1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pt.c: Intel Processor Trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47
48 #define MAX_TIMESTAMP (~0ULL)
49
50 #define INTEL_PT_CFG_PASS_THRU BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS BIT_ULL(55)
55
56 struct range {
57 u64 start;
58 u64 end;
59 };
60
61 struct intel_pt {
62 struct auxtrace auxtrace;
63 struct auxtrace_queues queues;
64 struct auxtrace_heap heap;
65 u32 auxtrace_type;
66 struct perf_session *session;
67 struct machine *machine;
68 struct evsel *switch_evsel;
69 struct thread *unknown_thread;
70 bool timeless_decoding;
71 bool sampling_mode;
72 bool snapshot_mode;
73 bool per_cpu_mmaps;
74 bool have_tsc;
75 bool data_queued;
76 bool est_tsc;
77 bool sync_switch;
78 bool sync_switch_not_supported;
79 bool mispred_all;
80 bool use_thread_stack;
81 bool callstack;
82 bool cap_event_trace;
83 bool have_guest_sideband;
84 unsigned int br_stack_sz;
85 unsigned int br_stack_sz_plus;
86 int have_sched_switch;
87 u32 pmu_type;
88 u64 kernel_start;
89 u64 switch_ip;
90 u64 ptss_ip;
91 u64 first_timestamp;
92
93 struct perf_tsc_conversion tc;
94 bool cap_user_time_zero;
95
96 struct itrace_synth_opts synth_opts;
97
98 bool sample_instructions;
99 u64 instructions_sample_type;
100 u64 instructions_id;
101
102 bool sample_cycles;
103 u64 cycles_sample_type;
104 u64 cycles_id;
105
106 bool sample_branches;
107 u32 branches_filter;
108 u64 branches_sample_type;
109 u64 branches_id;
110
111 bool sample_transactions;
112 u64 transactions_sample_type;
113 u64 transactions_id;
114
115 bool sample_ptwrites;
116 u64 ptwrites_sample_type;
117 u64 ptwrites_id;
118
119 bool sample_pwr_events;
120 u64 pwr_events_sample_type;
121 u64 mwait_id;
122 u64 pwre_id;
123 u64 exstop_id;
124 u64 pwrx_id;
125 u64 cbr_id;
126 u64 psb_id;
127
128 bool single_pebs;
129 bool sample_pebs;
130 struct evsel *pebs_evsel;
131
132 u64 evt_sample_type;
133 u64 evt_id;
134
135 u64 iflag_chg_sample_type;
136 u64 iflag_chg_id;
137
138 u64 tsc_bit;
139 u64 mtc_bit;
140 u64 mtc_freq_bits;
141 u32 tsc_ctc_ratio_n;
142 u32 tsc_ctc_ratio_d;
143 u64 cyc_bit;
144 u64 noretcomp_bit;
145 unsigned max_non_turbo_ratio;
146 unsigned cbr2khz;
147 int max_loops;
148
149 unsigned long num_events;
150
151 char *filter;
152 struct addr_filters filts;
153
154 struct range *time_ranges;
155 unsigned int range_cnt;
156
157 struct ip_callchain *chain;
158 struct branch_stack *br_stack;
159
160 u64 dflt_tsc_offset;
161 struct rb_root vmcs_info;
162 };
163
164 enum switch_state {
165 INTEL_PT_SS_NOT_TRACING,
166 INTEL_PT_SS_UNKNOWN,
167 INTEL_PT_SS_TRACING,
168 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
169 INTEL_PT_SS_EXPECTING_SWITCH_IP,
170 };
171
172 /* applicable_counters is 64-bits */
173 #define INTEL_PT_MAX_PEBS 64
174
175 struct intel_pt_pebs_event {
176 struct evsel *evsel;
177 u64 id;
178 };
179
180 struct intel_pt_queue {
181 struct intel_pt *pt;
182 unsigned int queue_nr;
183 struct auxtrace_buffer *buffer;
184 struct auxtrace_buffer *old_buffer;
185 void *decoder;
186 const struct intel_pt_state *state;
187 struct ip_callchain *chain;
188 struct branch_stack *last_branch;
189 union perf_event *event_buf;
190 bool on_heap;
191 bool stop;
192 bool step_through_buffers;
193 bool use_buffer_pid_tid;
194 bool sync_switch;
195 bool sample_ipc;
196 pid_t pid, tid;
197 int cpu;
198 int switch_state;
199 pid_t next_tid;
200 struct thread *thread;
201 struct machine *guest_machine;
202 struct thread *guest_thread;
203 struct thread *unknown_guest_thread;
204 pid_t guest_machine_pid;
205 pid_t guest_pid;
206 pid_t guest_tid;
207 int vcpu;
208 bool exclude_kernel;
209 bool have_sample;
210 u64 time;
211 u64 timestamp;
212 u64 sel_timestamp;
213 bool sel_start;
214 unsigned int sel_idx;
215 u32 flags;
216 u16 insn_len;
217 u64 last_insn_cnt;
218 u64 ipc_insn_cnt;
219 u64 ipc_cyc_cnt;
220 u64 last_in_insn_cnt;
221 u64 last_in_cyc_cnt;
222 u64 last_cy_insn_cnt;
223 u64 last_cy_cyc_cnt;
224 u64 last_br_insn_cnt;
225 u64 last_br_cyc_cnt;
226 unsigned int cbr_seen;
227 char insn[INTEL_PT_INSN_BUF_SZ];
228 struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
229 };
230
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)231 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
232 unsigned char *buf, size_t len)
233 {
234 struct intel_pt_pkt packet;
235 size_t pos = 0;
236 int ret, pkt_len, i;
237 char desc[INTEL_PT_PKT_DESC_MAX];
238 const char *color = PERF_COLOR_BLUE;
239 enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
240
241 color_fprintf(stdout, color,
242 ". ... Intel Processor Trace data: size %zu bytes\n",
243 len);
244
245 while (len) {
246 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
247 if (ret > 0)
248 pkt_len = ret;
249 else
250 pkt_len = 1;
251 printf(".");
252 color_fprintf(stdout, color, " %08x: ", pos);
253 for (i = 0; i < pkt_len; i++)
254 color_fprintf(stdout, color, " %02x", buf[i]);
255 for (; i < 16; i++)
256 color_fprintf(stdout, color, " ");
257 if (ret > 0) {
258 ret = intel_pt_pkt_desc(&packet, desc,
259 INTEL_PT_PKT_DESC_MAX);
260 if (ret > 0)
261 color_fprintf(stdout, color, " %s\n", desc);
262 } else {
263 color_fprintf(stdout, color, " Bad packet!\n");
264 }
265 pos += pkt_len;
266 buf += pkt_len;
267 len -= pkt_len;
268 }
269 }
270
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)271 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
272 size_t len)
273 {
274 printf(".\n");
275 intel_pt_dump(pt, buf, len);
276 }
277
intel_pt_log_event(union perf_event * event)278 static void intel_pt_log_event(union perf_event *event)
279 {
280 FILE *f = intel_pt_log_fp();
281
282 if (!intel_pt_enable_logging || !f)
283 return;
284
285 perf_event__fprintf(event, NULL, f);
286 }
287
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)288 static void intel_pt_dump_sample(struct perf_session *session,
289 struct perf_sample *sample)
290 {
291 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
292 auxtrace);
293
294 printf("\n");
295 intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
296 }
297
intel_pt_log_events(struct intel_pt * pt,u64 tm)298 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
299 {
300 struct perf_time_interval *range = pt->synth_opts.ptime_range;
301 int n = pt->synth_opts.range_num;
302
303 if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
304 return true;
305
306 if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
307 return false;
308
309 /* perf_time__ranges_skip_sample does not work if time is zero */
310 if (!tm)
311 tm = 1;
312
313 return !n || !perf_time__ranges_skip_sample(range, n, tm);
314 }
315
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)316 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
317 u64 vmcs,
318 u64 dflt_tsc_offset)
319 {
320 struct rb_node **p = &rb_root->rb_node;
321 struct rb_node *parent = NULL;
322 struct intel_pt_vmcs_info *v;
323
324 while (*p) {
325 parent = *p;
326 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
327
328 if (v->vmcs == vmcs)
329 return v;
330
331 if (vmcs < v->vmcs)
332 p = &(*p)->rb_left;
333 else
334 p = &(*p)->rb_right;
335 }
336
337 v = zalloc(sizeof(*v));
338 if (v) {
339 v->vmcs = vmcs;
340 v->tsc_offset = dflt_tsc_offset;
341 v->reliable = dflt_tsc_offset;
342
343 rb_link_node(&v->rb_node, parent, p);
344 rb_insert_color(&v->rb_node, rb_root);
345 }
346
347 return v;
348 }
349
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)350 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
351 {
352 struct intel_pt_queue *ptq = data;
353 struct intel_pt *pt = ptq->pt;
354
355 if (!vmcs && !pt->dflt_tsc_offset)
356 return NULL;
357
358 return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
359 }
360
intel_pt_free_vmcs_info(struct intel_pt * pt)361 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
362 {
363 struct intel_pt_vmcs_info *v;
364 struct rb_node *n;
365
366 n = rb_first(&pt->vmcs_info);
367 while (n) {
368 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
369 n = rb_next(n);
370 rb_erase(&v->rb_node, &pt->vmcs_info);
371 free(v);
372 }
373 }
374
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)375 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
376 struct auxtrace_buffer *b)
377 {
378 bool consecutive = false;
379 void *start;
380
381 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
382 pt->have_tsc, &consecutive,
383 pt->synth_opts.vm_time_correlation);
384 if (!start)
385 return -EINVAL;
386 /*
387 * In the case of vm_time_correlation, the overlap might contain TSC
388 * packets that will not be fixed, and that will then no longer work for
389 * overlap detection. Avoid that by zeroing out the overlap.
390 */
391 if (pt->synth_opts.vm_time_correlation)
392 memset(b->data, 0, start - b->data);
393 b->use_size = b->data + b->size - start;
394 b->use_data = start;
395 if (b->use_size && consecutive)
396 b->consecutive = true;
397 return 0;
398 }
399
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)400 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
401 struct auxtrace_buffer *buffer,
402 struct auxtrace_buffer *old_buffer,
403 struct intel_pt_buffer *b)
404 {
405 bool might_overlap;
406
407 if (!buffer->data) {
408 int fd = perf_data__fd(ptq->pt->session->data);
409
410 buffer->data = auxtrace_buffer__get_data(buffer, fd);
411 if (!buffer->data)
412 return -ENOMEM;
413 }
414
415 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
416 if (might_overlap && !buffer->consecutive && old_buffer &&
417 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
418 return -ENOMEM;
419
420 if (buffer->use_data) {
421 b->len = buffer->use_size;
422 b->buf = buffer->use_data;
423 } else {
424 b->len = buffer->size;
425 b->buf = buffer->data;
426 }
427 b->ref_timestamp = buffer->reference;
428
429 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
430 b->consecutive = false;
431 b->trace_nr = buffer->buffer_nr + 1;
432 } else {
433 b->consecutive = true;
434 }
435
436 return 0;
437 }
438
439 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)440 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
441 struct auxtrace_buffer *buffer)
442 {
443 if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
444 return;
445
446 auxtrace_buffer__drop_data(buffer);
447 }
448
449 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)450 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
451 void *cb_data)
452 {
453 struct intel_pt_queue *ptq = data;
454 struct auxtrace_buffer *buffer = ptq->buffer;
455 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
456 struct auxtrace_queue *queue;
457 int err = 0;
458
459 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
460
461 while (1) {
462 struct intel_pt_buffer b = { .len = 0 };
463
464 buffer = auxtrace_buffer__next(queue, buffer);
465 if (!buffer)
466 break;
467
468 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
469 if (err)
470 break;
471
472 if (b.len) {
473 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
474 old_buffer = buffer;
475 } else {
476 intel_pt_lookahead_drop_buffer(ptq, buffer);
477 continue;
478 }
479
480 err = cb(&b, cb_data);
481 if (err)
482 break;
483 }
484
485 if (buffer != old_buffer)
486 intel_pt_lookahead_drop_buffer(ptq, buffer);
487 intel_pt_lookahead_drop_buffer(ptq, old_buffer);
488
489 return err;
490 }
491
492 /*
493 * This function assumes data is processed sequentially only.
494 * Must be serialized with respect to intel_pt_lookahead()
495 */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)496 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
497 {
498 struct intel_pt_queue *ptq = data;
499 struct auxtrace_buffer *buffer = ptq->buffer;
500 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
501 struct auxtrace_queue *queue;
502 int err;
503
504 if (ptq->stop) {
505 b->len = 0;
506 return 0;
507 }
508
509 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
510
511 buffer = auxtrace_buffer__next(queue, buffer);
512 if (!buffer) {
513 if (old_buffer)
514 auxtrace_buffer__drop_data(old_buffer);
515 b->len = 0;
516 return 0;
517 }
518
519 ptq->buffer = buffer;
520
521 err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
522 if (err)
523 return err;
524
525 if (ptq->step_through_buffers)
526 ptq->stop = true;
527
528 if (b->len) {
529 if (old_buffer)
530 auxtrace_buffer__drop_data(old_buffer);
531 ptq->old_buffer = buffer;
532 } else {
533 auxtrace_buffer__drop_data(buffer);
534 return intel_pt_get_trace(b, data);
535 }
536
537 return 0;
538 }
539
540 struct intel_pt_cache_entry {
541 struct auxtrace_cache_entry entry;
542 u64 insn_cnt;
543 u64 byte_cnt;
544 enum intel_pt_insn_op op;
545 enum intel_pt_insn_branch branch;
546 bool emulated_ptwrite;
547 int length;
548 int32_t rel;
549 char insn[INTEL_PT_INSN_BUF_SZ];
550 };
551
intel_pt_config_div(const char * var,const char * value,void * data)552 static int intel_pt_config_div(const char *var, const char *value, void *data)
553 {
554 int *d = data;
555 long val;
556
557 if (!strcmp(var, "intel-pt.cache-divisor")) {
558 val = strtol(value, NULL, 0);
559 if (val > 0 && val <= INT_MAX)
560 *d = val;
561 }
562
563 return 0;
564 }
565
intel_pt_cache_divisor(void)566 static int intel_pt_cache_divisor(void)
567 {
568 static int d;
569
570 if (d)
571 return d;
572
573 perf_config(intel_pt_config_div, &d);
574
575 if (!d)
576 d = 64;
577
578 return d;
579 }
580
intel_pt_cache_size(struct dso * dso,struct machine * machine)581 static unsigned int intel_pt_cache_size(struct dso *dso,
582 struct machine *machine)
583 {
584 off_t size;
585
586 size = dso__data_size(dso, machine);
587 size /= intel_pt_cache_divisor();
588 if (size < 1000)
589 return 10;
590 if (size > (1 << 21))
591 return 21;
592 return 32 - __builtin_clz(size);
593 }
594
intel_pt_cache(struct dso * dso,struct machine * machine)595 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
596 struct machine *machine)
597 {
598 struct auxtrace_cache *c;
599 unsigned int bits;
600
601 if (dso->auxtrace_cache)
602 return dso->auxtrace_cache;
603
604 bits = intel_pt_cache_size(dso, machine);
605
606 /* Ignoring cache creation failure */
607 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
608
609 dso->auxtrace_cache = c;
610
611 return c;
612 }
613
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)614 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
615 u64 offset, u64 insn_cnt, u64 byte_cnt,
616 struct intel_pt_insn *intel_pt_insn)
617 {
618 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
619 struct intel_pt_cache_entry *e;
620 int err;
621
622 if (!c)
623 return -ENOMEM;
624
625 e = auxtrace_cache__alloc_entry(c);
626 if (!e)
627 return -ENOMEM;
628
629 e->insn_cnt = insn_cnt;
630 e->byte_cnt = byte_cnt;
631 e->op = intel_pt_insn->op;
632 e->branch = intel_pt_insn->branch;
633 e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
634 e->length = intel_pt_insn->length;
635 e->rel = intel_pt_insn->rel;
636 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
637
638 err = auxtrace_cache__add(c, offset, &e->entry);
639 if (err)
640 auxtrace_cache__free_entry(c, e);
641
642 return err;
643 }
644
645 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)646 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
647 {
648 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
649
650 if (!c)
651 return NULL;
652
653 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
654 }
655
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)656 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
657 u64 offset)
658 {
659 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
660
661 if (!c)
662 return;
663
664 auxtrace_cache__remove(dso->auxtrace_cache, offset);
665 }
666
intel_pt_guest_kernel_ip(uint64_t ip)667 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
668 {
669 /* Assumes 64-bit kernel */
670 return ip & (1ULL << 63);
671 }
672
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)673 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
674 {
675 if (nr) {
676 return intel_pt_guest_kernel_ip(ip) ?
677 PERF_RECORD_MISC_GUEST_KERNEL :
678 PERF_RECORD_MISC_GUEST_USER;
679 }
680
681 return ip >= ptq->pt->kernel_start ?
682 PERF_RECORD_MISC_KERNEL :
683 PERF_RECORD_MISC_USER;
684 }
685
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)686 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
687 {
688 /* No support for non-zero CS base */
689 if (from_ip)
690 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
691 return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
692 }
693
intel_pt_get_guest(struct intel_pt_queue * ptq)694 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
695 {
696 struct machines *machines = &ptq->pt->session->machines;
697 struct machine *machine;
698 pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
699
700 if (ptq->guest_machine && pid == ptq->guest_machine->pid)
701 return 0;
702
703 ptq->guest_machine = NULL;
704 thread__zput(ptq->unknown_guest_thread);
705
706 if (symbol_conf.guest_code) {
707 thread__zput(ptq->guest_thread);
708 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
709 }
710
711 machine = machines__find_guest(machines, pid);
712 if (!machine)
713 return -1;
714
715 ptq->unknown_guest_thread = machine__idle_thread(machine);
716 if (!ptq->unknown_guest_thread)
717 return -1;
718
719 ptq->guest_machine = machine;
720
721 return 0;
722 }
723
intel_pt_jmp_16(struct intel_pt_insn * intel_pt_insn)724 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
725 {
726 return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
727 }
728
729 #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite "
730 #define PTWRITE_MAGIC_LEN 16
731
intel_pt_emulated_ptwrite(struct dso * dso,struct machine * machine,u64 offset)732 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
733 {
734 unsigned char buf[PTWRITE_MAGIC_LEN];
735 ssize_t len;
736
737 len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
738 if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
739 intel_pt_log("Emulated ptwrite signature found\n");
740 return true;
741 }
742 intel_pt_log("Emulated ptwrite signature not found\n");
743 return false;
744 }
745
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)746 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
747 uint64_t *insn_cnt_ptr, uint64_t *ip,
748 uint64_t to_ip, uint64_t max_insn_cnt,
749 void *data)
750 {
751 struct intel_pt_queue *ptq = data;
752 struct machine *machine = ptq->pt->machine;
753 struct thread *thread;
754 struct addr_location al;
755 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
756 ssize_t len;
757 int x86_64, ret = 0;
758 u8 cpumode;
759 u64 offset, start_offset, start_ip;
760 u64 insn_cnt = 0;
761 bool one_map = true;
762 bool nr;
763
764
765 addr_location__init(&al);
766 intel_pt_insn->length = 0;
767 intel_pt_insn->op = INTEL_PT_OP_OTHER;
768
769 if (to_ip && *ip == to_ip)
770 goto out_no_cache;
771
772 nr = ptq->state->to_nr;
773 cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
774
775 if (nr) {
776 if (ptq->pt->have_guest_sideband) {
777 if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
778 intel_pt_log("ERROR: guest sideband but no guest machine\n");
779 ret = -EINVAL;
780 goto out_ret;
781 }
782 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
783 intel_pt_get_guest(ptq)) {
784 intel_pt_log("ERROR: no guest machine\n");
785 ret = -EINVAL;
786 goto out_ret;
787 }
788 machine = ptq->guest_machine;
789 thread = ptq->guest_thread;
790 if (!thread) {
791 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
792 intel_pt_log("ERROR: no guest thread\n");
793 ret = -EINVAL;
794 goto out_ret;
795 }
796 thread = ptq->unknown_guest_thread;
797 }
798 } else {
799 thread = ptq->thread;
800 if (!thread) {
801 if (cpumode != PERF_RECORD_MISC_KERNEL) {
802 intel_pt_log("ERROR: no thread\n");
803 ret = -EINVAL;
804 goto out_ret;
805 }
806 thread = ptq->pt->unknown_thread;
807 }
808 }
809
810 while (1) {
811 struct dso *dso;
812
813 if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
814 if (al.map)
815 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
816 else
817 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
818 addr_location__exit(&al);
819 ret = -EINVAL;
820 goto out_ret;
821 }
822 dso = map__dso(al.map);
823
824 if (dso->data.status == DSO_DATA_STATUS_ERROR &&
825 dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
826 ret = -ENOENT;
827 goto out_ret;
828 }
829
830 offset = map__map_ip(al.map, *ip);
831
832 if (!to_ip && one_map) {
833 struct intel_pt_cache_entry *e;
834
835 e = intel_pt_cache_lookup(dso, machine, offset);
836 if (e &&
837 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
838 *insn_cnt_ptr = e->insn_cnt;
839 *ip += e->byte_cnt;
840 intel_pt_insn->op = e->op;
841 intel_pt_insn->branch = e->branch;
842 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
843 intel_pt_insn->length = e->length;
844 intel_pt_insn->rel = e->rel;
845 memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
846 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
847 ret = 0;
848 goto out_ret;
849 }
850 }
851
852 start_offset = offset;
853 start_ip = *ip;
854
855 /* Load maps to ensure dso->is_64_bit has been updated */
856 map__load(al.map);
857
858 x86_64 = dso->is_64_bit;
859
860 while (1) {
861 len = dso__data_read_offset(dso, machine,
862 offset, buf,
863 INTEL_PT_INSN_BUF_SZ);
864 if (len <= 0) {
865 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
866 offset);
867 if (intel_pt_enable_logging)
868 dso__fprintf(dso, intel_pt_log_fp());
869 ret = -EINVAL;
870 goto out_ret;
871 }
872
873 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
874 ret = -EINVAL;
875 goto out_ret;
876 }
877
878 intel_pt_log_insn(intel_pt_insn, *ip);
879
880 insn_cnt += 1;
881
882 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
883 bool eptw;
884 u64 offs;
885
886 if (!intel_pt_jmp_16(intel_pt_insn))
887 goto out;
888 /* Check for emulated ptwrite */
889 offs = offset + intel_pt_insn->length;
890 eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
891 intel_pt_insn->emulated_ptwrite = eptw;
892 goto out;
893 }
894
895 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
896 goto out_no_cache;
897
898 *ip += intel_pt_insn->length;
899
900 if (to_ip && *ip == to_ip) {
901 intel_pt_insn->length = 0;
902 intel_pt_insn->op = INTEL_PT_OP_OTHER;
903 goto out_no_cache;
904 }
905
906 if (*ip >= map__end(al.map))
907 break;
908
909 offset += intel_pt_insn->length;
910 }
911 one_map = false;
912 }
913 out:
914 *insn_cnt_ptr = insn_cnt;
915
916 if (!one_map)
917 goto out_no_cache;
918
919 /*
920 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
921 * entries.
922 */
923 if (to_ip) {
924 struct intel_pt_cache_entry *e;
925
926 e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
927 if (e)
928 goto out_ret;
929 }
930
931 /* Ignore cache errors */
932 intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
933 *ip - start_ip, intel_pt_insn);
934
935 out_ret:
936 addr_location__exit(&al);
937 return ret;
938
939 out_no_cache:
940 *insn_cnt_ptr = insn_cnt;
941 addr_location__exit(&al);
942 return 0;
943 }
944
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)945 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
946 uint64_t offset, const char *filename)
947 {
948 struct addr_filter *filt;
949 bool have_filter = false;
950 bool hit_tracestop = false;
951 bool hit_filter = false;
952
953 list_for_each_entry(filt, &pt->filts.head, list) {
954 if (filt->start)
955 have_filter = true;
956
957 if ((filename && !filt->filename) ||
958 (!filename && filt->filename) ||
959 (filename && strcmp(filename, filt->filename)))
960 continue;
961
962 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
963 continue;
964
965 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
966 ip, offset, filename ? filename : "[kernel]",
967 filt->start ? "filter" : "stop",
968 filt->addr, filt->size);
969
970 if (filt->start)
971 hit_filter = true;
972 else
973 hit_tracestop = true;
974 }
975
976 if (!hit_tracestop && !hit_filter)
977 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
978 ip, offset, filename ? filename : "[kernel]");
979
980 return hit_tracestop || (have_filter && !hit_filter);
981 }
982
__intel_pt_pgd_ip(uint64_t ip,void * data)983 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
984 {
985 struct intel_pt_queue *ptq = data;
986 struct thread *thread;
987 struct addr_location al;
988 u8 cpumode;
989 u64 offset;
990 int res;
991
992 if (ptq->state->to_nr) {
993 if (intel_pt_guest_kernel_ip(ip))
994 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
995 /* No support for decoding guest user space */
996 return -EINVAL;
997 } else if (ip >= ptq->pt->kernel_start) {
998 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
999 }
1000
1001 cpumode = PERF_RECORD_MISC_USER;
1002
1003 thread = ptq->thread;
1004 if (!thread)
1005 return -EINVAL;
1006
1007 addr_location__init(&al);
1008 if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1009 return -EINVAL;
1010
1011 offset = map__map_ip(al.map, ip);
1012
1013 res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1014 addr_location__exit(&al);
1015 return res;
1016 }
1017
intel_pt_pgd_ip(uint64_t ip,void * data)1018 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1019 {
1020 return __intel_pt_pgd_ip(ip, data) > 0;
1021 }
1022
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)1023 static bool intel_pt_get_config(struct intel_pt *pt,
1024 struct perf_event_attr *attr, u64 *config)
1025 {
1026 if (attr->type == pt->pmu_type) {
1027 if (config)
1028 *config = attr->config;
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
intel_pt_exclude_kernel(struct intel_pt * pt)1035 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1036 {
1037 struct evsel *evsel;
1038
1039 evlist__for_each_entry(pt->session->evlist, evsel) {
1040 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1041 !evsel->core.attr.exclude_kernel)
1042 return false;
1043 }
1044 return true;
1045 }
1046
intel_pt_return_compression(struct intel_pt * pt)1047 static bool intel_pt_return_compression(struct intel_pt *pt)
1048 {
1049 struct evsel *evsel;
1050 u64 config;
1051
1052 if (!pt->noretcomp_bit)
1053 return true;
1054
1055 evlist__for_each_entry(pt->session->evlist, evsel) {
1056 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1057 (config & pt->noretcomp_bit))
1058 return false;
1059 }
1060 return true;
1061 }
1062
intel_pt_branch_enable(struct intel_pt * pt)1063 static bool intel_pt_branch_enable(struct intel_pt *pt)
1064 {
1065 struct evsel *evsel;
1066 u64 config;
1067
1068 evlist__for_each_entry(pt->session->evlist, evsel) {
1069 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1070 (config & INTEL_PT_CFG_PASS_THRU) &&
1071 !(config & INTEL_PT_CFG_BRANCH_EN))
1072 return false;
1073 }
1074 return true;
1075 }
1076
intel_pt_disabled_tnt(struct intel_pt * pt)1077 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1078 {
1079 struct evsel *evsel;
1080 u64 config;
1081
1082 evlist__for_each_entry(pt->session->evlist, evsel) {
1083 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1084 config & INTEL_PT_CFG_TNT_DIS)
1085 return true;
1086 }
1087 return false;
1088 }
1089
intel_pt_mtc_period(struct intel_pt * pt)1090 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1091 {
1092 struct evsel *evsel;
1093 unsigned int shift;
1094 u64 config;
1095
1096 if (!pt->mtc_freq_bits)
1097 return 0;
1098
1099 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1100 config >>= 1;
1101
1102 evlist__for_each_entry(pt->session->evlist, evsel) {
1103 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1104 return (config & pt->mtc_freq_bits) >> shift;
1105 }
1106 return 0;
1107 }
1108
intel_pt_timeless_decoding(struct intel_pt * pt)1109 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1110 {
1111 struct evsel *evsel;
1112 bool timeless_decoding = true;
1113 u64 config;
1114
1115 if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1116 return true;
1117
1118 evlist__for_each_entry(pt->session->evlist, evsel) {
1119 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1120 return true;
1121 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1122 if (config & pt->tsc_bit)
1123 timeless_decoding = false;
1124 else
1125 return true;
1126 }
1127 }
1128 return timeless_decoding;
1129 }
1130
intel_pt_tracing_kernel(struct intel_pt * pt)1131 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1132 {
1133 struct evsel *evsel;
1134
1135 evlist__for_each_entry(pt->session->evlist, evsel) {
1136 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1137 !evsel->core.attr.exclude_kernel)
1138 return true;
1139 }
1140 return false;
1141 }
1142
intel_pt_have_tsc(struct intel_pt * pt)1143 static bool intel_pt_have_tsc(struct intel_pt *pt)
1144 {
1145 struct evsel *evsel;
1146 bool have_tsc = false;
1147 u64 config;
1148
1149 if (!pt->tsc_bit)
1150 return false;
1151
1152 evlist__for_each_entry(pt->session->evlist, evsel) {
1153 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1154 if (config & pt->tsc_bit)
1155 have_tsc = true;
1156 else
1157 return false;
1158 }
1159 }
1160 return have_tsc;
1161 }
1162
intel_pt_have_mtc(struct intel_pt * pt)1163 static bool intel_pt_have_mtc(struct intel_pt *pt)
1164 {
1165 struct evsel *evsel;
1166 u64 config;
1167
1168 evlist__for_each_entry(pt->session->evlist, evsel) {
1169 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1170 (config & pt->mtc_bit))
1171 return true;
1172 }
1173 return false;
1174 }
1175
intel_pt_sampling_mode(struct intel_pt * pt)1176 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1177 {
1178 struct evsel *evsel;
1179
1180 evlist__for_each_entry(pt->session->evlist, evsel) {
1181 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1182 evsel->core.attr.aux_sample_size)
1183 return true;
1184 }
1185 return false;
1186 }
1187
intel_pt_ctl(struct intel_pt * pt)1188 static u64 intel_pt_ctl(struct intel_pt *pt)
1189 {
1190 struct evsel *evsel;
1191 u64 config;
1192
1193 evlist__for_each_entry(pt->session->evlist, evsel) {
1194 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1195 return config;
1196 }
1197 return 0;
1198 }
1199
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1200 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1201 {
1202 u64 quot, rem;
1203
1204 quot = ns / pt->tc.time_mult;
1205 rem = ns % pt->tc.time_mult;
1206 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1207 pt->tc.time_mult;
1208 }
1209
intel_pt_alloc_chain(struct intel_pt * pt)1210 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1211 {
1212 size_t sz = sizeof(struct ip_callchain);
1213
1214 /* Add 1 to callchain_sz for callchain context */
1215 sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1216 return zalloc(sz);
1217 }
1218
intel_pt_callchain_init(struct intel_pt * pt)1219 static int intel_pt_callchain_init(struct intel_pt *pt)
1220 {
1221 struct evsel *evsel;
1222
1223 evlist__for_each_entry(pt->session->evlist, evsel) {
1224 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1225 evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1226 }
1227
1228 pt->chain = intel_pt_alloc_chain(pt);
1229 if (!pt->chain)
1230 return -ENOMEM;
1231
1232 return 0;
1233 }
1234
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1235 static void intel_pt_add_callchain(struct intel_pt *pt,
1236 struct perf_sample *sample)
1237 {
1238 struct thread *thread = machine__findnew_thread(pt->machine,
1239 sample->pid,
1240 sample->tid);
1241
1242 thread_stack__sample_late(thread, sample->cpu, pt->chain,
1243 pt->synth_opts.callchain_sz + 1, sample->ip,
1244 pt->kernel_start);
1245
1246 sample->callchain = pt->chain;
1247 }
1248
intel_pt_alloc_br_stack(unsigned int entry_cnt)1249 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1250 {
1251 size_t sz = sizeof(struct branch_stack);
1252
1253 sz += entry_cnt * sizeof(struct branch_entry);
1254 return zalloc(sz);
1255 }
1256
intel_pt_br_stack_init(struct intel_pt * pt)1257 static int intel_pt_br_stack_init(struct intel_pt *pt)
1258 {
1259 struct evsel *evsel;
1260
1261 evlist__for_each_entry(pt->session->evlist, evsel) {
1262 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1263 evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1264 }
1265
1266 pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1267 if (!pt->br_stack)
1268 return -ENOMEM;
1269
1270 return 0;
1271 }
1272
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1273 static void intel_pt_add_br_stack(struct intel_pt *pt,
1274 struct perf_sample *sample)
1275 {
1276 struct thread *thread = machine__findnew_thread(pt->machine,
1277 sample->pid,
1278 sample->tid);
1279
1280 thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1281 pt->br_stack_sz, sample->ip,
1282 pt->kernel_start);
1283
1284 sample->branch_stack = pt->br_stack;
1285 thread__put(thread);
1286 }
1287
1288 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1289 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1290
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1291 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1292 unsigned int queue_nr)
1293 {
1294 struct intel_pt_params params = { .get_trace = 0, };
1295 struct perf_env *env = pt->machine->env;
1296 struct intel_pt_queue *ptq;
1297
1298 ptq = zalloc(sizeof(struct intel_pt_queue));
1299 if (!ptq)
1300 return NULL;
1301
1302 if (pt->synth_opts.callchain) {
1303 ptq->chain = intel_pt_alloc_chain(pt);
1304 if (!ptq->chain)
1305 goto out_free;
1306 }
1307
1308 if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1309 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1310
1311 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1312 if (!ptq->last_branch)
1313 goto out_free;
1314 }
1315
1316 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1317 if (!ptq->event_buf)
1318 goto out_free;
1319
1320 ptq->pt = pt;
1321 ptq->queue_nr = queue_nr;
1322 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1323 ptq->pid = -1;
1324 ptq->tid = -1;
1325 ptq->cpu = -1;
1326 ptq->next_tid = -1;
1327
1328 params.get_trace = intel_pt_get_trace;
1329 params.walk_insn = intel_pt_walk_next_insn;
1330 params.lookahead = intel_pt_lookahead;
1331 params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1332 params.data = ptq;
1333 params.return_compression = intel_pt_return_compression(pt);
1334 params.branch_enable = intel_pt_branch_enable(pt);
1335 params.ctl = intel_pt_ctl(pt);
1336 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1337 params.mtc_period = intel_pt_mtc_period(pt);
1338 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1339 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1340 params.quick = pt->synth_opts.quick;
1341 params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1342 params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1343 params.first_timestamp = pt->first_timestamp;
1344 params.max_loops = pt->max_loops;
1345
1346 /* Cannot walk code without TNT, so force 'quick' mode */
1347 if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1348 params.quick = 1;
1349
1350 if (pt->filts.cnt > 0)
1351 params.pgd_ip = intel_pt_pgd_ip;
1352
1353 if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1354 if (pt->synth_opts.period) {
1355 switch (pt->synth_opts.period_type) {
1356 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1357 params.period_type =
1358 INTEL_PT_PERIOD_INSTRUCTIONS;
1359 params.period = pt->synth_opts.period;
1360 break;
1361 case PERF_ITRACE_PERIOD_TICKS:
1362 params.period_type = INTEL_PT_PERIOD_TICKS;
1363 params.period = pt->synth_opts.period;
1364 break;
1365 case PERF_ITRACE_PERIOD_NANOSECS:
1366 params.period_type = INTEL_PT_PERIOD_TICKS;
1367 params.period = intel_pt_ns_to_ticks(pt,
1368 pt->synth_opts.period);
1369 break;
1370 default:
1371 break;
1372 }
1373 }
1374
1375 if (!params.period) {
1376 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1377 params.period = 1;
1378 }
1379 }
1380
1381 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1382 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1383
1384 ptq->decoder = intel_pt_decoder_new(¶ms);
1385 if (!ptq->decoder)
1386 goto out_free;
1387
1388 return ptq;
1389
1390 out_free:
1391 zfree(&ptq->event_buf);
1392 zfree(&ptq->last_branch);
1393 zfree(&ptq->chain);
1394 free(ptq);
1395 return NULL;
1396 }
1397
intel_pt_free_queue(void * priv)1398 static void intel_pt_free_queue(void *priv)
1399 {
1400 struct intel_pt_queue *ptq = priv;
1401
1402 if (!ptq)
1403 return;
1404 thread__zput(ptq->thread);
1405 thread__zput(ptq->guest_thread);
1406 thread__zput(ptq->unknown_guest_thread);
1407 intel_pt_decoder_free(ptq->decoder);
1408 zfree(&ptq->event_buf);
1409 zfree(&ptq->last_branch);
1410 zfree(&ptq->chain);
1411 free(ptq);
1412 }
1413
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1414 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1415 {
1416 unsigned int i;
1417
1418 pt->first_timestamp = timestamp;
1419
1420 for (i = 0; i < pt->queues.nr_queues; i++) {
1421 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1422 struct intel_pt_queue *ptq = queue->priv;
1423
1424 if (ptq && ptq->decoder)
1425 intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1426 }
1427 }
1428
intel_pt_get_guest_from_sideband(struct intel_pt_queue * ptq)1429 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1430 {
1431 struct machines *machines = &ptq->pt->session->machines;
1432 struct machine *machine;
1433 pid_t machine_pid = ptq->pid;
1434 pid_t tid;
1435 int vcpu;
1436
1437 if (machine_pid <= 0)
1438 return 0; /* Not a guest machine */
1439
1440 machine = machines__find(machines, machine_pid);
1441 if (!machine)
1442 return 0; /* Not a guest machine */
1443
1444 if (ptq->guest_machine != machine) {
1445 ptq->guest_machine = NULL;
1446 thread__zput(ptq->guest_thread);
1447 thread__zput(ptq->unknown_guest_thread);
1448
1449 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1450 if (!ptq->unknown_guest_thread)
1451 return -1;
1452 ptq->guest_machine = machine;
1453 }
1454
1455 vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1456 if (vcpu < 0)
1457 return -1;
1458
1459 tid = machine__get_current_tid(machine, vcpu);
1460
1461 if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1462 thread__zput(ptq->guest_thread);
1463
1464 if (!ptq->guest_thread) {
1465 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1466 if (!ptq->guest_thread)
1467 return -1;
1468 }
1469
1470 ptq->guest_machine_pid = machine_pid;
1471 ptq->guest_pid = thread__pid(ptq->guest_thread);
1472 ptq->guest_tid = tid;
1473 ptq->vcpu = vcpu;
1474
1475 return 0;
1476 }
1477
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1478 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1479 struct auxtrace_queue *queue)
1480 {
1481 struct intel_pt_queue *ptq = queue->priv;
1482
1483 if (queue->tid == -1 || pt->have_sched_switch) {
1484 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1485 if (ptq->tid == -1)
1486 ptq->pid = -1;
1487 thread__zput(ptq->thread);
1488 }
1489
1490 if (!ptq->thread && ptq->tid != -1)
1491 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1492
1493 if (ptq->thread) {
1494 ptq->pid = thread__pid(ptq->thread);
1495 if (queue->cpu == -1)
1496 ptq->cpu = thread__cpu(ptq->thread);
1497 }
1498
1499 if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1500 ptq->guest_machine_pid = 0;
1501 ptq->guest_pid = -1;
1502 ptq->guest_tid = -1;
1503 ptq->vcpu = -1;
1504 }
1505 }
1506
intel_pt_sample_flags(struct intel_pt_queue * ptq)1507 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1508 {
1509 struct intel_pt *pt = ptq->pt;
1510
1511 ptq->insn_len = 0;
1512 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1513 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1514 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1515 if (!ptq->state->to_ip)
1516 ptq->flags = PERF_IP_FLAG_BRANCH |
1517 PERF_IP_FLAG_ASYNC |
1518 PERF_IP_FLAG_TRACE_END;
1519 else if (ptq->state->from_nr && !ptq->state->to_nr)
1520 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1521 PERF_IP_FLAG_ASYNC |
1522 PERF_IP_FLAG_VMEXIT;
1523 else
1524 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1525 PERF_IP_FLAG_ASYNC |
1526 PERF_IP_FLAG_INTERRUPT;
1527 } else {
1528 if (ptq->state->from_ip)
1529 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1530 else
1531 ptq->flags = PERF_IP_FLAG_BRANCH |
1532 PERF_IP_FLAG_TRACE_BEGIN;
1533 if (ptq->state->flags & INTEL_PT_IN_TX)
1534 ptq->flags |= PERF_IP_FLAG_IN_TX;
1535 ptq->insn_len = ptq->state->insn_len;
1536 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1537 }
1538
1539 if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1540 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1541 if (ptq->state->type & INTEL_PT_TRACE_END)
1542 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1543
1544 if (pt->cap_event_trace) {
1545 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1546 if (!ptq->state->from_iflag)
1547 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1548 if (ptq->state->from_iflag != ptq->state->to_iflag)
1549 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1550 } else if (!ptq->state->to_iflag) {
1551 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1552 }
1553 }
1554 }
1555
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1556 static void intel_pt_setup_time_range(struct intel_pt *pt,
1557 struct intel_pt_queue *ptq)
1558 {
1559 if (!pt->range_cnt)
1560 return;
1561
1562 ptq->sel_timestamp = pt->time_ranges[0].start;
1563 ptq->sel_idx = 0;
1564
1565 if (ptq->sel_timestamp) {
1566 ptq->sel_start = true;
1567 } else {
1568 ptq->sel_timestamp = pt->time_ranges[0].end;
1569 ptq->sel_start = false;
1570 }
1571 }
1572
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1573 static int intel_pt_setup_queue(struct intel_pt *pt,
1574 struct auxtrace_queue *queue,
1575 unsigned int queue_nr)
1576 {
1577 struct intel_pt_queue *ptq = queue->priv;
1578
1579 if (list_empty(&queue->head))
1580 return 0;
1581
1582 if (!ptq) {
1583 ptq = intel_pt_alloc_queue(pt, queue_nr);
1584 if (!ptq)
1585 return -ENOMEM;
1586 queue->priv = ptq;
1587
1588 if (queue->cpu != -1)
1589 ptq->cpu = queue->cpu;
1590 ptq->tid = queue->tid;
1591
1592 ptq->cbr_seen = UINT_MAX;
1593
1594 if (pt->sampling_mode && !pt->snapshot_mode &&
1595 pt->timeless_decoding)
1596 ptq->step_through_buffers = true;
1597
1598 ptq->sync_switch = pt->sync_switch;
1599
1600 intel_pt_setup_time_range(pt, ptq);
1601 }
1602
1603 if (!ptq->on_heap &&
1604 (!ptq->sync_switch ||
1605 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1606 const struct intel_pt_state *state;
1607 int ret;
1608
1609 if (pt->timeless_decoding)
1610 return 0;
1611
1612 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1613 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1614 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1615
1616 if (ptq->sel_start && ptq->sel_timestamp) {
1617 ret = intel_pt_fast_forward(ptq->decoder,
1618 ptq->sel_timestamp);
1619 if (ret)
1620 return ret;
1621 }
1622
1623 while (1) {
1624 state = intel_pt_decode(ptq->decoder);
1625 if (state->err) {
1626 if (state->err == INTEL_PT_ERR_NODATA) {
1627 intel_pt_log("queue %u has no timestamp\n",
1628 queue_nr);
1629 return 0;
1630 }
1631 continue;
1632 }
1633 if (state->timestamp)
1634 break;
1635 }
1636
1637 ptq->timestamp = state->timestamp;
1638 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1639 queue_nr, ptq->timestamp);
1640 ptq->state = state;
1641 ptq->have_sample = true;
1642 if (ptq->sel_start && ptq->sel_timestamp &&
1643 ptq->timestamp < ptq->sel_timestamp)
1644 ptq->have_sample = false;
1645 intel_pt_sample_flags(ptq);
1646 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1647 if (ret)
1648 return ret;
1649 ptq->on_heap = true;
1650 }
1651
1652 return 0;
1653 }
1654
intel_pt_setup_queues(struct intel_pt * pt)1655 static int intel_pt_setup_queues(struct intel_pt *pt)
1656 {
1657 unsigned int i;
1658 int ret;
1659
1660 for (i = 0; i < pt->queues.nr_queues; i++) {
1661 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1662 if (ret)
1663 return ret;
1664 }
1665 return 0;
1666 }
1667
intel_pt_skip_event(struct intel_pt * pt)1668 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1669 {
1670 return pt->synth_opts.initial_skip &&
1671 pt->num_events++ < pt->synth_opts.initial_skip;
1672 }
1673
1674 /*
1675 * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1676 * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1677 * from this decoder state.
1678 */
intel_pt_skip_cbr_event(struct intel_pt * pt)1679 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1680 {
1681 return pt->synth_opts.initial_skip &&
1682 pt->num_events + 4 < pt->synth_opts.initial_skip;
1683 }
1684
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1685 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1686 union perf_event *event,
1687 struct perf_sample *sample)
1688 {
1689 event->sample.header.type = PERF_RECORD_SAMPLE;
1690 event->sample.header.size = sizeof(struct perf_event_header);
1691
1692 sample->pid = ptq->pid;
1693 sample->tid = ptq->tid;
1694
1695 if (ptq->pt->have_guest_sideband) {
1696 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1697 (ptq->state->to_ip && ptq->state->to_nr)) {
1698 sample->pid = ptq->guest_pid;
1699 sample->tid = ptq->guest_tid;
1700 sample->machine_pid = ptq->guest_machine_pid;
1701 sample->vcpu = ptq->vcpu;
1702 }
1703 }
1704
1705 sample->cpu = ptq->cpu;
1706 sample->insn_len = ptq->insn_len;
1707 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1708 }
1709
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1710 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1711 struct intel_pt_queue *ptq,
1712 union perf_event *event,
1713 struct perf_sample *sample)
1714 {
1715 intel_pt_prep_a_sample(ptq, event, sample);
1716
1717 if (!pt->timeless_decoding)
1718 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1719
1720 sample->ip = ptq->state->from_ip;
1721 sample->addr = ptq->state->to_ip;
1722 sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1723 sample->period = 1;
1724 sample->flags = ptq->flags;
1725
1726 event->sample.header.misc = sample->cpumode;
1727 }
1728
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1729 static int intel_pt_inject_event(union perf_event *event,
1730 struct perf_sample *sample, u64 type)
1731 {
1732 event->header.size = perf_event__sample_event_size(sample, type, 0);
1733 return perf_event__synthesize_sample(event, type, 0, sample);
1734 }
1735
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1736 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1737 union perf_event *event,
1738 struct perf_sample *sample, u64 type)
1739 {
1740 if (!pt->synth_opts.inject)
1741 return 0;
1742
1743 return intel_pt_inject_event(event, sample, type);
1744 }
1745
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1746 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1747 union perf_event *event,
1748 struct perf_sample *sample, u64 type)
1749 {
1750 int ret;
1751
1752 ret = intel_pt_opt_inject(pt, event, sample, type);
1753 if (ret)
1754 return ret;
1755
1756 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1757 if (ret)
1758 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1759
1760 return ret;
1761 }
1762
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1763 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1764 {
1765 struct intel_pt *pt = ptq->pt;
1766 union perf_event *event = ptq->event_buf;
1767 struct perf_sample sample = { .ip = 0, };
1768 struct dummy_branch_stack {
1769 u64 nr;
1770 u64 hw_idx;
1771 struct branch_entry entries;
1772 } dummy_bs;
1773
1774 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1775 return 0;
1776
1777 if (intel_pt_skip_event(pt))
1778 return 0;
1779
1780 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1781
1782 sample.id = ptq->pt->branches_id;
1783 sample.stream_id = ptq->pt->branches_id;
1784
1785 /*
1786 * perf report cannot handle events without a branch stack when using
1787 * SORT_MODE__BRANCH so make a dummy one.
1788 */
1789 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1790 dummy_bs = (struct dummy_branch_stack){
1791 .nr = 1,
1792 .hw_idx = -1ULL,
1793 .entries = {
1794 .from = sample.ip,
1795 .to = sample.addr,
1796 },
1797 };
1798 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1799 }
1800
1801 if (ptq->sample_ipc)
1802 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1803 if (sample.cyc_cnt) {
1804 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1805 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1806 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1807 }
1808
1809 return intel_pt_deliver_synth_event(pt, event, &sample,
1810 pt->branches_sample_type);
1811 }
1812
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1813 static void intel_pt_prep_sample(struct intel_pt *pt,
1814 struct intel_pt_queue *ptq,
1815 union perf_event *event,
1816 struct perf_sample *sample)
1817 {
1818 intel_pt_prep_b_sample(pt, ptq, event, sample);
1819
1820 if (pt->synth_opts.callchain) {
1821 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1822 pt->synth_opts.callchain_sz + 1,
1823 sample->ip, pt->kernel_start);
1824 sample->callchain = ptq->chain;
1825 }
1826
1827 if (pt->synth_opts.last_branch) {
1828 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1829 pt->br_stack_sz);
1830 sample->branch_stack = ptq->last_branch;
1831 }
1832 }
1833
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1834 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1835 {
1836 struct intel_pt *pt = ptq->pt;
1837 union perf_event *event = ptq->event_buf;
1838 struct perf_sample sample = { .ip = 0, };
1839
1840 if (intel_pt_skip_event(pt))
1841 return 0;
1842
1843 intel_pt_prep_sample(pt, ptq, event, &sample);
1844
1845 sample.id = ptq->pt->instructions_id;
1846 sample.stream_id = ptq->pt->instructions_id;
1847 if (pt->synth_opts.quick)
1848 sample.period = 1;
1849 else
1850 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1851
1852 if (ptq->sample_ipc)
1853 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1854 if (sample.cyc_cnt) {
1855 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1856 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1857 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1858 }
1859
1860 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1861
1862 return intel_pt_deliver_synth_event(pt, event, &sample,
1863 pt->instructions_sample_type);
1864 }
1865
intel_pt_synth_cycle_sample(struct intel_pt_queue * ptq)1866 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1867 {
1868 struct intel_pt *pt = ptq->pt;
1869 union perf_event *event = ptq->event_buf;
1870 struct perf_sample sample = { .ip = 0, };
1871 u64 period = 0;
1872
1873 if (ptq->sample_ipc)
1874 period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1875
1876 if (!period || intel_pt_skip_event(pt))
1877 return 0;
1878
1879 intel_pt_prep_sample(pt, ptq, event, &sample);
1880
1881 sample.id = ptq->pt->cycles_id;
1882 sample.stream_id = ptq->pt->cycles_id;
1883 sample.period = period;
1884
1885 sample.cyc_cnt = period;
1886 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1887 ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1888 ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1889
1890 return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1891 }
1892
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1893 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1894 {
1895 struct intel_pt *pt = ptq->pt;
1896 union perf_event *event = ptq->event_buf;
1897 struct perf_sample sample = { .ip = 0, };
1898
1899 if (intel_pt_skip_event(pt))
1900 return 0;
1901
1902 intel_pt_prep_sample(pt, ptq, event, &sample);
1903
1904 sample.id = ptq->pt->transactions_id;
1905 sample.stream_id = ptq->pt->transactions_id;
1906
1907 return intel_pt_deliver_synth_event(pt, event, &sample,
1908 pt->transactions_sample_type);
1909 }
1910
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1911 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1912 struct intel_pt_queue *ptq,
1913 union perf_event *event,
1914 struct perf_sample *sample)
1915 {
1916 intel_pt_prep_sample(pt, ptq, event, sample);
1917
1918 /*
1919 * Zero IP is used to mean "trace start" but that is not the case for
1920 * power or PTWRITE events with no IP, so clear the flags.
1921 */
1922 if (!sample->ip)
1923 sample->flags = 0;
1924 }
1925
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1926 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1927 {
1928 struct intel_pt *pt = ptq->pt;
1929 union perf_event *event = ptq->event_buf;
1930 struct perf_sample sample = { .ip = 0, };
1931 struct perf_synth_intel_ptwrite raw;
1932
1933 if (intel_pt_skip_event(pt))
1934 return 0;
1935
1936 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1937
1938 sample.id = ptq->pt->ptwrites_id;
1939 sample.stream_id = ptq->pt->ptwrites_id;
1940
1941 raw.flags = 0;
1942 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1943 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1944
1945 sample.raw_size = perf_synth__raw_size(raw);
1946 sample.raw_data = perf_synth__raw_data(&raw);
1947
1948 return intel_pt_deliver_synth_event(pt, event, &sample,
1949 pt->ptwrites_sample_type);
1950 }
1951
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1952 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1953 {
1954 struct intel_pt *pt = ptq->pt;
1955 union perf_event *event = ptq->event_buf;
1956 struct perf_sample sample = { .ip = 0, };
1957 struct perf_synth_intel_cbr raw;
1958 u32 flags;
1959
1960 if (intel_pt_skip_cbr_event(pt))
1961 return 0;
1962
1963 ptq->cbr_seen = ptq->state->cbr;
1964
1965 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1966
1967 sample.id = ptq->pt->cbr_id;
1968 sample.stream_id = ptq->pt->cbr_id;
1969
1970 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1971 raw.flags = cpu_to_le32(flags);
1972 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1973 raw.reserved3 = 0;
1974
1975 sample.raw_size = perf_synth__raw_size(raw);
1976 sample.raw_data = perf_synth__raw_data(&raw);
1977
1978 return intel_pt_deliver_synth_event(pt, event, &sample,
1979 pt->pwr_events_sample_type);
1980 }
1981
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)1982 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1983 {
1984 struct intel_pt *pt = ptq->pt;
1985 union perf_event *event = ptq->event_buf;
1986 struct perf_sample sample = { .ip = 0, };
1987 struct perf_synth_intel_psb raw;
1988
1989 if (intel_pt_skip_event(pt))
1990 return 0;
1991
1992 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1993
1994 sample.id = ptq->pt->psb_id;
1995 sample.stream_id = ptq->pt->psb_id;
1996 sample.flags = 0;
1997
1998 raw.reserved = 0;
1999 raw.offset = ptq->state->psb_offset;
2000
2001 sample.raw_size = perf_synth__raw_size(raw);
2002 sample.raw_data = perf_synth__raw_data(&raw);
2003
2004 return intel_pt_deliver_synth_event(pt, event, &sample,
2005 pt->pwr_events_sample_type);
2006 }
2007
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)2008 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2009 {
2010 struct intel_pt *pt = ptq->pt;
2011 union perf_event *event = ptq->event_buf;
2012 struct perf_sample sample = { .ip = 0, };
2013 struct perf_synth_intel_mwait raw;
2014
2015 if (intel_pt_skip_event(pt))
2016 return 0;
2017
2018 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2019
2020 sample.id = ptq->pt->mwait_id;
2021 sample.stream_id = ptq->pt->mwait_id;
2022
2023 raw.reserved = 0;
2024 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2025
2026 sample.raw_size = perf_synth__raw_size(raw);
2027 sample.raw_data = perf_synth__raw_data(&raw);
2028
2029 return intel_pt_deliver_synth_event(pt, event, &sample,
2030 pt->pwr_events_sample_type);
2031 }
2032
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)2033 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2034 {
2035 struct intel_pt *pt = ptq->pt;
2036 union perf_event *event = ptq->event_buf;
2037 struct perf_sample sample = { .ip = 0, };
2038 struct perf_synth_intel_pwre raw;
2039
2040 if (intel_pt_skip_event(pt))
2041 return 0;
2042
2043 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2044
2045 sample.id = ptq->pt->pwre_id;
2046 sample.stream_id = ptq->pt->pwre_id;
2047
2048 raw.reserved = 0;
2049 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2050
2051 sample.raw_size = perf_synth__raw_size(raw);
2052 sample.raw_data = perf_synth__raw_data(&raw);
2053
2054 return intel_pt_deliver_synth_event(pt, event, &sample,
2055 pt->pwr_events_sample_type);
2056 }
2057
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)2058 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2059 {
2060 struct intel_pt *pt = ptq->pt;
2061 union perf_event *event = ptq->event_buf;
2062 struct perf_sample sample = { .ip = 0, };
2063 struct perf_synth_intel_exstop raw;
2064
2065 if (intel_pt_skip_event(pt))
2066 return 0;
2067
2068 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2069
2070 sample.id = ptq->pt->exstop_id;
2071 sample.stream_id = ptq->pt->exstop_id;
2072
2073 raw.flags = 0;
2074 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2075
2076 sample.raw_size = perf_synth__raw_size(raw);
2077 sample.raw_data = perf_synth__raw_data(&raw);
2078
2079 return intel_pt_deliver_synth_event(pt, event, &sample,
2080 pt->pwr_events_sample_type);
2081 }
2082
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)2083 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2084 {
2085 struct intel_pt *pt = ptq->pt;
2086 union perf_event *event = ptq->event_buf;
2087 struct perf_sample sample = { .ip = 0, };
2088 struct perf_synth_intel_pwrx raw;
2089
2090 if (intel_pt_skip_event(pt))
2091 return 0;
2092
2093 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2094
2095 sample.id = ptq->pt->pwrx_id;
2096 sample.stream_id = ptq->pt->pwrx_id;
2097
2098 raw.reserved = 0;
2099 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2100
2101 sample.raw_size = perf_synth__raw_size(raw);
2102 sample.raw_data = perf_synth__raw_data(&raw);
2103
2104 return intel_pt_deliver_synth_event(pt, event, &sample,
2105 pt->pwr_events_sample_type);
2106 }
2107
2108 /*
2109 * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2110 * intel_pt_add_gp_regs().
2111 */
2112 static const int pebs_gp_regs[] = {
2113 [PERF_REG_X86_FLAGS] = 1,
2114 [PERF_REG_X86_IP] = 2,
2115 [PERF_REG_X86_AX] = 3,
2116 [PERF_REG_X86_CX] = 4,
2117 [PERF_REG_X86_DX] = 5,
2118 [PERF_REG_X86_BX] = 6,
2119 [PERF_REG_X86_SP] = 7,
2120 [PERF_REG_X86_BP] = 8,
2121 [PERF_REG_X86_SI] = 9,
2122 [PERF_REG_X86_DI] = 10,
2123 [PERF_REG_X86_R8] = 11,
2124 [PERF_REG_X86_R9] = 12,
2125 [PERF_REG_X86_R10] = 13,
2126 [PERF_REG_X86_R11] = 14,
2127 [PERF_REG_X86_R12] = 15,
2128 [PERF_REG_X86_R13] = 16,
2129 [PERF_REG_X86_R14] = 17,
2130 [PERF_REG_X86_R15] = 18,
2131 };
2132
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2133 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2134 const struct intel_pt_blk_items *items,
2135 u64 regs_mask)
2136 {
2137 const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2138 u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2139 u32 bit;
2140 int i;
2141
2142 for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2143 /* Get the PEBS gp_regs array index */
2144 int n = pebs_gp_regs[i] - 1;
2145
2146 if (n < 0)
2147 continue;
2148 /*
2149 * Add only registers that were requested (i.e. 'regs_mask') and
2150 * that were provided (i.e. 'mask'), and update the resulting
2151 * mask (i.e. 'intr_regs->mask') accordingly.
2152 */
2153 if (mask & 1 << n && regs_mask & bit) {
2154 intr_regs->mask |= bit;
2155 *pos++ = gp_regs[n];
2156 }
2157 }
2158
2159 return pos;
2160 }
2161
2162 #ifndef PERF_REG_X86_XMM0
2163 #define PERF_REG_X86_XMM0 32
2164 #endif
2165
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2166 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2167 const struct intel_pt_blk_items *items,
2168 u64 regs_mask)
2169 {
2170 u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2171 const u64 *xmm = items->xmm;
2172
2173 /*
2174 * If there are any XMM registers, then there should be all of them.
2175 * Nevertheless, follow the logic to add only registers that were
2176 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2177 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2178 */
2179 intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2180
2181 for (; mask; mask >>= 1, xmm++) {
2182 if (mask & 1)
2183 *pos++ = *xmm;
2184 }
2185 }
2186
2187 #define LBR_INFO_MISPRED (1ULL << 63)
2188 #define LBR_INFO_IN_TX (1ULL << 62)
2189 #define LBR_INFO_ABORT (1ULL << 61)
2190 #define LBR_INFO_CYCLES 0xffff
2191
2192 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)2193 static u64 intel_pt_lbr_flags(u64 info)
2194 {
2195 union {
2196 struct branch_flags flags;
2197 u64 result;
2198 } u;
2199
2200 u.result = 0;
2201 u.flags.mispred = !!(info & LBR_INFO_MISPRED);
2202 u.flags.predicted = !(info & LBR_INFO_MISPRED);
2203 u.flags.in_tx = !!(info & LBR_INFO_IN_TX);
2204 u.flags.abort = !!(info & LBR_INFO_ABORT);
2205 u.flags.cycles = info & LBR_INFO_CYCLES;
2206
2207 return u.result;
2208 }
2209
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)2210 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2211 const struct intel_pt_blk_items *items)
2212 {
2213 u64 *to;
2214 int i;
2215
2216 br_stack->nr = 0;
2217
2218 to = &br_stack->entries[0].from;
2219
2220 for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2221 u32 mask = items->mask[i];
2222 const u64 *from = items->val[i];
2223
2224 for (; mask; mask >>= 3, from += 3) {
2225 if ((mask & 7) == 7) {
2226 *to++ = from[0];
2227 *to++ = from[1];
2228 *to++ = intel_pt_lbr_flags(from[2]);
2229 br_stack->nr += 1;
2230 }
2231 }
2232 }
2233 }
2234
intel_pt_do_synth_pebs_sample(struct intel_pt_queue * ptq,struct evsel * evsel,u64 id)2235 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2236 {
2237 const struct intel_pt_blk_items *items = &ptq->state->items;
2238 struct perf_sample sample = { .ip = 0, };
2239 union perf_event *event = ptq->event_buf;
2240 struct intel_pt *pt = ptq->pt;
2241 u64 sample_type = evsel->core.attr.sample_type;
2242 u8 cpumode;
2243 u64 regs[8 * sizeof(sample.intr_regs.mask)];
2244
2245 if (intel_pt_skip_event(pt))
2246 return 0;
2247
2248 intel_pt_prep_a_sample(ptq, event, &sample);
2249
2250 sample.id = id;
2251 sample.stream_id = id;
2252
2253 if (!evsel->core.attr.freq)
2254 sample.period = evsel->core.attr.sample_period;
2255
2256 /* No support for non-zero CS base */
2257 if (items->has_ip)
2258 sample.ip = items->ip;
2259 else if (items->has_rip)
2260 sample.ip = items->rip;
2261 else
2262 sample.ip = ptq->state->from_ip;
2263
2264 cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2265
2266 event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2267
2268 sample.cpumode = cpumode;
2269
2270 if (sample_type & PERF_SAMPLE_TIME) {
2271 u64 timestamp = 0;
2272
2273 if (items->has_timestamp)
2274 timestamp = items->timestamp;
2275 else if (!pt->timeless_decoding)
2276 timestamp = ptq->timestamp;
2277 if (timestamp)
2278 sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2279 }
2280
2281 if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2282 pt->synth_opts.callchain) {
2283 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2284 pt->synth_opts.callchain_sz, sample.ip,
2285 pt->kernel_start);
2286 sample.callchain = ptq->chain;
2287 }
2288
2289 if (sample_type & PERF_SAMPLE_REGS_INTR &&
2290 (items->mask[INTEL_PT_GP_REGS_POS] ||
2291 items->mask[INTEL_PT_XMM_POS])) {
2292 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2293 u64 *pos;
2294
2295 sample.intr_regs.abi = items->is_32_bit ?
2296 PERF_SAMPLE_REGS_ABI_32 :
2297 PERF_SAMPLE_REGS_ABI_64;
2298 sample.intr_regs.regs = regs;
2299
2300 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2301
2302 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2303 }
2304
2305 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2306 if (items->mask[INTEL_PT_LBR_0_POS] ||
2307 items->mask[INTEL_PT_LBR_1_POS] ||
2308 items->mask[INTEL_PT_LBR_2_POS]) {
2309 intel_pt_add_lbrs(ptq->last_branch, items);
2310 } else if (pt->synth_opts.last_branch) {
2311 thread_stack__br_sample(ptq->thread, ptq->cpu,
2312 ptq->last_branch,
2313 pt->br_stack_sz);
2314 } else {
2315 ptq->last_branch->nr = 0;
2316 }
2317 sample.branch_stack = ptq->last_branch;
2318 }
2319
2320 if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2321 sample.addr = items->mem_access_address;
2322
2323 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2324 /*
2325 * Refer kernel's setup_pebs_adaptive_sample_data() and
2326 * intel_hsw_weight().
2327 */
2328 if (items->has_mem_access_latency) {
2329 u64 weight = items->mem_access_latency >> 32;
2330
2331 /*
2332 * Starts from SPR, the mem access latency field
2333 * contains both cache latency [47:32] and instruction
2334 * latency [15:0]. The cache latency is the same as the
2335 * mem access latency on previous platforms.
2336 *
2337 * In practice, no memory access could last than 4G
2338 * cycles. Use latency >> 32 to distinguish the
2339 * different format of the mem access latency field.
2340 */
2341 if (weight > 0) {
2342 sample.weight = weight & 0xffff;
2343 sample.ins_lat = items->mem_access_latency & 0xffff;
2344 } else
2345 sample.weight = items->mem_access_latency;
2346 }
2347 if (!sample.weight && items->has_tsx_aux_info) {
2348 /* Cycles last block */
2349 sample.weight = (u32)items->tsx_aux_info;
2350 }
2351 }
2352
2353 if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2354 u64 ax = items->has_rax ? items->rax : 0;
2355 /* Refer kernel's intel_hsw_transaction() */
2356 u64 txn = (u8)(items->tsx_aux_info >> 32);
2357
2358 /* For RTM XABORTs also log the abort code from AX */
2359 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2360 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2361 sample.transaction = txn;
2362 }
2363
2364 return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2365 }
2366
intel_pt_synth_single_pebs_sample(struct intel_pt_queue * ptq)2367 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2368 {
2369 struct intel_pt *pt = ptq->pt;
2370 struct evsel *evsel = pt->pebs_evsel;
2371 u64 id = evsel->core.id[0];
2372
2373 return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2374 }
2375
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)2376 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2377 {
2378 const struct intel_pt_blk_items *items = &ptq->state->items;
2379 struct intel_pt_pebs_event *pe;
2380 struct intel_pt *pt = ptq->pt;
2381 int err = -EINVAL;
2382 int hw_id;
2383
2384 if (!items->has_applicable_counters || !items->applicable_counters) {
2385 if (!pt->single_pebs)
2386 pr_err("PEBS-via-PT record with no applicable_counters\n");
2387 return intel_pt_synth_single_pebs_sample(ptq);
2388 }
2389
2390 for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2391 pe = &ptq->pebs[hw_id];
2392 if (!pe->evsel) {
2393 if (!pt->single_pebs)
2394 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2395 hw_id);
2396 return intel_pt_synth_single_pebs_sample(ptq);
2397 }
2398 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2399 if (err)
2400 return err;
2401 }
2402
2403 return err;
2404 }
2405
intel_pt_synth_events_sample(struct intel_pt_queue * ptq)2406 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2407 {
2408 struct intel_pt *pt = ptq->pt;
2409 union perf_event *event = ptq->event_buf;
2410 struct perf_sample sample = { .ip = 0, };
2411 struct {
2412 struct perf_synth_intel_evt cfe;
2413 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2414 } raw;
2415 int i;
2416
2417 if (intel_pt_skip_event(pt))
2418 return 0;
2419
2420 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2421
2422 sample.id = ptq->pt->evt_id;
2423 sample.stream_id = ptq->pt->evt_id;
2424
2425 raw.cfe.type = ptq->state->cfe_type;
2426 raw.cfe.reserved = 0;
2427 raw.cfe.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2428 raw.cfe.vector = ptq->state->cfe_vector;
2429 raw.cfe.evd_cnt = ptq->state->evd_cnt;
2430
2431 for (i = 0; i < ptq->state->evd_cnt; i++) {
2432 raw.evd[i].et = 0;
2433 raw.evd[i].evd_type = ptq->state->evd[i].type;
2434 raw.evd[i].payload = ptq->state->evd[i].payload;
2435 }
2436
2437 sample.raw_size = perf_synth__raw_size(raw) +
2438 ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2439 sample.raw_data = perf_synth__raw_data(&raw);
2440
2441 return intel_pt_deliver_synth_event(pt, event, &sample,
2442 pt->evt_sample_type);
2443 }
2444
intel_pt_synth_iflag_chg_sample(struct intel_pt_queue * ptq)2445 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2446 {
2447 struct intel_pt *pt = ptq->pt;
2448 union perf_event *event = ptq->event_buf;
2449 struct perf_sample sample = { .ip = 0, };
2450 struct perf_synth_intel_iflag_chg raw;
2451
2452 if (intel_pt_skip_event(pt))
2453 return 0;
2454
2455 intel_pt_prep_p_sample(pt, ptq, event, &sample);
2456
2457 sample.id = ptq->pt->iflag_chg_id;
2458 sample.stream_id = ptq->pt->iflag_chg_id;
2459
2460 raw.flags = 0;
2461 raw.iflag = ptq->state->to_iflag;
2462
2463 if (ptq->state->type & INTEL_PT_BRANCH) {
2464 raw.via_branch = 1;
2465 raw.branch_ip = ptq->state->to_ip;
2466 } else {
2467 sample.addr = 0;
2468 }
2469 sample.flags = ptq->flags;
2470
2471 sample.raw_size = perf_synth__raw_size(raw);
2472 sample.raw_data = perf_synth__raw_data(&raw);
2473
2474 return intel_pt_deliver_synth_event(pt, event, &sample,
2475 pt->iflag_chg_sample_type);
2476 }
2477
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp,pid_t machine_pid,int vcpu)2478 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2479 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2480 pid_t machine_pid, int vcpu)
2481 {
2482 bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2483 bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2484 union perf_event event;
2485 char msg[MAX_AUXTRACE_ERROR_MSG];
2486 int err;
2487
2488 if (pt->synth_opts.error_minus_flags) {
2489 if (code == INTEL_PT_ERR_OVR &&
2490 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2491 return 0;
2492 if (code == INTEL_PT_ERR_LOST &&
2493 pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2494 return 0;
2495 }
2496
2497 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2498
2499 auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2500 code, cpu, pid, tid, ip, msg, timestamp,
2501 machine_pid, vcpu);
2502
2503 if (intel_pt_enable_logging && !log_on_stdout) {
2504 FILE *fp = intel_pt_log_fp();
2505
2506 if (fp)
2507 perf_event__fprintf_auxtrace_error(&event, fp);
2508 }
2509
2510 if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2511 intel_pt_log_dump_buf();
2512
2513 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2514 if (err)
2515 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2516 err);
2517
2518 return err;
2519 }
2520
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2521 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2522 const struct intel_pt_state *state)
2523 {
2524 struct intel_pt *pt = ptq->pt;
2525 u64 tm = ptq->timestamp;
2526 pid_t machine_pid = 0;
2527 pid_t pid = ptq->pid;
2528 pid_t tid = ptq->tid;
2529 int vcpu = -1;
2530
2531 tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2532
2533 if (pt->have_guest_sideband && state->from_nr) {
2534 machine_pid = ptq->guest_machine_pid;
2535 vcpu = ptq->vcpu;
2536 pid = ptq->guest_pid;
2537 tid = ptq->guest_tid;
2538 }
2539
2540 return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2541 state->from_ip, tm, machine_pid, vcpu);
2542 }
2543
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2544 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2545 {
2546 struct auxtrace_queue *queue;
2547 pid_t tid = ptq->next_tid;
2548 int err;
2549
2550 if (tid == -1)
2551 return 0;
2552
2553 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2554
2555 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2556
2557 queue = &pt->queues.queue_array[ptq->queue_nr];
2558 intel_pt_set_pid_tid_cpu(pt, queue);
2559
2560 ptq->next_tid = -1;
2561
2562 return err;
2563 }
2564
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2565 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2566 {
2567 struct intel_pt *pt = ptq->pt;
2568
2569 return ip == pt->switch_ip &&
2570 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2571 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2572 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2573 }
2574
2575 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2576 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2577
intel_pt_sample(struct intel_pt_queue * ptq)2578 static int intel_pt_sample(struct intel_pt_queue *ptq)
2579 {
2580 const struct intel_pt_state *state = ptq->state;
2581 struct intel_pt *pt = ptq->pt;
2582 int err;
2583
2584 if (!ptq->have_sample)
2585 return 0;
2586
2587 ptq->have_sample = false;
2588
2589 if (pt->synth_opts.approx_ipc) {
2590 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2591 ptq->ipc_cyc_cnt = ptq->state->cycles;
2592 ptq->sample_ipc = true;
2593 } else {
2594 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2595 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2596 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2597 }
2598
2599 /* Ensure guest code maps are set up */
2600 if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2601 intel_pt_get_guest(ptq);
2602
2603 /*
2604 * Do PEBS first to allow for the possibility that the PEBS timestamp
2605 * precedes the current timestamp.
2606 */
2607 if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2608 err = intel_pt_synth_pebs_sample(ptq);
2609 if (err)
2610 return err;
2611 }
2612
2613 if (pt->synth_opts.intr_events) {
2614 if (state->type & INTEL_PT_EVT) {
2615 err = intel_pt_synth_events_sample(ptq);
2616 if (err)
2617 return err;
2618 }
2619 if (state->type & INTEL_PT_IFLAG_CHG) {
2620 err = intel_pt_synth_iflag_chg_sample(ptq);
2621 if (err)
2622 return err;
2623 }
2624 }
2625
2626 if (pt->sample_pwr_events) {
2627 if (state->type & INTEL_PT_PSB_EVT) {
2628 err = intel_pt_synth_psb_sample(ptq);
2629 if (err)
2630 return err;
2631 }
2632 if (ptq->state->cbr != ptq->cbr_seen) {
2633 err = intel_pt_synth_cbr_sample(ptq);
2634 if (err)
2635 return err;
2636 }
2637 if (state->type & INTEL_PT_PWR_EVT) {
2638 if (state->type & INTEL_PT_MWAIT_OP) {
2639 err = intel_pt_synth_mwait_sample(ptq);
2640 if (err)
2641 return err;
2642 }
2643 if (state->type & INTEL_PT_PWR_ENTRY) {
2644 err = intel_pt_synth_pwre_sample(ptq);
2645 if (err)
2646 return err;
2647 }
2648 if (state->type & INTEL_PT_EX_STOP) {
2649 err = intel_pt_synth_exstop_sample(ptq);
2650 if (err)
2651 return err;
2652 }
2653 if (state->type & INTEL_PT_PWR_EXIT) {
2654 err = intel_pt_synth_pwrx_sample(ptq);
2655 if (err)
2656 return err;
2657 }
2658 }
2659 }
2660
2661 if (state->type & INTEL_PT_INSTRUCTION) {
2662 if (pt->sample_instructions) {
2663 err = intel_pt_synth_instruction_sample(ptq);
2664 if (err)
2665 return err;
2666 }
2667 if (pt->sample_cycles) {
2668 err = intel_pt_synth_cycle_sample(ptq);
2669 if (err)
2670 return err;
2671 }
2672 }
2673
2674 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2675 err = intel_pt_synth_transaction_sample(ptq);
2676 if (err)
2677 return err;
2678 }
2679
2680 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2681 err = intel_pt_synth_ptwrite_sample(ptq);
2682 if (err)
2683 return err;
2684 }
2685
2686 if (!(state->type & INTEL_PT_BRANCH))
2687 return 0;
2688
2689 if (pt->use_thread_stack) {
2690 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2691 state->from_ip, state->to_ip, ptq->insn_len,
2692 state->trace_nr, pt->callstack,
2693 pt->br_stack_sz_plus,
2694 pt->mispred_all);
2695 } else {
2696 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2697 }
2698
2699 if (pt->sample_branches) {
2700 if (state->from_nr != state->to_nr &&
2701 state->from_ip && state->to_ip) {
2702 struct intel_pt_state *st = (struct intel_pt_state *)state;
2703 u64 to_ip = st->to_ip;
2704 u64 from_ip = st->from_ip;
2705
2706 /*
2707 * perf cannot handle having different machines for ip
2708 * and addr, so create 2 branches.
2709 */
2710 st->to_ip = 0;
2711 err = intel_pt_synth_branch_sample(ptq);
2712 if (err)
2713 return err;
2714 st->from_ip = 0;
2715 st->to_ip = to_ip;
2716 err = intel_pt_synth_branch_sample(ptq);
2717 st->from_ip = from_ip;
2718 } else {
2719 err = intel_pt_synth_branch_sample(ptq);
2720 }
2721 if (err)
2722 return err;
2723 }
2724
2725 if (!ptq->sync_switch)
2726 return 0;
2727
2728 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2729 switch (ptq->switch_state) {
2730 case INTEL_PT_SS_NOT_TRACING:
2731 case INTEL_PT_SS_UNKNOWN:
2732 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2733 err = intel_pt_next_tid(pt, ptq);
2734 if (err)
2735 return err;
2736 ptq->switch_state = INTEL_PT_SS_TRACING;
2737 break;
2738 default:
2739 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2740 return 1;
2741 }
2742 } else if (!state->to_ip) {
2743 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2744 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2745 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2746 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2747 state->to_ip == pt->ptss_ip &&
2748 (ptq->flags & PERF_IP_FLAG_CALL)) {
2749 ptq->switch_state = INTEL_PT_SS_TRACING;
2750 }
2751
2752 return 0;
2753 }
2754
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2755 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2756 {
2757 struct machine *machine = pt->machine;
2758 struct map *map;
2759 struct symbol *sym, *start;
2760 u64 ip, switch_ip = 0;
2761 const char *ptss;
2762
2763 if (ptss_ip)
2764 *ptss_ip = 0;
2765
2766 map = machine__kernel_map(machine);
2767 if (!map)
2768 return 0;
2769
2770 if (map__load(map))
2771 return 0;
2772
2773 start = dso__first_symbol(map__dso(map));
2774
2775 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2776 if (sym->binding == STB_GLOBAL &&
2777 !strcmp(sym->name, "__switch_to")) {
2778 ip = map__unmap_ip(map, sym->start);
2779 if (ip >= map__start(map) && ip < map__end(map)) {
2780 switch_ip = ip;
2781 break;
2782 }
2783 }
2784 }
2785
2786 if (!switch_ip || !ptss_ip)
2787 return 0;
2788
2789 if (pt->have_sched_switch == 1)
2790 ptss = "perf_trace_sched_switch";
2791 else
2792 ptss = "__perf_event_task_sched_out";
2793
2794 for (sym = start; sym; sym = dso__next_symbol(sym)) {
2795 if (!strcmp(sym->name, ptss)) {
2796 ip = map__unmap_ip(map, sym->start);
2797 if (ip >= map__start(map) && ip < map__end(map)) {
2798 *ptss_ip = ip;
2799 break;
2800 }
2801 }
2802 }
2803
2804 return switch_ip;
2805 }
2806
intel_pt_enable_sync_switch(struct intel_pt * pt)2807 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2808 {
2809 unsigned int i;
2810
2811 if (pt->sync_switch_not_supported)
2812 return;
2813
2814 pt->sync_switch = true;
2815
2816 for (i = 0; i < pt->queues.nr_queues; i++) {
2817 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2818 struct intel_pt_queue *ptq = queue->priv;
2819
2820 if (ptq)
2821 ptq->sync_switch = true;
2822 }
2823 }
2824
intel_pt_disable_sync_switch(struct intel_pt * pt)2825 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2826 {
2827 unsigned int i;
2828
2829 pt->sync_switch = false;
2830
2831 for (i = 0; i < pt->queues.nr_queues; i++) {
2832 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2833 struct intel_pt_queue *ptq = queue->priv;
2834
2835 if (ptq) {
2836 ptq->sync_switch = false;
2837 intel_pt_next_tid(pt, ptq);
2838 }
2839 }
2840 }
2841
2842 /*
2843 * To filter against time ranges, it is only necessary to look at the next start
2844 * or end time.
2845 */
intel_pt_next_time(struct intel_pt_queue * ptq)2846 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2847 {
2848 struct intel_pt *pt = ptq->pt;
2849
2850 if (ptq->sel_start) {
2851 /* Next time is an end time */
2852 ptq->sel_start = false;
2853 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2854 return true;
2855 } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2856 /* Next time is a start time */
2857 ptq->sel_start = true;
2858 ptq->sel_idx += 1;
2859 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2860 return true;
2861 }
2862
2863 /* No next time */
2864 return false;
2865 }
2866
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)2867 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2868 {
2869 int err;
2870
2871 while (1) {
2872 if (ptq->sel_start) {
2873 if (ptq->timestamp >= ptq->sel_timestamp) {
2874 /* After start time, so consider next time */
2875 intel_pt_next_time(ptq);
2876 if (!ptq->sel_timestamp) {
2877 /* No end time */
2878 return 0;
2879 }
2880 /* Check against end time */
2881 continue;
2882 }
2883 /* Before start time, so fast forward */
2884 ptq->have_sample = false;
2885 if (ptq->sel_timestamp > *ff_timestamp) {
2886 if (ptq->sync_switch) {
2887 intel_pt_next_tid(ptq->pt, ptq);
2888 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2889 }
2890 *ff_timestamp = ptq->sel_timestamp;
2891 err = intel_pt_fast_forward(ptq->decoder,
2892 ptq->sel_timestamp);
2893 if (err)
2894 return err;
2895 }
2896 return 0;
2897 } else if (ptq->timestamp > ptq->sel_timestamp) {
2898 /* After end time, so consider next time */
2899 if (!intel_pt_next_time(ptq)) {
2900 /* No next time range, so stop decoding */
2901 ptq->have_sample = false;
2902 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2903 return 1;
2904 }
2905 /* Check against next start time */
2906 continue;
2907 } else {
2908 /* Before end time */
2909 return 0;
2910 }
2911 }
2912 }
2913
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)2914 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2915 {
2916 const struct intel_pt_state *state = ptq->state;
2917 struct intel_pt *pt = ptq->pt;
2918 u64 ff_timestamp = 0;
2919 int err;
2920
2921 if (!pt->kernel_start) {
2922 pt->kernel_start = machine__kernel_start(pt->machine);
2923 if (pt->per_cpu_mmaps &&
2924 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2925 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2926 !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2927 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2928 if (pt->switch_ip) {
2929 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2930 pt->switch_ip, pt->ptss_ip);
2931 intel_pt_enable_sync_switch(pt);
2932 }
2933 }
2934 }
2935
2936 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2937 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2938 while (1) {
2939 err = intel_pt_sample(ptq);
2940 if (err)
2941 return err;
2942
2943 state = intel_pt_decode(ptq->decoder);
2944 if (state->err) {
2945 if (state->err == INTEL_PT_ERR_NODATA)
2946 return 1;
2947 if (ptq->sync_switch &&
2948 state->from_ip >= pt->kernel_start) {
2949 ptq->sync_switch = false;
2950 intel_pt_next_tid(pt, ptq);
2951 }
2952 ptq->timestamp = state->est_timestamp;
2953 if (pt->synth_opts.errors) {
2954 err = intel_ptq_synth_error(ptq, state);
2955 if (err)
2956 return err;
2957 }
2958 continue;
2959 }
2960
2961 ptq->state = state;
2962 ptq->have_sample = true;
2963 intel_pt_sample_flags(ptq);
2964
2965 /* Use estimated TSC upon return to user space */
2966 if (pt->est_tsc &&
2967 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2968 state->to_ip && state->to_ip < pt->kernel_start) {
2969 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2970 state->timestamp, state->est_timestamp);
2971 ptq->timestamp = state->est_timestamp;
2972 /* Use estimated TSC in unknown switch state */
2973 } else if (ptq->sync_switch &&
2974 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2975 intel_pt_is_switch_ip(ptq, state->to_ip) &&
2976 ptq->next_tid == -1) {
2977 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2978 state->timestamp, state->est_timestamp);
2979 ptq->timestamp = state->est_timestamp;
2980 } else if (state->timestamp > ptq->timestamp) {
2981 ptq->timestamp = state->timestamp;
2982 }
2983
2984 if (ptq->sel_timestamp) {
2985 err = intel_pt_time_filter(ptq, &ff_timestamp);
2986 if (err)
2987 return err;
2988 }
2989
2990 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2991 *timestamp = ptq->timestamp;
2992 return 0;
2993 }
2994 }
2995 return 0;
2996 }
2997
intel_pt_update_queues(struct intel_pt * pt)2998 static inline int intel_pt_update_queues(struct intel_pt *pt)
2999 {
3000 if (pt->queues.new_data) {
3001 pt->queues.new_data = false;
3002 return intel_pt_setup_queues(pt);
3003 }
3004 return 0;
3005 }
3006
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)3007 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3008 {
3009 unsigned int queue_nr;
3010 u64 ts;
3011 int ret;
3012
3013 while (1) {
3014 struct auxtrace_queue *queue;
3015 struct intel_pt_queue *ptq;
3016
3017 if (!pt->heap.heap_cnt)
3018 return 0;
3019
3020 if (pt->heap.heap_array[0].ordinal >= timestamp)
3021 return 0;
3022
3023 queue_nr = pt->heap.heap_array[0].queue_nr;
3024 queue = &pt->queues.queue_array[queue_nr];
3025 ptq = queue->priv;
3026
3027 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3028 queue_nr, pt->heap.heap_array[0].ordinal,
3029 timestamp);
3030
3031 auxtrace_heap__pop(&pt->heap);
3032
3033 if (pt->heap.heap_cnt) {
3034 ts = pt->heap.heap_array[0].ordinal + 1;
3035 if (ts > timestamp)
3036 ts = timestamp;
3037 } else {
3038 ts = timestamp;
3039 }
3040
3041 intel_pt_set_pid_tid_cpu(pt, queue);
3042
3043 ret = intel_pt_run_decoder(ptq, &ts);
3044
3045 if (ret < 0) {
3046 auxtrace_heap__add(&pt->heap, queue_nr, ts);
3047 return ret;
3048 }
3049
3050 if (!ret) {
3051 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3052 if (ret < 0)
3053 return ret;
3054 } else {
3055 ptq->on_heap = false;
3056 }
3057 }
3058
3059 return 0;
3060 }
3061
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)3062 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3063 u64 time_)
3064 {
3065 struct auxtrace_queues *queues = &pt->queues;
3066 unsigned int i;
3067 u64 ts = 0;
3068
3069 for (i = 0; i < queues->nr_queues; i++) {
3070 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3071 struct intel_pt_queue *ptq = queue->priv;
3072
3073 if (ptq && (tid == -1 || ptq->tid == tid)) {
3074 ptq->time = time_;
3075 intel_pt_set_pid_tid_cpu(pt, queue);
3076 intel_pt_run_decoder(ptq, &ts);
3077 }
3078 }
3079 return 0;
3080 }
3081
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)3082 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3083 struct auxtrace_queue *queue,
3084 struct perf_sample *sample)
3085 {
3086 struct machine *m = ptq->pt->machine;
3087
3088 ptq->pid = sample->pid;
3089 ptq->tid = sample->tid;
3090 ptq->cpu = queue->cpu;
3091
3092 intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3093 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3094
3095 thread__zput(ptq->thread);
3096
3097 if (ptq->tid == -1)
3098 return;
3099
3100 if (ptq->pid == -1) {
3101 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3102 if (ptq->thread)
3103 ptq->pid = thread__pid(ptq->thread);
3104 return;
3105 }
3106
3107 ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3108 }
3109
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)3110 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3111 struct perf_sample *sample)
3112 {
3113 struct auxtrace_queue *queue;
3114 struct intel_pt_queue *ptq;
3115 u64 ts = 0;
3116
3117 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3118 if (!queue)
3119 return -EINVAL;
3120
3121 ptq = queue->priv;
3122 if (!ptq)
3123 return 0;
3124
3125 ptq->stop = false;
3126 ptq->time = sample->time;
3127 intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3128 intel_pt_run_decoder(ptq, &ts);
3129 return 0;
3130 }
3131
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)3132 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3133 {
3134 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3135 sample->pid, sample->tid, 0, sample->time,
3136 sample->machine_pid, sample->vcpu);
3137 }
3138
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)3139 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3140 {
3141 unsigned i, j;
3142
3143 if (cpu < 0 || !pt->queues.nr_queues)
3144 return NULL;
3145
3146 if ((unsigned)cpu >= pt->queues.nr_queues)
3147 i = pt->queues.nr_queues - 1;
3148 else
3149 i = cpu;
3150
3151 if (pt->queues.queue_array[i].cpu == cpu)
3152 return pt->queues.queue_array[i].priv;
3153
3154 for (j = 0; i > 0; j++) {
3155 if (pt->queues.queue_array[--i].cpu == cpu)
3156 return pt->queues.queue_array[i].priv;
3157 }
3158
3159 for (; j < pt->queues.nr_queues; j++) {
3160 if (pt->queues.queue_array[j].cpu == cpu)
3161 return pt->queues.queue_array[j].priv;
3162 }
3163
3164 return NULL;
3165 }
3166
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)3167 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3168 u64 timestamp)
3169 {
3170 struct intel_pt_queue *ptq;
3171 int err;
3172
3173 if (!pt->sync_switch)
3174 return 1;
3175
3176 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3177 if (!ptq || !ptq->sync_switch)
3178 return 1;
3179
3180 switch (ptq->switch_state) {
3181 case INTEL_PT_SS_NOT_TRACING:
3182 break;
3183 case INTEL_PT_SS_UNKNOWN:
3184 case INTEL_PT_SS_TRACING:
3185 ptq->next_tid = tid;
3186 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3187 return 0;
3188 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3189 if (!ptq->on_heap) {
3190 ptq->timestamp = perf_time_to_tsc(timestamp,
3191 &pt->tc);
3192 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3193 ptq->timestamp);
3194 if (err)
3195 return err;
3196 ptq->on_heap = true;
3197 }
3198 ptq->switch_state = INTEL_PT_SS_TRACING;
3199 break;
3200 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3201 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3202 break;
3203 default:
3204 break;
3205 }
3206
3207 ptq->next_tid = -1;
3208
3209 return 1;
3210 }
3211
3212 #ifdef HAVE_LIBTRACEEVENT
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)3213 static int intel_pt_process_switch(struct intel_pt *pt,
3214 struct perf_sample *sample)
3215 {
3216 pid_t tid;
3217 int cpu, ret;
3218 struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3219
3220 if (evsel != pt->switch_evsel)
3221 return 0;
3222
3223 tid = evsel__intval(evsel, sample, "next_pid");
3224 cpu = sample->cpu;
3225
3226 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3227 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3228 &pt->tc));
3229
3230 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3231 if (ret <= 0)
3232 return ret;
3233
3234 return machine__set_current_tid(pt->machine, cpu, -1, tid);
3235 }
3236 #endif /* HAVE_LIBTRACEEVENT */
3237
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)3238 static int intel_pt_context_switch_in(struct intel_pt *pt,
3239 struct perf_sample *sample)
3240 {
3241 pid_t pid = sample->pid;
3242 pid_t tid = sample->tid;
3243 int cpu = sample->cpu;
3244
3245 if (pt->sync_switch) {
3246 struct intel_pt_queue *ptq;
3247
3248 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3249 if (ptq && ptq->sync_switch) {
3250 ptq->next_tid = -1;
3251 switch (ptq->switch_state) {
3252 case INTEL_PT_SS_NOT_TRACING:
3253 case INTEL_PT_SS_UNKNOWN:
3254 case INTEL_PT_SS_TRACING:
3255 break;
3256 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3257 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3258 ptq->switch_state = INTEL_PT_SS_TRACING;
3259 break;
3260 default:
3261 break;
3262 }
3263 }
3264 }
3265
3266 /*
3267 * If the current tid has not been updated yet, ensure it is now that
3268 * a "switch in" event has occurred.
3269 */
3270 if (machine__get_current_tid(pt->machine, cpu) == tid)
3271 return 0;
3272
3273 return machine__set_current_tid(pt->machine, cpu, pid, tid);
3274 }
3275
intel_pt_guest_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3276 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3277 union perf_event *event,
3278 struct perf_sample *sample)
3279 {
3280 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3281 struct machines *machines = &pt->session->machines;
3282 struct machine *machine = machines__find(machines, sample->machine_pid);
3283
3284 pt->have_guest_sideband = true;
3285
3286 /*
3287 * sync_switch cannot handle guest machines at present, so just disable
3288 * it.
3289 */
3290 pt->sync_switch_not_supported = true;
3291 if (pt->sync_switch)
3292 intel_pt_disable_sync_switch(pt);
3293
3294 if (out)
3295 return 0;
3296
3297 if (!machine)
3298 return -EINVAL;
3299
3300 return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3301 }
3302
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3303 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3304 struct perf_sample *sample)
3305 {
3306 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3307 pid_t pid, tid;
3308 int cpu, ret;
3309
3310 if (perf_event__is_guest(event))
3311 return intel_pt_guest_context_switch(pt, event, sample);
3312
3313 cpu = sample->cpu;
3314
3315 if (pt->have_sched_switch == 3) {
3316 if (!out)
3317 return intel_pt_context_switch_in(pt, sample);
3318 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3319 pr_err("Expecting CPU-wide context switch event\n");
3320 return -EINVAL;
3321 }
3322 pid = event->context_switch.next_prev_pid;
3323 tid = event->context_switch.next_prev_tid;
3324 } else {
3325 if (out)
3326 return 0;
3327 pid = sample->pid;
3328 tid = sample->tid;
3329 }
3330
3331 if (tid == -1)
3332 intel_pt_log("context_switch event has no tid\n");
3333
3334 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3335 if (ret <= 0)
3336 return ret;
3337
3338 return machine__set_current_tid(pt->machine, cpu, pid, tid);
3339 }
3340
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3341 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3342 union perf_event *event,
3343 struct perf_sample *sample)
3344 {
3345 if (!pt->per_cpu_mmaps)
3346 return 0;
3347
3348 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3349 sample->cpu, event->itrace_start.pid,
3350 event->itrace_start.tid, sample->time,
3351 perf_time_to_tsc(sample->time, &pt->tc));
3352
3353 return machine__set_current_tid(pt->machine, sample->cpu,
3354 event->itrace_start.pid,
3355 event->itrace_start.tid);
3356 }
3357
intel_pt_process_aux_output_hw_id(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3358 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3359 union perf_event *event,
3360 struct perf_sample *sample)
3361 {
3362 u64 hw_id = event->aux_output_hw_id.hw_id;
3363 struct auxtrace_queue *queue;
3364 struct intel_pt_queue *ptq;
3365 struct evsel *evsel;
3366
3367 queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3368 evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3369 if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3370 pr_err("Bad AUX output hardware ID\n");
3371 return -EINVAL;
3372 }
3373
3374 ptq = queue->priv;
3375
3376 ptq->pebs[hw_id].evsel = evsel;
3377 ptq->pebs[hw_id].id = sample->id;
3378
3379 return 0;
3380 }
3381
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)3382 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3383 struct addr_location *al)
3384 {
3385 if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3386 if (!thread__find_map(thread, cpumode, addr, al))
3387 return -1;
3388 }
3389
3390 return 0;
3391 }
3392
3393 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)3394 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3395 {
3396 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3397 u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3398 /* Assume text poke begins in a basic block no more than 4096 bytes */
3399 int cnt = 4096 + event->text_poke.new_len;
3400 struct thread *thread = pt->unknown_thread;
3401 struct addr_location al;
3402 struct machine *machine = pt->machine;
3403 struct intel_pt_cache_entry *e;
3404 u64 offset;
3405 int ret = 0;
3406
3407 addr_location__init(&al);
3408 if (!event->text_poke.new_len)
3409 goto out;
3410
3411 for (; cnt; cnt--, addr--) {
3412 struct dso *dso;
3413
3414 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3415 if (addr < event->text_poke.addr)
3416 goto out;
3417 continue;
3418 }
3419
3420 dso = map__dso(al.map);
3421 if (!dso || !dso->auxtrace_cache)
3422 continue;
3423
3424 offset = map__map_ip(al.map, addr);
3425
3426 e = intel_pt_cache_lookup(dso, machine, offset);
3427 if (!e)
3428 continue;
3429
3430 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3431 /*
3432 * No overlap. Working backwards there cannot be another
3433 * basic block that overlaps the text poke if there is a
3434 * branch instruction before the text poke address.
3435 */
3436 if (e->branch != INTEL_PT_BR_NO_BRANCH)
3437 goto out;
3438 } else {
3439 intel_pt_cache_invalidate(dso, machine, offset);
3440 intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3441 dso->long_name, addr);
3442 }
3443 }
3444 out:
3445 addr_location__exit(&al);
3446 return ret;
3447 }
3448
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)3449 static int intel_pt_process_event(struct perf_session *session,
3450 union perf_event *event,
3451 struct perf_sample *sample,
3452 struct perf_tool *tool)
3453 {
3454 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3455 auxtrace);
3456 u64 timestamp;
3457 int err = 0;
3458
3459 if (dump_trace)
3460 return 0;
3461
3462 if (!tool->ordered_events) {
3463 pr_err("Intel Processor Trace requires ordered events\n");
3464 return -EINVAL;
3465 }
3466
3467 if (sample->time && sample->time != (u64)-1)
3468 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3469 else
3470 timestamp = 0;
3471
3472 if (timestamp || pt->timeless_decoding) {
3473 err = intel_pt_update_queues(pt);
3474 if (err)
3475 return err;
3476 }
3477
3478 if (pt->timeless_decoding) {
3479 if (pt->sampling_mode) {
3480 if (sample->aux_sample.size)
3481 err = intel_pt_process_timeless_sample(pt,
3482 sample);
3483 } else if (event->header.type == PERF_RECORD_EXIT) {
3484 err = intel_pt_process_timeless_queues(pt,
3485 event->fork.tid,
3486 sample->time);
3487 }
3488 } else if (timestamp) {
3489 if (!pt->first_timestamp)
3490 intel_pt_first_timestamp(pt, timestamp);
3491 err = intel_pt_process_queues(pt, timestamp);
3492 }
3493 if (err)
3494 return err;
3495
3496 if (event->header.type == PERF_RECORD_SAMPLE) {
3497 if (pt->synth_opts.add_callchain && !sample->callchain)
3498 intel_pt_add_callchain(pt, sample);
3499 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3500 intel_pt_add_br_stack(pt, sample);
3501 }
3502
3503 if (event->header.type == PERF_RECORD_AUX &&
3504 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3505 pt->synth_opts.errors) {
3506 err = intel_pt_lost(pt, sample);
3507 if (err)
3508 return err;
3509 }
3510
3511 #ifdef HAVE_LIBTRACEEVENT
3512 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3513 err = intel_pt_process_switch(pt, sample);
3514 else
3515 #endif
3516 if (event->header.type == PERF_RECORD_ITRACE_START)
3517 err = intel_pt_process_itrace_start(pt, event, sample);
3518 else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3519 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3520 else if (event->header.type == PERF_RECORD_SWITCH ||
3521 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3522 err = intel_pt_context_switch(pt, event, sample);
3523
3524 if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3525 err = intel_pt_text_poke(pt, event);
3526
3527 if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3528 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3529 event->header.type, sample->cpu, sample->time, timestamp);
3530 intel_pt_log_event(event);
3531 }
3532
3533 return err;
3534 }
3535
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)3536 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3537 {
3538 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3539 auxtrace);
3540 int ret;
3541
3542 if (dump_trace)
3543 return 0;
3544
3545 if (!tool->ordered_events)
3546 return -EINVAL;
3547
3548 ret = intel_pt_update_queues(pt);
3549 if (ret < 0)
3550 return ret;
3551
3552 if (pt->timeless_decoding)
3553 return intel_pt_process_timeless_queues(pt, -1,
3554 MAX_TIMESTAMP - 1);
3555
3556 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3557 }
3558
intel_pt_free_events(struct perf_session * session)3559 static void intel_pt_free_events(struct perf_session *session)
3560 {
3561 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3562 auxtrace);
3563 struct auxtrace_queues *queues = &pt->queues;
3564 unsigned int i;
3565
3566 for (i = 0; i < queues->nr_queues; i++) {
3567 intel_pt_free_queue(queues->queue_array[i].priv);
3568 queues->queue_array[i].priv = NULL;
3569 }
3570 intel_pt_log_disable();
3571 auxtrace_queues__free(queues);
3572 }
3573
intel_pt_free(struct perf_session * session)3574 static void intel_pt_free(struct perf_session *session)
3575 {
3576 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3577 auxtrace);
3578
3579 auxtrace_heap__free(&pt->heap);
3580 intel_pt_free_events(session);
3581 session->auxtrace = NULL;
3582 intel_pt_free_vmcs_info(pt);
3583 thread__put(pt->unknown_thread);
3584 addr_filters__exit(&pt->filts);
3585 zfree(&pt->chain);
3586 zfree(&pt->filter);
3587 zfree(&pt->time_ranges);
3588 zfree(&pt->br_stack);
3589 free(pt);
3590 }
3591
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3592 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3593 struct evsel *evsel)
3594 {
3595 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3596 auxtrace);
3597
3598 return evsel->core.attr.type == pt->pmu_type;
3599 }
3600
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)3601 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3602 union perf_event *event,
3603 struct perf_tool *tool __maybe_unused)
3604 {
3605 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3606 auxtrace);
3607
3608 if (!pt->data_queued) {
3609 struct auxtrace_buffer *buffer;
3610 off_t data_offset;
3611 int fd = perf_data__fd(session->data);
3612 int err;
3613
3614 if (perf_data__is_pipe(session->data)) {
3615 data_offset = 0;
3616 } else {
3617 data_offset = lseek(fd, 0, SEEK_CUR);
3618 if (data_offset == -1)
3619 return -errno;
3620 }
3621
3622 err = auxtrace_queues__add_event(&pt->queues, session, event,
3623 data_offset, &buffer);
3624 if (err)
3625 return err;
3626
3627 /* Dump here now we have copied a piped trace out of the pipe */
3628 if (dump_trace) {
3629 if (auxtrace_buffer__get_data(buffer, fd)) {
3630 intel_pt_dump_event(pt, buffer->data,
3631 buffer->size);
3632 auxtrace_buffer__put_data(buffer);
3633 }
3634 }
3635 }
3636
3637 return 0;
3638 }
3639
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3640 static int intel_pt_queue_data(struct perf_session *session,
3641 struct perf_sample *sample,
3642 union perf_event *event, u64 data_offset)
3643 {
3644 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3645 auxtrace);
3646 u64 timestamp;
3647
3648 if (event) {
3649 return auxtrace_queues__add_event(&pt->queues, session, event,
3650 data_offset, NULL);
3651 }
3652
3653 if (sample->time && sample->time != (u64)-1)
3654 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3655 else
3656 timestamp = 0;
3657
3658 return auxtrace_queues__add_sample(&pt->queues, session, sample,
3659 data_offset, timestamp);
3660 }
3661
3662 struct intel_pt_synth {
3663 struct perf_tool dummy_tool;
3664 struct perf_session *session;
3665 };
3666
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)3667 static int intel_pt_event_synth(struct perf_tool *tool,
3668 union perf_event *event,
3669 struct perf_sample *sample __maybe_unused,
3670 struct machine *machine __maybe_unused)
3671 {
3672 struct intel_pt_synth *intel_pt_synth =
3673 container_of(tool, struct intel_pt_synth, dummy_tool);
3674
3675 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3676 NULL);
3677 }
3678
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3679 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3680 struct perf_event_attr *attr, u64 id)
3681 {
3682 struct intel_pt_synth intel_pt_synth;
3683 int err;
3684
3685 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3686 name, id, (u64)attr->sample_type);
3687
3688 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3689 intel_pt_synth.session = session;
3690
3691 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3692 &id, intel_pt_event_synth);
3693 if (err)
3694 pr_err("%s: failed to synthesize '%s' event type\n",
3695 __func__, name);
3696
3697 return err;
3698 }
3699
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3700 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3701 const char *name)
3702 {
3703 struct evsel *evsel;
3704
3705 evlist__for_each_entry(evlist, evsel) {
3706 if (evsel->core.id && evsel->core.id[0] == id) {
3707 if (evsel->name)
3708 zfree(&evsel->name);
3709 evsel->name = strdup(name);
3710 break;
3711 }
3712 }
3713 }
3714
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3715 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3716 struct evlist *evlist)
3717 {
3718 struct evsel *evsel;
3719
3720 evlist__for_each_entry(evlist, evsel) {
3721 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3722 return evsel;
3723 }
3724
3725 return NULL;
3726 }
3727
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3728 static int intel_pt_synth_events(struct intel_pt *pt,
3729 struct perf_session *session)
3730 {
3731 struct evlist *evlist = session->evlist;
3732 struct evsel *evsel = intel_pt_evsel(pt, evlist);
3733 struct perf_event_attr attr;
3734 u64 id;
3735 int err;
3736
3737 if (!evsel) {
3738 pr_debug("There are no selected events with Intel Processor Trace data\n");
3739 return 0;
3740 }
3741
3742 memset(&attr, 0, sizeof(struct perf_event_attr));
3743 attr.size = sizeof(struct perf_event_attr);
3744 attr.type = PERF_TYPE_HARDWARE;
3745 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3746 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3747 PERF_SAMPLE_PERIOD;
3748 if (pt->timeless_decoding)
3749 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3750 else
3751 attr.sample_type |= PERF_SAMPLE_TIME;
3752 if (!pt->per_cpu_mmaps)
3753 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3754 attr.exclude_user = evsel->core.attr.exclude_user;
3755 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3756 attr.exclude_hv = evsel->core.attr.exclude_hv;
3757 attr.exclude_host = evsel->core.attr.exclude_host;
3758 attr.exclude_guest = evsel->core.attr.exclude_guest;
3759 attr.sample_id_all = evsel->core.attr.sample_id_all;
3760 attr.read_format = evsel->core.attr.read_format;
3761
3762 id = evsel->core.id[0] + 1000000000;
3763 if (!id)
3764 id = 1;
3765
3766 if (pt->synth_opts.branches) {
3767 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3768 attr.sample_period = 1;
3769 attr.sample_type |= PERF_SAMPLE_ADDR;
3770 err = intel_pt_synth_event(session, "branches", &attr, id);
3771 if (err)
3772 return err;
3773 pt->sample_branches = true;
3774 pt->branches_sample_type = attr.sample_type;
3775 pt->branches_id = id;
3776 id += 1;
3777 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3778 }
3779
3780 if (pt->synth_opts.callchain)
3781 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3782 if (pt->synth_opts.last_branch) {
3783 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3784 /*
3785 * We don't use the hardware index, but the sample generation
3786 * code uses the new format branch_stack with this field,
3787 * so the event attributes must indicate that it's present.
3788 */
3789 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3790 }
3791
3792 if (pt->synth_opts.instructions) {
3793 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3794 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3795 attr.sample_period =
3796 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3797 else
3798 attr.sample_period = pt->synth_opts.period;
3799 err = intel_pt_synth_event(session, "instructions", &attr, id);
3800 if (err)
3801 return err;
3802 pt->sample_instructions = true;
3803 pt->instructions_sample_type = attr.sample_type;
3804 pt->instructions_id = id;
3805 id += 1;
3806 }
3807
3808 if (pt->synth_opts.cycles) {
3809 attr.config = PERF_COUNT_HW_CPU_CYCLES;
3810 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3811 attr.sample_period =
3812 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3813 else
3814 attr.sample_period = pt->synth_opts.period;
3815 err = intel_pt_synth_event(session, "cycles", &attr, id);
3816 if (err)
3817 return err;
3818 pt->sample_cycles = true;
3819 pt->cycles_sample_type = attr.sample_type;
3820 pt->cycles_id = id;
3821 id += 1;
3822 }
3823
3824 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3825 attr.sample_period = 1;
3826
3827 if (pt->synth_opts.transactions) {
3828 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3829 err = intel_pt_synth_event(session, "transactions", &attr, id);
3830 if (err)
3831 return err;
3832 pt->sample_transactions = true;
3833 pt->transactions_sample_type = attr.sample_type;
3834 pt->transactions_id = id;
3835 intel_pt_set_event_name(evlist, id, "transactions");
3836 id += 1;
3837 }
3838
3839 attr.type = PERF_TYPE_SYNTH;
3840 attr.sample_type |= PERF_SAMPLE_RAW;
3841
3842 if (pt->synth_opts.ptwrites) {
3843 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3844 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3845 if (err)
3846 return err;
3847 pt->sample_ptwrites = true;
3848 pt->ptwrites_sample_type = attr.sample_type;
3849 pt->ptwrites_id = id;
3850 intel_pt_set_event_name(evlist, id, "ptwrite");
3851 id += 1;
3852 }
3853
3854 if (pt->synth_opts.pwr_events) {
3855 pt->sample_pwr_events = true;
3856 pt->pwr_events_sample_type = attr.sample_type;
3857
3858 attr.config = PERF_SYNTH_INTEL_CBR;
3859 err = intel_pt_synth_event(session, "cbr", &attr, id);
3860 if (err)
3861 return err;
3862 pt->cbr_id = id;
3863 intel_pt_set_event_name(evlist, id, "cbr");
3864 id += 1;
3865
3866 attr.config = PERF_SYNTH_INTEL_PSB;
3867 err = intel_pt_synth_event(session, "psb", &attr, id);
3868 if (err)
3869 return err;
3870 pt->psb_id = id;
3871 intel_pt_set_event_name(evlist, id, "psb");
3872 id += 1;
3873 }
3874
3875 if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3876 attr.config = PERF_SYNTH_INTEL_MWAIT;
3877 err = intel_pt_synth_event(session, "mwait", &attr, id);
3878 if (err)
3879 return err;
3880 pt->mwait_id = id;
3881 intel_pt_set_event_name(evlist, id, "mwait");
3882 id += 1;
3883
3884 attr.config = PERF_SYNTH_INTEL_PWRE;
3885 err = intel_pt_synth_event(session, "pwre", &attr, id);
3886 if (err)
3887 return err;
3888 pt->pwre_id = id;
3889 intel_pt_set_event_name(evlist, id, "pwre");
3890 id += 1;
3891
3892 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3893 err = intel_pt_synth_event(session, "exstop", &attr, id);
3894 if (err)
3895 return err;
3896 pt->exstop_id = id;
3897 intel_pt_set_event_name(evlist, id, "exstop");
3898 id += 1;
3899
3900 attr.config = PERF_SYNTH_INTEL_PWRX;
3901 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3902 if (err)
3903 return err;
3904 pt->pwrx_id = id;
3905 intel_pt_set_event_name(evlist, id, "pwrx");
3906 id += 1;
3907 }
3908
3909 if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3910 attr.config = PERF_SYNTH_INTEL_EVT;
3911 err = intel_pt_synth_event(session, "evt", &attr, id);
3912 if (err)
3913 return err;
3914 pt->evt_sample_type = attr.sample_type;
3915 pt->evt_id = id;
3916 intel_pt_set_event_name(evlist, id, "evt");
3917 id += 1;
3918 }
3919
3920 if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3921 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3922 err = intel_pt_synth_event(session, "iflag", &attr, id);
3923 if (err)
3924 return err;
3925 pt->iflag_chg_sample_type = attr.sample_type;
3926 pt->iflag_chg_id = id;
3927 intel_pt_set_event_name(evlist, id, "iflag");
3928 id += 1;
3929 }
3930
3931 return 0;
3932 }
3933
intel_pt_setup_pebs_events(struct intel_pt * pt)3934 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3935 {
3936 struct evsel *evsel;
3937
3938 if (!pt->synth_opts.other_events)
3939 return;
3940
3941 evlist__for_each_entry(pt->session->evlist, evsel) {
3942 if (evsel->core.attr.aux_output && evsel->core.id) {
3943 if (pt->single_pebs) {
3944 pt->single_pebs = false;
3945 return;
3946 }
3947 pt->single_pebs = true;
3948 pt->sample_pebs = true;
3949 pt->pebs_evsel = evsel;
3950 }
3951 }
3952 }
3953
intel_pt_find_sched_switch(struct evlist * evlist)3954 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3955 {
3956 struct evsel *evsel;
3957
3958 evlist__for_each_entry_reverse(evlist, evsel) {
3959 const char *name = evsel__name(evsel);
3960
3961 if (!strcmp(name, "sched:sched_switch"))
3962 return evsel;
3963 }
3964
3965 return NULL;
3966 }
3967
intel_pt_find_switch(struct evlist * evlist)3968 static bool intel_pt_find_switch(struct evlist *evlist)
3969 {
3970 struct evsel *evsel;
3971
3972 evlist__for_each_entry(evlist, evsel) {
3973 if (evsel->core.attr.context_switch)
3974 return true;
3975 }
3976
3977 return false;
3978 }
3979
intel_pt_perf_config(const char * var,const char * value,void * data)3980 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3981 {
3982 struct intel_pt *pt = data;
3983
3984 if (!strcmp(var, "intel-pt.mispred-all"))
3985 pt->mispred_all = perf_config_bool(var, value);
3986
3987 if (!strcmp(var, "intel-pt.max-loops"))
3988 perf_config_int(&pt->max_loops, var, value);
3989
3990 return 0;
3991 }
3992
3993 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)3994 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3995 {
3996 u64 tsc, tm;
3997
3998 tsc = perf_time_to_tsc(ns, &pt->tc);
3999
4000 while (1) {
4001 tm = tsc_to_perf_time(tsc, &pt->tc);
4002 if (tm < ns)
4003 break;
4004 tsc -= 1;
4005 }
4006
4007 while (tm < ns)
4008 tm = tsc_to_perf_time(++tsc, &pt->tc);
4009
4010 return tsc;
4011 }
4012
4013 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)4014 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4015 {
4016 u64 tsc, tm;
4017
4018 tsc = perf_time_to_tsc(ns, &pt->tc);
4019
4020 while (1) {
4021 tm = tsc_to_perf_time(tsc, &pt->tc);
4022 if (tm > ns)
4023 break;
4024 tsc += 1;
4025 }
4026
4027 while (tm > ns)
4028 tm = tsc_to_perf_time(--tsc, &pt->tc);
4029
4030 return tsc;
4031 }
4032
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)4033 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4034 struct itrace_synth_opts *opts)
4035 {
4036 struct perf_time_interval *p = opts->ptime_range;
4037 int n = opts->range_num;
4038 int i;
4039
4040 if (!n || !p || pt->timeless_decoding)
4041 return 0;
4042
4043 pt->time_ranges = calloc(n, sizeof(struct range));
4044 if (!pt->time_ranges)
4045 return -ENOMEM;
4046
4047 pt->range_cnt = n;
4048
4049 intel_pt_log("%s: %u range(s)\n", __func__, n);
4050
4051 for (i = 0; i < n; i++) {
4052 struct range *r = &pt->time_ranges[i];
4053 u64 ts = p[i].start;
4054 u64 te = p[i].end;
4055
4056 /*
4057 * Take care to ensure the TSC range matches the perf-time range
4058 * when converted back to perf-time.
4059 */
4060 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4061 r->end = te ? intel_pt_tsc_end(te, pt) : 0;
4062
4063 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4064 i, ts, te);
4065 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4066 i, r->start, r->end);
4067 }
4068
4069 return 0;
4070 }
4071
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)4072 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4073 {
4074 struct intel_pt_vmcs_info *vmcs_info;
4075 u64 tsc_offset, vmcs;
4076 char *p = *args;
4077
4078 errno = 0;
4079
4080 p = skip_spaces(p);
4081 if (!*p)
4082 return 1;
4083
4084 tsc_offset = strtoull(p, &p, 0);
4085 if (errno)
4086 return -errno;
4087 p = skip_spaces(p);
4088 if (*p != ':') {
4089 pt->dflt_tsc_offset = tsc_offset;
4090 *args = p;
4091 return 0;
4092 }
4093 p += 1;
4094 while (1) {
4095 vmcs = strtoull(p, &p, 0);
4096 if (errno)
4097 return -errno;
4098 if (!vmcs)
4099 return -EINVAL;
4100 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4101 if (!vmcs_info)
4102 return -ENOMEM;
4103 p = skip_spaces(p);
4104 if (*p != ',')
4105 break;
4106 p += 1;
4107 }
4108 *args = p;
4109 return 0;
4110 }
4111
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)4112 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4113 {
4114 char *args = pt->synth_opts.vm_tm_corr_args;
4115 int ret;
4116
4117 if (!args)
4118 return 0;
4119
4120 do {
4121 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4122 } while (!ret);
4123
4124 if (ret < 0) {
4125 pr_err("Failed to parse VM Time Correlation options\n");
4126 return ret;
4127 }
4128
4129 return 0;
4130 }
4131
4132 static const char * const intel_pt_info_fmts[] = {
4133 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
4134 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
4135 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
4136 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
4137 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
4138 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
4139 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
4140 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
4141 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
4142 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
4143 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
4144 [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n",
4145 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
4146 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
4147 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
4148 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
4149 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
4150 };
4151
intel_pt_print_info(__u64 * arr,int start,int finish)4152 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4153 {
4154 int i;
4155
4156 if (!dump_trace)
4157 return;
4158
4159 for (i = start; i <= finish; i++) {
4160 const char *fmt = intel_pt_info_fmts[i];
4161
4162 if (fmt)
4163 fprintf(stdout, fmt, arr[i]);
4164 }
4165 }
4166
intel_pt_print_info_str(const char * name,const char * str)4167 static void intel_pt_print_info_str(const char *name, const char *str)
4168 {
4169 if (!dump_trace)
4170 return;
4171
4172 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
4173 }
4174
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)4175 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4176 {
4177 return auxtrace_info->header.size >=
4178 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4179 }
4180
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)4181 int intel_pt_process_auxtrace_info(union perf_event *event,
4182 struct perf_session *session)
4183 {
4184 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4185 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4186 struct intel_pt *pt;
4187 void *info_end;
4188 __u64 *info;
4189 int err;
4190
4191 if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4192 min_sz)
4193 return -EINVAL;
4194
4195 pt = zalloc(sizeof(struct intel_pt));
4196 if (!pt)
4197 return -ENOMEM;
4198
4199 pt->vmcs_info = RB_ROOT;
4200
4201 addr_filters__init(&pt->filts);
4202
4203 err = perf_config(intel_pt_perf_config, pt);
4204 if (err)
4205 goto err_free;
4206
4207 err = auxtrace_queues__init(&pt->queues);
4208 if (err)
4209 goto err_free;
4210
4211 if (session->itrace_synth_opts->set) {
4212 pt->synth_opts = *session->itrace_synth_opts;
4213 } else {
4214 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4215
4216 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4217 if (!opts->default_no_sample && !opts->inject) {
4218 pt->synth_opts.branches = false;
4219 pt->synth_opts.callchain = true;
4220 pt->synth_opts.add_callchain = true;
4221 }
4222 pt->synth_opts.thread_stack = opts->thread_stack;
4223 }
4224
4225 if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4226 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4227
4228 pt->session = session;
4229 pt->machine = &session->machines.host; /* No kvm support */
4230 pt->auxtrace_type = auxtrace_info->type;
4231 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4232 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4233 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4234 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4235 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4236 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4237 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4238 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4239 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4240 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4241 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4242 INTEL_PT_PER_CPU_MMAPS);
4243
4244 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4245 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4246 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4247 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4248 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4249 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4250 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4251 INTEL_PT_CYC_BIT);
4252 }
4253
4254 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4255 pt->max_non_turbo_ratio =
4256 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4257 intel_pt_print_info(&auxtrace_info->priv[0],
4258 INTEL_PT_MAX_NONTURBO_RATIO,
4259 INTEL_PT_MAX_NONTURBO_RATIO);
4260 }
4261
4262 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4263 info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4264
4265 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4266 size_t len;
4267
4268 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4269 intel_pt_print_info(&auxtrace_info->priv[0],
4270 INTEL_PT_FILTER_STR_LEN,
4271 INTEL_PT_FILTER_STR_LEN);
4272 if (len) {
4273 const char *filter = (const char *)info;
4274
4275 len = roundup(len + 1, 8);
4276 info += len >> 3;
4277 if ((void *)info > info_end) {
4278 pr_err("%s: bad filter string length\n", __func__);
4279 err = -EINVAL;
4280 goto err_free_queues;
4281 }
4282 pt->filter = memdup(filter, len);
4283 if (!pt->filter) {
4284 err = -ENOMEM;
4285 goto err_free_queues;
4286 }
4287 if (session->header.needs_swap)
4288 mem_bswap_64(pt->filter, len);
4289 if (pt->filter[len - 1]) {
4290 pr_err("%s: filter string not null terminated\n", __func__);
4291 err = -EINVAL;
4292 goto err_free_queues;
4293 }
4294 err = addr_filters__parse_bare_filter(&pt->filts,
4295 filter);
4296 if (err)
4297 goto err_free_queues;
4298 }
4299 intel_pt_print_info_str("Filter string", pt->filter);
4300 }
4301
4302 if ((void *)info < info_end) {
4303 pt->cap_event_trace = *info++;
4304 if (dump_trace)
4305 fprintf(stdout, " Cap Event Trace %d\n",
4306 pt->cap_event_trace);
4307 }
4308
4309 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4310 if (pt->timeless_decoding && !pt->tc.time_mult)
4311 pt->tc.time_mult = 1;
4312 pt->have_tsc = intel_pt_have_tsc(pt);
4313 pt->sampling_mode = intel_pt_sampling_mode(pt);
4314 pt->est_tsc = !pt->timeless_decoding;
4315
4316 if (pt->synth_opts.vm_time_correlation) {
4317 if (pt->timeless_decoding) {
4318 pr_err("Intel PT has no time information for VM Time Correlation\n");
4319 err = -EINVAL;
4320 goto err_free_queues;
4321 }
4322 if (session->itrace_synth_opts->ptime_range) {
4323 pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4324 err = -EINVAL;
4325 goto err_free_queues;
4326 }
4327 /* Currently TSC Offset is calculated using MTC packets */
4328 if (!intel_pt_have_mtc(pt)) {
4329 pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4330 err = -EINVAL;
4331 goto err_free_queues;
4332 }
4333 err = intel_pt_parse_vm_tm_corr_args(pt);
4334 if (err)
4335 goto err_free_queues;
4336 }
4337
4338 pt->unknown_thread = thread__new(999999999, 999999999);
4339 if (!pt->unknown_thread) {
4340 err = -ENOMEM;
4341 goto err_free_queues;
4342 }
4343
4344 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4345 if (err)
4346 goto err_delete_thread;
4347 if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4348 err = -ENOMEM;
4349 goto err_delete_thread;
4350 }
4351
4352 pt->auxtrace.process_event = intel_pt_process_event;
4353 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4354 pt->auxtrace.queue_data = intel_pt_queue_data;
4355 pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4356 pt->auxtrace.flush_events = intel_pt_flush;
4357 pt->auxtrace.free_events = intel_pt_free_events;
4358 pt->auxtrace.free = intel_pt_free;
4359 pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4360 session->auxtrace = &pt->auxtrace;
4361
4362 if (dump_trace)
4363 return 0;
4364
4365 if (pt->have_sched_switch == 1) {
4366 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4367 if (!pt->switch_evsel) {
4368 pr_err("%s: missing sched_switch event\n", __func__);
4369 err = -EINVAL;
4370 goto err_delete_thread;
4371 }
4372 } else if (pt->have_sched_switch == 2 &&
4373 !intel_pt_find_switch(session->evlist)) {
4374 pr_err("%s: missing context_switch attribute flag\n", __func__);
4375 err = -EINVAL;
4376 goto err_delete_thread;
4377 }
4378
4379 if (pt->synth_opts.log) {
4380 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4381 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4382
4383 intel_pt_log_enable(log_on_error, log_on_error_size);
4384 }
4385
4386 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4387 if (pt->tc.time_mult) {
4388 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4389
4390 if (!pt->max_non_turbo_ratio)
4391 pt->max_non_turbo_ratio =
4392 (tsc_freq + 50000000) / 100000000;
4393 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4394 intel_pt_log("Maximum non-turbo ratio %u\n",
4395 pt->max_non_turbo_ratio);
4396 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4397 }
4398
4399 err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4400 if (err)
4401 goto err_delete_thread;
4402
4403 if (pt->synth_opts.calls)
4404 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4405 PERF_IP_FLAG_TRACE_END;
4406 if (pt->synth_opts.returns)
4407 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4408 PERF_IP_FLAG_TRACE_BEGIN;
4409
4410 if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4411 !symbol_conf.use_callchain) {
4412 symbol_conf.use_callchain = true;
4413 if (callchain_register_param(&callchain_param) < 0) {
4414 symbol_conf.use_callchain = false;
4415 pt->synth_opts.callchain = false;
4416 pt->synth_opts.add_callchain = false;
4417 }
4418 }
4419
4420 if (pt->synth_opts.add_callchain) {
4421 err = intel_pt_callchain_init(pt);
4422 if (err)
4423 goto err_delete_thread;
4424 }
4425
4426 if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4427 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4428 pt->br_stack_sz_plus = pt->br_stack_sz;
4429 }
4430
4431 if (pt->synth_opts.add_last_branch) {
4432 err = intel_pt_br_stack_init(pt);
4433 if (err)
4434 goto err_delete_thread;
4435 /*
4436 * Additional branch stack size to cater for tracing from the
4437 * actual sample ip to where the sample time is recorded.
4438 * Measured at about 200 branches, but generously set to 1024.
4439 * If kernel space is not being traced, then add just 1 for the
4440 * branch to kernel space.
4441 */
4442 if (intel_pt_tracing_kernel(pt))
4443 pt->br_stack_sz_plus += 1024;
4444 else
4445 pt->br_stack_sz_plus += 1;
4446 }
4447
4448 pt->use_thread_stack = pt->synth_opts.callchain ||
4449 pt->synth_opts.add_callchain ||
4450 pt->synth_opts.thread_stack ||
4451 pt->synth_opts.last_branch ||
4452 pt->synth_opts.add_last_branch;
4453
4454 pt->callstack = pt->synth_opts.callchain ||
4455 pt->synth_opts.add_callchain ||
4456 pt->synth_opts.thread_stack;
4457
4458 err = intel_pt_synth_events(pt, session);
4459 if (err)
4460 goto err_delete_thread;
4461
4462 intel_pt_setup_pebs_events(pt);
4463
4464 if (perf_data__is_pipe(session->data)) {
4465 pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4466 " The output cannot relied upon. In particular,\n"
4467 " timestamps and the order of events may be incorrect.\n");
4468 }
4469
4470 if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4471 err = auxtrace_queue_data(session, true, true);
4472 else
4473 err = auxtrace_queues__process_index(&pt->queues, session);
4474 if (err)
4475 goto err_delete_thread;
4476
4477 if (pt->queues.populated)
4478 pt->data_queued = true;
4479
4480 if (pt->timeless_decoding)
4481 pr_debug2("Intel PT decoding without timestamps\n");
4482
4483 return 0;
4484
4485 err_delete_thread:
4486 zfree(&pt->chain);
4487 thread__zput(pt->unknown_thread);
4488 err_free_queues:
4489 intel_pt_log_disable();
4490 auxtrace_queues__free(&pt->queues);
4491 session->auxtrace = NULL;
4492 err_free:
4493 addr_filters__exit(&pt->filts);
4494 zfree(&pt->filter);
4495 zfree(&pt->time_ranges);
4496 free(pt);
4497 return err;
4498 }
4499