3321 				return -errno;
3322 		}
3323 
3324 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3325 						 data_offset, &buffer);
3326 		if (err)
3327 			return err;
3328 
3329 		/* Dump here now we have copied a piped trace out of the pipe */
3330 		if (dump_trace) {
3331 			if (auxtrace_buffer__get_data(buffer, fd)) {
3332 				intel_pt_dump_event(pt, buffer->data,
3333 						    buffer->size);
3334 				auxtrace_buffer__put_data(buffer);
3335 			}
3336 		}
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 static int intel_pt_queue_data(struct perf_session *session,
3343 			       struct perf_sample *sample,
3344 			       union perf_event *event, u64 data_offset)
3345 {
3346 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3347 					   auxtrace);
3348 	u64 timestamp;
3349 
3350 	if (event) {
3351 		return auxtrace_queues__add_event(&pt->queues, session, event,
3352 						  data_offset, NULL);
3353 	}
3354 
3355 	if (sample->time && sample->time != (u64)-1)
3356 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3357 	else
3358 		timestamp = 0;
3359 
3360 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3361 					   data_offset, timestamp);
3362 }
3363 
3364 struct intel_pt_synth {
3365 	struct perf_tool dummy_tool;
3366 	struct perf_session *session;
3367 };
3368 
3369 static int intel_pt_event_synth(struct perf_tool *tool,
3370 				union perf_event *event,
3371 				struct perf_sample *sample __maybe_unused,
3372 				struct machine *machine __maybe_unused)
3373 {
3374 	struct intel_pt_synth *intel_pt_synth =
3375 			container_of(tool, struct intel_pt_synth, dummy_tool);
3376 
3377 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3378 						 NULL);
3379 }
3380 
3381 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3382 				struct perf_event_attr *attr, u64 id)
3383 {
3384 	struct intel_pt_synth intel_pt_synth;
3385 	int err;
3386 
3387 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3388 		 name, id, (u64)attr->sample_type);
3389 
3390 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3391 	intel_pt_synth.session = session;
3392 
3393 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3394 					  &id, intel_pt_event_synth);
3395 	if (err)
3396 		pr_err("%s: failed to synthesize '%s' event type\n",
3397 		       __func__, name);
3398 
3399 	return err;
3400 }
3401 
3402 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3403 				    const char *name)
3404 {
3405 	struct evsel *evsel;
3406 
3407 	evlist__for_each_entry(evlist, evsel) {
3408 		if (evsel->core.id && evsel->core.id[0] == id) {
3409 			if (evsel->name)
3410 				zfree(&evsel->name);
3411 			evsel->name = strdup(name);
3412 			break;
3413 		}
3414 	}
3415 }
3416 
3417 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3418 					 struct evlist *evlist)
3419 {
3420 	struct evsel *evsel;
3421 
3422 	evlist__for_each_entry(evlist, evsel) {
3423 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3424 			return evsel;
3425 	}
3426 
3427 	return NULL;
3428 }
3429 
3430 static int intel_pt_synth_events(struct intel_pt *pt,
3431 				 struct perf_session *session)
3432 {
3433 	struct evlist *evlist = session->evlist;
3434 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3435 	struct perf_event_attr attr;
3436 	u64 id;
3437 	int err;
3438 
3439 	if (!evsel) {
3440 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3441 		return 0;
3442 	}
3443 
3444 	memset(&attr, 0, sizeof(struct perf_event_attr));
3445 	attr.size = sizeof(struct perf_event_attr);
3446 	attr.type = PERF_TYPE_HARDWARE;
3447 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3448 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3449 			    PERF_SAMPLE_PERIOD;
3450 	if (pt->timeless_decoding)
3451 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3452 	else
3453 		attr.sample_type |= PERF_SAMPLE_TIME;
3454 	if (!pt->per_cpu_mmaps)
3455 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3456 	attr.exclude_user = evsel->core.attr.exclude_user;
3457 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3458 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3459 	attr.exclude_host = evsel->core.attr.exclude_host;
3460 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3461 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3462 	attr.read_format = evsel->core.attr.read_format;
3463 
3464 	id = evsel->core.id[0] + 1000000000;
3465 	if (!id)
3466 		id = 1;
3467 
3468 	if (pt->synth_opts.branches) {
3469 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3470 		attr.sample_period = 1;
3471 		attr.sample_type |= PERF_SAMPLE_ADDR;
3472 		err = intel_pt_synth_event(session, "branches", &attr, id);
3473 		if (err)
3474 			return err;
3475 		pt->sample_branches = true;
3476 		pt->branches_sample_type = attr.sample_type;
3477 		pt->branches_id = id;
3478 		id += 1;
3479 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3480 	}
3481 
3482 	if (pt->synth_opts.callchain)
3483 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3484 	if (pt->synth_opts.last_branch) {
3485 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3486 		/*
3487 		 * We don't use the hardware index, but the sample generation
3488 		 * code uses the new format branch_stack with this field,
3489 		 * so the event attributes must indicate that it's present.
3490 		 */
3491 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3492 	}
3493 
3494 	if (pt->synth_opts.instructions) {
3495 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3496 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3497 			attr.sample_period =
3498 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3499 		else
3500 			attr.sample_period = pt->synth_opts.period;
3501 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3502 		if (err)
3503 			return err;
3504 		pt->sample_instructions = true;
3505 		pt->instructions_sample_type = attr.sample_type;
3506 		pt->instructions_id = id;
3507 		id += 1;
3508 	}
3509 
3510 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3511 	attr.sample_period = 1;
3512 
3513 	if (pt->synth_opts.transactions) {
3514 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3515 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3516 		if (err)
3517 			return err;
3518 		pt->sample_transactions = true;
3519 		pt->transactions_sample_type = attr.sample_type;
3520 		pt->transactions_id = id;
3521 		intel_pt_set_event_name(evlist, id, "transactions");
3522 		id += 1;
3523 	}
3524 
3525 	attr.type = PERF_TYPE_SYNTH;
3526 	attr.sample_type |= PERF_SAMPLE_RAW;
3527 
3528 	if (pt->synth_opts.ptwrites) {
3529 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3530 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3531 		if (err)
3532 			return err;
3533 		pt->sample_ptwrites = true;
3534 		pt->ptwrites_sample_type = attr.sample_type;
3535 		pt->ptwrites_id = id;
3536 		intel_pt_set_event_name(evlist, id, "ptwrite");
3537 		id += 1;
3538 	}
3539 
3540 	if (pt->synth_opts.pwr_events) {
3541 		pt->sample_pwr_events = true;
3542 		pt->pwr_events_sample_type = attr.sample_type;
3543 
3544 		attr.config = PERF_SYNTH_INTEL_CBR;
3545 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3546 		if (err)
3547 			return err;
3548 		pt->cbr_id = id;
3549 		intel_pt_set_event_name(evlist, id, "cbr");
3550 		id += 1;
3551 
3552 		attr.config = PERF_SYNTH_INTEL_PSB;
3553 		err = intel_pt_synth_event(session, "psb", &attr, id);
3554 		if (err)
3555 			return err;
3556 		pt->psb_id = id;
3557 		intel_pt_set_event_name(evlist, id, "psb");
3558 		id += 1;
3559 	}
3560 
3561 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3562 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3563 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3564 		if (err)
3565 			return err;
3566 		pt->mwait_id = id;
3567 		intel_pt_set_event_name(evlist, id, "mwait");
3568 		id += 1;
3569 
3570 		attr.config = PERF_SYNTH_INTEL_PWRE;
3571 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3572 		if (err)
3573 			return err;
3574 		pt->pwre_id = id;
3575 		intel_pt_set_event_name(evlist, id, "pwre");
3576 		id += 1;
3577 
3578 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3579 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3580 		if (err)
3581 			return err;
3582 		pt->exstop_id = id;
3583 		intel_pt_set_event_name(evlist, id, "exstop");
3584 		id += 1;
3585 
3586 		attr.config = PERF_SYNTH_INTEL_PWRX;
3587 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3588 		if (err)
3589 			return err;
3590 		pt->pwrx_id = id;
3591 		intel_pt_set_event_name(evlist, id, "pwrx");
3592 		id += 1;
3593 	}
3594 
3595 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3596 		attr.config = PERF_SYNTH_INTEL_EVT;
3597 		err = intel_pt_synth_event(session, "evt", &attr, id);
3598 		if (err)
3599 			return err;
3600 		pt->evt_sample_type = attr.sample_type;
3601 		pt->evt_id = id;
3602 		intel_pt_set_event_name(evlist, id, "evt");
3603 		id += 1;
3604 	}
3605 
3606 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3607 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3608 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3609 		if (err)
3610 			return err;
3611 		pt->iflag_chg_sample_type = attr.sample_type;
3612 		pt->iflag_chg_id = id;
3613 		intel_pt_set_event_name(evlist, id, "iflag");
3614 		id += 1;
3615 	}
3616 
3617 	return 0;
3618 }
3619 
3620 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3621 {
3622 	struct evsel *evsel;
3623 
3624 	if (!pt->synth_opts.other_events)
3625 		return;
3626 
3627 	evlist__for_each_entry(pt->session->evlist, evsel) {
3628 		if (evsel->core.attr.aux_output && evsel->core.id) {
3629 			if (pt->single_pebs) {
3630 				pt->single_pebs = false;
3631 				return;
3632 			}
3633 			pt->single_pebs = true;
3634 			pt->sample_pebs = true;
3635 			pt->pebs_evsel = evsel;
3636 		}
3637 	}
3638 }
3639 
3640 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3641 {
3642 	struct evsel *evsel;
3643 
3644 	evlist__for_each_entry_reverse(evlist, evsel) {
3645 		const char *name = evsel__name(evsel);
3646 
3647 		if (!strcmp(name, "sched:sched_switch"))
3648 			return evsel;
3649 	}
3650 
3651 	return NULL;
3652 }
3653 
3654 static bool intel_pt_find_switch(struct evlist *evlist)
3655 {
3656 	struct evsel *evsel;
3657 
3658 	evlist__for_each_entry(evlist, evsel) {
3659 		if (evsel->core.attr.context_switch)
3660 			return true;
3661 	}
3662 
3663 	return false;
3664 }
3665 
3666 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3667 {
3668 	struct intel_pt *pt = data;
3669 
3670 	if (!strcmp(var, "intel-pt.mispred-all"))
3671 		pt->mispred_all = perf_config_bool(var, value);
3672 
3673 	if (!strcmp(var, "intel-pt.max-loops"))
3674 		perf_config_int(&pt->max_loops, var, value);
3675 
3676 	return 0;
3677 }
3678 
3679 /* Find least TSC which converts to ns or later */
3680 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3681 {
3682 	u64 tsc, tm;
3683 
3684 	tsc = perf_time_to_tsc(ns, &pt->tc);
3685 
3686 	while (1) {
3687 		tm = tsc_to_perf_time(tsc, &pt->tc);
3688 		if (tm < ns)
3689 			break;
3690 		tsc -= 1;
3691 	}
3692 
3693 	while (tm < ns)
3694 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3695 
3696 	return tsc;
3697 }
3698 
3699 /* Find greatest TSC which converts to ns or earlier */
3700 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3701 {
3702 	u64 tsc, tm;
3703 
3704 	tsc = perf_time_to_tsc(ns, &pt->tc);
3705 
3706 	while (1) {
3707 		tm = tsc_to_perf_time(tsc, &pt->tc);
3708 		if (tm > ns)
3709 			break;
3710 		tsc += 1;
3711 	}
3712 
3713 	while (tm > ns)
3714 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3715 
3716 	return tsc;
3717 }
3718 
3719 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3720 				      struct itrace_synth_opts *opts)
3721 {
3722 	struct perf_time_interval *p = opts->ptime_range;
3723 	int n = opts->range_num;
3724 	int i;
3725 
3726 	if (!n || !p || pt->timeless_decoding)
3727 		return 0;
3728 
3729 	pt->time_ranges = calloc(n, sizeof(struct range));
3730 	if (!pt->time_ranges)
3731 		return -ENOMEM;
3732 
3733 	pt->range_cnt = n;
3734 
3735 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3736 
3737 	for (i = 0; i < n; i++) {
3738 		struct range *r = &pt->time_ranges[i];
3739 		u64 ts = p[i].start;
3740 		u64 te = p[i].end;
3741 
3742 		/*
3743 		 * Take care to ensure the TSC range matches the perf-time range
3744 		 * when converted back to perf-time.
3745 		 */
3746 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3747 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3748 
3749 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3750 			     i, ts, te);
3751 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3752 			     i, r->start, r->end);
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3759 {
3760 	struct intel_pt_vmcs_info *vmcs_info;
3761 	u64 tsc_offset, vmcs;
3762 	char *p = *args;
3763 
3764 	errno = 0;
3765 
3766 	p = skip_spaces(p);
3767 	if (!*p)
3768 		return 1;
3769 
3770 	tsc_offset = strtoull(p, &p, 0);
3771 	if (errno)
3772 		return -errno;
3773 	p = skip_spaces(p);
3774 	if (*p != ':') {
3775 		pt->dflt_tsc_offset = tsc_offset;
3776 		*args = p;
3777 		return 0;
3778 	}
3779 	p += 1;
3780 	while (1) {
3781 		vmcs = strtoull(p, &p, 0);
3782 		if (errno)
3783 			return -errno;
3784 		if (!vmcs)
3785 			return -EINVAL;
3786 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3787 		if (!vmcs_info)
3788 			return -ENOMEM;
3789 		p = skip_spaces(p);
3790 		if (*p != ',')
3791 			break;
3792 		p += 1;
3793 	}
3794 	*args = p;
3795 	return 0;
3796 }
3797 
3798 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3799 {
3800 	char *args = pt->synth_opts.vm_tm_corr_args;
3801 	int ret;
3802 
3803 	if (!args)
3804 		return 0;
3805 
3806 	do {
3807 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3808 	} while (!ret);
3809 
3810 	if (ret < 0) {
3811 		pr_err("Failed to parse VM Time Correlation options\n");
3812 		return ret;
3813 	}
3814 
3815 	return 0;
3816 }
3817 
3818 static const char * const intel_pt_info_fmts[] = {
3819 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3820 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3821 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3822 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3823 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3824 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3825 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3826 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3827 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3828 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3829 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3830 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3831 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3832 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3833 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3834 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3835 };
3836 
3837 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3838 {
3839 	int i;
3840 
3841 	if (!dump_trace)
3842 		return;
3843 
3844 	for (i = start; i <= finish; i++)
3845 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3846 }
3847 
3848 static void intel_pt_print_info_str(const char *name, const char *str)
3849 {
3850 	if (!dump_trace)
3851 		return;
3852 
3853 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3854 }
3855 
3856 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3857 {
3858 	return auxtrace_info->header.size >=
3859 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3860 }
3861 
3862 int intel_pt_process_auxtrace_info(union perf_event *event,
3863 				   struct perf_session *session)
3864 {
3865 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3866 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3867 	struct intel_pt *pt;
3868 	void *info_end;
3869 	__u64 *info;
3870 	int err;
3871 
3872 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3873 					min_sz)
3874 		return -EINVAL;
3875 
3876 	pt = zalloc(sizeof(struct intel_pt));
3877 	if (!pt)
3878 		return -ENOMEM;
3879 
3880 	pt->vmcs_info = RB_ROOT;
3881 
3882 	addr_filters__init(&pt->filts);
3883 
3884 	err = perf_config(intel_pt_perf_config, pt);
3885 	if (err)
3886 		goto err_free;
3887 
3888 	err = auxtrace_queues__init(&pt->queues);
3889 	if (err)
3890 		goto err_free;
3891 
3892 	if (session->itrace_synth_opts->set) {
3893 		pt->synth_opts = *session->itrace_synth_opts;
3894 	} else {
3895 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3896 
3897 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3898 		if (!opts->default_no_sample && !opts->inject) {
3899 			pt->synth_opts.branches = false;
3900 			pt->synth_opts.callchain = true;
3901 			pt->synth_opts.add_callchain = true;
3902 		}
3903 		pt->synth_opts.thread_stack = opts->thread_stack;
3904 	}
3905 
3906 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
3907 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3908 
3909 	pt->session = session;
3910 	pt->machine = &session->machines.host; /* No kvm support */
3911 	pt->auxtrace_type = auxtrace_info->type;
3912 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3913 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3914 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3915 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3916 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3917 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3918 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3919 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3920 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3921 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3922 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3923 			    INTEL_PT_PER_CPU_MMAPS);
3924 
3925 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3926 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3927 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3928 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3929 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3930 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3931 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3932 				    INTEL_PT_CYC_BIT);
3933 	}
3934 
3935 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3936 		pt->max_non_turbo_ratio =
3937 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3938 		intel_pt_print_info(&auxtrace_info->priv[0],
3939 				    INTEL_PT_MAX_NONTURBO_RATIO,
3940 				    INTEL_PT_MAX_NONTURBO_RATIO);
3941 	}
3942 
3943 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3944 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
3945 
3946 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3947 		size_t len;
3948 
3949 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3950 		intel_pt_print_info(&auxtrace_info->priv[0],
3951 				    INTEL_PT_FILTER_STR_LEN,
3952 				    INTEL_PT_FILTER_STR_LEN);
3953 		if (len) {
3954 			const char *filter = (const char *)info;
3955 
3956 			len = roundup(len + 1, 8);
3957 			info += len >> 3;
3958 			if ((void *)info > info_end) {
3959 				pr_err("%s: bad filter string length\n", __func__);
3960 				err = -EINVAL;
3961 				goto err_free_queues;
3962 			}
3963 			pt->filter = memdup(filter, len);
3964 			if (!pt->filter) {
3965 				err = -ENOMEM;
3966 				goto err_free_queues;
3967 			}
3968 			if (session->header.needs_swap)
3969 				mem_bswap_64(pt->filter, len);
3970 			if (pt->filter[len - 1]) {
3971 				pr_err("%s: filter string not null terminated\n", __func__);
3972 				err = -EINVAL;
3973 				goto err_free_queues;
3974 			}
3975 			err = addr_filters__parse_bare_filter(&pt->filts,
3976 							      filter);
3977 			if (err)
3978 				goto err_free_queues;
3979 		}
3980 		intel_pt_print_info_str("Filter string", pt->filter);
3981 	}
3982 
3983 	if ((void *)info < info_end) {
3984 		pt->cap_event_trace = *info++;
3985 		if (dump_trace)
3986 			fprintf(stdout, "  Cap Event Trace     %d\n",
3987 				pt->cap_event_trace);
3988 	}
3989 
3990 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3991 	if (pt->timeless_decoding && !pt->tc.time_mult)
3992 		pt->tc.time_mult = 1;
3993 	pt->have_tsc = intel_pt_have_tsc(pt);
3994 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3995 	pt->est_tsc = !pt->timeless_decoding;
3996 
3997 	if (pt->synth_opts.vm_time_correlation) {
3998 		if (pt->timeless_decoding) {
3999 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4000 			err = -EINVAL;
4001 			goto err_free_queues;
4002 		}
4003 		if (session->itrace_synth_opts->ptime_range) {
4004 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4005 			err = -EINVAL;
4006 			goto err_free_queues;
4007 		}
4008 		/* Currently TSC Offset is calculated using MTC packets */
4009 		if (!intel_pt_have_mtc(pt)) {
4010 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4011 			err = -EINVAL;
4012 			goto err_free_queues;
4013 		}
4014 		err = intel_pt_parse_vm_tm_corr_args(pt);
4015 		if (err)
4016 			goto err_free_queues;
4017 	}
4018 
4019 	pt->unknown_thread = thread__new(999999999, 999999999);
4020 	if (!pt->unknown_thread) {
4021 		err = -ENOMEM;
4022 		goto err_free_queues;
4023 	}
4024 
4025 	/*
4026 	 * Since this thread will not be kept in any rbtree not in a
4027 	 * list, initialize its list node so that at thread__put() the
4028 	 * current thread lifetime assumption is kept and we don't segfault
4029 	 * at list_del_init().
4030 	 */
4031 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4032 
4033 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4034 	if (err)
4035 		goto err_delete_thread;
4036 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4037 		err = -ENOMEM;
4038 		goto err_delete_thread;
4039 	}
4040 
4041 	pt->auxtrace.process_event = intel_pt_process_event;
4042 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4043 	pt->auxtrace.queue_data = intel_pt_queue_data;
4044 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4045 	pt->auxtrace.flush_events = intel_pt_flush;
4046 	pt->auxtrace.free_events = intel_pt_free_events;
4047 	pt->auxtrace.free = intel_pt_free;
4048 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4049 	session->auxtrace = &pt->auxtrace;
4050 
4051 	if (dump_trace)
4052 		return 0;
4053 
4054 	if (pt->have_sched_switch == 1) {
4055 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4056 		if (!pt->switch_evsel) {
4057 			pr_err("%s: missing sched_switch event\n", __func__);
4058 			err = -EINVAL;
4059 			goto err_delete_thread;
4060 		}
4061 	} else if (pt->have_sched_switch == 2 &&
4062 		   !intel_pt_find_switch(session->evlist)) {
4063 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4064 		err = -EINVAL;
4065 		goto err_delete_thread;
4066 	}
4067 
4068 	if (pt->synth_opts.log)
4069 		intel_pt_log_enable();
4070 
4071 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4072 	if (pt->tc.time_mult) {
4073 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4074 
4075 		if (!pt->max_non_turbo_ratio)
4076 			pt->max_non_turbo_ratio =
4077 					(tsc_freq + 50000000) / 100000000;
4078 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4079 		intel_pt_log("Maximum non-turbo ratio %u\n",
4080 			     pt->max_non_turbo_ratio);
4081 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4082 	}
4083 
4084 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4085 	if (err)
4086 		goto err_delete_thread;
4087 
4088 	if (pt->synth_opts.calls)
4089 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4090 				       PERF_IP_FLAG_TRACE_END;
4091 	if (pt->synth_opts.returns)
4092 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4093 				       PERF_IP_FLAG_TRACE_BEGIN;
4094 
4095 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4096 	    !symbol_conf.use_callchain) {
4097 		symbol_conf.use_callchain = true;
4098 		if (callchain_register_param(&callchain_param) < 0) {
4099 			symbol_conf.use_callchain = false;
4100 			pt->synth_opts.callchain = false;
4101 			pt->synth_opts.add_callchain = false;
4102 		}
4103 	}
4104 
4105 	if (pt->synth_opts.add_callchain) {
4106 		err = intel_pt_callchain_init(pt);
4107 		if (err)
4108 			goto err_delete_thread;
4109 	}
4110 
4111 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4112 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4113 		pt->br_stack_sz_plus = pt->br_stack_sz;
4114 	}
4115 
4116 	if (pt->synth_opts.add_last_branch) {
4117 		err = intel_pt_br_stack_init(pt);
4118 		if (err)
4119 			goto err_delete_thread;
4120 		/*
4121 		 * Additional branch stack size to cater for tracing from the
4122 		 * actual sample ip to where the sample time is recorded.
4123 		 * Measured at about 200 branches, but generously set to 1024.
4124 		 * If kernel space is not being traced, then add just 1 for the
4125 		 * branch to kernel space.
4126 		 */
4127 		if (intel_pt_tracing_kernel(pt))
4128 			pt->br_stack_sz_plus += 1024;
4129 		else
4130 			pt->br_stack_sz_plus += 1;
4131 	}
4132 
4133 	pt->use_thread_stack = pt->synth_opts.callchain ||
4134 			       pt->synth_opts.add_callchain ||
4135 			       pt->synth_opts.thread_stack ||
4136 			       pt->synth_opts.last_branch ||
4137 			       pt->synth_opts.add_last_branch;
4138 
4139 	pt->callstack = pt->synth_opts.callchain ||
4140 			pt->synth_opts.add_callchain ||
4141 			pt->synth_opts.thread_stack;
4142 
4143 	err = intel_pt_synth_events(pt, session);
4144 	if (err)
4145 		goto err_delete_thread;
4146 
4147 	intel_pt_setup_pebs_events(pt);
4148 
4149 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4150 		err = auxtrace_queue_data(session, true, true);
4151 	else
4152 		err = auxtrace_queues__process_index(&pt->queues, session);
4153 	if (err)
4154 		goto err_delete_thread;
4155 
4156 	if (pt->queues.populated)
4157 		pt->data_queued = true;
4158 
4159 	if (pt->timeless_decoding)
4160 		pr_debug2("Intel PT decoding without timestamps\n");
4161 
4162 	return 0;
4163 
4164 err_delete_thread:
4165 	zfree(&pt->chain);
4166 	thread__zput(pt->unknown_thread);
4167 err_free_queues:
4168 	intel_pt_log_disable();
4169 	auxtrace_queues__free(&pt->queues);
4170 	session->auxtrace = NULL;
4171 err_free:
4172 	addr_filters__exit(&pt->filts);
4173 	zfree(&pt->filter);
4174 	zfree(&pt->time_ranges);
4175 	free(pt);
4176 	return err;
4177 }
4178