1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <linux/perf_event.h> 9 #include <stdio.h> 10 #include <stdbool.h> 11 #include <errno.h> 12 #include <linux/kernel.h> 13 #include <linux/string.h> 14 #include <linux/types.h> 15 #include <linux/zalloc.h> 16 17 #include "session.h" 18 #include "machine.h" 19 #include "memswap.h" 20 #include "sort.h" 21 #include "tool.h" 22 #include "event.h" 23 #include "evlist.h" 24 #include "evsel.h" 25 #include "map.h" 26 #include "color.h" 27 #include "thread.h" 28 #include "thread-stack.h" 29 #include "symbol.h" 30 #include "callchain.h" 31 #include "dso.h" 32 #include "debug.h" 33 #include "auxtrace.h" 34 #include "tsc.h" 35 #include "intel-pt.h" 36 #include "config.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "time-utils.h" 40 41 #include "../arch/x86/include/uapi/asm/perf_regs.h" 42 43 #include "intel-pt-decoder/intel-pt-log.h" 44 #include "intel-pt-decoder/intel-pt-decoder.h" 45 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 47 48 #define MAX_TIMESTAMP (~0ULL) 49 50 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0) 51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4) 52 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13) 53 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31) 54 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55) 55 56 struct range { 57 u64 start; 58 u64 end; 59 }; 60 61 struct intel_pt { 62 struct auxtrace auxtrace; 63 struct auxtrace_queues queues; 64 struct auxtrace_heap heap; 65 u32 auxtrace_type; 66 struct perf_session *session; 67 struct machine *machine; 68 struct evsel *switch_evsel; 69 struct thread *unknown_thread; 70 bool timeless_decoding; 71 bool sampling_mode; 72 bool snapshot_mode; 73 bool per_cpu_mmaps; 74 bool have_tsc; 75 bool data_queued; 76 bool est_tsc; 77 bool sync_switch; 78 bool sync_switch_not_supported; 79 bool mispred_all; 80 bool use_thread_stack; 81 bool callstack; 82 bool cap_event_trace; 83 bool have_guest_sideband; 84 unsigned int br_stack_sz; 85 unsigned int br_stack_sz_plus; 86 int have_sched_switch; 87 u32 pmu_type; 88 u64 kernel_start; 89 u64 switch_ip; 90 u64 ptss_ip; 91 u64 first_timestamp; 92 93 struct perf_tsc_conversion tc; 94 bool cap_user_time_zero; 95 96 struct itrace_synth_opts synth_opts; 97 98 bool sample_instructions; 99 u64 instructions_sample_type; 100 u64 instructions_id; 101 102 bool sample_cycles; 103 u64 cycles_sample_type; 104 u64 cycles_id; 105 106 bool sample_branches; 107 u32 branches_filter; 108 u64 branches_sample_type; 109 u64 branches_id; 110 111 bool sample_transactions; 112 u64 transactions_sample_type; 113 u64 transactions_id; 114 115 bool sample_ptwrites; 116 u64 ptwrites_sample_type; 117 u64 ptwrites_id; 118 119 bool sample_pwr_events; 120 u64 pwr_events_sample_type; 121 u64 mwait_id; 122 u64 pwre_id; 123 u64 exstop_id; 124 u64 pwrx_id; 125 u64 cbr_id; 126 u64 psb_id; 127 128 bool single_pebs; 129 bool sample_pebs; 130 struct evsel *pebs_evsel; 131 132 u64 evt_sample_type; 133 u64 evt_id; 134 135 u64 iflag_chg_sample_type; 136 u64 iflag_chg_id; 137 138 u64 tsc_bit; 139 u64 mtc_bit; 140 u64 mtc_freq_bits; 141 u32 tsc_ctc_ratio_n; 142 u32 tsc_ctc_ratio_d; 143 u64 cyc_bit; 144 u64 noretcomp_bit; 145 unsigned max_non_turbo_ratio; 146 unsigned cbr2khz; 147 int max_loops; 148 149 unsigned long num_events; 150 151 char *filter; 152 struct addr_filters filts; 153 154 struct range *time_ranges; 155 unsigned int range_cnt; 156 157 struct ip_callchain *chain; 158 struct branch_stack *br_stack; 159 160 u64 dflt_tsc_offset; 161 struct rb_root vmcs_info; 162 }; 163 164 enum switch_state { 165 INTEL_PT_SS_NOT_TRACING, 166 INTEL_PT_SS_UNKNOWN, 167 INTEL_PT_SS_TRACING, 168 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 169 INTEL_PT_SS_EXPECTING_SWITCH_IP, 170 }; 171 172 /* applicable_counters is 64-bits */ 173 #define INTEL_PT_MAX_PEBS 64 174 175 struct intel_pt_pebs_event { 176 struct evsel *evsel; 177 u64 id; 178 }; 179 180 struct intel_pt_queue { 181 struct intel_pt *pt; 182 unsigned int queue_nr; 183 struct auxtrace_buffer *buffer; 184 struct auxtrace_buffer *old_buffer; 185 void *decoder; 186 const struct intel_pt_state *state; 187 struct ip_callchain *chain; 188 struct branch_stack *last_branch; 189 union perf_event *event_buf; 190 bool on_heap; 191 bool stop; 192 bool step_through_buffers; 193 bool use_buffer_pid_tid; 194 bool sync_switch; 195 bool sample_ipc; 196 pid_t pid, tid; 197 int cpu; 198 int switch_state; 199 pid_t next_tid; 200 struct thread *thread; 201 struct machine *guest_machine; 202 struct thread *guest_thread; 203 struct thread *unknown_guest_thread; 204 pid_t guest_machine_pid; 205 pid_t guest_pid; 206 pid_t guest_tid; 207 int vcpu; 208 bool exclude_kernel; 209 bool have_sample; 210 u64 time; 211 u64 timestamp; 212 u64 sel_timestamp; 213 bool sel_start; 214 unsigned int sel_idx; 215 u32 flags; 216 u16 insn_len; 217 u64 last_insn_cnt; 218 u64 ipc_insn_cnt; 219 u64 ipc_cyc_cnt; 220 u64 last_in_insn_cnt; 221 u64 last_in_cyc_cnt; 222 u64 last_cy_insn_cnt; 223 u64 last_cy_cyc_cnt; 224 u64 last_br_insn_cnt; 225 u64 last_br_cyc_cnt; 226 unsigned int cbr_seen; 227 char insn[INTEL_PT_INSN_BUF_SZ]; 228 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS]; 229 }; 230 231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 232 unsigned char *buf, size_t len) 233 { 234 struct intel_pt_pkt packet; 235 size_t pos = 0; 236 int ret, pkt_len, i; 237 char desc[INTEL_PT_PKT_DESC_MAX]; 238 const char *color = PERF_COLOR_BLUE; 239 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 240 241 color_fprintf(stdout, color, 242 ". ... Intel Processor Trace data: size %zu bytes\n", 243 len); 244 245 while (len) { 246 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 247 if (ret > 0) 248 pkt_len = ret; 249 else 250 pkt_len = 1; 251 printf("."); 252 color_fprintf(stdout, color, " %08x: ", pos); 253 for (i = 0; i < pkt_len; i++) 254 color_fprintf(stdout, color, " %02x", buf[i]); 255 for (; i < 16; i++) 256 color_fprintf(stdout, color, " "); 257 if (ret > 0) { 258 ret = intel_pt_pkt_desc(&packet, desc, 259 INTEL_PT_PKT_DESC_MAX); 260 if (ret > 0) 261 color_fprintf(stdout, color, " %s\n", desc); 262 } else { 263 color_fprintf(stdout, color, " Bad packet!\n"); 264 } 265 pos += pkt_len; 266 buf += pkt_len; 267 len -= pkt_len; 268 } 269 } 270 271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 272 size_t len) 273 { 274 printf(".\n"); 275 intel_pt_dump(pt, buf, len); 276 } 277 278 static void intel_pt_log_event(union perf_event *event) 279 { 280 FILE *f = intel_pt_log_fp(); 281 282 if (!intel_pt_enable_logging || !f) 283 return; 284 285 perf_event__fprintf(event, NULL, f); 286 } 287 288 static void intel_pt_dump_sample(struct perf_session *session, 289 struct perf_sample *sample) 290 { 291 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 292 auxtrace); 293 294 printf("\n"); 295 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 296 } 297 298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 299 { 300 struct perf_time_interval *range = pt->synth_opts.ptime_range; 301 int n = pt->synth_opts.range_num; 302 303 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 304 return true; 305 306 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 307 return false; 308 309 /* perf_time__ranges_skip_sample does not work if time is zero */ 310 if (!tm) 311 tm = 1; 312 313 return !n || !perf_time__ranges_skip_sample(range, n, tm); 314 } 315 316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, 317 u64 vmcs, 318 u64 dflt_tsc_offset) 319 { 320 struct rb_node **p = &rb_root->rb_node; 321 struct rb_node *parent = NULL; 322 struct intel_pt_vmcs_info *v; 323 324 while (*p) { 325 parent = *p; 326 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); 327 328 if (v->vmcs == vmcs) 329 return v; 330 331 if (vmcs < v->vmcs) 332 p = &(*p)->rb_left; 333 else 334 p = &(*p)->rb_right; 335 } 336 337 v = zalloc(sizeof(*v)); 338 if (v) { 339 v->vmcs = vmcs; 340 v->tsc_offset = dflt_tsc_offset; 341 v->reliable = dflt_tsc_offset; 342 343 rb_link_node(&v->rb_node, parent, p); 344 rb_insert_color(&v->rb_node, rb_root); 345 } 346 347 return v; 348 } 349 350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) 351 { 352 struct intel_pt_queue *ptq = data; 353 struct intel_pt *pt = ptq->pt; 354 355 if (!vmcs && !pt->dflt_tsc_offset) 356 return NULL; 357 358 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); 359 } 360 361 static void intel_pt_free_vmcs_info(struct intel_pt *pt) 362 { 363 struct intel_pt_vmcs_info *v; 364 struct rb_node *n; 365 366 n = rb_first(&pt->vmcs_info); 367 while (n) { 368 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); 369 n = rb_next(n); 370 rb_erase(&v->rb_node, &pt->vmcs_info); 371 free(v); 372 } 373 } 374 375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 376 struct auxtrace_buffer *b) 377 { 378 bool consecutive = false; 379 void *start; 380 381 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 382 pt->have_tsc, &consecutive, 383 pt->synth_opts.vm_time_correlation); 384 if (!start) 385 return -EINVAL; 386 /* 387 * In the case of vm_time_correlation, the overlap might contain TSC 388 * packets that will not be fixed, and that will then no longer work for 389 * overlap detection. Avoid that by zeroing out the overlap. 390 */ 391 if (pt->synth_opts.vm_time_correlation) 392 memset(b->data, 0, start - b->data); 393 b->use_size = b->data + b->size - start; 394 b->use_data = start; 395 if (b->use_size && consecutive) 396 b->consecutive = true; 397 return 0; 398 } 399 400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 401 struct auxtrace_buffer *buffer, 402 struct auxtrace_buffer *old_buffer, 403 struct intel_pt_buffer *b) 404 { 405 bool might_overlap; 406 407 if (!buffer->data) { 408 int fd = perf_data__fd(ptq->pt->session->data); 409 410 buffer->data = auxtrace_buffer__get_data(buffer, fd); 411 if (!buffer->data) 412 return -ENOMEM; 413 } 414 415 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 416 if (might_overlap && !buffer->consecutive && old_buffer && 417 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 418 return -ENOMEM; 419 420 if (buffer->use_data) { 421 b->len = buffer->use_size; 422 b->buf = buffer->use_data; 423 } else { 424 b->len = buffer->size; 425 b->buf = buffer->data; 426 } 427 b->ref_timestamp = buffer->reference; 428 429 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 430 b->consecutive = false; 431 b->trace_nr = buffer->buffer_nr + 1; 432 } else { 433 b->consecutive = true; 434 } 435 436 return 0; 437 } 438 439 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 441 struct auxtrace_buffer *buffer) 442 { 443 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 444 return; 445 446 auxtrace_buffer__drop_data(buffer); 447 } 448 449 /* Must be serialized with respect to intel_pt_get_trace() */ 450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 451 void *cb_data) 452 { 453 struct intel_pt_queue *ptq = data; 454 struct auxtrace_buffer *buffer = ptq->buffer; 455 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 456 struct auxtrace_queue *queue; 457 int err = 0; 458 459 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 460 461 while (1) { 462 struct intel_pt_buffer b = { .len = 0 }; 463 464 buffer = auxtrace_buffer__next(queue, buffer); 465 if (!buffer) 466 break; 467 468 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 469 if (err) 470 break; 471 472 if (b.len) { 473 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 474 old_buffer = buffer; 475 } else { 476 intel_pt_lookahead_drop_buffer(ptq, buffer); 477 continue; 478 } 479 480 err = cb(&b, cb_data); 481 if (err) 482 break; 483 } 484 485 if (buffer != old_buffer) 486 intel_pt_lookahead_drop_buffer(ptq, buffer); 487 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 488 489 return err; 490 } 491 492 /* 493 * This function assumes data is processed sequentially only. 494 * Must be serialized with respect to intel_pt_lookahead() 495 */ 496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 497 { 498 struct intel_pt_queue *ptq = data; 499 struct auxtrace_buffer *buffer = ptq->buffer; 500 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 501 struct auxtrace_queue *queue; 502 int err; 503 504 if (ptq->stop) { 505 b->len = 0; 506 return 0; 507 } 508 509 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 510 511 buffer = auxtrace_buffer__next(queue, buffer); 512 if (!buffer) { 513 if (old_buffer) 514 auxtrace_buffer__drop_data(old_buffer); 515 b->len = 0; 516 return 0; 517 } 518 519 ptq->buffer = buffer; 520 521 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 522 if (err) 523 return err; 524 525 if (ptq->step_through_buffers) 526 ptq->stop = true; 527 528 if (b->len) { 529 if (old_buffer) 530 auxtrace_buffer__drop_data(old_buffer); 531 ptq->old_buffer = buffer; 532 } else { 533 auxtrace_buffer__drop_data(buffer); 534 return intel_pt_get_trace(b, data); 535 } 536 537 return 0; 538 } 539 540 struct intel_pt_cache_entry { 541 struct auxtrace_cache_entry entry; 542 u64 insn_cnt; 543 u64 byte_cnt; 544 enum intel_pt_insn_op op; 545 enum intel_pt_insn_branch branch; 546 bool emulated_ptwrite; 547 int length; 548 int32_t rel; 549 char insn[INTEL_PT_INSN_BUF_SZ]; 550 }; 551 552 static int intel_pt_config_div(const char *var, const char *value, void *data) 553 { 554 int *d = data; 555 long val; 556 557 if (!strcmp(var, "intel-pt.cache-divisor")) { 558 val = strtol(value, NULL, 0); 559 if (val > 0 && val <= INT_MAX) 560 *d = val; 561 } 562 563 return 0; 564 } 565 566 static int intel_pt_cache_divisor(void) 567 { 568 static int d; 569 570 if (d) 571 return d; 572 573 perf_config(intel_pt_config_div, &d); 574 575 if (!d) 576 d = 64; 577 578 return d; 579 } 580 581 static unsigned int intel_pt_cache_size(struct dso *dso, 582 struct machine *machine) 583 { 584 off_t size; 585 586 size = dso__data_size(dso, machine); 587 size /= intel_pt_cache_divisor(); 588 if (size < 1000) 589 return 10; 590 if (size > (1 << 21)) 591 return 21; 592 return 32 - __builtin_clz(size); 593 } 594 595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 596 struct machine *machine) 597 { 598 struct auxtrace_cache *c; 599 unsigned int bits; 600 601 if (dso->auxtrace_cache) 602 return dso->auxtrace_cache; 603 604 bits = intel_pt_cache_size(dso, machine); 605 606 /* Ignoring cache creation failure */ 607 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 608 609 dso->auxtrace_cache = c; 610 611 return c; 612 } 613 614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 615 u64 offset, u64 insn_cnt, u64 byte_cnt, 616 struct intel_pt_insn *intel_pt_insn) 617 { 618 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 619 struct intel_pt_cache_entry *e; 620 int err; 621 622 if (!c) 623 return -ENOMEM; 624 625 e = auxtrace_cache__alloc_entry(c); 626 if (!e) 627 return -ENOMEM; 628 629 e->insn_cnt = insn_cnt; 630 e->byte_cnt = byte_cnt; 631 e->op = intel_pt_insn->op; 632 e->branch = intel_pt_insn->branch; 633 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite; 634 e->length = intel_pt_insn->length; 635 e->rel = intel_pt_insn->rel; 636 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 637 638 err = auxtrace_cache__add(c, offset, &e->entry); 639 if (err) 640 auxtrace_cache__free_entry(c, e); 641 642 return err; 643 } 644 645 static struct intel_pt_cache_entry * 646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 647 { 648 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 649 650 if (!c) 651 return NULL; 652 653 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 654 } 655 656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 657 u64 offset) 658 { 659 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 660 661 if (!c) 662 return; 663 664 auxtrace_cache__remove(dso->auxtrace_cache, offset); 665 } 666 667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip) 668 { 669 /* Assumes 64-bit kernel */ 670 return ip & (1ULL << 63); 671 } 672 673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) 674 { 675 if (nr) { 676 return intel_pt_guest_kernel_ip(ip) ? 677 PERF_RECORD_MISC_GUEST_KERNEL : 678 PERF_RECORD_MISC_GUEST_USER; 679 } 680 681 return ip >= ptq->pt->kernel_start ? 682 PERF_RECORD_MISC_KERNEL : 683 PERF_RECORD_MISC_USER; 684 } 685 686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) 687 { 688 /* No support for non-zero CS base */ 689 if (from_ip) 690 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); 691 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); 692 } 693 694 static int intel_pt_get_guest(struct intel_pt_queue *ptq) 695 { 696 struct machines *machines = &ptq->pt->session->machines; 697 struct machine *machine; 698 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; 699 700 if (ptq->guest_machine && pid == ptq->guest_machine->pid) 701 return 0; 702 703 ptq->guest_machine = NULL; 704 thread__zput(ptq->unknown_guest_thread); 705 706 if (symbol_conf.guest_code) { 707 thread__zput(ptq->guest_thread); 708 ptq->guest_thread = machines__findnew_guest_code(machines, pid); 709 } 710 711 machine = machines__find_guest(machines, pid); 712 if (!machine) 713 return -1; 714 715 ptq->unknown_guest_thread = machine__idle_thread(machine); 716 if (!ptq->unknown_guest_thread) 717 return -1; 718 719 ptq->guest_machine = machine; 720 721 return 0; 722 } 723 724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn) 725 { 726 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL; 727 } 728 729 #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite " 730 #define PTWRITE_MAGIC_LEN 16 731 732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset) 733 { 734 unsigned char buf[PTWRITE_MAGIC_LEN]; 735 ssize_t len; 736 737 len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN); 738 if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) { 739 intel_pt_log("Emulated ptwrite signature found\n"); 740 return true; 741 } 742 intel_pt_log("Emulated ptwrite signature not found\n"); 743 return false; 744 } 745 746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 747 uint64_t *insn_cnt_ptr, uint64_t *ip, 748 uint64_t to_ip, uint64_t max_insn_cnt, 749 void *data) 750 { 751 struct intel_pt_queue *ptq = data; 752 struct machine *machine = ptq->pt->machine; 753 struct thread *thread; 754 struct addr_location al; 755 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 756 ssize_t len; 757 int x86_64; 758 u8 cpumode; 759 u64 offset, start_offset, start_ip; 760 u64 insn_cnt = 0; 761 bool one_map = true; 762 bool nr; 763 764 intel_pt_insn->length = 0; 765 766 if (to_ip && *ip == to_ip) 767 goto out_no_cache; 768 769 nr = ptq->state->to_nr; 770 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); 771 772 if (nr) { 773 if (ptq->pt->have_guest_sideband) { 774 if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) { 775 intel_pt_log("ERROR: guest sideband but no guest machine\n"); 776 return -EINVAL; 777 } 778 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) || 779 intel_pt_get_guest(ptq)) { 780 intel_pt_log("ERROR: no guest machine\n"); 781 return -EINVAL; 782 } 783 machine = ptq->guest_machine; 784 thread = ptq->guest_thread; 785 if (!thread) { 786 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) { 787 intel_pt_log("ERROR: no guest thread\n"); 788 return -EINVAL; 789 } 790 thread = ptq->unknown_guest_thread; 791 } 792 } else { 793 thread = ptq->thread; 794 if (!thread) { 795 if (cpumode != PERF_RECORD_MISC_KERNEL) { 796 intel_pt_log("ERROR: no thread\n"); 797 return -EINVAL; 798 } 799 thread = ptq->pt->unknown_thread; 800 } 801 } 802 803 while (1) { 804 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) { 805 if (al.map) 806 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip); 807 else 808 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip); 809 return -EINVAL; 810 } 811 812 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 813 dso__data_status_seen(al.map->dso, 814 DSO_DATA_STATUS_SEEN_ITRACE)) 815 return -ENOENT; 816 817 offset = al.map->map_ip(al.map, *ip); 818 819 if (!to_ip && one_map) { 820 struct intel_pt_cache_entry *e; 821 822 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 823 if (e && 824 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 825 *insn_cnt_ptr = e->insn_cnt; 826 *ip += e->byte_cnt; 827 intel_pt_insn->op = e->op; 828 intel_pt_insn->branch = e->branch; 829 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite; 830 intel_pt_insn->length = e->length; 831 intel_pt_insn->rel = e->rel; 832 memcpy(intel_pt_insn->buf, e->insn, 833 INTEL_PT_INSN_BUF_SZ); 834 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 835 return 0; 836 } 837 } 838 839 start_offset = offset; 840 start_ip = *ip; 841 842 /* Load maps to ensure dso->is_64_bit has been updated */ 843 map__load(al.map); 844 845 x86_64 = al.map->dso->is_64_bit; 846 847 while (1) { 848 len = dso__data_read_offset(al.map->dso, machine, 849 offset, buf, 850 INTEL_PT_INSN_BUF_SZ); 851 if (len <= 0) { 852 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ", 853 offset); 854 if (intel_pt_enable_logging) 855 dso__fprintf(al.map->dso, intel_pt_log_fp()); 856 return -EINVAL; 857 } 858 859 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 860 return -EINVAL; 861 862 intel_pt_log_insn(intel_pt_insn, *ip); 863 864 insn_cnt += 1; 865 866 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) { 867 bool eptw; 868 u64 offs; 869 870 if (!intel_pt_jmp_16(intel_pt_insn)) 871 goto out; 872 /* Check for emulated ptwrite */ 873 offs = offset + intel_pt_insn->length; 874 eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs); 875 intel_pt_insn->emulated_ptwrite = eptw; 876 goto out; 877 } 878 879 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 880 goto out_no_cache; 881 882 *ip += intel_pt_insn->length; 883 884 if (to_ip && *ip == to_ip) { 885 intel_pt_insn->length = 0; 886 goto out_no_cache; 887 } 888 889 if (*ip >= al.map->end) 890 break; 891 892 offset += intel_pt_insn->length; 893 } 894 one_map = false; 895 } 896 out: 897 *insn_cnt_ptr = insn_cnt; 898 899 if (!one_map) 900 goto out_no_cache; 901 902 /* 903 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 904 * entries. 905 */ 906 if (to_ip) { 907 struct intel_pt_cache_entry *e; 908 909 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 910 if (e) 911 return 0; 912 } 913 914 /* Ignore cache errors */ 915 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 916 *ip - start_ip, intel_pt_insn); 917 918 return 0; 919 920 out_no_cache: 921 *insn_cnt_ptr = insn_cnt; 922 return 0; 923 } 924 925 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 926 uint64_t offset, const char *filename) 927 { 928 struct addr_filter *filt; 929 bool have_filter = false; 930 bool hit_tracestop = false; 931 bool hit_filter = false; 932 933 list_for_each_entry(filt, &pt->filts.head, list) { 934 if (filt->start) 935 have_filter = true; 936 937 if ((filename && !filt->filename) || 938 (!filename && filt->filename) || 939 (filename && strcmp(filename, filt->filename))) 940 continue; 941 942 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 943 continue; 944 945 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 946 ip, offset, filename ? filename : "[kernel]", 947 filt->start ? "filter" : "stop", 948 filt->addr, filt->size); 949 950 if (filt->start) 951 hit_filter = true; 952 else 953 hit_tracestop = true; 954 } 955 956 if (!hit_tracestop && !hit_filter) 957 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 958 ip, offset, filename ? filename : "[kernel]"); 959 960 return hit_tracestop || (have_filter && !hit_filter); 961 } 962 963 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 964 { 965 struct intel_pt_queue *ptq = data; 966 struct thread *thread; 967 struct addr_location al; 968 u8 cpumode; 969 u64 offset; 970 971 if (ptq->state->to_nr) { 972 if (intel_pt_guest_kernel_ip(ip)) 973 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 974 /* No support for decoding guest user space */ 975 return -EINVAL; 976 } else if (ip >= ptq->pt->kernel_start) { 977 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 978 } 979 980 cpumode = PERF_RECORD_MISC_USER; 981 982 thread = ptq->thread; 983 if (!thread) 984 return -EINVAL; 985 986 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 987 return -EINVAL; 988 989 offset = al.map->map_ip(al.map, ip); 990 991 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 992 al.map->dso->long_name); 993 } 994 995 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 996 { 997 return __intel_pt_pgd_ip(ip, data) > 0; 998 } 999 1000 static bool intel_pt_get_config(struct intel_pt *pt, 1001 struct perf_event_attr *attr, u64 *config) 1002 { 1003 if (attr->type == pt->pmu_type) { 1004 if (config) 1005 *config = attr->config; 1006 return true; 1007 } 1008 1009 return false; 1010 } 1011 1012 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 1013 { 1014 struct evsel *evsel; 1015 1016 evlist__for_each_entry(pt->session->evlist, evsel) { 1017 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1018 !evsel->core.attr.exclude_kernel) 1019 return false; 1020 } 1021 return true; 1022 } 1023 1024 static bool intel_pt_return_compression(struct intel_pt *pt) 1025 { 1026 struct evsel *evsel; 1027 u64 config; 1028 1029 if (!pt->noretcomp_bit) 1030 return true; 1031 1032 evlist__for_each_entry(pt->session->evlist, evsel) { 1033 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1034 (config & pt->noretcomp_bit)) 1035 return false; 1036 } 1037 return true; 1038 } 1039 1040 static bool intel_pt_branch_enable(struct intel_pt *pt) 1041 { 1042 struct evsel *evsel; 1043 u64 config; 1044 1045 evlist__for_each_entry(pt->session->evlist, evsel) { 1046 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1047 (config & INTEL_PT_CFG_PASS_THRU) && 1048 !(config & INTEL_PT_CFG_BRANCH_EN)) 1049 return false; 1050 } 1051 return true; 1052 } 1053 1054 static bool intel_pt_disabled_tnt(struct intel_pt *pt) 1055 { 1056 struct evsel *evsel; 1057 u64 config; 1058 1059 evlist__for_each_entry(pt->session->evlist, evsel) { 1060 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1061 config & INTEL_PT_CFG_TNT_DIS) 1062 return true; 1063 } 1064 return false; 1065 } 1066 1067 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 1068 { 1069 struct evsel *evsel; 1070 unsigned int shift; 1071 u64 config; 1072 1073 if (!pt->mtc_freq_bits) 1074 return 0; 1075 1076 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 1077 config >>= 1; 1078 1079 evlist__for_each_entry(pt->session->evlist, evsel) { 1080 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1081 return (config & pt->mtc_freq_bits) >> shift; 1082 } 1083 return 0; 1084 } 1085 1086 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 1087 { 1088 struct evsel *evsel; 1089 bool timeless_decoding = true; 1090 u64 config; 1091 1092 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) 1093 return true; 1094 1095 evlist__for_each_entry(pt->session->evlist, evsel) { 1096 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 1097 return true; 1098 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1099 if (config & pt->tsc_bit) 1100 timeless_decoding = false; 1101 else 1102 return true; 1103 } 1104 } 1105 return timeless_decoding; 1106 } 1107 1108 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 1109 { 1110 struct evsel *evsel; 1111 1112 evlist__for_each_entry(pt->session->evlist, evsel) { 1113 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 1114 !evsel->core.attr.exclude_kernel) 1115 return true; 1116 } 1117 return false; 1118 } 1119 1120 static bool intel_pt_have_tsc(struct intel_pt *pt) 1121 { 1122 struct evsel *evsel; 1123 bool have_tsc = false; 1124 u64 config; 1125 1126 if (!pt->tsc_bit) 1127 return false; 1128 1129 evlist__for_each_entry(pt->session->evlist, evsel) { 1130 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 1131 if (config & pt->tsc_bit) 1132 have_tsc = true; 1133 else 1134 return false; 1135 } 1136 } 1137 return have_tsc; 1138 } 1139 1140 static bool intel_pt_have_mtc(struct intel_pt *pt) 1141 { 1142 struct evsel *evsel; 1143 u64 config; 1144 1145 evlist__for_each_entry(pt->session->evlist, evsel) { 1146 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 1147 (config & pt->mtc_bit)) 1148 return true; 1149 } 1150 return false; 1151 } 1152 1153 static bool intel_pt_sampling_mode(struct intel_pt *pt) 1154 { 1155 struct evsel *evsel; 1156 1157 evlist__for_each_entry(pt->session->evlist, evsel) { 1158 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 1159 evsel->core.attr.aux_sample_size) 1160 return true; 1161 } 1162 return false; 1163 } 1164 1165 static u64 intel_pt_ctl(struct intel_pt *pt) 1166 { 1167 struct evsel *evsel; 1168 u64 config; 1169 1170 evlist__for_each_entry(pt->session->evlist, evsel) { 1171 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 1172 return config; 1173 } 1174 return 0; 1175 } 1176 1177 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 1178 { 1179 u64 quot, rem; 1180 1181 quot = ns / pt->tc.time_mult; 1182 rem = ns % pt->tc.time_mult; 1183 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 1184 pt->tc.time_mult; 1185 } 1186 1187 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 1188 { 1189 size_t sz = sizeof(struct ip_callchain); 1190 1191 /* Add 1 to callchain_sz for callchain context */ 1192 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 1193 return zalloc(sz); 1194 } 1195 1196 static int intel_pt_callchain_init(struct intel_pt *pt) 1197 { 1198 struct evsel *evsel; 1199 1200 evlist__for_each_entry(pt->session->evlist, evsel) { 1201 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 1202 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 1203 } 1204 1205 pt->chain = intel_pt_alloc_chain(pt); 1206 if (!pt->chain) 1207 return -ENOMEM; 1208 1209 return 0; 1210 } 1211 1212 static void intel_pt_add_callchain(struct intel_pt *pt, 1213 struct perf_sample *sample) 1214 { 1215 struct thread *thread = machine__findnew_thread(pt->machine, 1216 sample->pid, 1217 sample->tid); 1218 1219 thread_stack__sample_late(thread, sample->cpu, pt->chain, 1220 pt->synth_opts.callchain_sz + 1, sample->ip, 1221 pt->kernel_start); 1222 1223 sample->callchain = pt->chain; 1224 } 1225 1226 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 1227 { 1228 size_t sz = sizeof(struct branch_stack); 1229 1230 sz += entry_cnt * sizeof(struct branch_entry); 1231 return zalloc(sz); 1232 } 1233 1234 static int intel_pt_br_stack_init(struct intel_pt *pt) 1235 { 1236 struct evsel *evsel; 1237 1238 evlist__for_each_entry(pt->session->evlist, evsel) { 1239 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 1240 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 1241 } 1242 1243 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 1244 if (!pt->br_stack) 1245 return -ENOMEM; 1246 1247 return 0; 1248 } 1249 1250 static void intel_pt_add_br_stack(struct intel_pt *pt, 1251 struct perf_sample *sample) 1252 { 1253 struct thread *thread = machine__findnew_thread(pt->machine, 1254 sample->pid, 1255 sample->tid); 1256 1257 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 1258 pt->br_stack_sz, sample->ip, 1259 pt->kernel_start); 1260 1261 sample->branch_stack = pt->br_stack; 1262 } 1263 1264 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 1265 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 1266 1267 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 1268 unsigned int queue_nr) 1269 { 1270 struct intel_pt_params params = { .get_trace = 0, }; 1271 struct perf_env *env = pt->machine->env; 1272 struct intel_pt_queue *ptq; 1273 1274 ptq = zalloc(sizeof(struct intel_pt_queue)); 1275 if (!ptq) 1276 return NULL; 1277 1278 if (pt->synth_opts.callchain) { 1279 ptq->chain = intel_pt_alloc_chain(pt); 1280 if (!ptq->chain) 1281 goto out_free; 1282 } 1283 1284 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1285 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1286 1287 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1288 if (!ptq->last_branch) 1289 goto out_free; 1290 } 1291 1292 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1293 if (!ptq->event_buf) 1294 goto out_free; 1295 1296 ptq->pt = pt; 1297 ptq->queue_nr = queue_nr; 1298 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1299 ptq->pid = -1; 1300 ptq->tid = -1; 1301 ptq->cpu = -1; 1302 ptq->next_tid = -1; 1303 1304 params.get_trace = intel_pt_get_trace; 1305 params.walk_insn = intel_pt_walk_next_insn; 1306 params.lookahead = intel_pt_lookahead; 1307 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; 1308 params.data = ptq; 1309 params.return_compression = intel_pt_return_compression(pt); 1310 params.branch_enable = intel_pt_branch_enable(pt); 1311 params.ctl = intel_pt_ctl(pt); 1312 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1313 params.mtc_period = intel_pt_mtc_period(pt); 1314 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1315 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1316 params.quick = pt->synth_opts.quick; 1317 params.vm_time_correlation = pt->synth_opts.vm_time_correlation; 1318 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; 1319 params.first_timestamp = pt->first_timestamp; 1320 params.max_loops = pt->max_loops; 1321 1322 /* Cannot walk code without TNT, so force 'quick' mode */ 1323 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick) 1324 params.quick = 1; 1325 1326 if (pt->filts.cnt > 0) 1327 params.pgd_ip = intel_pt_pgd_ip; 1328 1329 if (pt->synth_opts.instructions || pt->synth_opts.cycles) { 1330 if (pt->synth_opts.period) { 1331 switch (pt->synth_opts.period_type) { 1332 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1333 params.period_type = 1334 INTEL_PT_PERIOD_INSTRUCTIONS; 1335 params.period = pt->synth_opts.period; 1336 break; 1337 case PERF_ITRACE_PERIOD_TICKS: 1338 params.period_type = INTEL_PT_PERIOD_TICKS; 1339 params.period = pt->synth_opts.period; 1340 break; 1341 case PERF_ITRACE_PERIOD_NANOSECS: 1342 params.period_type = INTEL_PT_PERIOD_TICKS; 1343 params.period = intel_pt_ns_to_ticks(pt, 1344 pt->synth_opts.period); 1345 break; 1346 default: 1347 break; 1348 } 1349 } 1350 1351 if (!params.period) { 1352 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1353 params.period = 1; 1354 } 1355 } 1356 1357 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1358 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1359 1360 ptq->decoder = intel_pt_decoder_new(¶ms); 1361 if (!ptq->decoder) 1362 goto out_free; 1363 1364 return ptq; 1365 1366 out_free: 1367 zfree(&ptq->event_buf); 1368 zfree(&ptq->last_branch); 1369 zfree(&ptq->chain); 1370 free(ptq); 1371 return NULL; 1372 } 1373 1374 static void intel_pt_free_queue(void *priv) 1375 { 1376 struct intel_pt_queue *ptq = priv; 1377 1378 if (!ptq) 1379 return; 1380 thread__zput(ptq->thread); 1381 thread__zput(ptq->guest_thread); 1382 thread__zput(ptq->unknown_guest_thread); 1383 intel_pt_decoder_free(ptq->decoder); 1384 zfree(&ptq->event_buf); 1385 zfree(&ptq->last_branch); 1386 zfree(&ptq->chain); 1387 free(ptq); 1388 } 1389 1390 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) 1391 { 1392 unsigned int i; 1393 1394 pt->first_timestamp = timestamp; 1395 1396 for (i = 0; i < pt->queues.nr_queues; i++) { 1397 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 1398 struct intel_pt_queue *ptq = queue->priv; 1399 1400 if (ptq && ptq->decoder) 1401 intel_pt_set_first_timestamp(ptq->decoder, timestamp); 1402 } 1403 } 1404 1405 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq) 1406 { 1407 struct machines *machines = &ptq->pt->session->machines; 1408 struct machine *machine; 1409 pid_t machine_pid = ptq->pid; 1410 pid_t tid; 1411 int vcpu; 1412 1413 if (machine_pid <= 0) 1414 return 0; /* Not a guest machine */ 1415 1416 machine = machines__find(machines, machine_pid); 1417 if (!machine) 1418 return 0; /* Not a guest machine */ 1419 1420 if (ptq->guest_machine != machine) { 1421 ptq->guest_machine = NULL; 1422 thread__zput(ptq->guest_thread); 1423 thread__zput(ptq->unknown_guest_thread); 1424 1425 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0); 1426 if (!ptq->unknown_guest_thread) 1427 return -1; 1428 ptq->guest_machine = machine; 1429 } 1430 1431 vcpu = ptq->thread ? ptq->thread->guest_cpu : -1; 1432 if (vcpu < 0) 1433 return -1; 1434 1435 tid = machine__get_current_tid(machine, vcpu); 1436 1437 if (ptq->guest_thread && ptq->guest_thread->tid != tid) 1438 thread__zput(ptq->guest_thread); 1439 1440 if (!ptq->guest_thread) { 1441 ptq->guest_thread = machine__find_thread(machine, -1, tid); 1442 if (!ptq->guest_thread) 1443 return -1; 1444 } 1445 1446 ptq->guest_machine_pid = machine_pid; 1447 ptq->guest_pid = ptq->guest_thread->pid_; 1448 ptq->guest_tid = tid; 1449 ptq->vcpu = vcpu; 1450 1451 return 0; 1452 } 1453 1454 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1455 struct auxtrace_queue *queue) 1456 { 1457 struct intel_pt_queue *ptq = queue->priv; 1458 1459 if (queue->tid == -1 || pt->have_sched_switch) { 1460 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1461 if (ptq->tid == -1) 1462 ptq->pid = -1; 1463 thread__zput(ptq->thread); 1464 } 1465 1466 if (!ptq->thread && ptq->tid != -1) 1467 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1468 1469 if (ptq->thread) { 1470 ptq->pid = ptq->thread->pid_; 1471 if (queue->cpu == -1) 1472 ptq->cpu = ptq->thread->cpu; 1473 } 1474 1475 if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) { 1476 ptq->guest_machine_pid = 0; 1477 ptq->guest_pid = -1; 1478 ptq->guest_tid = -1; 1479 ptq->vcpu = -1; 1480 } 1481 } 1482 1483 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1484 { 1485 struct intel_pt *pt = ptq->pt; 1486 1487 ptq->insn_len = 0; 1488 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1489 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1490 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1491 if (!ptq->state->to_ip) 1492 ptq->flags = PERF_IP_FLAG_BRANCH | 1493 PERF_IP_FLAG_TRACE_END; 1494 else if (ptq->state->from_nr && !ptq->state->to_nr) 1495 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1496 PERF_IP_FLAG_VMEXIT; 1497 else 1498 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1499 PERF_IP_FLAG_ASYNC | 1500 PERF_IP_FLAG_INTERRUPT; 1501 } else { 1502 if (ptq->state->from_ip) 1503 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1504 else 1505 ptq->flags = PERF_IP_FLAG_BRANCH | 1506 PERF_IP_FLAG_TRACE_BEGIN; 1507 if (ptq->state->flags & INTEL_PT_IN_TX) 1508 ptq->flags |= PERF_IP_FLAG_IN_TX; 1509 ptq->insn_len = ptq->state->insn_len; 1510 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1511 } 1512 1513 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1514 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1515 if (ptq->state->type & INTEL_PT_TRACE_END) 1516 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1517 1518 if (pt->cap_event_trace) { 1519 if (ptq->state->type & INTEL_PT_IFLAG_CHG) { 1520 if (!ptq->state->from_iflag) 1521 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1522 if (ptq->state->from_iflag != ptq->state->to_iflag) 1523 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE; 1524 } else if (!ptq->state->to_iflag) { 1525 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE; 1526 } 1527 } 1528 } 1529 1530 static void intel_pt_setup_time_range(struct intel_pt *pt, 1531 struct intel_pt_queue *ptq) 1532 { 1533 if (!pt->range_cnt) 1534 return; 1535 1536 ptq->sel_timestamp = pt->time_ranges[0].start; 1537 ptq->sel_idx = 0; 1538 1539 if (ptq->sel_timestamp) { 1540 ptq->sel_start = true; 1541 } else { 1542 ptq->sel_timestamp = pt->time_ranges[0].end; 1543 ptq->sel_start = false; 1544 } 1545 } 1546 1547 static int intel_pt_setup_queue(struct intel_pt *pt, 1548 struct auxtrace_queue *queue, 1549 unsigned int queue_nr) 1550 { 1551 struct intel_pt_queue *ptq = queue->priv; 1552 1553 if (list_empty(&queue->head)) 1554 return 0; 1555 1556 if (!ptq) { 1557 ptq = intel_pt_alloc_queue(pt, queue_nr); 1558 if (!ptq) 1559 return -ENOMEM; 1560 queue->priv = ptq; 1561 1562 if (queue->cpu != -1) 1563 ptq->cpu = queue->cpu; 1564 ptq->tid = queue->tid; 1565 1566 ptq->cbr_seen = UINT_MAX; 1567 1568 if (pt->sampling_mode && !pt->snapshot_mode && 1569 pt->timeless_decoding) 1570 ptq->step_through_buffers = true; 1571 1572 ptq->sync_switch = pt->sync_switch; 1573 1574 intel_pt_setup_time_range(pt, ptq); 1575 } 1576 1577 if (!ptq->on_heap && 1578 (!ptq->sync_switch || 1579 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1580 const struct intel_pt_state *state; 1581 int ret; 1582 1583 if (pt->timeless_decoding) 1584 return 0; 1585 1586 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1587 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1588 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1589 1590 if (ptq->sel_start && ptq->sel_timestamp) { 1591 ret = intel_pt_fast_forward(ptq->decoder, 1592 ptq->sel_timestamp); 1593 if (ret) 1594 return ret; 1595 } 1596 1597 while (1) { 1598 state = intel_pt_decode(ptq->decoder); 1599 if (state->err) { 1600 if (state->err == INTEL_PT_ERR_NODATA) { 1601 intel_pt_log("queue %u has no timestamp\n", 1602 queue_nr); 1603 return 0; 1604 } 1605 continue; 1606 } 1607 if (state->timestamp) 1608 break; 1609 } 1610 1611 ptq->timestamp = state->timestamp; 1612 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1613 queue_nr, ptq->timestamp); 1614 ptq->state = state; 1615 ptq->have_sample = true; 1616 if (ptq->sel_start && ptq->sel_timestamp && 1617 ptq->timestamp < ptq->sel_timestamp) 1618 ptq->have_sample = false; 1619 intel_pt_sample_flags(ptq); 1620 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1621 if (ret) 1622 return ret; 1623 ptq->on_heap = true; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int intel_pt_setup_queues(struct intel_pt *pt) 1630 { 1631 unsigned int i; 1632 int ret; 1633 1634 for (i = 0; i < pt->queues.nr_queues; i++) { 1635 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1636 if (ret) 1637 return ret; 1638 } 1639 return 0; 1640 } 1641 1642 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1643 { 1644 return pt->synth_opts.initial_skip && 1645 pt->num_events++ < pt->synth_opts.initial_skip; 1646 } 1647 1648 /* 1649 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1650 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1651 * from this decoder state. 1652 */ 1653 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1654 { 1655 return pt->synth_opts.initial_skip && 1656 pt->num_events + 4 < pt->synth_opts.initial_skip; 1657 } 1658 1659 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1660 union perf_event *event, 1661 struct perf_sample *sample) 1662 { 1663 event->sample.header.type = PERF_RECORD_SAMPLE; 1664 event->sample.header.size = sizeof(struct perf_event_header); 1665 1666 sample->pid = ptq->pid; 1667 sample->tid = ptq->tid; 1668 1669 if (ptq->pt->have_guest_sideband) { 1670 if ((ptq->state->from_ip && ptq->state->from_nr) || 1671 (ptq->state->to_ip && ptq->state->to_nr)) { 1672 sample->pid = ptq->guest_pid; 1673 sample->tid = ptq->guest_tid; 1674 sample->machine_pid = ptq->guest_machine_pid; 1675 sample->vcpu = ptq->vcpu; 1676 } 1677 } 1678 1679 sample->cpu = ptq->cpu; 1680 sample->insn_len = ptq->insn_len; 1681 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1682 } 1683 1684 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1685 struct intel_pt_queue *ptq, 1686 union perf_event *event, 1687 struct perf_sample *sample) 1688 { 1689 intel_pt_prep_a_sample(ptq, event, sample); 1690 1691 if (!pt->timeless_decoding) 1692 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1693 1694 sample->ip = ptq->state->from_ip; 1695 sample->addr = ptq->state->to_ip; 1696 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); 1697 sample->period = 1; 1698 sample->flags = ptq->flags; 1699 1700 event->sample.header.misc = sample->cpumode; 1701 } 1702 1703 static int intel_pt_inject_event(union perf_event *event, 1704 struct perf_sample *sample, u64 type) 1705 { 1706 event->header.size = perf_event__sample_event_size(sample, type, 0); 1707 return perf_event__synthesize_sample(event, type, 0, sample); 1708 } 1709 1710 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1711 union perf_event *event, 1712 struct perf_sample *sample, u64 type) 1713 { 1714 if (!pt->synth_opts.inject) 1715 return 0; 1716 1717 return intel_pt_inject_event(event, sample, type); 1718 } 1719 1720 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1721 union perf_event *event, 1722 struct perf_sample *sample, u64 type) 1723 { 1724 int ret; 1725 1726 ret = intel_pt_opt_inject(pt, event, sample, type); 1727 if (ret) 1728 return ret; 1729 1730 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1731 if (ret) 1732 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1733 1734 return ret; 1735 } 1736 1737 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1738 { 1739 struct intel_pt *pt = ptq->pt; 1740 union perf_event *event = ptq->event_buf; 1741 struct perf_sample sample = { .ip = 0, }; 1742 struct dummy_branch_stack { 1743 u64 nr; 1744 u64 hw_idx; 1745 struct branch_entry entries; 1746 } dummy_bs; 1747 1748 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1749 return 0; 1750 1751 if (intel_pt_skip_event(pt)) 1752 return 0; 1753 1754 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1755 1756 sample.id = ptq->pt->branches_id; 1757 sample.stream_id = ptq->pt->branches_id; 1758 1759 /* 1760 * perf report cannot handle events without a branch stack when using 1761 * SORT_MODE__BRANCH so make a dummy one. 1762 */ 1763 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1764 dummy_bs = (struct dummy_branch_stack){ 1765 .nr = 1, 1766 .hw_idx = -1ULL, 1767 .entries = { 1768 .from = sample.ip, 1769 .to = sample.addr, 1770 }, 1771 }; 1772 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1773 } 1774 1775 if (ptq->sample_ipc) 1776 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1777 if (sample.cyc_cnt) { 1778 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1779 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1780 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1781 } 1782 1783 return intel_pt_deliver_synth_event(pt, event, &sample, 1784 pt->branches_sample_type); 1785 } 1786 1787 static void intel_pt_prep_sample(struct intel_pt *pt, 1788 struct intel_pt_queue *ptq, 1789 union perf_event *event, 1790 struct perf_sample *sample) 1791 { 1792 intel_pt_prep_b_sample(pt, ptq, event, sample); 1793 1794 if (pt->synth_opts.callchain) { 1795 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1796 pt->synth_opts.callchain_sz + 1, 1797 sample->ip, pt->kernel_start); 1798 sample->callchain = ptq->chain; 1799 } 1800 1801 if (pt->synth_opts.last_branch) { 1802 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1803 pt->br_stack_sz); 1804 sample->branch_stack = ptq->last_branch; 1805 } 1806 } 1807 1808 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1809 { 1810 struct intel_pt *pt = ptq->pt; 1811 union perf_event *event = ptq->event_buf; 1812 struct perf_sample sample = { .ip = 0, }; 1813 1814 if (intel_pt_skip_event(pt)) 1815 return 0; 1816 1817 intel_pt_prep_sample(pt, ptq, event, &sample); 1818 1819 sample.id = ptq->pt->instructions_id; 1820 sample.stream_id = ptq->pt->instructions_id; 1821 if (pt->synth_opts.quick) 1822 sample.period = 1; 1823 else 1824 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1825 1826 if (ptq->sample_ipc) 1827 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1828 if (sample.cyc_cnt) { 1829 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1830 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1831 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1832 } 1833 1834 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1835 1836 return intel_pt_deliver_synth_event(pt, event, &sample, 1837 pt->instructions_sample_type); 1838 } 1839 1840 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq) 1841 { 1842 struct intel_pt *pt = ptq->pt; 1843 union perf_event *event = ptq->event_buf; 1844 struct perf_sample sample = { .ip = 0, }; 1845 u64 period = 0; 1846 1847 if (ptq->sample_ipc) 1848 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt; 1849 1850 if (!period || intel_pt_skip_event(pt)) 1851 return 0; 1852 1853 intel_pt_prep_sample(pt, ptq, event, &sample); 1854 1855 sample.id = ptq->pt->cycles_id; 1856 sample.stream_id = ptq->pt->cycles_id; 1857 sample.period = period; 1858 1859 sample.cyc_cnt = period; 1860 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt; 1861 ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt; 1862 ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt; 1863 1864 return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type); 1865 } 1866 1867 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1868 { 1869 struct intel_pt *pt = ptq->pt; 1870 union perf_event *event = ptq->event_buf; 1871 struct perf_sample sample = { .ip = 0, }; 1872 1873 if (intel_pt_skip_event(pt)) 1874 return 0; 1875 1876 intel_pt_prep_sample(pt, ptq, event, &sample); 1877 1878 sample.id = ptq->pt->transactions_id; 1879 sample.stream_id = ptq->pt->transactions_id; 1880 1881 return intel_pt_deliver_synth_event(pt, event, &sample, 1882 pt->transactions_sample_type); 1883 } 1884 1885 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1886 struct intel_pt_queue *ptq, 1887 union perf_event *event, 1888 struct perf_sample *sample) 1889 { 1890 intel_pt_prep_sample(pt, ptq, event, sample); 1891 1892 /* 1893 * Zero IP is used to mean "trace start" but that is not the case for 1894 * power or PTWRITE events with no IP, so clear the flags. 1895 */ 1896 if (!sample->ip) 1897 sample->flags = 0; 1898 } 1899 1900 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1901 { 1902 struct intel_pt *pt = ptq->pt; 1903 union perf_event *event = ptq->event_buf; 1904 struct perf_sample sample = { .ip = 0, }; 1905 struct perf_synth_intel_ptwrite raw; 1906 1907 if (intel_pt_skip_event(pt)) 1908 return 0; 1909 1910 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1911 1912 sample.id = ptq->pt->ptwrites_id; 1913 sample.stream_id = ptq->pt->ptwrites_id; 1914 1915 raw.flags = 0; 1916 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1917 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1918 1919 sample.raw_size = perf_synth__raw_size(raw); 1920 sample.raw_data = perf_synth__raw_data(&raw); 1921 1922 return intel_pt_deliver_synth_event(pt, event, &sample, 1923 pt->ptwrites_sample_type); 1924 } 1925 1926 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1927 { 1928 struct intel_pt *pt = ptq->pt; 1929 union perf_event *event = ptq->event_buf; 1930 struct perf_sample sample = { .ip = 0, }; 1931 struct perf_synth_intel_cbr raw; 1932 u32 flags; 1933 1934 if (intel_pt_skip_cbr_event(pt)) 1935 return 0; 1936 1937 ptq->cbr_seen = ptq->state->cbr; 1938 1939 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1940 1941 sample.id = ptq->pt->cbr_id; 1942 sample.stream_id = ptq->pt->cbr_id; 1943 1944 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1945 raw.flags = cpu_to_le32(flags); 1946 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1947 raw.reserved3 = 0; 1948 1949 sample.raw_size = perf_synth__raw_size(raw); 1950 sample.raw_data = perf_synth__raw_data(&raw); 1951 1952 return intel_pt_deliver_synth_event(pt, event, &sample, 1953 pt->pwr_events_sample_type); 1954 } 1955 1956 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) 1957 { 1958 struct intel_pt *pt = ptq->pt; 1959 union perf_event *event = ptq->event_buf; 1960 struct perf_sample sample = { .ip = 0, }; 1961 struct perf_synth_intel_psb raw; 1962 1963 if (intel_pt_skip_event(pt)) 1964 return 0; 1965 1966 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1967 1968 sample.id = ptq->pt->psb_id; 1969 sample.stream_id = ptq->pt->psb_id; 1970 sample.flags = 0; 1971 1972 raw.reserved = 0; 1973 raw.offset = ptq->state->psb_offset; 1974 1975 sample.raw_size = perf_synth__raw_size(raw); 1976 sample.raw_data = perf_synth__raw_data(&raw); 1977 1978 return intel_pt_deliver_synth_event(pt, event, &sample, 1979 pt->pwr_events_sample_type); 1980 } 1981 1982 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1983 { 1984 struct intel_pt *pt = ptq->pt; 1985 union perf_event *event = ptq->event_buf; 1986 struct perf_sample sample = { .ip = 0, }; 1987 struct perf_synth_intel_mwait raw; 1988 1989 if (intel_pt_skip_event(pt)) 1990 return 0; 1991 1992 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1993 1994 sample.id = ptq->pt->mwait_id; 1995 sample.stream_id = ptq->pt->mwait_id; 1996 1997 raw.reserved = 0; 1998 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1999 2000 sample.raw_size = perf_synth__raw_size(raw); 2001 sample.raw_data = perf_synth__raw_data(&raw); 2002 2003 return intel_pt_deliver_synth_event(pt, event, &sample, 2004 pt->pwr_events_sample_type); 2005 } 2006 2007 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 2008 { 2009 struct intel_pt *pt = ptq->pt; 2010 union perf_event *event = ptq->event_buf; 2011 struct perf_sample sample = { .ip = 0, }; 2012 struct perf_synth_intel_pwre raw; 2013 2014 if (intel_pt_skip_event(pt)) 2015 return 0; 2016 2017 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2018 2019 sample.id = ptq->pt->pwre_id; 2020 sample.stream_id = ptq->pt->pwre_id; 2021 2022 raw.reserved = 0; 2023 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 2024 2025 sample.raw_size = perf_synth__raw_size(raw); 2026 sample.raw_data = perf_synth__raw_data(&raw); 2027 2028 return intel_pt_deliver_synth_event(pt, event, &sample, 2029 pt->pwr_events_sample_type); 2030 } 2031 2032 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 2033 { 2034 struct intel_pt *pt = ptq->pt; 2035 union perf_event *event = ptq->event_buf; 2036 struct perf_sample sample = { .ip = 0, }; 2037 struct perf_synth_intel_exstop raw; 2038 2039 if (intel_pt_skip_event(pt)) 2040 return 0; 2041 2042 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2043 2044 sample.id = ptq->pt->exstop_id; 2045 sample.stream_id = ptq->pt->exstop_id; 2046 2047 raw.flags = 0; 2048 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2049 2050 sample.raw_size = perf_synth__raw_size(raw); 2051 sample.raw_data = perf_synth__raw_data(&raw); 2052 2053 return intel_pt_deliver_synth_event(pt, event, &sample, 2054 pt->pwr_events_sample_type); 2055 } 2056 2057 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 2058 { 2059 struct intel_pt *pt = ptq->pt; 2060 union perf_event *event = ptq->event_buf; 2061 struct perf_sample sample = { .ip = 0, }; 2062 struct perf_synth_intel_pwrx raw; 2063 2064 if (intel_pt_skip_event(pt)) 2065 return 0; 2066 2067 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2068 2069 sample.id = ptq->pt->pwrx_id; 2070 sample.stream_id = ptq->pt->pwrx_id; 2071 2072 raw.reserved = 0; 2073 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 2074 2075 sample.raw_size = perf_synth__raw_size(raw); 2076 sample.raw_data = perf_synth__raw_data(&raw); 2077 2078 return intel_pt_deliver_synth_event(pt, event, &sample, 2079 pt->pwr_events_sample_type); 2080 } 2081 2082 /* 2083 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 2084 * intel_pt_add_gp_regs(). 2085 */ 2086 static const int pebs_gp_regs[] = { 2087 [PERF_REG_X86_FLAGS] = 1, 2088 [PERF_REG_X86_IP] = 2, 2089 [PERF_REG_X86_AX] = 3, 2090 [PERF_REG_X86_CX] = 4, 2091 [PERF_REG_X86_DX] = 5, 2092 [PERF_REG_X86_BX] = 6, 2093 [PERF_REG_X86_SP] = 7, 2094 [PERF_REG_X86_BP] = 8, 2095 [PERF_REG_X86_SI] = 9, 2096 [PERF_REG_X86_DI] = 10, 2097 [PERF_REG_X86_R8] = 11, 2098 [PERF_REG_X86_R9] = 12, 2099 [PERF_REG_X86_R10] = 13, 2100 [PERF_REG_X86_R11] = 14, 2101 [PERF_REG_X86_R12] = 15, 2102 [PERF_REG_X86_R13] = 16, 2103 [PERF_REG_X86_R14] = 17, 2104 [PERF_REG_X86_R15] = 18, 2105 }; 2106 2107 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 2108 const struct intel_pt_blk_items *items, 2109 u64 regs_mask) 2110 { 2111 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 2112 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 2113 u32 bit; 2114 int i; 2115 2116 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 2117 /* Get the PEBS gp_regs array index */ 2118 int n = pebs_gp_regs[i] - 1; 2119 2120 if (n < 0) 2121 continue; 2122 /* 2123 * Add only registers that were requested (i.e. 'regs_mask') and 2124 * that were provided (i.e. 'mask'), and update the resulting 2125 * mask (i.e. 'intr_regs->mask') accordingly. 2126 */ 2127 if (mask & 1 << n && regs_mask & bit) { 2128 intr_regs->mask |= bit; 2129 *pos++ = gp_regs[n]; 2130 } 2131 } 2132 2133 return pos; 2134 } 2135 2136 #ifndef PERF_REG_X86_XMM0 2137 #define PERF_REG_X86_XMM0 32 2138 #endif 2139 2140 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 2141 const struct intel_pt_blk_items *items, 2142 u64 regs_mask) 2143 { 2144 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 2145 const u64 *xmm = items->xmm; 2146 2147 /* 2148 * If there are any XMM registers, then there should be all of them. 2149 * Nevertheless, follow the logic to add only registers that were 2150 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 2151 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 2152 */ 2153 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 2154 2155 for (; mask; mask >>= 1, xmm++) { 2156 if (mask & 1) 2157 *pos++ = *xmm; 2158 } 2159 } 2160 2161 #define LBR_INFO_MISPRED (1ULL << 63) 2162 #define LBR_INFO_IN_TX (1ULL << 62) 2163 #define LBR_INFO_ABORT (1ULL << 61) 2164 #define LBR_INFO_CYCLES 0xffff 2165 2166 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 2167 static u64 intel_pt_lbr_flags(u64 info) 2168 { 2169 union { 2170 struct branch_flags flags; 2171 u64 result; 2172 } u; 2173 2174 u.result = 0; 2175 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 2176 u.flags.predicted = !(info & LBR_INFO_MISPRED); 2177 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 2178 u.flags.abort = !!(info & LBR_INFO_ABORT); 2179 u.flags.cycles = info & LBR_INFO_CYCLES; 2180 2181 return u.result; 2182 } 2183 2184 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 2185 const struct intel_pt_blk_items *items) 2186 { 2187 u64 *to; 2188 int i; 2189 2190 br_stack->nr = 0; 2191 2192 to = &br_stack->entries[0].from; 2193 2194 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 2195 u32 mask = items->mask[i]; 2196 const u64 *from = items->val[i]; 2197 2198 for (; mask; mask >>= 3, from += 3) { 2199 if ((mask & 7) == 7) { 2200 *to++ = from[0]; 2201 *to++ = from[1]; 2202 *to++ = intel_pt_lbr_flags(from[2]); 2203 br_stack->nr += 1; 2204 } 2205 } 2206 } 2207 } 2208 2209 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id) 2210 { 2211 const struct intel_pt_blk_items *items = &ptq->state->items; 2212 struct perf_sample sample = { .ip = 0, }; 2213 union perf_event *event = ptq->event_buf; 2214 struct intel_pt *pt = ptq->pt; 2215 u64 sample_type = evsel->core.attr.sample_type; 2216 u8 cpumode; 2217 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 2218 2219 if (intel_pt_skip_event(pt)) 2220 return 0; 2221 2222 intel_pt_prep_a_sample(ptq, event, &sample); 2223 2224 sample.id = id; 2225 sample.stream_id = id; 2226 2227 if (!evsel->core.attr.freq) 2228 sample.period = evsel->core.attr.sample_period; 2229 2230 /* No support for non-zero CS base */ 2231 if (items->has_ip) 2232 sample.ip = items->ip; 2233 else if (items->has_rip) 2234 sample.ip = items->rip; 2235 else 2236 sample.ip = ptq->state->from_ip; 2237 2238 cpumode = intel_pt_cpumode(ptq, sample.ip, 0); 2239 2240 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 2241 2242 sample.cpumode = cpumode; 2243 2244 if (sample_type & PERF_SAMPLE_TIME) { 2245 u64 timestamp = 0; 2246 2247 if (items->has_timestamp) 2248 timestamp = items->timestamp; 2249 else if (!pt->timeless_decoding) 2250 timestamp = ptq->timestamp; 2251 if (timestamp) 2252 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 2253 } 2254 2255 if (sample_type & PERF_SAMPLE_CALLCHAIN && 2256 pt->synth_opts.callchain) { 2257 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 2258 pt->synth_opts.callchain_sz, sample.ip, 2259 pt->kernel_start); 2260 sample.callchain = ptq->chain; 2261 } 2262 2263 if (sample_type & PERF_SAMPLE_REGS_INTR && 2264 (items->mask[INTEL_PT_GP_REGS_POS] || 2265 items->mask[INTEL_PT_XMM_POS])) { 2266 u64 regs_mask = evsel->core.attr.sample_regs_intr; 2267 u64 *pos; 2268 2269 sample.intr_regs.abi = items->is_32_bit ? 2270 PERF_SAMPLE_REGS_ABI_32 : 2271 PERF_SAMPLE_REGS_ABI_64; 2272 sample.intr_regs.regs = regs; 2273 2274 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 2275 2276 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 2277 } 2278 2279 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 2280 if (items->mask[INTEL_PT_LBR_0_POS] || 2281 items->mask[INTEL_PT_LBR_1_POS] || 2282 items->mask[INTEL_PT_LBR_2_POS]) { 2283 intel_pt_add_lbrs(ptq->last_branch, items); 2284 } else if (pt->synth_opts.last_branch) { 2285 thread_stack__br_sample(ptq->thread, ptq->cpu, 2286 ptq->last_branch, 2287 pt->br_stack_sz); 2288 } else { 2289 ptq->last_branch->nr = 0; 2290 } 2291 sample.branch_stack = ptq->last_branch; 2292 } 2293 2294 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 2295 sample.addr = items->mem_access_address; 2296 2297 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 2298 /* 2299 * Refer kernel's setup_pebs_adaptive_sample_data() and 2300 * intel_hsw_weight(). 2301 */ 2302 if (items->has_mem_access_latency) { 2303 u64 weight = items->mem_access_latency >> 32; 2304 2305 /* 2306 * Starts from SPR, the mem access latency field 2307 * contains both cache latency [47:32] and instruction 2308 * latency [15:0]. The cache latency is the same as the 2309 * mem access latency on previous platforms. 2310 * 2311 * In practice, no memory access could last than 4G 2312 * cycles. Use latency >> 32 to distinguish the 2313 * different format of the mem access latency field. 2314 */ 2315 if (weight > 0) { 2316 sample.weight = weight & 0xffff; 2317 sample.ins_lat = items->mem_access_latency & 0xffff; 2318 } else 2319 sample.weight = items->mem_access_latency; 2320 } 2321 if (!sample.weight && items->has_tsx_aux_info) { 2322 /* Cycles last block */ 2323 sample.weight = (u32)items->tsx_aux_info; 2324 } 2325 } 2326 2327 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 2328 u64 ax = items->has_rax ? items->rax : 0; 2329 /* Refer kernel's intel_hsw_transaction() */ 2330 u64 txn = (u8)(items->tsx_aux_info >> 32); 2331 2332 /* For RTM XABORTs also log the abort code from AX */ 2333 if (txn & PERF_TXN_TRANSACTION && ax & 1) 2334 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 2335 sample.transaction = txn; 2336 } 2337 2338 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 2339 } 2340 2341 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq) 2342 { 2343 struct intel_pt *pt = ptq->pt; 2344 struct evsel *evsel = pt->pebs_evsel; 2345 u64 id = evsel->core.id[0]; 2346 2347 return intel_pt_do_synth_pebs_sample(ptq, evsel, id); 2348 } 2349 2350 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 2351 { 2352 const struct intel_pt_blk_items *items = &ptq->state->items; 2353 struct intel_pt_pebs_event *pe; 2354 struct intel_pt *pt = ptq->pt; 2355 int err = -EINVAL; 2356 int hw_id; 2357 2358 if (!items->has_applicable_counters || !items->applicable_counters) { 2359 if (!pt->single_pebs) 2360 pr_err("PEBS-via-PT record with no applicable_counters\n"); 2361 return intel_pt_synth_single_pebs_sample(ptq); 2362 } 2363 2364 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) { 2365 pe = &ptq->pebs[hw_id]; 2366 if (!pe->evsel) { 2367 if (!pt->single_pebs) 2368 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n", 2369 hw_id); 2370 return intel_pt_synth_single_pebs_sample(ptq); 2371 } 2372 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id); 2373 if (err) 2374 return err; 2375 } 2376 2377 return err; 2378 } 2379 2380 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq) 2381 { 2382 struct intel_pt *pt = ptq->pt; 2383 union perf_event *event = ptq->event_buf; 2384 struct perf_sample sample = { .ip = 0, }; 2385 struct { 2386 struct perf_synth_intel_evt cfe; 2387 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS]; 2388 } raw; 2389 int i; 2390 2391 if (intel_pt_skip_event(pt)) 2392 return 0; 2393 2394 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2395 2396 sample.id = ptq->pt->evt_id; 2397 sample.stream_id = ptq->pt->evt_id; 2398 2399 raw.cfe.type = ptq->state->cfe_type; 2400 raw.cfe.reserved = 0; 2401 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 2402 raw.cfe.vector = ptq->state->cfe_vector; 2403 raw.cfe.evd_cnt = ptq->state->evd_cnt; 2404 2405 for (i = 0; i < ptq->state->evd_cnt; i++) { 2406 raw.evd[i].et = 0; 2407 raw.evd[i].evd_type = ptq->state->evd[i].type; 2408 raw.evd[i].payload = ptq->state->evd[i].payload; 2409 } 2410 2411 sample.raw_size = perf_synth__raw_size(raw) + 2412 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd); 2413 sample.raw_data = perf_synth__raw_data(&raw); 2414 2415 return intel_pt_deliver_synth_event(pt, event, &sample, 2416 pt->evt_sample_type); 2417 } 2418 2419 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq) 2420 { 2421 struct intel_pt *pt = ptq->pt; 2422 union perf_event *event = ptq->event_buf; 2423 struct perf_sample sample = { .ip = 0, }; 2424 struct perf_synth_intel_iflag_chg raw; 2425 2426 if (intel_pt_skip_event(pt)) 2427 return 0; 2428 2429 intel_pt_prep_p_sample(pt, ptq, event, &sample); 2430 2431 sample.id = ptq->pt->iflag_chg_id; 2432 sample.stream_id = ptq->pt->iflag_chg_id; 2433 2434 raw.flags = 0; 2435 raw.iflag = ptq->state->to_iflag; 2436 2437 if (ptq->state->type & INTEL_PT_BRANCH) { 2438 raw.via_branch = 1; 2439 raw.branch_ip = ptq->state->to_ip; 2440 } else { 2441 sample.addr = 0; 2442 } 2443 sample.flags = ptq->flags; 2444 2445 sample.raw_size = perf_synth__raw_size(raw); 2446 sample.raw_data = perf_synth__raw_data(&raw); 2447 2448 return intel_pt_deliver_synth_event(pt, event, &sample, 2449 pt->iflag_chg_sample_type); 2450 } 2451 2452 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 2453 pid_t pid, pid_t tid, u64 ip, u64 timestamp, 2454 pid_t machine_pid, int vcpu) 2455 { 2456 bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR; 2457 bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT; 2458 union perf_event event; 2459 char msg[MAX_AUXTRACE_ERROR_MSG]; 2460 int err; 2461 2462 if (pt->synth_opts.error_minus_flags) { 2463 if (code == INTEL_PT_ERR_OVR && 2464 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 2465 return 0; 2466 if (code == INTEL_PT_ERR_LOST && 2467 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 2468 return 0; 2469 } 2470 2471 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 2472 2473 auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 2474 code, cpu, pid, tid, ip, msg, timestamp, 2475 machine_pid, vcpu); 2476 2477 if (intel_pt_enable_logging && !log_on_stdout) { 2478 FILE *fp = intel_pt_log_fp(); 2479 2480 if (fp) 2481 perf_event__fprintf_auxtrace_error(&event, fp); 2482 } 2483 2484 if (code != INTEL_PT_ERR_LOST && dump_log_on_error) 2485 intel_pt_log_dump_buf(); 2486 2487 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 2488 if (err) 2489 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 2490 err); 2491 2492 return err; 2493 } 2494 2495 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 2496 const struct intel_pt_state *state) 2497 { 2498 struct intel_pt *pt = ptq->pt; 2499 u64 tm = ptq->timestamp; 2500 pid_t machine_pid = 0; 2501 pid_t pid = ptq->pid; 2502 pid_t tid = ptq->tid; 2503 int vcpu = -1; 2504 2505 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 2506 2507 if (pt->have_guest_sideband && state->from_nr) { 2508 machine_pid = ptq->guest_machine_pid; 2509 vcpu = ptq->vcpu; 2510 pid = ptq->guest_pid; 2511 tid = ptq->guest_tid; 2512 } 2513 2514 return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid, 2515 state->from_ip, tm, machine_pid, vcpu); 2516 } 2517 2518 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 2519 { 2520 struct auxtrace_queue *queue; 2521 pid_t tid = ptq->next_tid; 2522 int err; 2523 2524 if (tid == -1) 2525 return 0; 2526 2527 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 2528 2529 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 2530 2531 queue = &pt->queues.queue_array[ptq->queue_nr]; 2532 intel_pt_set_pid_tid_cpu(pt, queue); 2533 2534 ptq->next_tid = -1; 2535 2536 return err; 2537 } 2538 2539 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 2540 { 2541 struct intel_pt *pt = ptq->pt; 2542 2543 return ip == pt->switch_ip && 2544 (ptq->flags & PERF_IP_FLAG_BRANCH) && 2545 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 2546 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 2547 } 2548 2549 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 2550 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 2551 2552 static int intel_pt_sample(struct intel_pt_queue *ptq) 2553 { 2554 const struct intel_pt_state *state = ptq->state; 2555 struct intel_pt *pt = ptq->pt; 2556 int err; 2557 2558 if (!ptq->have_sample) 2559 return 0; 2560 2561 ptq->have_sample = false; 2562 2563 if (pt->synth_opts.approx_ipc) { 2564 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2565 ptq->ipc_cyc_cnt = ptq->state->cycles; 2566 ptq->sample_ipc = true; 2567 } else { 2568 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 2569 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 2570 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC; 2571 } 2572 2573 /* Ensure guest code maps are set up */ 2574 if (symbol_conf.guest_code && (state->from_nr || state->to_nr)) 2575 intel_pt_get_guest(ptq); 2576 2577 /* 2578 * Do PEBS first to allow for the possibility that the PEBS timestamp 2579 * precedes the current timestamp. 2580 */ 2581 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 2582 err = intel_pt_synth_pebs_sample(ptq); 2583 if (err) 2584 return err; 2585 } 2586 2587 if (pt->synth_opts.intr_events) { 2588 if (state->type & INTEL_PT_EVT) { 2589 err = intel_pt_synth_events_sample(ptq); 2590 if (err) 2591 return err; 2592 } 2593 if (state->type & INTEL_PT_IFLAG_CHG) { 2594 err = intel_pt_synth_iflag_chg_sample(ptq); 2595 if (err) 2596 return err; 2597 } 2598 } 2599 2600 if (pt->sample_pwr_events) { 2601 if (state->type & INTEL_PT_PSB_EVT) { 2602 err = intel_pt_synth_psb_sample(ptq); 2603 if (err) 2604 return err; 2605 } 2606 if (ptq->state->cbr != ptq->cbr_seen) { 2607 err = intel_pt_synth_cbr_sample(ptq); 2608 if (err) 2609 return err; 2610 } 2611 if (state->type & INTEL_PT_PWR_EVT) { 2612 if (state->type & INTEL_PT_MWAIT_OP) { 2613 err = intel_pt_synth_mwait_sample(ptq); 2614 if (err) 2615 return err; 2616 } 2617 if (state->type & INTEL_PT_PWR_ENTRY) { 2618 err = intel_pt_synth_pwre_sample(ptq); 2619 if (err) 2620 return err; 2621 } 2622 if (state->type & INTEL_PT_EX_STOP) { 2623 err = intel_pt_synth_exstop_sample(ptq); 2624 if (err) 2625 return err; 2626 } 2627 if (state->type & INTEL_PT_PWR_EXIT) { 2628 err = intel_pt_synth_pwrx_sample(ptq); 2629 if (err) 2630 return err; 2631 } 2632 } 2633 } 2634 2635 if (state->type & INTEL_PT_INSTRUCTION) { 2636 if (pt->sample_instructions) { 2637 err = intel_pt_synth_instruction_sample(ptq); 2638 if (err) 2639 return err; 2640 } 2641 if (pt->sample_cycles) { 2642 err = intel_pt_synth_cycle_sample(ptq); 2643 if (err) 2644 return err; 2645 } 2646 } 2647 2648 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2649 err = intel_pt_synth_transaction_sample(ptq); 2650 if (err) 2651 return err; 2652 } 2653 2654 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2655 err = intel_pt_synth_ptwrite_sample(ptq); 2656 if (err) 2657 return err; 2658 } 2659 2660 if (!(state->type & INTEL_PT_BRANCH)) 2661 return 0; 2662 2663 if (pt->use_thread_stack) { 2664 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2665 state->from_ip, state->to_ip, ptq->insn_len, 2666 state->trace_nr, pt->callstack, 2667 pt->br_stack_sz_plus, 2668 pt->mispred_all); 2669 } else { 2670 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2671 } 2672 2673 if (pt->sample_branches) { 2674 if (state->from_nr != state->to_nr && 2675 state->from_ip && state->to_ip) { 2676 struct intel_pt_state *st = (struct intel_pt_state *)state; 2677 u64 to_ip = st->to_ip; 2678 u64 from_ip = st->from_ip; 2679 2680 /* 2681 * perf cannot handle having different machines for ip 2682 * and addr, so create 2 branches. 2683 */ 2684 st->to_ip = 0; 2685 err = intel_pt_synth_branch_sample(ptq); 2686 if (err) 2687 return err; 2688 st->from_ip = 0; 2689 st->to_ip = to_ip; 2690 err = intel_pt_synth_branch_sample(ptq); 2691 st->from_ip = from_ip; 2692 } else { 2693 err = intel_pt_synth_branch_sample(ptq); 2694 } 2695 if (err) 2696 return err; 2697 } 2698 2699 if (!ptq->sync_switch) 2700 return 0; 2701 2702 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2703 switch (ptq->switch_state) { 2704 case INTEL_PT_SS_NOT_TRACING: 2705 case INTEL_PT_SS_UNKNOWN: 2706 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2707 err = intel_pt_next_tid(pt, ptq); 2708 if (err) 2709 return err; 2710 ptq->switch_state = INTEL_PT_SS_TRACING; 2711 break; 2712 default: 2713 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2714 return 1; 2715 } 2716 } else if (!state->to_ip) { 2717 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2718 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2719 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2720 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2721 state->to_ip == pt->ptss_ip && 2722 (ptq->flags & PERF_IP_FLAG_CALL)) { 2723 ptq->switch_state = INTEL_PT_SS_TRACING; 2724 } 2725 2726 return 0; 2727 } 2728 2729 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2730 { 2731 struct machine *machine = pt->machine; 2732 struct map *map; 2733 struct symbol *sym, *start; 2734 u64 ip, switch_ip = 0; 2735 const char *ptss; 2736 2737 if (ptss_ip) 2738 *ptss_ip = 0; 2739 2740 map = machine__kernel_map(machine); 2741 if (!map) 2742 return 0; 2743 2744 if (map__load(map)) 2745 return 0; 2746 2747 start = dso__first_symbol(map->dso); 2748 2749 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2750 if (sym->binding == STB_GLOBAL && 2751 !strcmp(sym->name, "__switch_to")) { 2752 ip = map->unmap_ip(map, sym->start); 2753 if (ip >= map->start && ip < map->end) { 2754 switch_ip = ip; 2755 break; 2756 } 2757 } 2758 } 2759 2760 if (!switch_ip || !ptss_ip) 2761 return 0; 2762 2763 if (pt->have_sched_switch == 1) 2764 ptss = "perf_trace_sched_switch"; 2765 else 2766 ptss = "__perf_event_task_sched_out"; 2767 2768 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2769 if (!strcmp(sym->name, ptss)) { 2770 ip = map->unmap_ip(map, sym->start); 2771 if (ip >= map->start && ip < map->end) { 2772 *ptss_ip = ip; 2773 break; 2774 } 2775 } 2776 } 2777 2778 return switch_ip; 2779 } 2780 2781 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2782 { 2783 unsigned int i; 2784 2785 if (pt->sync_switch_not_supported) 2786 return; 2787 2788 pt->sync_switch = true; 2789 2790 for (i = 0; i < pt->queues.nr_queues; i++) { 2791 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2792 struct intel_pt_queue *ptq = queue->priv; 2793 2794 if (ptq) 2795 ptq->sync_switch = true; 2796 } 2797 } 2798 2799 static void intel_pt_disable_sync_switch(struct intel_pt *pt) 2800 { 2801 unsigned int i; 2802 2803 pt->sync_switch = false; 2804 2805 for (i = 0; i < pt->queues.nr_queues; i++) { 2806 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2807 struct intel_pt_queue *ptq = queue->priv; 2808 2809 if (ptq) { 2810 ptq->sync_switch = false; 2811 intel_pt_next_tid(pt, ptq); 2812 } 2813 } 2814 } 2815 2816 /* 2817 * To filter against time ranges, it is only necessary to look at the next start 2818 * or end time. 2819 */ 2820 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2821 { 2822 struct intel_pt *pt = ptq->pt; 2823 2824 if (ptq->sel_start) { 2825 /* Next time is an end time */ 2826 ptq->sel_start = false; 2827 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2828 return true; 2829 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2830 /* Next time is a start time */ 2831 ptq->sel_start = true; 2832 ptq->sel_idx += 1; 2833 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2834 return true; 2835 } 2836 2837 /* No next time */ 2838 return false; 2839 } 2840 2841 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2842 { 2843 int err; 2844 2845 while (1) { 2846 if (ptq->sel_start) { 2847 if (ptq->timestamp >= ptq->sel_timestamp) { 2848 /* After start time, so consider next time */ 2849 intel_pt_next_time(ptq); 2850 if (!ptq->sel_timestamp) { 2851 /* No end time */ 2852 return 0; 2853 } 2854 /* Check against end time */ 2855 continue; 2856 } 2857 /* Before start time, so fast forward */ 2858 ptq->have_sample = false; 2859 if (ptq->sel_timestamp > *ff_timestamp) { 2860 if (ptq->sync_switch) { 2861 intel_pt_next_tid(ptq->pt, ptq); 2862 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2863 } 2864 *ff_timestamp = ptq->sel_timestamp; 2865 err = intel_pt_fast_forward(ptq->decoder, 2866 ptq->sel_timestamp); 2867 if (err) 2868 return err; 2869 } 2870 return 0; 2871 } else if (ptq->timestamp > ptq->sel_timestamp) { 2872 /* After end time, so consider next time */ 2873 if (!intel_pt_next_time(ptq)) { 2874 /* No next time range, so stop decoding */ 2875 ptq->have_sample = false; 2876 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2877 return 1; 2878 } 2879 /* Check against next start time */ 2880 continue; 2881 } else { 2882 /* Before end time */ 2883 return 0; 2884 } 2885 } 2886 } 2887 2888 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2889 { 2890 const struct intel_pt_state *state = ptq->state; 2891 struct intel_pt *pt = ptq->pt; 2892 u64 ff_timestamp = 0; 2893 int err; 2894 2895 if (!pt->kernel_start) { 2896 pt->kernel_start = machine__kernel_start(pt->machine); 2897 if (pt->per_cpu_mmaps && 2898 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2899 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2900 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { 2901 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2902 if (pt->switch_ip) { 2903 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2904 pt->switch_ip, pt->ptss_ip); 2905 intel_pt_enable_sync_switch(pt); 2906 } 2907 } 2908 } 2909 2910 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2911 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2912 while (1) { 2913 err = intel_pt_sample(ptq); 2914 if (err) 2915 return err; 2916 2917 state = intel_pt_decode(ptq->decoder); 2918 if (state->err) { 2919 if (state->err == INTEL_PT_ERR_NODATA) 2920 return 1; 2921 if (ptq->sync_switch && 2922 state->from_ip >= pt->kernel_start) { 2923 ptq->sync_switch = false; 2924 intel_pt_next_tid(pt, ptq); 2925 } 2926 ptq->timestamp = state->est_timestamp; 2927 if (pt->synth_opts.errors) { 2928 err = intel_ptq_synth_error(ptq, state); 2929 if (err) 2930 return err; 2931 } 2932 continue; 2933 } 2934 2935 ptq->state = state; 2936 ptq->have_sample = true; 2937 intel_pt_sample_flags(ptq); 2938 2939 /* Use estimated TSC upon return to user space */ 2940 if (pt->est_tsc && 2941 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2942 state->to_ip && state->to_ip < pt->kernel_start) { 2943 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2944 state->timestamp, state->est_timestamp); 2945 ptq->timestamp = state->est_timestamp; 2946 /* Use estimated TSC in unknown switch state */ 2947 } else if (ptq->sync_switch && 2948 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2949 intel_pt_is_switch_ip(ptq, state->to_ip) && 2950 ptq->next_tid == -1) { 2951 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2952 state->timestamp, state->est_timestamp); 2953 ptq->timestamp = state->est_timestamp; 2954 } else if (state->timestamp > ptq->timestamp) { 2955 ptq->timestamp = state->timestamp; 2956 } 2957 2958 if (ptq->sel_timestamp) { 2959 err = intel_pt_time_filter(ptq, &ff_timestamp); 2960 if (err) 2961 return err; 2962 } 2963 2964 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2965 *timestamp = ptq->timestamp; 2966 return 0; 2967 } 2968 } 2969 return 0; 2970 } 2971 2972 static inline int intel_pt_update_queues(struct intel_pt *pt) 2973 { 2974 if (pt->queues.new_data) { 2975 pt->queues.new_data = false; 2976 return intel_pt_setup_queues(pt); 2977 } 2978 return 0; 2979 } 2980 2981 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2982 { 2983 unsigned int queue_nr; 2984 u64 ts; 2985 int ret; 2986 2987 while (1) { 2988 struct auxtrace_queue *queue; 2989 struct intel_pt_queue *ptq; 2990 2991 if (!pt->heap.heap_cnt) 2992 return 0; 2993 2994 if (pt->heap.heap_array[0].ordinal >= timestamp) 2995 return 0; 2996 2997 queue_nr = pt->heap.heap_array[0].queue_nr; 2998 queue = &pt->queues.queue_array[queue_nr]; 2999 ptq = queue->priv; 3000 3001 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 3002 queue_nr, pt->heap.heap_array[0].ordinal, 3003 timestamp); 3004 3005 auxtrace_heap__pop(&pt->heap); 3006 3007 if (pt->heap.heap_cnt) { 3008 ts = pt->heap.heap_array[0].ordinal + 1; 3009 if (ts > timestamp) 3010 ts = timestamp; 3011 } else { 3012 ts = timestamp; 3013 } 3014 3015 intel_pt_set_pid_tid_cpu(pt, queue); 3016 3017 ret = intel_pt_run_decoder(ptq, &ts); 3018 3019 if (ret < 0) { 3020 auxtrace_heap__add(&pt->heap, queue_nr, ts); 3021 return ret; 3022 } 3023 3024 if (!ret) { 3025 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 3026 if (ret < 0) 3027 return ret; 3028 } else { 3029 ptq->on_heap = false; 3030 } 3031 } 3032 3033 return 0; 3034 } 3035 3036 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 3037 u64 time_) 3038 { 3039 struct auxtrace_queues *queues = &pt->queues; 3040 unsigned int i; 3041 u64 ts = 0; 3042 3043 for (i = 0; i < queues->nr_queues; i++) { 3044 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 3045 struct intel_pt_queue *ptq = queue->priv; 3046 3047 if (ptq && (tid == -1 || ptq->tid == tid)) { 3048 ptq->time = time_; 3049 intel_pt_set_pid_tid_cpu(pt, queue); 3050 intel_pt_run_decoder(ptq, &ts); 3051 } 3052 } 3053 return 0; 3054 } 3055 3056 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 3057 struct auxtrace_queue *queue, 3058 struct perf_sample *sample) 3059 { 3060 struct machine *m = ptq->pt->machine; 3061 3062 ptq->pid = sample->pid; 3063 ptq->tid = sample->tid; 3064 ptq->cpu = queue->cpu; 3065 3066 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 3067 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 3068 3069 thread__zput(ptq->thread); 3070 3071 if (ptq->tid == -1) 3072 return; 3073 3074 if (ptq->pid == -1) { 3075 ptq->thread = machine__find_thread(m, -1, ptq->tid); 3076 if (ptq->thread) 3077 ptq->pid = ptq->thread->pid_; 3078 return; 3079 } 3080 3081 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 3082 } 3083 3084 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 3085 struct perf_sample *sample) 3086 { 3087 struct auxtrace_queue *queue; 3088 struct intel_pt_queue *ptq; 3089 u64 ts = 0; 3090 3091 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3092 if (!queue) 3093 return -EINVAL; 3094 3095 ptq = queue->priv; 3096 if (!ptq) 3097 return 0; 3098 3099 ptq->stop = false; 3100 ptq->time = sample->time; 3101 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 3102 intel_pt_run_decoder(ptq, &ts); 3103 return 0; 3104 } 3105 3106 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 3107 { 3108 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 3109 sample->pid, sample->tid, 0, sample->time, 3110 sample->machine_pid, sample->vcpu); 3111 } 3112 3113 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 3114 { 3115 unsigned i, j; 3116 3117 if (cpu < 0 || !pt->queues.nr_queues) 3118 return NULL; 3119 3120 if ((unsigned)cpu >= pt->queues.nr_queues) 3121 i = pt->queues.nr_queues - 1; 3122 else 3123 i = cpu; 3124 3125 if (pt->queues.queue_array[i].cpu == cpu) 3126 return pt->queues.queue_array[i].priv; 3127 3128 for (j = 0; i > 0; j++) { 3129 if (pt->queues.queue_array[--i].cpu == cpu) 3130 return pt->queues.queue_array[i].priv; 3131 } 3132 3133 for (; j < pt->queues.nr_queues; j++) { 3134 if (pt->queues.queue_array[j].cpu == cpu) 3135 return pt->queues.queue_array[j].priv; 3136 } 3137 3138 return NULL; 3139 } 3140 3141 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 3142 u64 timestamp) 3143 { 3144 struct intel_pt_queue *ptq; 3145 int err; 3146 3147 if (!pt->sync_switch) 3148 return 1; 3149 3150 ptq = intel_pt_cpu_to_ptq(pt, cpu); 3151 if (!ptq || !ptq->sync_switch) 3152 return 1; 3153 3154 switch (ptq->switch_state) { 3155 case INTEL_PT_SS_NOT_TRACING: 3156 break; 3157 case INTEL_PT_SS_UNKNOWN: 3158 case INTEL_PT_SS_TRACING: 3159 ptq->next_tid = tid; 3160 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 3161 return 0; 3162 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 3163 if (!ptq->on_heap) { 3164 ptq->timestamp = perf_time_to_tsc(timestamp, 3165 &pt->tc); 3166 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 3167 ptq->timestamp); 3168 if (err) 3169 return err; 3170 ptq->on_heap = true; 3171 } 3172 ptq->switch_state = INTEL_PT_SS_TRACING; 3173 break; 3174 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3175 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 3176 break; 3177 default: 3178 break; 3179 } 3180 3181 ptq->next_tid = -1; 3182 3183 return 1; 3184 } 3185 3186 #ifdef HAVE_LIBTRACEEVENT 3187 static int intel_pt_process_switch(struct intel_pt *pt, 3188 struct perf_sample *sample) 3189 { 3190 pid_t tid; 3191 int cpu, ret; 3192 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); 3193 3194 if (evsel != pt->switch_evsel) 3195 return 0; 3196 3197 tid = evsel__intval(evsel, sample, "next_pid"); 3198 cpu = sample->cpu; 3199 3200 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3201 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 3202 &pt->tc)); 3203 3204 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3205 if (ret <= 0) 3206 return ret; 3207 3208 return machine__set_current_tid(pt->machine, cpu, -1, tid); 3209 } 3210 #endif /* HAVE_LIBTRACEEVENT */ 3211 3212 static int intel_pt_context_switch_in(struct intel_pt *pt, 3213 struct perf_sample *sample) 3214 { 3215 pid_t pid = sample->pid; 3216 pid_t tid = sample->tid; 3217 int cpu = sample->cpu; 3218 3219 if (pt->sync_switch) { 3220 struct intel_pt_queue *ptq; 3221 3222 ptq = intel_pt_cpu_to_ptq(pt, cpu); 3223 if (ptq && ptq->sync_switch) { 3224 ptq->next_tid = -1; 3225 switch (ptq->switch_state) { 3226 case INTEL_PT_SS_NOT_TRACING: 3227 case INTEL_PT_SS_UNKNOWN: 3228 case INTEL_PT_SS_TRACING: 3229 break; 3230 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 3231 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 3232 ptq->switch_state = INTEL_PT_SS_TRACING; 3233 break; 3234 default: 3235 break; 3236 } 3237 } 3238 } 3239 3240 /* 3241 * If the current tid has not been updated yet, ensure it is now that 3242 * a "switch in" event has occurred. 3243 */ 3244 if (machine__get_current_tid(pt->machine, cpu) == tid) 3245 return 0; 3246 3247 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3248 } 3249 3250 static int intel_pt_guest_context_switch(struct intel_pt *pt, 3251 union perf_event *event, 3252 struct perf_sample *sample) 3253 { 3254 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3255 struct machines *machines = &pt->session->machines; 3256 struct machine *machine = machines__find(machines, sample->machine_pid); 3257 3258 pt->have_guest_sideband = true; 3259 3260 /* 3261 * sync_switch cannot handle guest machines at present, so just disable 3262 * it. 3263 */ 3264 pt->sync_switch_not_supported = true; 3265 if (pt->sync_switch) 3266 intel_pt_disable_sync_switch(pt); 3267 3268 if (out) 3269 return 0; 3270 3271 if (!machine) 3272 return -EINVAL; 3273 3274 return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid); 3275 } 3276 3277 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 3278 struct perf_sample *sample) 3279 { 3280 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 3281 pid_t pid, tid; 3282 int cpu, ret; 3283 3284 if (perf_event__is_guest(event)) 3285 return intel_pt_guest_context_switch(pt, event, sample); 3286 3287 cpu = sample->cpu; 3288 3289 if (pt->have_sched_switch == 3) { 3290 if (!out) 3291 return intel_pt_context_switch_in(pt, sample); 3292 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 3293 pr_err("Expecting CPU-wide context switch event\n"); 3294 return -EINVAL; 3295 } 3296 pid = event->context_switch.next_prev_pid; 3297 tid = event->context_switch.next_prev_tid; 3298 } else { 3299 if (out) 3300 return 0; 3301 pid = sample->pid; 3302 tid = sample->tid; 3303 } 3304 3305 if (tid == -1) 3306 intel_pt_log("context_switch event has no tid\n"); 3307 3308 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 3309 if (ret <= 0) 3310 return ret; 3311 3312 return machine__set_current_tid(pt->machine, cpu, pid, tid); 3313 } 3314 3315 static int intel_pt_process_itrace_start(struct intel_pt *pt, 3316 union perf_event *event, 3317 struct perf_sample *sample) 3318 { 3319 if (!pt->per_cpu_mmaps) 3320 return 0; 3321 3322 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 3323 sample->cpu, event->itrace_start.pid, 3324 event->itrace_start.tid, sample->time, 3325 perf_time_to_tsc(sample->time, &pt->tc)); 3326 3327 return machine__set_current_tid(pt->machine, sample->cpu, 3328 event->itrace_start.pid, 3329 event->itrace_start.tid); 3330 } 3331 3332 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt, 3333 union perf_event *event, 3334 struct perf_sample *sample) 3335 { 3336 u64 hw_id = event->aux_output_hw_id.hw_id; 3337 struct auxtrace_queue *queue; 3338 struct intel_pt_queue *ptq; 3339 struct evsel *evsel; 3340 3341 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 3342 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id); 3343 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) { 3344 pr_err("Bad AUX output hardware ID\n"); 3345 return -EINVAL; 3346 } 3347 3348 ptq = queue->priv; 3349 3350 ptq->pebs[hw_id].evsel = evsel; 3351 ptq->pebs[hw_id].id = sample->id; 3352 3353 return 0; 3354 } 3355 3356 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 3357 struct addr_location *al) 3358 { 3359 if (!al->map || addr < al->map->start || addr >= al->map->end) { 3360 if (!thread__find_map(thread, cpumode, addr, al)) 3361 return -1; 3362 } 3363 3364 return 0; 3365 } 3366 3367 /* Invalidate all instruction cache entries that overlap the text poke */ 3368 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 3369 { 3370 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 3371 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 3372 /* Assume text poke begins in a basic block no more than 4096 bytes */ 3373 int cnt = 4096 + event->text_poke.new_len; 3374 struct thread *thread = pt->unknown_thread; 3375 struct addr_location al = { .map = NULL }; 3376 struct machine *machine = pt->machine; 3377 struct intel_pt_cache_entry *e; 3378 u64 offset; 3379 3380 if (!event->text_poke.new_len) 3381 return 0; 3382 3383 for (; cnt; cnt--, addr--) { 3384 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 3385 if (addr < event->text_poke.addr) 3386 return 0; 3387 continue; 3388 } 3389 3390 if (!al.map->dso || !al.map->dso->auxtrace_cache) 3391 continue; 3392 3393 offset = al.map->map_ip(al.map, addr); 3394 3395 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 3396 if (!e) 3397 continue; 3398 3399 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 3400 /* 3401 * No overlap. Working backwards there cannot be another 3402 * basic block that overlaps the text poke if there is a 3403 * branch instruction before the text poke address. 3404 */ 3405 if (e->branch != INTEL_PT_BR_NO_BRANCH) 3406 return 0; 3407 } else { 3408 intel_pt_cache_invalidate(al.map->dso, machine, offset); 3409 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 3410 al.map->dso->long_name, addr); 3411 } 3412 } 3413 3414 return 0; 3415 } 3416 3417 static int intel_pt_process_event(struct perf_session *session, 3418 union perf_event *event, 3419 struct perf_sample *sample, 3420 struct perf_tool *tool) 3421 { 3422 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3423 auxtrace); 3424 u64 timestamp; 3425 int err = 0; 3426 3427 if (dump_trace) 3428 return 0; 3429 3430 if (!tool->ordered_events) { 3431 pr_err("Intel Processor Trace requires ordered events\n"); 3432 return -EINVAL; 3433 } 3434 3435 if (sample->time && sample->time != (u64)-1) 3436 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3437 else 3438 timestamp = 0; 3439 3440 if (timestamp || pt->timeless_decoding) { 3441 err = intel_pt_update_queues(pt); 3442 if (err) 3443 return err; 3444 } 3445 3446 if (pt->timeless_decoding) { 3447 if (pt->sampling_mode) { 3448 if (sample->aux_sample.size) 3449 err = intel_pt_process_timeless_sample(pt, 3450 sample); 3451 } else if (event->header.type == PERF_RECORD_EXIT) { 3452 err = intel_pt_process_timeless_queues(pt, 3453 event->fork.tid, 3454 sample->time); 3455 } 3456 } else if (timestamp) { 3457 if (!pt->first_timestamp) 3458 intel_pt_first_timestamp(pt, timestamp); 3459 err = intel_pt_process_queues(pt, timestamp); 3460 } 3461 if (err) 3462 return err; 3463 3464 if (event->header.type == PERF_RECORD_SAMPLE) { 3465 if (pt->synth_opts.add_callchain && !sample->callchain) 3466 intel_pt_add_callchain(pt, sample); 3467 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 3468 intel_pt_add_br_stack(pt, sample); 3469 } 3470 3471 if (event->header.type == PERF_RECORD_AUX && 3472 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 3473 pt->synth_opts.errors) { 3474 err = intel_pt_lost(pt, sample); 3475 if (err) 3476 return err; 3477 } 3478 3479 #ifdef HAVE_LIBTRACEEVENT 3480 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 3481 err = intel_pt_process_switch(pt, sample); 3482 else 3483 #endif 3484 if (event->header.type == PERF_RECORD_ITRACE_START) 3485 err = intel_pt_process_itrace_start(pt, event, sample); 3486 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID) 3487 err = intel_pt_process_aux_output_hw_id(pt, event, sample); 3488 else if (event->header.type == PERF_RECORD_SWITCH || 3489 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 3490 err = intel_pt_context_switch(pt, event, sample); 3491 3492 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 3493 err = intel_pt_text_poke(pt, event); 3494 3495 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 3496 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 3497 event->header.type, sample->cpu, sample->time, timestamp); 3498 intel_pt_log_event(event); 3499 } 3500 3501 return err; 3502 } 3503 3504 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 3505 { 3506 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3507 auxtrace); 3508 int ret; 3509 3510 if (dump_trace) 3511 return 0; 3512 3513 if (!tool->ordered_events) 3514 return -EINVAL; 3515 3516 ret = intel_pt_update_queues(pt); 3517 if (ret < 0) 3518 return ret; 3519 3520 if (pt->timeless_decoding) 3521 return intel_pt_process_timeless_queues(pt, -1, 3522 MAX_TIMESTAMP - 1); 3523 3524 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 3525 } 3526 3527 static void intel_pt_free_events(struct perf_session *session) 3528 { 3529 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3530 auxtrace); 3531 struct auxtrace_queues *queues = &pt->queues; 3532 unsigned int i; 3533 3534 for (i = 0; i < queues->nr_queues; i++) { 3535 intel_pt_free_queue(queues->queue_array[i].priv); 3536 queues->queue_array[i].priv = NULL; 3537 } 3538 intel_pt_log_disable(); 3539 auxtrace_queues__free(queues); 3540 } 3541 3542 static void intel_pt_free(struct perf_session *session) 3543 { 3544 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3545 auxtrace); 3546 3547 auxtrace_heap__free(&pt->heap); 3548 intel_pt_free_events(session); 3549 session->auxtrace = NULL; 3550 intel_pt_free_vmcs_info(pt); 3551 thread__put(pt->unknown_thread); 3552 addr_filters__exit(&pt->filts); 3553 zfree(&pt->chain); 3554 zfree(&pt->filter); 3555 zfree(&pt->time_ranges); 3556 free(pt); 3557 } 3558 3559 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 3560 struct evsel *evsel) 3561 { 3562 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3563 auxtrace); 3564 3565 return evsel->core.attr.type == pt->pmu_type; 3566 } 3567 3568 static int intel_pt_process_auxtrace_event(struct perf_session *session, 3569 union perf_event *event, 3570 struct perf_tool *tool __maybe_unused) 3571 { 3572 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3573 auxtrace); 3574 3575 if (!pt->data_queued) { 3576 struct auxtrace_buffer *buffer; 3577 off_t data_offset; 3578 int fd = perf_data__fd(session->data); 3579 int err; 3580 3581 if (perf_data__is_pipe(session->data)) { 3582 data_offset = 0; 3583 } else { 3584 data_offset = lseek(fd, 0, SEEK_CUR); 3585 if (data_offset == -1) 3586 return -errno; 3587 } 3588 3589 err = auxtrace_queues__add_event(&pt->queues, session, event, 3590 data_offset, &buffer); 3591 if (err) 3592 return err; 3593 3594 /* Dump here now we have copied a piped trace out of the pipe */ 3595 if (dump_trace) { 3596 if (auxtrace_buffer__get_data(buffer, fd)) { 3597 intel_pt_dump_event(pt, buffer->data, 3598 buffer->size); 3599 auxtrace_buffer__put_data(buffer); 3600 } 3601 } 3602 } 3603 3604 return 0; 3605 } 3606 3607 static int intel_pt_queue_data(struct perf_session *session, 3608 struct perf_sample *sample, 3609 union perf_event *event, u64 data_offset) 3610 { 3611 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 3612 auxtrace); 3613 u64 timestamp; 3614 3615 if (event) { 3616 return auxtrace_queues__add_event(&pt->queues, session, event, 3617 data_offset, NULL); 3618 } 3619 3620 if (sample->time && sample->time != (u64)-1) 3621 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 3622 else 3623 timestamp = 0; 3624 3625 return auxtrace_queues__add_sample(&pt->queues, session, sample, 3626 data_offset, timestamp); 3627 } 3628 3629 struct intel_pt_synth { 3630 struct perf_tool dummy_tool; 3631 struct perf_session *session; 3632 }; 3633 3634 static int intel_pt_event_synth(struct perf_tool *tool, 3635 union perf_event *event, 3636 struct perf_sample *sample __maybe_unused, 3637 struct machine *machine __maybe_unused) 3638 { 3639 struct intel_pt_synth *intel_pt_synth = 3640 container_of(tool, struct intel_pt_synth, dummy_tool); 3641 3642 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 3643 NULL); 3644 } 3645 3646 static int intel_pt_synth_event(struct perf_session *session, const char *name, 3647 struct perf_event_attr *attr, u64 id) 3648 { 3649 struct intel_pt_synth intel_pt_synth; 3650 int err; 3651 3652 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 3653 name, id, (u64)attr->sample_type); 3654 3655 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 3656 intel_pt_synth.session = session; 3657 3658 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 3659 &id, intel_pt_event_synth); 3660 if (err) 3661 pr_err("%s: failed to synthesize '%s' event type\n", 3662 __func__, name); 3663 3664 return err; 3665 } 3666 3667 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 3668 const char *name) 3669 { 3670 struct evsel *evsel; 3671 3672 evlist__for_each_entry(evlist, evsel) { 3673 if (evsel->core.id && evsel->core.id[0] == id) { 3674 if (evsel->name) 3675 zfree(&evsel->name); 3676 evsel->name = strdup(name); 3677 break; 3678 } 3679 } 3680 } 3681 3682 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 3683 struct evlist *evlist) 3684 { 3685 struct evsel *evsel; 3686 3687 evlist__for_each_entry(evlist, evsel) { 3688 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 3689 return evsel; 3690 } 3691 3692 return NULL; 3693 } 3694 3695 static int intel_pt_synth_events(struct intel_pt *pt, 3696 struct perf_session *session) 3697 { 3698 struct evlist *evlist = session->evlist; 3699 struct evsel *evsel = intel_pt_evsel(pt, evlist); 3700 struct perf_event_attr attr; 3701 u64 id; 3702 int err; 3703 3704 if (!evsel) { 3705 pr_debug("There are no selected events with Intel Processor Trace data\n"); 3706 return 0; 3707 } 3708 3709 memset(&attr, 0, sizeof(struct perf_event_attr)); 3710 attr.size = sizeof(struct perf_event_attr); 3711 attr.type = PERF_TYPE_HARDWARE; 3712 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 3713 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 3714 PERF_SAMPLE_PERIOD; 3715 if (pt->timeless_decoding) 3716 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 3717 else 3718 attr.sample_type |= PERF_SAMPLE_TIME; 3719 if (!pt->per_cpu_mmaps) 3720 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 3721 attr.exclude_user = evsel->core.attr.exclude_user; 3722 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 3723 attr.exclude_hv = evsel->core.attr.exclude_hv; 3724 attr.exclude_host = evsel->core.attr.exclude_host; 3725 attr.exclude_guest = evsel->core.attr.exclude_guest; 3726 attr.sample_id_all = evsel->core.attr.sample_id_all; 3727 attr.read_format = evsel->core.attr.read_format; 3728 3729 id = evsel->core.id[0] + 1000000000; 3730 if (!id) 3731 id = 1; 3732 3733 if (pt->synth_opts.branches) { 3734 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3735 attr.sample_period = 1; 3736 attr.sample_type |= PERF_SAMPLE_ADDR; 3737 err = intel_pt_synth_event(session, "branches", &attr, id); 3738 if (err) 3739 return err; 3740 pt->sample_branches = true; 3741 pt->branches_sample_type = attr.sample_type; 3742 pt->branches_id = id; 3743 id += 1; 3744 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3745 } 3746 3747 if (pt->synth_opts.callchain) 3748 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3749 if (pt->synth_opts.last_branch) { 3750 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3751 /* 3752 * We don't use the hardware index, but the sample generation 3753 * code uses the new format branch_stack with this field, 3754 * so the event attributes must indicate that it's present. 3755 */ 3756 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3757 } 3758 3759 if (pt->synth_opts.instructions) { 3760 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3761 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3762 attr.sample_period = 3763 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3764 else 3765 attr.sample_period = pt->synth_opts.period; 3766 err = intel_pt_synth_event(session, "instructions", &attr, id); 3767 if (err) 3768 return err; 3769 pt->sample_instructions = true; 3770 pt->instructions_sample_type = attr.sample_type; 3771 pt->instructions_id = id; 3772 id += 1; 3773 } 3774 3775 if (pt->synth_opts.cycles) { 3776 attr.config = PERF_COUNT_HW_CPU_CYCLES; 3777 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3778 attr.sample_period = 3779 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3780 else 3781 attr.sample_period = pt->synth_opts.period; 3782 err = intel_pt_synth_event(session, "cycles", &attr, id); 3783 if (err) 3784 return err; 3785 pt->sample_cycles = true; 3786 pt->cycles_sample_type = attr.sample_type; 3787 pt->cycles_id = id; 3788 id += 1; 3789 } 3790 3791 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3792 attr.sample_period = 1; 3793 3794 if (pt->synth_opts.transactions) { 3795 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3796 err = intel_pt_synth_event(session, "transactions", &attr, id); 3797 if (err) 3798 return err; 3799 pt->sample_transactions = true; 3800 pt->transactions_sample_type = attr.sample_type; 3801 pt->transactions_id = id; 3802 intel_pt_set_event_name(evlist, id, "transactions"); 3803 id += 1; 3804 } 3805 3806 attr.type = PERF_TYPE_SYNTH; 3807 attr.sample_type |= PERF_SAMPLE_RAW; 3808 3809 if (pt->synth_opts.ptwrites) { 3810 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3811 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3812 if (err) 3813 return err; 3814 pt->sample_ptwrites = true; 3815 pt->ptwrites_sample_type = attr.sample_type; 3816 pt->ptwrites_id = id; 3817 intel_pt_set_event_name(evlist, id, "ptwrite"); 3818 id += 1; 3819 } 3820 3821 if (pt->synth_opts.pwr_events) { 3822 pt->sample_pwr_events = true; 3823 pt->pwr_events_sample_type = attr.sample_type; 3824 3825 attr.config = PERF_SYNTH_INTEL_CBR; 3826 err = intel_pt_synth_event(session, "cbr", &attr, id); 3827 if (err) 3828 return err; 3829 pt->cbr_id = id; 3830 intel_pt_set_event_name(evlist, id, "cbr"); 3831 id += 1; 3832 3833 attr.config = PERF_SYNTH_INTEL_PSB; 3834 err = intel_pt_synth_event(session, "psb", &attr, id); 3835 if (err) 3836 return err; 3837 pt->psb_id = id; 3838 intel_pt_set_event_name(evlist, id, "psb"); 3839 id += 1; 3840 } 3841 3842 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) { 3843 attr.config = PERF_SYNTH_INTEL_MWAIT; 3844 err = intel_pt_synth_event(session, "mwait", &attr, id); 3845 if (err) 3846 return err; 3847 pt->mwait_id = id; 3848 intel_pt_set_event_name(evlist, id, "mwait"); 3849 id += 1; 3850 3851 attr.config = PERF_SYNTH_INTEL_PWRE; 3852 err = intel_pt_synth_event(session, "pwre", &attr, id); 3853 if (err) 3854 return err; 3855 pt->pwre_id = id; 3856 intel_pt_set_event_name(evlist, id, "pwre"); 3857 id += 1; 3858 3859 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3860 err = intel_pt_synth_event(session, "exstop", &attr, id); 3861 if (err) 3862 return err; 3863 pt->exstop_id = id; 3864 intel_pt_set_event_name(evlist, id, "exstop"); 3865 id += 1; 3866 3867 attr.config = PERF_SYNTH_INTEL_PWRX; 3868 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3869 if (err) 3870 return err; 3871 pt->pwrx_id = id; 3872 intel_pt_set_event_name(evlist, id, "pwrx"); 3873 id += 1; 3874 } 3875 3876 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) { 3877 attr.config = PERF_SYNTH_INTEL_EVT; 3878 err = intel_pt_synth_event(session, "evt", &attr, id); 3879 if (err) 3880 return err; 3881 pt->evt_sample_type = attr.sample_type; 3882 pt->evt_id = id; 3883 intel_pt_set_event_name(evlist, id, "evt"); 3884 id += 1; 3885 } 3886 3887 if (pt->synth_opts.intr_events && pt->cap_event_trace) { 3888 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG; 3889 err = intel_pt_synth_event(session, "iflag", &attr, id); 3890 if (err) 3891 return err; 3892 pt->iflag_chg_sample_type = attr.sample_type; 3893 pt->iflag_chg_id = id; 3894 intel_pt_set_event_name(evlist, id, "iflag"); 3895 id += 1; 3896 } 3897 3898 return 0; 3899 } 3900 3901 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3902 { 3903 struct evsel *evsel; 3904 3905 if (!pt->synth_opts.other_events) 3906 return; 3907 3908 evlist__for_each_entry(pt->session->evlist, evsel) { 3909 if (evsel->core.attr.aux_output && evsel->core.id) { 3910 if (pt->single_pebs) { 3911 pt->single_pebs = false; 3912 return; 3913 } 3914 pt->single_pebs = true; 3915 pt->sample_pebs = true; 3916 pt->pebs_evsel = evsel; 3917 } 3918 } 3919 } 3920 3921 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3922 { 3923 struct evsel *evsel; 3924 3925 evlist__for_each_entry_reverse(evlist, evsel) { 3926 const char *name = evsel__name(evsel); 3927 3928 if (!strcmp(name, "sched:sched_switch")) 3929 return evsel; 3930 } 3931 3932 return NULL; 3933 } 3934 3935 static bool intel_pt_find_switch(struct evlist *evlist) 3936 { 3937 struct evsel *evsel; 3938 3939 evlist__for_each_entry(evlist, evsel) { 3940 if (evsel->core.attr.context_switch) 3941 return true; 3942 } 3943 3944 return false; 3945 } 3946 3947 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3948 { 3949 struct intel_pt *pt = data; 3950 3951 if (!strcmp(var, "intel-pt.mispred-all")) 3952 pt->mispred_all = perf_config_bool(var, value); 3953 3954 if (!strcmp(var, "intel-pt.max-loops")) 3955 perf_config_int(&pt->max_loops, var, value); 3956 3957 return 0; 3958 } 3959 3960 /* Find least TSC which converts to ns or later */ 3961 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3962 { 3963 u64 tsc, tm; 3964 3965 tsc = perf_time_to_tsc(ns, &pt->tc); 3966 3967 while (1) { 3968 tm = tsc_to_perf_time(tsc, &pt->tc); 3969 if (tm < ns) 3970 break; 3971 tsc -= 1; 3972 } 3973 3974 while (tm < ns) 3975 tm = tsc_to_perf_time(++tsc, &pt->tc); 3976 3977 return tsc; 3978 } 3979 3980 /* Find greatest TSC which converts to ns or earlier */ 3981 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3982 { 3983 u64 tsc, tm; 3984 3985 tsc = perf_time_to_tsc(ns, &pt->tc); 3986 3987 while (1) { 3988 tm = tsc_to_perf_time(tsc, &pt->tc); 3989 if (tm > ns) 3990 break; 3991 tsc += 1; 3992 } 3993 3994 while (tm > ns) 3995 tm = tsc_to_perf_time(--tsc, &pt->tc); 3996 3997 return tsc; 3998 } 3999 4000 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 4001 struct itrace_synth_opts *opts) 4002 { 4003 struct perf_time_interval *p = opts->ptime_range; 4004 int n = opts->range_num; 4005 int i; 4006 4007 if (!n || !p || pt->timeless_decoding) 4008 return 0; 4009 4010 pt->time_ranges = calloc(n, sizeof(struct range)); 4011 if (!pt->time_ranges) 4012 return -ENOMEM; 4013 4014 pt->range_cnt = n; 4015 4016 intel_pt_log("%s: %u range(s)\n", __func__, n); 4017 4018 for (i = 0; i < n; i++) { 4019 struct range *r = &pt->time_ranges[i]; 4020 u64 ts = p[i].start; 4021 u64 te = p[i].end; 4022 4023 /* 4024 * Take care to ensure the TSC range matches the perf-time range 4025 * when converted back to perf-time. 4026 */ 4027 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 4028 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 4029 4030 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 4031 i, ts, te); 4032 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 4033 i, r->start, r->end); 4034 } 4035 4036 return 0; 4037 } 4038 4039 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) 4040 { 4041 struct intel_pt_vmcs_info *vmcs_info; 4042 u64 tsc_offset, vmcs; 4043 char *p = *args; 4044 4045 errno = 0; 4046 4047 p = skip_spaces(p); 4048 if (!*p) 4049 return 1; 4050 4051 tsc_offset = strtoull(p, &p, 0); 4052 if (errno) 4053 return -errno; 4054 p = skip_spaces(p); 4055 if (*p != ':') { 4056 pt->dflt_tsc_offset = tsc_offset; 4057 *args = p; 4058 return 0; 4059 } 4060 p += 1; 4061 while (1) { 4062 vmcs = strtoull(p, &p, 0); 4063 if (errno) 4064 return -errno; 4065 if (!vmcs) 4066 return -EINVAL; 4067 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); 4068 if (!vmcs_info) 4069 return -ENOMEM; 4070 p = skip_spaces(p); 4071 if (*p != ',') 4072 break; 4073 p += 1; 4074 } 4075 *args = p; 4076 return 0; 4077 } 4078 4079 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) 4080 { 4081 char *args = pt->synth_opts.vm_tm_corr_args; 4082 int ret; 4083 4084 if (!args) 4085 return 0; 4086 4087 do { 4088 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); 4089 } while (!ret); 4090 4091 if (ret < 0) { 4092 pr_err("Failed to parse VM Time Correlation options\n"); 4093 return ret; 4094 } 4095 4096 return 0; 4097 } 4098 4099 static const char * const intel_pt_info_fmts[] = { 4100 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 4101 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 4102 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 4103 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 4104 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 4105 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 4106 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 4107 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 4108 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 4109 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 4110 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 4111 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n", 4112 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 4113 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 4114 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 4115 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 4116 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 4117 }; 4118 4119 static void intel_pt_print_info(__u64 *arr, int start, int finish) 4120 { 4121 int i; 4122 4123 if (!dump_trace) 4124 return; 4125 4126 for (i = start; i <= finish; i++) { 4127 const char *fmt = intel_pt_info_fmts[i]; 4128 4129 if (fmt) 4130 fprintf(stdout, fmt, arr[i]); 4131 } 4132 } 4133 4134 static void intel_pt_print_info_str(const char *name, const char *str) 4135 { 4136 if (!dump_trace) 4137 return; 4138 4139 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 4140 } 4141 4142 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 4143 { 4144 return auxtrace_info->header.size >= 4145 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 4146 } 4147 4148 int intel_pt_process_auxtrace_info(union perf_event *event, 4149 struct perf_session *session) 4150 { 4151 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 4152 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 4153 struct intel_pt *pt; 4154 void *info_end; 4155 __u64 *info; 4156 int err; 4157 4158 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 4159 min_sz) 4160 return -EINVAL; 4161 4162 pt = zalloc(sizeof(struct intel_pt)); 4163 if (!pt) 4164 return -ENOMEM; 4165 4166 pt->vmcs_info = RB_ROOT; 4167 4168 addr_filters__init(&pt->filts); 4169 4170 err = perf_config(intel_pt_perf_config, pt); 4171 if (err) 4172 goto err_free; 4173 4174 err = auxtrace_queues__init(&pt->queues); 4175 if (err) 4176 goto err_free; 4177 4178 if (session->itrace_synth_opts->set) { 4179 pt->synth_opts = *session->itrace_synth_opts; 4180 } else { 4181 struct itrace_synth_opts *opts = session->itrace_synth_opts; 4182 4183 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); 4184 if (!opts->default_no_sample && !opts->inject) { 4185 pt->synth_opts.branches = false; 4186 pt->synth_opts.callchain = true; 4187 pt->synth_opts.add_callchain = true; 4188 } 4189 pt->synth_opts.thread_stack = opts->thread_stack; 4190 } 4191 4192 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT)) 4193 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 4194 4195 pt->session = session; 4196 pt->machine = &session->machines.host; /* No kvm support */ 4197 pt->auxtrace_type = auxtrace_info->type; 4198 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 4199 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 4200 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 4201 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 4202 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 4203 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 4204 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 4205 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 4206 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 4207 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 4208 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 4209 INTEL_PT_PER_CPU_MMAPS); 4210 4211 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 4212 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 4213 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 4214 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 4215 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 4216 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 4217 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 4218 INTEL_PT_CYC_BIT); 4219 } 4220 4221 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 4222 pt->max_non_turbo_ratio = 4223 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 4224 intel_pt_print_info(&auxtrace_info->priv[0], 4225 INTEL_PT_MAX_NONTURBO_RATIO, 4226 INTEL_PT_MAX_NONTURBO_RATIO); 4227 } 4228 4229 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 4230 info_end = (void *)auxtrace_info + auxtrace_info->header.size; 4231 4232 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 4233 size_t len; 4234 4235 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 4236 intel_pt_print_info(&auxtrace_info->priv[0], 4237 INTEL_PT_FILTER_STR_LEN, 4238 INTEL_PT_FILTER_STR_LEN); 4239 if (len) { 4240 const char *filter = (const char *)info; 4241 4242 len = roundup(len + 1, 8); 4243 info += len >> 3; 4244 if ((void *)info > info_end) { 4245 pr_err("%s: bad filter string length\n", __func__); 4246 err = -EINVAL; 4247 goto err_free_queues; 4248 } 4249 pt->filter = memdup(filter, len); 4250 if (!pt->filter) { 4251 err = -ENOMEM; 4252 goto err_free_queues; 4253 } 4254 if (session->header.needs_swap) 4255 mem_bswap_64(pt->filter, len); 4256 if (pt->filter[len - 1]) { 4257 pr_err("%s: filter string not null terminated\n", __func__); 4258 err = -EINVAL; 4259 goto err_free_queues; 4260 } 4261 err = addr_filters__parse_bare_filter(&pt->filts, 4262 filter); 4263 if (err) 4264 goto err_free_queues; 4265 } 4266 intel_pt_print_info_str("Filter string", pt->filter); 4267 } 4268 4269 if ((void *)info < info_end) { 4270 pt->cap_event_trace = *info++; 4271 if (dump_trace) 4272 fprintf(stdout, " Cap Event Trace %d\n", 4273 pt->cap_event_trace); 4274 } 4275 4276 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 4277 if (pt->timeless_decoding && !pt->tc.time_mult) 4278 pt->tc.time_mult = 1; 4279 pt->have_tsc = intel_pt_have_tsc(pt); 4280 pt->sampling_mode = intel_pt_sampling_mode(pt); 4281 pt->est_tsc = !pt->timeless_decoding; 4282 4283 if (pt->synth_opts.vm_time_correlation) { 4284 if (pt->timeless_decoding) { 4285 pr_err("Intel PT has no time information for VM Time Correlation\n"); 4286 err = -EINVAL; 4287 goto err_free_queues; 4288 } 4289 if (session->itrace_synth_opts->ptime_range) { 4290 pr_err("Time ranges cannot be specified with VM Time Correlation\n"); 4291 err = -EINVAL; 4292 goto err_free_queues; 4293 } 4294 /* Currently TSC Offset is calculated using MTC packets */ 4295 if (!intel_pt_have_mtc(pt)) { 4296 pr_err("MTC packets must have been enabled for VM Time Correlation\n"); 4297 err = -EINVAL; 4298 goto err_free_queues; 4299 } 4300 err = intel_pt_parse_vm_tm_corr_args(pt); 4301 if (err) 4302 goto err_free_queues; 4303 } 4304 4305 pt->unknown_thread = thread__new(999999999, 999999999); 4306 if (!pt->unknown_thread) { 4307 err = -ENOMEM; 4308 goto err_free_queues; 4309 } 4310 4311 /* 4312 * Since this thread will not be kept in any rbtree not in a 4313 * list, initialize its list node so that at thread__put() the 4314 * current thread lifetime assumption is kept and we don't segfault 4315 * at list_del_init(). 4316 */ 4317 INIT_LIST_HEAD(&pt->unknown_thread->node); 4318 4319 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 4320 if (err) 4321 goto err_delete_thread; 4322 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 4323 err = -ENOMEM; 4324 goto err_delete_thread; 4325 } 4326 4327 pt->auxtrace.process_event = intel_pt_process_event; 4328 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 4329 pt->auxtrace.queue_data = intel_pt_queue_data; 4330 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 4331 pt->auxtrace.flush_events = intel_pt_flush; 4332 pt->auxtrace.free_events = intel_pt_free_events; 4333 pt->auxtrace.free = intel_pt_free; 4334 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 4335 session->auxtrace = &pt->auxtrace; 4336 4337 if (dump_trace) 4338 return 0; 4339 4340 if (pt->have_sched_switch == 1) { 4341 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 4342 if (!pt->switch_evsel) { 4343 pr_err("%s: missing sched_switch event\n", __func__); 4344 err = -EINVAL; 4345 goto err_delete_thread; 4346 } 4347 } else if (pt->have_sched_switch == 2 && 4348 !intel_pt_find_switch(session->evlist)) { 4349 pr_err("%s: missing context_switch attribute flag\n", __func__); 4350 err = -EINVAL; 4351 goto err_delete_thread; 4352 } 4353 4354 if (pt->synth_opts.log) { 4355 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR; 4356 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size; 4357 4358 intel_pt_log_enable(log_on_error, log_on_error_size); 4359 } 4360 4361 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 4362 if (pt->tc.time_mult) { 4363 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 4364 4365 if (!pt->max_non_turbo_ratio) 4366 pt->max_non_turbo_ratio = 4367 (tsc_freq + 50000000) / 100000000; 4368 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 4369 intel_pt_log("Maximum non-turbo ratio %u\n", 4370 pt->max_non_turbo_ratio); 4371 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 4372 } 4373 4374 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 4375 if (err) 4376 goto err_delete_thread; 4377 4378 if (pt->synth_opts.calls) 4379 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 4380 PERF_IP_FLAG_TRACE_END; 4381 if (pt->synth_opts.returns) 4382 pt->branches_filter |= PERF_IP_FLAG_RETURN | 4383 PERF_IP_FLAG_TRACE_BEGIN; 4384 4385 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 4386 !symbol_conf.use_callchain) { 4387 symbol_conf.use_callchain = true; 4388 if (callchain_register_param(&callchain_param) < 0) { 4389 symbol_conf.use_callchain = false; 4390 pt->synth_opts.callchain = false; 4391 pt->synth_opts.add_callchain = false; 4392 } 4393 } 4394 4395 if (pt->synth_opts.add_callchain) { 4396 err = intel_pt_callchain_init(pt); 4397 if (err) 4398 goto err_delete_thread; 4399 } 4400 4401 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 4402 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 4403 pt->br_stack_sz_plus = pt->br_stack_sz; 4404 } 4405 4406 if (pt->synth_opts.add_last_branch) { 4407 err = intel_pt_br_stack_init(pt); 4408 if (err) 4409 goto err_delete_thread; 4410 /* 4411 * Additional branch stack size to cater for tracing from the 4412 * actual sample ip to where the sample time is recorded. 4413 * Measured at about 200 branches, but generously set to 1024. 4414 * If kernel space is not being traced, then add just 1 for the 4415 * branch to kernel space. 4416 */ 4417 if (intel_pt_tracing_kernel(pt)) 4418 pt->br_stack_sz_plus += 1024; 4419 else 4420 pt->br_stack_sz_plus += 1; 4421 } 4422 4423 pt->use_thread_stack = pt->synth_opts.callchain || 4424 pt->synth_opts.add_callchain || 4425 pt->synth_opts.thread_stack || 4426 pt->synth_opts.last_branch || 4427 pt->synth_opts.add_last_branch; 4428 4429 pt->callstack = pt->synth_opts.callchain || 4430 pt->synth_opts.add_callchain || 4431 pt->synth_opts.thread_stack; 4432 4433 err = intel_pt_synth_events(pt, session); 4434 if (err) 4435 goto err_delete_thread; 4436 4437 intel_pt_setup_pebs_events(pt); 4438 4439 if (perf_data__is_pipe(session->data)) { 4440 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n" 4441 " The output cannot relied upon. In particular,\n" 4442 " timestamps and the order of events may be incorrect.\n"); 4443 } 4444 4445 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 4446 err = auxtrace_queue_data(session, true, true); 4447 else 4448 err = auxtrace_queues__process_index(&pt->queues, session); 4449 if (err) 4450 goto err_delete_thread; 4451 4452 if (pt->queues.populated) 4453 pt->data_queued = true; 4454 4455 if (pt->timeless_decoding) 4456 pr_debug2("Intel PT decoding without timestamps\n"); 4457 4458 return 0; 4459 4460 err_delete_thread: 4461 zfree(&pt->chain); 4462 thread__zput(pt->unknown_thread); 4463 err_free_queues: 4464 intel_pt_log_disable(); 4465 auxtrace_queues__free(&pt->queues); 4466 session->auxtrace = NULL; 4467 err_free: 4468 addr_filters__exit(&pt->filts); 4469 zfree(&pt->filter); 4470 zfree(&pt->time_ranges); 4471 free(pt); 4472 return err; 4473 } 4474