xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 20827ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 
82 	struct perf_tsc_conversion tc;
83 	bool cap_user_time_zero;
84 
85 	struct itrace_synth_opts synth_opts;
86 
87 	bool sample_instructions;
88 	u64 instructions_sample_type;
89 	u64 instructions_id;
90 
91 	bool sample_branches;
92 	u32 branches_filter;
93 	u64 branches_sample_type;
94 	u64 branches_id;
95 
96 	bool sample_transactions;
97 	u64 transactions_sample_type;
98 	u64 transactions_id;
99 
100 	bool sample_ptwrites;
101 	u64 ptwrites_sample_type;
102 	u64 ptwrites_id;
103 
104 	bool sample_pwr_events;
105 	u64 pwr_events_sample_type;
106 	u64 mwait_id;
107 	u64 pwre_id;
108 	u64 exstop_id;
109 	u64 pwrx_id;
110 	u64 cbr_id;
111 	u64 psb_id;
112 
113 	bool sample_pebs;
114 	struct evsel *pebs_evsel;
115 
116 	u64 tsc_bit;
117 	u64 mtc_bit;
118 	u64 mtc_freq_bits;
119 	u32 tsc_ctc_ratio_n;
120 	u32 tsc_ctc_ratio_d;
121 	u64 cyc_bit;
122 	u64 noretcomp_bit;
123 	unsigned max_non_turbo_ratio;
124 	unsigned cbr2khz;
125 
126 	unsigned long num_events;
127 
128 	char *filter;
129 	struct addr_filters filts;
130 
131 	struct range *time_ranges;
132 	unsigned int range_cnt;
133 
134 	struct ip_callchain *chain;
135 	struct branch_stack *br_stack;
136 };
137 
138 enum switch_state {
139 	INTEL_PT_SS_NOT_TRACING,
140 	INTEL_PT_SS_UNKNOWN,
141 	INTEL_PT_SS_TRACING,
142 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
143 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
144 };
145 
146 struct intel_pt_queue {
147 	struct intel_pt *pt;
148 	unsigned int queue_nr;
149 	struct auxtrace_buffer *buffer;
150 	struct auxtrace_buffer *old_buffer;
151 	void *decoder;
152 	const struct intel_pt_state *state;
153 	struct ip_callchain *chain;
154 	struct branch_stack *last_branch;
155 	union perf_event *event_buf;
156 	bool on_heap;
157 	bool stop;
158 	bool step_through_buffers;
159 	bool use_buffer_pid_tid;
160 	bool sync_switch;
161 	pid_t pid, tid;
162 	int cpu;
163 	int switch_state;
164 	pid_t next_tid;
165 	struct thread *thread;
166 	struct machine *guest_machine;
167 	struct thread *unknown_guest_thread;
168 	pid_t guest_machine_pid;
169 	bool exclude_kernel;
170 	bool have_sample;
171 	u64 time;
172 	u64 timestamp;
173 	u64 sel_timestamp;
174 	bool sel_start;
175 	unsigned int sel_idx;
176 	u32 flags;
177 	u16 insn_len;
178 	u64 last_insn_cnt;
179 	u64 ipc_insn_cnt;
180 	u64 ipc_cyc_cnt;
181 	u64 last_in_insn_cnt;
182 	u64 last_in_cyc_cnt;
183 	u64 last_br_insn_cnt;
184 	u64 last_br_cyc_cnt;
185 	unsigned int cbr_seen;
186 	char insn[INTEL_PT_INSN_BUF_SZ];
187 };
188 
189 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
190 			  unsigned char *buf, size_t len)
191 {
192 	struct intel_pt_pkt packet;
193 	size_t pos = 0;
194 	int ret, pkt_len, i;
195 	char desc[INTEL_PT_PKT_DESC_MAX];
196 	const char *color = PERF_COLOR_BLUE;
197 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
198 
199 	color_fprintf(stdout, color,
200 		      ". ... Intel Processor Trace data: size %zu bytes\n",
201 		      len);
202 
203 	while (len) {
204 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
205 		if (ret > 0)
206 			pkt_len = ret;
207 		else
208 			pkt_len = 1;
209 		printf(".");
210 		color_fprintf(stdout, color, "  %08x: ", pos);
211 		for (i = 0; i < pkt_len; i++)
212 			color_fprintf(stdout, color, " %02x", buf[i]);
213 		for (; i < 16; i++)
214 			color_fprintf(stdout, color, "   ");
215 		if (ret > 0) {
216 			ret = intel_pt_pkt_desc(&packet, desc,
217 						INTEL_PT_PKT_DESC_MAX);
218 			if (ret > 0)
219 				color_fprintf(stdout, color, " %s\n", desc);
220 		} else {
221 			color_fprintf(stdout, color, " Bad packet!\n");
222 		}
223 		pos += pkt_len;
224 		buf += pkt_len;
225 		len -= pkt_len;
226 	}
227 }
228 
229 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
230 				size_t len)
231 {
232 	printf(".\n");
233 	intel_pt_dump(pt, buf, len);
234 }
235 
236 static void intel_pt_log_event(union perf_event *event)
237 {
238 	FILE *f = intel_pt_log_fp();
239 
240 	if (!intel_pt_enable_logging || !f)
241 		return;
242 
243 	perf_event__fprintf(event, NULL, f);
244 }
245 
246 static void intel_pt_dump_sample(struct perf_session *session,
247 				 struct perf_sample *sample)
248 {
249 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
250 					   auxtrace);
251 
252 	printf("\n");
253 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
254 }
255 
256 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
257 {
258 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
259 	int n = pt->synth_opts.range_num;
260 
261 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
262 		return true;
263 
264 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
265 		return false;
266 
267 	/* perf_time__ranges_skip_sample does not work if time is zero */
268 	if (!tm)
269 		tm = 1;
270 
271 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
272 }
273 
274 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
275 				   struct auxtrace_buffer *b)
276 {
277 	bool consecutive = false;
278 	void *start;
279 
280 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
281 				      pt->have_tsc, &consecutive);
282 	if (!start)
283 		return -EINVAL;
284 	b->use_size = b->data + b->size - start;
285 	b->use_data = start;
286 	if (b->use_size && consecutive)
287 		b->consecutive = true;
288 	return 0;
289 }
290 
291 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
292 			       struct auxtrace_buffer *buffer,
293 			       struct auxtrace_buffer *old_buffer,
294 			       struct intel_pt_buffer *b)
295 {
296 	bool might_overlap;
297 
298 	if (!buffer->data) {
299 		int fd = perf_data__fd(ptq->pt->session->data);
300 
301 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
302 		if (!buffer->data)
303 			return -ENOMEM;
304 	}
305 
306 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
307 	if (might_overlap && !buffer->consecutive && old_buffer &&
308 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
309 		return -ENOMEM;
310 
311 	if (buffer->use_data) {
312 		b->len = buffer->use_size;
313 		b->buf = buffer->use_data;
314 	} else {
315 		b->len = buffer->size;
316 		b->buf = buffer->data;
317 	}
318 	b->ref_timestamp = buffer->reference;
319 
320 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
321 		b->consecutive = false;
322 		b->trace_nr = buffer->buffer_nr + 1;
323 	} else {
324 		b->consecutive = true;
325 	}
326 
327 	return 0;
328 }
329 
330 /* Do not drop buffers with references - refer intel_pt_get_trace() */
331 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
332 					   struct auxtrace_buffer *buffer)
333 {
334 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
335 		return;
336 
337 	auxtrace_buffer__drop_data(buffer);
338 }
339 
340 /* Must be serialized with respect to intel_pt_get_trace() */
341 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
342 			      void *cb_data)
343 {
344 	struct intel_pt_queue *ptq = data;
345 	struct auxtrace_buffer *buffer = ptq->buffer;
346 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
347 	struct auxtrace_queue *queue;
348 	int err = 0;
349 
350 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
351 
352 	while (1) {
353 		struct intel_pt_buffer b = { .len = 0 };
354 
355 		buffer = auxtrace_buffer__next(queue, buffer);
356 		if (!buffer)
357 			break;
358 
359 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
360 		if (err)
361 			break;
362 
363 		if (b.len) {
364 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
365 			old_buffer = buffer;
366 		} else {
367 			intel_pt_lookahead_drop_buffer(ptq, buffer);
368 			continue;
369 		}
370 
371 		err = cb(&b, cb_data);
372 		if (err)
373 			break;
374 	}
375 
376 	if (buffer != old_buffer)
377 		intel_pt_lookahead_drop_buffer(ptq, buffer);
378 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
379 
380 	return err;
381 }
382 
383 /*
384  * This function assumes data is processed sequentially only.
385  * Must be serialized with respect to intel_pt_lookahead()
386  */
387 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
388 {
389 	struct intel_pt_queue *ptq = data;
390 	struct auxtrace_buffer *buffer = ptq->buffer;
391 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
392 	struct auxtrace_queue *queue;
393 	int err;
394 
395 	if (ptq->stop) {
396 		b->len = 0;
397 		return 0;
398 	}
399 
400 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
401 
402 	buffer = auxtrace_buffer__next(queue, buffer);
403 	if (!buffer) {
404 		if (old_buffer)
405 			auxtrace_buffer__drop_data(old_buffer);
406 		b->len = 0;
407 		return 0;
408 	}
409 
410 	ptq->buffer = buffer;
411 
412 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
413 	if (err)
414 		return err;
415 
416 	if (ptq->step_through_buffers)
417 		ptq->stop = true;
418 
419 	if (b->len) {
420 		if (old_buffer)
421 			auxtrace_buffer__drop_data(old_buffer);
422 		ptq->old_buffer = buffer;
423 	} else {
424 		auxtrace_buffer__drop_data(buffer);
425 		return intel_pt_get_trace(b, data);
426 	}
427 
428 	return 0;
429 }
430 
431 struct intel_pt_cache_entry {
432 	struct auxtrace_cache_entry	entry;
433 	u64				insn_cnt;
434 	u64				byte_cnt;
435 	enum intel_pt_insn_op		op;
436 	enum intel_pt_insn_branch	branch;
437 	int				length;
438 	int32_t				rel;
439 	char				insn[INTEL_PT_INSN_BUF_SZ];
440 };
441 
442 static int intel_pt_config_div(const char *var, const char *value, void *data)
443 {
444 	int *d = data;
445 	long val;
446 
447 	if (!strcmp(var, "intel-pt.cache-divisor")) {
448 		val = strtol(value, NULL, 0);
449 		if (val > 0 && val <= INT_MAX)
450 			*d = val;
451 	}
452 
453 	return 0;
454 }
455 
456 static int intel_pt_cache_divisor(void)
457 {
458 	static int d;
459 
460 	if (d)
461 		return d;
462 
463 	perf_config(intel_pt_config_div, &d);
464 
465 	if (!d)
466 		d = 64;
467 
468 	return d;
469 }
470 
471 static unsigned int intel_pt_cache_size(struct dso *dso,
472 					struct machine *machine)
473 {
474 	off_t size;
475 
476 	size = dso__data_size(dso, machine);
477 	size /= intel_pt_cache_divisor();
478 	if (size < 1000)
479 		return 10;
480 	if (size > (1 << 21))
481 		return 21;
482 	return 32 - __builtin_clz(size);
483 }
484 
485 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
486 					     struct machine *machine)
487 {
488 	struct auxtrace_cache *c;
489 	unsigned int bits;
490 
491 	if (dso->auxtrace_cache)
492 		return dso->auxtrace_cache;
493 
494 	bits = intel_pt_cache_size(dso, machine);
495 
496 	/* Ignoring cache creation failure */
497 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
498 
499 	dso->auxtrace_cache = c;
500 
501 	return c;
502 }
503 
504 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
505 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
506 			      struct intel_pt_insn *intel_pt_insn)
507 {
508 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
509 	struct intel_pt_cache_entry *e;
510 	int err;
511 
512 	if (!c)
513 		return -ENOMEM;
514 
515 	e = auxtrace_cache__alloc_entry(c);
516 	if (!e)
517 		return -ENOMEM;
518 
519 	e->insn_cnt = insn_cnt;
520 	e->byte_cnt = byte_cnt;
521 	e->op = intel_pt_insn->op;
522 	e->branch = intel_pt_insn->branch;
523 	e->length = intel_pt_insn->length;
524 	e->rel = intel_pt_insn->rel;
525 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
526 
527 	err = auxtrace_cache__add(c, offset, &e->entry);
528 	if (err)
529 		auxtrace_cache__free_entry(c, e);
530 
531 	return err;
532 }
533 
534 static struct intel_pt_cache_entry *
535 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
536 {
537 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
538 
539 	if (!c)
540 		return NULL;
541 
542 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
543 }
544 
545 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
546 				      u64 offset)
547 {
548 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
549 
550 	if (!c)
551 		return;
552 
553 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
554 }
555 
556 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
557 {
558 	/* Assumes 64-bit kernel */
559 	return ip & (1ULL << 63);
560 }
561 
562 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
563 {
564 	if (nr) {
565 		return intel_pt_guest_kernel_ip(ip) ?
566 		       PERF_RECORD_MISC_GUEST_KERNEL :
567 		       PERF_RECORD_MISC_GUEST_USER;
568 	}
569 
570 	return ip >= ptq->pt->kernel_start ?
571 	       PERF_RECORD_MISC_KERNEL :
572 	       PERF_RECORD_MISC_USER;
573 }
574 
575 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
576 {
577 	/* No support for non-zero CS base */
578 	if (from_ip)
579 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
580 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
581 }
582 
583 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
584 {
585 	struct machines *machines = &ptq->pt->session->machines;
586 	struct machine *machine;
587 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
588 
589 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
590 		return 0;
591 
592 	ptq->guest_machine = NULL;
593 	thread__zput(ptq->unknown_guest_thread);
594 
595 	machine = machines__find_guest(machines, pid);
596 	if (!machine)
597 		return -1;
598 
599 	ptq->unknown_guest_thread = machine__idle_thread(machine);
600 	if (!ptq->unknown_guest_thread)
601 		return -1;
602 
603 	ptq->guest_machine = machine;
604 	ptq->guest_machine_pid = pid;
605 
606 	return 0;
607 }
608 
609 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
610 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
611 				   uint64_t to_ip, uint64_t max_insn_cnt,
612 				   void *data)
613 {
614 	struct intel_pt_queue *ptq = data;
615 	struct machine *machine = ptq->pt->machine;
616 	struct thread *thread;
617 	struct addr_location al;
618 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
619 	ssize_t len;
620 	int x86_64;
621 	u8 cpumode;
622 	u64 offset, start_offset, start_ip;
623 	u64 insn_cnt = 0;
624 	bool one_map = true;
625 	bool nr;
626 
627 	intel_pt_insn->length = 0;
628 
629 	if (to_ip && *ip == to_ip)
630 		goto out_no_cache;
631 
632 	nr = ptq->state->to_nr;
633 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
634 
635 	if (nr) {
636 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
637 		    intel_pt_get_guest(ptq))
638 			return -EINVAL;
639 		machine = ptq->guest_machine;
640 		thread = ptq->unknown_guest_thread;
641 	} else {
642 		thread = ptq->thread;
643 		if (!thread) {
644 			if (cpumode != PERF_RECORD_MISC_KERNEL)
645 				return -EINVAL;
646 			thread = ptq->pt->unknown_thread;
647 		}
648 	}
649 
650 	while (1) {
651 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
652 			return -EINVAL;
653 
654 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
655 		    dso__data_status_seen(al.map->dso,
656 					  DSO_DATA_STATUS_SEEN_ITRACE))
657 			return -ENOENT;
658 
659 		offset = al.map->map_ip(al.map, *ip);
660 
661 		if (!to_ip && one_map) {
662 			struct intel_pt_cache_entry *e;
663 
664 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
665 			if (e &&
666 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
667 				*insn_cnt_ptr = e->insn_cnt;
668 				*ip += e->byte_cnt;
669 				intel_pt_insn->op = e->op;
670 				intel_pt_insn->branch = e->branch;
671 				intel_pt_insn->length = e->length;
672 				intel_pt_insn->rel = e->rel;
673 				memcpy(intel_pt_insn->buf, e->insn,
674 				       INTEL_PT_INSN_BUF_SZ);
675 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
676 				return 0;
677 			}
678 		}
679 
680 		start_offset = offset;
681 		start_ip = *ip;
682 
683 		/* Load maps to ensure dso->is_64_bit has been updated */
684 		map__load(al.map);
685 
686 		x86_64 = al.map->dso->is_64_bit;
687 
688 		while (1) {
689 			len = dso__data_read_offset(al.map->dso, machine,
690 						    offset, buf,
691 						    INTEL_PT_INSN_BUF_SZ);
692 			if (len <= 0)
693 				return -EINVAL;
694 
695 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
696 				return -EINVAL;
697 
698 			intel_pt_log_insn(intel_pt_insn, *ip);
699 
700 			insn_cnt += 1;
701 
702 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
703 				goto out;
704 
705 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
706 				goto out_no_cache;
707 
708 			*ip += intel_pt_insn->length;
709 
710 			if (to_ip && *ip == to_ip) {
711 				intel_pt_insn->length = 0;
712 				goto out_no_cache;
713 			}
714 
715 			if (*ip >= al.map->end)
716 				break;
717 
718 			offset += intel_pt_insn->length;
719 		}
720 		one_map = false;
721 	}
722 out:
723 	*insn_cnt_ptr = insn_cnt;
724 
725 	if (!one_map)
726 		goto out_no_cache;
727 
728 	/*
729 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
730 	 * entries.
731 	 */
732 	if (to_ip) {
733 		struct intel_pt_cache_entry *e;
734 
735 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
736 		if (e)
737 			return 0;
738 	}
739 
740 	/* Ignore cache errors */
741 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
742 			   *ip - start_ip, intel_pt_insn);
743 
744 	return 0;
745 
746 out_no_cache:
747 	*insn_cnt_ptr = insn_cnt;
748 	return 0;
749 }
750 
751 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
752 				  uint64_t offset, const char *filename)
753 {
754 	struct addr_filter *filt;
755 	bool have_filter   = false;
756 	bool hit_tracestop = false;
757 	bool hit_filter    = false;
758 
759 	list_for_each_entry(filt, &pt->filts.head, list) {
760 		if (filt->start)
761 			have_filter = true;
762 
763 		if ((filename && !filt->filename) ||
764 		    (!filename && filt->filename) ||
765 		    (filename && strcmp(filename, filt->filename)))
766 			continue;
767 
768 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
769 			continue;
770 
771 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
772 			     ip, offset, filename ? filename : "[kernel]",
773 			     filt->start ? "filter" : "stop",
774 			     filt->addr, filt->size);
775 
776 		if (filt->start)
777 			hit_filter = true;
778 		else
779 			hit_tracestop = true;
780 	}
781 
782 	if (!hit_tracestop && !hit_filter)
783 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
784 			     ip, offset, filename ? filename : "[kernel]");
785 
786 	return hit_tracestop || (have_filter && !hit_filter);
787 }
788 
789 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
790 {
791 	struct intel_pt_queue *ptq = data;
792 	struct thread *thread;
793 	struct addr_location al;
794 	u8 cpumode;
795 	u64 offset;
796 
797 	if (ptq->state->to_nr) {
798 		if (intel_pt_guest_kernel_ip(ip))
799 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
800 		/* No support for decoding guest user space */
801 		return -EINVAL;
802 	} else if (ip >= ptq->pt->kernel_start) {
803 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
804 	}
805 
806 	cpumode = PERF_RECORD_MISC_USER;
807 
808 	thread = ptq->thread;
809 	if (!thread)
810 		return -EINVAL;
811 
812 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
813 		return -EINVAL;
814 
815 	offset = al.map->map_ip(al.map, ip);
816 
817 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
818 				     al.map->dso->long_name);
819 }
820 
821 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
822 {
823 	return __intel_pt_pgd_ip(ip, data) > 0;
824 }
825 
826 static bool intel_pt_get_config(struct intel_pt *pt,
827 				struct perf_event_attr *attr, u64 *config)
828 {
829 	if (attr->type == pt->pmu_type) {
830 		if (config)
831 			*config = attr->config;
832 		return true;
833 	}
834 
835 	return false;
836 }
837 
838 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
839 {
840 	struct evsel *evsel;
841 
842 	evlist__for_each_entry(pt->session->evlist, evsel) {
843 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
844 		    !evsel->core.attr.exclude_kernel)
845 			return false;
846 	}
847 	return true;
848 }
849 
850 static bool intel_pt_return_compression(struct intel_pt *pt)
851 {
852 	struct evsel *evsel;
853 	u64 config;
854 
855 	if (!pt->noretcomp_bit)
856 		return true;
857 
858 	evlist__for_each_entry(pt->session->evlist, evsel) {
859 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
860 		    (config & pt->noretcomp_bit))
861 			return false;
862 	}
863 	return true;
864 }
865 
866 static bool intel_pt_branch_enable(struct intel_pt *pt)
867 {
868 	struct evsel *evsel;
869 	u64 config;
870 
871 	evlist__for_each_entry(pt->session->evlist, evsel) {
872 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
873 		    (config & 1) && !(config & 0x2000))
874 			return false;
875 	}
876 	return true;
877 }
878 
879 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
880 {
881 	struct evsel *evsel;
882 	unsigned int shift;
883 	u64 config;
884 
885 	if (!pt->mtc_freq_bits)
886 		return 0;
887 
888 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
889 		config >>= 1;
890 
891 	evlist__for_each_entry(pt->session->evlist, evsel) {
892 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
893 			return (config & pt->mtc_freq_bits) >> shift;
894 	}
895 	return 0;
896 }
897 
898 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
899 {
900 	struct evsel *evsel;
901 	bool timeless_decoding = true;
902 	u64 config;
903 
904 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
905 		return true;
906 
907 	evlist__for_each_entry(pt->session->evlist, evsel) {
908 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
909 			return true;
910 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
911 			if (config & pt->tsc_bit)
912 				timeless_decoding = false;
913 			else
914 				return true;
915 		}
916 	}
917 	return timeless_decoding;
918 }
919 
920 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
921 {
922 	struct evsel *evsel;
923 
924 	evlist__for_each_entry(pt->session->evlist, evsel) {
925 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
926 		    !evsel->core.attr.exclude_kernel)
927 			return true;
928 	}
929 	return false;
930 }
931 
932 static bool intel_pt_have_tsc(struct intel_pt *pt)
933 {
934 	struct evsel *evsel;
935 	bool have_tsc = false;
936 	u64 config;
937 
938 	if (!pt->tsc_bit)
939 		return false;
940 
941 	evlist__for_each_entry(pt->session->evlist, evsel) {
942 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
943 			if (config & pt->tsc_bit)
944 				have_tsc = true;
945 			else
946 				return false;
947 		}
948 	}
949 	return have_tsc;
950 }
951 
952 static bool intel_pt_sampling_mode(struct intel_pt *pt)
953 {
954 	struct evsel *evsel;
955 
956 	evlist__for_each_entry(pt->session->evlist, evsel) {
957 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
958 		    evsel->core.attr.aux_sample_size)
959 			return true;
960 	}
961 	return false;
962 }
963 
964 static u64 intel_pt_ctl(struct intel_pt *pt)
965 {
966 	struct evsel *evsel;
967 	u64 config;
968 
969 	evlist__for_each_entry(pt->session->evlist, evsel) {
970 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
971 			return config;
972 	}
973 	return 0;
974 }
975 
976 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
977 {
978 	u64 quot, rem;
979 
980 	quot = ns / pt->tc.time_mult;
981 	rem  = ns % pt->tc.time_mult;
982 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
983 		pt->tc.time_mult;
984 }
985 
986 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
987 {
988 	size_t sz = sizeof(struct ip_callchain);
989 
990 	/* Add 1 to callchain_sz for callchain context */
991 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
992 	return zalloc(sz);
993 }
994 
995 static int intel_pt_callchain_init(struct intel_pt *pt)
996 {
997 	struct evsel *evsel;
998 
999 	evlist__for_each_entry(pt->session->evlist, evsel) {
1000 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1001 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1002 	}
1003 
1004 	pt->chain = intel_pt_alloc_chain(pt);
1005 	if (!pt->chain)
1006 		return -ENOMEM;
1007 
1008 	return 0;
1009 }
1010 
1011 static void intel_pt_add_callchain(struct intel_pt *pt,
1012 				   struct perf_sample *sample)
1013 {
1014 	struct thread *thread = machine__findnew_thread(pt->machine,
1015 							sample->pid,
1016 							sample->tid);
1017 
1018 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1019 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1020 				  pt->kernel_start);
1021 
1022 	sample->callchain = pt->chain;
1023 }
1024 
1025 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1026 {
1027 	size_t sz = sizeof(struct branch_stack);
1028 
1029 	sz += entry_cnt * sizeof(struct branch_entry);
1030 	return zalloc(sz);
1031 }
1032 
1033 static int intel_pt_br_stack_init(struct intel_pt *pt)
1034 {
1035 	struct evsel *evsel;
1036 
1037 	evlist__for_each_entry(pt->session->evlist, evsel) {
1038 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1039 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1040 	}
1041 
1042 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1043 	if (!pt->br_stack)
1044 		return -ENOMEM;
1045 
1046 	return 0;
1047 }
1048 
1049 static void intel_pt_add_br_stack(struct intel_pt *pt,
1050 				  struct perf_sample *sample)
1051 {
1052 	struct thread *thread = machine__findnew_thread(pt->machine,
1053 							sample->pid,
1054 							sample->tid);
1055 
1056 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1057 				     pt->br_stack_sz, sample->ip,
1058 				     pt->kernel_start);
1059 
1060 	sample->branch_stack = pt->br_stack;
1061 }
1062 
1063 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1064 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1065 
1066 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1067 						   unsigned int queue_nr)
1068 {
1069 	struct intel_pt_params params = { .get_trace = 0, };
1070 	struct perf_env *env = pt->machine->env;
1071 	struct intel_pt_queue *ptq;
1072 
1073 	ptq = zalloc(sizeof(struct intel_pt_queue));
1074 	if (!ptq)
1075 		return NULL;
1076 
1077 	if (pt->synth_opts.callchain) {
1078 		ptq->chain = intel_pt_alloc_chain(pt);
1079 		if (!ptq->chain)
1080 			goto out_free;
1081 	}
1082 
1083 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1084 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1085 
1086 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1087 		if (!ptq->last_branch)
1088 			goto out_free;
1089 	}
1090 
1091 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1092 	if (!ptq->event_buf)
1093 		goto out_free;
1094 
1095 	ptq->pt = pt;
1096 	ptq->queue_nr = queue_nr;
1097 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1098 	ptq->pid = -1;
1099 	ptq->tid = -1;
1100 	ptq->cpu = -1;
1101 	ptq->next_tid = -1;
1102 
1103 	params.get_trace = intel_pt_get_trace;
1104 	params.walk_insn = intel_pt_walk_next_insn;
1105 	params.lookahead = intel_pt_lookahead;
1106 	params.data = ptq;
1107 	params.return_compression = intel_pt_return_compression(pt);
1108 	params.branch_enable = intel_pt_branch_enable(pt);
1109 	params.ctl = intel_pt_ctl(pt);
1110 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1111 	params.mtc_period = intel_pt_mtc_period(pt);
1112 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1113 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1114 	params.quick = pt->synth_opts.quick;
1115 
1116 	if (pt->filts.cnt > 0)
1117 		params.pgd_ip = intel_pt_pgd_ip;
1118 
1119 	if (pt->synth_opts.instructions) {
1120 		if (pt->synth_opts.period) {
1121 			switch (pt->synth_opts.period_type) {
1122 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1123 				params.period_type =
1124 						INTEL_PT_PERIOD_INSTRUCTIONS;
1125 				params.period = pt->synth_opts.period;
1126 				break;
1127 			case PERF_ITRACE_PERIOD_TICKS:
1128 				params.period_type = INTEL_PT_PERIOD_TICKS;
1129 				params.period = pt->synth_opts.period;
1130 				break;
1131 			case PERF_ITRACE_PERIOD_NANOSECS:
1132 				params.period_type = INTEL_PT_PERIOD_TICKS;
1133 				params.period = intel_pt_ns_to_ticks(pt,
1134 							pt->synth_opts.period);
1135 				break;
1136 			default:
1137 				break;
1138 			}
1139 		}
1140 
1141 		if (!params.period) {
1142 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1143 			params.period = 1;
1144 		}
1145 	}
1146 
1147 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1148 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1149 
1150 	ptq->decoder = intel_pt_decoder_new(&params);
1151 	if (!ptq->decoder)
1152 		goto out_free;
1153 
1154 	return ptq;
1155 
1156 out_free:
1157 	zfree(&ptq->event_buf);
1158 	zfree(&ptq->last_branch);
1159 	zfree(&ptq->chain);
1160 	free(ptq);
1161 	return NULL;
1162 }
1163 
1164 static void intel_pt_free_queue(void *priv)
1165 {
1166 	struct intel_pt_queue *ptq = priv;
1167 
1168 	if (!ptq)
1169 		return;
1170 	thread__zput(ptq->thread);
1171 	thread__zput(ptq->unknown_guest_thread);
1172 	intel_pt_decoder_free(ptq->decoder);
1173 	zfree(&ptq->event_buf);
1174 	zfree(&ptq->last_branch);
1175 	zfree(&ptq->chain);
1176 	free(ptq);
1177 }
1178 
1179 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1180 				     struct auxtrace_queue *queue)
1181 {
1182 	struct intel_pt_queue *ptq = queue->priv;
1183 
1184 	if (queue->tid == -1 || pt->have_sched_switch) {
1185 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1186 		if (ptq->tid == -1)
1187 			ptq->pid = -1;
1188 		thread__zput(ptq->thread);
1189 	}
1190 
1191 	if (!ptq->thread && ptq->tid != -1)
1192 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1193 
1194 	if (ptq->thread) {
1195 		ptq->pid = ptq->thread->pid_;
1196 		if (queue->cpu == -1)
1197 			ptq->cpu = ptq->thread->cpu;
1198 	}
1199 }
1200 
1201 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1202 {
1203 	ptq->insn_len = 0;
1204 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1205 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1206 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1207 		if (!ptq->state->to_ip)
1208 			ptq->flags = PERF_IP_FLAG_BRANCH |
1209 				     PERF_IP_FLAG_TRACE_END;
1210 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1211 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1212 				     PERF_IP_FLAG_VMEXIT;
1213 		else
1214 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1215 				     PERF_IP_FLAG_ASYNC |
1216 				     PERF_IP_FLAG_INTERRUPT;
1217 	} else {
1218 		if (ptq->state->from_ip)
1219 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1220 		else
1221 			ptq->flags = PERF_IP_FLAG_BRANCH |
1222 				     PERF_IP_FLAG_TRACE_BEGIN;
1223 		if (ptq->state->flags & INTEL_PT_IN_TX)
1224 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1225 		ptq->insn_len = ptq->state->insn_len;
1226 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1227 	}
1228 
1229 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1230 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1231 	if (ptq->state->type & INTEL_PT_TRACE_END)
1232 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1233 }
1234 
1235 static void intel_pt_setup_time_range(struct intel_pt *pt,
1236 				      struct intel_pt_queue *ptq)
1237 {
1238 	if (!pt->range_cnt)
1239 		return;
1240 
1241 	ptq->sel_timestamp = pt->time_ranges[0].start;
1242 	ptq->sel_idx = 0;
1243 
1244 	if (ptq->sel_timestamp) {
1245 		ptq->sel_start = true;
1246 	} else {
1247 		ptq->sel_timestamp = pt->time_ranges[0].end;
1248 		ptq->sel_start = false;
1249 	}
1250 }
1251 
1252 static int intel_pt_setup_queue(struct intel_pt *pt,
1253 				struct auxtrace_queue *queue,
1254 				unsigned int queue_nr)
1255 {
1256 	struct intel_pt_queue *ptq = queue->priv;
1257 
1258 	if (list_empty(&queue->head))
1259 		return 0;
1260 
1261 	if (!ptq) {
1262 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1263 		if (!ptq)
1264 			return -ENOMEM;
1265 		queue->priv = ptq;
1266 
1267 		if (queue->cpu != -1)
1268 			ptq->cpu = queue->cpu;
1269 		ptq->tid = queue->tid;
1270 
1271 		ptq->cbr_seen = UINT_MAX;
1272 
1273 		if (pt->sampling_mode && !pt->snapshot_mode &&
1274 		    pt->timeless_decoding)
1275 			ptq->step_through_buffers = true;
1276 
1277 		ptq->sync_switch = pt->sync_switch;
1278 
1279 		intel_pt_setup_time_range(pt, ptq);
1280 	}
1281 
1282 	if (!ptq->on_heap &&
1283 	    (!ptq->sync_switch ||
1284 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1285 		const struct intel_pt_state *state;
1286 		int ret;
1287 
1288 		if (pt->timeless_decoding)
1289 			return 0;
1290 
1291 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1292 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1293 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1294 
1295 		if (ptq->sel_start && ptq->sel_timestamp) {
1296 			ret = intel_pt_fast_forward(ptq->decoder,
1297 						    ptq->sel_timestamp);
1298 			if (ret)
1299 				return ret;
1300 		}
1301 
1302 		while (1) {
1303 			state = intel_pt_decode(ptq->decoder);
1304 			if (state->err) {
1305 				if (state->err == INTEL_PT_ERR_NODATA) {
1306 					intel_pt_log("queue %u has no timestamp\n",
1307 						     queue_nr);
1308 					return 0;
1309 				}
1310 				continue;
1311 			}
1312 			if (state->timestamp)
1313 				break;
1314 		}
1315 
1316 		ptq->timestamp = state->timestamp;
1317 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1318 			     queue_nr, ptq->timestamp);
1319 		ptq->state = state;
1320 		ptq->have_sample = true;
1321 		if (ptq->sel_start && ptq->sel_timestamp &&
1322 		    ptq->timestamp < ptq->sel_timestamp)
1323 			ptq->have_sample = false;
1324 		intel_pt_sample_flags(ptq);
1325 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1326 		if (ret)
1327 			return ret;
1328 		ptq->on_heap = true;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static int intel_pt_setup_queues(struct intel_pt *pt)
1335 {
1336 	unsigned int i;
1337 	int ret;
1338 
1339 	for (i = 0; i < pt->queues.nr_queues; i++) {
1340 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1341 		if (ret)
1342 			return ret;
1343 	}
1344 	return 0;
1345 }
1346 
1347 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1348 {
1349 	return pt->synth_opts.initial_skip &&
1350 	       pt->num_events++ < pt->synth_opts.initial_skip;
1351 }
1352 
1353 /*
1354  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1355  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1356  * from this decoder state.
1357  */
1358 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1359 {
1360 	return pt->synth_opts.initial_skip &&
1361 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1362 }
1363 
1364 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1365 				   union perf_event *event,
1366 				   struct perf_sample *sample)
1367 {
1368 	event->sample.header.type = PERF_RECORD_SAMPLE;
1369 	event->sample.header.size = sizeof(struct perf_event_header);
1370 
1371 	sample->pid = ptq->pid;
1372 	sample->tid = ptq->tid;
1373 	sample->cpu = ptq->cpu;
1374 	sample->insn_len = ptq->insn_len;
1375 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1376 }
1377 
1378 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1379 				   struct intel_pt_queue *ptq,
1380 				   union perf_event *event,
1381 				   struct perf_sample *sample)
1382 {
1383 	intel_pt_prep_a_sample(ptq, event, sample);
1384 
1385 	if (!pt->timeless_decoding)
1386 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1387 
1388 	sample->ip = ptq->state->from_ip;
1389 	sample->addr = ptq->state->to_ip;
1390 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1391 	sample->period = 1;
1392 	sample->flags = ptq->flags;
1393 
1394 	event->sample.header.misc = sample->cpumode;
1395 }
1396 
1397 static int intel_pt_inject_event(union perf_event *event,
1398 				 struct perf_sample *sample, u64 type)
1399 {
1400 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1401 	return perf_event__synthesize_sample(event, type, 0, sample);
1402 }
1403 
1404 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1405 				      union perf_event *event,
1406 				      struct perf_sample *sample, u64 type)
1407 {
1408 	if (!pt->synth_opts.inject)
1409 		return 0;
1410 
1411 	return intel_pt_inject_event(event, sample, type);
1412 }
1413 
1414 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1415 					union perf_event *event,
1416 					struct perf_sample *sample, u64 type)
1417 {
1418 	int ret;
1419 
1420 	ret = intel_pt_opt_inject(pt, event, sample, type);
1421 	if (ret)
1422 		return ret;
1423 
1424 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1425 	if (ret)
1426 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1427 
1428 	return ret;
1429 }
1430 
1431 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1432 {
1433 	struct intel_pt *pt = ptq->pt;
1434 	union perf_event *event = ptq->event_buf;
1435 	struct perf_sample sample = { .ip = 0, };
1436 	struct dummy_branch_stack {
1437 		u64			nr;
1438 		u64			hw_idx;
1439 		struct branch_entry	entries;
1440 	} dummy_bs;
1441 
1442 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1443 		return 0;
1444 
1445 	if (intel_pt_skip_event(pt))
1446 		return 0;
1447 
1448 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1449 
1450 	sample.id = ptq->pt->branches_id;
1451 	sample.stream_id = ptq->pt->branches_id;
1452 
1453 	/*
1454 	 * perf report cannot handle events without a branch stack when using
1455 	 * SORT_MODE__BRANCH so make a dummy one.
1456 	 */
1457 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1458 		dummy_bs = (struct dummy_branch_stack){
1459 			.nr = 1,
1460 			.hw_idx = -1ULL,
1461 			.entries = {
1462 				.from = sample.ip,
1463 				.to = sample.addr,
1464 			},
1465 		};
1466 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1467 	}
1468 
1469 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1470 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1471 	if (sample.cyc_cnt) {
1472 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1473 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1474 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1475 	}
1476 
1477 	return intel_pt_deliver_synth_event(pt, event, &sample,
1478 					    pt->branches_sample_type);
1479 }
1480 
1481 static void intel_pt_prep_sample(struct intel_pt *pt,
1482 				 struct intel_pt_queue *ptq,
1483 				 union perf_event *event,
1484 				 struct perf_sample *sample)
1485 {
1486 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1487 
1488 	if (pt->synth_opts.callchain) {
1489 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1490 				     pt->synth_opts.callchain_sz + 1,
1491 				     sample->ip, pt->kernel_start);
1492 		sample->callchain = ptq->chain;
1493 	}
1494 
1495 	if (pt->synth_opts.last_branch) {
1496 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1497 					pt->br_stack_sz);
1498 		sample->branch_stack = ptq->last_branch;
1499 	}
1500 }
1501 
1502 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1503 {
1504 	struct intel_pt *pt = ptq->pt;
1505 	union perf_event *event = ptq->event_buf;
1506 	struct perf_sample sample = { .ip = 0, };
1507 
1508 	if (intel_pt_skip_event(pt))
1509 		return 0;
1510 
1511 	intel_pt_prep_sample(pt, ptq, event, &sample);
1512 
1513 	sample.id = ptq->pt->instructions_id;
1514 	sample.stream_id = ptq->pt->instructions_id;
1515 	if (pt->synth_opts.quick)
1516 		sample.period = 1;
1517 	else
1518 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1519 
1520 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1521 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1522 	if (sample.cyc_cnt) {
1523 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1524 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1525 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1526 	}
1527 
1528 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1529 
1530 	return intel_pt_deliver_synth_event(pt, event, &sample,
1531 					    pt->instructions_sample_type);
1532 }
1533 
1534 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1535 {
1536 	struct intel_pt *pt = ptq->pt;
1537 	union perf_event *event = ptq->event_buf;
1538 	struct perf_sample sample = { .ip = 0, };
1539 
1540 	if (intel_pt_skip_event(pt))
1541 		return 0;
1542 
1543 	intel_pt_prep_sample(pt, ptq, event, &sample);
1544 
1545 	sample.id = ptq->pt->transactions_id;
1546 	sample.stream_id = ptq->pt->transactions_id;
1547 
1548 	return intel_pt_deliver_synth_event(pt, event, &sample,
1549 					    pt->transactions_sample_type);
1550 }
1551 
1552 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1553 				   struct intel_pt_queue *ptq,
1554 				   union perf_event *event,
1555 				   struct perf_sample *sample)
1556 {
1557 	intel_pt_prep_sample(pt, ptq, event, sample);
1558 
1559 	/*
1560 	 * Zero IP is used to mean "trace start" but that is not the case for
1561 	 * power or PTWRITE events with no IP, so clear the flags.
1562 	 */
1563 	if (!sample->ip)
1564 		sample->flags = 0;
1565 }
1566 
1567 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1568 {
1569 	struct intel_pt *pt = ptq->pt;
1570 	union perf_event *event = ptq->event_buf;
1571 	struct perf_sample sample = { .ip = 0, };
1572 	struct perf_synth_intel_ptwrite raw;
1573 
1574 	if (intel_pt_skip_event(pt))
1575 		return 0;
1576 
1577 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1578 
1579 	sample.id = ptq->pt->ptwrites_id;
1580 	sample.stream_id = ptq->pt->ptwrites_id;
1581 
1582 	raw.flags = 0;
1583 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1584 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1585 
1586 	sample.raw_size = perf_synth__raw_size(raw);
1587 	sample.raw_data = perf_synth__raw_data(&raw);
1588 
1589 	return intel_pt_deliver_synth_event(pt, event, &sample,
1590 					    pt->ptwrites_sample_type);
1591 }
1592 
1593 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1594 {
1595 	struct intel_pt *pt = ptq->pt;
1596 	union perf_event *event = ptq->event_buf;
1597 	struct perf_sample sample = { .ip = 0, };
1598 	struct perf_synth_intel_cbr raw;
1599 	u32 flags;
1600 
1601 	if (intel_pt_skip_cbr_event(pt))
1602 		return 0;
1603 
1604 	ptq->cbr_seen = ptq->state->cbr;
1605 
1606 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1607 
1608 	sample.id = ptq->pt->cbr_id;
1609 	sample.stream_id = ptq->pt->cbr_id;
1610 
1611 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1612 	raw.flags = cpu_to_le32(flags);
1613 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1614 	raw.reserved3 = 0;
1615 
1616 	sample.raw_size = perf_synth__raw_size(raw);
1617 	sample.raw_data = perf_synth__raw_data(&raw);
1618 
1619 	return intel_pt_deliver_synth_event(pt, event, &sample,
1620 					    pt->pwr_events_sample_type);
1621 }
1622 
1623 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1624 {
1625 	struct intel_pt *pt = ptq->pt;
1626 	union perf_event *event = ptq->event_buf;
1627 	struct perf_sample sample = { .ip = 0, };
1628 	struct perf_synth_intel_psb raw;
1629 
1630 	if (intel_pt_skip_event(pt))
1631 		return 0;
1632 
1633 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1634 
1635 	sample.id = ptq->pt->psb_id;
1636 	sample.stream_id = ptq->pt->psb_id;
1637 	sample.flags = 0;
1638 
1639 	raw.reserved = 0;
1640 	raw.offset = ptq->state->psb_offset;
1641 
1642 	sample.raw_size = perf_synth__raw_size(raw);
1643 	sample.raw_data = perf_synth__raw_data(&raw);
1644 
1645 	return intel_pt_deliver_synth_event(pt, event, &sample,
1646 					    pt->pwr_events_sample_type);
1647 }
1648 
1649 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1650 {
1651 	struct intel_pt *pt = ptq->pt;
1652 	union perf_event *event = ptq->event_buf;
1653 	struct perf_sample sample = { .ip = 0, };
1654 	struct perf_synth_intel_mwait raw;
1655 
1656 	if (intel_pt_skip_event(pt))
1657 		return 0;
1658 
1659 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1660 
1661 	sample.id = ptq->pt->mwait_id;
1662 	sample.stream_id = ptq->pt->mwait_id;
1663 
1664 	raw.reserved = 0;
1665 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1666 
1667 	sample.raw_size = perf_synth__raw_size(raw);
1668 	sample.raw_data = perf_synth__raw_data(&raw);
1669 
1670 	return intel_pt_deliver_synth_event(pt, event, &sample,
1671 					    pt->pwr_events_sample_type);
1672 }
1673 
1674 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1675 {
1676 	struct intel_pt *pt = ptq->pt;
1677 	union perf_event *event = ptq->event_buf;
1678 	struct perf_sample sample = { .ip = 0, };
1679 	struct perf_synth_intel_pwre raw;
1680 
1681 	if (intel_pt_skip_event(pt))
1682 		return 0;
1683 
1684 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1685 
1686 	sample.id = ptq->pt->pwre_id;
1687 	sample.stream_id = ptq->pt->pwre_id;
1688 
1689 	raw.reserved = 0;
1690 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1691 
1692 	sample.raw_size = perf_synth__raw_size(raw);
1693 	sample.raw_data = perf_synth__raw_data(&raw);
1694 
1695 	return intel_pt_deliver_synth_event(pt, event, &sample,
1696 					    pt->pwr_events_sample_type);
1697 }
1698 
1699 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1700 {
1701 	struct intel_pt *pt = ptq->pt;
1702 	union perf_event *event = ptq->event_buf;
1703 	struct perf_sample sample = { .ip = 0, };
1704 	struct perf_synth_intel_exstop raw;
1705 
1706 	if (intel_pt_skip_event(pt))
1707 		return 0;
1708 
1709 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1710 
1711 	sample.id = ptq->pt->exstop_id;
1712 	sample.stream_id = ptq->pt->exstop_id;
1713 
1714 	raw.flags = 0;
1715 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1716 
1717 	sample.raw_size = perf_synth__raw_size(raw);
1718 	sample.raw_data = perf_synth__raw_data(&raw);
1719 
1720 	return intel_pt_deliver_synth_event(pt, event, &sample,
1721 					    pt->pwr_events_sample_type);
1722 }
1723 
1724 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1725 {
1726 	struct intel_pt *pt = ptq->pt;
1727 	union perf_event *event = ptq->event_buf;
1728 	struct perf_sample sample = { .ip = 0, };
1729 	struct perf_synth_intel_pwrx raw;
1730 
1731 	if (intel_pt_skip_event(pt))
1732 		return 0;
1733 
1734 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1735 
1736 	sample.id = ptq->pt->pwrx_id;
1737 	sample.stream_id = ptq->pt->pwrx_id;
1738 
1739 	raw.reserved = 0;
1740 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1741 
1742 	sample.raw_size = perf_synth__raw_size(raw);
1743 	sample.raw_data = perf_synth__raw_data(&raw);
1744 
1745 	return intel_pt_deliver_synth_event(pt, event, &sample,
1746 					    pt->pwr_events_sample_type);
1747 }
1748 
1749 /*
1750  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1751  * intel_pt_add_gp_regs().
1752  */
1753 static const int pebs_gp_regs[] = {
1754 	[PERF_REG_X86_FLAGS]	= 1,
1755 	[PERF_REG_X86_IP]	= 2,
1756 	[PERF_REG_X86_AX]	= 3,
1757 	[PERF_REG_X86_CX]	= 4,
1758 	[PERF_REG_X86_DX]	= 5,
1759 	[PERF_REG_X86_BX]	= 6,
1760 	[PERF_REG_X86_SP]	= 7,
1761 	[PERF_REG_X86_BP]	= 8,
1762 	[PERF_REG_X86_SI]	= 9,
1763 	[PERF_REG_X86_DI]	= 10,
1764 	[PERF_REG_X86_R8]	= 11,
1765 	[PERF_REG_X86_R9]	= 12,
1766 	[PERF_REG_X86_R10]	= 13,
1767 	[PERF_REG_X86_R11]	= 14,
1768 	[PERF_REG_X86_R12]	= 15,
1769 	[PERF_REG_X86_R13]	= 16,
1770 	[PERF_REG_X86_R14]	= 17,
1771 	[PERF_REG_X86_R15]	= 18,
1772 };
1773 
1774 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1775 				 const struct intel_pt_blk_items *items,
1776 				 u64 regs_mask)
1777 {
1778 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1779 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1780 	u32 bit;
1781 	int i;
1782 
1783 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1784 		/* Get the PEBS gp_regs array index */
1785 		int n = pebs_gp_regs[i] - 1;
1786 
1787 		if (n < 0)
1788 			continue;
1789 		/*
1790 		 * Add only registers that were requested (i.e. 'regs_mask') and
1791 		 * that were provided (i.e. 'mask'), and update the resulting
1792 		 * mask (i.e. 'intr_regs->mask') accordingly.
1793 		 */
1794 		if (mask & 1 << n && regs_mask & bit) {
1795 			intr_regs->mask |= bit;
1796 			*pos++ = gp_regs[n];
1797 		}
1798 	}
1799 
1800 	return pos;
1801 }
1802 
1803 #ifndef PERF_REG_X86_XMM0
1804 #define PERF_REG_X86_XMM0 32
1805 #endif
1806 
1807 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1808 			     const struct intel_pt_blk_items *items,
1809 			     u64 regs_mask)
1810 {
1811 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1812 	const u64 *xmm = items->xmm;
1813 
1814 	/*
1815 	 * If there are any XMM registers, then there should be all of them.
1816 	 * Nevertheless, follow the logic to add only registers that were
1817 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1818 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1819 	 */
1820 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1821 
1822 	for (; mask; mask >>= 1, xmm++) {
1823 		if (mask & 1)
1824 			*pos++ = *xmm;
1825 	}
1826 }
1827 
1828 #define LBR_INFO_MISPRED	(1ULL << 63)
1829 #define LBR_INFO_IN_TX		(1ULL << 62)
1830 #define LBR_INFO_ABORT		(1ULL << 61)
1831 #define LBR_INFO_CYCLES		0xffff
1832 
1833 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1834 static u64 intel_pt_lbr_flags(u64 info)
1835 {
1836 	union {
1837 		struct branch_flags flags;
1838 		u64 result;
1839 	} u;
1840 
1841 	u.result	  = 0;
1842 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1843 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1844 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1845 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1846 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1847 
1848 	return u.result;
1849 }
1850 
1851 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1852 			      const struct intel_pt_blk_items *items)
1853 {
1854 	u64 *to;
1855 	int i;
1856 
1857 	br_stack->nr = 0;
1858 
1859 	to = &br_stack->entries[0].from;
1860 
1861 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1862 		u32 mask = items->mask[i];
1863 		const u64 *from = items->val[i];
1864 
1865 		for (; mask; mask >>= 3, from += 3) {
1866 			if ((mask & 7) == 7) {
1867 				*to++ = from[0];
1868 				*to++ = from[1];
1869 				*to++ = intel_pt_lbr_flags(from[2]);
1870 				br_stack->nr += 1;
1871 			}
1872 		}
1873 	}
1874 }
1875 
1876 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1877 {
1878 	const struct intel_pt_blk_items *items = &ptq->state->items;
1879 	struct perf_sample sample = { .ip = 0, };
1880 	union perf_event *event = ptq->event_buf;
1881 	struct intel_pt *pt = ptq->pt;
1882 	struct evsel *evsel = pt->pebs_evsel;
1883 	u64 sample_type = evsel->core.attr.sample_type;
1884 	u64 id = evsel->core.id[0];
1885 	u8 cpumode;
1886 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1887 
1888 	if (intel_pt_skip_event(pt))
1889 		return 0;
1890 
1891 	intel_pt_prep_a_sample(ptq, event, &sample);
1892 
1893 	sample.id = id;
1894 	sample.stream_id = id;
1895 
1896 	if (!evsel->core.attr.freq)
1897 		sample.period = evsel->core.attr.sample_period;
1898 
1899 	/* No support for non-zero CS base */
1900 	if (items->has_ip)
1901 		sample.ip = items->ip;
1902 	else if (items->has_rip)
1903 		sample.ip = items->rip;
1904 	else
1905 		sample.ip = ptq->state->from_ip;
1906 
1907 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
1908 
1909 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1910 
1911 	sample.cpumode = cpumode;
1912 
1913 	if (sample_type & PERF_SAMPLE_TIME) {
1914 		u64 timestamp = 0;
1915 
1916 		if (items->has_timestamp)
1917 			timestamp = items->timestamp;
1918 		else if (!pt->timeless_decoding)
1919 			timestamp = ptq->timestamp;
1920 		if (timestamp)
1921 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1922 	}
1923 
1924 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1925 	    pt->synth_opts.callchain) {
1926 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1927 				     pt->synth_opts.callchain_sz, sample.ip,
1928 				     pt->kernel_start);
1929 		sample.callchain = ptq->chain;
1930 	}
1931 
1932 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1933 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
1934 	     items->mask[INTEL_PT_XMM_POS])) {
1935 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1936 		u64 *pos;
1937 
1938 		sample.intr_regs.abi = items->is_32_bit ?
1939 				       PERF_SAMPLE_REGS_ABI_32 :
1940 				       PERF_SAMPLE_REGS_ABI_64;
1941 		sample.intr_regs.regs = regs;
1942 
1943 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1944 
1945 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1946 	}
1947 
1948 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1949 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1950 		    items->mask[INTEL_PT_LBR_1_POS] ||
1951 		    items->mask[INTEL_PT_LBR_2_POS]) {
1952 			intel_pt_add_lbrs(ptq->last_branch, items);
1953 		} else if (pt->synth_opts.last_branch) {
1954 			thread_stack__br_sample(ptq->thread, ptq->cpu,
1955 						ptq->last_branch,
1956 						pt->br_stack_sz);
1957 		} else {
1958 			ptq->last_branch->nr = 0;
1959 		}
1960 		sample.branch_stack = ptq->last_branch;
1961 	}
1962 
1963 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1964 		sample.addr = items->mem_access_address;
1965 
1966 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1967 		/*
1968 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1969 		 * intel_hsw_weight().
1970 		 */
1971 		if (items->has_mem_access_latency) {
1972 			u64 weight = items->mem_access_latency >> 32;
1973 
1974 			/*
1975 			 * Starts from SPR, the mem access latency field
1976 			 * contains both cache latency [47:32] and instruction
1977 			 * latency [15:0]. The cache latency is the same as the
1978 			 * mem access latency on previous platforms.
1979 			 *
1980 			 * In practice, no memory access could last than 4G
1981 			 * cycles. Use latency >> 32 to distinguish the
1982 			 * different format of the mem access latency field.
1983 			 */
1984 			if (weight > 0) {
1985 				sample.weight = weight & 0xffff;
1986 				sample.ins_lat = items->mem_access_latency & 0xffff;
1987 			} else
1988 				sample.weight = items->mem_access_latency;
1989 		}
1990 		if (!sample.weight && items->has_tsx_aux_info) {
1991 			/* Cycles last block */
1992 			sample.weight = (u32)items->tsx_aux_info;
1993 		}
1994 	}
1995 
1996 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1997 		u64 ax = items->has_rax ? items->rax : 0;
1998 		/* Refer kernel's intel_hsw_transaction() */
1999 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2000 
2001 		/* For RTM XABORTs also log the abort code from AX */
2002 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2003 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2004 		sample.transaction = txn;
2005 	}
2006 
2007 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2008 }
2009 
2010 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2011 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2012 {
2013 	union perf_event event;
2014 	char msg[MAX_AUXTRACE_ERROR_MSG];
2015 	int err;
2016 
2017 	if (pt->synth_opts.error_minus_flags) {
2018 		if (code == INTEL_PT_ERR_OVR &&
2019 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2020 			return 0;
2021 		if (code == INTEL_PT_ERR_LOST &&
2022 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2023 			return 0;
2024 	}
2025 
2026 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2027 
2028 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2029 			     code, cpu, pid, tid, ip, msg, timestamp);
2030 
2031 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2032 	if (err)
2033 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2034 		       err);
2035 
2036 	return err;
2037 }
2038 
2039 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2040 				 const struct intel_pt_state *state)
2041 {
2042 	struct intel_pt *pt = ptq->pt;
2043 	u64 tm = ptq->timestamp;
2044 
2045 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2046 
2047 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2048 				    ptq->tid, state->from_ip, tm);
2049 }
2050 
2051 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2052 {
2053 	struct auxtrace_queue *queue;
2054 	pid_t tid = ptq->next_tid;
2055 	int err;
2056 
2057 	if (tid == -1)
2058 		return 0;
2059 
2060 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2061 
2062 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2063 
2064 	queue = &pt->queues.queue_array[ptq->queue_nr];
2065 	intel_pt_set_pid_tid_cpu(pt, queue);
2066 
2067 	ptq->next_tid = -1;
2068 
2069 	return err;
2070 }
2071 
2072 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2073 {
2074 	struct intel_pt *pt = ptq->pt;
2075 
2076 	return ip == pt->switch_ip &&
2077 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2078 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2079 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2080 }
2081 
2082 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2083 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2084 
2085 static int intel_pt_sample(struct intel_pt_queue *ptq)
2086 {
2087 	const struct intel_pt_state *state = ptq->state;
2088 	struct intel_pt *pt = ptq->pt;
2089 	int err;
2090 
2091 	if (!ptq->have_sample)
2092 		return 0;
2093 
2094 	ptq->have_sample = false;
2095 
2096 	ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2097 	ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2098 
2099 	/*
2100 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2101 	 * precedes the current timestamp.
2102 	 */
2103 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2104 		err = intel_pt_synth_pebs_sample(ptq);
2105 		if (err)
2106 			return err;
2107 	}
2108 
2109 	if (pt->sample_pwr_events) {
2110 		if (state->type & INTEL_PT_PSB_EVT) {
2111 			err = intel_pt_synth_psb_sample(ptq);
2112 			if (err)
2113 				return err;
2114 		}
2115 		if (ptq->state->cbr != ptq->cbr_seen) {
2116 			err = intel_pt_synth_cbr_sample(ptq);
2117 			if (err)
2118 				return err;
2119 		}
2120 		if (state->type & INTEL_PT_PWR_EVT) {
2121 			if (state->type & INTEL_PT_MWAIT_OP) {
2122 				err = intel_pt_synth_mwait_sample(ptq);
2123 				if (err)
2124 					return err;
2125 			}
2126 			if (state->type & INTEL_PT_PWR_ENTRY) {
2127 				err = intel_pt_synth_pwre_sample(ptq);
2128 				if (err)
2129 					return err;
2130 			}
2131 			if (state->type & INTEL_PT_EX_STOP) {
2132 				err = intel_pt_synth_exstop_sample(ptq);
2133 				if (err)
2134 					return err;
2135 			}
2136 			if (state->type & INTEL_PT_PWR_EXIT) {
2137 				err = intel_pt_synth_pwrx_sample(ptq);
2138 				if (err)
2139 					return err;
2140 			}
2141 		}
2142 	}
2143 
2144 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2145 		err = intel_pt_synth_instruction_sample(ptq);
2146 		if (err)
2147 			return err;
2148 	}
2149 
2150 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2151 		err = intel_pt_synth_transaction_sample(ptq);
2152 		if (err)
2153 			return err;
2154 	}
2155 
2156 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2157 		err = intel_pt_synth_ptwrite_sample(ptq);
2158 		if (err)
2159 			return err;
2160 	}
2161 
2162 	if (!(state->type & INTEL_PT_BRANCH))
2163 		return 0;
2164 
2165 	if (pt->use_thread_stack) {
2166 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2167 				    state->from_ip, state->to_ip, ptq->insn_len,
2168 				    state->trace_nr, pt->callstack,
2169 				    pt->br_stack_sz_plus,
2170 				    pt->mispred_all);
2171 	} else {
2172 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2173 	}
2174 
2175 	if (pt->sample_branches) {
2176 		if (state->from_nr != state->to_nr &&
2177 		    state->from_ip && state->to_ip) {
2178 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2179 			u64 to_ip = st->to_ip;
2180 			u64 from_ip = st->from_ip;
2181 
2182 			/*
2183 			 * perf cannot handle having different machines for ip
2184 			 * and addr, so create 2 branches.
2185 			 */
2186 			st->to_ip = 0;
2187 			err = intel_pt_synth_branch_sample(ptq);
2188 			if (err)
2189 				return err;
2190 			st->from_ip = 0;
2191 			st->to_ip = to_ip;
2192 			err = intel_pt_synth_branch_sample(ptq);
2193 			st->from_ip = from_ip;
2194 		} else {
2195 			err = intel_pt_synth_branch_sample(ptq);
2196 		}
2197 		if (err)
2198 			return err;
2199 	}
2200 
2201 	if (!ptq->sync_switch)
2202 		return 0;
2203 
2204 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2205 		switch (ptq->switch_state) {
2206 		case INTEL_PT_SS_NOT_TRACING:
2207 		case INTEL_PT_SS_UNKNOWN:
2208 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2209 			err = intel_pt_next_tid(pt, ptq);
2210 			if (err)
2211 				return err;
2212 			ptq->switch_state = INTEL_PT_SS_TRACING;
2213 			break;
2214 		default:
2215 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2216 			return 1;
2217 		}
2218 	} else if (!state->to_ip) {
2219 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2220 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2221 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2222 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2223 		   state->to_ip == pt->ptss_ip &&
2224 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2225 		ptq->switch_state = INTEL_PT_SS_TRACING;
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2232 {
2233 	struct machine *machine = pt->machine;
2234 	struct map *map;
2235 	struct symbol *sym, *start;
2236 	u64 ip, switch_ip = 0;
2237 	const char *ptss;
2238 
2239 	if (ptss_ip)
2240 		*ptss_ip = 0;
2241 
2242 	map = machine__kernel_map(machine);
2243 	if (!map)
2244 		return 0;
2245 
2246 	if (map__load(map))
2247 		return 0;
2248 
2249 	start = dso__first_symbol(map->dso);
2250 
2251 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2252 		if (sym->binding == STB_GLOBAL &&
2253 		    !strcmp(sym->name, "__switch_to")) {
2254 			ip = map->unmap_ip(map, sym->start);
2255 			if (ip >= map->start && ip < map->end) {
2256 				switch_ip = ip;
2257 				break;
2258 			}
2259 		}
2260 	}
2261 
2262 	if (!switch_ip || !ptss_ip)
2263 		return 0;
2264 
2265 	if (pt->have_sched_switch == 1)
2266 		ptss = "perf_trace_sched_switch";
2267 	else
2268 		ptss = "__perf_event_task_sched_out";
2269 
2270 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2271 		if (!strcmp(sym->name, ptss)) {
2272 			ip = map->unmap_ip(map, sym->start);
2273 			if (ip >= map->start && ip < map->end) {
2274 				*ptss_ip = ip;
2275 				break;
2276 			}
2277 		}
2278 	}
2279 
2280 	return switch_ip;
2281 }
2282 
2283 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2284 {
2285 	unsigned int i;
2286 
2287 	pt->sync_switch = true;
2288 
2289 	for (i = 0; i < pt->queues.nr_queues; i++) {
2290 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2291 		struct intel_pt_queue *ptq = queue->priv;
2292 
2293 		if (ptq)
2294 			ptq->sync_switch = true;
2295 	}
2296 }
2297 
2298 /*
2299  * To filter against time ranges, it is only necessary to look at the next start
2300  * or end time.
2301  */
2302 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2303 {
2304 	struct intel_pt *pt = ptq->pt;
2305 
2306 	if (ptq->sel_start) {
2307 		/* Next time is an end time */
2308 		ptq->sel_start = false;
2309 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2310 		return true;
2311 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2312 		/* Next time is a start time */
2313 		ptq->sel_start = true;
2314 		ptq->sel_idx += 1;
2315 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2316 		return true;
2317 	}
2318 
2319 	/* No next time */
2320 	return false;
2321 }
2322 
2323 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2324 {
2325 	int err;
2326 
2327 	while (1) {
2328 		if (ptq->sel_start) {
2329 			if (ptq->timestamp >= ptq->sel_timestamp) {
2330 				/* After start time, so consider next time */
2331 				intel_pt_next_time(ptq);
2332 				if (!ptq->sel_timestamp) {
2333 					/* No end time */
2334 					return 0;
2335 				}
2336 				/* Check against end time */
2337 				continue;
2338 			}
2339 			/* Before start time, so fast forward */
2340 			ptq->have_sample = false;
2341 			if (ptq->sel_timestamp > *ff_timestamp) {
2342 				if (ptq->sync_switch) {
2343 					intel_pt_next_tid(ptq->pt, ptq);
2344 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2345 				}
2346 				*ff_timestamp = ptq->sel_timestamp;
2347 				err = intel_pt_fast_forward(ptq->decoder,
2348 							    ptq->sel_timestamp);
2349 				if (err)
2350 					return err;
2351 			}
2352 			return 0;
2353 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2354 			/* After end time, so consider next time */
2355 			if (!intel_pt_next_time(ptq)) {
2356 				/* No next time range, so stop decoding */
2357 				ptq->have_sample = false;
2358 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2359 				return 1;
2360 			}
2361 			/* Check against next start time */
2362 			continue;
2363 		} else {
2364 			/* Before end time */
2365 			return 0;
2366 		}
2367 	}
2368 }
2369 
2370 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2371 {
2372 	const struct intel_pt_state *state = ptq->state;
2373 	struct intel_pt *pt = ptq->pt;
2374 	u64 ff_timestamp = 0;
2375 	int err;
2376 
2377 	if (!pt->kernel_start) {
2378 		pt->kernel_start = machine__kernel_start(pt->machine);
2379 		if (pt->per_cpu_mmaps &&
2380 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2381 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2382 		    !pt->sampling_mode) {
2383 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2384 			if (pt->switch_ip) {
2385 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2386 					     pt->switch_ip, pt->ptss_ip);
2387 				intel_pt_enable_sync_switch(pt);
2388 			}
2389 		}
2390 	}
2391 
2392 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2393 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2394 	while (1) {
2395 		err = intel_pt_sample(ptq);
2396 		if (err)
2397 			return err;
2398 
2399 		state = intel_pt_decode(ptq->decoder);
2400 		if (state->err) {
2401 			if (state->err == INTEL_PT_ERR_NODATA)
2402 				return 1;
2403 			if (ptq->sync_switch &&
2404 			    state->from_ip >= pt->kernel_start) {
2405 				ptq->sync_switch = false;
2406 				intel_pt_next_tid(pt, ptq);
2407 			}
2408 			if (pt->synth_opts.errors) {
2409 				err = intel_ptq_synth_error(ptq, state);
2410 				if (err)
2411 					return err;
2412 			}
2413 			continue;
2414 		}
2415 
2416 		ptq->state = state;
2417 		ptq->have_sample = true;
2418 		intel_pt_sample_flags(ptq);
2419 
2420 		/* Use estimated TSC upon return to user space */
2421 		if (pt->est_tsc &&
2422 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2423 		    state->to_ip && state->to_ip < pt->kernel_start) {
2424 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2425 				     state->timestamp, state->est_timestamp);
2426 			ptq->timestamp = state->est_timestamp;
2427 		/* Use estimated TSC in unknown switch state */
2428 		} else if (ptq->sync_switch &&
2429 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2430 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2431 			   ptq->next_tid == -1) {
2432 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2433 				     state->timestamp, state->est_timestamp);
2434 			ptq->timestamp = state->est_timestamp;
2435 		} else if (state->timestamp > ptq->timestamp) {
2436 			ptq->timestamp = state->timestamp;
2437 		}
2438 
2439 		if (ptq->sel_timestamp) {
2440 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2441 			if (err)
2442 				return err;
2443 		}
2444 
2445 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2446 			*timestamp = ptq->timestamp;
2447 			return 0;
2448 		}
2449 	}
2450 	return 0;
2451 }
2452 
2453 static inline int intel_pt_update_queues(struct intel_pt *pt)
2454 {
2455 	if (pt->queues.new_data) {
2456 		pt->queues.new_data = false;
2457 		return intel_pt_setup_queues(pt);
2458 	}
2459 	return 0;
2460 }
2461 
2462 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2463 {
2464 	unsigned int queue_nr;
2465 	u64 ts;
2466 	int ret;
2467 
2468 	while (1) {
2469 		struct auxtrace_queue *queue;
2470 		struct intel_pt_queue *ptq;
2471 
2472 		if (!pt->heap.heap_cnt)
2473 			return 0;
2474 
2475 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2476 			return 0;
2477 
2478 		queue_nr = pt->heap.heap_array[0].queue_nr;
2479 		queue = &pt->queues.queue_array[queue_nr];
2480 		ptq = queue->priv;
2481 
2482 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2483 			     queue_nr, pt->heap.heap_array[0].ordinal,
2484 			     timestamp);
2485 
2486 		auxtrace_heap__pop(&pt->heap);
2487 
2488 		if (pt->heap.heap_cnt) {
2489 			ts = pt->heap.heap_array[0].ordinal + 1;
2490 			if (ts > timestamp)
2491 				ts = timestamp;
2492 		} else {
2493 			ts = timestamp;
2494 		}
2495 
2496 		intel_pt_set_pid_tid_cpu(pt, queue);
2497 
2498 		ret = intel_pt_run_decoder(ptq, &ts);
2499 
2500 		if (ret < 0) {
2501 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2502 			return ret;
2503 		}
2504 
2505 		if (!ret) {
2506 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2507 			if (ret < 0)
2508 				return ret;
2509 		} else {
2510 			ptq->on_heap = false;
2511 		}
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2518 					    u64 time_)
2519 {
2520 	struct auxtrace_queues *queues = &pt->queues;
2521 	unsigned int i;
2522 	u64 ts = 0;
2523 
2524 	for (i = 0; i < queues->nr_queues; i++) {
2525 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2526 		struct intel_pt_queue *ptq = queue->priv;
2527 
2528 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2529 			ptq->time = time_;
2530 			intel_pt_set_pid_tid_cpu(pt, queue);
2531 			intel_pt_run_decoder(ptq, &ts);
2532 		}
2533 	}
2534 	return 0;
2535 }
2536 
2537 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2538 					    struct auxtrace_queue *queue,
2539 					    struct perf_sample *sample)
2540 {
2541 	struct machine *m = ptq->pt->machine;
2542 
2543 	ptq->pid = sample->pid;
2544 	ptq->tid = sample->tid;
2545 	ptq->cpu = queue->cpu;
2546 
2547 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2548 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2549 
2550 	thread__zput(ptq->thread);
2551 
2552 	if (ptq->tid == -1)
2553 		return;
2554 
2555 	if (ptq->pid == -1) {
2556 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2557 		if (ptq->thread)
2558 			ptq->pid = ptq->thread->pid_;
2559 		return;
2560 	}
2561 
2562 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2563 }
2564 
2565 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2566 					    struct perf_sample *sample)
2567 {
2568 	struct auxtrace_queue *queue;
2569 	struct intel_pt_queue *ptq;
2570 	u64 ts = 0;
2571 
2572 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2573 	if (!queue)
2574 		return -EINVAL;
2575 
2576 	ptq = queue->priv;
2577 	if (!ptq)
2578 		return 0;
2579 
2580 	ptq->stop = false;
2581 	ptq->time = sample->time;
2582 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2583 	intel_pt_run_decoder(ptq, &ts);
2584 	return 0;
2585 }
2586 
2587 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2588 {
2589 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2590 				    sample->pid, sample->tid, 0, sample->time);
2591 }
2592 
2593 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2594 {
2595 	unsigned i, j;
2596 
2597 	if (cpu < 0 || !pt->queues.nr_queues)
2598 		return NULL;
2599 
2600 	if ((unsigned)cpu >= pt->queues.nr_queues)
2601 		i = pt->queues.nr_queues - 1;
2602 	else
2603 		i = cpu;
2604 
2605 	if (pt->queues.queue_array[i].cpu == cpu)
2606 		return pt->queues.queue_array[i].priv;
2607 
2608 	for (j = 0; i > 0; j++) {
2609 		if (pt->queues.queue_array[--i].cpu == cpu)
2610 			return pt->queues.queue_array[i].priv;
2611 	}
2612 
2613 	for (; j < pt->queues.nr_queues; j++) {
2614 		if (pt->queues.queue_array[j].cpu == cpu)
2615 			return pt->queues.queue_array[j].priv;
2616 	}
2617 
2618 	return NULL;
2619 }
2620 
2621 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2622 				u64 timestamp)
2623 {
2624 	struct intel_pt_queue *ptq;
2625 	int err;
2626 
2627 	if (!pt->sync_switch)
2628 		return 1;
2629 
2630 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2631 	if (!ptq || !ptq->sync_switch)
2632 		return 1;
2633 
2634 	switch (ptq->switch_state) {
2635 	case INTEL_PT_SS_NOT_TRACING:
2636 		break;
2637 	case INTEL_PT_SS_UNKNOWN:
2638 	case INTEL_PT_SS_TRACING:
2639 		ptq->next_tid = tid;
2640 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2641 		return 0;
2642 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2643 		if (!ptq->on_heap) {
2644 			ptq->timestamp = perf_time_to_tsc(timestamp,
2645 							  &pt->tc);
2646 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2647 						 ptq->timestamp);
2648 			if (err)
2649 				return err;
2650 			ptq->on_heap = true;
2651 		}
2652 		ptq->switch_state = INTEL_PT_SS_TRACING;
2653 		break;
2654 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2655 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2656 		break;
2657 	default:
2658 		break;
2659 	}
2660 
2661 	ptq->next_tid = -1;
2662 
2663 	return 1;
2664 }
2665 
2666 static int intel_pt_process_switch(struct intel_pt *pt,
2667 				   struct perf_sample *sample)
2668 {
2669 	pid_t tid;
2670 	int cpu, ret;
2671 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2672 
2673 	if (evsel != pt->switch_evsel)
2674 		return 0;
2675 
2676 	tid = evsel__intval(evsel, sample, "next_pid");
2677 	cpu = sample->cpu;
2678 
2679 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2680 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2681 		     &pt->tc));
2682 
2683 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2684 	if (ret <= 0)
2685 		return ret;
2686 
2687 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2688 }
2689 
2690 static int intel_pt_context_switch_in(struct intel_pt *pt,
2691 				      struct perf_sample *sample)
2692 {
2693 	pid_t pid = sample->pid;
2694 	pid_t tid = sample->tid;
2695 	int cpu = sample->cpu;
2696 
2697 	if (pt->sync_switch) {
2698 		struct intel_pt_queue *ptq;
2699 
2700 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2701 		if (ptq && ptq->sync_switch) {
2702 			ptq->next_tid = -1;
2703 			switch (ptq->switch_state) {
2704 			case INTEL_PT_SS_NOT_TRACING:
2705 			case INTEL_PT_SS_UNKNOWN:
2706 			case INTEL_PT_SS_TRACING:
2707 				break;
2708 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2709 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2710 				ptq->switch_state = INTEL_PT_SS_TRACING;
2711 				break;
2712 			default:
2713 				break;
2714 			}
2715 		}
2716 	}
2717 
2718 	/*
2719 	 * If the current tid has not been updated yet, ensure it is now that
2720 	 * a "switch in" event has occurred.
2721 	 */
2722 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2723 		return 0;
2724 
2725 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2726 }
2727 
2728 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2729 				   struct perf_sample *sample)
2730 {
2731 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2732 	pid_t pid, tid;
2733 	int cpu, ret;
2734 
2735 	cpu = sample->cpu;
2736 
2737 	if (pt->have_sched_switch == 3) {
2738 		if (!out)
2739 			return intel_pt_context_switch_in(pt, sample);
2740 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2741 			pr_err("Expecting CPU-wide context switch event\n");
2742 			return -EINVAL;
2743 		}
2744 		pid = event->context_switch.next_prev_pid;
2745 		tid = event->context_switch.next_prev_tid;
2746 	} else {
2747 		if (out)
2748 			return 0;
2749 		pid = sample->pid;
2750 		tid = sample->tid;
2751 	}
2752 
2753 	if (tid == -1)
2754 		intel_pt_log("context_switch event has no tid\n");
2755 
2756 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2757 	if (ret <= 0)
2758 		return ret;
2759 
2760 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2761 }
2762 
2763 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2764 					 union perf_event *event,
2765 					 struct perf_sample *sample)
2766 {
2767 	if (!pt->per_cpu_mmaps)
2768 		return 0;
2769 
2770 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2771 		     sample->cpu, event->itrace_start.pid,
2772 		     event->itrace_start.tid, sample->time,
2773 		     perf_time_to_tsc(sample->time, &pt->tc));
2774 
2775 	return machine__set_current_tid(pt->machine, sample->cpu,
2776 					event->itrace_start.pid,
2777 					event->itrace_start.tid);
2778 }
2779 
2780 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2781 			     struct addr_location *al)
2782 {
2783 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2784 		if (!thread__find_map(thread, cpumode, addr, al))
2785 			return -1;
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 /* Invalidate all instruction cache entries that overlap the text poke */
2792 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2793 {
2794 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2795 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2796 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2797 	int cnt = 4096 + event->text_poke.new_len;
2798 	struct thread *thread = pt->unknown_thread;
2799 	struct addr_location al = { .map = NULL };
2800 	struct machine *machine = pt->machine;
2801 	struct intel_pt_cache_entry *e;
2802 	u64 offset;
2803 
2804 	if (!event->text_poke.new_len)
2805 		return 0;
2806 
2807 	for (; cnt; cnt--, addr--) {
2808 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2809 			if (addr < event->text_poke.addr)
2810 				return 0;
2811 			continue;
2812 		}
2813 
2814 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2815 			continue;
2816 
2817 		offset = al.map->map_ip(al.map, addr);
2818 
2819 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2820 		if (!e)
2821 			continue;
2822 
2823 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2824 			/*
2825 			 * No overlap. Working backwards there cannot be another
2826 			 * basic block that overlaps the text poke if there is a
2827 			 * branch instruction before the text poke address.
2828 			 */
2829 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2830 				return 0;
2831 		} else {
2832 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2833 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2834 				     al.map->dso->long_name, addr);
2835 		}
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static int intel_pt_process_event(struct perf_session *session,
2842 				  union perf_event *event,
2843 				  struct perf_sample *sample,
2844 				  struct perf_tool *tool)
2845 {
2846 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2847 					   auxtrace);
2848 	u64 timestamp;
2849 	int err = 0;
2850 
2851 	if (dump_trace)
2852 		return 0;
2853 
2854 	if (!tool->ordered_events) {
2855 		pr_err("Intel Processor Trace requires ordered events\n");
2856 		return -EINVAL;
2857 	}
2858 
2859 	if (sample->time && sample->time != (u64)-1)
2860 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2861 	else
2862 		timestamp = 0;
2863 
2864 	if (timestamp || pt->timeless_decoding) {
2865 		err = intel_pt_update_queues(pt);
2866 		if (err)
2867 			return err;
2868 	}
2869 
2870 	if (pt->timeless_decoding) {
2871 		if (pt->sampling_mode) {
2872 			if (sample->aux_sample.size)
2873 				err = intel_pt_process_timeless_sample(pt,
2874 								       sample);
2875 		} else if (event->header.type == PERF_RECORD_EXIT) {
2876 			err = intel_pt_process_timeless_queues(pt,
2877 							       event->fork.tid,
2878 							       sample->time);
2879 		}
2880 	} else if (timestamp) {
2881 		err = intel_pt_process_queues(pt, timestamp);
2882 	}
2883 	if (err)
2884 		return err;
2885 
2886 	if (event->header.type == PERF_RECORD_SAMPLE) {
2887 		if (pt->synth_opts.add_callchain && !sample->callchain)
2888 			intel_pt_add_callchain(pt, sample);
2889 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2890 			intel_pt_add_br_stack(pt, sample);
2891 	}
2892 
2893 	if (event->header.type == PERF_RECORD_AUX &&
2894 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2895 	    pt->synth_opts.errors) {
2896 		err = intel_pt_lost(pt, sample);
2897 		if (err)
2898 			return err;
2899 	}
2900 
2901 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2902 		err = intel_pt_process_switch(pt, sample);
2903 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2904 		err = intel_pt_process_itrace_start(pt, event, sample);
2905 	else if (event->header.type == PERF_RECORD_SWITCH ||
2906 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2907 		err = intel_pt_context_switch(pt, event, sample);
2908 
2909 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2910 		err = intel_pt_text_poke(pt, event);
2911 
2912 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2913 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2914 			     event->header.type, sample->cpu, sample->time, timestamp);
2915 		intel_pt_log_event(event);
2916 	}
2917 
2918 	return err;
2919 }
2920 
2921 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2922 {
2923 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2924 					   auxtrace);
2925 	int ret;
2926 
2927 	if (dump_trace)
2928 		return 0;
2929 
2930 	if (!tool->ordered_events)
2931 		return -EINVAL;
2932 
2933 	ret = intel_pt_update_queues(pt);
2934 	if (ret < 0)
2935 		return ret;
2936 
2937 	if (pt->timeless_decoding)
2938 		return intel_pt_process_timeless_queues(pt, -1,
2939 							MAX_TIMESTAMP - 1);
2940 
2941 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2942 }
2943 
2944 static void intel_pt_free_events(struct perf_session *session)
2945 {
2946 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2947 					   auxtrace);
2948 	struct auxtrace_queues *queues = &pt->queues;
2949 	unsigned int i;
2950 
2951 	for (i = 0; i < queues->nr_queues; i++) {
2952 		intel_pt_free_queue(queues->queue_array[i].priv);
2953 		queues->queue_array[i].priv = NULL;
2954 	}
2955 	intel_pt_log_disable();
2956 	auxtrace_queues__free(queues);
2957 }
2958 
2959 static void intel_pt_free(struct perf_session *session)
2960 {
2961 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2962 					   auxtrace);
2963 
2964 	auxtrace_heap__free(&pt->heap);
2965 	intel_pt_free_events(session);
2966 	session->auxtrace = NULL;
2967 	thread__put(pt->unknown_thread);
2968 	addr_filters__exit(&pt->filts);
2969 	zfree(&pt->chain);
2970 	zfree(&pt->filter);
2971 	zfree(&pt->time_ranges);
2972 	free(pt);
2973 }
2974 
2975 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2976 				       struct evsel *evsel)
2977 {
2978 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2979 					   auxtrace);
2980 
2981 	return evsel->core.attr.type == pt->pmu_type;
2982 }
2983 
2984 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2985 					   union perf_event *event,
2986 					   struct perf_tool *tool __maybe_unused)
2987 {
2988 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2989 					   auxtrace);
2990 
2991 	if (!pt->data_queued) {
2992 		struct auxtrace_buffer *buffer;
2993 		off_t data_offset;
2994 		int fd = perf_data__fd(session->data);
2995 		int err;
2996 
2997 		if (perf_data__is_pipe(session->data)) {
2998 			data_offset = 0;
2999 		} else {
3000 			data_offset = lseek(fd, 0, SEEK_CUR);
3001 			if (data_offset == -1)
3002 				return -errno;
3003 		}
3004 
3005 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3006 						 data_offset, &buffer);
3007 		if (err)
3008 			return err;
3009 
3010 		/* Dump here now we have copied a piped trace out of the pipe */
3011 		if (dump_trace) {
3012 			if (auxtrace_buffer__get_data(buffer, fd)) {
3013 				intel_pt_dump_event(pt, buffer->data,
3014 						    buffer->size);
3015 				auxtrace_buffer__put_data(buffer);
3016 			}
3017 		}
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static int intel_pt_queue_data(struct perf_session *session,
3024 			       struct perf_sample *sample,
3025 			       union perf_event *event, u64 data_offset)
3026 {
3027 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3028 					   auxtrace);
3029 	u64 timestamp;
3030 
3031 	if (event) {
3032 		return auxtrace_queues__add_event(&pt->queues, session, event,
3033 						  data_offset, NULL);
3034 	}
3035 
3036 	if (sample->time && sample->time != (u64)-1)
3037 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3038 	else
3039 		timestamp = 0;
3040 
3041 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3042 					   data_offset, timestamp);
3043 }
3044 
3045 struct intel_pt_synth {
3046 	struct perf_tool dummy_tool;
3047 	struct perf_session *session;
3048 };
3049 
3050 static int intel_pt_event_synth(struct perf_tool *tool,
3051 				union perf_event *event,
3052 				struct perf_sample *sample __maybe_unused,
3053 				struct machine *machine __maybe_unused)
3054 {
3055 	struct intel_pt_synth *intel_pt_synth =
3056 			container_of(tool, struct intel_pt_synth, dummy_tool);
3057 
3058 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3059 						 NULL);
3060 }
3061 
3062 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3063 				struct perf_event_attr *attr, u64 id)
3064 {
3065 	struct intel_pt_synth intel_pt_synth;
3066 	int err;
3067 
3068 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3069 		 name, id, (u64)attr->sample_type);
3070 
3071 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3072 	intel_pt_synth.session = session;
3073 
3074 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3075 					  &id, intel_pt_event_synth);
3076 	if (err)
3077 		pr_err("%s: failed to synthesize '%s' event type\n",
3078 		       __func__, name);
3079 
3080 	return err;
3081 }
3082 
3083 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3084 				    const char *name)
3085 {
3086 	struct evsel *evsel;
3087 
3088 	evlist__for_each_entry(evlist, evsel) {
3089 		if (evsel->core.id && evsel->core.id[0] == id) {
3090 			if (evsel->name)
3091 				zfree(&evsel->name);
3092 			evsel->name = strdup(name);
3093 			break;
3094 		}
3095 	}
3096 }
3097 
3098 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3099 					 struct evlist *evlist)
3100 {
3101 	struct evsel *evsel;
3102 
3103 	evlist__for_each_entry(evlist, evsel) {
3104 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3105 			return evsel;
3106 	}
3107 
3108 	return NULL;
3109 }
3110 
3111 static int intel_pt_synth_events(struct intel_pt *pt,
3112 				 struct perf_session *session)
3113 {
3114 	struct evlist *evlist = session->evlist;
3115 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3116 	struct perf_event_attr attr;
3117 	u64 id;
3118 	int err;
3119 
3120 	if (!evsel) {
3121 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3122 		return 0;
3123 	}
3124 
3125 	memset(&attr, 0, sizeof(struct perf_event_attr));
3126 	attr.size = sizeof(struct perf_event_attr);
3127 	attr.type = PERF_TYPE_HARDWARE;
3128 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3129 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3130 			    PERF_SAMPLE_PERIOD;
3131 	if (pt->timeless_decoding)
3132 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3133 	else
3134 		attr.sample_type |= PERF_SAMPLE_TIME;
3135 	if (!pt->per_cpu_mmaps)
3136 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3137 	attr.exclude_user = evsel->core.attr.exclude_user;
3138 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3139 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3140 	attr.exclude_host = evsel->core.attr.exclude_host;
3141 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3142 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3143 	attr.read_format = evsel->core.attr.read_format;
3144 
3145 	id = evsel->core.id[0] + 1000000000;
3146 	if (!id)
3147 		id = 1;
3148 
3149 	if (pt->synth_opts.branches) {
3150 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3151 		attr.sample_period = 1;
3152 		attr.sample_type |= PERF_SAMPLE_ADDR;
3153 		err = intel_pt_synth_event(session, "branches", &attr, id);
3154 		if (err)
3155 			return err;
3156 		pt->sample_branches = true;
3157 		pt->branches_sample_type = attr.sample_type;
3158 		pt->branches_id = id;
3159 		id += 1;
3160 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3161 	}
3162 
3163 	if (pt->synth_opts.callchain)
3164 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3165 	if (pt->synth_opts.last_branch) {
3166 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3167 		/*
3168 		 * We don't use the hardware index, but the sample generation
3169 		 * code uses the new format branch_stack with this field,
3170 		 * so the event attributes must indicate that it's present.
3171 		 */
3172 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3173 	}
3174 
3175 	if (pt->synth_opts.instructions) {
3176 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3177 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3178 			attr.sample_period =
3179 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3180 		else
3181 			attr.sample_period = pt->synth_opts.period;
3182 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3183 		if (err)
3184 			return err;
3185 		pt->sample_instructions = true;
3186 		pt->instructions_sample_type = attr.sample_type;
3187 		pt->instructions_id = id;
3188 		id += 1;
3189 	}
3190 
3191 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3192 	attr.sample_period = 1;
3193 
3194 	if (pt->synth_opts.transactions) {
3195 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3196 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3197 		if (err)
3198 			return err;
3199 		pt->sample_transactions = true;
3200 		pt->transactions_sample_type = attr.sample_type;
3201 		pt->transactions_id = id;
3202 		intel_pt_set_event_name(evlist, id, "transactions");
3203 		id += 1;
3204 	}
3205 
3206 	attr.type = PERF_TYPE_SYNTH;
3207 	attr.sample_type |= PERF_SAMPLE_RAW;
3208 
3209 	if (pt->synth_opts.ptwrites) {
3210 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3211 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3212 		if (err)
3213 			return err;
3214 		pt->sample_ptwrites = true;
3215 		pt->ptwrites_sample_type = attr.sample_type;
3216 		pt->ptwrites_id = id;
3217 		intel_pt_set_event_name(evlist, id, "ptwrite");
3218 		id += 1;
3219 	}
3220 
3221 	if (pt->synth_opts.pwr_events) {
3222 		pt->sample_pwr_events = true;
3223 		pt->pwr_events_sample_type = attr.sample_type;
3224 
3225 		attr.config = PERF_SYNTH_INTEL_CBR;
3226 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3227 		if (err)
3228 			return err;
3229 		pt->cbr_id = id;
3230 		intel_pt_set_event_name(evlist, id, "cbr");
3231 		id += 1;
3232 
3233 		attr.config = PERF_SYNTH_INTEL_PSB;
3234 		err = intel_pt_synth_event(session, "psb", &attr, id);
3235 		if (err)
3236 			return err;
3237 		pt->psb_id = id;
3238 		intel_pt_set_event_name(evlist, id, "psb");
3239 		id += 1;
3240 	}
3241 
3242 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3243 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3244 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3245 		if (err)
3246 			return err;
3247 		pt->mwait_id = id;
3248 		intel_pt_set_event_name(evlist, id, "mwait");
3249 		id += 1;
3250 
3251 		attr.config = PERF_SYNTH_INTEL_PWRE;
3252 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3253 		if (err)
3254 			return err;
3255 		pt->pwre_id = id;
3256 		intel_pt_set_event_name(evlist, id, "pwre");
3257 		id += 1;
3258 
3259 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3260 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3261 		if (err)
3262 			return err;
3263 		pt->exstop_id = id;
3264 		intel_pt_set_event_name(evlist, id, "exstop");
3265 		id += 1;
3266 
3267 		attr.config = PERF_SYNTH_INTEL_PWRX;
3268 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3269 		if (err)
3270 			return err;
3271 		pt->pwrx_id = id;
3272 		intel_pt_set_event_name(evlist, id, "pwrx");
3273 		id += 1;
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3280 {
3281 	struct evsel *evsel;
3282 
3283 	if (!pt->synth_opts.other_events)
3284 		return;
3285 
3286 	evlist__for_each_entry(pt->session->evlist, evsel) {
3287 		if (evsel->core.attr.aux_output && evsel->core.id) {
3288 			pt->sample_pebs = true;
3289 			pt->pebs_evsel = evsel;
3290 			return;
3291 		}
3292 	}
3293 }
3294 
3295 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3296 {
3297 	struct evsel *evsel;
3298 
3299 	evlist__for_each_entry_reverse(evlist, evsel) {
3300 		const char *name = evsel__name(evsel);
3301 
3302 		if (!strcmp(name, "sched:sched_switch"))
3303 			return evsel;
3304 	}
3305 
3306 	return NULL;
3307 }
3308 
3309 static bool intel_pt_find_switch(struct evlist *evlist)
3310 {
3311 	struct evsel *evsel;
3312 
3313 	evlist__for_each_entry(evlist, evsel) {
3314 		if (evsel->core.attr.context_switch)
3315 			return true;
3316 	}
3317 
3318 	return false;
3319 }
3320 
3321 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3322 {
3323 	struct intel_pt *pt = data;
3324 
3325 	if (!strcmp(var, "intel-pt.mispred-all"))
3326 		pt->mispred_all = perf_config_bool(var, value);
3327 
3328 	return 0;
3329 }
3330 
3331 /* Find least TSC which converts to ns or later */
3332 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3333 {
3334 	u64 tsc, tm;
3335 
3336 	tsc = perf_time_to_tsc(ns, &pt->tc);
3337 
3338 	while (1) {
3339 		tm = tsc_to_perf_time(tsc, &pt->tc);
3340 		if (tm < ns)
3341 			break;
3342 		tsc -= 1;
3343 	}
3344 
3345 	while (tm < ns)
3346 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3347 
3348 	return tsc;
3349 }
3350 
3351 /* Find greatest TSC which converts to ns or earlier */
3352 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3353 {
3354 	u64 tsc, tm;
3355 
3356 	tsc = perf_time_to_tsc(ns, &pt->tc);
3357 
3358 	while (1) {
3359 		tm = tsc_to_perf_time(tsc, &pt->tc);
3360 		if (tm > ns)
3361 			break;
3362 		tsc += 1;
3363 	}
3364 
3365 	while (tm > ns)
3366 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3367 
3368 	return tsc;
3369 }
3370 
3371 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3372 				      struct itrace_synth_opts *opts)
3373 {
3374 	struct perf_time_interval *p = opts->ptime_range;
3375 	int n = opts->range_num;
3376 	int i;
3377 
3378 	if (!n || !p || pt->timeless_decoding)
3379 		return 0;
3380 
3381 	pt->time_ranges = calloc(n, sizeof(struct range));
3382 	if (!pt->time_ranges)
3383 		return -ENOMEM;
3384 
3385 	pt->range_cnt = n;
3386 
3387 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3388 
3389 	for (i = 0; i < n; i++) {
3390 		struct range *r = &pt->time_ranges[i];
3391 		u64 ts = p[i].start;
3392 		u64 te = p[i].end;
3393 
3394 		/*
3395 		 * Take care to ensure the TSC range matches the perf-time range
3396 		 * when converted back to perf-time.
3397 		 */
3398 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3399 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3400 
3401 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3402 			     i, ts, te);
3403 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3404 			     i, r->start, r->end);
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 static const char * const intel_pt_info_fmts[] = {
3411 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3412 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3413 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3414 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3415 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3416 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3417 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3418 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3419 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3420 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3421 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3422 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3423 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3424 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3425 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3426 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3427 };
3428 
3429 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3430 {
3431 	int i;
3432 
3433 	if (!dump_trace)
3434 		return;
3435 
3436 	for (i = start; i <= finish; i++)
3437 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3438 }
3439 
3440 static void intel_pt_print_info_str(const char *name, const char *str)
3441 {
3442 	if (!dump_trace)
3443 		return;
3444 
3445 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3446 }
3447 
3448 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3449 {
3450 	return auxtrace_info->header.size >=
3451 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3452 }
3453 
3454 int intel_pt_process_auxtrace_info(union perf_event *event,
3455 				   struct perf_session *session)
3456 {
3457 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3458 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3459 	struct intel_pt *pt;
3460 	void *info_end;
3461 	__u64 *info;
3462 	int err;
3463 
3464 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3465 					min_sz)
3466 		return -EINVAL;
3467 
3468 	pt = zalloc(sizeof(struct intel_pt));
3469 	if (!pt)
3470 		return -ENOMEM;
3471 
3472 	addr_filters__init(&pt->filts);
3473 
3474 	err = perf_config(intel_pt_perf_config, pt);
3475 	if (err)
3476 		goto err_free;
3477 
3478 	err = auxtrace_queues__init(&pt->queues);
3479 	if (err)
3480 		goto err_free;
3481 
3482 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3483 
3484 	pt->session = session;
3485 	pt->machine = &session->machines.host; /* No kvm support */
3486 	pt->auxtrace_type = auxtrace_info->type;
3487 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3488 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3489 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3490 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3491 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3492 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3493 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3494 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3495 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3496 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3497 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3498 			    INTEL_PT_PER_CPU_MMAPS);
3499 
3500 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3501 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3502 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3503 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3504 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3505 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3506 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3507 				    INTEL_PT_CYC_BIT);
3508 	}
3509 
3510 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3511 		pt->max_non_turbo_ratio =
3512 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3513 		intel_pt_print_info(&auxtrace_info->priv[0],
3514 				    INTEL_PT_MAX_NONTURBO_RATIO,
3515 				    INTEL_PT_MAX_NONTURBO_RATIO);
3516 	}
3517 
3518 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3519 	info_end = (void *)info + auxtrace_info->header.size;
3520 
3521 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3522 		size_t len;
3523 
3524 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3525 		intel_pt_print_info(&auxtrace_info->priv[0],
3526 				    INTEL_PT_FILTER_STR_LEN,
3527 				    INTEL_PT_FILTER_STR_LEN);
3528 		if (len) {
3529 			const char *filter = (const char *)info;
3530 
3531 			len = roundup(len + 1, 8);
3532 			info += len >> 3;
3533 			if ((void *)info > info_end) {
3534 				pr_err("%s: bad filter string length\n", __func__);
3535 				err = -EINVAL;
3536 				goto err_free_queues;
3537 			}
3538 			pt->filter = memdup(filter, len);
3539 			if (!pt->filter) {
3540 				err = -ENOMEM;
3541 				goto err_free_queues;
3542 			}
3543 			if (session->header.needs_swap)
3544 				mem_bswap_64(pt->filter, len);
3545 			if (pt->filter[len - 1]) {
3546 				pr_err("%s: filter string not null terminated\n", __func__);
3547 				err = -EINVAL;
3548 				goto err_free_queues;
3549 			}
3550 			err = addr_filters__parse_bare_filter(&pt->filts,
3551 							      filter);
3552 			if (err)
3553 				goto err_free_queues;
3554 		}
3555 		intel_pt_print_info_str("Filter string", pt->filter);
3556 	}
3557 
3558 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3559 	if (pt->timeless_decoding && !pt->tc.time_mult)
3560 		pt->tc.time_mult = 1;
3561 	pt->have_tsc = intel_pt_have_tsc(pt);
3562 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3563 	pt->est_tsc = !pt->timeless_decoding;
3564 
3565 	pt->unknown_thread = thread__new(999999999, 999999999);
3566 	if (!pt->unknown_thread) {
3567 		err = -ENOMEM;
3568 		goto err_free_queues;
3569 	}
3570 
3571 	/*
3572 	 * Since this thread will not be kept in any rbtree not in a
3573 	 * list, initialize its list node so that at thread__put() the
3574 	 * current thread lifetime assumption is kept and we don't segfault
3575 	 * at list_del_init().
3576 	 */
3577 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3578 
3579 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3580 	if (err)
3581 		goto err_delete_thread;
3582 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3583 		err = -ENOMEM;
3584 		goto err_delete_thread;
3585 	}
3586 
3587 	pt->auxtrace.process_event = intel_pt_process_event;
3588 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3589 	pt->auxtrace.queue_data = intel_pt_queue_data;
3590 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3591 	pt->auxtrace.flush_events = intel_pt_flush;
3592 	pt->auxtrace.free_events = intel_pt_free_events;
3593 	pt->auxtrace.free = intel_pt_free;
3594 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3595 	session->auxtrace = &pt->auxtrace;
3596 
3597 	if (dump_trace)
3598 		return 0;
3599 
3600 	if (pt->have_sched_switch == 1) {
3601 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3602 		if (!pt->switch_evsel) {
3603 			pr_err("%s: missing sched_switch event\n", __func__);
3604 			err = -EINVAL;
3605 			goto err_delete_thread;
3606 		}
3607 	} else if (pt->have_sched_switch == 2 &&
3608 		   !intel_pt_find_switch(session->evlist)) {
3609 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3610 		err = -EINVAL;
3611 		goto err_delete_thread;
3612 	}
3613 
3614 	if (session->itrace_synth_opts->set) {
3615 		pt->synth_opts = *session->itrace_synth_opts;
3616 	} else {
3617 		itrace_synth_opts__set_default(&pt->synth_opts,
3618 				session->itrace_synth_opts->default_no_sample);
3619 		if (!session->itrace_synth_opts->default_no_sample &&
3620 		    !session->itrace_synth_opts->inject) {
3621 			pt->synth_opts.branches = false;
3622 			pt->synth_opts.callchain = true;
3623 			pt->synth_opts.add_callchain = true;
3624 		}
3625 		pt->synth_opts.thread_stack =
3626 				session->itrace_synth_opts->thread_stack;
3627 	}
3628 
3629 	if (pt->synth_opts.log)
3630 		intel_pt_log_enable();
3631 
3632 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3633 	if (pt->tc.time_mult) {
3634 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3635 
3636 		if (!pt->max_non_turbo_ratio)
3637 			pt->max_non_turbo_ratio =
3638 					(tsc_freq + 50000000) / 100000000;
3639 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3640 		intel_pt_log("Maximum non-turbo ratio %u\n",
3641 			     pt->max_non_turbo_ratio);
3642 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3643 	}
3644 
3645 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3646 	if (err)
3647 		goto err_delete_thread;
3648 
3649 	if (pt->synth_opts.calls)
3650 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3651 				       PERF_IP_FLAG_TRACE_END;
3652 	if (pt->synth_opts.returns)
3653 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3654 				       PERF_IP_FLAG_TRACE_BEGIN;
3655 
3656 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3657 	    !symbol_conf.use_callchain) {
3658 		symbol_conf.use_callchain = true;
3659 		if (callchain_register_param(&callchain_param) < 0) {
3660 			symbol_conf.use_callchain = false;
3661 			pt->synth_opts.callchain = false;
3662 			pt->synth_opts.add_callchain = false;
3663 		}
3664 	}
3665 
3666 	if (pt->synth_opts.add_callchain) {
3667 		err = intel_pt_callchain_init(pt);
3668 		if (err)
3669 			goto err_delete_thread;
3670 	}
3671 
3672 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3673 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3674 		pt->br_stack_sz_plus = pt->br_stack_sz;
3675 	}
3676 
3677 	if (pt->synth_opts.add_last_branch) {
3678 		err = intel_pt_br_stack_init(pt);
3679 		if (err)
3680 			goto err_delete_thread;
3681 		/*
3682 		 * Additional branch stack size to cater for tracing from the
3683 		 * actual sample ip to where the sample time is recorded.
3684 		 * Measured at about 200 branches, but generously set to 1024.
3685 		 * If kernel space is not being traced, then add just 1 for the
3686 		 * branch to kernel space.
3687 		 */
3688 		if (intel_pt_tracing_kernel(pt))
3689 			pt->br_stack_sz_plus += 1024;
3690 		else
3691 			pt->br_stack_sz_plus += 1;
3692 	}
3693 
3694 	pt->use_thread_stack = pt->synth_opts.callchain ||
3695 			       pt->synth_opts.add_callchain ||
3696 			       pt->synth_opts.thread_stack ||
3697 			       pt->synth_opts.last_branch ||
3698 			       pt->synth_opts.add_last_branch;
3699 
3700 	pt->callstack = pt->synth_opts.callchain ||
3701 			pt->synth_opts.add_callchain ||
3702 			pt->synth_opts.thread_stack;
3703 
3704 	err = intel_pt_synth_events(pt, session);
3705 	if (err)
3706 		goto err_delete_thread;
3707 
3708 	intel_pt_setup_pebs_events(pt);
3709 
3710 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3711 		err = auxtrace_queue_data(session, true, true);
3712 	else
3713 		err = auxtrace_queues__process_index(&pt->queues, session);
3714 	if (err)
3715 		goto err_delete_thread;
3716 
3717 	if (pt->queues.populated)
3718 		pt->data_queued = true;
3719 
3720 	if (pt->timeless_decoding)
3721 		pr_debug2("Intel PT decoding without timestamps\n");
3722 
3723 	return 0;
3724 
3725 err_delete_thread:
3726 	zfree(&pt->chain);
3727 	thread__zput(pt->unknown_thread);
3728 err_free_queues:
3729 	intel_pt_log_disable();
3730 	auxtrace_queues__free(&pt->queues);
3731 	session->auxtrace = NULL;
3732 err_free:
3733 	addr_filters__exit(&pt->filts);
3734 	zfree(&pt->filter);
3735 	zfree(&pt->time_ranges);
3736 	free(pt);
3737 	return err;
3738 }
3739