xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 2540d3c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
54 
55 struct range {
56 	u64 start;
57 	u64 end;
58 };
59 
60 struct intel_pt {
61 	struct auxtrace auxtrace;
62 	struct auxtrace_queues queues;
63 	struct auxtrace_heap heap;
64 	u32 auxtrace_type;
65 	struct perf_session *session;
66 	struct machine *machine;
67 	struct evsel *switch_evsel;
68 	struct thread *unknown_thread;
69 	bool timeless_decoding;
70 	bool sampling_mode;
71 	bool snapshot_mode;
72 	bool per_cpu_mmaps;
73 	bool have_tsc;
74 	bool data_queued;
75 	bool est_tsc;
76 	bool sync_switch;
77 	bool mispred_all;
78 	bool use_thread_stack;
79 	bool callstack;
80 	bool cap_event_trace;
81 	unsigned int br_stack_sz;
82 	unsigned int br_stack_sz_plus;
83 	int have_sched_switch;
84 	u32 pmu_type;
85 	u64 kernel_start;
86 	u64 switch_ip;
87 	u64 ptss_ip;
88 	u64 first_timestamp;
89 
90 	struct perf_tsc_conversion tc;
91 	bool cap_user_time_zero;
92 
93 	struct itrace_synth_opts synth_opts;
94 
95 	bool sample_instructions;
96 	u64 instructions_sample_type;
97 	u64 instructions_id;
98 
99 	bool sample_branches;
100 	u32 branches_filter;
101 	u64 branches_sample_type;
102 	u64 branches_id;
103 
104 	bool sample_transactions;
105 	u64 transactions_sample_type;
106 	u64 transactions_id;
107 
108 	bool sample_ptwrites;
109 	u64 ptwrites_sample_type;
110 	u64 ptwrites_id;
111 
112 	bool sample_pwr_events;
113 	u64 pwr_events_sample_type;
114 	u64 mwait_id;
115 	u64 pwre_id;
116 	u64 exstop_id;
117 	u64 pwrx_id;
118 	u64 cbr_id;
119 	u64 psb_id;
120 
121 	bool single_pebs;
122 	bool sample_pebs;
123 	struct evsel *pebs_evsel;
124 
125 	u64 evt_sample_type;
126 	u64 evt_id;
127 
128 	u64 iflag_chg_sample_type;
129 	u64 iflag_chg_id;
130 
131 	u64 tsc_bit;
132 	u64 mtc_bit;
133 	u64 mtc_freq_bits;
134 	u32 tsc_ctc_ratio_n;
135 	u32 tsc_ctc_ratio_d;
136 	u64 cyc_bit;
137 	u64 noretcomp_bit;
138 	unsigned max_non_turbo_ratio;
139 	unsigned cbr2khz;
140 	int max_loops;
141 
142 	unsigned long num_events;
143 
144 	char *filter;
145 	struct addr_filters filts;
146 
147 	struct range *time_ranges;
148 	unsigned int range_cnt;
149 
150 	struct ip_callchain *chain;
151 	struct branch_stack *br_stack;
152 
153 	u64 dflt_tsc_offset;
154 	struct rb_root vmcs_info;
155 };
156 
157 enum switch_state {
158 	INTEL_PT_SS_NOT_TRACING,
159 	INTEL_PT_SS_UNKNOWN,
160 	INTEL_PT_SS_TRACING,
161 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
162 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
163 };
164 
165 /* applicable_counters is 64-bits */
166 #define INTEL_PT_MAX_PEBS 64
167 
168 struct intel_pt_pebs_event {
169 	struct evsel *evsel;
170 	u64 id;
171 };
172 
173 struct intel_pt_queue {
174 	struct intel_pt *pt;
175 	unsigned int queue_nr;
176 	struct auxtrace_buffer *buffer;
177 	struct auxtrace_buffer *old_buffer;
178 	void *decoder;
179 	const struct intel_pt_state *state;
180 	struct ip_callchain *chain;
181 	struct branch_stack *last_branch;
182 	union perf_event *event_buf;
183 	bool on_heap;
184 	bool stop;
185 	bool step_through_buffers;
186 	bool use_buffer_pid_tid;
187 	bool sync_switch;
188 	bool sample_ipc;
189 	pid_t pid, tid;
190 	int cpu;
191 	int switch_state;
192 	pid_t next_tid;
193 	struct thread *thread;
194 	struct machine *guest_machine;
195 	struct thread *guest_thread;
196 	struct thread *unknown_guest_thread;
197 	pid_t guest_machine_pid;
198 	bool exclude_kernel;
199 	bool have_sample;
200 	u64 time;
201 	u64 timestamp;
202 	u64 sel_timestamp;
203 	bool sel_start;
204 	unsigned int sel_idx;
205 	u32 flags;
206 	u16 insn_len;
207 	u64 last_insn_cnt;
208 	u64 ipc_insn_cnt;
209 	u64 ipc_cyc_cnt;
210 	u64 last_in_insn_cnt;
211 	u64 last_in_cyc_cnt;
212 	u64 last_br_insn_cnt;
213 	u64 last_br_cyc_cnt;
214 	unsigned int cbr_seen;
215 	char insn[INTEL_PT_INSN_BUF_SZ];
216 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
217 };
218 
219 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
220 			  unsigned char *buf, size_t len)
221 {
222 	struct intel_pt_pkt packet;
223 	size_t pos = 0;
224 	int ret, pkt_len, i;
225 	char desc[INTEL_PT_PKT_DESC_MAX];
226 	const char *color = PERF_COLOR_BLUE;
227 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
228 
229 	color_fprintf(stdout, color,
230 		      ". ... Intel Processor Trace data: size %zu bytes\n",
231 		      len);
232 
233 	while (len) {
234 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
235 		if (ret > 0)
236 			pkt_len = ret;
237 		else
238 			pkt_len = 1;
239 		printf(".");
240 		color_fprintf(stdout, color, "  %08x: ", pos);
241 		for (i = 0; i < pkt_len; i++)
242 			color_fprintf(stdout, color, " %02x", buf[i]);
243 		for (; i < 16; i++)
244 			color_fprintf(stdout, color, "   ");
245 		if (ret > 0) {
246 			ret = intel_pt_pkt_desc(&packet, desc,
247 						INTEL_PT_PKT_DESC_MAX);
248 			if (ret > 0)
249 				color_fprintf(stdout, color, " %s\n", desc);
250 		} else {
251 			color_fprintf(stdout, color, " Bad packet!\n");
252 		}
253 		pos += pkt_len;
254 		buf += pkt_len;
255 		len -= pkt_len;
256 	}
257 }
258 
259 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
260 				size_t len)
261 {
262 	printf(".\n");
263 	intel_pt_dump(pt, buf, len);
264 }
265 
266 static void intel_pt_log_event(union perf_event *event)
267 {
268 	FILE *f = intel_pt_log_fp();
269 
270 	if (!intel_pt_enable_logging || !f)
271 		return;
272 
273 	perf_event__fprintf(event, NULL, f);
274 }
275 
276 static void intel_pt_dump_sample(struct perf_session *session,
277 				 struct perf_sample *sample)
278 {
279 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
280 					   auxtrace);
281 
282 	printf("\n");
283 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
284 }
285 
286 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
287 {
288 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
289 	int n = pt->synth_opts.range_num;
290 
291 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
292 		return true;
293 
294 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
295 		return false;
296 
297 	/* perf_time__ranges_skip_sample does not work if time is zero */
298 	if (!tm)
299 		tm = 1;
300 
301 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
302 }
303 
304 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
305 							u64 vmcs,
306 							u64 dflt_tsc_offset)
307 {
308 	struct rb_node **p = &rb_root->rb_node;
309 	struct rb_node *parent = NULL;
310 	struct intel_pt_vmcs_info *v;
311 
312 	while (*p) {
313 		parent = *p;
314 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
315 
316 		if (v->vmcs == vmcs)
317 			return v;
318 
319 		if (vmcs < v->vmcs)
320 			p = &(*p)->rb_left;
321 		else
322 			p = &(*p)->rb_right;
323 	}
324 
325 	v = zalloc(sizeof(*v));
326 	if (v) {
327 		v->vmcs = vmcs;
328 		v->tsc_offset = dflt_tsc_offset;
329 		v->reliable = dflt_tsc_offset;
330 
331 		rb_link_node(&v->rb_node, parent, p);
332 		rb_insert_color(&v->rb_node, rb_root);
333 	}
334 
335 	return v;
336 }
337 
338 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
339 {
340 	struct intel_pt_queue *ptq = data;
341 	struct intel_pt *pt = ptq->pt;
342 
343 	if (!vmcs && !pt->dflt_tsc_offset)
344 		return NULL;
345 
346 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
347 }
348 
349 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
350 {
351 	struct intel_pt_vmcs_info *v;
352 	struct rb_node *n;
353 
354 	n = rb_first(&pt->vmcs_info);
355 	while (n) {
356 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
357 		n = rb_next(n);
358 		rb_erase(&v->rb_node, &pt->vmcs_info);
359 		free(v);
360 	}
361 }
362 
363 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
364 				   struct auxtrace_buffer *b)
365 {
366 	bool consecutive = false;
367 	void *start;
368 
369 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
370 				      pt->have_tsc, &consecutive,
371 				      pt->synth_opts.vm_time_correlation);
372 	if (!start)
373 		return -EINVAL;
374 	/*
375 	 * In the case of vm_time_correlation, the overlap might contain TSC
376 	 * packets that will not be fixed, and that will then no longer work for
377 	 * overlap detection. Avoid that by zeroing out the overlap.
378 	 */
379 	if (pt->synth_opts.vm_time_correlation)
380 		memset(b->data, 0, start - b->data);
381 	b->use_size = b->data + b->size - start;
382 	b->use_data = start;
383 	if (b->use_size && consecutive)
384 		b->consecutive = true;
385 	return 0;
386 }
387 
388 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
389 			       struct auxtrace_buffer *buffer,
390 			       struct auxtrace_buffer *old_buffer,
391 			       struct intel_pt_buffer *b)
392 {
393 	bool might_overlap;
394 
395 	if (!buffer->data) {
396 		int fd = perf_data__fd(ptq->pt->session->data);
397 
398 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
399 		if (!buffer->data)
400 			return -ENOMEM;
401 	}
402 
403 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
404 	if (might_overlap && !buffer->consecutive && old_buffer &&
405 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
406 		return -ENOMEM;
407 
408 	if (buffer->use_data) {
409 		b->len = buffer->use_size;
410 		b->buf = buffer->use_data;
411 	} else {
412 		b->len = buffer->size;
413 		b->buf = buffer->data;
414 	}
415 	b->ref_timestamp = buffer->reference;
416 
417 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
418 		b->consecutive = false;
419 		b->trace_nr = buffer->buffer_nr + 1;
420 	} else {
421 		b->consecutive = true;
422 	}
423 
424 	return 0;
425 }
426 
427 /* Do not drop buffers with references - refer intel_pt_get_trace() */
428 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
429 					   struct auxtrace_buffer *buffer)
430 {
431 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
432 		return;
433 
434 	auxtrace_buffer__drop_data(buffer);
435 }
436 
437 /* Must be serialized with respect to intel_pt_get_trace() */
438 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
439 			      void *cb_data)
440 {
441 	struct intel_pt_queue *ptq = data;
442 	struct auxtrace_buffer *buffer = ptq->buffer;
443 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
444 	struct auxtrace_queue *queue;
445 	int err = 0;
446 
447 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
448 
449 	while (1) {
450 		struct intel_pt_buffer b = { .len = 0 };
451 
452 		buffer = auxtrace_buffer__next(queue, buffer);
453 		if (!buffer)
454 			break;
455 
456 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
457 		if (err)
458 			break;
459 
460 		if (b.len) {
461 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
462 			old_buffer = buffer;
463 		} else {
464 			intel_pt_lookahead_drop_buffer(ptq, buffer);
465 			continue;
466 		}
467 
468 		err = cb(&b, cb_data);
469 		if (err)
470 			break;
471 	}
472 
473 	if (buffer != old_buffer)
474 		intel_pt_lookahead_drop_buffer(ptq, buffer);
475 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
476 
477 	return err;
478 }
479 
480 /*
481  * This function assumes data is processed sequentially only.
482  * Must be serialized with respect to intel_pt_lookahead()
483  */
484 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
485 {
486 	struct intel_pt_queue *ptq = data;
487 	struct auxtrace_buffer *buffer = ptq->buffer;
488 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
489 	struct auxtrace_queue *queue;
490 	int err;
491 
492 	if (ptq->stop) {
493 		b->len = 0;
494 		return 0;
495 	}
496 
497 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
498 
499 	buffer = auxtrace_buffer__next(queue, buffer);
500 	if (!buffer) {
501 		if (old_buffer)
502 			auxtrace_buffer__drop_data(old_buffer);
503 		b->len = 0;
504 		return 0;
505 	}
506 
507 	ptq->buffer = buffer;
508 
509 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
510 	if (err)
511 		return err;
512 
513 	if (ptq->step_through_buffers)
514 		ptq->stop = true;
515 
516 	if (b->len) {
517 		if (old_buffer)
518 			auxtrace_buffer__drop_data(old_buffer);
519 		ptq->old_buffer = buffer;
520 	} else {
521 		auxtrace_buffer__drop_data(buffer);
522 		return intel_pt_get_trace(b, data);
523 	}
524 
525 	return 0;
526 }
527 
528 struct intel_pt_cache_entry {
529 	struct auxtrace_cache_entry	entry;
530 	u64				insn_cnt;
531 	u64				byte_cnt;
532 	enum intel_pt_insn_op		op;
533 	enum intel_pt_insn_branch	branch;
534 	bool				emulated_ptwrite;
535 	int				length;
536 	int32_t				rel;
537 	char				insn[INTEL_PT_INSN_BUF_SZ];
538 };
539 
540 static int intel_pt_config_div(const char *var, const char *value, void *data)
541 {
542 	int *d = data;
543 	long val;
544 
545 	if (!strcmp(var, "intel-pt.cache-divisor")) {
546 		val = strtol(value, NULL, 0);
547 		if (val > 0 && val <= INT_MAX)
548 			*d = val;
549 	}
550 
551 	return 0;
552 }
553 
554 static int intel_pt_cache_divisor(void)
555 {
556 	static int d;
557 
558 	if (d)
559 		return d;
560 
561 	perf_config(intel_pt_config_div, &d);
562 
563 	if (!d)
564 		d = 64;
565 
566 	return d;
567 }
568 
569 static unsigned int intel_pt_cache_size(struct dso *dso,
570 					struct machine *machine)
571 {
572 	off_t size;
573 
574 	size = dso__data_size(dso, machine);
575 	size /= intel_pt_cache_divisor();
576 	if (size < 1000)
577 		return 10;
578 	if (size > (1 << 21))
579 		return 21;
580 	return 32 - __builtin_clz(size);
581 }
582 
583 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
584 					     struct machine *machine)
585 {
586 	struct auxtrace_cache *c;
587 	unsigned int bits;
588 
589 	if (dso->auxtrace_cache)
590 		return dso->auxtrace_cache;
591 
592 	bits = intel_pt_cache_size(dso, machine);
593 
594 	/* Ignoring cache creation failure */
595 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
596 
597 	dso->auxtrace_cache = c;
598 
599 	return c;
600 }
601 
602 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
603 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
604 			      struct intel_pt_insn *intel_pt_insn)
605 {
606 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
607 	struct intel_pt_cache_entry *e;
608 	int err;
609 
610 	if (!c)
611 		return -ENOMEM;
612 
613 	e = auxtrace_cache__alloc_entry(c);
614 	if (!e)
615 		return -ENOMEM;
616 
617 	e->insn_cnt = insn_cnt;
618 	e->byte_cnt = byte_cnt;
619 	e->op = intel_pt_insn->op;
620 	e->branch = intel_pt_insn->branch;
621 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
622 	e->length = intel_pt_insn->length;
623 	e->rel = intel_pt_insn->rel;
624 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
625 
626 	err = auxtrace_cache__add(c, offset, &e->entry);
627 	if (err)
628 		auxtrace_cache__free_entry(c, e);
629 
630 	return err;
631 }
632 
633 static struct intel_pt_cache_entry *
634 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
635 {
636 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
637 
638 	if (!c)
639 		return NULL;
640 
641 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
642 }
643 
644 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
645 				      u64 offset)
646 {
647 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
648 
649 	if (!c)
650 		return;
651 
652 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
653 }
654 
655 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
656 {
657 	/* Assumes 64-bit kernel */
658 	return ip & (1ULL << 63);
659 }
660 
661 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
662 {
663 	if (nr) {
664 		return intel_pt_guest_kernel_ip(ip) ?
665 		       PERF_RECORD_MISC_GUEST_KERNEL :
666 		       PERF_RECORD_MISC_GUEST_USER;
667 	}
668 
669 	return ip >= ptq->pt->kernel_start ?
670 	       PERF_RECORD_MISC_KERNEL :
671 	       PERF_RECORD_MISC_USER;
672 }
673 
674 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
675 {
676 	/* No support for non-zero CS base */
677 	if (from_ip)
678 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
679 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
680 }
681 
682 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
683 {
684 	struct machines *machines = &ptq->pt->session->machines;
685 	struct machine *machine;
686 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
687 
688 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
689 		return 0;
690 
691 	ptq->guest_machine = NULL;
692 	thread__zput(ptq->unknown_guest_thread);
693 
694 	if (symbol_conf.guest_code) {
695 		thread__zput(ptq->guest_thread);
696 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
697 	}
698 
699 	machine = machines__find_guest(machines, pid);
700 	if (!machine)
701 		return -1;
702 
703 	ptq->unknown_guest_thread = machine__idle_thread(machine);
704 	if (!ptq->unknown_guest_thread)
705 		return -1;
706 
707 	ptq->guest_machine = machine;
708 	ptq->guest_machine_pid = pid;
709 
710 	return 0;
711 }
712 
713 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
714 {
715 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
716 }
717 
718 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
719 #define PTWRITE_MAGIC_LEN	16
720 
721 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
722 {
723 	unsigned char buf[PTWRITE_MAGIC_LEN];
724 	ssize_t len;
725 
726 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
727 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
728 		intel_pt_log("Emulated ptwrite signature found\n");
729 		return true;
730 	}
731 	intel_pt_log("Emulated ptwrite signature not found\n");
732 	return false;
733 }
734 
735 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
736 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
737 				   uint64_t to_ip, uint64_t max_insn_cnt,
738 				   void *data)
739 {
740 	struct intel_pt_queue *ptq = data;
741 	struct machine *machine = ptq->pt->machine;
742 	struct thread *thread;
743 	struct addr_location al;
744 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
745 	ssize_t len;
746 	int x86_64;
747 	u8 cpumode;
748 	u64 offset, start_offset, start_ip;
749 	u64 insn_cnt = 0;
750 	bool one_map = true;
751 	bool nr;
752 
753 	intel_pt_insn->length = 0;
754 
755 	if (to_ip && *ip == to_ip)
756 		goto out_no_cache;
757 
758 	nr = ptq->state->to_nr;
759 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
760 
761 	if (nr) {
762 		if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
763 		    intel_pt_get_guest(ptq))
764 			return -EINVAL;
765 		machine = ptq->guest_machine;
766 		thread = ptq->guest_thread;
767 		if (!thread) {
768 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL)
769 				return -EINVAL;
770 			thread = ptq->unknown_guest_thread;
771 		}
772 	} else {
773 		thread = ptq->thread;
774 		if (!thread) {
775 			if (cpumode != PERF_RECORD_MISC_KERNEL)
776 				return -EINVAL;
777 			thread = ptq->pt->unknown_thread;
778 		}
779 	}
780 
781 	while (1) {
782 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
783 			return -EINVAL;
784 
785 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
786 		    dso__data_status_seen(al.map->dso,
787 					  DSO_DATA_STATUS_SEEN_ITRACE))
788 			return -ENOENT;
789 
790 		offset = al.map->map_ip(al.map, *ip);
791 
792 		if (!to_ip && one_map) {
793 			struct intel_pt_cache_entry *e;
794 
795 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
796 			if (e &&
797 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
798 				*insn_cnt_ptr = e->insn_cnt;
799 				*ip += e->byte_cnt;
800 				intel_pt_insn->op = e->op;
801 				intel_pt_insn->branch = e->branch;
802 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
803 				intel_pt_insn->length = e->length;
804 				intel_pt_insn->rel = e->rel;
805 				memcpy(intel_pt_insn->buf, e->insn,
806 				       INTEL_PT_INSN_BUF_SZ);
807 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
808 				return 0;
809 			}
810 		}
811 
812 		start_offset = offset;
813 		start_ip = *ip;
814 
815 		/* Load maps to ensure dso->is_64_bit has been updated */
816 		map__load(al.map);
817 
818 		x86_64 = al.map->dso->is_64_bit;
819 
820 		while (1) {
821 			len = dso__data_read_offset(al.map->dso, machine,
822 						    offset, buf,
823 						    INTEL_PT_INSN_BUF_SZ);
824 			if (len <= 0)
825 				return -EINVAL;
826 
827 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
828 				return -EINVAL;
829 
830 			intel_pt_log_insn(intel_pt_insn, *ip);
831 
832 			insn_cnt += 1;
833 
834 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
835 				bool eptw;
836 				u64 offs;
837 
838 				if (!intel_pt_jmp_16(intel_pt_insn))
839 					goto out;
840 				/* Check for emulated ptwrite */
841 				offs = offset + intel_pt_insn->length;
842 				eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
843 				intel_pt_insn->emulated_ptwrite = eptw;
844 				goto out;
845 			}
846 
847 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
848 				goto out_no_cache;
849 
850 			*ip += intel_pt_insn->length;
851 
852 			if (to_ip && *ip == to_ip) {
853 				intel_pt_insn->length = 0;
854 				goto out_no_cache;
855 			}
856 
857 			if (*ip >= al.map->end)
858 				break;
859 
860 			offset += intel_pt_insn->length;
861 		}
862 		one_map = false;
863 	}
864 out:
865 	*insn_cnt_ptr = insn_cnt;
866 
867 	if (!one_map)
868 		goto out_no_cache;
869 
870 	/*
871 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
872 	 * entries.
873 	 */
874 	if (to_ip) {
875 		struct intel_pt_cache_entry *e;
876 
877 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
878 		if (e)
879 			return 0;
880 	}
881 
882 	/* Ignore cache errors */
883 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
884 			   *ip - start_ip, intel_pt_insn);
885 
886 	return 0;
887 
888 out_no_cache:
889 	*insn_cnt_ptr = insn_cnt;
890 	return 0;
891 }
892 
893 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
894 				  uint64_t offset, const char *filename)
895 {
896 	struct addr_filter *filt;
897 	bool have_filter   = false;
898 	bool hit_tracestop = false;
899 	bool hit_filter    = false;
900 
901 	list_for_each_entry(filt, &pt->filts.head, list) {
902 		if (filt->start)
903 			have_filter = true;
904 
905 		if ((filename && !filt->filename) ||
906 		    (!filename && filt->filename) ||
907 		    (filename && strcmp(filename, filt->filename)))
908 			continue;
909 
910 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
911 			continue;
912 
913 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
914 			     ip, offset, filename ? filename : "[kernel]",
915 			     filt->start ? "filter" : "stop",
916 			     filt->addr, filt->size);
917 
918 		if (filt->start)
919 			hit_filter = true;
920 		else
921 			hit_tracestop = true;
922 	}
923 
924 	if (!hit_tracestop && !hit_filter)
925 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
926 			     ip, offset, filename ? filename : "[kernel]");
927 
928 	return hit_tracestop || (have_filter && !hit_filter);
929 }
930 
931 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
932 {
933 	struct intel_pt_queue *ptq = data;
934 	struct thread *thread;
935 	struct addr_location al;
936 	u8 cpumode;
937 	u64 offset;
938 
939 	if (ptq->state->to_nr) {
940 		if (intel_pt_guest_kernel_ip(ip))
941 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
942 		/* No support for decoding guest user space */
943 		return -EINVAL;
944 	} else if (ip >= ptq->pt->kernel_start) {
945 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
946 	}
947 
948 	cpumode = PERF_RECORD_MISC_USER;
949 
950 	thread = ptq->thread;
951 	if (!thread)
952 		return -EINVAL;
953 
954 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
955 		return -EINVAL;
956 
957 	offset = al.map->map_ip(al.map, ip);
958 
959 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
960 				     al.map->dso->long_name);
961 }
962 
963 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
964 {
965 	return __intel_pt_pgd_ip(ip, data) > 0;
966 }
967 
968 static bool intel_pt_get_config(struct intel_pt *pt,
969 				struct perf_event_attr *attr, u64 *config)
970 {
971 	if (attr->type == pt->pmu_type) {
972 		if (config)
973 			*config = attr->config;
974 		return true;
975 	}
976 
977 	return false;
978 }
979 
980 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
981 {
982 	struct evsel *evsel;
983 
984 	evlist__for_each_entry(pt->session->evlist, evsel) {
985 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
986 		    !evsel->core.attr.exclude_kernel)
987 			return false;
988 	}
989 	return true;
990 }
991 
992 static bool intel_pt_return_compression(struct intel_pt *pt)
993 {
994 	struct evsel *evsel;
995 	u64 config;
996 
997 	if (!pt->noretcomp_bit)
998 		return true;
999 
1000 	evlist__for_each_entry(pt->session->evlist, evsel) {
1001 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1002 		    (config & pt->noretcomp_bit))
1003 			return false;
1004 	}
1005 	return true;
1006 }
1007 
1008 static bool intel_pt_branch_enable(struct intel_pt *pt)
1009 {
1010 	struct evsel *evsel;
1011 	u64 config;
1012 
1013 	evlist__for_each_entry(pt->session->evlist, evsel) {
1014 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1015 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1016 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1017 			return false;
1018 	}
1019 	return true;
1020 }
1021 
1022 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1023 {
1024 	struct evsel *evsel;
1025 	u64 config;
1026 
1027 	evlist__for_each_entry(pt->session->evlist, evsel) {
1028 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1029 		    config & INTEL_PT_CFG_TNT_DIS)
1030 			return true;
1031 	}
1032 	return false;
1033 }
1034 
1035 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1036 {
1037 	struct evsel *evsel;
1038 	unsigned int shift;
1039 	u64 config;
1040 
1041 	if (!pt->mtc_freq_bits)
1042 		return 0;
1043 
1044 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1045 		config >>= 1;
1046 
1047 	evlist__for_each_entry(pt->session->evlist, evsel) {
1048 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1049 			return (config & pt->mtc_freq_bits) >> shift;
1050 	}
1051 	return 0;
1052 }
1053 
1054 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1055 {
1056 	struct evsel *evsel;
1057 	bool timeless_decoding = true;
1058 	u64 config;
1059 
1060 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1061 		return true;
1062 
1063 	evlist__for_each_entry(pt->session->evlist, evsel) {
1064 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1065 			return true;
1066 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1067 			if (config & pt->tsc_bit)
1068 				timeless_decoding = false;
1069 			else
1070 				return true;
1071 		}
1072 	}
1073 	return timeless_decoding;
1074 }
1075 
1076 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1077 {
1078 	struct evsel *evsel;
1079 
1080 	evlist__for_each_entry(pt->session->evlist, evsel) {
1081 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1082 		    !evsel->core.attr.exclude_kernel)
1083 			return true;
1084 	}
1085 	return false;
1086 }
1087 
1088 static bool intel_pt_have_tsc(struct intel_pt *pt)
1089 {
1090 	struct evsel *evsel;
1091 	bool have_tsc = false;
1092 	u64 config;
1093 
1094 	if (!pt->tsc_bit)
1095 		return false;
1096 
1097 	evlist__for_each_entry(pt->session->evlist, evsel) {
1098 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1099 			if (config & pt->tsc_bit)
1100 				have_tsc = true;
1101 			else
1102 				return false;
1103 		}
1104 	}
1105 	return have_tsc;
1106 }
1107 
1108 static bool intel_pt_have_mtc(struct intel_pt *pt)
1109 {
1110 	struct evsel *evsel;
1111 	u64 config;
1112 
1113 	evlist__for_each_entry(pt->session->evlist, evsel) {
1114 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1115 		    (config & pt->mtc_bit))
1116 			return true;
1117 	}
1118 	return false;
1119 }
1120 
1121 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1122 {
1123 	struct evsel *evsel;
1124 
1125 	evlist__for_each_entry(pt->session->evlist, evsel) {
1126 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1127 		    evsel->core.attr.aux_sample_size)
1128 			return true;
1129 	}
1130 	return false;
1131 }
1132 
1133 static u64 intel_pt_ctl(struct intel_pt *pt)
1134 {
1135 	struct evsel *evsel;
1136 	u64 config;
1137 
1138 	evlist__for_each_entry(pt->session->evlist, evsel) {
1139 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1140 			return config;
1141 	}
1142 	return 0;
1143 }
1144 
1145 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1146 {
1147 	u64 quot, rem;
1148 
1149 	quot = ns / pt->tc.time_mult;
1150 	rem  = ns % pt->tc.time_mult;
1151 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1152 		pt->tc.time_mult;
1153 }
1154 
1155 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1156 {
1157 	size_t sz = sizeof(struct ip_callchain);
1158 
1159 	/* Add 1 to callchain_sz for callchain context */
1160 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1161 	return zalloc(sz);
1162 }
1163 
1164 static int intel_pt_callchain_init(struct intel_pt *pt)
1165 {
1166 	struct evsel *evsel;
1167 
1168 	evlist__for_each_entry(pt->session->evlist, evsel) {
1169 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1170 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1171 	}
1172 
1173 	pt->chain = intel_pt_alloc_chain(pt);
1174 	if (!pt->chain)
1175 		return -ENOMEM;
1176 
1177 	return 0;
1178 }
1179 
1180 static void intel_pt_add_callchain(struct intel_pt *pt,
1181 				   struct perf_sample *sample)
1182 {
1183 	struct thread *thread = machine__findnew_thread(pt->machine,
1184 							sample->pid,
1185 							sample->tid);
1186 
1187 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1188 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1189 				  pt->kernel_start);
1190 
1191 	sample->callchain = pt->chain;
1192 }
1193 
1194 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1195 {
1196 	size_t sz = sizeof(struct branch_stack);
1197 
1198 	sz += entry_cnt * sizeof(struct branch_entry);
1199 	return zalloc(sz);
1200 }
1201 
1202 static int intel_pt_br_stack_init(struct intel_pt *pt)
1203 {
1204 	struct evsel *evsel;
1205 
1206 	evlist__for_each_entry(pt->session->evlist, evsel) {
1207 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1208 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1209 	}
1210 
1211 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1212 	if (!pt->br_stack)
1213 		return -ENOMEM;
1214 
1215 	return 0;
1216 }
1217 
1218 static void intel_pt_add_br_stack(struct intel_pt *pt,
1219 				  struct perf_sample *sample)
1220 {
1221 	struct thread *thread = machine__findnew_thread(pt->machine,
1222 							sample->pid,
1223 							sample->tid);
1224 
1225 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1226 				     pt->br_stack_sz, sample->ip,
1227 				     pt->kernel_start);
1228 
1229 	sample->branch_stack = pt->br_stack;
1230 }
1231 
1232 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1233 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1234 
1235 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1236 						   unsigned int queue_nr)
1237 {
1238 	struct intel_pt_params params = { .get_trace = 0, };
1239 	struct perf_env *env = pt->machine->env;
1240 	struct intel_pt_queue *ptq;
1241 
1242 	ptq = zalloc(sizeof(struct intel_pt_queue));
1243 	if (!ptq)
1244 		return NULL;
1245 
1246 	if (pt->synth_opts.callchain) {
1247 		ptq->chain = intel_pt_alloc_chain(pt);
1248 		if (!ptq->chain)
1249 			goto out_free;
1250 	}
1251 
1252 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1253 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1254 
1255 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1256 		if (!ptq->last_branch)
1257 			goto out_free;
1258 	}
1259 
1260 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1261 	if (!ptq->event_buf)
1262 		goto out_free;
1263 
1264 	ptq->pt = pt;
1265 	ptq->queue_nr = queue_nr;
1266 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1267 	ptq->pid = -1;
1268 	ptq->tid = -1;
1269 	ptq->cpu = -1;
1270 	ptq->next_tid = -1;
1271 
1272 	params.get_trace = intel_pt_get_trace;
1273 	params.walk_insn = intel_pt_walk_next_insn;
1274 	params.lookahead = intel_pt_lookahead;
1275 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1276 	params.data = ptq;
1277 	params.return_compression = intel_pt_return_compression(pt);
1278 	params.branch_enable = intel_pt_branch_enable(pt);
1279 	params.ctl = intel_pt_ctl(pt);
1280 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1281 	params.mtc_period = intel_pt_mtc_period(pt);
1282 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1283 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1284 	params.quick = pt->synth_opts.quick;
1285 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1286 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1287 	params.first_timestamp = pt->first_timestamp;
1288 	params.max_loops = pt->max_loops;
1289 
1290 	/* Cannot walk code without TNT, so force 'quick' mode */
1291 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1292 		params.quick = 1;
1293 
1294 	if (pt->filts.cnt > 0)
1295 		params.pgd_ip = intel_pt_pgd_ip;
1296 
1297 	if (pt->synth_opts.instructions) {
1298 		if (pt->synth_opts.period) {
1299 			switch (pt->synth_opts.period_type) {
1300 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1301 				params.period_type =
1302 						INTEL_PT_PERIOD_INSTRUCTIONS;
1303 				params.period = pt->synth_opts.period;
1304 				break;
1305 			case PERF_ITRACE_PERIOD_TICKS:
1306 				params.period_type = INTEL_PT_PERIOD_TICKS;
1307 				params.period = pt->synth_opts.period;
1308 				break;
1309 			case PERF_ITRACE_PERIOD_NANOSECS:
1310 				params.period_type = INTEL_PT_PERIOD_TICKS;
1311 				params.period = intel_pt_ns_to_ticks(pt,
1312 							pt->synth_opts.period);
1313 				break;
1314 			default:
1315 				break;
1316 			}
1317 		}
1318 
1319 		if (!params.period) {
1320 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1321 			params.period = 1;
1322 		}
1323 	}
1324 
1325 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1326 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1327 
1328 	ptq->decoder = intel_pt_decoder_new(&params);
1329 	if (!ptq->decoder)
1330 		goto out_free;
1331 
1332 	return ptq;
1333 
1334 out_free:
1335 	zfree(&ptq->event_buf);
1336 	zfree(&ptq->last_branch);
1337 	zfree(&ptq->chain);
1338 	free(ptq);
1339 	return NULL;
1340 }
1341 
1342 static void intel_pt_free_queue(void *priv)
1343 {
1344 	struct intel_pt_queue *ptq = priv;
1345 
1346 	if (!ptq)
1347 		return;
1348 	thread__zput(ptq->thread);
1349 	thread__zput(ptq->guest_thread);
1350 	thread__zput(ptq->unknown_guest_thread);
1351 	intel_pt_decoder_free(ptq->decoder);
1352 	zfree(&ptq->event_buf);
1353 	zfree(&ptq->last_branch);
1354 	zfree(&ptq->chain);
1355 	free(ptq);
1356 }
1357 
1358 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1359 {
1360 	unsigned int i;
1361 
1362 	pt->first_timestamp = timestamp;
1363 
1364 	for (i = 0; i < pt->queues.nr_queues; i++) {
1365 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1366 		struct intel_pt_queue *ptq = queue->priv;
1367 
1368 		if (ptq && ptq->decoder)
1369 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1370 	}
1371 }
1372 
1373 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1374 				     struct auxtrace_queue *queue)
1375 {
1376 	struct intel_pt_queue *ptq = queue->priv;
1377 
1378 	if (queue->tid == -1 || pt->have_sched_switch) {
1379 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1380 		if (ptq->tid == -1)
1381 			ptq->pid = -1;
1382 		thread__zput(ptq->thread);
1383 	}
1384 
1385 	if (!ptq->thread && ptq->tid != -1)
1386 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1387 
1388 	if (ptq->thread) {
1389 		ptq->pid = ptq->thread->pid_;
1390 		if (queue->cpu == -1)
1391 			ptq->cpu = ptq->thread->cpu;
1392 	}
1393 }
1394 
1395 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1396 {
1397 	struct intel_pt *pt = ptq->pt;
1398 
1399 	ptq->insn_len = 0;
1400 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1401 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1402 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1403 		if (!ptq->state->to_ip)
1404 			ptq->flags = PERF_IP_FLAG_BRANCH |
1405 				     PERF_IP_FLAG_TRACE_END;
1406 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1407 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1408 				     PERF_IP_FLAG_VMEXIT;
1409 		else
1410 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1411 				     PERF_IP_FLAG_ASYNC |
1412 				     PERF_IP_FLAG_INTERRUPT;
1413 	} else {
1414 		if (ptq->state->from_ip)
1415 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1416 		else
1417 			ptq->flags = PERF_IP_FLAG_BRANCH |
1418 				     PERF_IP_FLAG_TRACE_BEGIN;
1419 		if (ptq->state->flags & INTEL_PT_IN_TX)
1420 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1421 		ptq->insn_len = ptq->state->insn_len;
1422 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1423 	}
1424 
1425 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1426 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1427 	if (ptq->state->type & INTEL_PT_TRACE_END)
1428 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1429 
1430 	if (pt->cap_event_trace) {
1431 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1432 			if (!ptq->state->from_iflag)
1433 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1434 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1435 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1436 		} else if (!ptq->state->to_iflag) {
1437 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1438 		}
1439 	}
1440 }
1441 
1442 static void intel_pt_setup_time_range(struct intel_pt *pt,
1443 				      struct intel_pt_queue *ptq)
1444 {
1445 	if (!pt->range_cnt)
1446 		return;
1447 
1448 	ptq->sel_timestamp = pt->time_ranges[0].start;
1449 	ptq->sel_idx = 0;
1450 
1451 	if (ptq->sel_timestamp) {
1452 		ptq->sel_start = true;
1453 	} else {
1454 		ptq->sel_timestamp = pt->time_ranges[0].end;
1455 		ptq->sel_start = false;
1456 	}
1457 }
1458 
1459 static int intel_pt_setup_queue(struct intel_pt *pt,
1460 				struct auxtrace_queue *queue,
1461 				unsigned int queue_nr)
1462 {
1463 	struct intel_pt_queue *ptq = queue->priv;
1464 
1465 	if (list_empty(&queue->head))
1466 		return 0;
1467 
1468 	if (!ptq) {
1469 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1470 		if (!ptq)
1471 			return -ENOMEM;
1472 		queue->priv = ptq;
1473 
1474 		if (queue->cpu != -1)
1475 			ptq->cpu = queue->cpu;
1476 		ptq->tid = queue->tid;
1477 
1478 		ptq->cbr_seen = UINT_MAX;
1479 
1480 		if (pt->sampling_mode && !pt->snapshot_mode &&
1481 		    pt->timeless_decoding)
1482 			ptq->step_through_buffers = true;
1483 
1484 		ptq->sync_switch = pt->sync_switch;
1485 
1486 		intel_pt_setup_time_range(pt, ptq);
1487 	}
1488 
1489 	if (!ptq->on_heap &&
1490 	    (!ptq->sync_switch ||
1491 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1492 		const struct intel_pt_state *state;
1493 		int ret;
1494 
1495 		if (pt->timeless_decoding)
1496 			return 0;
1497 
1498 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1499 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1500 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1501 
1502 		if (ptq->sel_start && ptq->sel_timestamp) {
1503 			ret = intel_pt_fast_forward(ptq->decoder,
1504 						    ptq->sel_timestamp);
1505 			if (ret)
1506 				return ret;
1507 		}
1508 
1509 		while (1) {
1510 			state = intel_pt_decode(ptq->decoder);
1511 			if (state->err) {
1512 				if (state->err == INTEL_PT_ERR_NODATA) {
1513 					intel_pt_log("queue %u has no timestamp\n",
1514 						     queue_nr);
1515 					return 0;
1516 				}
1517 				continue;
1518 			}
1519 			if (state->timestamp)
1520 				break;
1521 		}
1522 
1523 		ptq->timestamp = state->timestamp;
1524 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1525 			     queue_nr, ptq->timestamp);
1526 		ptq->state = state;
1527 		ptq->have_sample = true;
1528 		if (ptq->sel_start && ptq->sel_timestamp &&
1529 		    ptq->timestamp < ptq->sel_timestamp)
1530 			ptq->have_sample = false;
1531 		intel_pt_sample_flags(ptq);
1532 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1533 		if (ret)
1534 			return ret;
1535 		ptq->on_heap = true;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 static int intel_pt_setup_queues(struct intel_pt *pt)
1542 {
1543 	unsigned int i;
1544 	int ret;
1545 
1546 	for (i = 0; i < pt->queues.nr_queues; i++) {
1547 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1548 		if (ret)
1549 			return ret;
1550 	}
1551 	return 0;
1552 }
1553 
1554 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1555 {
1556 	return pt->synth_opts.initial_skip &&
1557 	       pt->num_events++ < pt->synth_opts.initial_skip;
1558 }
1559 
1560 /*
1561  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1562  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1563  * from this decoder state.
1564  */
1565 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1566 {
1567 	return pt->synth_opts.initial_skip &&
1568 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1569 }
1570 
1571 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1572 				   union perf_event *event,
1573 				   struct perf_sample *sample)
1574 {
1575 	event->sample.header.type = PERF_RECORD_SAMPLE;
1576 	event->sample.header.size = sizeof(struct perf_event_header);
1577 
1578 	sample->pid = ptq->pid;
1579 	sample->tid = ptq->tid;
1580 	sample->cpu = ptq->cpu;
1581 	sample->insn_len = ptq->insn_len;
1582 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1583 }
1584 
1585 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1586 				   struct intel_pt_queue *ptq,
1587 				   union perf_event *event,
1588 				   struct perf_sample *sample)
1589 {
1590 	intel_pt_prep_a_sample(ptq, event, sample);
1591 
1592 	if (!pt->timeless_decoding)
1593 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1594 
1595 	sample->ip = ptq->state->from_ip;
1596 	sample->addr = ptq->state->to_ip;
1597 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1598 	sample->period = 1;
1599 	sample->flags = ptq->flags;
1600 
1601 	event->sample.header.misc = sample->cpumode;
1602 }
1603 
1604 static int intel_pt_inject_event(union perf_event *event,
1605 				 struct perf_sample *sample, u64 type)
1606 {
1607 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1608 	return perf_event__synthesize_sample(event, type, 0, sample);
1609 }
1610 
1611 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1612 				      union perf_event *event,
1613 				      struct perf_sample *sample, u64 type)
1614 {
1615 	if (!pt->synth_opts.inject)
1616 		return 0;
1617 
1618 	return intel_pt_inject_event(event, sample, type);
1619 }
1620 
1621 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1622 					union perf_event *event,
1623 					struct perf_sample *sample, u64 type)
1624 {
1625 	int ret;
1626 
1627 	ret = intel_pt_opt_inject(pt, event, sample, type);
1628 	if (ret)
1629 		return ret;
1630 
1631 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1632 	if (ret)
1633 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1634 
1635 	return ret;
1636 }
1637 
1638 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1639 {
1640 	struct intel_pt *pt = ptq->pt;
1641 	union perf_event *event = ptq->event_buf;
1642 	struct perf_sample sample = { .ip = 0, };
1643 	struct dummy_branch_stack {
1644 		u64			nr;
1645 		u64			hw_idx;
1646 		struct branch_entry	entries;
1647 	} dummy_bs;
1648 
1649 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1650 		return 0;
1651 
1652 	if (intel_pt_skip_event(pt))
1653 		return 0;
1654 
1655 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1656 
1657 	sample.id = ptq->pt->branches_id;
1658 	sample.stream_id = ptq->pt->branches_id;
1659 
1660 	/*
1661 	 * perf report cannot handle events without a branch stack when using
1662 	 * SORT_MODE__BRANCH so make a dummy one.
1663 	 */
1664 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1665 		dummy_bs = (struct dummy_branch_stack){
1666 			.nr = 1,
1667 			.hw_idx = -1ULL,
1668 			.entries = {
1669 				.from = sample.ip,
1670 				.to = sample.addr,
1671 			},
1672 		};
1673 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1674 	}
1675 
1676 	if (ptq->sample_ipc)
1677 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1678 	if (sample.cyc_cnt) {
1679 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1680 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1681 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1682 	}
1683 
1684 	return intel_pt_deliver_synth_event(pt, event, &sample,
1685 					    pt->branches_sample_type);
1686 }
1687 
1688 static void intel_pt_prep_sample(struct intel_pt *pt,
1689 				 struct intel_pt_queue *ptq,
1690 				 union perf_event *event,
1691 				 struct perf_sample *sample)
1692 {
1693 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1694 
1695 	if (pt->synth_opts.callchain) {
1696 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1697 				     pt->synth_opts.callchain_sz + 1,
1698 				     sample->ip, pt->kernel_start);
1699 		sample->callchain = ptq->chain;
1700 	}
1701 
1702 	if (pt->synth_opts.last_branch) {
1703 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1704 					pt->br_stack_sz);
1705 		sample->branch_stack = ptq->last_branch;
1706 	}
1707 }
1708 
1709 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1710 {
1711 	struct intel_pt *pt = ptq->pt;
1712 	union perf_event *event = ptq->event_buf;
1713 	struct perf_sample sample = { .ip = 0, };
1714 
1715 	if (intel_pt_skip_event(pt))
1716 		return 0;
1717 
1718 	intel_pt_prep_sample(pt, ptq, event, &sample);
1719 
1720 	sample.id = ptq->pt->instructions_id;
1721 	sample.stream_id = ptq->pt->instructions_id;
1722 	if (pt->synth_opts.quick)
1723 		sample.period = 1;
1724 	else
1725 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1726 
1727 	if (ptq->sample_ipc)
1728 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1729 	if (sample.cyc_cnt) {
1730 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1731 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1732 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1733 	}
1734 
1735 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1736 
1737 	return intel_pt_deliver_synth_event(pt, event, &sample,
1738 					    pt->instructions_sample_type);
1739 }
1740 
1741 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1742 {
1743 	struct intel_pt *pt = ptq->pt;
1744 	union perf_event *event = ptq->event_buf;
1745 	struct perf_sample sample = { .ip = 0, };
1746 
1747 	if (intel_pt_skip_event(pt))
1748 		return 0;
1749 
1750 	intel_pt_prep_sample(pt, ptq, event, &sample);
1751 
1752 	sample.id = ptq->pt->transactions_id;
1753 	sample.stream_id = ptq->pt->transactions_id;
1754 
1755 	return intel_pt_deliver_synth_event(pt, event, &sample,
1756 					    pt->transactions_sample_type);
1757 }
1758 
1759 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1760 				   struct intel_pt_queue *ptq,
1761 				   union perf_event *event,
1762 				   struct perf_sample *sample)
1763 {
1764 	intel_pt_prep_sample(pt, ptq, event, sample);
1765 
1766 	/*
1767 	 * Zero IP is used to mean "trace start" but that is not the case for
1768 	 * power or PTWRITE events with no IP, so clear the flags.
1769 	 */
1770 	if (!sample->ip)
1771 		sample->flags = 0;
1772 }
1773 
1774 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1775 {
1776 	struct intel_pt *pt = ptq->pt;
1777 	union perf_event *event = ptq->event_buf;
1778 	struct perf_sample sample = { .ip = 0, };
1779 	struct perf_synth_intel_ptwrite raw;
1780 
1781 	if (intel_pt_skip_event(pt))
1782 		return 0;
1783 
1784 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1785 
1786 	sample.id = ptq->pt->ptwrites_id;
1787 	sample.stream_id = ptq->pt->ptwrites_id;
1788 
1789 	raw.flags = 0;
1790 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1791 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1792 
1793 	sample.raw_size = perf_synth__raw_size(raw);
1794 	sample.raw_data = perf_synth__raw_data(&raw);
1795 
1796 	return intel_pt_deliver_synth_event(pt, event, &sample,
1797 					    pt->ptwrites_sample_type);
1798 }
1799 
1800 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1801 {
1802 	struct intel_pt *pt = ptq->pt;
1803 	union perf_event *event = ptq->event_buf;
1804 	struct perf_sample sample = { .ip = 0, };
1805 	struct perf_synth_intel_cbr raw;
1806 	u32 flags;
1807 
1808 	if (intel_pt_skip_cbr_event(pt))
1809 		return 0;
1810 
1811 	ptq->cbr_seen = ptq->state->cbr;
1812 
1813 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1814 
1815 	sample.id = ptq->pt->cbr_id;
1816 	sample.stream_id = ptq->pt->cbr_id;
1817 
1818 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1819 	raw.flags = cpu_to_le32(flags);
1820 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1821 	raw.reserved3 = 0;
1822 
1823 	sample.raw_size = perf_synth__raw_size(raw);
1824 	sample.raw_data = perf_synth__raw_data(&raw);
1825 
1826 	return intel_pt_deliver_synth_event(pt, event, &sample,
1827 					    pt->pwr_events_sample_type);
1828 }
1829 
1830 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1831 {
1832 	struct intel_pt *pt = ptq->pt;
1833 	union perf_event *event = ptq->event_buf;
1834 	struct perf_sample sample = { .ip = 0, };
1835 	struct perf_synth_intel_psb raw;
1836 
1837 	if (intel_pt_skip_event(pt))
1838 		return 0;
1839 
1840 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1841 
1842 	sample.id = ptq->pt->psb_id;
1843 	sample.stream_id = ptq->pt->psb_id;
1844 	sample.flags = 0;
1845 
1846 	raw.reserved = 0;
1847 	raw.offset = ptq->state->psb_offset;
1848 
1849 	sample.raw_size = perf_synth__raw_size(raw);
1850 	sample.raw_data = perf_synth__raw_data(&raw);
1851 
1852 	return intel_pt_deliver_synth_event(pt, event, &sample,
1853 					    pt->pwr_events_sample_type);
1854 }
1855 
1856 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1857 {
1858 	struct intel_pt *pt = ptq->pt;
1859 	union perf_event *event = ptq->event_buf;
1860 	struct perf_sample sample = { .ip = 0, };
1861 	struct perf_synth_intel_mwait raw;
1862 
1863 	if (intel_pt_skip_event(pt))
1864 		return 0;
1865 
1866 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1867 
1868 	sample.id = ptq->pt->mwait_id;
1869 	sample.stream_id = ptq->pt->mwait_id;
1870 
1871 	raw.reserved = 0;
1872 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1873 
1874 	sample.raw_size = perf_synth__raw_size(raw);
1875 	sample.raw_data = perf_synth__raw_data(&raw);
1876 
1877 	return intel_pt_deliver_synth_event(pt, event, &sample,
1878 					    pt->pwr_events_sample_type);
1879 }
1880 
1881 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1882 {
1883 	struct intel_pt *pt = ptq->pt;
1884 	union perf_event *event = ptq->event_buf;
1885 	struct perf_sample sample = { .ip = 0, };
1886 	struct perf_synth_intel_pwre raw;
1887 
1888 	if (intel_pt_skip_event(pt))
1889 		return 0;
1890 
1891 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1892 
1893 	sample.id = ptq->pt->pwre_id;
1894 	sample.stream_id = ptq->pt->pwre_id;
1895 
1896 	raw.reserved = 0;
1897 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1898 
1899 	sample.raw_size = perf_synth__raw_size(raw);
1900 	sample.raw_data = perf_synth__raw_data(&raw);
1901 
1902 	return intel_pt_deliver_synth_event(pt, event, &sample,
1903 					    pt->pwr_events_sample_type);
1904 }
1905 
1906 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1907 {
1908 	struct intel_pt *pt = ptq->pt;
1909 	union perf_event *event = ptq->event_buf;
1910 	struct perf_sample sample = { .ip = 0, };
1911 	struct perf_synth_intel_exstop raw;
1912 
1913 	if (intel_pt_skip_event(pt))
1914 		return 0;
1915 
1916 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1917 
1918 	sample.id = ptq->pt->exstop_id;
1919 	sample.stream_id = ptq->pt->exstop_id;
1920 
1921 	raw.flags = 0;
1922 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1923 
1924 	sample.raw_size = perf_synth__raw_size(raw);
1925 	sample.raw_data = perf_synth__raw_data(&raw);
1926 
1927 	return intel_pt_deliver_synth_event(pt, event, &sample,
1928 					    pt->pwr_events_sample_type);
1929 }
1930 
1931 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1932 {
1933 	struct intel_pt *pt = ptq->pt;
1934 	union perf_event *event = ptq->event_buf;
1935 	struct perf_sample sample = { .ip = 0, };
1936 	struct perf_synth_intel_pwrx raw;
1937 
1938 	if (intel_pt_skip_event(pt))
1939 		return 0;
1940 
1941 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1942 
1943 	sample.id = ptq->pt->pwrx_id;
1944 	sample.stream_id = ptq->pt->pwrx_id;
1945 
1946 	raw.reserved = 0;
1947 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1948 
1949 	sample.raw_size = perf_synth__raw_size(raw);
1950 	sample.raw_data = perf_synth__raw_data(&raw);
1951 
1952 	return intel_pt_deliver_synth_event(pt, event, &sample,
1953 					    pt->pwr_events_sample_type);
1954 }
1955 
1956 /*
1957  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1958  * intel_pt_add_gp_regs().
1959  */
1960 static const int pebs_gp_regs[] = {
1961 	[PERF_REG_X86_FLAGS]	= 1,
1962 	[PERF_REG_X86_IP]	= 2,
1963 	[PERF_REG_X86_AX]	= 3,
1964 	[PERF_REG_X86_CX]	= 4,
1965 	[PERF_REG_X86_DX]	= 5,
1966 	[PERF_REG_X86_BX]	= 6,
1967 	[PERF_REG_X86_SP]	= 7,
1968 	[PERF_REG_X86_BP]	= 8,
1969 	[PERF_REG_X86_SI]	= 9,
1970 	[PERF_REG_X86_DI]	= 10,
1971 	[PERF_REG_X86_R8]	= 11,
1972 	[PERF_REG_X86_R9]	= 12,
1973 	[PERF_REG_X86_R10]	= 13,
1974 	[PERF_REG_X86_R11]	= 14,
1975 	[PERF_REG_X86_R12]	= 15,
1976 	[PERF_REG_X86_R13]	= 16,
1977 	[PERF_REG_X86_R14]	= 17,
1978 	[PERF_REG_X86_R15]	= 18,
1979 };
1980 
1981 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1982 				 const struct intel_pt_blk_items *items,
1983 				 u64 regs_mask)
1984 {
1985 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1986 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1987 	u32 bit;
1988 	int i;
1989 
1990 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1991 		/* Get the PEBS gp_regs array index */
1992 		int n = pebs_gp_regs[i] - 1;
1993 
1994 		if (n < 0)
1995 			continue;
1996 		/*
1997 		 * Add only registers that were requested (i.e. 'regs_mask') and
1998 		 * that were provided (i.e. 'mask'), and update the resulting
1999 		 * mask (i.e. 'intr_regs->mask') accordingly.
2000 		 */
2001 		if (mask & 1 << n && regs_mask & bit) {
2002 			intr_regs->mask |= bit;
2003 			*pos++ = gp_regs[n];
2004 		}
2005 	}
2006 
2007 	return pos;
2008 }
2009 
2010 #ifndef PERF_REG_X86_XMM0
2011 #define PERF_REG_X86_XMM0 32
2012 #endif
2013 
2014 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2015 			     const struct intel_pt_blk_items *items,
2016 			     u64 regs_mask)
2017 {
2018 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2019 	const u64 *xmm = items->xmm;
2020 
2021 	/*
2022 	 * If there are any XMM registers, then there should be all of them.
2023 	 * Nevertheless, follow the logic to add only registers that were
2024 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2025 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2026 	 */
2027 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2028 
2029 	for (; mask; mask >>= 1, xmm++) {
2030 		if (mask & 1)
2031 			*pos++ = *xmm;
2032 	}
2033 }
2034 
2035 #define LBR_INFO_MISPRED	(1ULL << 63)
2036 #define LBR_INFO_IN_TX		(1ULL << 62)
2037 #define LBR_INFO_ABORT		(1ULL << 61)
2038 #define LBR_INFO_CYCLES		0xffff
2039 
2040 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2041 static u64 intel_pt_lbr_flags(u64 info)
2042 {
2043 	union {
2044 		struct branch_flags flags;
2045 		u64 result;
2046 	} u;
2047 
2048 	u.result	  = 0;
2049 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2050 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2051 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2052 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2053 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2054 
2055 	return u.result;
2056 }
2057 
2058 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2059 			      const struct intel_pt_blk_items *items)
2060 {
2061 	u64 *to;
2062 	int i;
2063 
2064 	br_stack->nr = 0;
2065 
2066 	to = &br_stack->entries[0].from;
2067 
2068 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2069 		u32 mask = items->mask[i];
2070 		const u64 *from = items->val[i];
2071 
2072 		for (; mask; mask >>= 3, from += 3) {
2073 			if ((mask & 7) == 7) {
2074 				*to++ = from[0];
2075 				*to++ = from[1];
2076 				*to++ = intel_pt_lbr_flags(from[2]);
2077 				br_stack->nr += 1;
2078 			}
2079 		}
2080 	}
2081 }
2082 
2083 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2084 {
2085 	const struct intel_pt_blk_items *items = &ptq->state->items;
2086 	struct perf_sample sample = { .ip = 0, };
2087 	union perf_event *event = ptq->event_buf;
2088 	struct intel_pt *pt = ptq->pt;
2089 	u64 sample_type = evsel->core.attr.sample_type;
2090 	u8 cpumode;
2091 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2092 
2093 	if (intel_pt_skip_event(pt))
2094 		return 0;
2095 
2096 	intel_pt_prep_a_sample(ptq, event, &sample);
2097 
2098 	sample.id = id;
2099 	sample.stream_id = id;
2100 
2101 	if (!evsel->core.attr.freq)
2102 		sample.period = evsel->core.attr.sample_period;
2103 
2104 	/* No support for non-zero CS base */
2105 	if (items->has_ip)
2106 		sample.ip = items->ip;
2107 	else if (items->has_rip)
2108 		sample.ip = items->rip;
2109 	else
2110 		sample.ip = ptq->state->from_ip;
2111 
2112 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2113 
2114 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2115 
2116 	sample.cpumode = cpumode;
2117 
2118 	if (sample_type & PERF_SAMPLE_TIME) {
2119 		u64 timestamp = 0;
2120 
2121 		if (items->has_timestamp)
2122 			timestamp = items->timestamp;
2123 		else if (!pt->timeless_decoding)
2124 			timestamp = ptq->timestamp;
2125 		if (timestamp)
2126 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2127 	}
2128 
2129 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2130 	    pt->synth_opts.callchain) {
2131 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2132 				     pt->synth_opts.callchain_sz, sample.ip,
2133 				     pt->kernel_start);
2134 		sample.callchain = ptq->chain;
2135 	}
2136 
2137 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2138 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2139 	     items->mask[INTEL_PT_XMM_POS])) {
2140 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2141 		u64 *pos;
2142 
2143 		sample.intr_regs.abi = items->is_32_bit ?
2144 				       PERF_SAMPLE_REGS_ABI_32 :
2145 				       PERF_SAMPLE_REGS_ABI_64;
2146 		sample.intr_regs.regs = regs;
2147 
2148 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2149 
2150 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2151 	}
2152 
2153 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2154 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2155 		    items->mask[INTEL_PT_LBR_1_POS] ||
2156 		    items->mask[INTEL_PT_LBR_2_POS]) {
2157 			intel_pt_add_lbrs(ptq->last_branch, items);
2158 		} else if (pt->synth_opts.last_branch) {
2159 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2160 						ptq->last_branch,
2161 						pt->br_stack_sz);
2162 		} else {
2163 			ptq->last_branch->nr = 0;
2164 		}
2165 		sample.branch_stack = ptq->last_branch;
2166 	}
2167 
2168 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2169 		sample.addr = items->mem_access_address;
2170 
2171 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2172 		/*
2173 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2174 		 * intel_hsw_weight().
2175 		 */
2176 		if (items->has_mem_access_latency) {
2177 			u64 weight = items->mem_access_latency >> 32;
2178 
2179 			/*
2180 			 * Starts from SPR, the mem access latency field
2181 			 * contains both cache latency [47:32] and instruction
2182 			 * latency [15:0]. The cache latency is the same as the
2183 			 * mem access latency on previous platforms.
2184 			 *
2185 			 * In practice, no memory access could last than 4G
2186 			 * cycles. Use latency >> 32 to distinguish the
2187 			 * different format of the mem access latency field.
2188 			 */
2189 			if (weight > 0) {
2190 				sample.weight = weight & 0xffff;
2191 				sample.ins_lat = items->mem_access_latency & 0xffff;
2192 			} else
2193 				sample.weight = items->mem_access_latency;
2194 		}
2195 		if (!sample.weight && items->has_tsx_aux_info) {
2196 			/* Cycles last block */
2197 			sample.weight = (u32)items->tsx_aux_info;
2198 		}
2199 	}
2200 
2201 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2202 		u64 ax = items->has_rax ? items->rax : 0;
2203 		/* Refer kernel's intel_hsw_transaction() */
2204 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2205 
2206 		/* For RTM XABORTs also log the abort code from AX */
2207 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2208 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2209 		sample.transaction = txn;
2210 	}
2211 
2212 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2213 }
2214 
2215 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2216 {
2217 	struct intel_pt *pt = ptq->pt;
2218 	struct evsel *evsel = pt->pebs_evsel;
2219 	u64 id = evsel->core.id[0];
2220 
2221 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2222 }
2223 
2224 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2225 {
2226 	const struct intel_pt_blk_items *items = &ptq->state->items;
2227 	struct intel_pt_pebs_event *pe;
2228 	struct intel_pt *pt = ptq->pt;
2229 	int err = -EINVAL;
2230 	int hw_id;
2231 
2232 	if (!items->has_applicable_counters || !items->applicable_counters) {
2233 		if (!pt->single_pebs)
2234 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2235 		return intel_pt_synth_single_pebs_sample(ptq);
2236 	}
2237 
2238 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2239 		pe = &ptq->pebs[hw_id];
2240 		if (!pe->evsel) {
2241 			if (!pt->single_pebs)
2242 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2243 				       hw_id);
2244 			return intel_pt_synth_single_pebs_sample(ptq);
2245 		}
2246 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2247 		if (err)
2248 			return err;
2249 	}
2250 
2251 	return err;
2252 }
2253 
2254 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2255 {
2256 	struct intel_pt *pt = ptq->pt;
2257 	union perf_event *event = ptq->event_buf;
2258 	struct perf_sample sample = { .ip = 0, };
2259 	struct {
2260 		struct perf_synth_intel_evt cfe;
2261 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2262 	} raw;
2263 	int i;
2264 
2265 	if (intel_pt_skip_event(pt))
2266 		return 0;
2267 
2268 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2269 
2270 	sample.id        = ptq->pt->evt_id;
2271 	sample.stream_id = ptq->pt->evt_id;
2272 
2273 	raw.cfe.type     = ptq->state->cfe_type;
2274 	raw.cfe.reserved = 0;
2275 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2276 	raw.cfe.vector   = ptq->state->cfe_vector;
2277 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2278 
2279 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2280 		raw.evd[i].et       = 0;
2281 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2282 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2283 	}
2284 
2285 	sample.raw_size = perf_synth__raw_size(raw) +
2286 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2287 	sample.raw_data = perf_synth__raw_data(&raw);
2288 
2289 	return intel_pt_deliver_synth_event(pt, event, &sample,
2290 					    pt->evt_sample_type);
2291 }
2292 
2293 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2294 {
2295 	struct intel_pt *pt = ptq->pt;
2296 	union perf_event *event = ptq->event_buf;
2297 	struct perf_sample sample = { .ip = 0, };
2298 	struct perf_synth_intel_iflag_chg raw;
2299 
2300 	if (intel_pt_skip_event(pt))
2301 		return 0;
2302 
2303 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2304 
2305 	sample.id = ptq->pt->iflag_chg_id;
2306 	sample.stream_id = ptq->pt->iflag_chg_id;
2307 
2308 	raw.flags = 0;
2309 	raw.iflag = ptq->state->to_iflag;
2310 
2311 	if (ptq->state->type & INTEL_PT_BRANCH) {
2312 		raw.via_branch = 1;
2313 		raw.branch_ip = ptq->state->to_ip;
2314 	} else {
2315 		sample.addr = 0;
2316 	}
2317 	sample.flags = ptq->flags;
2318 
2319 	sample.raw_size = perf_synth__raw_size(raw);
2320 	sample.raw_data = perf_synth__raw_data(&raw);
2321 
2322 	return intel_pt_deliver_synth_event(pt, event, &sample,
2323 					    pt->iflag_chg_sample_type);
2324 }
2325 
2326 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2327 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2328 {
2329 	union perf_event event;
2330 	char msg[MAX_AUXTRACE_ERROR_MSG];
2331 	int err;
2332 
2333 	if (pt->synth_opts.error_minus_flags) {
2334 		if (code == INTEL_PT_ERR_OVR &&
2335 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2336 			return 0;
2337 		if (code == INTEL_PT_ERR_LOST &&
2338 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2339 			return 0;
2340 	}
2341 
2342 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2343 
2344 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2345 			     code, cpu, pid, tid, ip, msg, timestamp);
2346 
2347 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2348 	if (err)
2349 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2350 		       err);
2351 
2352 	return err;
2353 }
2354 
2355 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2356 				 const struct intel_pt_state *state)
2357 {
2358 	struct intel_pt *pt = ptq->pt;
2359 	u64 tm = ptq->timestamp;
2360 
2361 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2362 
2363 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2364 				    ptq->tid, state->from_ip, tm);
2365 }
2366 
2367 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2368 {
2369 	struct auxtrace_queue *queue;
2370 	pid_t tid = ptq->next_tid;
2371 	int err;
2372 
2373 	if (tid == -1)
2374 		return 0;
2375 
2376 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2377 
2378 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2379 
2380 	queue = &pt->queues.queue_array[ptq->queue_nr];
2381 	intel_pt_set_pid_tid_cpu(pt, queue);
2382 
2383 	ptq->next_tid = -1;
2384 
2385 	return err;
2386 }
2387 
2388 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2389 {
2390 	struct intel_pt *pt = ptq->pt;
2391 
2392 	return ip == pt->switch_ip &&
2393 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2394 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2395 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2396 }
2397 
2398 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2399 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2400 
2401 static int intel_pt_sample(struct intel_pt_queue *ptq)
2402 {
2403 	const struct intel_pt_state *state = ptq->state;
2404 	struct intel_pt *pt = ptq->pt;
2405 	int err;
2406 
2407 	if (!ptq->have_sample)
2408 		return 0;
2409 
2410 	ptq->have_sample = false;
2411 
2412 	if (pt->synth_opts.approx_ipc) {
2413 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2414 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2415 		ptq->sample_ipc = true;
2416 	} else {
2417 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2418 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2419 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2420 	}
2421 
2422 	/* Ensure guest code maps are set up */
2423 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2424 		intel_pt_get_guest(ptq);
2425 
2426 	/*
2427 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2428 	 * precedes the current timestamp.
2429 	 */
2430 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2431 		err = intel_pt_synth_pebs_sample(ptq);
2432 		if (err)
2433 			return err;
2434 	}
2435 
2436 	if (pt->synth_opts.intr_events) {
2437 		if (state->type & INTEL_PT_EVT) {
2438 			err = intel_pt_synth_events_sample(ptq);
2439 			if (err)
2440 				return err;
2441 		}
2442 		if (state->type & INTEL_PT_IFLAG_CHG) {
2443 			err = intel_pt_synth_iflag_chg_sample(ptq);
2444 			if (err)
2445 				return err;
2446 		}
2447 	}
2448 
2449 	if (pt->sample_pwr_events) {
2450 		if (state->type & INTEL_PT_PSB_EVT) {
2451 			err = intel_pt_synth_psb_sample(ptq);
2452 			if (err)
2453 				return err;
2454 		}
2455 		if (ptq->state->cbr != ptq->cbr_seen) {
2456 			err = intel_pt_synth_cbr_sample(ptq);
2457 			if (err)
2458 				return err;
2459 		}
2460 		if (state->type & INTEL_PT_PWR_EVT) {
2461 			if (state->type & INTEL_PT_MWAIT_OP) {
2462 				err = intel_pt_synth_mwait_sample(ptq);
2463 				if (err)
2464 					return err;
2465 			}
2466 			if (state->type & INTEL_PT_PWR_ENTRY) {
2467 				err = intel_pt_synth_pwre_sample(ptq);
2468 				if (err)
2469 					return err;
2470 			}
2471 			if (state->type & INTEL_PT_EX_STOP) {
2472 				err = intel_pt_synth_exstop_sample(ptq);
2473 				if (err)
2474 					return err;
2475 			}
2476 			if (state->type & INTEL_PT_PWR_EXIT) {
2477 				err = intel_pt_synth_pwrx_sample(ptq);
2478 				if (err)
2479 					return err;
2480 			}
2481 		}
2482 	}
2483 
2484 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2485 		err = intel_pt_synth_instruction_sample(ptq);
2486 		if (err)
2487 			return err;
2488 	}
2489 
2490 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2491 		err = intel_pt_synth_transaction_sample(ptq);
2492 		if (err)
2493 			return err;
2494 	}
2495 
2496 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2497 		err = intel_pt_synth_ptwrite_sample(ptq);
2498 		if (err)
2499 			return err;
2500 	}
2501 
2502 	if (!(state->type & INTEL_PT_BRANCH))
2503 		return 0;
2504 
2505 	if (pt->use_thread_stack) {
2506 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2507 				    state->from_ip, state->to_ip, ptq->insn_len,
2508 				    state->trace_nr, pt->callstack,
2509 				    pt->br_stack_sz_plus,
2510 				    pt->mispred_all);
2511 	} else {
2512 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2513 	}
2514 
2515 	if (pt->sample_branches) {
2516 		if (state->from_nr != state->to_nr &&
2517 		    state->from_ip && state->to_ip) {
2518 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2519 			u64 to_ip = st->to_ip;
2520 			u64 from_ip = st->from_ip;
2521 
2522 			/*
2523 			 * perf cannot handle having different machines for ip
2524 			 * and addr, so create 2 branches.
2525 			 */
2526 			st->to_ip = 0;
2527 			err = intel_pt_synth_branch_sample(ptq);
2528 			if (err)
2529 				return err;
2530 			st->from_ip = 0;
2531 			st->to_ip = to_ip;
2532 			err = intel_pt_synth_branch_sample(ptq);
2533 			st->from_ip = from_ip;
2534 		} else {
2535 			err = intel_pt_synth_branch_sample(ptq);
2536 		}
2537 		if (err)
2538 			return err;
2539 	}
2540 
2541 	if (!ptq->sync_switch)
2542 		return 0;
2543 
2544 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2545 		switch (ptq->switch_state) {
2546 		case INTEL_PT_SS_NOT_TRACING:
2547 		case INTEL_PT_SS_UNKNOWN:
2548 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2549 			err = intel_pt_next_tid(pt, ptq);
2550 			if (err)
2551 				return err;
2552 			ptq->switch_state = INTEL_PT_SS_TRACING;
2553 			break;
2554 		default:
2555 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2556 			return 1;
2557 		}
2558 	} else if (!state->to_ip) {
2559 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2560 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2561 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2562 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2563 		   state->to_ip == pt->ptss_ip &&
2564 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2565 		ptq->switch_state = INTEL_PT_SS_TRACING;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2572 {
2573 	struct machine *machine = pt->machine;
2574 	struct map *map;
2575 	struct symbol *sym, *start;
2576 	u64 ip, switch_ip = 0;
2577 	const char *ptss;
2578 
2579 	if (ptss_ip)
2580 		*ptss_ip = 0;
2581 
2582 	map = machine__kernel_map(machine);
2583 	if (!map)
2584 		return 0;
2585 
2586 	if (map__load(map))
2587 		return 0;
2588 
2589 	start = dso__first_symbol(map->dso);
2590 
2591 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2592 		if (sym->binding == STB_GLOBAL &&
2593 		    !strcmp(sym->name, "__switch_to")) {
2594 			ip = map->unmap_ip(map, sym->start);
2595 			if (ip >= map->start && ip < map->end) {
2596 				switch_ip = ip;
2597 				break;
2598 			}
2599 		}
2600 	}
2601 
2602 	if (!switch_ip || !ptss_ip)
2603 		return 0;
2604 
2605 	if (pt->have_sched_switch == 1)
2606 		ptss = "perf_trace_sched_switch";
2607 	else
2608 		ptss = "__perf_event_task_sched_out";
2609 
2610 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2611 		if (!strcmp(sym->name, ptss)) {
2612 			ip = map->unmap_ip(map, sym->start);
2613 			if (ip >= map->start && ip < map->end) {
2614 				*ptss_ip = ip;
2615 				break;
2616 			}
2617 		}
2618 	}
2619 
2620 	return switch_ip;
2621 }
2622 
2623 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2624 {
2625 	unsigned int i;
2626 
2627 	pt->sync_switch = true;
2628 
2629 	for (i = 0; i < pt->queues.nr_queues; i++) {
2630 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2631 		struct intel_pt_queue *ptq = queue->priv;
2632 
2633 		if (ptq)
2634 			ptq->sync_switch = true;
2635 	}
2636 }
2637 
2638 /*
2639  * To filter against time ranges, it is only necessary to look at the next start
2640  * or end time.
2641  */
2642 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2643 {
2644 	struct intel_pt *pt = ptq->pt;
2645 
2646 	if (ptq->sel_start) {
2647 		/* Next time is an end time */
2648 		ptq->sel_start = false;
2649 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2650 		return true;
2651 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2652 		/* Next time is a start time */
2653 		ptq->sel_start = true;
2654 		ptq->sel_idx += 1;
2655 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2656 		return true;
2657 	}
2658 
2659 	/* No next time */
2660 	return false;
2661 }
2662 
2663 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2664 {
2665 	int err;
2666 
2667 	while (1) {
2668 		if (ptq->sel_start) {
2669 			if (ptq->timestamp >= ptq->sel_timestamp) {
2670 				/* After start time, so consider next time */
2671 				intel_pt_next_time(ptq);
2672 				if (!ptq->sel_timestamp) {
2673 					/* No end time */
2674 					return 0;
2675 				}
2676 				/* Check against end time */
2677 				continue;
2678 			}
2679 			/* Before start time, so fast forward */
2680 			ptq->have_sample = false;
2681 			if (ptq->sel_timestamp > *ff_timestamp) {
2682 				if (ptq->sync_switch) {
2683 					intel_pt_next_tid(ptq->pt, ptq);
2684 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2685 				}
2686 				*ff_timestamp = ptq->sel_timestamp;
2687 				err = intel_pt_fast_forward(ptq->decoder,
2688 							    ptq->sel_timestamp);
2689 				if (err)
2690 					return err;
2691 			}
2692 			return 0;
2693 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2694 			/* After end time, so consider next time */
2695 			if (!intel_pt_next_time(ptq)) {
2696 				/* No next time range, so stop decoding */
2697 				ptq->have_sample = false;
2698 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2699 				return 1;
2700 			}
2701 			/* Check against next start time */
2702 			continue;
2703 		} else {
2704 			/* Before end time */
2705 			return 0;
2706 		}
2707 	}
2708 }
2709 
2710 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2711 {
2712 	const struct intel_pt_state *state = ptq->state;
2713 	struct intel_pt *pt = ptq->pt;
2714 	u64 ff_timestamp = 0;
2715 	int err;
2716 
2717 	if (!pt->kernel_start) {
2718 		pt->kernel_start = machine__kernel_start(pt->machine);
2719 		if (pt->per_cpu_mmaps &&
2720 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2721 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2722 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2723 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2724 			if (pt->switch_ip) {
2725 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2726 					     pt->switch_ip, pt->ptss_ip);
2727 				intel_pt_enable_sync_switch(pt);
2728 			}
2729 		}
2730 	}
2731 
2732 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2733 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2734 	while (1) {
2735 		err = intel_pt_sample(ptq);
2736 		if (err)
2737 			return err;
2738 
2739 		state = intel_pt_decode(ptq->decoder);
2740 		if (state->err) {
2741 			if (state->err == INTEL_PT_ERR_NODATA)
2742 				return 1;
2743 			if (ptq->sync_switch &&
2744 			    state->from_ip >= pt->kernel_start) {
2745 				ptq->sync_switch = false;
2746 				intel_pt_next_tid(pt, ptq);
2747 			}
2748 			ptq->timestamp = state->est_timestamp;
2749 			if (pt->synth_opts.errors) {
2750 				err = intel_ptq_synth_error(ptq, state);
2751 				if (err)
2752 					return err;
2753 			}
2754 			continue;
2755 		}
2756 
2757 		ptq->state = state;
2758 		ptq->have_sample = true;
2759 		intel_pt_sample_flags(ptq);
2760 
2761 		/* Use estimated TSC upon return to user space */
2762 		if (pt->est_tsc &&
2763 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2764 		    state->to_ip && state->to_ip < pt->kernel_start) {
2765 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2766 				     state->timestamp, state->est_timestamp);
2767 			ptq->timestamp = state->est_timestamp;
2768 		/* Use estimated TSC in unknown switch state */
2769 		} else if (ptq->sync_switch &&
2770 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2771 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2772 			   ptq->next_tid == -1) {
2773 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2774 				     state->timestamp, state->est_timestamp);
2775 			ptq->timestamp = state->est_timestamp;
2776 		} else if (state->timestamp > ptq->timestamp) {
2777 			ptq->timestamp = state->timestamp;
2778 		}
2779 
2780 		if (ptq->sel_timestamp) {
2781 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2782 			if (err)
2783 				return err;
2784 		}
2785 
2786 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2787 			*timestamp = ptq->timestamp;
2788 			return 0;
2789 		}
2790 	}
2791 	return 0;
2792 }
2793 
2794 static inline int intel_pt_update_queues(struct intel_pt *pt)
2795 {
2796 	if (pt->queues.new_data) {
2797 		pt->queues.new_data = false;
2798 		return intel_pt_setup_queues(pt);
2799 	}
2800 	return 0;
2801 }
2802 
2803 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2804 {
2805 	unsigned int queue_nr;
2806 	u64 ts;
2807 	int ret;
2808 
2809 	while (1) {
2810 		struct auxtrace_queue *queue;
2811 		struct intel_pt_queue *ptq;
2812 
2813 		if (!pt->heap.heap_cnt)
2814 			return 0;
2815 
2816 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2817 			return 0;
2818 
2819 		queue_nr = pt->heap.heap_array[0].queue_nr;
2820 		queue = &pt->queues.queue_array[queue_nr];
2821 		ptq = queue->priv;
2822 
2823 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2824 			     queue_nr, pt->heap.heap_array[0].ordinal,
2825 			     timestamp);
2826 
2827 		auxtrace_heap__pop(&pt->heap);
2828 
2829 		if (pt->heap.heap_cnt) {
2830 			ts = pt->heap.heap_array[0].ordinal + 1;
2831 			if (ts > timestamp)
2832 				ts = timestamp;
2833 		} else {
2834 			ts = timestamp;
2835 		}
2836 
2837 		intel_pt_set_pid_tid_cpu(pt, queue);
2838 
2839 		ret = intel_pt_run_decoder(ptq, &ts);
2840 
2841 		if (ret < 0) {
2842 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2843 			return ret;
2844 		}
2845 
2846 		if (!ret) {
2847 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2848 			if (ret < 0)
2849 				return ret;
2850 		} else {
2851 			ptq->on_heap = false;
2852 		}
2853 	}
2854 
2855 	return 0;
2856 }
2857 
2858 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2859 					    u64 time_)
2860 {
2861 	struct auxtrace_queues *queues = &pt->queues;
2862 	unsigned int i;
2863 	u64 ts = 0;
2864 
2865 	for (i = 0; i < queues->nr_queues; i++) {
2866 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2867 		struct intel_pt_queue *ptq = queue->priv;
2868 
2869 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2870 			ptq->time = time_;
2871 			intel_pt_set_pid_tid_cpu(pt, queue);
2872 			intel_pt_run_decoder(ptq, &ts);
2873 		}
2874 	}
2875 	return 0;
2876 }
2877 
2878 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2879 					    struct auxtrace_queue *queue,
2880 					    struct perf_sample *sample)
2881 {
2882 	struct machine *m = ptq->pt->machine;
2883 
2884 	ptq->pid = sample->pid;
2885 	ptq->tid = sample->tid;
2886 	ptq->cpu = queue->cpu;
2887 
2888 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2889 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2890 
2891 	thread__zput(ptq->thread);
2892 
2893 	if (ptq->tid == -1)
2894 		return;
2895 
2896 	if (ptq->pid == -1) {
2897 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2898 		if (ptq->thread)
2899 			ptq->pid = ptq->thread->pid_;
2900 		return;
2901 	}
2902 
2903 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2904 }
2905 
2906 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2907 					    struct perf_sample *sample)
2908 {
2909 	struct auxtrace_queue *queue;
2910 	struct intel_pt_queue *ptq;
2911 	u64 ts = 0;
2912 
2913 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2914 	if (!queue)
2915 		return -EINVAL;
2916 
2917 	ptq = queue->priv;
2918 	if (!ptq)
2919 		return 0;
2920 
2921 	ptq->stop = false;
2922 	ptq->time = sample->time;
2923 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2924 	intel_pt_run_decoder(ptq, &ts);
2925 	return 0;
2926 }
2927 
2928 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2929 {
2930 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2931 				    sample->pid, sample->tid, 0, sample->time);
2932 }
2933 
2934 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2935 {
2936 	unsigned i, j;
2937 
2938 	if (cpu < 0 || !pt->queues.nr_queues)
2939 		return NULL;
2940 
2941 	if ((unsigned)cpu >= pt->queues.nr_queues)
2942 		i = pt->queues.nr_queues - 1;
2943 	else
2944 		i = cpu;
2945 
2946 	if (pt->queues.queue_array[i].cpu == cpu)
2947 		return pt->queues.queue_array[i].priv;
2948 
2949 	for (j = 0; i > 0; j++) {
2950 		if (pt->queues.queue_array[--i].cpu == cpu)
2951 			return pt->queues.queue_array[i].priv;
2952 	}
2953 
2954 	for (; j < pt->queues.nr_queues; j++) {
2955 		if (pt->queues.queue_array[j].cpu == cpu)
2956 			return pt->queues.queue_array[j].priv;
2957 	}
2958 
2959 	return NULL;
2960 }
2961 
2962 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2963 				u64 timestamp)
2964 {
2965 	struct intel_pt_queue *ptq;
2966 	int err;
2967 
2968 	if (!pt->sync_switch)
2969 		return 1;
2970 
2971 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2972 	if (!ptq || !ptq->sync_switch)
2973 		return 1;
2974 
2975 	switch (ptq->switch_state) {
2976 	case INTEL_PT_SS_NOT_TRACING:
2977 		break;
2978 	case INTEL_PT_SS_UNKNOWN:
2979 	case INTEL_PT_SS_TRACING:
2980 		ptq->next_tid = tid;
2981 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2982 		return 0;
2983 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2984 		if (!ptq->on_heap) {
2985 			ptq->timestamp = perf_time_to_tsc(timestamp,
2986 							  &pt->tc);
2987 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2988 						 ptq->timestamp);
2989 			if (err)
2990 				return err;
2991 			ptq->on_heap = true;
2992 		}
2993 		ptq->switch_state = INTEL_PT_SS_TRACING;
2994 		break;
2995 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2996 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2997 		break;
2998 	default:
2999 		break;
3000 	}
3001 
3002 	ptq->next_tid = -1;
3003 
3004 	return 1;
3005 }
3006 
3007 static int intel_pt_process_switch(struct intel_pt *pt,
3008 				   struct perf_sample *sample)
3009 {
3010 	pid_t tid;
3011 	int cpu, ret;
3012 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3013 
3014 	if (evsel != pt->switch_evsel)
3015 		return 0;
3016 
3017 	tid = evsel__intval(evsel, sample, "next_pid");
3018 	cpu = sample->cpu;
3019 
3020 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3021 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3022 		     &pt->tc));
3023 
3024 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3025 	if (ret <= 0)
3026 		return ret;
3027 
3028 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3029 }
3030 
3031 static int intel_pt_context_switch_in(struct intel_pt *pt,
3032 				      struct perf_sample *sample)
3033 {
3034 	pid_t pid = sample->pid;
3035 	pid_t tid = sample->tid;
3036 	int cpu = sample->cpu;
3037 
3038 	if (pt->sync_switch) {
3039 		struct intel_pt_queue *ptq;
3040 
3041 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3042 		if (ptq && ptq->sync_switch) {
3043 			ptq->next_tid = -1;
3044 			switch (ptq->switch_state) {
3045 			case INTEL_PT_SS_NOT_TRACING:
3046 			case INTEL_PT_SS_UNKNOWN:
3047 			case INTEL_PT_SS_TRACING:
3048 				break;
3049 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3050 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3051 				ptq->switch_state = INTEL_PT_SS_TRACING;
3052 				break;
3053 			default:
3054 				break;
3055 			}
3056 		}
3057 	}
3058 
3059 	/*
3060 	 * If the current tid has not been updated yet, ensure it is now that
3061 	 * a "switch in" event has occurred.
3062 	 */
3063 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3064 		return 0;
3065 
3066 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3067 }
3068 
3069 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3070 				   struct perf_sample *sample)
3071 {
3072 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3073 	pid_t pid, tid;
3074 	int cpu, ret;
3075 
3076 	cpu = sample->cpu;
3077 
3078 	if (pt->have_sched_switch == 3) {
3079 		if (!out)
3080 			return intel_pt_context_switch_in(pt, sample);
3081 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3082 			pr_err("Expecting CPU-wide context switch event\n");
3083 			return -EINVAL;
3084 		}
3085 		pid = event->context_switch.next_prev_pid;
3086 		tid = event->context_switch.next_prev_tid;
3087 	} else {
3088 		if (out)
3089 			return 0;
3090 		pid = sample->pid;
3091 		tid = sample->tid;
3092 	}
3093 
3094 	if (tid == -1)
3095 		intel_pt_log("context_switch event has no tid\n");
3096 
3097 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3098 	if (ret <= 0)
3099 		return ret;
3100 
3101 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3102 }
3103 
3104 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3105 					 union perf_event *event,
3106 					 struct perf_sample *sample)
3107 {
3108 	if (!pt->per_cpu_mmaps)
3109 		return 0;
3110 
3111 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3112 		     sample->cpu, event->itrace_start.pid,
3113 		     event->itrace_start.tid, sample->time,
3114 		     perf_time_to_tsc(sample->time, &pt->tc));
3115 
3116 	return machine__set_current_tid(pt->machine, sample->cpu,
3117 					event->itrace_start.pid,
3118 					event->itrace_start.tid);
3119 }
3120 
3121 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3122 					     union perf_event *event,
3123 					     struct perf_sample *sample)
3124 {
3125 	u64 hw_id = event->aux_output_hw_id.hw_id;
3126 	struct auxtrace_queue *queue;
3127 	struct intel_pt_queue *ptq;
3128 	struct evsel *evsel;
3129 
3130 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3131 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3132 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3133 		pr_err("Bad AUX output hardware ID\n");
3134 		return -EINVAL;
3135 	}
3136 
3137 	ptq = queue->priv;
3138 
3139 	ptq->pebs[hw_id].evsel = evsel;
3140 	ptq->pebs[hw_id].id = sample->id;
3141 
3142 	return 0;
3143 }
3144 
3145 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3146 			     struct addr_location *al)
3147 {
3148 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
3149 		if (!thread__find_map(thread, cpumode, addr, al))
3150 			return -1;
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 /* Invalidate all instruction cache entries that overlap the text poke */
3157 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3158 {
3159 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3160 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3161 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3162 	int cnt = 4096 + event->text_poke.new_len;
3163 	struct thread *thread = pt->unknown_thread;
3164 	struct addr_location al = { .map = NULL };
3165 	struct machine *machine = pt->machine;
3166 	struct intel_pt_cache_entry *e;
3167 	u64 offset;
3168 
3169 	if (!event->text_poke.new_len)
3170 		return 0;
3171 
3172 	for (; cnt; cnt--, addr--) {
3173 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3174 			if (addr < event->text_poke.addr)
3175 				return 0;
3176 			continue;
3177 		}
3178 
3179 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
3180 			continue;
3181 
3182 		offset = al.map->map_ip(al.map, addr);
3183 
3184 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3185 		if (!e)
3186 			continue;
3187 
3188 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3189 			/*
3190 			 * No overlap. Working backwards there cannot be another
3191 			 * basic block that overlaps the text poke if there is a
3192 			 * branch instruction before the text poke address.
3193 			 */
3194 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3195 				return 0;
3196 		} else {
3197 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
3198 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3199 				     al.map->dso->long_name, addr);
3200 		}
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int intel_pt_process_event(struct perf_session *session,
3207 				  union perf_event *event,
3208 				  struct perf_sample *sample,
3209 				  struct perf_tool *tool)
3210 {
3211 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3212 					   auxtrace);
3213 	u64 timestamp;
3214 	int err = 0;
3215 
3216 	if (dump_trace)
3217 		return 0;
3218 
3219 	if (!tool->ordered_events) {
3220 		pr_err("Intel Processor Trace requires ordered events\n");
3221 		return -EINVAL;
3222 	}
3223 
3224 	if (sample->time && sample->time != (u64)-1)
3225 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3226 	else
3227 		timestamp = 0;
3228 
3229 	if (timestamp || pt->timeless_decoding) {
3230 		err = intel_pt_update_queues(pt);
3231 		if (err)
3232 			return err;
3233 	}
3234 
3235 	if (pt->timeless_decoding) {
3236 		if (pt->sampling_mode) {
3237 			if (sample->aux_sample.size)
3238 				err = intel_pt_process_timeless_sample(pt,
3239 								       sample);
3240 		} else if (event->header.type == PERF_RECORD_EXIT) {
3241 			err = intel_pt_process_timeless_queues(pt,
3242 							       event->fork.tid,
3243 							       sample->time);
3244 		}
3245 	} else if (timestamp) {
3246 		if (!pt->first_timestamp)
3247 			intel_pt_first_timestamp(pt, timestamp);
3248 		err = intel_pt_process_queues(pt, timestamp);
3249 	}
3250 	if (err)
3251 		return err;
3252 
3253 	if (event->header.type == PERF_RECORD_SAMPLE) {
3254 		if (pt->synth_opts.add_callchain && !sample->callchain)
3255 			intel_pt_add_callchain(pt, sample);
3256 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3257 			intel_pt_add_br_stack(pt, sample);
3258 	}
3259 
3260 	if (event->header.type == PERF_RECORD_AUX &&
3261 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3262 	    pt->synth_opts.errors) {
3263 		err = intel_pt_lost(pt, sample);
3264 		if (err)
3265 			return err;
3266 	}
3267 
3268 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3269 		err = intel_pt_process_switch(pt, sample);
3270 	else if (event->header.type == PERF_RECORD_ITRACE_START)
3271 		err = intel_pt_process_itrace_start(pt, event, sample);
3272 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3273 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3274 	else if (event->header.type == PERF_RECORD_SWITCH ||
3275 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3276 		err = intel_pt_context_switch(pt, event, sample);
3277 
3278 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3279 		err = intel_pt_text_poke(pt, event);
3280 
3281 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3282 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3283 			     event->header.type, sample->cpu, sample->time, timestamp);
3284 		intel_pt_log_event(event);
3285 	}
3286 
3287 	return err;
3288 }
3289 
3290 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3291 {
3292 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3293 					   auxtrace);
3294 	int ret;
3295 
3296 	if (dump_trace)
3297 		return 0;
3298 
3299 	if (!tool->ordered_events)
3300 		return -EINVAL;
3301 
3302 	ret = intel_pt_update_queues(pt);
3303 	if (ret < 0)
3304 		return ret;
3305 
3306 	if (pt->timeless_decoding)
3307 		return intel_pt_process_timeless_queues(pt, -1,
3308 							MAX_TIMESTAMP - 1);
3309 
3310 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3311 }
3312 
3313 static void intel_pt_free_events(struct perf_session *session)
3314 {
3315 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3316 					   auxtrace);
3317 	struct auxtrace_queues *queues = &pt->queues;
3318 	unsigned int i;
3319 
3320 	for (i = 0; i < queues->nr_queues; i++) {
3321 		intel_pt_free_queue(queues->queue_array[i].priv);
3322 		queues->queue_array[i].priv = NULL;
3323 	}
3324 	intel_pt_log_disable();
3325 	auxtrace_queues__free(queues);
3326 }
3327 
3328 static void intel_pt_free(struct perf_session *session)
3329 {
3330 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3331 					   auxtrace);
3332 
3333 	auxtrace_heap__free(&pt->heap);
3334 	intel_pt_free_events(session);
3335 	session->auxtrace = NULL;
3336 	intel_pt_free_vmcs_info(pt);
3337 	thread__put(pt->unknown_thread);
3338 	addr_filters__exit(&pt->filts);
3339 	zfree(&pt->chain);
3340 	zfree(&pt->filter);
3341 	zfree(&pt->time_ranges);
3342 	free(pt);
3343 }
3344 
3345 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3346 				       struct evsel *evsel)
3347 {
3348 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3349 					   auxtrace);
3350 
3351 	return evsel->core.attr.type == pt->pmu_type;
3352 }
3353 
3354 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3355 					   union perf_event *event,
3356 					   struct perf_tool *tool __maybe_unused)
3357 {
3358 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3359 					   auxtrace);
3360 
3361 	if (!pt->data_queued) {
3362 		struct auxtrace_buffer *buffer;
3363 		off_t data_offset;
3364 		int fd = perf_data__fd(session->data);
3365 		int err;
3366 
3367 		if (perf_data__is_pipe(session->data)) {
3368 			data_offset = 0;
3369 		} else {
3370 			data_offset = lseek(fd, 0, SEEK_CUR);
3371 			if (data_offset == -1)
3372 				return -errno;
3373 		}
3374 
3375 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3376 						 data_offset, &buffer);
3377 		if (err)
3378 			return err;
3379 
3380 		/* Dump here now we have copied a piped trace out of the pipe */
3381 		if (dump_trace) {
3382 			if (auxtrace_buffer__get_data(buffer, fd)) {
3383 				intel_pt_dump_event(pt, buffer->data,
3384 						    buffer->size);
3385 				auxtrace_buffer__put_data(buffer);
3386 			}
3387 		}
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 static int intel_pt_queue_data(struct perf_session *session,
3394 			       struct perf_sample *sample,
3395 			       union perf_event *event, u64 data_offset)
3396 {
3397 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3398 					   auxtrace);
3399 	u64 timestamp;
3400 
3401 	if (event) {
3402 		return auxtrace_queues__add_event(&pt->queues, session, event,
3403 						  data_offset, NULL);
3404 	}
3405 
3406 	if (sample->time && sample->time != (u64)-1)
3407 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3408 	else
3409 		timestamp = 0;
3410 
3411 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3412 					   data_offset, timestamp);
3413 }
3414 
3415 struct intel_pt_synth {
3416 	struct perf_tool dummy_tool;
3417 	struct perf_session *session;
3418 };
3419 
3420 static int intel_pt_event_synth(struct perf_tool *tool,
3421 				union perf_event *event,
3422 				struct perf_sample *sample __maybe_unused,
3423 				struct machine *machine __maybe_unused)
3424 {
3425 	struct intel_pt_synth *intel_pt_synth =
3426 			container_of(tool, struct intel_pt_synth, dummy_tool);
3427 
3428 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3429 						 NULL);
3430 }
3431 
3432 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3433 				struct perf_event_attr *attr, u64 id)
3434 {
3435 	struct intel_pt_synth intel_pt_synth;
3436 	int err;
3437 
3438 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3439 		 name, id, (u64)attr->sample_type);
3440 
3441 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3442 	intel_pt_synth.session = session;
3443 
3444 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3445 					  &id, intel_pt_event_synth);
3446 	if (err)
3447 		pr_err("%s: failed to synthesize '%s' event type\n",
3448 		       __func__, name);
3449 
3450 	return err;
3451 }
3452 
3453 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3454 				    const char *name)
3455 {
3456 	struct evsel *evsel;
3457 
3458 	evlist__for_each_entry(evlist, evsel) {
3459 		if (evsel->core.id && evsel->core.id[0] == id) {
3460 			if (evsel->name)
3461 				zfree(&evsel->name);
3462 			evsel->name = strdup(name);
3463 			break;
3464 		}
3465 	}
3466 }
3467 
3468 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3469 					 struct evlist *evlist)
3470 {
3471 	struct evsel *evsel;
3472 
3473 	evlist__for_each_entry(evlist, evsel) {
3474 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3475 			return evsel;
3476 	}
3477 
3478 	return NULL;
3479 }
3480 
3481 static int intel_pt_synth_events(struct intel_pt *pt,
3482 				 struct perf_session *session)
3483 {
3484 	struct evlist *evlist = session->evlist;
3485 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3486 	struct perf_event_attr attr;
3487 	u64 id;
3488 	int err;
3489 
3490 	if (!evsel) {
3491 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3492 		return 0;
3493 	}
3494 
3495 	memset(&attr, 0, sizeof(struct perf_event_attr));
3496 	attr.size = sizeof(struct perf_event_attr);
3497 	attr.type = PERF_TYPE_HARDWARE;
3498 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3499 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3500 			    PERF_SAMPLE_PERIOD;
3501 	if (pt->timeless_decoding)
3502 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3503 	else
3504 		attr.sample_type |= PERF_SAMPLE_TIME;
3505 	if (!pt->per_cpu_mmaps)
3506 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3507 	attr.exclude_user = evsel->core.attr.exclude_user;
3508 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3509 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3510 	attr.exclude_host = evsel->core.attr.exclude_host;
3511 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3512 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3513 	attr.read_format = evsel->core.attr.read_format;
3514 
3515 	id = evsel->core.id[0] + 1000000000;
3516 	if (!id)
3517 		id = 1;
3518 
3519 	if (pt->synth_opts.branches) {
3520 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3521 		attr.sample_period = 1;
3522 		attr.sample_type |= PERF_SAMPLE_ADDR;
3523 		err = intel_pt_synth_event(session, "branches", &attr, id);
3524 		if (err)
3525 			return err;
3526 		pt->sample_branches = true;
3527 		pt->branches_sample_type = attr.sample_type;
3528 		pt->branches_id = id;
3529 		id += 1;
3530 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3531 	}
3532 
3533 	if (pt->synth_opts.callchain)
3534 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3535 	if (pt->synth_opts.last_branch) {
3536 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3537 		/*
3538 		 * We don't use the hardware index, but the sample generation
3539 		 * code uses the new format branch_stack with this field,
3540 		 * so the event attributes must indicate that it's present.
3541 		 */
3542 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3543 	}
3544 
3545 	if (pt->synth_opts.instructions) {
3546 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3547 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3548 			attr.sample_period =
3549 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3550 		else
3551 			attr.sample_period = pt->synth_opts.period;
3552 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3553 		if (err)
3554 			return err;
3555 		pt->sample_instructions = true;
3556 		pt->instructions_sample_type = attr.sample_type;
3557 		pt->instructions_id = id;
3558 		id += 1;
3559 	}
3560 
3561 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3562 	attr.sample_period = 1;
3563 
3564 	if (pt->synth_opts.transactions) {
3565 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3566 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3567 		if (err)
3568 			return err;
3569 		pt->sample_transactions = true;
3570 		pt->transactions_sample_type = attr.sample_type;
3571 		pt->transactions_id = id;
3572 		intel_pt_set_event_name(evlist, id, "transactions");
3573 		id += 1;
3574 	}
3575 
3576 	attr.type = PERF_TYPE_SYNTH;
3577 	attr.sample_type |= PERF_SAMPLE_RAW;
3578 
3579 	if (pt->synth_opts.ptwrites) {
3580 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3581 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3582 		if (err)
3583 			return err;
3584 		pt->sample_ptwrites = true;
3585 		pt->ptwrites_sample_type = attr.sample_type;
3586 		pt->ptwrites_id = id;
3587 		intel_pt_set_event_name(evlist, id, "ptwrite");
3588 		id += 1;
3589 	}
3590 
3591 	if (pt->synth_opts.pwr_events) {
3592 		pt->sample_pwr_events = true;
3593 		pt->pwr_events_sample_type = attr.sample_type;
3594 
3595 		attr.config = PERF_SYNTH_INTEL_CBR;
3596 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3597 		if (err)
3598 			return err;
3599 		pt->cbr_id = id;
3600 		intel_pt_set_event_name(evlist, id, "cbr");
3601 		id += 1;
3602 
3603 		attr.config = PERF_SYNTH_INTEL_PSB;
3604 		err = intel_pt_synth_event(session, "psb", &attr, id);
3605 		if (err)
3606 			return err;
3607 		pt->psb_id = id;
3608 		intel_pt_set_event_name(evlist, id, "psb");
3609 		id += 1;
3610 	}
3611 
3612 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3613 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3614 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3615 		if (err)
3616 			return err;
3617 		pt->mwait_id = id;
3618 		intel_pt_set_event_name(evlist, id, "mwait");
3619 		id += 1;
3620 
3621 		attr.config = PERF_SYNTH_INTEL_PWRE;
3622 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3623 		if (err)
3624 			return err;
3625 		pt->pwre_id = id;
3626 		intel_pt_set_event_name(evlist, id, "pwre");
3627 		id += 1;
3628 
3629 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3630 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3631 		if (err)
3632 			return err;
3633 		pt->exstop_id = id;
3634 		intel_pt_set_event_name(evlist, id, "exstop");
3635 		id += 1;
3636 
3637 		attr.config = PERF_SYNTH_INTEL_PWRX;
3638 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3639 		if (err)
3640 			return err;
3641 		pt->pwrx_id = id;
3642 		intel_pt_set_event_name(evlist, id, "pwrx");
3643 		id += 1;
3644 	}
3645 
3646 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3647 		attr.config = PERF_SYNTH_INTEL_EVT;
3648 		err = intel_pt_synth_event(session, "evt", &attr, id);
3649 		if (err)
3650 			return err;
3651 		pt->evt_sample_type = attr.sample_type;
3652 		pt->evt_id = id;
3653 		intel_pt_set_event_name(evlist, id, "evt");
3654 		id += 1;
3655 	}
3656 
3657 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3658 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3659 		err = intel_pt_synth_event(session, "iflag", &attr, id);
3660 		if (err)
3661 			return err;
3662 		pt->iflag_chg_sample_type = attr.sample_type;
3663 		pt->iflag_chg_id = id;
3664 		intel_pt_set_event_name(evlist, id, "iflag");
3665 		id += 1;
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3672 {
3673 	struct evsel *evsel;
3674 
3675 	if (!pt->synth_opts.other_events)
3676 		return;
3677 
3678 	evlist__for_each_entry(pt->session->evlist, evsel) {
3679 		if (evsel->core.attr.aux_output && evsel->core.id) {
3680 			if (pt->single_pebs) {
3681 				pt->single_pebs = false;
3682 				return;
3683 			}
3684 			pt->single_pebs = true;
3685 			pt->sample_pebs = true;
3686 			pt->pebs_evsel = evsel;
3687 		}
3688 	}
3689 }
3690 
3691 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3692 {
3693 	struct evsel *evsel;
3694 
3695 	evlist__for_each_entry_reverse(evlist, evsel) {
3696 		const char *name = evsel__name(evsel);
3697 
3698 		if (!strcmp(name, "sched:sched_switch"))
3699 			return evsel;
3700 	}
3701 
3702 	return NULL;
3703 }
3704 
3705 static bool intel_pt_find_switch(struct evlist *evlist)
3706 {
3707 	struct evsel *evsel;
3708 
3709 	evlist__for_each_entry(evlist, evsel) {
3710 		if (evsel->core.attr.context_switch)
3711 			return true;
3712 	}
3713 
3714 	return false;
3715 }
3716 
3717 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3718 {
3719 	struct intel_pt *pt = data;
3720 
3721 	if (!strcmp(var, "intel-pt.mispred-all"))
3722 		pt->mispred_all = perf_config_bool(var, value);
3723 
3724 	if (!strcmp(var, "intel-pt.max-loops"))
3725 		perf_config_int(&pt->max_loops, var, value);
3726 
3727 	return 0;
3728 }
3729 
3730 /* Find least TSC which converts to ns or later */
3731 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3732 {
3733 	u64 tsc, tm;
3734 
3735 	tsc = perf_time_to_tsc(ns, &pt->tc);
3736 
3737 	while (1) {
3738 		tm = tsc_to_perf_time(tsc, &pt->tc);
3739 		if (tm < ns)
3740 			break;
3741 		tsc -= 1;
3742 	}
3743 
3744 	while (tm < ns)
3745 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3746 
3747 	return tsc;
3748 }
3749 
3750 /* Find greatest TSC which converts to ns or earlier */
3751 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3752 {
3753 	u64 tsc, tm;
3754 
3755 	tsc = perf_time_to_tsc(ns, &pt->tc);
3756 
3757 	while (1) {
3758 		tm = tsc_to_perf_time(tsc, &pt->tc);
3759 		if (tm > ns)
3760 			break;
3761 		tsc += 1;
3762 	}
3763 
3764 	while (tm > ns)
3765 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3766 
3767 	return tsc;
3768 }
3769 
3770 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3771 				      struct itrace_synth_opts *opts)
3772 {
3773 	struct perf_time_interval *p = opts->ptime_range;
3774 	int n = opts->range_num;
3775 	int i;
3776 
3777 	if (!n || !p || pt->timeless_decoding)
3778 		return 0;
3779 
3780 	pt->time_ranges = calloc(n, sizeof(struct range));
3781 	if (!pt->time_ranges)
3782 		return -ENOMEM;
3783 
3784 	pt->range_cnt = n;
3785 
3786 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3787 
3788 	for (i = 0; i < n; i++) {
3789 		struct range *r = &pt->time_ranges[i];
3790 		u64 ts = p[i].start;
3791 		u64 te = p[i].end;
3792 
3793 		/*
3794 		 * Take care to ensure the TSC range matches the perf-time range
3795 		 * when converted back to perf-time.
3796 		 */
3797 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3798 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3799 
3800 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3801 			     i, ts, te);
3802 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3803 			     i, r->start, r->end);
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3810 {
3811 	struct intel_pt_vmcs_info *vmcs_info;
3812 	u64 tsc_offset, vmcs;
3813 	char *p = *args;
3814 
3815 	errno = 0;
3816 
3817 	p = skip_spaces(p);
3818 	if (!*p)
3819 		return 1;
3820 
3821 	tsc_offset = strtoull(p, &p, 0);
3822 	if (errno)
3823 		return -errno;
3824 	p = skip_spaces(p);
3825 	if (*p != ':') {
3826 		pt->dflt_tsc_offset = tsc_offset;
3827 		*args = p;
3828 		return 0;
3829 	}
3830 	p += 1;
3831 	while (1) {
3832 		vmcs = strtoull(p, &p, 0);
3833 		if (errno)
3834 			return -errno;
3835 		if (!vmcs)
3836 			return -EINVAL;
3837 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
3838 		if (!vmcs_info)
3839 			return -ENOMEM;
3840 		p = skip_spaces(p);
3841 		if (*p != ',')
3842 			break;
3843 		p += 1;
3844 	}
3845 	*args = p;
3846 	return 0;
3847 }
3848 
3849 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
3850 {
3851 	char *args = pt->synth_opts.vm_tm_corr_args;
3852 	int ret;
3853 
3854 	if (!args)
3855 		return 0;
3856 
3857 	do {
3858 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
3859 	} while (!ret);
3860 
3861 	if (ret < 0) {
3862 		pr_err("Failed to parse VM Time Correlation options\n");
3863 		return ret;
3864 	}
3865 
3866 	return 0;
3867 }
3868 
3869 static const char * const intel_pt_info_fmts[] = {
3870 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3871 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3872 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3873 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3874 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3875 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3876 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3877 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3878 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3879 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3880 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3881 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3882 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3883 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3884 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3885 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3886 };
3887 
3888 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3889 {
3890 	int i;
3891 
3892 	if (!dump_trace)
3893 		return;
3894 
3895 	for (i = start; i <= finish; i++)
3896 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3897 }
3898 
3899 static void intel_pt_print_info_str(const char *name, const char *str)
3900 {
3901 	if (!dump_trace)
3902 		return;
3903 
3904 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3905 }
3906 
3907 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3908 {
3909 	return auxtrace_info->header.size >=
3910 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3911 }
3912 
3913 int intel_pt_process_auxtrace_info(union perf_event *event,
3914 				   struct perf_session *session)
3915 {
3916 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3917 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3918 	struct intel_pt *pt;
3919 	void *info_end;
3920 	__u64 *info;
3921 	int err;
3922 
3923 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3924 					min_sz)
3925 		return -EINVAL;
3926 
3927 	pt = zalloc(sizeof(struct intel_pt));
3928 	if (!pt)
3929 		return -ENOMEM;
3930 
3931 	pt->vmcs_info = RB_ROOT;
3932 
3933 	addr_filters__init(&pt->filts);
3934 
3935 	err = perf_config(intel_pt_perf_config, pt);
3936 	if (err)
3937 		goto err_free;
3938 
3939 	err = auxtrace_queues__init(&pt->queues);
3940 	if (err)
3941 		goto err_free;
3942 
3943 	if (session->itrace_synth_opts->set) {
3944 		pt->synth_opts = *session->itrace_synth_opts;
3945 	} else {
3946 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
3947 
3948 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
3949 		if (!opts->default_no_sample && !opts->inject) {
3950 			pt->synth_opts.branches = false;
3951 			pt->synth_opts.callchain = true;
3952 			pt->synth_opts.add_callchain = true;
3953 		}
3954 		pt->synth_opts.thread_stack = opts->thread_stack;
3955 	}
3956 
3957 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
3958 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3959 
3960 	pt->session = session;
3961 	pt->machine = &session->machines.host; /* No kvm support */
3962 	pt->auxtrace_type = auxtrace_info->type;
3963 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3964 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3965 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3966 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3967 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3968 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3969 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3970 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3971 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3972 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3973 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3974 			    INTEL_PT_PER_CPU_MMAPS);
3975 
3976 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3977 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3978 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3979 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3980 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3981 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3982 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3983 				    INTEL_PT_CYC_BIT);
3984 	}
3985 
3986 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3987 		pt->max_non_turbo_ratio =
3988 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3989 		intel_pt_print_info(&auxtrace_info->priv[0],
3990 				    INTEL_PT_MAX_NONTURBO_RATIO,
3991 				    INTEL_PT_MAX_NONTURBO_RATIO);
3992 	}
3993 
3994 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3995 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
3996 
3997 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3998 		size_t len;
3999 
4000 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4001 		intel_pt_print_info(&auxtrace_info->priv[0],
4002 				    INTEL_PT_FILTER_STR_LEN,
4003 				    INTEL_PT_FILTER_STR_LEN);
4004 		if (len) {
4005 			const char *filter = (const char *)info;
4006 
4007 			len = roundup(len + 1, 8);
4008 			info += len >> 3;
4009 			if ((void *)info > info_end) {
4010 				pr_err("%s: bad filter string length\n", __func__);
4011 				err = -EINVAL;
4012 				goto err_free_queues;
4013 			}
4014 			pt->filter = memdup(filter, len);
4015 			if (!pt->filter) {
4016 				err = -ENOMEM;
4017 				goto err_free_queues;
4018 			}
4019 			if (session->header.needs_swap)
4020 				mem_bswap_64(pt->filter, len);
4021 			if (pt->filter[len - 1]) {
4022 				pr_err("%s: filter string not null terminated\n", __func__);
4023 				err = -EINVAL;
4024 				goto err_free_queues;
4025 			}
4026 			err = addr_filters__parse_bare_filter(&pt->filts,
4027 							      filter);
4028 			if (err)
4029 				goto err_free_queues;
4030 		}
4031 		intel_pt_print_info_str("Filter string", pt->filter);
4032 	}
4033 
4034 	if ((void *)info < info_end) {
4035 		pt->cap_event_trace = *info++;
4036 		if (dump_trace)
4037 			fprintf(stdout, "  Cap Event Trace     %d\n",
4038 				pt->cap_event_trace);
4039 	}
4040 
4041 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4042 	if (pt->timeless_decoding && !pt->tc.time_mult)
4043 		pt->tc.time_mult = 1;
4044 	pt->have_tsc = intel_pt_have_tsc(pt);
4045 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4046 	pt->est_tsc = !pt->timeless_decoding;
4047 
4048 	if (pt->synth_opts.vm_time_correlation) {
4049 		if (pt->timeless_decoding) {
4050 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4051 			err = -EINVAL;
4052 			goto err_free_queues;
4053 		}
4054 		if (session->itrace_synth_opts->ptime_range) {
4055 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4056 			err = -EINVAL;
4057 			goto err_free_queues;
4058 		}
4059 		/* Currently TSC Offset is calculated using MTC packets */
4060 		if (!intel_pt_have_mtc(pt)) {
4061 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4062 			err = -EINVAL;
4063 			goto err_free_queues;
4064 		}
4065 		err = intel_pt_parse_vm_tm_corr_args(pt);
4066 		if (err)
4067 			goto err_free_queues;
4068 	}
4069 
4070 	pt->unknown_thread = thread__new(999999999, 999999999);
4071 	if (!pt->unknown_thread) {
4072 		err = -ENOMEM;
4073 		goto err_free_queues;
4074 	}
4075 
4076 	/*
4077 	 * Since this thread will not be kept in any rbtree not in a
4078 	 * list, initialize its list node so that at thread__put() the
4079 	 * current thread lifetime assumption is kept and we don't segfault
4080 	 * at list_del_init().
4081 	 */
4082 	INIT_LIST_HEAD(&pt->unknown_thread->node);
4083 
4084 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4085 	if (err)
4086 		goto err_delete_thread;
4087 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4088 		err = -ENOMEM;
4089 		goto err_delete_thread;
4090 	}
4091 
4092 	pt->auxtrace.process_event = intel_pt_process_event;
4093 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4094 	pt->auxtrace.queue_data = intel_pt_queue_data;
4095 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4096 	pt->auxtrace.flush_events = intel_pt_flush;
4097 	pt->auxtrace.free_events = intel_pt_free_events;
4098 	pt->auxtrace.free = intel_pt_free;
4099 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4100 	session->auxtrace = &pt->auxtrace;
4101 
4102 	if (dump_trace)
4103 		return 0;
4104 
4105 	if (pt->have_sched_switch == 1) {
4106 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4107 		if (!pt->switch_evsel) {
4108 			pr_err("%s: missing sched_switch event\n", __func__);
4109 			err = -EINVAL;
4110 			goto err_delete_thread;
4111 		}
4112 	} else if (pt->have_sched_switch == 2 &&
4113 		   !intel_pt_find_switch(session->evlist)) {
4114 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4115 		err = -EINVAL;
4116 		goto err_delete_thread;
4117 	}
4118 
4119 	if (pt->synth_opts.log)
4120 		intel_pt_log_enable();
4121 
4122 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4123 	if (pt->tc.time_mult) {
4124 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4125 
4126 		if (!pt->max_non_turbo_ratio)
4127 			pt->max_non_turbo_ratio =
4128 					(tsc_freq + 50000000) / 100000000;
4129 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4130 		intel_pt_log("Maximum non-turbo ratio %u\n",
4131 			     pt->max_non_turbo_ratio);
4132 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4133 	}
4134 
4135 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4136 	if (err)
4137 		goto err_delete_thread;
4138 
4139 	if (pt->synth_opts.calls)
4140 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4141 				       PERF_IP_FLAG_TRACE_END;
4142 	if (pt->synth_opts.returns)
4143 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4144 				       PERF_IP_FLAG_TRACE_BEGIN;
4145 
4146 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4147 	    !symbol_conf.use_callchain) {
4148 		symbol_conf.use_callchain = true;
4149 		if (callchain_register_param(&callchain_param) < 0) {
4150 			symbol_conf.use_callchain = false;
4151 			pt->synth_opts.callchain = false;
4152 			pt->synth_opts.add_callchain = false;
4153 		}
4154 	}
4155 
4156 	if (pt->synth_opts.add_callchain) {
4157 		err = intel_pt_callchain_init(pt);
4158 		if (err)
4159 			goto err_delete_thread;
4160 	}
4161 
4162 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4163 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4164 		pt->br_stack_sz_plus = pt->br_stack_sz;
4165 	}
4166 
4167 	if (pt->synth_opts.add_last_branch) {
4168 		err = intel_pt_br_stack_init(pt);
4169 		if (err)
4170 			goto err_delete_thread;
4171 		/*
4172 		 * Additional branch stack size to cater for tracing from the
4173 		 * actual sample ip to where the sample time is recorded.
4174 		 * Measured at about 200 branches, but generously set to 1024.
4175 		 * If kernel space is not being traced, then add just 1 for the
4176 		 * branch to kernel space.
4177 		 */
4178 		if (intel_pt_tracing_kernel(pt))
4179 			pt->br_stack_sz_plus += 1024;
4180 		else
4181 			pt->br_stack_sz_plus += 1;
4182 	}
4183 
4184 	pt->use_thread_stack = pt->synth_opts.callchain ||
4185 			       pt->synth_opts.add_callchain ||
4186 			       pt->synth_opts.thread_stack ||
4187 			       pt->synth_opts.last_branch ||
4188 			       pt->synth_opts.add_last_branch;
4189 
4190 	pt->callstack = pt->synth_opts.callchain ||
4191 			pt->synth_opts.add_callchain ||
4192 			pt->synth_opts.thread_stack;
4193 
4194 	err = intel_pt_synth_events(pt, session);
4195 	if (err)
4196 		goto err_delete_thread;
4197 
4198 	intel_pt_setup_pebs_events(pt);
4199 
4200 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4201 		err = auxtrace_queue_data(session, true, true);
4202 	else
4203 		err = auxtrace_queues__process_index(&pt->queues, session);
4204 	if (err)
4205 		goto err_delete_thread;
4206 
4207 	if (pt->queues.populated)
4208 		pt->data_queued = true;
4209 
4210 	if (pt->timeless_decoding)
4211 		pr_debug2("Intel PT decoding without timestamps\n");
4212 
4213 	return 0;
4214 
4215 err_delete_thread:
4216 	zfree(&pt->chain);
4217 	thread__zput(pt->unknown_thread);
4218 err_free_queues:
4219 	intel_pt_log_disable();
4220 	auxtrace_queues__free(&pt->queues);
4221 	session->auxtrace = NULL;
4222 err_free:
4223 	addr_filters__exit(&pt->filts);
4224 	zfree(&pt->filter);
4225 	zfree(&pt->time_ranges);
4226 	free(pt);
4227 	return err;
4228 }
4229