xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 06c6fad9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15 
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39 
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41 
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46 
47 #define MAX_TIMESTAMP (~0ULL)
48 
49 struct range {
50 	u64 start;
51 	u64 end;
52 };
53 
54 struct intel_pt {
55 	struct auxtrace auxtrace;
56 	struct auxtrace_queues queues;
57 	struct auxtrace_heap heap;
58 	u32 auxtrace_type;
59 	struct perf_session *session;
60 	struct machine *machine;
61 	struct evsel *switch_evsel;
62 	struct thread *unknown_thread;
63 	bool timeless_decoding;
64 	bool sampling_mode;
65 	bool snapshot_mode;
66 	bool per_cpu_mmaps;
67 	bool have_tsc;
68 	bool data_queued;
69 	bool est_tsc;
70 	bool sync_switch;
71 	bool mispred_all;
72 	bool use_thread_stack;
73 	bool callstack;
74 	unsigned int br_stack_sz;
75 	unsigned int br_stack_sz_plus;
76 	int have_sched_switch;
77 	u32 pmu_type;
78 	u64 kernel_start;
79 	u64 switch_ip;
80 	u64 ptss_ip;
81 
82 	struct perf_tsc_conversion tc;
83 	bool cap_user_time_zero;
84 
85 	struct itrace_synth_opts synth_opts;
86 
87 	bool sample_instructions;
88 	u64 instructions_sample_type;
89 	u64 instructions_id;
90 
91 	bool sample_branches;
92 	u32 branches_filter;
93 	u64 branches_sample_type;
94 	u64 branches_id;
95 
96 	bool sample_transactions;
97 	u64 transactions_sample_type;
98 	u64 transactions_id;
99 
100 	bool sample_ptwrites;
101 	u64 ptwrites_sample_type;
102 	u64 ptwrites_id;
103 
104 	bool sample_pwr_events;
105 	u64 pwr_events_sample_type;
106 	u64 mwait_id;
107 	u64 pwre_id;
108 	u64 exstop_id;
109 	u64 pwrx_id;
110 	u64 cbr_id;
111 	u64 psb_id;
112 
113 	bool sample_pebs;
114 	struct evsel *pebs_evsel;
115 
116 	u64 tsc_bit;
117 	u64 mtc_bit;
118 	u64 mtc_freq_bits;
119 	u32 tsc_ctc_ratio_n;
120 	u32 tsc_ctc_ratio_d;
121 	u64 cyc_bit;
122 	u64 noretcomp_bit;
123 	unsigned max_non_turbo_ratio;
124 	unsigned cbr2khz;
125 
126 	unsigned long num_events;
127 
128 	char *filter;
129 	struct addr_filters filts;
130 
131 	struct range *time_ranges;
132 	unsigned int range_cnt;
133 
134 	struct ip_callchain *chain;
135 	struct branch_stack *br_stack;
136 };
137 
138 enum switch_state {
139 	INTEL_PT_SS_NOT_TRACING,
140 	INTEL_PT_SS_UNKNOWN,
141 	INTEL_PT_SS_TRACING,
142 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
143 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
144 };
145 
146 struct intel_pt_queue {
147 	struct intel_pt *pt;
148 	unsigned int queue_nr;
149 	struct auxtrace_buffer *buffer;
150 	struct auxtrace_buffer *old_buffer;
151 	void *decoder;
152 	const struct intel_pt_state *state;
153 	struct ip_callchain *chain;
154 	struct branch_stack *last_branch;
155 	union perf_event *event_buf;
156 	bool on_heap;
157 	bool stop;
158 	bool step_through_buffers;
159 	bool use_buffer_pid_tid;
160 	bool sync_switch;
161 	pid_t pid, tid;
162 	int cpu;
163 	int switch_state;
164 	pid_t next_tid;
165 	struct thread *thread;
166 	struct machine *guest_machine;
167 	struct thread *unknown_guest_thread;
168 	pid_t guest_machine_pid;
169 	bool exclude_kernel;
170 	bool have_sample;
171 	u64 time;
172 	u64 timestamp;
173 	u64 sel_timestamp;
174 	bool sel_start;
175 	unsigned int sel_idx;
176 	u32 flags;
177 	u16 insn_len;
178 	u64 last_insn_cnt;
179 	u64 ipc_insn_cnt;
180 	u64 ipc_cyc_cnt;
181 	u64 last_in_insn_cnt;
182 	u64 last_in_cyc_cnt;
183 	u64 last_br_insn_cnt;
184 	u64 last_br_cyc_cnt;
185 	unsigned int cbr_seen;
186 	char insn[INTEL_PT_INSN_BUF_SZ];
187 };
188 
189 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
190 			  unsigned char *buf, size_t len)
191 {
192 	struct intel_pt_pkt packet;
193 	size_t pos = 0;
194 	int ret, pkt_len, i;
195 	char desc[INTEL_PT_PKT_DESC_MAX];
196 	const char *color = PERF_COLOR_BLUE;
197 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
198 
199 	color_fprintf(stdout, color,
200 		      ". ... Intel Processor Trace data: size %zu bytes\n",
201 		      len);
202 
203 	while (len) {
204 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
205 		if (ret > 0)
206 			pkt_len = ret;
207 		else
208 			pkt_len = 1;
209 		printf(".");
210 		color_fprintf(stdout, color, "  %08x: ", pos);
211 		for (i = 0; i < pkt_len; i++)
212 			color_fprintf(stdout, color, " %02x", buf[i]);
213 		for (; i < 16; i++)
214 			color_fprintf(stdout, color, "   ");
215 		if (ret > 0) {
216 			ret = intel_pt_pkt_desc(&packet, desc,
217 						INTEL_PT_PKT_DESC_MAX);
218 			if (ret > 0)
219 				color_fprintf(stdout, color, " %s\n", desc);
220 		} else {
221 			color_fprintf(stdout, color, " Bad packet!\n");
222 		}
223 		pos += pkt_len;
224 		buf += pkt_len;
225 		len -= pkt_len;
226 	}
227 }
228 
229 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
230 				size_t len)
231 {
232 	printf(".\n");
233 	intel_pt_dump(pt, buf, len);
234 }
235 
236 static void intel_pt_log_event(union perf_event *event)
237 {
238 	FILE *f = intel_pt_log_fp();
239 
240 	if (!intel_pt_enable_logging || !f)
241 		return;
242 
243 	perf_event__fprintf(event, NULL, f);
244 }
245 
246 static void intel_pt_dump_sample(struct perf_session *session,
247 				 struct perf_sample *sample)
248 {
249 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
250 					   auxtrace);
251 
252 	printf("\n");
253 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
254 }
255 
256 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
257 {
258 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
259 	int n = pt->synth_opts.range_num;
260 
261 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
262 		return true;
263 
264 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
265 		return false;
266 
267 	/* perf_time__ranges_skip_sample does not work if time is zero */
268 	if (!tm)
269 		tm = 1;
270 
271 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
272 }
273 
274 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
275 				   struct auxtrace_buffer *b)
276 {
277 	bool consecutive = false;
278 	void *start;
279 
280 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
281 				      pt->have_tsc, &consecutive);
282 	if (!start)
283 		return -EINVAL;
284 	b->use_size = b->data + b->size - start;
285 	b->use_data = start;
286 	if (b->use_size && consecutive)
287 		b->consecutive = true;
288 	return 0;
289 }
290 
291 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
292 			       struct auxtrace_buffer *buffer,
293 			       struct auxtrace_buffer *old_buffer,
294 			       struct intel_pt_buffer *b)
295 {
296 	bool might_overlap;
297 
298 	if (!buffer->data) {
299 		int fd = perf_data__fd(ptq->pt->session->data);
300 
301 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
302 		if (!buffer->data)
303 			return -ENOMEM;
304 	}
305 
306 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
307 	if (might_overlap && !buffer->consecutive && old_buffer &&
308 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
309 		return -ENOMEM;
310 
311 	if (buffer->use_data) {
312 		b->len = buffer->use_size;
313 		b->buf = buffer->use_data;
314 	} else {
315 		b->len = buffer->size;
316 		b->buf = buffer->data;
317 	}
318 	b->ref_timestamp = buffer->reference;
319 
320 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
321 		b->consecutive = false;
322 		b->trace_nr = buffer->buffer_nr + 1;
323 	} else {
324 		b->consecutive = true;
325 	}
326 
327 	return 0;
328 }
329 
330 /* Do not drop buffers with references - refer intel_pt_get_trace() */
331 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
332 					   struct auxtrace_buffer *buffer)
333 {
334 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
335 		return;
336 
337 	auxtrace_buffer__drop_data(buffer);
338 }
339 
340 /* Must be serialized with respect to intel_pt_get_trace() */
341 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
342 			      void *cb_data)
343 {
344 	struct intel_pt_queue *ptq = data;
345 	struct auxtrace_buffer *buffer = ptq->buffer;
346 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
347 	struct auxtrace_queue *queue;
348 	int err = 0;
349 
350 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
351 
352 	while (1) {
353 		struct intel_pt_buffer b = { .len = 0 };
354 
355 		buffer = auxtrace_buffer__next(queue, buffer);
356 		if (!buffer)
357 			break;
358 
359 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
360 		if (err)
361 			break;
362 
363 		if (b.len) {
364 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
365 			old_buffer = buffer;
366 		} else {
367 			intel_pt_lookahead_drop_buffer(ptq, buffer);
368 			continue;
369 		}
370 
371 		err = cb(&b, cb_data);
372 		if (err)
373 			break;
374 	}
375 
376 	if (buffer != old_buffer)
377 		intel_pt_lookahead_drop_buffer(ptq, buffer);
378 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
379 
380 	return err;
381 }
382 
383 /*
384  * This function assumes data is processed sequentially only.
385  * Must be serialized with respect to intel_pt_lookahead()
386  */
387 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
388 {
389 	struct intel_pt_queue *ptq = data;
390 	struct auxtrace_buffer *buffer = ptq->buffer;
391 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
392 	struct auxtrace_queue *queue;
393 	int err;
394 
395 	if (ptq->stop) {
396 		b->len = 0;
397 		return 0;
398 	}
399 
400 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
401 
402 	buffer = auxtrace_buffer__next(queue, buffer);
403 	if (!buffer) {
404 		if (old_buffer)
405 			auxtrace_buffer__drop_data(old_buffer);
406 		b->len = 0;
407 		return 0;
408 	}
409 
410 	ptq->buffer = buffer;
411 
412 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
413 	if (err)
414 		return err;
415 
416 	if (ptq->step_through_buffers)
417 		ptq->stop = true;
418 
419 	if (b->len) {
420 		if (old_buffer)
421 			auxtrace_buffer__drop_data(old_buffer);
422 		ptq->old_buffer = buffer;
423 	} else {
424 		auxtrace_buffer__drop_data(buffer);
425 		return intel_pt_get_trace(b, data);
426 	}
427 
428 	return 0;
429 }
430 
431 struct intel_pt_cache_entry {
432 	struct auxtrace_cache_entry	entry;
433 	u64				insn_cnt;
434 	u64				byte_cnt;
435 	enum intel_pt_insn_op		op;
436 	enum intel_pt_insn_branch	branch;
437 	int				length;
438 	int32_t				rel;
439 	char				insn[INTEL_PT_INSN_BUF_SZ];
440 };
441 
442 static int intel_pt_config_div(const char *var, const char *value, void *data)
443 {
444 	int *d = data;
445 	long val;
446 
447 	if (!strcmp(var, "intel-pt.cache-divisor")) {
448 		val = strtol(value, NULL, 0);
449 		if (val > 0 && val <= INT_MAX)
450 			*d = val;
451 	}
452 
453 	return 0;
454 }
455 
456 static int intel_pt_cache_divisor(void)
457 {
458 	static int d;
459 
460 	if (d)
461 		return d;
462 
463 	perf_config(intel_pt_config_div, &d);
464 
465 	if (!d)
466 		d = 64;
467 
468 	return d;
469 }
470 
471 static unsigned int intel_pt_cache_size(struct dso *dso,
472 					struct machine *machine)
473 {
474 	off_t size;
475 
476 	size = dso__data_size(dso, machine);
477 	size /= intel_pt_cache_divisor();
478 	if (size < 1000)
479 		return 10;
480 	if (size > (1 << 21))
481 		return 21;
482 	return 32 - __builtin_clz(size);
483 }
484 
485 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
486 					     struct machine *machine)
487 {
488 	struct auxtrace_cache *c;
489 	unsigned int bits;
490 
491 	if (dso->auxtrace_cache)
492 		return dso->auxtrace_cache;
493 
494 	bits = intel_pt_cache_size(dso, machine);
495 
496 	/* Ignoring cache creation failure */
497 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
498 
499 	dso->auxtrace_cache = c;
500 
501 	return c;
502 }
503 
504 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
505 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
506 			      struct intel_pt_insn *intel_pt_insn)
507 {
508 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
509 	struct intel_pt_cache_entry *e;
510 	int err;
511 
512 	if (!c)
513 		return -ENOMEM;
514 
515 	e = auxtrace_cache__alloc_entry(c);
516 	if (!e)
517 		return -ENOMEM;
518 
519 	e->insn_cnt = insn_cnt;
520 	e->byte_cnt = byte_cnt;
521 	e->op = intel_pt_insn->op;
522 	e->branch = intel_pt_insn->branch;
523 	e->length = intel_pt_insn->length;
524 	e->rel = intel_pt_insn->rel;
525 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
526 
527 	err = auxtrace_cache__add(c, offset, &e->entry);
528 	if (err)
529 		auxtrace_cache__free_entry(c, e);
530 
531 	return err;
532 }
533 
534 static struct intel_pt_cache_entry *
535 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
536 {
537 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
538 
539 	if (!c)
540 		return NULL;
541 
542 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
543 }
544 
545 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
546 				      u64 offset)
547 {
548 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
549 
550 	if (!c)
551 		return;
552 
553 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
554 }
555 
556 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
557 {
558 	/* Assumes 64-bit kernel */
559 	return ip & (1ULL << 63);
560 }
561 
562 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
563 {
564 	if (nr) {
565 		return intel_pt_guest_kernel_ip(ip) ?
566 		       PERF_RECORD_MISC_GUEST_KERNEL :
567 		       PERF_RECORD_MISC_GUEST_USER;
568 	}
569 
570 	return ip >= ptq->pt->kernel_start ?
571 	       PERF_RECORD_MISC_KERNEL :
572 	       PERF_RECORD_MISC_USER;
573 }
574 
575 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
576 {
577 	/* No support for non-zero CS base */
578 	if (from_ip)
579 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
580 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
581 }
582 
583 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
584 {
585 	struct machines *machines = &ptq->pt->session->machines;
586 	struct machine *machine;
587 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
588 
589 	if (ptq->guest_machine && pid == ptq->guest_machine_pid)
590 		return 0;
591 
592 	ptq->guest_machine = NULL;
593 	thread__zput(ptq->unknown_guest_thread);
594 
595 	machine = machines__find_guest(machines, pid);
596 	if (!machine)
597 		return -1;
598 
599 	ptq->unknown_guest_thread = machine__idle_thread(machine);
600 	if (!ptq->unknown_guest_thread)
601 		return -1;
602 
603 	ptq->guest_machine = machine;
604 	ptq->guest_machine_pid = pid;
605 
606 	return 0;
607 }
608 
609 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
610 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
611 				   uint64_t to_ip, uint64_t max_insn_cnt,
612 				   void *data)
613 {
614 	struct intel_pt_queue *ptq = data;
615 	struct machine *machine = ptq->pt->machine;
616 	struct thread *thread;
617 	struct addr_location al;
618 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
619 	ssize_t len;
620 	int x86_64;
621 	u8 cpumode;
622 	u64 offset, start_offset, start_ip;
623 	u64 insn_cnt = 0;
624 	bool one_map = true;
625 	bool nr;
626 
627 	intel_pt_insn->length = 0;
628 
629 	if (to_ip && *ip == to_ip)
630 		goto out_no_cache;
631 
632 	nr = ptq->state->to_nr;
633 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
634 
635 	if (nr) {
636 		if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
637 		    intel_pt_get_guest(ptq))
638 			return -EINVAL;
639 		machine = ptq->guest_machine;
640 		thread = ptq->unknown_guest_thread;
641 	} else {
642 		thread = ptq->thread;
643 		if (!thread) {
644 			if (cpumode != PERF_RECORD_MISC_KERNEL)
645 				return -EINVAL;
646 			thread = ptq->pt->unknown_thread;
647 		}
648 	}
649 
650 	while (1) {
651 		if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
652 			return -EINVAL;
653 
654 		if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
655 		    dso__data_status_seen(al.map->dso,
656 					  DSO_DATA_STATUS_SEEN_ITRACE))
657 			return -ENOENT;
658 
659 		offset = al.map->map_ip(al.map, *ip);
660 
661 		if (!to_ip && one_map) {
662 			struct intel_pt_cache_entry *e;
663 
664 			e = intel_pt_cache_lookup(al.map->dso, machine, offset);
665 			if (e &&
666 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
667 				*insn_cnt_ptr = e->insn_cnt;
668 				*ip += e->byte_cnt;
669 				intel_pt_insn->op = e->op;
670 				intel_pt_insn->branch = e->branch;
671 				intel_pt_insn->length = e->length;
672 				intel_pt_insn->rel = e->rel;
673 				memcpy(intel_pt_insn->buf, e->insn,
674 				       INTEL_PT_INSN_BUF_SZ);
675 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
676 				return 0;
677 			}
678 		}
679 
680 		start_offset = offset;
681 		start_ip = *ip;
682 
683 		/* Load maps to ensure dso->is_64_bit has been updated */
684 		map__load(al.map);
685 
686 		x86_64 = al.map->dso->is_64_bit;
687 
688 		while (1) {
689 			len = dso__data_read_offset(al.map->dso, machine,
690 						    offset, buf,
691 						    INTEL_PT_INSN_BUF_SZ);
692 			if (len <= 0)
693 				return -EINVAL;
694 
695 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
696 				return -EINVAL;
697 
698 			intel_pt_log_insn(intel_pt_insn, *ip);
699 
700 			insn_cnt += 1;
701 
702 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
703 				goto out;
704 
705 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
706 				goto out_no_cache;
707 
708 			*ip += intel_pt_insn->length;
709 
710 			if (to_ip && *ip == to_ip)
711 				goto out_no_cache;
712 
713 			if (*ip >= al.map->end)
714 				break;
715 
716 			offset += intel_pt_insn->length;
717 		}
718 		one_map = false;
719 	}
720 out:
721 	*insn_cnt_ptr = insn_cnt;
722 
723 	if (!one_map)
724 		goto out_no_cache;
725 
726 	/*
727 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
728 	 * entries.
729 	 */
730 	if (to_ip) {
731 		struct intel_pt_cache_entry *e;
732 
733 		e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
734 		if (e)
735 			return 0;
736 	}
737 
738 	/* Ignore cache errors */
739 	intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
740 			   *ip - start_ip, intel_pt_insn);
741 
742 	return 0;
743 
744 out_no_cache:
745 	*insn_cnt_ptr = insn_cnt;
746 	return 0;
747 }
748 
749 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
750 				  uint64_t offset, const char *filename)
751 {
752 	struct addr_filter *filt;
753 	bool have_filter   = false;
754 	bool hit_tracestop = false;
755 	bool hit_filter    = false;
756 
757 	list_for_each_entry(filt, &pt->filts.head, list) {
758 		if (filt->start)
759 			have_filter = true;
760 
761 		if ((filename && !filt->filename) ||
762 		    (!filename && filt->filename) ||
763 		    (filename && strcmp(filename, filt->filename)))
764 			continue;
765 
766 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
767 			continue;
768 
769 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
770 			     ip, offset, filename ? filename : "[kernel]",
771 			     filt->start ? "filter" : "stop",
772 			     filt->addr, filt->size);
773 
774 		if (filt->start)
775 			hit_filter = true;
776 		else
777 			hit_tracestop = true;
778 	}
779 
780 	if (!hit_tracestop && !hit_filter)
781 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
782 			     ip, offset, filename ? filename : "[kernel]");
783 
784 	return hit_tracestop || (have_filter && !hit_filter);
785 }
786 
787 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
788 {
789 	struct intel_pt_queue *ptq = data;
790 	struct thread *thread;
791 	struct addr_location al;
792 	u8 cpumode;
793 	u64 offset;
794 
795 	if (ptq->state->to_nr) {
796 		if (intel_pt_guest_kernel_ip(ip))
797 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
798 		/* No support for decoding guest user space */
799 		return -EINVAL;
800 	} else if (ip >= ptq->pt->kernel_start) {
801 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
802 	}
803 
804 	cpumode = PERF_RECORD_MISC_USER;
805 
806 	thread = ptq->thread;
807 	if (!thread)
808 		return -EINVAL;
809 
810 	if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
811 		return -EINVAL;
812 
813 	offset = al.map->map_ip(al.map, ip);
814 
815 	return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
816 				     al.map->dso->long_name);
817 }
818 
819 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
820 {
821 	return __intel_pt_pgd_ip(ip, data) > 0;
822 }
823 
824 static bool intel_pt_get_config(struct intel_pt *pt,
825 				struct perf_event_attr *attr, u64 *config)
826 {
827 	if (attr->type == pt->pmu_type) {
828 		if (config)
829 			*config = attr->config;
830 		return true;
831 	}
832 
833 	return false;
834 }
835 
836 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
837 {
838 	struct evsel *evsel;
839 
840 	evlist__for_each_entry(pt->session->evlist, evsel) {
841 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
842 		    !evsel->core.attr.exclude_kernel)
843 			return false;
844 	}
845 	return true;
846 }
847 
848 static bool intel_pt_return_compression(struct intel_pt *pt)
849 {
850 	struct evsel *evsel;
851 	u64 config;
852 
853 	if (!pt->noretcomp_bit)
854 		return true;
855 
856 	evlist__for_each_entry(pt->session->evlist, evsel) {
857 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
858 		    (config & pt->noretcomp_bit))
859 			return false;
860 	}
861 	return true;
862 }
863 
864 static bool intel_pt_branch_enable(struct intel_pt *pt)
865 {
866 	struct evsel *evsel;
867 	u64 config;
868 
869 	evlist__for_each_entry(pt->session->evlist, evsel) {
870 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
871 		    (config & 1) && !(config & 0x2000))
872 			return false;
873 	}
874 	return true;
875 }
876 
877 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
878 {
879 	struct evsel *evsel;
880 	unsigned int shift;
881 	u64 config;
882 
883 	if (!pt->mtc_freq_bits)
884 		return 0;
885 
886 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
887 		config >>= 1;
888 
889 	evlist__for_each_entry(pt->session->evlist, evsel) {
890 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
891 			return (config & pt->mtc_freq_bits) >> shift;
892 	}
893 	return 0;
894 }
895 
896 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
897 {
898 	struct evsel *evsel;
899 	bool timeless_decoding = true;
900 	u64 config;
901 
902 	if (!pt->tsc_bit || !pt->cap_user_time_zero)
903 		return true;
904 
905 	evlist__for_each_entry(pt->session->evlist, evsel) {
906 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
907 			return true;
908 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
909 			if (config & pt->tsc_bit)
910 				timeless_decoding = false;
911 			else
912 				return true;
913 		}
914 	}
915 	return timeless_decoding;
916 }
917 
918 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
919 {
920 	struct evsel *evsel;
921 
922 	evlist__for_each_entry(pt->session->evlist, evsel) {
923 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
924 		    !evsel->core.attr.exclude_kernel)
925 			return true;
926 	}
927 	return false;
928 }
929 
930 static bool intel_pt_have_tsc(struct intel_pt *pt)
931 {
932 	struct evsel *evsel;
933 	bool have_tsc = false;
934 	u64 config;
935 
936 	if (!pt->tsc_bit)
937 		return false;
938 
939 	evlist__for_each_entry(pt->session->evlist, evsel) {
940 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
941 			if (config & pt->tsc_bit)
942 				have_tsc = true;
943 			else
944 				return false;
945 		}
946 	}
947 	return have_tsc;
948 }
949 
950 static bool intel_pt_sampling_mode(struct intel_pt *pt)
951 {
952 	struct evsel *evsel;
953 
954 	evlist__for_each_entry(pt->session->evlist, evsel) {
955 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
956 		    evsel->core.attr.aux_sample_size)
957 			return true;
958 	}
959 	return false;
960 }
961 
962 static u64 intel_pt_ctl(struct intel_pt *pt)
963 {
964 	struct evsel *evsel;
965 	u64 config;
966 
967 	evlist__for_each_entry(pt->session->evlist, evsel) {
968 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
969 			return config;
970 	}
971 	return 0;
972 }
973 
974 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
975 {
976 	u64 quot, rem;
977 
978 	quot = ns / pt->tc.time_mult;
979 	rem  = ns % pt->tc.time_mult;
980 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
981 		pt->tc.time_mult;
982 }
983 
984 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
985 {
986 	size_t sz = sizeof(struct ip_callchain);
987 
988 	/* Add 1 to callchain_sz for callchain context */
989 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
990 	return zalloc(sz);
991 }
992 
993 static int intel_pt_callchain_init(struct intel_pt *pt)
994 {
995 	struct evsel *evsel;
996 
997 	evlist__for_each_entry(pt->session->evlist, evsel) {
998 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
999 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1000 	}
1001 
1002 	pt->chain = intel_pt_alloc_chain(pt);
1003 	if (!pt->chain)
1004 		return -ENOMEM;
1005 
1006 	return 0;
1007 }
1008 
1009 static void intel_pt_add_callchain(struct intel_pt *pt,
1010 				   struct perf_sample *sample)
1011 {
1012 	struct thread *thread = machine__findnew_thread(pt->machine,
1013 							sample->pid,
1014 							sample->tid);
1015 
1016 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1017 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1018 				  pt->kernel_start);
1019 
1020 	sample->callchain = pt->chain;
1021 }
1022 
1023 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1024 {
1025 	size_t sz = sizeof(struct branch_stack);
1026 
1027 	sz += entry_cnt * sizeof(struct branch_entry);
1028 	return zalloc(sz);
1029 }
1030 
1031 static int intel_pt_br_stack_init(struct intel_pt *pt)
1032 {
1033 	struct evsel *evsel;
1034 
1035 	evlist__for_each_entry(pt->session->evlist, evsel) {
1036 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1037 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1038 	}
1039 
1040 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1041 	if (!pt->br_stack)
1042 		return -ENOMEM;
1043 
1044 	return 0;
1045 }
1046 
1047 static void intel_pt_add_br_stack(struct intel_pt *pt,
1048 				  struct perf_sample *sample)
1049 {
1050 	struct thread *thread = machine__findnew_thread(pt->machine,
1051 							sample->pid,
1052 							sample->tid);
1053 
1054 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1055 				     pt->br_stack_sz, sample->ip,
1056 				     pt->kernel_start);
1057 
1058 	sample->branch_stack = pt->br_stack;
1059 }
1060 
1061 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1062 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1063 
1064 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1065 						   unsigned int queue_nr)
1066 {
1067 	struct intel_pt_params params = { .get_trace = 0, };
1068 	struct perf_env *env = pt->machine->env;
1069 	struct intel_pt_queue *ptq;
1070 
1071 	ptq = zalloc(sizeof(struct intel_pt_queue));
1072 	if (!ptq)
1073 		return NULL;
1074 
1075 	if (pt->synth_opts.callchain) {
1076 		ptq->chain = intel_pt_alloc_chain(pt);
1077 		if (!ptq->chain)
1078 			goto out_free;
1079 	}
1080 
1081 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1082 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1083 
1084 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1085 		if (!ptq->last_branch)
1086 			goto out_free;
1087 	}
1088 
1089 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1090 	if (!ptq->event_buf)
1091 		goto out_free;
1092 
1093 	ptq->pt = pt;
1094 	ptq->queue_nr = queue_nr;
1095 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1096 	ptq->pid = -1;
1097 	ptq->tid = -1;
1098 	ptq->cpu = -1;
1099 	ptq->next_tid = -1;
1100 
1101 	params.get_trace = intel_pt_get_trace;
1102 	params.walk_insn = intel_pt_walk_next_insn;
1103 	params.lookahead = intel_pt_lookahead;
1104 	params.data = ptq;
1105 	params.return_compression = intel_pt_return_compression(pt);
1106 	params.branch_enable = intel_pt_branch_enable(pt);
1107 	params.ctl = intel_pt_ctl(pt);
1108 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1109 	params.mtc_period = intel_pt_mtc_period(pt);
1110 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1111 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1112 	params.quick = pt->synth_opts.quick;
1113 
1114 	if (pt->filts.cnt > 0)
1115 		params.pgd_ip = intel_pt_pgd_ip;
1116 
1117 	if (pt->synth_opts.instructions) {
1118 		if (pt->synth_opts.period) {
1119 			switch (pt->synth_opts.period_type) {
1120 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1121 				params.period_type =
1122 						INTEL_PT_PERIOD_INSTRUCTIONS;
1123 				params.period = pt->synth_opts.period;
1124 				break;
1125 			case PERF_ITRACE_PERIOD_TICKS:
1126 				params.period_type = INTEL_PT_PERIOD_TICKS;
1127 				params.period = pt->synth_opts.period;
1128 				break;
1129 			case PERF_ITRACE_PERIOD_NANOSECS:
1130 				params.period_type = INTEL_PT_PERIOD_TICKS;
1131 				params.period = intel_pt_ns_to_ticks(pt,
1132 							pt->synth_opts.period);
1133 				break;
1134 			default:
1135 				break;
1136 			}
1137 		}
1138 
1139 		if (!params.period) {
1140 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1141 			params.period = 1;
1142 		}
1143 	}
1144 
1145 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1146 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1147 
1148 	ptq->decoder = intel_pt_decoder_new(&params);
1149 	if (!ptq->decoder)
1150 		goto out_free;
1151 
1152 	return ptq;
1153 
1154 out_free:
1155 	zfree(&ptq->event_buf);
1156 	zfree(&ptq->last_branch);
1157 	zfree(&ptq->chain);
1158 	free(ptq);
1159 	return NULL;
1160 }
1161 
1162 static void intel_pt_free_queue(void *priv)
1163 {
1164 	struct intel_pt_queue *ptq = priv;
1165 
1166 	if (!ptq)
1167 		return;
1168 	thread__zput(ptq->thread);
1169 	thread__zput(ptq->unknown_guest_thread);
1170 	intel_pt_decoder_free(ptq->decoder);
1171 	zfree(&ptq->event_buf);
1172 	zfree(&ptq->last_branch);
1173 	zfree(&ptq->chain);
1174 	free(ptq);
1175 }
1176 
1177 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1178 				     struct auxtrace_queue *queue)
1179 {
1180 	struct intel_pt_queue *ptq = queue->priv;
1181 
1182 	if (queue->tid == -1 || pt->have_sched_switch) {
1183 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1184 		if (ptq->tid == -1)
1185 			ptq->pid = -1;
1186 		thread__zput(ptq->thread);
1187 	}
1188 
1189 	if (!ptq->thread && ptq->tid != -1)
1190 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1191 
1192 	if (ptq->thread) {
1193 		ptq->pid = ptq->thread->pid_;
1194 		if (queue->cpu == -1)
1195 			ptq->cpu = ptq->thread->cpu;
1196 	}
1197 }
1198 
1199 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1200 {
1201 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1202 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1203 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1204 		if (!ptq->state->to_ip)
1205 			ptq->flags = PERF_IP_FLAG_BRANCH |
1206 				     PERF_IP_FLAG_TRACE_END;
1207 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1208 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1209 				     PERF_IP_FLAG_VMEXIT;
1210 		else
1211 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1212 				     PERF_IP_FLAG_ASYNC |
1213 				     PERF_IP_FLAG_INTERRUPT;
1214 		ptq->insn_len = 0;
1215 	} else {
1216 		if (ptq->state->from_ip)
1217 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1218 		else
1219 			ptq->flags = PERF_IP_FLAG_BRANCH |
1220 				     PERF_IP_FLAG_TRACE_BEGIN;
1221 		if (ptq->state->flags & INTEL_PT_IN_TX)
1222 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1223 		ptq->insn_len = ptq->state->insn_len;
1224 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1225 	}
1226 
1227 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1228 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1229 	if (ptq->state->type & INTEL_PT_TRACE_END)
1230 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1231 }
1232 
1233 static void intel_pt_setup_time_range(struct intel_pt *pt,
1234 				      struct intel_pt_queue *ptq)
1235 {
1236 	if (!pt->range_cnt)
1237 		return;
1238 
1239 	ptq->sel_timestamp = pt->time_ranges[0].start;
1240 	ptq->sel_idx = 0;
1241 
1242 	if (ptq->sel_timestamp) {
1243 		ptq->sel_start = true;
1244 	} else {
1245 		ptq->sel_timestamp = pt->time_ranges[0].end;
1246 		ptq->sel_start = false;
1247 	}
1248 }
1249 
1250 static int intel_pt_setup_queue(struct intel_pt *pt,
1251 				struct auxtrace_queue *queue,
1252 				unsigned int queue_nr)
1253 {
1254 	struct intel_pt_queue *ptq = queue->priv;
1255 
1256 	if (list_empty(&queue->head))
1257 		return 0;
1258 
1259 	if (!ptq) {
1260 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1261 		if (!ptq)
1262 			return -ENOMEM;
1263 		queue->priv = ptq;
1264 
1265 		if (queue->cpu != -1)
1266 			ptq->cpu = queue->cpu;
1267 		ptq->tid = queue->tid;
1268 
1269 		ptq->cbr_seen = UINT_MAX;
1270 
1271 		if (pt->sampling_mode && !pt->snapshot_mode &&
1272 		    pt->timeless_decoding)
1273 			ptq->step_through_buffers = true;
1274 
1275 		ptq->sync_switch = pt->sync_switch;
1276 
1277 		intel_pt_setup_time_range(pt, ptq);
1278 	}
1279 
1280 	if (!ptq->on_heap &&
1281 	    (!ptq->sync_switch ||
1282 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1283 		const struct intel_pt_state *state;
1284 		int ret;
1285 
1286 		if (pt->timeless_decoding)
1287 			return 0;
1288 
1289 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1290 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1291 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1292 
1293 		if (ptq->sel_start && ptq->sel_timestamp) {
1294 			ret = intel_pt_fast_forward(ptq->decoder,
1295 						    ptq->sel_timestamp);
1296 			if (ret)
1297 				return ret;
1298 		}
1299 
1300 		while (1) {
1301 			state = intel_pt_decode(ptq->decoder);
1302 			if (state->err) {
1303 				if (state->err == INTEL_PT_ERR_NODATA) {
1304 					intel_pt_log("queue %u has no timestamp\n",
1305 						     queue_nr);
1306 					return 0;
1307 				}
1308 				continue;
1309 			}
1310 			if (state->timestamp)
1311 				break;
1312 		}
1313 
1314 		ptq->timestamp = state->timestamp;
1315 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1316 			     queue_nr, ptq->timestamp);
1317 		ptq->state = state;
1318 		ptq->have_sample = true;
1319 		if (ptq->sel_start && ptq->sel_timestamp &&
1320 		    ptq->timestamp < ptq->sel_timestamp)
1321 			ptq->have_sample = false;
1322 		intel_pt_sample_flags(ptq);
1323 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1324 		if (ret)
1325 			return ret;
1326 		ptq->on_heap = true;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 static int intel_pt_setup_queues(struct intel_pt *pt)
1333 {
1334 	unsigned int i;
1335 	int ret;
1336 
1337 	for (i = 0; i < pt->queues.nr_queues; i++) {
1338 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1339 		if (ret)
1340 			return ret;
1341 	}
1342 	return 0;
1343 }
1344 
1345 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1346 {
1347 	return pt->synth_opts.initial_skip &&
1348 	       pt->num_events++ < pt->synth_opts.initial_skip;
1349 }
1350 
1351 /*
1352  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1353  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1354  * from this decoder state.
1355  */
1356 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1357 {
1358 	return pt->synth_opts.initial_skip &&
1359 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1360 }
1361 
1362 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1363 				   union perf_event *event,
1364 				   struct perf_sample *sample)
1365 {
1366 	event->sample.header.type = PERF_RECORD_SAMPLE;
1367 	event->sample.header.size = sizeof(struct perf_event_header);
1368 
1369 	sample->pid = ptq->pid;
1370 	sample->tid = ptq->tid;
1371 	sample->cpu = ptq->cpu;
1372 	sample->insn_len = ptq->insn_len;
1373 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1374 }
1375 
1376 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1377 				   struct intel_pt_queue *ptq,
1378 				   union perf_event *event,
1379 				   struct perf_sample *sample)
1380 {
1381 	intel_pt_prep_a_sample(ptq, event, sample);
1382 
1383 	if (!pt->timeless_decoding)
1384 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1385 
1386 	sample->ip = ptq->state->from_ip;
1387 	sample->addr = ptq->state->to_ip;
1388 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1389 	sample->period = 1;
1390 	sample->flags = ptq->flags;
1391 
1392 	event->sample.header.misc = sample->cpumode;
1393 }
1394 
1395 static int intel_pt_inject_event(union perf_event *event,
1396 				 struct perf_sample *sample, u64 type)
1397 {
1398 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1399 	return perf_event__synthesize_sample(event, type, 0, sample);
1400 }
1401 
1402 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1403 				      union perf_event *event,
1404 				      struct perf_sample *sample, u64 type)
1405 {
1406 	if (!pt->synth_opts.inject)
1407 		return 0;
1408 
1409 	return intel_pt_inject_event(event, sample, type);
1410 }
1411 
1412 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1413 					union perf_event *event,
1414 					struct perf_sample *sample, u64 type)
1415 {
1416 	int ret;
1417 
1418 	ret = intel_pt_opt_inject(pt, event, sample, type);
1419 	if (ret)
1420 		return ret;
1421 
1422 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1423 	if (ret)
1424 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1425 
1426 	return ret;
1427 }
1428 
1429 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1430 {
1431 	struct intel_pt *pt = ptq->pt;
1432 	union perf_event *event = ptq->event_buf;
1433 	struct perf_sample sample = { .ip = 0, };
1434 	struct dummy_branch_stack {
1435 		u64			nr;
1436 		u64			hw_idx;
1437 		struct branch_entry	entries;
1438 	} dummy_bs;
1439 
1440 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1441 		return 0;
1442 
1443 	if (intel_pt_skip_event(pt))
1444 		return 0;
1445 
1446 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1447 
1448 	sample.id = ptq->pt->branches_id;
1449 	sample.stream_id = ptq->pt->branches_id;
1450 
1451 	/*
1452 	 * perf report cannot handle events without a branch stack when using
1453 	 * SORT_MODE__BRANCH so make a dummy one.
1454 	 */
1455 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1456 		dummy_bs = (struct dummy_branch_stack){
1457 			.nr = 1,
1458 			.hw_idx = -1ULL,
1459 			.entries = {
1460 				.from = sample.ip,
1461 				.to = sample.addr,
1462 			},
1463 		};
1464 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1465 	}
1466 
1467 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1468 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1469 	if (sample.cyc_cnt) {
1470 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1471 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1472 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1473 	}
1474 
1475 	return intel_pt_deliver_synth_event(pt, event, &sample,
1476 					    pt->branches_sample_type);
1477 }
1478 
1479 static void intel_pt_prep_sample(struct intel_pt *pt,
1480 				 struct intel_pt_queue *ptq,
1481 				 union perf_event *event,
1482 				 struct perf_sample *sample)
1483 {
1484 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1485 
1486 	if (pt->synth_opts.callchain) {
1487 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1488 				     pt->synth_opts.callchain_sz + 1,
1489 				     sample->ip, pt->kernel_start);
1490 		sample->callchain = ptq->chain;
1491 	}
1492 
1493 	if (pt->synth_opts.last_branch) {
1494 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1495 					pt->br_stack_sz);
1496 		sample->branch_stack = ptq->last_branch;
1497 	}
1498 }
1499 
1500 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1501 {
1502 	struct intel_pt *pt = ptq->pt;
1503 	union perf_event *event = ptq->event_buf;
1504 	struct perf_sample sample = { .ip = 0, };
1505 
1506 	if (intel_pt_skip_event(pt))
1507 		return 0;
1508 
1509 	intel_pt_prep_sample(pt, ptq, event, &sample);
1510 
1511 	sample.id = ptq->pt->instructions_id;
1512 	sample.stream_id = ptq->pt->instructions_id;
1513 	if (pt->synth_opts.quick)
1514 		sample.period = 1;
1515 	else
1516 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1517 
1518 	if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1519 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1520 	if (sample.cyc_cnt) {
1521 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1522 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1523 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1524 	}
1525 
1526 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1527 
1528 	return intel_pt_deliver_synth_event(pt, event, &sample,
1529 					    pt->instructions_sample_type);
1530 }
1531 
1532 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1533 {
1534 	struct intel_pt *pt = ptq->pt;
1535 	union perf_event *event = ptq->event_buf;
1536 	struct perf_sample sample = { .ip = 0, };
1537 
1538 	if (intel_pt_skip_event(pt))
1539 		return 0;
1540 
1541 	intel_pt_prep_sample(pt, ptq, event, &sample);
1542 
1543 	sample.id = ptq->pt->transactions_id;
1544 	sample.stream_id = ptq->pt->transactions_id;
1545 
1546 	return intel_pt_deliver_synth_event(pt, event, &sample,
1547 					    pt->transactions_sample_type);
1548 }
1549 
1550 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1551 				   struct intel_pt_queue *ptq,
1552 				   union perf_event *event,
1553 				   struct perf_sample *sample)
1554 {
1555 	intel_pt_prep_sample(pt, ptq, event, sample);
1556 
1557 	/*
1558 	 * Zero IP is used to mean "trace start" but that is not the case for
1559 	 * power or PTWRITE events with no IP, so clear the flags.
1560 	 */
1561 	if (!sample->ip)
1562 		sample->flags = 0;
1563 }
1564 
1565 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1566 {
1567 	struct intel_pt *pt = ptq->pt;
1568 	union perf_event *event = ptq->event_buf;
1569 	struct perf_sample sample = { .ip = 0, };
1570 	struct perf_synth_intel_ptwrite raw;
1571 
1572 	if (intel_pt_skip_event(pt))
1573 		return 0;
1574 
1575 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1576 
1577 	sample.id = ptq->pt->ptwrites_id;
1578 	sample.stream_id = ptq->pt->ptwrites_id;
1579 
1580 	raw.flags = 0;
1581 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1582 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1583 
1584 	sample.raw_size = perf_synth__raw_size(raw);
1585 	sample.raw_data = perf_synth__raw_data(&raw);
1586 
1587 	return intel_pt_deliver_synth_event(pt, event, &sample,
1588 					    pt->ptwrites_sample_type);
1589 }
1590 
1591 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1592 {
1593 	struct intel_pt *pt = ptq->pt;
1594 	union perf_event *event = ptq->event_buf;
1595 	struct perf_sample sample = { .ip = 0, };
1596 	struct perf_synth_intel_cbr raw;
1597 	u32 flags;
1598 
1599 	if (intel_pt_skip_cbr_event(pt))
1600 		return 0;
1601 
1602 	ptq->cbr_seen = ptq->state->cbr;
1603 
1604 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1605 
1606 	sample.id = ptq->pt->cbr_id;
1607 	sample.stream_id = ptq->pt->cbr_id;
1608 
1609 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1610 	raw.flags = cpu_to_le32(flags);
1611 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1612 	raw.reserved3 = 0;
1613 
1614 	sample.raw_size = perf_synth__raw_size(raw);
1615 	sample.raw_data = perf_synth__raw_data(&raw);
1616 
1617 	return intel_pt_deliver_synth_event(pt, event, &sample,
1618 					    pt->pwr_events_sample_type);
1619 }
1620 
1621 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1622 {
1623 	struct intel_pt *pt = ptq->pt;
1624 	union perf_event *event = ptq->event_buf;
1625 	struct perf_sample sample = { .ip = 0, };
1626 	struct perf_synth_intel_psb raw;
1627 
1628 	if (intel_pt_skip_event(pt))
1629 		return 0;
1630 
1631 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1632 
1633 	sample.id = ptq->pt->psb_id;
1634 	sample.stream_id = ptq->pt->psb_id;
1635 	sample.flags = 0;
1636 
1637 	raw.reserved = 0;
1638 	raw.offset = ptq->state->psb_offset;
1639 
1640 	sample.raw_size = perf_synth__raw_size(raw);
1641 	sample.raw_data = perf_synth__raw_data(&raw);
1642 
1643 	return intel_pt_deliver_synth_event(pt, event, &sample,
1644 					    pt->pwr_events_sample_type);
1645 }
1646 
1647 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1648 {
1649 	struct intel_pt *pt = ptq->pt;
1650 	union perf_event *event = ptq->event_buf;
1651 	struct perf_sample sample = { .ip = 0, };
1652 	struct perf_synth_intel_mwait raw;
1653 
1654 	if (intel_pt_skip_event(pt))
1655 		return 0;
1656 
1657 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1658 
1659 	sample.id = ptq->pt->mwait_id;
1660 	sample.stream_id = ptq->pt->mwait_id;
1661 
1662 	raw.reserved = 0;
1663 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1664 
1665 	sample.raw_size = perf_synth__raw_size(raw);
1666 	sample.raw_data = perf_synth__raw_data(&raw);
1667 
1668 	return intel_pt_deliver_synth_event(pt, event, &sample,
1669 					    pt->pwr_events_sample_type);
1670 }
1671 
1672 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1673 {
1674 	struct intel_pt *pt = ptq->pt;
1675 	union perf_event *event = ptq->event_buf;
1676 	struct perf_sample sample = { .ip = 0, };
1677 	struct perf_synth_intel_pwre raw;
1678 
1679 	if (intel_pt_skip_event(pt))
1680 		return 0;
1681 
1682 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683 
1684 	sample.id = ptq->pt->pwre_id;
1685 	sample.stream_id = ptq->pt->pwre_id;
1686 
1687 	raw.reserved = 0;
1688 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1689 
1690 	sample.raw_size = perf_synth__raw_size(raw);
1691 	sample.raw_data = perf_synth__raw_data(&raw);
1692 
1693 	return intel_pt_deliver_synth_event(pt, event, &sample,
1694 					    pt->pwr_events_sample_type);
1695 }
1696 
1697 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1698 {
1699 	struct intel_pt *pt = ptq->pt;
1700 	union perf_event *event = ptq->event_buf;
1701 	struct perf_sample sample = { .ip = 0, };
1702 	struct perf_synth_intel_exstop raw;
1703 
1704 	if (intel_pt_skip_event(pt))
1705 		return 0;
1706 
1707 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1708 
1709 	sample.id = ptq->pt->exstop_id;
1710 	sample.stream_id = ptq->pt->exstop_id;
1711 
1712 	raw.flags = 0;
1713 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1714 
1715 	sample.raw_size = perf_synth__raw_size(raw);
1716 	sample.raw_data = perf_synth__raw_data(&raw);
1717 
1718 	return intel_pt_deliver_synth_event(pt, event, &sample,
1719 					    pt->pwr_events_sample_type);
1720 }
1721 
1722 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1723 {
1724 	struct intel_pt *pt = ptq->pt;
1725 	union perf_event *event = ptq->event_buf;
1726 	struct perf_sample sample = { .ip = 0, };
1727 	struct perf_synth_intel_pwrx raw;
1728 
1729 	if (intel_pt_skip_event(pt))
1730 		return 0;
1731 
1732 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1733 
1734 	sample.id = ptq->pt->pwrx_id;
1735 	sample.stream_id = ptq->pt->pwrx_id;
1736 
1737 	raw.reserved = 0;
1738 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1739 
1740 	sample.raw_size = perf_synth__raw_size(raw);
1741 	sample.raw_data = perf_synth__raw_data(&raw);
1742 
1743 	return intel_pt_deliver_synth_event(pt, event, &sample,
1744 					    pt->pwr_events_sample_type);
1745 }
1746 
1747 /*
1748  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1749  * intel_pt_add_gp_regs().
1750  */
1751 static const int pebs_gp_regs[] = {
1752 	[PERF_REG_X86_FLAGS]	= 1,
1753 	[PERF_REG_X86_IP]	= 2,
1754 	[PERF_REG_X86_AX]	= 3,
1755 	[PERF_REG_X86_CX]	= 4,
1756 	[PERF_REG_X86_DX]	= 5,
1757 	[PERF_REG_X86_BX]	= 6,
1758 	[PERF_REG_X86_SP]	= 7,
1759 	[PERF_REG_X86_BP]	= 8,
1760 	[PERF_REG_X86_SI]	= 9,
1761 	[PERF_REG_X86_DI]	= 10,
1762 	[PERF_REG_X86_R8]	= 11,
1763 	[PERF_REG_X86_R9]	= 12,
1764 	[PERF_REG_X86_R10]	= 13,
1765 	[PERF_REG_X86_R11]	= 14,
1766 	[PERF_REG_X86_R12]	= 15,
1767 	[PERF_REG_X86_R13]	= 16,
1768 	[PERF_REG_X86_R14]	= 17,
1769 	[PERF_REG_X86_R15]	= 18,
1770 };
1771 
1772 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1773 				 const struct intel_pt_blk_items *items,
1774 				 u64 regs_mask)
1775 {
1776 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1777 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1778 	u32 bit;
1779 	int i;
1780 
1781 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1782 		/* Get the PEBS gp_regs array index */
1783 		int n = pebs_gp_regs[i] - 1;
1784 
1785 		if (n < 0)
1786 			continue;
1787 		/*
1788 		 * Add only registers that were requested (i.e. 'regs_mask') and
1789 		 * that were provided (i.e. 'mask'), and update the resulting
1790 		 * mask (i.e. 'intr_regs->mask') accordingly.
1791 		 */
1792 		if (mask & 1 << n && regs_mask & bit) {
1793 			intr_regs->mask |= bit;
1794 			*pos++ = gp_regs[n];
1795 		}
1796 	}
1797 
1798 	return pos;
1799 }
1800 
1801 #ifndef PERF_REG_X86_XMM0
1802 #define PERF_REG_X86_XMM0 32
1803 #endif
1804 
1805 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1806 			     const struct intel_pt_blk_items *items,
1807 			     u64 regs_mask)
1808 {
1809 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1810 	const u64 *xmm = items->xmm;
1811 
1812 	/*
1813 	 * If there are any XMM registers, then there should be all of them.
1814 	 * Nevertheless, follow the logic to add only registers that were
1815 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1816 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1817 	 */
1818 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1819 
1820 	for (; mask; mask >>= 1, xmm++) {
1821 		if (mask & 1)
1822 			*pos++ = *xmm;
1823 	}
1824 }
1825 
1826 #define LBR_INFO_MISPRED	(1ULL << 63)
1827 #define LBR_INFO_IN_TX		(1ULL << 62)
1828 #define LBR_INFO_ABORT		(1ULL << 61)
1829 #define LBR_INFO_CYCLES		0xffff
1830 
1831 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1832 static u64 intel_pt_lbr_flags(u64 info)
1833 {
1834 	union {
1835 		struct branch_flags flags;
1836 		u64 result;
1837 	} u;
1838 
1839 	u.result	  = 0;
1840 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
1841 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
1842 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
1843 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
1844 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
1845 
1846 	return u.result;
1847 }
1848 
1849 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1850 			      const struct intel_pt_blk_items *items)
1851 {
1852 	u64 *to;
1853 	int i;
1854 
1855 	br_stack->nr = 0;
1856 
1857 	to = &br_stack->entries[0].from;
1858 
1859 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1860 		u32 mask = items->mask[i];
1861 		const u64 *from = items->val[i];
1862 
1863 		for (; mask; mask >>= 3, from += 3) {
1864 			if ((mask & 7) == 7) {
1865 				*to++ = from[0];
1866 				*to++ = from[1];
1867 				*to++ = intel_pt_lbr_flags(from[2]);
1868 				br_stack->nr += 1;
1869 			}
1870 		}
1871 	}
1872 }
1873 
1874 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1875 {
1876 	const struct intel_pt_blk_items *items = &ptq->state->items;
1877 	struct perf_sample sample = { .ip = 0, };
1878 	union perf_event *event = ptq->event_buf;
1879 	struct intel_pt *pt = ptq->pt;
1880 	struct evsel *evsel = pt->pebs_evsel;
1881 	u64 sample_type = evsel->core.attr.sample_type;
1882 	u64 id = evsel->core.id[0];
1883 	u8 cpumode;
1884 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
1885 
1886 	if (intel_pt_skip_event(pt))
1887 		return 0;
1888 
1889 	intel_pt_prep_a_sample(ptq, event, &sample);
1890 
1891 	sample.id = id;
1892 	sample.stream_id = id;
1893 
1894 	if (!evsel->core.attr.freq)
1895 		sample.period = evsel->core.attr.sample_period;
1896 
1897 	/* No support for non-zero CS base */
1898 	if (items->has_ip)
1899 		sample.ip = items->ip;
1900 	else if (items->has_rip)
1901 		sample.ip = items->rip;
1902 	else
1903 		sample.ip = ptq->state->from_ip;
1904 
1905 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
1906 
1907 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1908 
1909 	sample.cpumode = cpumode;
1910 
1911 	if (sample_type & PERF_SAMPLE_TIME) {
1912 		u64 timestamp = 0;
1913 
1914 		if (items->has_timestamp)
1915 			timestamp = items->timestamp;
1916 		else if (!pt->timeless_decoding)
1917 			timestamp = ptq->timestamp;
1918 		if (timestamp)
1919 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1920 	}
1921 
1922 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1923 	    pt->synth_opts.callchain) {
1924 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1925 				     pt->synth_opts.callchain_sz, sample.ip,
1926 				     pt->kernel_start);
1927 		sample.callchain = ptq->chain;
1928 	}
1929 
1930 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
1931 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
1932 	     items->mask[INTEL_PT_XMM_POS])) {
1933 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
1934 		u64 *pos;
1935 
1936 		sample.intr_regs.abi = items->is_32_bit ?
1937 				       PERF_SAMPLE_REGS_ABI_32 :
1938 				       PERF_SAMPLE_REGS_ABI_64;
1939 		sample.intr_regs.regs = regs;
1940 
1941 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1942 
1943 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1944 	}
1945 
1946 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1947 		if (items->mask[INTEL_PT_LBR_0_POS] ||
1948 		    items->mask[INTEL_PT_LBR_1_POS] ||
1949 		    items->mask[INTEL_PT_LBR_2_POS]) {
1950 			intel_pt_add_lbrs(ptq->last_branch, items);
1951 		} else if (pt->synth_opts.last_branch) {
1952 			thread_stack__br_sample(ptq->thread, ptq->cpu,
1953 						ptq->last_branch,
1954 						pt->br_stack_sz);
1955 		} else {
1956 			ptq->last_branch->nr = 0;
1957 		}
1958 		sample.branch_stack = ptq->last_branch;
1959 	}
1960 
1961 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1962 		sample.addr = items->mem_access_address;
1963 
1964 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1965 		/*
1966 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
1967 		 * intel_hsw_weight().
1968 		 */
1969 		if (items->has_mem_access_latency) {
1970 			u64 weight = items->mem_access_latency >> 32;
1971 
1972 			/*
1973 			 * Starts from SPR, the mem access latency field
1974 			 * contains both cache latency [47:32] and instruction
1975 			 * latency [15:0]. The cache latency is the same as the
1976 			 * mem access latency on previous platforms.
1977 			 *
1978 			 * In practice, no memory access could last than 4G
1979 			 * cycles. Use latency >> 32 to distinguish the
1980 			 * different format of the mem access latency field.
1981 			 */
1982 			if (weight > 0) {
1983 				sample.weight = weight & 0xffff;
1984 				sample.ins_lat = items->mem_access_latency & 0xffff;
1985 			} else
1986 				sample.weight = items->mem_access_latency;
1987 		}
1988 		if (!sample.weight && items->has_tsx_aux_info) {
1989 			/* Cycles last block */
1990 			sample.weight = (u32)items->tsx_aux_info;
1991 		}
1992 	}
1993 
1994 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1995 		u64 ax = items->has_rax ? items->rax : 0;
1996 		/* Refer kernel's intel_hsw_transaction() */
1997 		u64 txn = (u8)(items->tsx_aux_info >> 32);
1998 
1999 		/* For RTM XABORTs also log the abort code from AX */
2000 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2001 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2002 		sample.transaction = txn;
2003 	}
2004 
2005 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2006 }
2007 
2008 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2009 				pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2010 {
2011 	union perf_event event;
2012 	char msg[MAX_AUXTRACE_ERROR_MSG];
2013 	int err;
2014 
2015 	if (pt->synth_opts.error_minus_flags) {
2016 		if (code == INTEL_PT_ERR_OVR &&
2017 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2018 			return 0;
2019 		if (code == INTEL_PT_ERR_LOST &&
2020 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2021 			return 0;
2022 	}
2023 
2024 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2025 
2026 	auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2027 			     code, cpu, pid, tid, ip, msg, timestamp);
2028 
2029 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2030 	if (err)
2031 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2032 		       err);
2033 
2034 	return err;
2035 }
2036 
2037 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2038 				 const struct intel_pt_state *state)
2039 {
2040 	struct intel_pt *pt = ptq->pt;
2041 	u64 tm = ptq->timestamp;
2042 
2043 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2044 
2045 	return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2046 				    ptq->tid, state->from_ip, tm);
2047 }
2048 
2049 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2050 {
2051 	struct auxtrace_queue *queue;
2052 	pid_t tid = ptq->next_tid;
2053 	int err;
2054 
2055 	if (tid == -1)
2056 		return 0;
2057 
2058 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2059 
2060 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2061 
2062 	queue = &pt->queues.queue_array[ptq->queue_nr];
2063 	intel_pt_set_pid_tid_cpu(pt, queue);
2064 
2065 	ptq->next_tid = -1;
2066 
2067 	return err;
2068 }
2069 
2070 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2071 {
2072 	struct intel_pt *pt = ptq->pt;
2073 
2074 	return ip == pt->switch_ip &&
2075 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2076 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2077 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2078 }
2079 
2080 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2081 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2082 
2083 static int intel_pt_sample(struct intel_pt_queue *ptq)
2084 {
2085 	const struct intel_pt_state *state = ptq->state;
2086 	struct intel_pt *pt = ptq->pt;
2087 	int err;
2088 
2089 	if (!ptq->have_sample)
2090 		return 0;
2091 
2092 	ptq->have_sample = false;
2093 
2094 	ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2095 	ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2096 
2097 	/*
2098 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2099 	 * precedes the current timestamp.
2100 	 */
2101 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2102 		err = intel_pt_synth_pebs_sample(ptq);
2103 		if (err)
2104 			return err;
2105 	}
2106 
2107 	if (pt->sample_pwr_events) {
2108 		if (state->type & INTEL_PT_PSB_EVT) {
2109 			err = intel_pt_synth_psb_sample(ptq);
2110 			if (err)
2111 				return err;
2112 		}
2113 		if (ptq->state->cbr != ptq->cbr_seen) {
2114 			err = intel_pt_synth_cbr_sample(ptq);
2115 			if (err)
2116 				return err;
2117 		}
2118 		if (state->type & INTEL_PT_PWR_EVT) {
2119 			if (state->type & INTEL_PT_MWAIT_OP) {
2120 				err = intel_pt_synth_mwait_sample(ptq);
2121 				if (err)
2122 					return err;
2123 			}
2124 			if (state->type & INTEL_PT_PWR_ENTRY) {
2125 				err = intel_pt_synth_pwre_sample(ptq);
2126 				if (err)
2127 					return err;
2128 			}
2129 			if (state->type & INTEL_PT_EX_STOP) {
2130 				err = intel_pt_synth_exstop_sample(ptq);
2131 				if (err)
2132 					return err;
2133 			}
2134 			if (state->type & INTEL_PT_PWR_EXIT) {
2135 				err = intel_pt_synth_pwrx_sample(ptq);
2136 				if (err)
2137 					return err;
2138 			}
2139 		}
2140 	}
2141 
2142 	if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2143 		err = intel_pt_synth_instruction_sample(ptq);
2144 		if (err)
2145 			return err;
2146 	}
2147 
2148 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2149 		err = intel_pt_synth_transaction_sample(ptq);
2150 		if (err)
2151 			return err;
2152 	}
2153 
2154 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2155 		err = intel_pt_synth_ptwrite_sample(ptq);
2156 		if (err)
2157 			return err;
2158 	}
2159 
2160 	if (!(state->type & INTEL_PT_BRANCH))
2161 		return 0;
2162 
2163 	if (pt->use_thread_stack) {
2164 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2165 				    state->from_ip, state->to_ip, ptq->insn_len,
2166 				    state->trace_nr, pt->callstack,
2167 				    pt->br_stack_sz_plus,
2168 				    pt->mispred_all);
2169 	} else {
2170 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2171 	}
2172 
2173 	if (pt->sample_branches) {
2174 		if (state->from_nr != state->to_nr &&
2175 		    state->from_ip && state->to_ip) {
2176 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2177 			u64 to_ip = st->to_ip;
2178 			u64 from_ip = st->from_ip;
2179 
2180 			/*
2181 			 * perf cannot handle having different machines for ip
2182 			 * and addr, so create 2 branches.
2183 			 */
2184 			st->to_ip = 0;
2185 			err = intel_pt_synth_branch_sample(ptq);
2186 			if (err)
2187 				return err;
2188 			st->from_ip = 0;
2189 			st->to_ip = to_ip;
2190 			err = intel_pt_synth_branch_sample(ptq);
2191 			st->from_ip = from_ip;
2192 		} else {
2193 			err = intel_pt_synth_branch_sample(ptq);
2194 		}
2195 		if (err)
2196 			return err;
2197 	}
2198 
2199 	if (!ptq->sync_switch)
2200 		return 0;
2201 
2202 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2203 		switch (ptq->switch_state) {
2204 		case INTEL_PT_SS_NOT_TRACING:
2205 		case INTEL_PT_SS_UNKNOWN:
2206 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2207 			err = intel_pt_next_tid(pt, ptq);
2208 			if (err)
2209 				return err;
2210 			ptq->switch_state = INTEL_PT_SS_TRACING;
2211 			break;
2212 		default:
2213 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2214 			return 1;
2215 		}
2216 	} else if (!state->to_ip) {
2217 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2218 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2219 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2220 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2221 		   state->to_ip == pt->ptss_ip &&
2222 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2223 		ptq->switch_state = INTEL_PT_SS_TRACING;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2230 {
2231 	struct machine *machine = pt->machine;
2232 	struct map *map;
2233 	struct symbol *sym, *start;
2234 	u64 ip, switch_ip = 0;
2235 	const char *ptss;
2236 
2237 	if (ptss_ip)
2238 		*ptss_ip = 0;
2239 
2240 	map = machine__kernel_map(machine);
2241 	if (!map)
2242 		return 0;
2243 
2244 	if (map__load(map))
2245 		return 0;
2246 
2247 	start = dso__first_symbol(map->dso);
2248 
2249 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2250 		if (sym->binding == STB_GLOBAL &&
2251 		    !strcmp(sym->name, "__switch_to")) {
2252 			ip = map->unmap_ip(map, sym->start);
2253 			if (ip >= map->start && ip < map->end) {
2254 				switch_ip = ip;
2255 				break;
2256 			}
2257 		}
2258 	}
2259 
2260 	if (!switch_ip || !ptss_ip)
2261 		return 0;
2262 
2263 	if (pt->have_sched_switch == 1)
2264 		ptss = "perf_trace_sched_switch";
2265 	else
2266 		ptss = "__perf_event_task_sched_out";
2267 
2268 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2269 		if (!strcmp(sym->name, ptss)) {
2270 			ip = map->unmap_ip(map, sym->start);
2271 			if (ip >= map->start && ip < map->end) {
2272 				*ptss_ip = ip;
2273 				break;
2274 			}
2275 		}
2276 	}
2277 
2278 	return switch_ip;
2279 }
2280 
2281 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2282 {
2283 	unsigned int i;
2284 
2285 	pt->sync_switch = true;
2286 
2287 	for (i = 0; i < pt->queues.nr_queues; i++) {
2288 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2289 		struct intel_pt_queue *ptq = queue->priv;
2290 
2291 		if (ptq)
2292 			ptq->sync_switch = true;
2293 	}
2294 }
2295 
2296 /*
2297  * To filter against time ranges, it is only necessary to look at the next start
2298  * or end time.
2299  */
2300 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2301 {
2302 	struct intel_pt *pt = ptq->pt;
2303 
2304 	if (ptq->sel_start) {
2305 		/* Next time is an end time */
2306 		ptq->sel_start = false;
2307 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2308 		return true;
2309 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
2310 		/* Next time is a start time */
2311 		ptq->sel_start = true;
2312 		ptq->sel_idx += 1;
2313 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2314 		return true;
2315 	}
2316 
2317 	/* No next time */
2318 	return false;
2319 }
2320 
2321 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2322 {
2323 	int err;
2324 
2325 	while (1) {
2326 		if (ptq->sel_start) {
2327 			if (ptq->timestamp >= ptq->sel_timestamp) {
2328 				/* After start time, so consider next time */
2329 				intel_pt_next_time(ptq);
2330 				if (!ptq->sel_timestamp) {
2331 					/* No end time */
2332 					return 0;
2333 				}
2334 				/* Check against end time */
2335 				continue;
2336 			}
2337 			/* Before start time, so fast forward */
2338 			ptq->have_sample = false;
2339 			if (ptq->sel_timestamp > *ff_timestamp) {
2340 				if (ptq->sync_switch) {
2341 					intel_pt_next_tid(ptq->pt, ptq);
2342 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2343 				}
2344 				*ff_timestamp = ptq->sel_timestamp;
2345 				err = intel_pt_fast_forward(ptq->decoder,
2346 							    ptq->sel_timestamp);
2347 				if (err)
2348 					return err;
2349 			}
2350 			return 0;
2351 		} else if (ptq->timestamp > ptq->sel_timestamp) {
2352 			/* After end time, so consider next time */
2353 			if (!intel_pt_next_time(ptq)) {
2354 				/* No next time range, so stop decoding */
2355 				ptq->have_sample = false;
2356 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2357 				return 1;
2358 			}
2359 			/* Check against next start time */
2360 			continue;
2361 		} else {
2362 			/* Before end time */
2363 			return 0;
2364 		}
2365 	}
2366 }
2367 
2368 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2369 {
2370 	const struct intel_pt_state *state = ptq->state;
2371 	struct intel_pt *pt = ptq->pt;
2372 	u64 ff_timestamp = 0;
2373 	int err;
2374 
2375 	if (!pt->kernel_start) {
2376 		pt->kernel_start = machine__kernel_start(pt->machine);
2377 		if (pt->per_cpu_mmaps &&
2378 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2379 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2380 		    !pt->sampling_mode) {
2381 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2382 			if (pt->switch_ip) {
2383 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2384 					     pt->switch_ip, pt->ptss_ip);
2385 				intel_pt_enable_sync_switch(pt);
2386 			}
2387 		}
2388 	}
2389 
2390 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2391 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2392 	while (1) {
2393 		err = intel_pt_sample(ptq);
2394 		if (err)
2395 			return err;
2396 
2397 		state = intel_pt_decode(ptq->decoder);
2398 		if (state->err) {
2399 			if (state->err == INTEL_PT_ERR_NODATA)
2400 				return 1;
2401 			if (ptq->sync_switch &&
2402 			    state->from_ip >= pt->kernel_start) {
2403 				ptq->sync_switch = false;
2404 				intel_pt_next_tid(pt, ptq);
2405 			}
2406 			if (pt->synth_opts.errors) {
2407 				err = intel_ptq_synth_error(ptq, state);
2408 				if (err)
2409 					return err;
2410 			}
2411 			continue;
2412 		}
2413 
2414 		ptq->state = state;
2415 		ptq->have_sample = true;
2416 		intel_pt_sample_flags(ptq);
2417 
2418 		/* Use estimated TSC upon return to user space */
2419 		if (pt->est_tsc &&
2420 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2421 		    state->to_ip && state->to_ip < pt->kernel_start) {
2422 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2423 				     state->timestamp, state->est_timestamp);
2424 			ptq->timestamp = state->est_timestamp;
2425 		/* Use estimated TSC in unknown switch state */
2426 		} else if (ptq->sync_switch &&
2427 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2428 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
2429 			   ptq->next_tid == -1) {
2430 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2431 				     state->timestamp, state->est_timestamp);
2432 			ptq->timestamp = state->est_timestamp;
2433 		} else if (state->timestamp > ptq->timestamp) {
2434 			ptq->timestamp = state->timestamp;
2435 		}
2436 
2437 		if (ptq->sel_timestamp) {
2438 			err = intel_pt_time_filter(ptq, &ff_timestamp);
2439 			if (err)
2440 				return err;
2441 		}
2442 
2443 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2444 			*timestamp = ptq->timestamp;
2445 			return 0;
2446 		}
2447 	}
2448 	return 0;
2449 }
2450 
2451 static inline int intel_pt_update_queues(struct intel_pt *pt)
2452 {
2453 	if (pt->queues.new_data) {
2454 		pt->queues.new_data = false;
2455 		return intel_pt_setup_queues(pt);
2456 	}
2457 	return 0;
2458 }
2459 
2460 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2461 {
2462 	unsigned int queue_nr;
2463 	u64 ts;
2464 	int ret;
2465 
2466 	while (1) {
2467 		struct auxtrace_queue *queue;
2468 		struct intel_pt_queue *ptq;
2469 
2470 		if (!pt->heap.heap_cnt)
2471 			return 0;
2472 
2473 		if (pt->heap.heap_array[0].ordinal >= timestamp)
2474 			return 0;
2475 
2476 		queue_nr = pt->heap.heap_array[0].queue_nr;
2477 		queue = &pt->queues.queue_array[queue_nr];
2478 		ptq = queue->priv;
2479 
2480 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2481 			     queue_nr, pt->heap.heap_array[0].ordinal,
2482 			     timestamp);
2483 
2484 		auxtrace_heap__pop(&pt->heap);
2485 
2486 		if (pt->heap.heap_cnt) {
2487 			ts = pt->heap.heap_array[0].ordinal + 1;
2488 			if (ts > timestamp)
2489 				ts = timestamp;
2490 		} else {
2491 			ts = timestamp;
2492 		}
2493 
2494 		intel_pt_set_pid_tid_cpu(pt, queue);
2495 
2496 		ret = intel_pt_run_decoder(ptq, &ts);
2497 
2498 		if (ret < 0) {
2499 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
2500 			return ret;
2501 		}
2502 
2503 		if (!ret) {
2504 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2505 			if (ret < 0)
2506 				return ret;
2507 		} else {
2508 			ptq->on_heap = false;
2509 		}
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2516 					    u64 time_)
2517 {
2518 	struct auxtrace_queues *queues = &pt->queues;
2519 	unsigned int i;
2520 	u64 ts = 0;
2521 
2522 	for (i = 0; i < queues->nr_queues; i++) {
2523 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2524 		struct intel_pt_queue *ptq = queue->priv;
2525 
2526 		if (ptq && (tid == -1 || ptq->tid == tid)) {
2527 			ptq->time = time_;
2528 			intel_pt_set_pid_tid_cpu(pt, queue);
2529 			intel_pt_run_decoder(ptq, &ts);
2530 		}
2531 	}
2532 	return 0;
2533 }
2534 
2535 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2536 					    struct auxtrace_queue *queue,
2537 					    struct perf_sample *sample)
2538 {
2539 	struct machine *m = ptq->pt->machine;
2540 
2541 	ptq->pid = sample->pid;
2542 	ptq->tid = sample->tid;
2543 	ptq->cpu = queue->cpu;
2544 
2545 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2546 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2547 
2548 	thread__zput(ptq->thread);
2549 
2550 	if (ptq->tid == -1)
2551 		return;
2552 
2553 	if (ptq->pid == -1) {
2554 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
2555 		if (ptq->thread)
2556 			ptq->pid = ptq->thread->pid_;
2557 		return;
2558 	}
2559 
2560 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2561 }
2562 
2563 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2564 					    struct perf_sample *sample)
2565 {
2566 	struct auxtrace_queue *queue;
2567 	struct intel_pt_queue *ptq;
2568 	u64 ts = 0;
2569 
2570 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2571 	if (!queue)
2572 		return -EINVAL;
2573 
2574 	ptq = queue->priv;
2575 	if (!ptq)
2576 		return 0;
2577 
2578 	ptq->stop = false;
2579 	ptq->time = sample->time;
2580 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2581 	intel_pt_run_decoder(ptq, &ts);
2582 	return 0;
2583 }
2584 
2585 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2586 {
2587 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2588 				    sample->pid, sample->tid, 0, sample->time);
2589 }
2590 
2591 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2592 {
2593 	unsigned i, j;
2594 
2595 	if (cpu < 0 || !pt->queues.nr_queues)
2596 		return NULL;
2597 
2598 	if ((unsigned)cpu >= pt->queues.nr_queues)
2599 		i = pt->queues.nr_queues - 1;
2600 	else
2601 		i = cpu;
2602 
2603 	if (pt->queues.queue_array[i].cpu == cpu)
2604 		return pt->queues.queue_array[i].priv;
2605 
2606 	for (j = 0; i > 0; j++) {
2607 		if (pt->queues.queue_array[--i].cpu == cpu)
2608 			return pt->queues.queue_array[i].priv;
2609 	}
2610 
2611 	for (; j < pt->queues.nr_queues; j++) {
2612 		if (pt->queues.queue_array[j].cpu == cpu)
2613 			return pt->queues.queue_array[j].priv;
2614 	}
2615 
2616 	return NULL;
2617 }
2618 
2619 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2620 				u64 timestamp)
2621 {
2622 	struct intel_pt_queue *ptq;
2623 	int err;
2624 
2625 	if (!pt->sync_switch)
2626 		return 1;
2627 
2628 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
2629 	if (!ptq || !ptq->sync_switch)
2630 		return 1;
2631 
2632 	switch (ptq->switch_state) {
2633 	case INTEL_PT_SS_NOT_TRACING:
2634 		break;
2635 	case INTEL_PT_SS_UNKNOWN:
2636 	case INTEL_PT_SS_TRACING:
2637 		ptq->next_tid = tid;
2638 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2639 		return 0;
2640 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2641 		if (!ptq->on_heap) {
2642 			ptq->timestamp = perf_time_to_tsc(timestamp,
2643 							  &pt->tc);
2644 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2645 						 ptq->timestamp);
2646 			if (err)
2647 				return err;
2648 			ptq->on_heap = true;
2649 		}
2650 		ptq->switch_state = INTEL_PT_SS_TRACING;
2651 		break;
2652 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2653 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2654 		break;
2655 	default:
2656 		break;
2657 	}
2658 
2659 	ptq->next_tid = -1;
2660 
2661 	return 1;
2662 }
2663 
2664 static int intel_pt_process_switch(struct intel_pt *pt,
2665 				   struct perf_sample *sample)
2666 {
2667 	pid_t tid;
2668 	int cpu, ret;
2669 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2670 
2671 	if (evsel != pt->switch_evsel)
2672 		return 0;
2673 
2674 	tid = evsel__intval(evsel, sample, "next_pid");
2675 	cpu = sample->cpu;
2676 
2677 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2678 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2679 		     &pt->tc));
2680 
2681 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2682 	if (ret <= 0)
2683 		return ret;
2684 
2685 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
2686 }
2687 
2688 static int intel_pt_context_switch_in(struct intel_pt *pt,
2689 				      struct perf_sample *sample)
2690 {
2691 	pid_t pid = sample->pid;
2692 	pid_t tid = sample->tid;
2693 	int cpu = sample->cpu;
2694 
2695 	if (pt->sync_switch) {
2696 		struct intel_pt_queue *ptq;
2697 
2698 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
2699 		if (ptq && ptq->sync_switch) {
2700 			ptq->next_tid = -1;
2701 			switch (ptq->switch_state) {
2702 			case INTEL_PT_SS_NOT_TRACING:
2703 			case INTEL_PT_SS_UNKNOWN:
2704 			case INTEL_PT_SS_TRACING:
2705 				break;
2706 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2707 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2708 				ptq->switch_state = INTEL_PT_SS_TRACING;
2709 				break;
2710 			default:
2711 				break;
2712 			}
2713 		}
2714 	}
2715 
2716 	/*
2717 	 * If the current tid has not been updated yet, ensure it is now that
2718 	 * a "switch in" event has occurred.
2719 	 */
2720 	if (machine__get_current_tid(pt->machine, cpu) == tid)
2721 		return 0;
2722 
2723 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2724 }
2725 
2726 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2727 				   struct perf_sample *sample)
2728 {
2729 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2730 	pid_t pid, tid;
2731 	int cpu, ret;
2732 
2733 	cpu = sample->cpu;
2734 
2735 	if (pt->have_sched_switch == 3) {
2736 		if (!out)
2737 			return intel_pt_context_switch_in(pt, sample);
2738 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2739 			pr_err("Expecting CPU-wide context switch event\n");
2740 			return -EINVAL;
2741 		}
2742 		pid = event->context_switch.next_prev_pid;
2743 		tid = event->context_switch.next_prev_tid;
2744 	} else {
2745 		if (out)
2746 			return 0;
2747 		pid = sample->pid;
2748 		tid = sample->tid;
2749 	}
2750 
2751 	if (tid == -1)
2752 		intel_pt_log("context_switch event has no tid\n");
2753 
2754 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2755 	if (ret <= 0)
2756 		return ret;
2757 
2758 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
2759 }
2760 
2761 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2762 					 union perf_event *event,
2763 					 struct perf_sample *sample)
2764 {
2765 	if (!pt->per_cpu_mmaps)
2766 		return 0;
2767 
2768 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2769 		     sample->cpu, event->itrace_start.pid,
2770 		     event->itrace_start.tid, sample->time,
2771 		     perf_time_to_tsc(sample->time, &pt->tc));
2772 
2773 	return machine__set_current_tid(pt->machine, sample->cpu,
2774 					event->itrace_start.pid,
2775 					event->itrace_start.tid);
2776 }
2777 
2778 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2779 			     struct addr_location *al)
2780 {
2781 	if (!al->map || addr < al->map->start || addr >= al->map->end) {
2782 		if (!thread__find_map(thread, cpumode, addr, al))
2783 			return -1;
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 /* Invalidate all instruction cache entries that overlap the text poke */
2790 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2791 {
2792 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2793 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2794 	/* Assume text poke begins in a basic block no more than 4096 bytes */
2795 	int cnt = 4096 + event->text_poke.new_len;
2796 	struct thread *thread = pt->unknown_thread;
2797 	struct addr_location al = { .map = NULL };
2798 	struct machine *machine = pt->machine;
2799 	struct intel_pt_cache_entry *e;
2800 	u64 offset;
2801 
2802 	if (!event->text_poke.new_len)
2803 		return 0;
2804 
2805 	for (; cnt; cnt--, addr--) {
2806 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2807 			if (addr < event->text_poke.addr)
2808 				return 0;
2809 			continue;
2810 		}
2811 
2812 		if (!al.map->dso || !al.map->dso->auxtrace_cache)
2813 			continue;
2814 
2815 		offset = al.map->map_ip(al.map, addr);
2816 
2817 		e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2818 		if (!e)
2819 			continue;
2820 
2821 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2822 			/*
2823 			 * No overlap. Working backwards there cannot be another
2824 			 * basic block that overlaps the text poke if there is a
2825 			 * branch instruction before the text poke address.
2826 			 */
2827 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
2828 				return 0;
2829 		} else {
2830 			intel_pt_cache_invalidate(al.map->dso, machine, offset);
2831 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2832 				     al.map->dso->long_name, addr);
2833 		}
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 static int intel_pt_process_event(struct perf_session *session,
2840 				  union perf_event *event,
2841 				  struct perf_sample *sample,
2842 				  struct perf_tool *tool)
2843 {
2844 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2845 					   auxtrace);
2846 	u64 timestamp;
2847 	int err = 0;
2848 
2849 	if (dump_trace)
2850 		return 0;
2851 
2852 	if (!tool->ordered_events) {
2853 		pr_err("Intel Processor Trace requires ordered events\n");
2854 		return -EINVAL;
2855 	}
2856 
2857 	if (sample->time && sample->time != (u64)-1)
2858 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2859 	else
2860 		timestamp = 0;
2861 
2862 	if (timestamp || pt->timeless_decoding) {
2863 		err = intel_pt_update_queues(pt);
2864 		if (err)
2865 			return err;
2866 	}
2867 
2868 	if (pt->timeless_decoding) {
2869 		if (pt->sampling_mode) {
2870 			if (sample->aux_sample.size)
2871 				err = intel_pt_process_timeless_sample(pt,
2872 								       sample);
2873 		} else if (event->header.type == PERF_RECORD_EXIT) {
2874 			err = intel_pt_process_timeless_queues(pt,
2875 							       event->fork.tid,
2876 							       sample->time);
2877 		}
2878 	} else if (timestamp) {
2879 		err = intel_pt_process_queues(pt, timestamp);
2880 	}
2881 	if (err)
2882 		return err;
2883 
2884 	if (event->header.type == PERF_RECORD_SAMPLE) {
2885 		if (pt->synth_opts.add_callchain && !sample->callchain)
2886 			intel_pt_add_callchain(pt, sample);
2887 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2888 			intel_pt_add_br_stack(pt, sample);
2889 	}
2890 
2891 	if (event->header.type == PERF_RECORD_AUX &&
2892 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2893 	    pt->synth_opts.errors) {
2894 		err = intel_pt_lost(pt, sample);
2895 		if (err)
2896 			return err;
2897 	}
2898 
2899 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2900 		err = intel_pt_process_switch(pt, sample);
2901 	else if (event->header.type == PERF_RECORD_ITRACE_START)
2902 		err = intel_pt_process_itrace_start(pt, event, sample);
2903 	else if (event->header.type == PERF_RECORD_SWITCH ||
2904 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2905 		err = intel_pt_context_switch(pt, event, sample);
2906 
2907 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2908 		err = intel_pt_text_poke(pt, event);
2909 
2910 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2911 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2912 			     event->header.type, sample->cpu, sample->time, timestamp);
2913 		intel_pt_log_event(event);
2914 	}
2915 
2916 	return err;
2917 }
2918 
2919 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2920 {
2921 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2922 					   auxtrace);
2923 	int ret;
2924 
2925 	if (dump_trace)
2926 		return 0;
2927 
2928 	if (!tool->ordered_events)
2929 		return -EINVAL;
2930 
2931 	ret = intel_pt_update_queues(pt);
2932 	if (ret < 0)
2933 		return ret;
2934 
2935 	if (pt->timeless_decoding)
2936 		return intel_pt_process_timeless_queues(pt, -1,
2937 							MAX_TIMESTAMP - 1);
2938 
2939 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2940 }
2941 
2942 static void intel_pt_free_events(struct perf_session *session)
2943 {
2944 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2945 					   auxtrace);
2946 	struct auxtrace_queues *queues = &pt->queues;
2947 	unsigned int i;
2948 
2949 	for (i = 0; i < queues->nr_queues; i++) {
2950 		intel_pt_free_queue(queues->queue_array[i].priv);
2951 		queues->queue_array[i].priv = NULL;
2952 	}
2953 	intel_pt_log_disable();
2954 	auxtrace_queues__free(queues);
2955 }
2956 
2957 static void intel_pt_free(struct perf_session *session)
2958 {
2959 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2960 					   auxtrace);
2961 
2962 	auxtrace_heap__free(&pt->heap);
2963 	intel_pt_free_events(session);
2964 	session->auxtrace = NULL;
2965 	thread__put(pt->unknown_thread);
2966 	addr_filters__exit(&pt->filts);
2967 	zfree(&pt->chain);
2968 	zfree(&pt->filter);
2969 	zfree(&pt->time_ranges);
2970 	free(pt);
2971 }
2972 
2973 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2974 				       struct evsel *evsel)
2975 {
2976 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2977 					   auxtrace);
2978 
2979 	return evsel->core.attr.type == pt->pmu_type;
2980 }
2981 
2982 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2983 					   union perf_event *event,
2984 					   struct perf_tool *tool __maybe_unused)
2985 {
2986 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2987 					   auxtrace);
2988 
2989 	if (!pt->data_queued) {
2990 		struct auxtrace_buffer *buffer;
2991 		off_t data_offset;
2992 		int fd = perf_data__fd(session->data);
2993 		int err;
2994 
2995 		if (perf_data__is_pipe(session->data)) {
2996 			data_offset = 0;
2997 		} else {
2998 			data_offset = lseek(fd, 0, SEEK_CUR);
2999 			if (data_offset == -1)
3000 				return -errno;
3001 		}
3002 
3003 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3004 						 data_offset, &buffer);
3005 		if (err)
3006 			return err;
3007 
3008 		/* Dump here now we have copied a piped trace out of the pipe */
3009 		if (dump_trace) {
3010 			if (auxtrace_buffer__get_data(buffer, fd)) {
3011 				intel_pt_dump_event(pt, buffer->data,
3012 						    buffer->size);
3013 				auxtrace_buffer__put_data(buffer);
3014 			}
3015 		}
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static int intel_pt_queue_data(struct perf_session *session,
3022 			       struct perf_sample *sample,
3023 			       union perf_event *event, u64 data_offset)
3024 {
3025 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3026 					   auxtrace);
3027 	u64 timestamp;
3028 
3029 	if (event) {
3030 		return auxtrace_queues__add_event(&pt->queues, session, event,
3031 						  data_offset, NULL);
3032 	}
3033 
3034 	if (sample->time && sample->time != (u64)-1)
3035 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3036 	else
3037 		timestamp = 0;
3038 
3039 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3040 					   data_offset, timestamp);
3041 }
3042 
3043 struct intel_pt_synth {
3044 	struct perf_tool dummy_tool;
3045 	struct perf_session *session;
3046 };
3047 
3048 static int intel_pt_event_synth(struct perf_tool *tool,
3049 				union perf_event *event,
3050 				struct perf_sample *sample __maybe_unused,
3051 				struct machine *machine __maybe_unused)
3052 {
3053 	struct intel_pt_synth *intel_pt_synth =
3054 			container_of(tool, struct intel_pt_synth, dummy_tool);
3055 
3056 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3057 						 NULL);
3058 }
3059 
3060 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3061 				struct perf_event_attr *attr, u64 id)
3062 {
3063 	struct intel_pt_synth intel_pt_synth;
3064 	int err;
3065 
3066 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3067 		 name, id, (u64)attr->sample_type);
3068 
3069 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3070 	intel_pt_synth.session = session;
3071 
3072 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3073 					  &id, intel_pt_event_synth);
3074 	if (err)
3075 		pr_err("%s: failed to synthesize '%s' event type\n",
3076 		       __func__, name);
3077 
3078 	return err;
3079 }
3080 
3081 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3082 				    const char *name)
3083 {
3084 	struct evsel *evsel;
3085 
3086 	evlist__for_each_entry(evlist, evsel) {
3087 		if (evsel->core.id && evsel->core.id[0] == id) {
3088 			if (evsel->name)
3089 				zfree(&evsel->name);
3090 			evsel->name = strdup(name);
3091 			break;
3092 		}
3093 	}
3094 }
3095 
3096 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3097 					 struct evlist *evlist)
3098 {
3099 	struct evsel *evsel;
3100 
3101 	evlist__for_each_entry(evlist, evsel) {
3102 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3103 			return evsel;
3104 	}
3105 
3106 	return NULL;
3107 }
3108 
3109 static int intel_pt_synth_events(struct intel_pt *pt,
3110 				 struct perf_session *session)
3111 {
3112 	struct evlist *evlist = session->evlist;
3113 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3114 	struct perf_event_attr attr;
3115 	u64 id;
3116 	int err;
3117 
3118 	if (!evsel) {
3119 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3120 		return 0;
3121 	}
3122 
3123 	memset(&attr, 0, sizeof(struct perf_event_attr));
3124 	attr.size = sizeof(struct perf_event_attr);
3125 	attr.type = PERF_TYPE_HARDWARE;
3126 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3127 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3128 			    PERF_SAMPLE_PERIOD;
3129 	if (pt->timeless_decoding)
3130 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3131 	else
3132 		attr.sample_type |= PERF_SAMPLE_TIME;
3133 	if (!pt->per_cpu_mmaps)
3134 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3135 	attr.exclude_user = evsel->core.attr.exclude_user;
3136 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3137 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3138 	attr.exclude_host = evsel->core.attr.exclude_host;
3139 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3140 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3141 	attr.read_format = evsel->core.attr.read_format;
3142 
3143 	id = evsel->core.id[0] + 1000000000;
3144 	if (!id)
3145 		id = 1;
3146 
3147 	if (pt->synth_opts.branches) {
3148 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3149 		attr.sample_period = 1;
3150 		attr.sample_type |= PERF_SAMPLE_ADDR;
3151 		err = intel_pt_synth_event(session, "branches", &attr, id);
3152 		if (err)
3153 			return err;
3154 		pt->sample_branches = true;
3155 		pt->branches_sample_type = attr.sample_type;
3156 		pt->branches_id = id;
3157 		id += 1;
3158 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3159 	}
3160 
3161 	if (pt->synth_opts.callchain)
3162 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3163 	if (pt->synth_opts.last_branch) {
3164 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3165 		/*
3166 		 * We don't use the hardware index, but the sample generation
3167 		 * code uses the new format branch_stack with this field,
3168 		 * so the event attributes must indicate that it's present.
3169 		 */
3170 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3171 	}
3172 
3173 	if (pt->synth_opts.instructions) {
3174 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3175 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3176 			attr.sample_period =
3177 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3178 		else
3179 			attr.sample_period = pt->synth_opts.period;
3180 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3181 		if (err)
3182 			return err;
3183 		pt->sample_instructions = true;
3184 		pt->instructions_sample_type = attr.sample_type;
3185 		pt->instructions_id = id;
3186 		id += 1;
3187 	}
3188 
3189 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3190 	attr.sample_period = 1;
3191 
3192 	if (pt->synth_opts.transactions) {
3193 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3194 		err = intel_pt_synth_event(session, "transactions", &attr, id);
3195 		if (err)
3196 			return err;
3197 		pt->sample_transactions = true;
3198 		pt->transactions_sample_type = attr.sample_type;
3199 		pt->transactions_id = id;
3200 		intel_pt_set_event_name(evlist, id, "transactions");
3201 		id += 1;
3202 	}
3203 
3204 	attr.type = PERF_TYPE_SYNTH;
3205 	attr.sample_type |= PERF_SAMPLE_RAW;
3206 
3207 	if (pt->synth_opts.ptwrites) {
3208 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
3209 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3210 		if (err)
3211 			return err;
3212 		pt->sample_ptwrites = true;
3213 		pt->ptwrites_sample_type = attr.sample_type;
3214 		pt->ptwrites_id = id;
3215 		intel_pt_set_event_name(evlist, id, "ptwrite");
3216 		id += 1;
3217 	}
3218 
3219 	if (pt->synth_opts.pwr_events) {
3220 		pt->sample_pwr_events = true;
3221 		pt->pwr_events_sample_type = attr.sample_type;
3222 
3223 		attr.config = PERF_SYNTH_INTEL_CBR;
3224 		err = intel_pt_synth_event(session, "cbr", &attr, id);
3225 		if (err)
3226 			return err;
3227 		pt->cbr_id = id;
3228 		intel_pt_set_event_name(evlist, id, "cbr");
3229 		id += 1;
3230 
3231 		attr.config = PERF_SYNTH_INTEL_PSB;
3232 		err = intel_pt_synth_event(session, "psb", &attr, id);
3233 		if (err)
3234 			return err;
3235 		pt->psb_id = id;
3236 		intel_pt_set_event_name(evlist, id, "psb");
3237 		id += 1;
3238 	}
3239 
3240 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3241 		attr.config = PERF_SYNTH_INTEL_MWAIT;
3242 		err = intel_pt_synth_event(session, "mwait", &attr, id);
3243 		if (err)
3244 			return err;
3245 		pt->mwait_id = id;
3246 		intel_pt_set_event_name(evlist, id, "mwait");
3247 		id += 1;
3248 
3249 		attr.config = PERF_SYNTH_INTEL_PWRE;
3250 		err = intel_pt_synth_event(session, "pwre", &attr, id);
3251 		if (err)
3252 			return err;
3253 		pt->pwre_id = id;
3254 		intel_pt_set_event_name(evlist, id, "pwre");
3255 		id += 1;
3256 
3257 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
3258 		err = intel_pt_synth_event(session, "exstop", &attr, id);
3259 		if (err)
3260 			return err;
3261 		pt->exstop_id = id;
3262 		intel_pt_set_event_name(evlist, id, "exstop");
3263 		id += 1;
3264 
3265 		attr.config = PERF_SYNTH_INTEL_PWRX;
3266 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
3267 		if (err)
3268 			return err;
3269 		pt->pwrx_id = id;
3270 		intel_pt_set_event_name(evlist, id, "pwrx");
3271 		id += 1;
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3278 {
3279 	struct evsel *evsel;
3280 
3281 	if (!pt->synth_opts.other_events)
3282 		return;
3283 
3284 	evlist__for_each_entry(pt->session->evlist, evsel) {
3285 		if (evsel->core.attr.aux_output && evsel->core.id) {
3286 			pt->sample_pebs = true;
3287 			pt->pebs_evsel = evsel;
3288 			return;
3289 		}
3290 	}
3291 }
3292 
3293 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3294 {
3295 	struct evsel *evsel;
3296 
3297 	evlist__for_each_entry_reverse(evlist, evsel) {
3298 		const char *name = evsel__name(evsel);
3299 
3300 		if (!strcmp(name, "sched:sched_switch"))
3301 			return evsel;
3302 	}
3303 
3304 	return NULL;
3305 }
3306 
3307 static bool intel_pt_find_switch(struct evlist *evlist)
3308 {
3309 	struct evsel *evsel;
3310 
3311 	evlist__for_each_entry(evlist, evsel) {
3312 		if (evsel->core.attr.context_switch)
3313 			return true;
3314 	}
3315 
3316 	return false;
3317 }
3318 
3319 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3320 {
3321 	struct intel_pt *pt = data;
3322 
3323 	if (!strcmp(var, "intel-pt.mispred-all"))
3324 		pt->mispred_all = perf_config_bool(var, value);
3325 
3326 	return 0;
3327 }
3328 
3329 /* Find least TSC which converts to ns or later */
3330 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3331 {
3332 	u64 tsc, tm;
3333 
3334 	tsc = perf_time_to_tsc(ns, &pt->tc);
3335 
3336 	while (1) {
3337 		tm = tsc_to_perf_time(tsc, &pt->tc);
3338 		if (tm < ns)
3339 			break;
3340 		tsc -= 1;
3341 	}
3342 
3343 	while (tm < ns)
3344 		tm = tsc_to_perf_time(++tsc, &pt->tc);
3345 
3346 	return tsc;
3347 }
3348 
3349 /* Find greatest TSC which converts to ns or earlier */
3350 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3351 {
3352 	u64 tsc, tm;
3353 
3354 	tsc = perf_time_to_tsc(ns, &pt->tc);
3355 
3356 	while (1) {
3357 		tm = tsc_to_perf_time(tsc, &pt->tc);
3358 		if (tm > ns)
3359 			break;
3360 		tsc += 1;
3361 	}
3362 
3363 	while (tm > ns)
3364 		tm = tsc_to_perf_time(--tsc, &pt->tc);
3365 
3366 	return tsc;
3367 }
3368 
3369 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3370 				      struct itrace_synth_opts *opts)
3371 {
3372 	struct perf_time_interval *p = opts->ptime_range;
3373 	int n = opts->range_num;
3374 	int i;
3375 
3376 	if (!n || !p || pt->timeless_decoding)
3377 		return 0;
3378 
3379 	pt->time_ranges = calloc(n, sizeof(struct range));
3380 	if (!pt->time_ranges)
3381 		return -ENOMEM;
3382 
3383 	pt->range_cnt = n;
3384 
3385 	intel_pt_log("%s: %u range(s)\n", __func__, n);
3386 
3387 	for (i = 0; i < n; i++) {
3388 		struct range *r = &pt->time_ranges[i];
3389 		u64 ts = p[i].start;
3390 		u64 te = p[i].end;
3391 
3392 		/*
3393 		 * Take care to ensure the TSC range matches the perf-time range
3394 		 * when converted back to perf-time.
3395 		 */
3396 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3397 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3398 
3399 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3400 			     i, ts, te);
3401 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3402 			     i, r->start, r->end);
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 static const char * const intel_pt_info_fmts[] = {
3409 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
3410 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
3411 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
3412 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
3413 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
3414 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
3415 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
3416 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
3417 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
3418 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
3419 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
3420 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
3421 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
3422 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
3423 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
3424 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
3425 };
3426 
3427 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3428 {
3429 	int i;
3430 
3431 	if (!dump_trace)
3432 		return;
3433 
3434 	for (i = start; i <= finish; i++)
3435 		fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3436 }
3437 
3438 static void intel_pt_print_info_str(const char *name, const char *str)
3439 {
3440 	if (!dump_trace)
3441 		return;
3442 
3443 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3444 }
3445 
3446 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3447 {
3448 	return auxtrace_info->header.size >=
3449 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3450 }
3451 
3452 int intel_pt_process_auxtrace_info(union perf_event *event,
3453 				   struct perf_session *session)
3454 {
3455 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3456 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3457 	struct intel_pt *pt;
3458 	void *info_end;
3459 	__u64 *info;
3460 	int err;
3461 
3462 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3463 					min_sz)
3464 		return -EINVAL;
3465 
3466 	pt = zalloc(sizeof(struct intel_pt));
3467 	if (!pt)
3468 		return -ENOMEM;
3469 
3470 	addr_filters__init(&pt->filts);
3471 
3472 	err = perf_config(intel_pt_perf_config, pt);
3473 	if (err)
3474 		goto err_free;
3475 
3476 	err = auxtrace_queues__init(&pt->queues);
3477 	if (err)
3478 		goto err_free;
3479 
3480 	intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3481 
3482 	pt->session = session;
3483 	pt->machine = &session->machines.host; /* No kvm support */
3484 	pt->auxtrace_type = auxtrace_info->type;
3485 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3486 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3487 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3488 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3489 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3490 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3491 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3492 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3493 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3494 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3495 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3496 			    INTEL_PT_PER_CPU_MMAPS);
3497 
3498 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3499 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3500 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3501 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3502 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3503 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3504 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3505 				    INTEL_PT_CYC_BIT);
3506 	}
3507 
3508 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3509 		pt->max_non_turbo_ratio =
3510 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3511 		intel_pt_print_info(&auxtrace_info->priv[0],
3512 				    INTEL_PT_MAX_NONTURBO_RATIO,
3513 				    INTEL_PT_MAX_NONTURBO_RATIO);
3514 	}
3515 
3516 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3517 	info_end = (void *)info + auxtrace_info->header.size;
3518 
3519 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3520 		size_t len;
3521 
3522 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3523 		intel_pt_print_info(&auxtrace_info->priv[0],
3524 				    INTEL_PT_FILTER_STR_LEN,
3525 				    INTEL_PT_FILTER_STR_LEN);
3526 		if (len) {
3527 			const char *filter = (const char *)info;
3528 
3529 			len = roundup(len + 1, 8);
3530 			info += len >> 3;
3531 			if ((void *)info > info_end) {
3532 				pr_err("%s: bad filter string length\n", __func__);
3533 				err = -EINVAL;
3534 				goto err_free_queues;
3535 			}
3536 			pt->filter = memdup(filter, len);
3537 			if (!pt->filter) {
3538 				err = -ENOMEM;
3539 				goto err_free_queues;
3540 			}
3541 			if (session->header.needs_swap)
3542 				mem_bswap_64(pt->filter, len);
3543 			if (pt->filter[len - 1]) {
3544 				pr_err("%s: filter string not null terminated\n", __func__);
3545 				err = -EINVAL;
3546 				goto err_free_queues;
3547 			}
3548 			err = addr_filters__parse_bare_filter(&pt->filts,
3549 							      filter);
3550 			if (err)
3551 				goto err_free_queues;
3552 		}
3553 		intel_pt_print_info_str("Filter string", pt->filter);
3554 	}
3555 
3556 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3557 	if (pt->timeless_decoding && !pt->tc.time_mult)
3558 		pt->tc.time_mult = 1;
3559 	pt->have_tsc = intel_pt_have_tsc(pt);
3560 	pt->sampling_mode = intel_pt_sampling_mode(pt);
3561 	pt->est_tsc = !pt->timeless_decoding;
3562 
3563 	pt->unknown_thread = thread__new(999999999, 999999999);
3564 	if (!pt->unknown_thread) {
3565 		err = -ENOMEM;
3566 		goto err_free_queues;
3567 	}
3568 
3569 	/*
3570 	 * Since this thread will not be kept in any rbtree not in a
3571 	 * list, initialize its list node so that at thread__put() the
3572 	 * current thread lifetime assumption is kept and we don't segfault
3573 	 * at list_del_init().
3574 	 */
3575 	INIT_LIST_HEAD(&pt->unknown_thread->node);
3576 
3577 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3578 	if (err)
3579 		goto err_delete_thread;
3580 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3581 		err = -ENOMEM;
3582 		goto err_delete_thread;
3583 	}
3584 
3585 	pt->auxtrace.process_event = intel_pt_process_event;
3586 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3587 	pt->auxtrace.queue_data = intel_pt_queue_data;
3588 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3589 	pt->auxtrace.flush_events = intel_pt_flush;
3590 	pt->auxtrace.free_events = intel_pt_free_events;
3591 	pt->auxtrace.free = intel_pt_free;
3592 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3593 	session->auxtrace = &pt->auxtrace;
3594 
3595 	if (dump_trace)
3596 		return 0;
3597 
3598 	if (pt->have_sched_switch == 1) {
3599 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3600 		if (!pt->switch_evsel) {
3601 			pr_err("%s: missing sched_switch event\n", __func__);
3602 			err = -EINVAL;
3603 			goto err_delete_thread;
3604 		}
3605 	} else if (pt->have_sched_switch == 2 &&
3606 		   !intel_pt_find_switch(session->evlist)) {
3607 		pr_err("%s: missing context_switch attribute flag\n", __func__);
3608 		err = -EINVAL;
3609 		goto err_delete_thread;
3610 	}
3611 
3612 	if (session->itrace_synth_opts->set) {
3613 		pt->synth_opts = *session->itrace_synth_opts;
3614 	} else {
3615 		itrace_synth_opts__set_default(&pt->synth_opts,
3616 				session->itrace_synth_opts->default_no_sample);
3617 		if (!session->itrace_synth_opts->default_no_sample &&
3618 		    !session->itrace_synth_opts->inject) {
3619 			pt->synth_opts.branches = false;
3620 			pt->synth_opts.callchain = true;
3621 			pt->synth_opts.add_callchain = true;
3622 		}
3623 		pt->synth_opts.thread_stack =
3624 				session->itrace_synth_opts->thread_stack;
3625 	}
3626 
3627 	if (pt->synth_opts.log)
3628 		intel_pt_log_enable();
3629 
3630 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
3631 	if (pt->tc.time_mult) {
3632 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3633 
3634 		if (!pt->max_non_turbo_ratio)
3635 			pt->max_non_turbo_ratio =
3636 					(tsc_freq + 50000000) / 100000000;
3637 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3638 		intel_pt_log("Maximum non-turbo ratio %u\n",
3639 			     pt->max_non_turbo_ratio);
3640 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3641 	}
3642 
3643 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3644 	if (err)
3645 		goto err_delete_thread;
3646 
3647 	if (pt->synth_opts.calls)
3648 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3649 				       PERF_IP_FLAG_TRACE_END;
3650 	if (pt->synth_opts.returns)
3651 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
3652 				       PERF_IP_FLAG_TRACE_BEGIN;
3653 
3654 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3655 	    !symbol_conf.use_callchain) {
3656 		symbol_conf.use_callchain = true;
3657 		if (callchain_register_param(&callchain_param) < 0) {
3658 			symbol_conf.use_callchain = false;
3659 			pt->synth_opts.callchain = false;
3660 			pt->synth_opts.add_callchain = false;
3661 		}
3662 	}
3663 
3664 	if (pt->synth_opts.add_callchain) {
3665 		err = intel_pt_callchain_init(pt);
3666 		if (err)
3667 			goto err_delete_thread;
3668 	}
3669 
3670 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3671 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3672 		pt->br_stack_sz_plus = pt->br_stack_sz;
3673 	}
3674 
3675 	if (pt->synth_opts.add_last_branch) {
3676 		err = intel_pt_br_stack_init(pt);
3677 		if (err)
3678 			goto err_delete_thread;
3679 		/*
3680 		 * Additional branch stack size to cater for tracing from the
3681 		 * actual sample ip to where the sample time is recorded.
3682 		 * Measured at about 200 branches, but generously set to 1024.
3683 		 * If kernel space is not being traced, then add just 1 for the
3684 		 * branch to kernel space.
3685 		 */
3686 		if (intel_pt_tracing_kernel(pt))
3687 			pt->br_stack_sz_plus += 1024;
3688 		else
3689 			pt->br_stack_sz_plus += 1;
3690 	}
3691 
3692 	pt->use_thread_stack = pt->synth_opts.callchain ||
3693 			       pt->synth_opts.add_callchain ||
3694 			       pt->synth_opts.thread_stack ||
3695 			       pt->synth_opts.last_branch ||
3696 			       pt->synth_opts.add_last_branch;
3697 
3698 	pt->callstack = pt->synth_opts.callchain ||
3699 			pt->synth_opts.add_callchain ||
3700 			pt->synth_opts.thread_stack;
3701 
3702 	err = intel_pt_synth_events(pt, session);
3703 	if (err)
3704 		goto err_delete_thread;
3705 
3706 	intel_pt_setup_pebs_events(pt);
3707 
3708 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3709 		err = auxtrace_queue_data(session, true, true);
3710 	else
3711 		err = auxtrace_queues__process_index(&pt->queues, session);
3712 	if (err)
3713 		goto err_delete_thread;
3714 
3715 	if (pt->queues.populated)
3716 		pt->data_queued = true;
3717 
3718 	if (pt->timeless_decoding)
3719 		pr_debug2("Intel PT decoding without timestamps\n");
3720 
3721 	return 0;
3722 
3723 err_delete_thread:
3724 	zfree(&pt->chain);
3725 	thread__zput(pt->unknown_thread);
3726 err_free_queues:
3727 	intel_pt_log_disable();
3728 	auxtrace_queues__free(&pt->queues);
3729 	session->auxtrace = NULL;
3730 err_free:
3731 	addr_filters__exit(&pt->filts);
3732 	zfree(&pt->filter);
3733 	zfree(&pt->time_ranges);
3734 	free(pt);
3735 	return err;
3736 }
3737