1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pt.c: Intel Processor Trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <stdio.h> 9 #include <stdbool.h> 10 #include <errno.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/types.h> 14 #include <linux/zalloc.h> 15 16 #include "session.h" 17 #include "machine.h" 18 #include "memswap.h" 19 #include "sort.h" 20 #include "tool.h" 21 #include "event.h" 22 #include "evlist.h" 23 #include "evsel.h" 24 #include "map.h" 25 #include "color.h" 26 #include "thread.h" 27 #include "thread-stack.h" 28 #include "symbol.h" 29 #include "callchain.h" 30 #include "dso.h" 31 #include "debug.h" 32 #include "auxtrace.h" 33 #include "tsc.h" 34 #include "intel-pt.h" 35 #include "config.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "time-utils.h" 39 40 #include "../arch/x86/include/uapi/asm/perf_regs.h" 41 42 #include "intel-pt-decoder/intel-pt-log.h" 43 #include "intel-pt-decoder/intel-pt-decoder.h" 44 #include "intel-pt-decoder/intel-pt-insn-decoder.h" 45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h" 46 47 #define MAX_TIMESTAMP (~0ULL) 48 49 struct range { 50 u64 start; 51 u64 end; 52 }; 53 54 struct intel_pt { 55 struct auxtrace auxtrace; 56 struct auxtrace_queues queues; 57 struct auxtrace_heap heap; 58 u32 auxtrace_type; 59 struct perf_session *session; 60 struct machine *machine; 61 struct evsel *switch_evsel; 62 struct thread *unknown_thread; 63 bool timeless_decoding; 64 bool sampling_mode; 65 bool snapshot_mode; 66 bool per_cpu_mmaps; 67 bool have_tsc; 68 bool data_queued; 69 bool est_tsc; 70 bool sync_switch; 71 bool mispred_all; 72 bool use_thread_stack; 73 bool callstack; 74 unsigned int br_stack_sz; 75 unsigned int br_stack_sz_plus; 76 int have_sched_switch; 77 u32 pmu_type; 78 u64 kernel_start; 79 u64 switch_ip; 80 u64 ptss_ip; 81 82 struct perf_tsc_conversion tc; 83 bool cap_user_time_zero; 84 85 struct itrace_synth_opts synth_opts; 86 87 bool sample_instructions; 88 u64 instructions_sample_type; 89 u64 instructions_id; 90 91 bool sample_branches; 92 u32 branches_filter; 93 u64 branches_sample_type; 94 u64 branches_id; 95 96 bool sample_transactions; 97 u64 transactions_sample_type; 98 u64 transactions_id; 99 100 bool sample_ptwrites; 101 u64 ptwrites_sample_type; 102 u64 ptwrites_id; 103 104 bool sample_pwr_events; 105 u64 pwr_events_sample_type; 106 u64 mwait_id; 107 u64 pwre_id; 108 u64 exstop_id; 109 u64 pwrx_id; 110 u64 cbr_id; 111 112 bool sample_pebs; 113 struct evsel *pebs_evsel; 114 115 u64 tsc_bit; 116 u64 mtc_bit; 117 u64 mtc_freq_bits; 118 u32 tsc_ctc_ratio_n; 119 u32 tsc_ctc_ratio_d; 120 u64 cyc_bit; 121 u64 noretcomp_bit; 122 unsigned max_non_turbo_ratio; 123 unsigned cbr2khz; 124 125 unsigned long num_events; 126 127 char *filter; 128 struct addr_filters filts; 129 130 struct range *time_ranges; 131 unsigned int range_cnt; 132 133 struct ip_callchain *chain; 134 struct branch_stack *br_stack; 135 }; 136 137 enum switch_state { 138 INTEL_PT_SS_NOT_TRACING, 139 INTEL_PT_SS_UNKNOWN, 140 INTEL_PT_SS_TRACING, 141 INTEL_PT_SS_EXPECTING_SWITCH_EVENT, 142 INTEL_PT_SS_EXPECTING_SWITCH_IP, 143 }; 144 145 struct intel_pt_queue { 146 struct intel_pt *pt; 147 unsigned int queue_nr; 148 struct auxtrace_buffer *buffer; 149 struct auxtrace_buffer *old_buffer; 150 void *decoder; 151 const struct intel_pt_state *state; 152 struct ip_callchain *chain; 153 struct branch_stack *last_branch; 154 union perf_event *event_buf; 155 bool on_heap; 156 bool stop; 157 bool step_through_buffers; 158 bool use_buffer_pid_tid; 159 bool sync_switch; 160 pid_t pid, tid; 161 int cpu; 162 int switch_state; 163 pid_t next_tid; 164 struct thread *thread; 165 bool exclude_kernel; 166 bool have_sample; 167 u64 time; 168 u64 timestamp; 169 u64 sel_timestamp; 170 bool sel_start; 171 unsigned int sel_idx; 172 u32 flags; 173 u16 insn_len; 174 u64 last_insn_cnt; 175 u64 ipc_insn_cnt; 176 u64 ipc_cyc_cnt; 177 u64 last_in_insn_cnt; 178 u64 last_in_cyc_cnt; 179 u64 last_br_insn_cnt; 180 u64 last_br_cyc_cnt; 181 unsigned int cbr_seen; 182 char insn[INTEL_PT_INSN_BUF_SZ]; 183 }; 184 185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused, 186 unsigned char *buf, size_t len) 187 { 188 struct intel_pt_pkt packet; 189 size_t pos = 0; 190 int ret, pkt_len, i; 191 char desc[INTEL_PT_PKT_DESC_MAX]; 192 const char *color = PERF_COLOR_BLUE; 193 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; 194 195 color_fprintf(stdout, color, 196 ". ... Intel Processor Trace data: size %zu bytes\n", 197 len); 198 199 while (len) { 200 ret = intel_pt_get_packet(buf, len, &packet, &ctx); 201 if (ret > 0) 202 pkt_len = ret; 203 else 204 pkt_len = 1; 205 printf("."); 206 color_fprintf(stdout, color, " %08x: ", pos); 207 for (i = 0; i < pkt_len; i++) 208 color_fprintf(stdout, color, " %02x", buf[i]); 209 for (; i < 16; i++) 210 color_fprintf(stdout, color, " "); 211 if (ret > 0) { 212 ret = intel_pt_pkt_desc(&packet, desc, 213 INTEL_PT_PKT_DESC_MAX); 214 if (ret > 0) 215 color_fprintf(stdout, color, " %s\n", desc); 216 } else { 217 color_fprintf(stdout, color, " Bad packet!\n"); 218 } 219 pos += pkt_len; 220 buf += pkt_len; 221 len -= pkt_len; 222 } 223 } 224 225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, 226 size_t len) 227 { 228 printf(".\n"); 229 intel_pt_dump(pt, buf, len); 230 } 231 232 static void intel_pt_log_event(union perf_event *event) 233 { 234 FILE *f = intel_pt_log_fp(); 235 236 if (!intel_pt_enable_logging || !f) 237 return; 238 239 perf_event__fprintf(event, NULL, f); 240 } 241 242 static void intel_pt_dump_sample(struct perf_session *session, 243 struct perf_sample *sample) 244 { 245 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 246 auxtrace); 247 248 printf("\n"); 249 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); 250 } 251 252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) 253 { 254 struct perf_time_interval *range = pt->synth_opts.ptime_range; 255 int n = pt->synth_opts.range_num; 256 257 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 258 return true; 259 260 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) 261 return false; 262 263 /* perf_time__ranges_skip_sample does not work if time is zero */ 264 if (!tm) 265 tm = 1; 266 267 return !n || !perf_time__ranges_skip_sample(range, n, tm); 268 } 269 270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, 271 struct auxtrace_buffer *b) 272 { 273 bool consecutive = false; 274 void *start; 275 276 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, 277 pt->have_tsc, &consecutive); 278 if (!start) 279 return -EINVAL; 280 b->use_size = b->data + b->size - start; 281 b->use_data = start; 282 if (b->use_size && consecutive) 283 b->consecutive = true; 284 return 0; 285 } 286 287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq, 288 struct auxtrace_buffer *buffer, 289 struct auxtrace_buffer *old_buffer, 290 struct intel_pt_buffer *b) 291 { 292 bool might_overlap; 293 294 if (!buffer->data) { 295 int fd = perf_data__fd(ptq->pt->session->data); 296 297 buffer->data = auxtrace_buffer__get_data(buffer, fd); 298 if (!buffer->data) 299 return -ENOMEM; 300 } 301 302 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; 303 if (might_overlap && !buffer->consecutive && old_buffer && 304 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) 305 return -ENOMEM; 306 307 if (buffer->use_data) { 308 b->len = buffer->use_size; 309 b->buf = buffer->use_data; 310 } else { 311 b->len = buffer->size; 312 b->buf = buffer->data; 313 } 314 b->ref_timestamp = buffer->reference; 315 316 if (!old_buffer || (might_overlap && !buffer->consecutive)) { 317 b->consecutive = false; 318 b->trace_nr = buffer->buffer_nr + 1; 319 } else { 320 b->consecutive = true; 321 } 322 323 return 0; 324 } 325 326 /* Do not drop buffers with references - refer intel_pt_get_trace() */ 327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, 328 struct auxtrace_buffer *buffer) 329 { 330 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) 331 return; 332 333 auxtrace_buffer__drop_data(buffer); 334 } 335 336 /* Must be serialized with respect to intel_pt_get_trace() */ 337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, 338 void *cb_data) 339 { 340 struct intel_pt_queue *ptq = data; 341 struct auxtrace_buffer *buffer = ptq->buffer; 342 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 343 struct auxtrace_queue *queue; 344 int err = 0; 345 346 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 347 348 while (1) { 349 struct intel_pt_buffer b = { .len = 0 }; 350 351 buffer = auxtrace_buffer__next(queue, buffer); 352 if (!buffer) 353 break; 354 355 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); 356 if (err) 357 break; 358 359 if (b.len) { 360 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 361 old_buffer = buffer; 362 } else { 363 intel_pt_lookahead_drop_buffer(ptq, buffer); 364 continue; 365 } 366 367 err = cb(&b, cb_data); 368 if (err) 369 break; 370 } 371 372 if (buffer != old_buffer) 373 intel_pt_lookahead_drop_buffer(ptq, buffer); 374 intel_pt_lookahead_drop_buffer(ptq, old_buffer); 375 376 return err; 377 } 378 379 /* 380 * This function assumes data is processed sequentially only. 381 * Must be serialized with respect to intel_pt_lookahead() 382 */ 383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) 384 { 385 struct intel_pt_queue *ptq = data; 386 struct auxtrace_buffer *buffer = ptq->buffer; 387 struct auxtrace_buffer *old_buffer = ptq->old_buffer; 388 struct auxtrace_queue *queue; 389 int err; 390 391 if (ptq->stop) { 392 b->len = 0; 393 return 0; 394 } 395 396 queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; 397 398 buffer = auxtrace_buffer__next(queue, buffer); 399 if (!buffer) { 400 if (old_buffer) 401 auxtrace_buffer__drop_data(old_buffer); 402 b->len = 0; 403 return 0; 404 } 405 406 ptq->buffer = buffer; 407 408 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); 409 if (err) 410 return err; 411 412 if (ptq->step_through_buffers) 413 ptq->stop = true; 414 415 if (b->len) { 416 if (old_buffer) 417 auxtrace_buffer__drop_data(old_buffer); 418 ptq->old_buffer = buffer; 419 } else { 420 auxtrace_buffer__drop_data(buffer); 421 return intel_pt_get_trace(b, data); 422 } 423 424 return 0; 425 } 426 427 struct intel_pt_cache_entry { 428 struct auxtrace_cache_entry entry; 429 u64 insn_cnt; 430 u64 byte_cnt; 431 enum intel_pt_insn_op op; 432 enum intel_pt_insn_branch branch; 433 int length; 434 int32_t rel; 435 char insn[INTEL_PT_INSN_BUF_SZ]; 436 }; 437 438 static int intel_pt_config_div(const char *var, const char *value, void *data) 439 { 440 int *d = data; 441 long val; 442 443 if (!strcmp(var, "intel-pt.cache-divisor")) { 444 val = strtol(value, NULL, 0); 445 if (val > 0 && val <= INT_MAX) 446 *d = val; 447 } 448 449 return 0; 450 } 451 452 static int intel_pt_cache_divisor(void) 453 { 454 static int d; 455 456 if (d) 457 return d; 458 459 perf_config(intel_pt_config_div, &d); 460 461 if (!d) 462 d = 64; 463 464 return d; 465 } 466 467 static unsigned int intel_pt_cache_size(struct dso *dso, 468 struct machine *machine) 469 { 470 off_t size; 471 472 size = dso__data_size(dso, machine); 473 size /= intel_pt_cache_divisor(); 474 if (size < 1000) 475 return 10; 476 if (size > (1 << 21)) 477 return 21; 478 return 32 - __builtin_clz(size); 479 } 480 481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso, 482 struct machine *machine) 483 { 484 struct auxtrace_cache *c; 485 unsigned int bits; 486 487 if (dso->auxtrace_cache) 488 return dso->auxtrace_cache; 489 490 bits = intel_pt_cache_size(dso, machine); 491 492 /* Ignoring cache creation failure */ 493 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); 494 495 dso->auxtrace_cache = c; 496 497 return c; 498 } 499 500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine, 501 u64 offset, u64 insn_cnt, u64 byte_cnt, 502 struct intel_pt_insn *intel_pt_insn) 503 { 504 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 505 struct intel_pt_cache_entry *e; 506 int err; 507 508 if (!c) 509 return -ENOMEM; 510 511 e = auxtrace_cache__alloc_entry(c); 512 if (!e) 513 return -ENOMEM; 514 515 e->insn_cnt = insn_cnt; 516 e->byte_cnt = byte_cnt; 517 e->op = intel_pt_insn->op; 518 e->branch = intel_pt_insn->branch; 519 e->length = intel_pt_insn->length; 520 e->rel = intel_pt_insn->rel; 521 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); 522 523 err = auxtrace_cache__add(c, offset, &e->entry); 524 if (err) 525 auxtrace_cache__free_entry(c, e); 526 527 return err; 528 } 529 530 static struct intel_pt_cache_entry * 531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) 532 { 533 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 534 535 if (!c) 536 return NULL; 537 538 return auxtrace_cache__lookup(dso->auxtrace_cache, offset); 539 } 540 541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, 542 u64 offset) 543 { 544 struct auxtrace_cache *c = intel_pt_cache(dso, machine); 545 546 if (!c) 547 return; 548 549 auxtrace_cache__remove(dso->auxtrace_cache, offset); 550 } 551 552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip) 553 { 554 return ip >= pt->kernel_start ? 555 PERF_RECORD_MISC_KERNEL : 556 PERF_RECORD_MISC_USER; 557 } 558 559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, 560 uint64_t *insn_cnt_ptr, uint64_t *ip, 561 uint64_t to_ip, uint64_t max_insn_cnt, 562 void *data) 563 { 564 struct intel_pt_queue *ptq = data; 565 struct machine *machine = ptq->pt->machine; 566 struct thread *thread; 567 struct addr_location al; 568 unsigned char buf[INTEL_PT_INSN_BUF_SZ]; 569 ssize_t len; 570 int x86_64; 571 u8 cpumode; 572 u64 offset, start_offset, start_ip; 573 u64 insn_cnt = 0; 574 bool one_map = true; 575 576 intel_pt_insn->length = 0; 577 578 if (to_ip && *ip == to_ip) 579 goto out_no_cache; 580 581 cpumode = intel_pt_cpumode(ptq->pt, *ip); 582 583 thread = ptq->thread; 584 if (!thread) { 585 if (cpumode != PERF_RECORD_MISC_KERNEL) 586 return -EINVAL; 587 thread = ptq->pt->unknown_thread; 588 } 589 590 while (1) { 591 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) 592 return -EINVAL; 593 594 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && 595 dso__data_status_seen(al.map->dso, 596 DSO_DATA_STATUS_SEEN_ITRACE)) 597 return -ENOENT; 598 599 offset = al.map->map_ip(al.map, *ip); 600 601 if (!to_ip && one_map) { 602 struct intel_pt_cache_entry *e; 603 604 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 605 if (e && 606 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { 607 *insn_cnt_ptr = e->insn_cnt; 608 *ip += e->byte_cnt; 609 intel_pt_insn->op = e->op; 610 intel_pt_insn->branch = e->branch; 611 intel_pt_insn->length = e->length; 612 intel_pt_insn->rel = e->rel; 613 memcpy(intel_pt_insn->buf, e->insn, 614 INTEL_PT_INSN_BUF_SZ); 615 intel_pt_log_insn_no_data(intel_pt_insn, *ip); 616 return 0; 617 } 618 } 619 620 start_offset = offset; 621 start_ip = *ip; 622 623 /* Load maps to ensure dso->is_64_bit has been updated */ 624 map__load(al.map); 625 626 x86_64 = al.map->dso->is_64_bit; 627 628 while (1) { 629 len = dso__data_read_offset(al.map->dso, machine, 630 offset, buf, 631 INTEL_PT_INSN_BUF_SZ); 632 if (len <= 0) 633 return -EINVAL; 634 635 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) 636 return -EINVAL; 637 638 intel_pt_log_insn(intel_pt_insn, *ip); 639 640 insn_cnt += 1; 641 642 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) 643 goto out; 644 645 if (max_insn_cnt && insn_cnt >= max_insn_cnt) 646 goto out_no_cache; 647 648 *ip += intel_pt_insn->length; 649 650 if (to_ip && *ip == to_ip) 651 goto out_no_cache; 652 653 if (*ip >= al.map->end) 654 break; 655 656 offset += intel_pt_insn->length; 657 } 658 one_map = false; 659 } 660 out: 661 *insn_cnt_ptr = insn_cnt; 662 663 if (!one_map) 664 goto out_no_cache; 665 666 /* 667 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate 668 * entries. 669 */ 670 if (to_ip) { 671 struct intel_pt_cache_entry *e; 672 673 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); 674 if (e) 675 return 0; 676 } 677 678 /* Ignore cache errors */ 679 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, 680 *ip - start_ip, intel_pt_insn); 681 682 return 0; 683 684 out_no_cache: 685 *insn_cnt_ptr = insn_cnt; 686 return 0; 687 } 688 689 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, 690 uint64_t offset, const char *filename) 691 { 692 struct addr_filter *filt; 693 bool have_filter = false; 694 bool hit_tracestop = false; 695 bool hit_filter = false; 696 697 list_for_each_entry(filt, &pt->filts.head, list) { 698 if (filt->start) 699 have_filter = true; 700 701 if ((filename && !filt->filename) || 702 (!filename && filt->filename) || 703 (filename && strcmp(filename, filt->filename))) 704 continue; 705 706 if (!(offset >= filt->addr && offset < filt->addr + filt->size)) 707 continue; 708 709 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", 710 ip, offset, filename ? filename : "[kernel]", 711 filt->start ? "filter" : "stop", 712 filt->addr, filt->size); 713 714 if (filt->start) 715 hit_filter = true; 716 else 717 hit_tracestop = true; 718 } 719 720 if (!hit_tracestop && !hit_filter) 721 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", 722 ip, offset, filename ? filename : "[kernel]"); 723 724 return hit_tracestop || (have_filter && !hit_filter); 725 } 726 727 static int __intel_pt_pgd_ip(uint64_t ip, void *data) 728 { 729 struct intel_pt_queue *ptq = data; 730 struct thread *thread; 731 struct addr_location al; 732 u8 cpumode; 733 u64 offset; 734 735 if (ip >= ptq->pt->kernel_start) 736 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); 737 738 cpumode = PERF_RECORD_MISC_USER; 739 740 thread = ptq->thread; 741 if (!thread) 742 return -EINVAL; 743 744 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) 745 return -EINVAL; 746 747 offset = al.map->map_ip(al.map, ip); 748 749 return intel_pt_match_pgd_ip(ptq->pt, ip, offset, 750 al.map->dso->long_name); 751 } 752 753 static bool intel_pt_pgd_ip(uint64_t ip, void *data) 754 { 755 return __intel_pt_pgd_ip(ip, data) > 0; 756 } 757 758 static bool intel_pt_get_config(struct intel_pt *pt, 759 struct perf_event_attr *attr, u64 *config) 760 { 761 if (attr->type == pt->pmu_type) { 762 if (config) 763 *config = attr->config; 764 return true; 765 } 766 767 return false; 768 } 769 770 static bool intel_pt_exclude_kernel(struct intel_pt *pt) 771 { 772 struct evsel *evsel; 773 774 evlist__for_each_entry(pt->session->evlist, evsel) { 775 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 776 !evsel->core.attr.exclude_kernel) 777 return false; 778 } 779 return true; 780 } 781 782 static bool intel_pt_return_compression(struct intel_pt *pt) 783 { 784 struct evsel *evsel; 785 u64 config; 786 787 if (!pt->noretcomp_bit) 788 return true; 789 790 evlist__for_each_entry(pt->session->evlist, evsel) { 791 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 792 (config & pt->noretcomp_bit)) 793 return false; 794 } 795 return true; 796 } 797 798 static bool intel_pt_branch_enable(struct intel_pt *pt) 799 { 800 struct evsel *evsel; 801 u64 config; 802 803 evlist__for_each_entry(pt->session->evlist, evsel) { 804 if (intel_pt_get_config(pt, &evsel->core.attr, &config) && 805 (config & 1) && !(config & 0x2000)) 806 return false; 807 } 808 return true; 809 } 810 811 static unsigned int intel_pt_mtc_period(struct intel_pt *pt) 812 { 813 struct evsel *evsel; 814 unsigned int shift; 815 u64 config; 816 817 if (!pt->mtc_freq_bits) 818 return 0; 819 820 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) 821 config >>= 1; 822 823 evlist__for_each_entry(pt->session->evlist, evsel) { 824 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) 825 return (config & pt->mtc_freq_bits) >> shift; 826 } 827 return 0; 828 } 829 830 static bool intel_pt_timeless_decoding(struct intel_pt *pt) 831 { 832 struct evsel *evsel; 833 bool timeless_decoding = true; 834 u64 config; 835 836 if (!pt->tsc_bit || !pt->cap_user_time_zero) 837 return true; 838 839 evlist__for_each_entry(pt->session->evlist, evsel) { 840 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) 841 return true; 842 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 843 if (config & pt->tsc_bit) 844 timeless_decoding = false; 845 else 846 return true; 847 } 848 } 849 return timeless_decoding; 850 } 851 852 static bool intel_pt_tracing_kernel(struct intel_pt *pt) 853 { 854 struct evsel *evsel; 855 856 evlist__for_each_entry(pt->session->evlist, evsel) { 857 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && 858 !evsel->core.attr.exclude_kernel) 859 return true; 860 } 861 return false; 862 } 863 864 static bool intel_pt_have_tsc(struct intel_pt *pt) 865 { 866 struct evsel *evsel; 867 bool have_tsc = false; 868 u64 config; 869 870 if (!pt->tsc_bit) 871 return false; 872 873 evlist__for_each_entry(pt->session->evlist, evsel) { 874 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { 875 if (config & pt->tsc_bit) 876 have_tsc = true; 877 else 878 return false; 879 } 880 } 881 return have_tsc; 882 } 883 884 static bool intel_pt_sampling_mode(struct intel_pt *pt) 885 { 886 struct evsel *evsel; 887 888 evlist__for_each_entry(pt->session->evlist, evsel) { 889 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && 890 evsel->core.attr.aux_sample_size) 891 return true; 892 } 893 return false; 894 } 895 896 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) 897 { 898 u64 quot, rem; 899 900 quot = ns / pt->tc.time_mult; 901 rem = ns % pt->tc.time_mult; 902 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / 903 pt->tc.time_mult; 904 } 905 906 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) 907 { 908 size_t sz = sizeof(struct ip_callchain); 909 910 /* Add 1 to callchain_sz for callchain context */ 911 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); 912 return zalloc(sz); 913 } 914 915 static int intel_pt_callchain_init(struct intel_pt *pt) 916 { 917 struct evsel *evsel; 918 919 evlist__for_each_entry(pt->session->evlist, evsel) { 920 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) 921 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; 922 } 923 924 pt->chain = intel_pt_alloc_chain(pt); 925 if (!pt->chain) 926 return -ENOMEM; 927 928 return 0; 929 } 930 931 static void intel_pt_add_callchain(struct intel_pt *pt, 932 struct perf_sample *sample) 933 { 934 struct thread *thread = machine__findnew_thread(pt->machine, 935 sample->pid, 936 sample->tid); 937 938 thread_stack__sample_late(thread, sample->cpu, pt->chain, 939 pt->synth_opts.callchain_sz + 1, sample->ip, 940 pt->kernel_start); 941 942 sample->callchain = pt->chain; 943 } 944 945 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) 946 { 947 size_t sz = sizeof(struct branch_stack); 948 949 sz += entry_cnt * sizeof(struct branch_entry); 950 return zalloc(sz); 951 } 952 953 static int intel_pt_br_stack_init(struct intel_pt *pt) 954 { 955 struct evsel *evsel; 956 957 evlist__for_each_entry(pt->session->evlist, evsel) { 958 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) 959 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; 960 } 961 962 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); 963 if (!pt->br_stack) 964 return -ENOMEM; 965 966 return 0; 967 } 968 969 static void intel_pt_add_br_stack(struct intel_pt *pt, 970 struct perf_sample *sample) 971 { 972 struct thread *thread = machine__findnew_thread(pt->machine, 973 sample->pid, 974 sample->tid); 975 976 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, 977 pt->br_stack_sz, sample->ip, 978 pt->kernel_start); 979 980 sample->branch_stack = pt->br_stack; 981 } 982 983 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ 984 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) 985 986 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, 987 unsigned int queue_nr) 988 { 989 struct intel_pt_params params = { .get_trace = 0, }; 990 struct perf_env *env = pt->machine->env; 991 struct intel_pt_queue *ptq; 992 993 ptq = zalloc(sizeof(struct intel_pt_queue)); 994 if (!ptq) 995 return NULL; 996 997 if (pt->synth_opts.callchain) { 998 ptq->chain = intel_pt_alloc_chain(pt); 999 if (!ptq->chain) 1000 goto out_free; 1001 } 1002 1003 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { 1004 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); 1005 1006 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); 1007 if (!ptq->last_branch) 1008 goto out_free; 1009 } 1010 1011 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); 1012 if (!ptq->event_buf) 1013 goto out_free; 1014 1015 ptq->pt = pt; 1016 ptq->queue_nr = queue_nr; 1017 ptq->exclude_kernel = intel_pt_exclude_kernel(pt); 1018 ptq->pid = -1; 1019 ptq->tid = -1; 1020 ptq->cpu = -1; 1021 ptq->next_tid = -1; 1022 1023 params.get_trace = intel_pt_get_trace; 1024 params.walk_insn = intel_pt_walk_next_insn; 1025 params.lookahead = intel_pt_lookahead; 1026 params.data = ptq; 1027 params.return_compression = intel_pt_return_compression(pt); 1028 params.branch_enable = intel_pt_branch_enable(pt); 1029 params.max_non_turbo_ratio = pt->max_non_turbo_ratio; 1030 params.mtc_period = intel_pt_mtc_period(pt); 1031 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; 1032 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; 1033 params.quick = pt->synth_opts.quick; 1034 1035 if (pt->filts.cnt > 0) 1036 params.pgd_ip = intel_pt_pgd_ip; 1037 1038 if (pt->synth_opts.instructions) { 1039 if (pt->synth_opts.period) { 1040 switch (pt->synth_opts.period_type) { 1041 case PERF_ITRACE_PERIOD_INSTRUCTIONS: 1042 params.period_type = 1043 INTEL_PT_PERIOD_INSTRUCTIONS; 1044 params.period = pt->synth_opts.period; 1045 break; 1046 case PERF_ITRACE_PERIOD_TICKS: 1047 params.period_type = INTEL_PT_PERIOD_TICKS; 1048 params.period = pt->synth_opts.period; 1049 break; 1050 case PERF_ITRACE_PERIOD_NANOSECS: 1051 params.period_type = INTEL_PT_PERIOD_TICKS; 1052 params.period = intel_pt_ns_to_ticks(pt, 1053 pt->synth_opts.period); 1054 break; 1055 default: 1056 break; 1057 } 1058 } 1059 1060 if (!params.period) { 1061 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; 1062 params.period = 1; 1063 } 1064 } 1065 1066 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) 1067 params.flags |= INTEL_PT_FUP_WITH_NLIP; 1068 1069 ptq->decoder = intel_pt_decoder_new(¶ms); 1070 if (!ptq->decoder) 1071 goto out_free; 1072 1073 return ptq; 1074 1075 out_free: 1076 zfree(&ptq->event_buf); 1077 zfree(&ptq->last_branch); 1078 zfree(&ptq->chain); 1079 free(ptq); 1080 return NULL; 1081 } 1082 1083 static void intel_pt_free_queue(void *priv) 1084 { 1085 struct intel_pt_queue *ptq = priv; 1086 1087 if (!ptq) 1088 return; 1089 thread__zput(ptq->thread); 1090 intel_pt_decoder_free(ptq->decoder); 1091 zfree(&ptq->event_buf); 1092 zfree(&ptq->last_branch); 1093 zfree(&ptq->chain); 1094 free(ptq); 1095 } 1096 1097 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, 1098 struct auxtrace_queue *queue) 1099 { 1100 struct intel_pt_queue *ptq = queue->priv; 1101 1102 if (queue->tid == -1 || pt->have_sched_switch) { 1103 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); 1104 if (ptq->tid == -1) 1105 ptq->pid = -1; 1106 thread__zput(ptq->thread); 1107 } 1108 1109 if (!ptq->thread && ptq->tid != -1) 1110 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); 1111 1112 if (ptq->thread) { 1113 ptq->pid = ptq->thread->pid_; 1114 if (queue->cpu == -1) 1115 ptq->cpu = ptq->thread->cpu; 1116 } 1117 } 1118 1119 static void intel_pt_sample_flags(struct intel_pt_queue *ptq) 1120 { 1121 if (ptq->state->flags & INTEL_PT_ABORT_TX) { 1122 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; 1123 } else if (ptq->state->flags & INTEL_PT_ASYNC) { 1124 if (ptq->state->to_ip) 1125 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | 1126 PERF_IP_FLAG_ASYNC | 1127 PERF_IP_FLAG_INTERRUPT; 1128 else 1129 ptq->flags = PERF_IP_FLAG_BRANCH | 1130 PERF_IP_FLAG_TRACE_END; 1131 ptq->insn_len = 0; 1132 } else { 1133 if (ptq->state->from_ip) 1134 ptq->flags = intel_pt_insn_type(ptq->state->insn_op); 1135 else 1136 ptq->flags = PERF_IP_FLAG_BRANCH | 1137 PERF_IP_FLAG_TRACE_BEGIN; 1138 if (ptq->state->flags & INTEL_PT_IN_TX) 1139 ptq->flags |= PERF_IP_FLAG_IN_TX; 1140 ptq->insn_len = ptq->state->insn_len; 1141 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); 1142 } 1143 1144 if (ptq->state->type & INTEL_PT_TRACE_BEGIN) 1145 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; 1146 if (ptq->state->type & INTEL_PT_TRACE_END) 1147 ptq->flags |= PERF_IP_FLAG_TRACE_END; 1148 } 1149 1150 static void intel_pt_setup_time_range(struct intel_pt *pt, 1151 struct intel_pt_queue *ptq) 1152 { 1153 if (!pt->range_cnt) 1154 return; 1155 1156 ptq->sel_timestamp = pt->time_ranges[0].start; 1157 ptq->sel_idx = 0; 1158 1159 if (ptq->sel_timestamp) { 1160 ptq->sel_start = true; 1161 } else { 1162 ptq->sel_timestamp = pt->time_ranges[0].end; 1163 ptq->sel_start = false; 1164 } 1165 } 1166 1167 static int intel_pt_setup_queue(struct intel_pt *pt, 1168 struct auxtrace_queue *queue, 1169 unsigned int queue_nr) 1170 { 1171 struct intel_pt_queue *ptq = queue->priv; 1172 1173 if (list_empty(&queue->head)) 1174 return 0; 1175 1176 if (!ptq) { 1177 ptq = intel_pt_alloc_queue(pt, queue_nr); 1178 if (!ptq) 1179 return -ENOMEM; 1180 queue->priv = ptq; 1181 1182 if (queue->cpu != -1) 1183 ptq->cpu = queue->cpu; 1184 ptq->tid = queue->tid; 1185 1186 ptq->cbr_seen = UINT_MAX; 1187 1188 if (pt->sampling_mode && !pt->snapshot_mode && 1189 pt->timeless_decoding) 1190 ptq->step_through_buffers = true; 1191 1192 ptq->sync_switch = pt->sync_switch; 1193 1194 intel_pt_setup_time_range(pt, ptq); 1195 } 1196 1197 if (!ptq->on_heap && 1198 (!ptq->sync_switch || 1199 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { 1200 const struct intel_pt_state *state; 1201 int ret; 1202 1203 if (pt->timeless_decoding) 1204 return 0; 1205 1206 intel_pt_log("queue %u getting timestamp\n", queue_nr); 1207 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 1208 queue_nr, ptq->cpu, ptq->pid, ptq->tid); 1209 1210 if (ptq->sel_start && ptq->sel_timestamp) { 1211 ret = intel_pt_fast_forward(ptq->decoder, 1212 ptq->sel_timestamp); 1213 if (ret) 1214 return ret; 1215 } 1216 1217 while (1) { 1218 state = intel_pt_decode(ptq->decoder); 1219 if (state->err) { 1220 if (state->err == INTEL_PT_ERR_NODATA) { 1221 intel_pt_log("queue %u has no timestamp\n", 1222 queue_nr); 1223 return 0; 1224 } 1225 continue; 1226 } 1227 if (state->timestamp) 1228 break; 1229 } 1230 1231 ptq->timestamp = state->timestamp; 1232 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", 1233 queue_nr, ptq->timestamp); 1234 ptq->state = state; 1235 ptq->have_sample = true; 1236 if (ptq->sel_start && ptq->sel_timestamp && 1237 ptq->timestamp < ptq->sel_timestamp) 1238 ptq->have_sample = false; 1239 intel_pt_sample_flags(ptq); 1240 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); 1241 if (ret) 1242 return ret; 1243 ptq->on_heap = true; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static int intel_pt_setup_queues(struct intel_pt *pt) 1250 { 1251 unsigned int i; 1252 int ret; 1253 1254 for (i = 0; i < pt->queues.nr_queues; i++) { 1255 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); 1256 if (ret) 1257 return ret; 1258 } 1259 return 0; 1260 } 1261 1262 static inline bool intel_pt_skip_event(struct intel_pt *pt) 1263 { 1264 return pt->synth_opts.initial_skip && 1265 pt->num_events++ < pt->synth_opts.initial_skip; 1266 } 1267 1268 /* 1269 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. 1270 * Also ensure CBR is first non-skipped event by allowing for 4 more samples 1271 * from this decoder state. 1272 */ 1273 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) 1274 { 1275 return pt->synth_opts.initial_skip && 1276 pt->num_events + 4 < pt->synth_opts.initial_skip; 1277 } 1278 1279 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, 1280 union perf_event *event, 1281 struct perf_sample *sample) 1282 { 1283 event->sample.header.type = PERF_RECORD_SAMPLE; 1284 event->sample.header.size = sizeof(struct perf_event_header); 1285 1286 sample->pid = ptq->pid; 1287 sample->tid = ptq->tid; 1288 sample->cpu = ptq->cpu; 1289 sample->insn_len = ptq->insn_len; 1290 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); 1291 } 1292 1293 static void intel_pt_prep_b_sample(struct intel_pt *pt, 1294 struct intel_pt_queue *ptq, 1295 union perf_event *event, 1296 struct perf_sample *sample) 1297 { 1298 intel_pt_prep_a_sample(ptq, event, sample); 1299 1300 if (!pt->timeless_decoding) 1301 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); 1302 1303 sample->ip = ptq->state->from_ip; 1304 sample->cpumode = intel_pt_cpumode(pt, sample->ip); 1305 sample->addr = ptq->state->to_ip; 1306 sample->period = 1; 1307 sample->flags = ptq->flags; 1308 1309 event->sample.header.misc = sample->cpumode; 1310 } 1311 1312 static int intel_pt_inject_event(union perf_event *event, 1313 struct perf_sample *sample, u64 type) 1314 { 1315 event->header.size = perf_event__sample_event_size(sample, type, 0); 1316 return perf_event__synthesize_sample(event, type, 0, sample); 1317 } 1318 1319 static inline int intel_pt_opt_inject(struct intel_pt *pt, 1320 union perf_event *event, 1321 struct perf_sample *sample, u64 type) 1322 { 1323 if (!pt->synth_opts.inject) 1324 return 0; 1325 1326 return intel_pt_inject_event(event, sample, type); 1327 } 1328 1329 static int intel_pt_deliver_synth_event(struct intel_pt *pt, 1330 union perf_event *event, 1331 struct perf_sample *sample, u64 type) 1332 { 1333 int ret; 1334 1335 ret = intel_pt_opt_inject(pt, event, sample, type); 1336 if (ret) 1337 return ret; 1338 1339 ret = perf_session__deliver_synth_event(pt->session, event, sample); 1340 if (ret) 1341 pr_err("Intel PT: failed to deliver event, error %d\n", ret); 1342 1343 return ret; 1344 } 1345 1346 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) 1347 { 1348 struct intel_pt *pt = ptq->pt; 1349 union perf_event *event = ptq->event_buf; 1350 struct perf_sample sample = { .ip = 0, }; 1351 struct dummy_branch_stack { 1352 u64 nr; 1353 u64 hw_idx; 1354 struct branch_entry entries; 1355 } dummy_bs; 1356 1357 if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) 1358 return 0; 1359 1360 if (intel_pt_skip_event(pt)) 1361 return 0; 1362 1363 intel_pt_prep_b_sample(pt, ptq, event, &sample); 1364 1365 sample.id = ptq->pt->branches_id; 1366 sample.stream_id = ptq->pt->branches_id; 1367 1368 /* 1369 * perf report cannot handle events without a branch stack when using 1370 * SORT_MODE__BRANCH so make a dummy one. 1371 */ 1372 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { 1373 dummy_bs = (struct dummy_branch_stack){ 1374 .nr = 1, 1375 .hw_idx = -1ULL, 1376 .entries = { 1377 .from = sample.ip, 1378 .to = sample.addr, 1379 }, 1380 }; 1381 sample.branch_stack = (struct branch_stack *)&dummy_bs; 1382 } 1383 1384 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; 1385 if (sample.cyc_cnt) { 1386 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; 1387 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; 1388 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; 1389 } 1390 1391 return intel_pt_deliver_synth_event(pt, event, &sample, 1392 pt->branches_sample_type); 1393 } 1394 1395 static void intel_pt_prep_sample(struct intel_pt *pt, 1396 struct intel_pt_queue *ptq, 1397 union perf_event *event, 1398 struct perf_sample *sample) 1399 { 1400 intel_pt_prep_b_sample(pt, ptq, event, sample); 1401 1402 if (pt->synth_opts.callchain) { 1403 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1404 pt->synth_opts.callchain_sz + 1, 1405 sample->ip, pt->kernel_start); 1406 sample->callchain = ptq->chain; 1407 } 1408 1409 if (pt->synth_opts.last_branch) { 1410 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, 1411 pt->br_stack_sz); 1412 sample->branch_stack = ptq->last_branch; 1413 } 1414 } 1415 1416 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) 1417 { 1418 struct intel_pt *pt = ptq->pt; 1419 union perf_event *event = ptq->event_buf; 1420 struct perf_sample sample = { .ip = 0, }; 1421 1422 if (intel_pt_skip_event(pt)) 1423 return 0; 1424 1425 intel_pt_prep_sample(pt, ptq, event, &sample); 1426 1427 sample.id = ptq->pt->instructions_id; 1428 sample.stream_id = ptq->pt->instructions_id; 1429 if (pt->synth_opts.quick) 1430 sample.period = 1; 1431 else 1432 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; 1433 1434 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; 1435 if (sample.cyc_cnt) { 1436 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; 1437 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; 1438 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; 1439 } 1440 1441 ptq->last_insn_cnt = ptq->state->tot_insn_cnt; 1442 1443 return intel_pt_deliver_synth_event(pt, event, &sample, 1444 pt->instructions_sample_type); 1445 } 1446 1447 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) 1448 { 1449 struct intel_pt *pt = ptq->pt; 1450 union perf_event *event = ptq->event_buf; 1451 struct perf_sample sample = { .ip = 0, }; 1452 1453 if (intel_pt_skip_event(pt)) 1454 return 0; 1455 1456 intel_pt_prep_sample(pt, ptq, event, &sample); 1457 1458 sample.id = ptq->pt->transactions_id; 1459 sample.stream_id = ptq->pt->transactions_id; 1460 1461 return intel_pt_deliver_synth_event(pt, event, &sample, 1462 pt->transactions_sample_type); 1463 } 1464 1465 static void intel_pt_prep_p_sample(struct intel_pt *pt, 1466 struct intel_pt_queue *ptq, 1467 union perf_event *event, 1468 struct perf_sample *sample) 1469 { 1470 intel_pt_prep_sample(pt, ptq, event, sample); 1471 1472 /* 1473 * Zero IP is used to mean "trace start" but that is not the case for 1474 * power or PTWRITE events with no IP, so clear the flags. 1475 */ 1476 if (!sample->ip) 1477 sample->flags = 0; 1478 } 1479 1480 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) 1481 { 1482 struct intel_pt *pt = ptq->pt; 1483 union perf_event *event = ptq->event_buf; 1484 struct perf_sample sample = { .ip = 0, }; 1485 struct perf_synth_intel_ptwrite raw; 1486 1487 if (intel_pt_skip_event(pt)) 1488 return 0; 1489 1490 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1491 1492 sample.id = ptq->pt->ptwrites_id; 1493 sample.stream_id = ptq->pt->ptwrites_id; 1494 1495 raw.flags = 0; 1496 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1497 raw.payload = cpu_to_le64(ptq->state->ptw_payload); 1498 1499 sample.raw_size = perf_synth__raw_size(raw); 1500 sample.raw_data = perf_synth__raw_data(&raw); 1501 1502 return intel_pt_deliver_synth_event(pt, event, &sample, 1503 pt->ptwrites_sample_type); 1504 } 1505 1506 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) 1507 { 1508 struct intel_pt *pt = ptq->pt; 1509 union perf_event *event = ptq->event_buf; 1510 struct perf_sample sample = { .ip = 0, }; 1511 struct perf_synth_intel_cbr raw; 1512 u32 flags; 1513 1514 if (intel_pt_skip_cbr_event(pt)) 1515 return 0; 1516 1517 ptq->cbr_seen = ptq->state->cbr; 1518 1519 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1520 1521 sample.id = ptq->pt->cbr_id; 1522 sample.stream_id = ptq->pt->cbr_id; 1523 1524 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); 1525 raw.flags = cpu_to_le32(flags); 1526 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); 1527 raw.reserved3 = 0; 1528 1529 sample.raw_size = perf_synth__raw_size(raw); 1530 sample.raw_data = perf_synth__raw_data(&raw); 1531 1532 return intel_pt_deliver_synth_event(pt, event, &sample, 1533 pt->pwr_events_sample_type); 1534 } 1535 1536 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) 1537 { 1538 struct intel_pt *pt = ptq->pt; 1539 union perf_event *event = ptq->event_buf; 1540 struct perf_sample sample = { .ip = 0, }; 1541 struct perf_synth_intel_mwait raw; 1542 1543 if (intel_pt_skip_event(pt)) 1544 return 0; 1545 1546 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1547 1548 sample.id = ptq->pt->mwait_id; 1549 sample.stream_id = ptq->pt->mwait_id; 1550 1551 raw.reserved = 0; 1552 raw.payload = cpu_to_le64(ptq->state->mwait_payload); 1553 1554 sample.raw_size = perf_synth__raw_size(raw); 1555 sample.raw_data = perf_synth__raw_data(&raw); 1556 1557 return intel_pt_deliver_synth_event(pt, event, &sample, 1558 pt->pwr_events_sample_type); 1559 } 1560 1561 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) 1562 { 1563 struct intel_pt *pt = ptq->pt; 1564 union perf_event *event = ptq->event_buf; 1565 struct perf_sample sample = { .ip = 0, }; 1566 struct perf_synth_intel_pwre raw; 1567 1568 if (intel_pt_skip_event(pt)) 1569 return 0; 1570 1571 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1572 1573 sample.id = ptq->pt->pwre_id; 1574 sample.stream_id = ptq->pt->pwre_id; 1575 1576 raw.reserved = 0; 1577 raw.payload = cpu_to_le64(ptq->state->pwre_payload); 1578 1579 sample.raw_size = perf_synth__raw_size(raw); 1580 sample.raw_data = perf_synth__raw_data(&raw); 1581 1582 return intel_pt_deliver_synth_event(pt, event, &sample, 1583 pt->pwr_events_sample_type); 1584 } 1585 1586 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) 1587 { 1588 struct intel_pt *pt = ptq->pt; 1589 union perf_event *event = ptq->event_buf; 1590 struct perf_sample sample = { .ip = 0, }; 1591 struct perf_synth_intel_exstop raw; 1592 1593 if (intel_pt_skip_event(pt)) 1594 return 0; 1595 1596 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1597 1598 sample.id = ptq->pt->exstop_id; 1599 sample.stream_id = ptq->pt->exstop_id; 1600 1601 raw.flags = 0; 1602 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); 1603 1604 sample.raw_size = perf_synth__raw_size(raw); 1605 sample.raw_data = perf_synth__raw_data(&raw); 1606 1607 return intel_pt_deliver_synth_event(pt, event, &sample, 1608 pt->pwr_events_sample_type); 1609 } 1610 1611 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) 1612 { 1613 struct intel_pt *pt = ptq->pt; 1614 union perf_event *event = ptq->event_buf; 1615 struct perf_sample sample = { .ip = 0, }; 1616 struct perf_synth_intel_pwrx raw; 1617 1618 if (intel_pt_skip_event(pt)) 1619 return 0; 1620 1621 intel_pt_prep_p_sample(pt, ptq, event, &sample); 1622 1623 sample.id = ptq->pt->pwrx_id; 1624 sample.stream_id = ptq->pt->pwrx_id; 1625 1626 raw.reserved = 0; 1627 raw.payload = cpu_to_le64(ptq->state->pwrx_payload); 1628 1629 sample.raw_size = perf_synth__raw_size(raw); 1630 sample.raw_data = perf_synth__raw_data(&raw); 1631 1632 return intel_pt_deliver_synth_event(pt, event, &sample, 1633 pt->pwr_events_sample_type); 1634 } 1635 1636 /* 1637 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer 1638 * intel_pt_add_gp_regs(). 1639 */ 1640 static const int pebs_gp_regs[] = { 1641 [PERF_REG_X86_FLAGS] = 1, 1642 [PERF_REG_X86_IP] = 2, 1643 [PERF_REG_X86_AX] = 3, 1644 [PERF_REG_X86_CX] = 4, 1645 [PERF_REG_X86_DX] = 5, 1646 [PERF_REG_X86_BX] = 6, 1647 [PERF_REG_X86_SP] = 7, 1648 [PERF_REG_X86_BP] = 8, 1649 [PERF_REG_X86_SI] = 9, 1650 [PERF_REG_X86_DI] = 10, 1651 [PERF_REG_X86_R8] = 11, 1652 [PERF_REG_X86_R9] = 12, 1653 [PERF_REG_X86_R10] = 13, 1654 [PERF_REG_X86_R11] = 14, 1655 [PERF_REG_X86_R12] = 15, 1656 [PERF_REG_X86_R13] = 16, 1657 [PERF_REG_X86_R14] = 17, 1658 [PERF_REG_X86_R15] = 18, 1659 }; 1660 1661 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, 1662 const struct intel_pt_blk_items *items, 1663 u64 regs_mask) 1664 { 1665 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; 1666 u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; 1667 u32 bit; 1668 int i; 1669 1670 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { 1671 /* Get the PEBS gp_regs array index */ 1672 int n = pebs_gp_regs[i] - 1; 1673 1674 if (n < 0) 1675 continue; 1676 /* 1677 * Add only registers that were requested (i.e. 'regs_mask') and 1678 * that were provided (i.e. 'mask'), and update the resulting 1679 * mask (i.e. 'intr_regs->mask') accordingly. 1680 */ 1681 if (mask & 1 << n && regs_mask & bit) { 1682 intr_regs->mask |= bit; 1683 *pos++ = gp_regs[n]; 1684 } 1685 } 1686 1687 return pos; 1688 } 1689 1690 #ifndef PERF_REG_X86_XMM0 1691 #define PERF_REG_X86_XMM0 32 1692 #endif 1693 1694 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, 1695 const struct intel_pt_blk_items *items, 1696 u64 regs_mask) 1697 { 1698 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); 1699 const u64 *xmm = items->xmm; 1700 1701 /* 1702 * If there are any XMM registers, then there should be all of them. 1703 * Nevertheless, follow the logic to add only registers that were 1704 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), 1705 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. 1706 */ 1707 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; 1708 1709 for (; mask; mask >>= 1, xmm++) { 1710 if (mask & 1) 1711 *pos++ = *xmm; 1712 } 1713 } 1714 1715 #define LBR_INFO_MISPRED (1ULL << 63) 1716 #define LBR_INFO_IN_TX (1ULL << 62) 1717 #define LBR_INFO_ABORT (1ULL << 61) 1718 #define LBR_INFO_CYCLES 0xffff 1719 1720 /* Refer kernel's intel_pmu_store_pebs_lbrs() */ 1721 static u64 intel_pt_lbr_flags(u64 info) 1722 { 1723 union { 1724 struct branch_flags flags; 1725 u64 result; 1726 } u; 1727 1728 u.result = 0; 1729 u.flags.mispred = !!(info & LBR_INFO_MISPRED); 1730 u.flags.predicted = !(info & LBR_INFO_MISPRED); 1731 u.flags.in_tx = !!(info & LBR_INFO_IN_TX); 1732 u.flags.abort = !!(info & LBR_INFO_ABORT); 1733 u.flags.cycles = info & LBR_INFO_CYCLES; 1734 1735 return u.result; 1736 } 1737 1738 static void intel_pt_add_lbrs(struct branch_stack *br_stack, 1739 const struct intel_pt_blk_items *items) 1740 { 1741 u64 *to; 1742 int i; 1743 1744 br_stack->nr = 0; 1745 1746 to = &br_stack->entries[0].from; 1747 1748 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { 1749 u32 mask = items->mask[i]; 1750 const u64 *from = items->val[i]; 1751 1752 for (; mask; mask >>= 3, from += 3) { 1753 if ((mask & 7) == 7) { 1754 *to++ = from[0]; 1755 *to++ = from[1]; 1756 *to++ = intel_pt_lbr_flags(from[2]); 1757 br_stack->nr += 1; 1758 } 1759 } 1760 } 1761 } 1762 1763 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) 1764 { 1765 const struct intel_pt_blk_items *items = &ptq->state->items; 1766 struct perf_sample sample = { .ip = 0, }; 1767 union perf_event *event = ptq->event_buf; 1768 struct intel_pt *pt = ptq->pt; 1769 struct evsel *evsel = pt->pebs_evsel; 1770 u64 sample_type = evsel->core.attr.sample_type; 1771 u64 id = evsel->core.id[0]; 1772 u8 cpumode; 1773 u64 regs[8 * sizeof(sample.intr_regs.mask)]; 1774 1775 if (intel_pt_skip_event(pt)) 1776 return 0; 1777 1778 intel_pt_prep_a_sample(ptq, event, &sample); 1779 1780 sample.id = id; 1781 sample.stream_id = id; 1782 1783 if (!evsel->core.attr.freq) 1784 sample.period = evsel->core.attr.sample_period; 1785 1786 /* No support for non-zero CS base */ 1787 if (items->has_ip) 1788 sample.ip = items->ip; 1789 else if (items->has_rip) 1790 sample.ip = items->rip; 1791 else 1792 sample.ip = ptq->state->from_ip; 1793 1794 /* No support for guest mode at this time */ 1795 cpumode = sample.ip < ptq->pt->kernel_start ? 1796 PERF_RECORD_MISC_USER : 1797 PERF_RECORD_MISC_KERNEL; 1798 1799 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; 1800 1801 sample.cpumode = cpumode; 1802 1803 if (sample_type & PERF_SAMPLE_TIME) { 1804 u64 timestamp = 0; 1805 1806 if (items->has_timestamp) 1807 timestamp = items->timestamp; 1808 else if (!pt->timeless_decoding) 1809 timestamp = ptq->timestamp; 1810 if (timestamp) 1811 sample.time = tsc_to_perf_time(timestamp, &pt->tc); 1812 } 1813 1814 if (sample_type & PERF_SAMPLE_CALLCHAIN && 1815 pt->synth_opts.callchain) { 1816 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, 1817 pt->synth_opts.callchain_sz, sample.ip, 1818 pt->kernel_start); 1819 sample.callchain = ptq->chain; 1820 } 1821 1822 if (sample_type & PERF_SAMPLE_REGS_INTR && 1823 (items->mask[INTEL_PT_GP_REGS_POS] || 1824 items->mask[INTEL_PT_XMM_POS])) { 1825 u64 regs_mask = evsel->core.attr.sample_regs_intr; 1826 u64 *pos; 1827 1828 sample.intr_regs.abi = items->is_32_bit ? 1829 PERF_SAMPLE_REGS_ABI_32 : 1830 PERF_SAMPLE_REGS_ABI_64; 1831 sample.intr_regs.regs = regs; 1832 1833 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); 1834 1835 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); 1836 } 1837 1838 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 1839 if (items->mask[INTEL_PT_LBR_0_POS] || 1840 items->mask[INTEL_PT_LBR_1_POS] || 1841 items->mask[INTEL_PT_LBR_2_POS]) { 1842 intel_pt_add_lbrs(ptq->last_branch, items); 1843 } else if (pt->synth_opts.last_branch) { 1844 thread_stack__br_sample(ptq->thread, ptq->cpu, 1845 ptq->last_branch, 1846 pt->br_stack_sz); 1847 } else { 1848 ptq->last_branch->nr = 0; 1849 } 1850 sample.branch_stack = ptq->last_branch; 1851 } 1852 1853 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) 1854 sample.addr = items->mem_access_address; 1855 1856 if (sample_type & PERF_SAMPLE_WEIGHT) { 1857 /* 1858 * Refer kernel's setup_pebs_adaptive_sample_data() and 1859 * intel_hsw_weight(). 1860 */ 1861 if (items->has_mem_access_latency) 1862 sample.weight = items->mem_access_latency; 1863 if (!sample.weight && items->has_tsx_aux_info) { 1864 /* Cycles last block */ 1865 sample.weight = (u32)items->tsx_aux_info; 1866 } 1867 } 1868 1869 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { 1870 u64 ax = items->has_rax ? items->rax : 0; 1871 /* Refer kernel's intel_hsw_transaction() */ 1872 u64 txn = (u8)(items->tsx_aux_info >> 32); 1873 1874 /* For RTM XABORTs also log the abort code from AX */ 1875 if (txn & PERF_TXN_TRANSACTION && ax & 1) 1876 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; 1877 sample.transaction = txn; 1878 } 1879 1880 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); 1881 } 1882 1883 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, 1884 pid_t pid, pid_t tid, u64 ip, u64 timestamp) 1885 { 1886 union perf_event event; 1887 char msg[MAX_AUXTRACE_ERROR_MSG]; 1888 int err; 1889 1890 if (pt->synth_opts.error_minus_flags) { 1891 if (code == INTEL_PT_ERR_OVR && 1892 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) 1893 return 0; 1894 if (code == INTEL_PT_ERR_LOST && 1895 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) 1896 return 0; 1897 } 1898 1899 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); 1900 1901 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, 1902 code, cpu, pid, tid, ip, msg, timestamp); 1903 1904 err = perf_session__deliver_synth_event(pt->session, &event, NULL); 1905 if (err) 1906 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", 1907 err); 1908 1909 return err; 1910 } 1911 1912 static int intel_ptq_synth_error(struct intel_pt_queue *ptq, 1913 const struct intel_pt_state *state) 1914 { 1915 struct intel_pt *pt = ptq->pt; 1916 u64 tm = ptq->timestamp; 1917 1918 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); 1919 1920 return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, 1921 ptq->tid, state->from_ip, tm); 1922 } 1923 1924 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) 1925 { 1926 struct auxtrace_queue *queue; 1927 pid_t tid = ptq->next_tid; 1928 int err; 1929 1930 if (tid == -1) 1931 return 0; 1932 1933 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); 1934 1935 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); 1936 1937 queue = &pt->queues.queue_array[ptq->queue_nr]; 1938 intel_pt_set_pid_tid_cpu(pt, queue); 1939 1940 ptq->next_tid = -1; 1941 1942 return err; 1943 } 1944 1945 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) 1946 { 1947 struct intel_pt *pt = ptq->pt; 1948 1949 return ip == pt->switch_ip && 1950 (ptq->flags & PERF_IP_FLAG_BRANCH) && 1951 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | 1952 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); 1953 } 1954 1955 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ 1956 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) 1957 1958 static int intel_pt_sample(struct intel_pt_queue *ptq) 1959 { 1960 const struct intel_pt_state *state = ptq->state; 1961 struct intel_pt *pt = ptq->pt; 1962 int err; 1963 1964 if (!ptq->have_sample) 1965 return 0; 1966 1967 ptq->have_sample = false; 1968 1969 if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) { 1970 /* 1971 * Cycle count and instruction count only go together to create 1972 * a valid IPC ratio when the cycle count changes. 1973 */ 1974 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; 1975 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; 1976 } 1977 1978 /* 1979 * Do PEBS first to allow for the possibility that the PEBS timestamp 1980 * precedes the current timestamp. 1981 */ 1982 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { 1983 err = intel_pt_synth_pebs_sample(ptq); 1984 if (err) 1985 return err; 1986 } 1987 1988 if (pt->sample_pwr_events) { 1989 if (ptq->state->cbr != ptq->cbr_seen) { 1990 err = intel_pt_synth_cbr_sample(ptq); 1991 if (err) 1992 return err; 1993 } 1994 if (state->type & INTEL_PT_PWR_EVT) { 1995 if (state->type & INTEL_PT_MWAIT_OP) { 1996 err = intel_pt_synth_mwait_sample(ptq); 1997 if (err) 1998 return err; 1999 } 2000 if (state->type & INTEL_PT_PWR_ENTRY) { 2001 err = intel_pt_synth_pwre_sample(ptq); 2002 if (err) 2003 return err; 2004 } 2005 if (state->type & INTEL_PT_EX_STOP) { 2006 err = intel_pt_synth_exstop_sample(ptq); 2007 if (err) 2008 return err; 2009 } 2010 if (state->type & INTEL_PT_PWR_EXIT) { 2011 err = intel_pt_synth_pwrx_sample(ptq); 2012 if (err) 2013 return err; 2014 } 2015 } 2016 } 2017 2018 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { 2019 err = intel_pt_synth_instruction_sample(ptq); 2020 if (err) 2021 return err; 2022 } 2023 2024 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { 2025 err = intel_pt_synth_transaction_sample(ptq); 2026 if (err) 2027 return err; 2028 } 2029 2030 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { 2031 err = intel_pt_synth_ptwrite_sample(ptq); 2032 if (err) 2033 return err; 2034 } 2035 2036 if (!(state->type & INTEL_PT_BRANCH)) 2037 return 0; 2038 2039 if (pt->use_thread_stack) { 2040 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, 2041 state->from_ip, state->to_ip, ptq->insn_len, 2042 state->trace_nr, pt->callstack, 2043 pt->br_stack_sz_plus, 2044 pt->mispred_all); 2045 } else { 2046 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); 2047 } 2048 2049 if (pt->sample_branches) { 2050 err = intel_pt_synth_branch_sample(ptq); 2051 if (err) 2052 return err; 2053 } 2054 2055 if (!ptq->sync_switch) 2056 return 0; 2057 2058 if (intel_pt_is_switch_ip(ptq, state->to_ip)) { 2059 switch (ptq->switch_state) { 2060 case INTEL_PT_SS_NOT_TRACING: 2061 case INTEL_PT_SS_UNKNOWN: 2062 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2063 err = intel_pt_next_tid(pt, ptq); 2064 if (err) 2065 return err; 2066 ptq->switch_state = INTEL_PT_SS_TRACING; 2067 break; 2068 default: 2069 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; 2070 return 1; 2071 } 2072 } else if (!state->to_ip) { 2073 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2074 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { 2075 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2076 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2077 state->to_ip == pt->ptss_ip && 2078 (ptq->flags & PERF_IP_FLAG_CALL)) { 2079 ptq->switch_state = INTEL_PT_SS_TRACING; 2080 } 2081 2082 return 0; 2083 } 2084 2085 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) 2086 { 2087 struct machine *machine = pt->machine; 2088 struct map *map; 2089 struct symbol *sym, *start; 2090 u64 ip, switch_ip = 0; 2091 const char *ptss; 2092 2093 if (ptss_ip) 2094 *ptss_ip = 0; 2095 2096 map = machine__kernel_map(machine); 2097 if (!map) 2098 return 0; 2099 2100 if (map__load(map)) 2101 return 0; 2102 2103 start = dso__first_symbol(map->dso); 2104 2105 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2106 if (sym->binding == STB_GLOBAL && 2107 !strcmp(sym->name, "__switch_to")) { 2108 ip = map->unmap_ip(map, sym->start); 2109 if (ip >= map->start && ip < map->end) { 2110 switch_ip = ip; 2111 break; 2112 } 2113 } 2114 } 2115 2116 if (!switch_ip || !ptss_ip) 2117 return 0; 2118 2119 if (pt->have_sched_switch == 1) 2120 ptss = "perf_trace_sched_switch"; 2121 else 2122 ptss = "__perf_event_task_sched_out"; 2123 2124 for (sym = start; sym; sym = dso__next_symbol(sym)) { 2125 if (!strcmp(sym->name, ptss)) { 2126 ip = map->unmap_ip(map, sym->start); 2127 if (ip >= map->start && ip < map->end) { 2128 *ptss_ip = ip; 2129 break; 2130 } 2131 } 2132 } 2133 2134 return switch_ip; 2135 } 2136 2137 static void intel_pt_enable_sync_switch(struct intel_pt *pt) 2138 { 2139 unsigned int i; 2140 2141 pt->sync_switch = true; 2142 2143 for (i = 0; i < pt->queues.nr_queues; i++) { 2144 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2145 struct intel_pt_queue *ptq = queue->priv; 2146 2147 if (ptq) 2148 ptq->sync_switch = true; 2149 } 2150 } 2151 2152 /* 2153 * To filter against time ranges, it is only necessary to look at the next start 2154 * or end time. 2155 */ 2156 static bool intel_pt_next_time(struct intel_pt_queue *ptq) 2157 { 2158 struct intel_pt *pt = ptq->pt; 2159 2160 if (ptq->sel_start) { 2161 /* Next time is an end time */ 2162 ptq->sel_start = false; 2163 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; 2164 return true; 2165 } else if (ptq->sel_idx + 1 < pt->range_cnt) { 2166 /* Next time is a start time */ 2167 ptq->sel_start = true; 2168 ptq->sel_idx += 1; 2169 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; 2170 return true; 2171 } 2172 2173 /* No next time */ 2174 return false; 2175 } 2176 2177 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) 2178 { 2179 int err; 2180 2181 while (1) { 2182 if (ptq->sel_start) { 2183 if (ptq->timestamp >= ptq->sel_timestamp) { 2184 /* After start time, so consider next time */ 2185 intel_pt_next_time(ptq); 2186 if (!ptq->sel_timestamp) { 2187 /* No end time */ 2188 return 0; 2189 } 2190 /* Check against end time */ 2191 continue; 2192 } 2193 /* Before start time, so fast forward */ 2194 ptq->have_sample = false; 2195 if (ptq->sel_timestamp > *ff_timestamp) { 2196 if (ptq->sync_switch) { 2197 intel_pt_next_tid(ptq->pt, ptq); 2198 ptq->switch_state = INTEL_PT_SS_UNKNOWN; 2199 } 2200 *ff_timestamp = ptq->sel_timestamp; 2201 err = intel_pt_fast_forward(ptq->decoder, 2202 ptq->sel_timestamp); 2203 if (err) 2204 return err; 2205 } 2206 return 0; 2207 } else if (ptq->timestamp > ptq->sel_timestamp) { 2208 /* After end time, so consider next time */ 2209 if (!intel_pt_next_time(ptq)) { 2210 /* No next time range, so stop decoding */ 2211 ptq->have_sample = false; 2212 ptq->switch_state = INTEL_PT_SS_NOT_TRACING; 2213 return 1; 2214 } 2215 /* Check against next start time */ 2216 continue; 2217 } else { 2218 /* Before end time */ 2219 return 0; 2220 } 2221 } 2222 } 2223 2224 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) 2225 { 2226 const struct intel_pt_state *state = ptq->state; 2227 struct intel_pt *pt = ptq->pt; 2228 u64 ff_timestamp = 0; 2229 int err; 2230 2231 if (!pt->kernel_start) { 2232 pt->kernel_start = machine__kernel_start(pt->machine); 2233 if (pt->per_cpu_mmaps && 2234 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && 2235 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && 2236 !pt->sampling_mode) { 2237 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); 2238 if (pt->switch_ip) { 2239 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", 2240 pt->switch_ip, pt->ptss_ip); 2241 intel_pt_enable_sync_switch(pt); 2242 } 2243 } 2244 } 2245 2246 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", 2247 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2248 while (1) { 2249 err = intel_pt_sample(ptq); 2250 if (err) 2251 return err; 2252 2253 state = intel_pt_decode(ptq->decoder); 2254 if (state->err) { 2255 if (state->err == INTEL_PT_ERR_NODATA) 2256 return 1; 2257 if (ptq->sync_switch && 2258 state->from_ip >= pt->kernel_start) { 2259 ptq->sync_switch = false; 2260 intel_pt_next_tid(pt, ptq); 2261 } 2262 if (pt->synth_opts.errors) { 2263 err = intel_ptq_synth_error(ptq, state); 2264 if (err) 2265 return err; 2266 } 2267 continue; 2268 } 2269 2270 ptq->state = state; 2271 ptq->have_sample = true; 2272 intel_pt_sample_flags(ptq); 2273 2274 /* Use estimated TSC upon return to user space */ 2275 if (pt->est_tsc && 2276 (state->from_ip >= pt->kernel_start || !state->from_ip) && 2277 state->to_ip && state->to_ip < pt->kernel_start) { 2278 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2279 state->timestamp, state->est_timestamp); 2280 ptq->timestamp = state->est_timestamp; 2281 /* Use estimated TSC in unknown switch state */ 2282 } else if (ptq->sync_switch && 2283 ptq->switch_state == INTEL_PT_SS_UNKNOWN && 2284 intel_pt_is_switch_ip(ptq, state->to_ip) && 2285 ptq->next_tid == -1) { 2286 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", 2287 state->timestamp, state->est_timestamp); 2288 ptq->timestamp = state->est_timestamp; 2289 } else if (state->timestamp > ptq->timestamp) { 2290 ptq->timestamp = state->timestamp; 2291 } 2292 2293 if (ptq->sel_timestamp) { 2294 err = intel_pt_time_filter(ptq, &ff_timestamp); 2295 if (err) 2296 return err; 2297 } 2298 2299 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { 2300 *timestamp = ptq->timestamp; 2301 return 0; 2302 } 2303 } 2304 return 0; 2305 } 2306 2307 static inline int intel_pt_update_queues(struct intel_pt *pt) 2308 { 2309 if (pt->queues.new_data) { 2310 pt->queues.new_data = false; 2311 return intel_pt_setup_queues(pt); 2312 } 2313 return 0; 2314 } 2315 2316 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) 2317 { 2318 unsigned int queue_nr; 2319 u64 ts; 2320 int ret; 2321 2322 while (1) { 2323 struct auxtrace_queue *queue; 2324 struct intel_pt_queue *ptq; 2325 2326 if (!pt->heap.heap_cnt) 2327 return 0; 2328 2329 if (pt->heap.heap_array[0].ordinal >= timestamp) 2330 return 0; 2331 2332 queue_nr = pt->heap.heap_array[0].queue_nr; 2333 queue = &pt->queues.queue_array[queue_nr]; 2334 ptq = queue->priv; 2335 2336 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", 2337 queue_nr, pt->heap.heap_array[0].ordinal, 2338 timestamp); 2339 2340 auxtrace_heap__pop(&pt->heap); 2341 2342 if (pt->heap.heap_cnt) { 2343 ts = pt->heap.heap_array[0].ordinal + 1; 2344 if (ts > timestamp) 2345 ts = timestamp; 2346 } else { 2347 ts = timestamp; 2348 } 2349 2350 intel_pt_set_pid_tid_cpu(pt, queue); 2351 2352 ret = intel_pt_run_decoder(ptq, &ts); 2353 2354 if (ret < 0) { 2355 auxtrace_heap__add(&pt->heap, queue_nr, ts); 2356 return ret; 2357 } 2358 2359 if (!ret) { 2360 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); 2361 if (ret < 0) 2362 return ret; 2363 } else { 2364 ptq->on_heap = false; 2365 } 2366 } 2367 2368 return 0; 2369 } 2370 2371 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, 2372 u64 time_) 2373 { 2374 struct auxtrace_queues *queues = &pt->queues; 2375 unsigned int i; 2376 u64 ts = 0; 2377 2378 for (i = 0; i < queues->nr_queues; i++) { 2379 struct auxtrace_queue *queue = &pt->queues.queue_array[i]; 2380 struct intel_pt_queue *ptq = queue->priv; 2381 2382 if (ptq && (tid == -1 || ptq->tid == tid)) { 2383 ptq->time = time_; 2384 intel_pt_set_pid_tid_cpu(pt, queue); 2385 intel_pt_run_decoder(ptq, &ts); 2386 } 2387 } 2388 return 0; 2389 } 2390 2391 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, 2392 struct auxtrace_queue *queue, 2393 struct perf_sample *sample) 2394 { 2395 struct machine *m = ptq->pt->machine; 2396 2397 ptq->pid = sample->pid; 2398 ptq->tid = sample->tid; 2399 ptq->cpu = queue->cpu; 2400 2401 intel_pt_log("queue %u cpu %d pid %d tid %d\n", 2402 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); 2403 2404 thread__zput(ptq->thread); 2405 2406 if (ptq->tid == -1) 2407 return; 2408 2409 if (ptq->pid == -1) { 2410 ptq->thread = machine__find_thread(m, -1, ptq->tid); 2411 if (ptq->thread) 2412 ptq->pid = ptq->thread->pid_; 2413 return; 2414 } 2415 2416 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); 2417 } 2418 2419 static int intel_pt_process_timeless_sample(struct intel_pt *pt, 2420 struct perf_sample *sample) 2421 { 2422 struct auxtrace_queue *queue; 2423 struct intel_pt_queue *ptq; 2424 u64 ts = 0; 2425 2426 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); 2427 if (!queue) 2428 return -EINVAL; 2429 2430 ptq = queue->priv; 2431 if (!ptq) 2432 return 0; 2433 2434 ptq->stop = false; 2435 ptq->time = sample->time; 2436 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); 2437 intel_pt_run_decoder(ptq, &ts); 2438 return 0; 2439 } 2440 2441 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) 2442 { 2443 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, 2444 sample->pid, sample->tid, 0, sample->time); 2445 } 2446 2447 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) 2448 { 2449 unsigned i, j; 2450 2451 if (cpu < 0 || !pt->queues.nr_queues) 2452 return NULL; 2453 2454 if ((unsigned)cpu >= pt->queues.nr_queues) 2455 i = pt->queues.nr_queues - 1; 2456 else 2457 i = cpu; 2458 2459 if (pt->queues.queue_array[i].cpu == cpu) 2460 return pt->queues.queue_array[i].priv; 2461 2462 for (j = 0; i > 0; j++) { 2463 if (pt->queues.queue_array[--i].cpu == cpu) 2464 return pt->queues.queue_array[i].priv; 2465 } 2466 2467 for (; j < pt->queues.nr_queues; j++) { 2468 if (pt->queues.queue_array[j].cpu == cpu) 2469 return pt->queues.queue_array[j].priv; 2470 } 2471 2472 return NULL; 2473 } 2474 2475 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, 2476 u64 timestamp) 2477 { 2478 struct intel_pt_queue *ptq; 2479 int err; 2480 2481 if (!pt->sync_switch) 2482 return 1; 2483 2484 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2485 if (!ptq || !ptq->sync_switch) 2486 return 1; 2487 2488 switch (ptq->switch_state) { 2489 case INTEL_PT_SS_NOT_TRACING: 2490 break; 2491 case INTEL_PT_SS_UNKNOWN: 2492 case INTEL_PT_SS_TRACING: 2493 ptq->next_tid = tid; 2494 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; 2495 return 0; 2496 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2497 if (!ptq->on_heap) { 2498 ptq->timestamp = perf_time_to_tsc(timestamp, 2499 &pt->tc); 2500 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, 2501 ptq->timestamp); 2502 if (err) 2503 return err; 2504 ptq->on_heap = true; 2505 } 2506 ptq->switch_state = INTEL_PT_SS_TRACING; 2507 break; 2508 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2509 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); 2510 break; 2511 default: 2512 break; 2513 } 2514 2515 ptq->next_tid = -1; 2516 2517 return 1; 2518 } 2519 2520 static int intel_pt_process_switch(struct intel_pt *pt, 2521 struct perf_sample *sample) 2522 { 2523 struct evsel *evsel; 2524 pid_t tid; 2525 int cpu, ret; 2526 2527 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); 2528 if (evsel != pt->switch_evsel) 2529 return 0; 2530 2531 tid = evsel__intval(evsel, sample, "next_pid"); 2532 cpu = sample->cpu; 2533 2534 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2535 cpu, tid, sample->time, perf_time_to_tsc(sample->time, 2536 &pt->tc)); 2537 2538 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2539 if (ret <= 0) 2540 return ret; 2541 2542 return machine__set_current_tid(pt->machine, cpu, -1, tid); 2543 } 2544 2545 static int intel_pt_context_switch_in(struct intel_pt *pt, 2546 struct perf_sample *sample) 2547 { 2548 pid_t pid = sample->pid; 2549 pid_t tid = sample->tid; 2550 int cpu = sample->cpu; 2551 2552 if (pt->sync_switch) { 2553 struct intel_pt_queue *ptq; 2554 2555 ptq = intel_pt_cpu_to_ptq(pt, cpu); 2556 if (ptq && ptq->sync_switch) { 2557 ptq->next_tid = -1; 2558 switch (ptq->switch_state) { 2559 case INTEL_PT_SS_NOT_TRACING: 2560 case INTEL_PT_SS_UNKNOWN: 2561 case INTEL_PT_SS_TRACING: 2562 break; 2563 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: 2564 case INTEL_PT_SS_EXPECTING_SWITCH_IP: 2565 ptq->switch_state = INTEL_PT_SS_TRACING; 2566 break; 2567 default: 2568 break; 2569 } 2570 } 2571 } 2572 2573 /* 2574 * If the current tid has not been updated yet, ensure it is now that 2575 * a "switch in" event has occurred. 2576 */ 2577 if (machine__get_current_tid(pt->machine, cpu) == tid) 2578 return 0; 2579 2580 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2581 } 2582 2583 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, 2584 struct perf_sample *sample) 2585 { 2586 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; 2587 pid_t pid, tid; 2588 int cpu, ret; 2589 2590 cpu = sample->cpu; 2591 2592 if (pt->have_sched_switch == 3) { 2593 if (!out) 2594 return intel_pt_context_switch_in(pt, sample); 2595 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { 2596 pr_err("Expecting CPU-wide context switch event\n"); 2597 return -EINVAL; 2598 } 2599 pid = event->context_switch.next_prev_pid; 2600 tid = event->context_switch.next_prev_tid; 2601 } else { 2602 if (out) 2603 return 0; 2604 pid = sample->pid; 2605 tid = sample->tid; 2606 } 2607 2608 if (tid == -1) 2609 intel_pt_log("context_switch event has no tid\n"); 2610 2611 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); 2612 if (ret <= 0) 2613 return ret; 2614 2615 return machine__set_current_tid(pt->machine, cpu, pid, tid); 2616 } 2617 2618 static int intel_pt_process_itrace_start(struct intel_pt *pt, 2619 union perf_event *event, 2620 struct perf_sample *sample) 2621 { 2622 if (!pt->per_cpu_mmaps) 2623 return 0; 2624 2625 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", 2626 sample->cpu, event->itrace_start.pid, 2627 event->itrace_start.tid, sample->time, 2628 perf_time_to_tsc(sample->time, &pt->tc)); 2629 2630 return machine__set_current_tid(pt->machine, sample->cpu, 2631 event->itrace_start.pid, 2632 event->itrace_start.tid); 2633 } 2634 2635 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, 2636 struct addr_location *al) 2637 { 2638 if (!al->map || addr < al->map->start || addr >= al->map->end) { 2639 if (!thread__find_map(thread, cpumode, addr, al)) 2640 return -1; 2641 } 2642 2643 return 0; 2644 } 2645 2646 /* Invalidate all instruction cache entries that overlap the text poke */ 2647 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) 2648 { 2649 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 2650 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; 2651 /* Assume text poke begins in a basic block no more than 4096 bytes */ 2652 int cnt = 4096 + event->text_poke.new_len; 2653 struct thread *thread = pt->unknown_thread; 2654 struct addr_location al = { .map = NULL }; 2655 struct machine *machine = pt->machine; 2656 struct intel_pt_cache_entry *e; 2657 u64 offset; 2658 2659 if (!event->text_poke.new_len) 2660 return 0; 2661 2662 for (; cnt; cnt--, addr--) { 2663 if (intel_pt_find_map(thread, cpumode, addr, &al)) { 2664 if (addr < event->text_poke.addr) 2665 return 0; 2666 continue; 2667 } 2668 2669 if (!al.map->dso || !al.map->dso->auxtrace_cache) 2670 continue; 2671 2672 offset = al.map->map_ip(al.map, addr); 2673 2674 e = intel_pt_cache_lookup(al.map->dso, machine, offset); 2675 if (!e) 2676 continue; 2677 2678 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { 2679 /* 2680 * No overlap. Working backwards there cannot be another 2681 * basic block that overlaps the text poke if there is a 2682 * branch instruction before the text poke address. 2683 */ 2684 if (e->branch != INTEL_PT_BR_NO_BRANCH) 2685 return 0; 2686 } else { 2687 intel_pt_cache_invalidate(al.map->dso, machine, offset); 2688 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", 2689 al.map->dso->long_name, addr); 2690 } 2691 } 2692 2693 return 0; 2694 } 2695 2696 static int intel_pt_process_event(struct perf_session *session, 2697 union perf_event *event, 2698 struct perf_sample *sample, 2699 struct perf_tool *tool) 2700 { 2701 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2702 auxtrace); 2703 u64 timestamp; 2704 int err = 0; 2705 2706 if (dump_trace) 2707 return 0; 2708 2709 if (!tool->ordered_events) { 2710 pr_err("Intel Processor Trace requires ordered events\n"); 2711 return -EINVAL; 2712 } 2713 2714 if (sample->time && sample->time != (u64)-1) 2715 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2716 else 2717 timestamp = 0; 2718 2719 if (timestamp || pt->timeless_decoding) { 2720 err = intel_pt_update_queues(pt); 2721 if (err) 2722 return err; 2723 } 2724 2725 if (pt->timeless_decoding) { 2726 if (pt->sampling_mode) { 2727 if (sample->aux_sample.size) 2728 err = intel_pt_process_timeless_sample(pt, 2729 sample); 2730 } else if (event->header.type == PERF_RECORD_EXIT) { 2731 err = intel_pt_process_timeless_queues(pt, 2732 event->fork.tid, 2733 sample->time); 2734 } 2735 } else if (timestamp) { 2736 err = intel_pt_process_queues(pt, timestamp); 2737 } 2738 if (err) 2739 return err; 2740 2741 if (event->header.type == PERF_RECORD_SAMPLE) { 2742 if (pt->synth_opts.add_callchain && !sample->callchain) 2743 intel_pt_add_callchain(pt, sample); 2744 if (pt->synth_opts.add_last_branch && !sample->branch_stack) 2745 intel_pt_add_br_stack(pt, sample); 2746 } 2747 2748 if (event->header.type == PERF_RECORD_AUX && 2749 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && 2750 pt->synth_opts.errors) { 2751 err = intel_pt_lost(pt, sample); 2752 if (err) 2753 return err; 2754 } 2755 2756 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) 2757 err = intel_pt_process_switch(pt, sample); 2758 else if (event->header.type == PERF_RECORD_ITRACE_START) 2759 err = intel_pt_process_itrace_start(pt, event, sample); 2760 else if (event->header.type == PERF_RECORD_SWITCH || 2761 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) 2762 err = intel_pt_context_switch(pt, event, sample); 2763 2764 if (!err && event->header.type == PERF_RECORD_TEXT_POKE) 2765 err = intel_pt_text_poke(pt, event); 2766 2767 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { 2768 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", 2769 event->header.type, sample->cpu, sample->time, timestamp); 2770 intel_pt_log_event(event); 2771 } 2772 2773 return err; 2774 } 2775 2776 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) 2777 { 2778 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2779 auxtrace); 2780 int ret; 2781 2782 if (dump_trace) 2783 return 0; 2784 2785 if (!tool->ordered_events) 2786 return -EINVAL; 2787 2788 ret = intel_pt_update_queues(pt); 2789 if (ret < 0) 2790 return ret; 2791 2792 if (pt->timeless_decoding) 2793 return intel_pt_process_timeless_queues(pt, -1, 2794 MAX_TIMESTAMP - 1); 2795 2796 return intel_pt_process_queues(pt, MAX_TIMESTAMP); 2797 } 2798 2799 static void intel_pt_free_events(struct perf_session *session) 2800 { 2801 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2802 auxtrace); 2803 struct auxtrace_queues *queues = &pt->queues; 2804 unsigned int i; 2805 2806 for (i = 0; i < queues->nr_queues; i++) { 2807 intel_pt_free_queue(queues->queue_array[i].priv); 2808 queues->queue_array[i].priv = NULL; 2809 } 2810 intel_pt_log_disable(); 2811 auxtrace_queues__free(queues); 2812 } 2813 2814 static void intel_pt_free(struct perf_session *session) 2815 { 2816 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2817 auxtrace); 2818 2819 auxtrace_heap__free(&pt->heap); 2820 intel_pt_free_events(session); 2821 session->auxtrace = NULL; 2822 thread__put(pt->unknown_thread); 2823 addr_filters__exit(&pt->filts); 2824 zfree(&pt->chain); 2825 zfree(&pt->filter); 2826 zfree(&pt->time_ranges); 2827 free(pt); 2828 } 2829 2830 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, 2831 struct evsel *evsel) 2832 { 2833 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2834 auxtrace); 2835 2836 return evsel->core.attr.type == pt->pmu_type; 2837 } 2838 2839 static int intel_pt_process_auxtrace_event(struct perf_session *session, 2840 union perf_event *event, 2841 struct perf_tool *tool __maybe_unused) 2842 { 2843 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2844 auxtrace); 2845 2846 if (!pt->data_queued) { 2847 struct auxtrace_buffer *buffer; 2848 off_t data_offset; 2849 int fd = perf_data__fd(session->data); 2850 int err; 2851 2852 if (perf_data__is_pipe(session->data)) { 2853 data_offset = 0; 2854 } else { 2855 data_offset = lseek(fd, 0, SEEK_CUR); 2856 if (data_offset == -1) 2857 return -errno; 2858 } 2859 2860 err = auxtrace_queues__add_event(&pt->queues, session, event, 2861 data_offset, &buffer); 2862 if (err) 2863 return err; 2864 2865 /* Dump here now we have copied a piped trace out of the pipe */ 2866 if (dump_trace) { 2867 if (auxtrace_buffer__get_data(buffer, fd)) { 2868 intel_pt_dump_event(pt, buffer->data, 2869 buffer->size); 2870 auxtrace_buffer__put_data(buffer); 2871 } 2872 } 2873 } 2874 2875 return 0; 2876 } 2877 2878 static int intel_pt_queue_data(struct perf_session *session, 2879 struct perf_sample *sample, 2880 union perf_event *event, u64 data_offset) 2881 { 2882 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, 2883 auxtrace); 2884 u64 timestamp; 2885 2886 if (event) { 2887 return auxtrace_queues__add_event(&pt->queues, session, event, 2888 data_offset, NULL); 2889 } 2890 2891 if (sample->time && sample->time != (u64)-1) 2892 timestamp = perf_time_to_tsc(sample->time, &pt->tc); 2893 else 2894 timestamp = 0; 2895 2896 return auxtrace_queues__add_sample(&pt->queues, session, sample, 2897 data_offset, timestamp); 2898 } 2899 2900 struct intel_pt_synth { 2901 struct perf_tool dummy_tool; 2902 struct perf_session *session; 2903 }; 2904 2905 static int intel_pt_event_synth(struct perf_tool *tool, 2906 union perf_event *event, 2907 struct perf_sample *sample __maybe_unused, 2908 struct machine *machine __maybe_unused) 2909 { 2910 struct intel_pt_synth *intel_pt_synth = 2911 container_of(tool, struct intel_pt_synth, dummy_tool); 2912 2913 return perf_session__deliver_synth_event(intel_pt_synth->session, event, 2914 NULL); 2915 } 2916 2917 static int intel_pt_synth_event(struct perf_session *session, const char *name, 2918 struct perf_event_attr *attr, u64 id) 2919 { 2920 struct intel_pt_synth intel_pt_synth; 2921 int err; 2922 2923 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", 2924 name, id, (u64)attr->sample_type); 2925 2926 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); 2927 intel_pt_synth.session = session; 2928 2929 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, 2930 &id, intel_pt_event_synth); 2931 if (err) 2932 pr_err("%s: failed to synthesize '%s' event type\n", 2933 __func__, name); 2934 2935 return err; 2936 } 2937 2938 static void intel_pt_set_event_name(struct evlist *evlist, u64 id, 2939 const char *name) 2940 { 2941 struct evsel *evsel; 2942 2943 evlist__for_each_entry(evlist, evsel) { 2944 if (evsel->core.id && evsel->core.id[0] == id) { 2945 if (evsel->name) 2946 zfree(&evsel->name); 2947 evsel->name = strdup(name); 2948 break; 2949 } 2950 } 2951 } 2952 2953 static struct evsel *intel_pt_evsel(struct intel_pt *pt, 2954 struct evlist *evlist) 2955 { 2956 struct evsel *evsel; 2957 2958 evlist__for_each_entry(evlist, evsel) { 2959 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) 2960 return evsel; 2961 } 2962 2963 return NULL; 2964 } 2965 2966 static int intel_pt_synth_events(struct intel_pt *pt, 2967 struct perf_session *session) 2968 { 2969 struct evlist *evlist = session->evlist; 2970 struct evsel *evsel = intel_pt_evsel(pt, evlist); 2971 struct perf_event_attr attr; 2972 u64 id; 2973 int err; 2974 2975 if (!evsel) { 2976 pr_debug("There are no selected events with Intel Processor Trace data\n"); 2977 return 0; 2978 } 2979 2980 memset(&attr, 0, sizeof(struct perf_event_attr)); 2981 attr.size = sizeof(struct perf_event_attr); 2982 attr.type = PERF_TYPE_HARDWARE; 2983 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; 2984 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | 2985 PERF_SAMPLE_PERIOD; 2986 if (pt->timeless_decoding) 2987 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; 2988 else 2989 attr.sample_type |= PERF_SAMPLE_TIME; 2990 if (!pt->per_cpu_mmaps) 2991 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; 2992 attr.exclude_user = evsel->core.attr.exclude_user; 2993 attr.exclude_kernel = evsel->core.attr.exclude_kernel; 2994 attr.exclude_hv = evsel->core.attr.exclude_hv; 2995 attr.exclude_host = evsel->core.attr.exclude_host; 2996 attr.exclude_guest = evsel->core.attr.exclude_guest; 2997 attr.sample_id_all = evsel->core.attr.sample_id_all; 2998 attr.read_format = evsel->core.attr.read_format; 2999 3000 id = evsel->core.id[0] + 1000000000; 3001 if (!id) 3002 id = 1; 3003 3004 if (pt->synth_opts.branches) { 3005 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; 3006 attr.sample_period = 1; 3007 attr.sample_type |= PERF_SAMPLE_ADDR; 3008 err = intel_pt_synth_event(session, "branches", &attr, id); 3009 if (err) 3010 return err; 3011 pt->sample_branches = true; 3012 pt->branches_sample_type = attr.sample_type; 3013 pt->branches_id = id; 3014 id += 1; 3015 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; 3016 } 3017 3018 if (pt->synth_opts.callchain) 3019 attr.sample_type |= PERF_SAMPLE_CALLCHAIN; 3020 if (pt->synth_opts.last_branch) { 3021 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; 3022 /* 3023 * We don't use the hardware index, but the sample generation 3024 * code uses the new format branch_stack with this field, 3025 * so the event attributes must indicate that it's present. 3026 */ 3027 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; 3028 } 3029 3030 if (pt->synth_opts.instructions) { 3031 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3032 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) 3033 attr.sample_period = 3034 intel_pt_ns_to_ticks(pt, pt->synth_opts.period); 3035 else 3036 attr.sample_period = pt->synth_opts.period; 3037 err = intel_pt_synth_event(session, "instructions", &attr, id); 3038 if (err) 3039 return err; 3040 pt->sample_instructions = true; 3041 pt->instructions_sample_type = attr.sample_type; 3042 pt->instructions_id = id; 3043 id += 1; 3044 } 3045 3046 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; 3047 attr.sample_period = 1; 3048 3049 if (pt->synth_opts.transactions) { 3050 attr.config = PERF_COUNT_HW_INSTRUCTIONS; 3051 err = intel_pt_synth_event(session, "transactions", &attr, id); 3052 if (err) 3053 return err; 3054 pt->sample_transactions = true; 3055 pt->transactions_sample_type = attr.sample_type; 3056 pt->transactions_id = id; 3057 intel_pt_set_event_name(evlist, id, "transactions"); 3058 id += 1; 3059 } 3060 3061 attr.type = PERF_TYPE_SYNTH; 3062 attr.sample_type |= PERF_SAMPLE_RAW; 3063 3064 if (pt->synth_opts.ptwrites) { 3065 attr.config = PERF_SYNTH_INTEL_PTWRITE; 3066 err = intel_pt_synth_event(session, "ptwrite", &attr, id); 3067 if (err) 3068 return err; 3069 pt->sample_ptwrites = true; 3070 pt->ptwrites_sample_type = attr.sample_type; 3071 pt->ptwrites_id = id; 3072 intel_pt_set_event_name(evlist, id, "ptwrite"); 3073 id += 1; 3074 } 3075 3076 if (pt->synth_opts.pwr_events) { 3077 pt->sample_pwr_events = true; 3078 pt->pwr_events_sample_type = attr.sample_type; 3079 3080 attr.config = PERF_SYNTH_INTEL_CBR; 3081 err = intel_pt_synth_event(session, "cbr", &attr, id); 3082 if (err) 3083 return err; 3084 pt->cbr_id = id; 3085 intel_pt_set_event_name(evlist, id, "cbr"); 3086 id += 1; 3087 } 3088 3089 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { 3090 attr.config = PERF_SYNTH_INTEL_MWAIT; 3091 err = intel_pt_synth_event(session, "mwait", &attr, id); 3092 if (err) 3093 return err; 3094 pt->mwait_id = id; 3095 intel_pt_set_event_name(evlist, id, "mwait"); 3096 id += 1; 3097 3098 attr.config = PERF_SYNTH_INTEL_PWRE; 3099 err = intel_pt_synth_event(session, "pwre", &attr, id); 3100 if (err) 3101 return err; 3102 pt->pwre_id = id; 3103 intel_pt_set_event_name(evlist, id, "pwre"); 3104 id += 1; 3105 3106 attr.config = PERF_SYNTH_INTEL_EXSTOP; 3107 err = intel_pt_synth_event(session, "exstop", &attr, id); 3108 if (err) 3109 return err; 3110 pt->exstop_id = id; 3111 intel_pt_set_event_name(evlist, id, "exstop"); 3112 id += 1; 3113 3114 attr.config = PERF_SYNTH_INTEL_PWRX; 3115 err = intel_pt_synth_event(session, "pwrx", &attr, id); 3116 if (err) 3117 return err; 3118 pt->pwrx_id = id; 3119 intel_pt_set_event_name(evlist, id, "pwrx"); 3120 id += 1; 3121 } 3122 3123 return 0; 3124 } 3125 3126 static void intel_pt_setup_pebs_events(struct intel_pt *pt) 3127 { 3128 struct evsel *evsel; 3129 3130 if (!pt->synth_opts.other_events) 3131 return; 3132 3133 evlist__for_each_entry(pt->session->evlist, evsel) { 3134 if (evsel->core.attr.aux_output && evsel->core.id) { 3135 pt->sample_pebs = true; 3136 pt->pebs_evsel = evsel; 3137 return; 3138 } 3139 } 3140 } 3141 3142 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) 3143 { 3144 struct evsel *evsel; 3145 3146 evlist__for_each_entry_reverse(evlist, evsel) { 3147 const char *name = evsel__name(evsel); 3148 3149 if (!strcmp(name, "sched:sched_switch")) 3150 return evsel; 3151 } 3152 3153 return NULL; 3154 } 3155 3156 static bool intel_pt_find_switch(struct evlist *evlist) 3157 { 3158 struct evsel *evsel; 3159 3160 evlist__for_each_entry(evlist, evsel) { 3161 if (evsel->core.attr.context_switch) 3162 return true; 3163 } 3164 3165 return false; 3166 } 3167 3168 static int intel_pt_perf_config(const char *var, const char *value, void *data) 3169 { 3170 struct intel_pt *pt = data; 3171 3172 if (!strcmp(var, "intel-pt.mispred-all")) 3173 pt->mispred_all = perf_config_bool(var, value); 3174 3175 return 0; 3176 } 3177 3178 /* Find least TSC which converts to ns or later */ 3179 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) 3180 { 3181 u64 tsc, tm; 3182 3183 tsc = perf_time_to_tsc(ns, &pt->tc); 3184 3185 while (1) { 3186 tm = tsc_to_perf_time(tsc, &pt->tc); 3187 if (tm < ns) 3188 break; 3189 tsc -= 1; 3190 } 3191 3192 while (tm < ns) 3193 tm = tsc_to_perf_time(++tsc, &pt->tc); 3194 3195 return tsc; 3196 } 3197 3198 /* Find greatest TSC which converts to ns or earlier */ 3199 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) 3200 { 3201 u64 tsc, tm; 3202 3203 tsc = perf_time_to_tsc(ns, &pt->tc); 3204 3205 while (1) { 3206 tm = tsc_to_perf_time(tsc, &pt->tc); 3207 if (tm > ns) 3208 break; 3209 tsc += 1; 3210 } 3211 3212 while (tm > ns) 3213 tm = tsc_to_perf_time(--tsc, &pt->tc); 3214 3215 return tsc; 3216 } 3217 3218 static int intel_pt_setup_time_ranges(struct intel_pt *pt, 3219 struct itrace_synth_opts *opts) 3220 { 3221 struct perf_time_interval *p = opts->ptime_range; 3222 int n = opts->range_num; 3223 int i; 3224 3225 if (!n || !p || pt->timeless_decoding) 3226 return 0; 3227 3228 pt->time_ranges = calloc(n, sizeof(struct range)); 3229 if (!pt->time_ranges) 3230 return -ENOMEM; 3231 3232 pt->range_cnt = n; 3233 3234 intel_pt_log("%s: %u range(s)\n", __func__, n); 3235 3236 for (i = 0; i < n; i++) { 3237 struct range *r = &pt->time_ranges[i]; 3238 u64 ts = p[i].start; 3239 u64 te = p[i].end; 3240 3241 /* 3242 * Take care to ensure the TSC range matches the perf-time range 3243 * when converted back to perf-time. 3244 */ 3245 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; 3246 r->end = te ? intel_pt_tsc_end(te, pt) : 0; 3247 3248 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", 3249 i, ts, te); 3250 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", 3251 i, r->start, r->end); 3252 } 3253 3254 return 0; 3255 } 3256 3257 static const char * const intel_pt_info_fmts[] = { 3258 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", 3259 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", 3260 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", 3261 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", 3262 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", 3263 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", 3264 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", 3265 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", 3266 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", 3267 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", 3268 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", 3269 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", 3270 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", 3271 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", 3272 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", 3273 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", 3274 }; 3275 3276 static void intel_pt_print_info(__u64 *arr, int start, int finish) 3277 { 3278 int i; 3279 3280 if (!dump_trace) 3281 return; 3282 3283 for (i = start; i <= finish; i++) 3284 fprintf(stdout, intel_pt_info_fmts[i], arr[i]); 3285 } 3286 3287 static void intel_pt_print_info_str(const char *name, const char *str) 3288 { 3289 if (!dump_trace) 3290 return; 3291 3292 fprintf(stdout, " %-20s%s\n", name, str ? str : ""); 3293 } 3294 3295 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) 3296 { 3297 return auxtrace_info->header.size >= 3298 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); 3299 } 3300 3301 int intel_pt_process_auxtrace_info(union perf_event *event, 3302 struct perf_session *session) 3303 { 3304 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; 3305 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; 3306 struct intel_pt *pt; 3307 void *info_end; 3308 __u64 *info; 3309 int err; 3310 3311 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + 3312 min_sz) 3313 return -EINVAL; 3314 3315 pt = zalloc(sizeof(struct intel_pt)); 3316 if (!pt) 3317 return -ENOMEM; 3318 3319 addr_filters__init(&pt->filts); 3320 3321 err = perf_config(intel_pt_perf_config, pt); 3322 if (err) 3323 goto err_free; 3324 3325 err = auxtrace_queues__init(&pt->queues); 3326 if (err) 3327 goto err_free; 3328 3329 intel_pt_log_set_name(INTEL_PT_PMU_NAME); 3330 3331 pt->session = session; 3332 pt->machine = &session->machines.host; /* No kvm support */ 3333 pt->auxtrace_type = auxtrace_info->type; 3334 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; 3335 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; 3336 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; 3337 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; 3338 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; 3339 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; 3340 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; 3341 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; 3342 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; 3343 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; 3344 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, 3345 INTEL_PT_PER_CPU_MMAPS); 3346 3347 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { 3348 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; 3349 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; 3350 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; 3351 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; 3352 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; 3353 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, 3354 INTEL_PT_CYC_BIT); 3355 } 3356 3357 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { 3358 pt->max_non_turbo_ratio = 3359 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; 3360 intel_pt_print_info(&auxtrace_info->priv[0], 3361 INTEL_PT_MAX_NONTURBO_RATIO, 3362 INTEL_PT_MAX_NONTURBO_RATIO); 3363 } 3364 3365 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; 3366 info_end = (void *)info + auxtrace_info->header.size; 3367 3368 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { 3369 size_t len; 3370 3371 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; 3372 intel_pt_print_info(&auxtrace_info->priv[0], 3373 INTEL_PT_FILTER_STR_LEN, 3374 INTEL_PT_FILTER_STR_LEN); 3375 if (len) { 3376 const char *filter = (const char *)info; 3377 3378 len = roundup(len + 1, 8); 3379 info += len >> 3; 3380 if ((void *)info > info_end) { 3381 pr_err("%s: bad filter string length\n", __func__); 3382 err = -EINVAL; 3383 goto err_free_queues; 3384 } 3385 pt->filter = memdup(filter, len); 3386 if (!pt->filter) { 3387 err = -ENOMEM; 3388 goto err_free_queues; 3389 } 3390 if (session->header.needs_swap) 3391 mem_bswap_64(pt->filter, len); 3392 if (pt->filter[len - 1]) { 3393 pr_err("%s: filter string not null terminated\n", __func__); 3394 err = -EINVAL; 3395 goto err_free_queues; 3396 } 3397 err = addr_filters__parse_bare_filter(&pt->filts, 3398 filter); 3399 if (err) 3400 goto err_free_queues; 3401 } 3402 intel_pt_print_info_str("Filter string", pt->filter); 3403 } 3404 3405 pt->timeless_decoding = intel_pt_timeless_decoding(pt); 3406 if (pt->timeless_decoding && !pt->tc.time_mult) 3407 pt->tc.time_mult = 1; 3408 pt->have_tsc = intel_pt_have_tsc(pt); 3409 pt->sampling_mode = intel_pt_sampling_mode(pt); 3410 pt->est_tsc = !pt->timeless_decoding; 3411 3412 pt->unknown_thread = thread__new(999999999, 999999999); 3413 if (!pt->unknown_thread) { 3414 err = -ENOMEM; 3415 goto err_free_queues; 3416 } 3417 3418 /* 3419 * Since this thread will not be kept in any rbtree not in a 3420 * list, initialize its list node so that at thread__put() the 3421 * current thread lifetime assuption is kept and we don't segfault 3422 * at list_del_init(). 3423 */ 3424 INIT_LIST_HEAD(&pt->unknown_thread->node); 3425 3426 err = thread__set_comm(pt->unknown_thread, "unknown", 0); 3427 if (err) 3428 goto err_delete_thread; 3429 if (thread__init_maps(pt->unknown_thread, pt->machine)) { 3430 err = -ENOMEM; 3431 goto err_delete_thread; 3432 } 3433 3434 pt->auxtrace.process_event = intel_pt_process_event; 3435 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; 3436 pt->auxtrace.queue_data = intel_pt_queue_data; 3437 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; 3438 pt->auxtrace.flush_events = intel_pt_flush; 3439 pt->auxtrace.free_events = intel_pt_free_events; 3440 pt->auxtrace.free = intel_pt_free; 3441 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; 3442 session->auxtrace = &pt->auxtrace; 3443 3444 if (dump_trace) 3445 return 0; 3446 3447 if (pt->have_sched_switch == 1) { 3448 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); 3449 if (!pt->switch_evsel) { 3450 pr_err("%s: missing sched_switch event\n", __func__); 3451 err = -EINVAL; 3452 goto err_delete_thread; 3453 } 3454 } else if (pt->have_sched_switch == 2 && 3455 !intel_pt_find_switch(session->evlist)) { 3456 pr_err("%s: missing context_switch attribute flag\n", __func__); 3457 err = -EINVAL; 3458 goto err_delete_thread; 3459 } 3460 3461 if (session->itrace_synth_opts->set) { 3462 pt->synth_opts = *session->itrace_synth_opts; 3463 } else { 3464 itrace_synth_opts__set_default(&pt->synth_opts, 3465 session->itrace_synth_opts->default_no_sample); 3466 if (!session->itrace_synth_opts->default_no_sample && 3467 !session->itrace_synth_opts->inject) { 3468 pt->synth_opts.branches = false; 3469 pt->synth_opts.callchain = true; 3470 pt->synth_opts.add_callchain = true; 3471 } 3472 pt->synth_opts.thread_stack = 3473 session->itrace_synth_opts->thread_stack; 3474 } 3475 3476 if (pt->synth_opts.log) 3477 intel_pt_log_enable(); 3478 3479 /* Maximum non-turbo ratio is TSC freq / 100 MHz */ 3480 if (pt->tc.time_mult) { 3481 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); 3482 3483 if (!pt->max_non_turbo_ratio) 3484 pt->max_non_turbo_ratio = 3485 (tsc_freq + 50000000) / 100000000; 3486 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); 3487 intel_pt_log("Maximum non-turbo ratio %u\n", 3488 pt->max_non_turbo_ratio); 3489 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; 3490 } 3491 3492 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); 3493 if (err) 3494 goto err_delete_thread; 3495 3496 if (pt->synth_opts.calls) 3497 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | 3498 PERF_IP_FLAG_TRACE_END; 3499 if (pt->synth_opts.returns) 3500 pt->branches_filter |= PERF_IP_FLAG_RETURN | 3501 PERF_IP_FLAG_TRACE_BEGIN; 3502 3503 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && 3504 !symbol_conf.use_callchain) { 3505 symbol_conf.use_callchain = true; 3506 if (callchain_register_param(&callchain_param) < 0) { 3507 symbol_conf.use_callchain = false; 3508 pt->synth_opts.callchain = false; 3509 pt->synth_opts.add_callchain = false; 3510 } 3511 } 3512 3513 if (pt->synth_opts.add_callchain) { 3514 err = intel_pt_callchain_init(pt); 3515 if (err) 3516 goto err_delete_thread; 3517 } 3518 3519 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { 3520 pt->br_stack_sz = pt->synth_opts.last_branch_sz; 3521 pt->br_stack_sz_plus = pt->br_stack_sz; 3522 } 3523 3524 if (pt->synth_opts.add_last_branch) { 3525 err = intel_pt_br_stack_init(pt); 3526 if (err) 3527 goto err_delete_thread; 3528 /* 3529 * Additional branch stack size to cater for tracing from the 3530 * actual sample ip to where the sample time is recorded. 3531 * Measured at about 200 branches, but generously set to 1024. 3532 * If kernel space is not being traced, then add just 1 for the 3533 * branch to kernel space. 3534 */ 3535 if (intel_pt_tracing_kernel(pt)) 3536 pt->br_stack_sz_plus += 1024; 3537 else 3538 pt->br_stack_sz_plus += 1; 3539 } 3540 3541 pt->use_thread_stack = pt->synth_opts.callchain || 3542 pt->synth_opts.add_callchain || 3543 pt->synth_opts.thread_stack || 3544 pt->synth_opts.last_branch || 3545 pt->synth_opts.add_last_branch; 3546 3547 pt->callstack = pt->synth_opts.callchain || 3548 pt->synth_opts.add_callchain || 3549 pt->synth_opts.thread_stack; 3550 3551 err = intel_pt_synth_events(pt, session); 3552 if (err) 3553 goto err_delete_thread; 3554 3555 intel_pt_setup_pebs_events(pt); 3556 3557 if (pt->sampling_mode || list_empty(&session->auxtrace_index)) 3558 err = auxtrace_queue_data(session, true, true); 3559 else 3560 err = auxtrace_queues__process_index(&pt->queues, session); 3561 if (err) 3562 goto err_delete_thread; 3563 3564 if (pt->queues.populated) 3565 pt->data_queued = true; 3566 3567 if (pt->timeless_decoding) 3568 pr_debug2("Intel PT decoding without timestamps\n"); 3569 3570 return 0; 3571 3572 err_delete_thread: 3573 zfree(&pt->chain); 3574 thread__zput(pt->unknown_thread); 3575 err_free_queues: 3576 intel_pt_log_disable(); 3577 auxtrace_queues__free(&pt->queues); 3578 session->auxtrace = NULL; 3579 err_free: 3580 addr_filters__exit(&pt->filts); 3581 zfree(&pt->filter); 3582 zfree(&pt->time_ranges); 3583 free(pt); 3584 return err; 3585 } 3586