xref: /openbmc/linux/tools/perf/util/hist.c (revision f2a89d3b)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11 
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 				       struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 					  struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 					  struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 					  struct hist_entry *he);
20 
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 	return hists->col_len[col];
24 }
25 
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 	hists->col_len[col] = len;
29 }
30 
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 	if (len > hists__col_len(hists, col)) {
34 		hists__set_col_len(hists, col, len);
35 		return true;
36 	}
37 	return false;
38 }
39 
40 void hists__reset_col_len(struct hists *hists)
41 {
42 	enum hist_column col;
43 
44 	for (col = 0; col < HISTC_NR_COLS; ++col)
45 		hists__set_col_len(hists, col, 0);
46 }
47 
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51 
52 	if (hists__col_len(hists, dso) < unresolved_col_width &&
53 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 	    !symbol_conf.dso_list)
55 		hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57 
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 	int symlen;
62 	u16 len;
63 
64 	/*
65 	 * +4 accounts for '[x] ' priv level info
66 	 * +2 accounts for 0x prefix on raw addresses
67 	 * +3 accounts for ' y ' symtab origin info
68 	 */
69 	if (h->ms.sym) {
70 		symlen = h->ms.sym->namelen + 4;
71 		if (verbose)
72 			symlen += BITS_PER_LONG / 4 + 2 + 3;
73 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 	} else {
75 		symlen = unresolved_col_width + 4 + 2;
76 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 	}
79 
80 	len = thread__comm_len(h->thread);
81 	if (hists__new_col_len(hists, HISTC_COMM, len))
82 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
83 
84 	if (h->ms.map) {
85 		len = dso__name_len(h->ms.map->dso);
86 		hists__new_col_len(hists, HISTC_DSO, len);
87 	}
88 
89 	if (h->parent)
90 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91 
92 	if (h->branch_info) {
93 		if (h->branch_info->from.sym) {
94 			symlen = (int)h->branch_info->from.sym->namelen + 4;
95 			if (verbose)
96 				symlen += BITS_PER_LONG / 4 + 2 + 3;
97 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98 
99 			symlen = dso__name_len(h->branch_info->from.map->dso);
100 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 		} else {
102 			symlen = unresolved_col_width + 4 + 2;
103 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 		}
106 
107 		if (h->branch_info->to.sym) {
108 			symlen = (int)h->branch_info->to.sym->namelen + 4;
109 			if (verbose)
110 				symlen += BITS_PER_LONG / 4 + 2 + 3;
111 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112 
113 			symlen = dso__name_len(h->branch_info->to.map->dso);
114 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 		} else {
116 			symlen = unresolved_col_width + 4 + 2;
117 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 		}
120 
121 		if (h->branch_info->srcline_from)
122 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
123 					strlen(h->branch_info->srcline_from));
124 		if (h->branch_info->srcline_to)
125 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
126 					strlen(h->branch_info->srcline_to));
127 	}
128 
129 	if (h->mem_info) {
130 		if (h->mem_info->daddr.sym) {
131 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
132 			       + unresolved_col_width + 2;
133 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
134 					   symlen);
135 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
136 					   symlen + 1);
137 		} else {
138 			symlen = unresolved_col_width + 4 + 2;
139 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 					   symlen);
141 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 					   symlen);
143 		}
144 
145 		if (h->mem_info->iaddr.sym) {
146 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
147 			       + unresolved_col_width + 2;
148 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
149 					   symlen);
150 		} else {
151 			symlen = unresolved_col_width + 4 + 2;
152 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
153 					   symlen);
154 		}
155 
156 		if (h->mem_info->daddr.map) {
157 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
158 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
159 					   symlen);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
163 		}
164 	} else {
165 		symlen = unresolved_col_width + 4 + 2;
166 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
167 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
168 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 	}
170 
171 	hists__new_col_len(hists, HISTC_CPU, 3);
172 	hists__new_col_len(hists, HISTC_SOCKET, 6);
173 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
174 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
175 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
176 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
177 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
178 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
179 
180 	if (h->srcline)
181 		hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
182 
183 	if (h->srcfile)
184 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
185 
186 	if (h->transaction)
187 		hists__new_col_len(hists, HISTC_TRANSACTION,
188 				   hist_entry__transaction_len());
189 
190 	if (h->trace_output)
191 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
192 }
193 
194 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
195 {
196 	struct rb_node *next = rb_first(&hists->entries);
197 	struct hist_entry *n;
198 	int row = 0;
199 
200 	hists__reset_col_len(hists);
201 
202 	while (next && row++ < max_rows) {
203 		n = rb_entry(next, struct hist_entry, rb_node);
204 		if (!n->filtered)
205 			hists__calc_col_len(hists, n);
206 		next = rb_next(&n->rb_node);
207 	}
208 }
209 
210 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
211 					unsigned int cpumode, u64 period)
212 {
213 	switch (cpumode) {
214 	case PERF_RECORD_MISC_KERNEL:
215 		he_stat->period_sys += period;
216 		break;
217 	case PERF_RECORD_MISC_USER:
218 		he_stat->period_us += period;
219 		break;
220 	case PERF_RECORD_MISC_GUEST_KERNEL:
221 		he_stat->period_guest_sys += period;
222 		break;
223 	case PERF_RECORD_MISC_GUEST_USER:
224 		he_stat->period_guest_us += period;
225 		break;
226 	default:
227 		break;
228 	}
229 }
230 
231 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
232 				u64 weight)
233 {
234 
235 	he_stat->period		+= period;
236 	he_stat->weight		+= weight;
237 	he_stat->nr_events	+= 1;
238 }
239 
240 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
241 {
242 	dest->period		+= src->period;
243 	dest->period_sys	+= src->period_sys;
244 	dest->period_us		+= src->period_us;
245 	dest->period_guest_sys	+= src->period_guest_sys;
246 	dest->period_guest_us	+= src->period_guest_us;
247 	dest->nr_events		+= src->nr_events;
248 	dest->weight		+= src->weight;
249 }
250 
251 static void he_stat__decay(struct he_stat *he_stat)
252 {
253 	he_stat->period = (he_stat->period * 7) / 8;
254 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
255 	/* XXX need decay for weight too? */
256 }
257 
258 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
259 
260 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
261 {
262 	u64 prev_period = he->stat.period;
263 	u64 diff;
264 
265 	if (prev_period == 0)
266 		return true;
267 
268 	he_stat__decay(&he->stat);
269 	if (symbol_conf.cumulate_callchain)
270 		he_stat__decay(he->stat_acc);
271 	decay_callchain(he->callchain);
272 
273 	diff = prev_period - he->stat.period;
274 
275 	if (!he->depth) {
276 		hists->stats.total_period -= diff;
277 		if (!he->filtered)
278 			hists->stats.total_non_filtered_period -= diff;
279 	}
280 
281 	if (!he->leaf) {
282 		struct hist_entry *child;
283 		struct rb_node *node = rb_first(&he->hroot_out);
284 		while (node) {
285 			child = rb_entry(node, struct hist_entry, rb_node);
286 			node = rb_next(node);
287 
288 			if (hists__decay_entry(hists, child))
289 				hists__delete_entry(hists, child);
290 		}
291 	}
292 
293 	return he->stat.period == 0;
294 }
295 
296 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
297 {
298 	struct rb_root *root_in;
299 	struct rb_root *root_out;
300 
301 	if (he->parent_he) {
302 		root_in  = &he->parent_he->hroot_in;
303 		root_out = &he->parent_he->hroot_out;
304 	} else {
305 		if (hists__has(hists, need_collapse))
306 			root_in = &hists->entries_collapsed;
307 		else
308 			root_in = hists->entries_in;
309 		root_out = &hists->entries;
310 	}
311 
312 	rb_erase(&he->rb_node_in, root_in);
313 	rb_erase(&he->rb_node, root_out);
314 
315 	--hists->nr_entries;
316 	if (!he->filtered)
317 		--hists->nr_non_filtered_entries;
318 
319 	hist_entry__delete(he);
320 }
321 
322 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
323 {
324 	struct rb_node *next = rb_first(&hists->entries);
325 	struct hist_entry *n;
326 
327 	while (next) {
328 		n = rb_entry(next, struct hist_entry, rb_node);
329 		next = rb_next(&n->rb_node);
330 		if (((zap_user && n->level == '.') ||
331 		     (zap_kernel && n->level != '.') ||
332 		     hists__decay_entry(hists, n))) {
333 			hists__delete_entry(hists, n);
334 		}
335 	}
336 }
337 
338 void hists__delete_entries(struct hists *hists)
339 {
340 	struct rb_node *next = rb_first(&hists->entries);
341 	struct hist_entry *n;
342 
343 	while (next) {
344 		n = rb_entry(next, struct hist_entry, rb_node);
345 		next = rb_next(&n->rb_node);
346 
347 		hists__delete_entry(hists, n);
348 	}
349 }
350 
351 /*
352  * histogram, sorted on item, collects periods
353  */
354 
355 static int hist_entry__init(struct hist_entry *he,
356 			    struct hist_entry *template,
357 			    bool sample_self)
358 {
359 	*he = *template;
360 
361 	if (symbol_conf.cumulate_callchain) {
362 		he->stat_acc = malloc(sizeof(he->stat));
363 		if (he->stat_acc == NULL)
364 			return -ENOMEM;
365 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
366 		if (!sample_self)
367 			memset(&he->stat, 0, sizeof(he->stat));
368 	}
369 
370 	map__get(he->ms.map);
371 
372 	if (he->branch_info) {
373 		/*
374 		 * This branch info is (a part of) allocated from
375 		 * sample__resolve_bstack() and will be freed after
376 		 * adding new entries.  So we need to save a copy.
377 		 */
378 		he->branch_info = malloc(sizeof(*he->branch_info));
379 		if (he->branch_info == NULL) {
380 			map__zput(he->ms.map);
381 			free(he->stat_acc);
382 			return -ENOMEM;
383 		}
384 
385 		memcpy(he->branch_info, template->branch_info,
386 		       sizeof(*he->branch_info));
387 
388 		map__get(he->branch_info->from.map);
389 		map__get(he->branch_info->to.map);
390 	}
391 
392 	if (he->mem_info) {
393 		map__get(he->mem_info->iaddr.map);
394 		map__get(he->mem_info->daddr.map);
395 	}
396 
397 	if (symbol_conf.use_callchain)
398 		callchain_init(he->callchain);
399 
400 	if (he->raw_data) {
401 		he->raw_data = memdup(he->raw_data, he->raw_size);
402 
403 		if (he->raw_data == NULL) {
404 			map__put(he->ms.map);
405 			if (he->branch_info) {
406 				map__put(he->branch_info->from.map);
407 				map__put(he->branch_info->to.map);
408 				free(he->branch_info);
409 			}
410 			if (he->mem_info) {
411 				map__put(he->mem_info->iaddr.map);
412 				map__put(he->mem_info->daddr.map);
413 			}
414 			free(he->stat_acc);
415 			return -ENOMEM;
416 		}
417 	}
418 	INIT_LIST_HEAD(&he->pairs.node);
419 	thread__get(he->thread);
420 
421 	if (!symbol_conf.report_hierarchy)
422 		he->leaf = true;
423 
424 	return 0;
425 }
426 
427 static void *hist_entry__zalloc(size_t size)
428 {
429 	return zalloc(size + sizeof(struct hist_entry));
430 }
431 
432 static void hist_entry__free(void *ptr)
433 {
434 	free(ptr);
435 }
436 
437 static struct hist_entry_ops default_ops = {
438 	.new	= hist_entry__zalloc,
439 	.free	= hist_entry__free,
440 };
441 
442 static struct hist_entry *hist_entry__new(struct hist_entry *template,
443 					  bool sample_self)
444 {
445 	struct hist_entry_ops *ops = template->ops;
446 	size_t callchain_size = 0;
447 	struct hist_entry *he;
448 	int err = 0;
449 
450 	if (!ops)
451 		ops = template->ops = &default_ops;
452 
453 	if (symbol_conf.use_callchain)
454 		callchain_size = sizeof(struct callchain_root);
455 
456 	he = ops->new(callchain_size);
457 	if (he) {
458 		err = hist_entry__init(he, template, sample_self);
459 		if (err) {
460 			ops->free(he);
461 			he = NULL;
462 		}
463 	}
464 
465 	return he;
466 }
467 
468 static u8 symbol__parent_filter(const struct symbol *parent)
469 {
470 	if (symbol_conf.exclude_other && parent == NULL)
471 		return 1 << HIST_FILTER__PARENT;
472 	return 0;
473 }
474 
475 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
476 {
477 	if (!symbol_conf.use_callchain)
478 		return;
479 
480 	he->hists->callchain_period += period;
481 	if (!he->filtered)
482 		he->hists->callchain_non_filtered_period += period;
483 }
484 
485 static struct hist_entry *hists__findnew_entry(struct hists *hists,
486 					       struct hist_entry *entry,
487 					       struct addr_location *al,
488 					       bool sample_self)
489 {
490 	struct rb_node **p;
491 	struct rb_node *parent = NULL;
492 	struct hist_entry *he;
493 	int64_t cmp;
494 	u64 period = entry->stat.period;
495 	u64 weight = entry->stat.weight;
496 
497 	p = &hists->entries_in->rb_node;
498 
499 	while (*p != NULL) {
500 		parent = *p;
501 		he = rb_entry(parent, struct hist_entry, rb_node_in);
502 
503 		/*
504 		 * Make sure that it receives arguments in a same order as
505 		 * hist_entry__collapse() so that we can use an appropriate
506 		 * function when searching an entry regardless which sort
507 		 * keys were used.
508 		 */
509 		cmp = hist_entry__cmp(he, entry);
510 
511 		if (!cmp) {
512 			if (sample_self) {
513 				he_stat__add_period(&he->stat, period, weight);
514 				hist_entry__add_callchain_period(he, period);
515 			}
516 			if (symbol_conf.cumulate_callchain)
517 				he_stat__add_period(he->stat_acc, period, weight);
518 
519 			/*
520 			 * This mem info was allocated from sample__resolve_mem
521 			 * and will not be used anymore.
522 			 */
523 			zfree(&entry->mem_info);
524 
525 			/* If the map of an existing hist_entry has
526 			 * become out-of-date due to an exec() or
527 			 * similar, update it.  Otherwise we will
528 			 * mis-adjust symbol addresses when computing
529 			 * the history counter to increment.
530 			 */
531 			if (he->ms.map != entry->ms.map) {
532 				map__put(he->ms.map);
533 				he->ms.map = map__get(entry->ms.map);
534 			}
535 			goto out;
536 		}
537 
538 		if (cmp < 0)
539 			p = &(*p)->rb_left;
540 		else
541 			p = &(*p)->rb_right;
542 	}
543 
544 	he = hist_entry__new(entry, sample_self);
545 	if (!he)
546 		return NULL;
547 
548 	if (sample_self)
549 		hist_entry__add_callchain_period(he, period);
550 	hists->nr_entries++;
551 
552 	rb_link_node(&he->rb_node_in, parent, p);
553 	rb_insert_color(&he->rb_node_in, hists->entries_in);
554 out:
555 	if (sample_self)
556 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
557 	if (symbol_conf.cumulate_callchain)
558 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
559 	return he;
560 }
561 
562 static struct hist_entry*
563 __hists__add_entry(struct hists *hists,
564 		   struct addr_location *al,
565 		   struct symbol *sym_parent,
566 		   struct branch_info *bi,
567 		   struct mem_info *mi,
568 		   struct perf_sample *sample,
569 		   bool sample_self,
570 		   struct hist_entry_ops *ops)
571 {
572 	struct hist_entry entry = {
573 		.thread	= al->thread,
574 		.comm = thread__comm(al->thread),
575 		.ms = {
576 			.map	= al->map,
577 			.sym	= al->sym,
578 		},
579 		.socket	 = al->socket,
580 		.cpu	 = al->cpu,
581 		.cpumode = al->cpumode,
582 		.ip	 = al->addr,
583 		.level	 = al->level,
584 		.stat = {
585 			.nr_events = 1,
586 			.period	= sample->period,
587 			.weight = sample->weight,
588 		},
589 		.parent = sym_parent,
590 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
591 		.hists	= hists,
592 		.branch_info = bi,
593 		.mem_info = mi,
594 		.transaction = sample->transaction,
595 		.raw_data = sample->raw_data,
596 		.raw_size = sample->raw_size,
597 		.ops = ops,
598 	};
599 
600 	return hists__findnew_entry(hists, &entry, al, sample_self);
601 }
602 
603 struct hist_entry *hists__add_entry(struct hists *hists,
604 				    struct addr_location *al,
605 				    struct symbol *sym_parent,
606 				    struct branch_info *bi,
607 				    struct mem_info *mi,
608 				    struct perf_sample *sample,
609 				    bool sample_self)
610 {
611 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
612 				  sample, sample_self, NULL);
613 }
614 
615 struct hist_entry *hists__add_entry_ops(struct hists *hists,
616 					struct hist_entry_ops *ops,
617 					struct addr_location *al,
618 					struct symbol *sym_parent,
619 					struct branch_info *bi,
620 					struct mem_info *mi,
621 					struct perf_sample *sample,
622 					bool sample_self)
623 {
624 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
625 				  sample, sample_self, ops);
626 }
627 
628 static int
629 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
630 		    struct addr_location *al __maybe_unused)
631 {
632 	return 0;
633 }
634 
635 static int
636 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
637 			struct addr_location *al __maybe_unused)
638 {
639 	return 0;
640 }
641 
642 static int
643 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
644 {
645 	struct perf_sample *sample = iter->sample;
646 	struct mem_info *mi;
647 
648 	mi = sample__resolve_mem(sample, al);
649 	if (mi == NULL)
650 		return -ENOMEM;
651 
652 	iter->priv = mi;
653 	return 0;
654 }
655 
656 static int
657 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
658 {
659 	u64 cost;
660 	struct mem_info *mi = iter->priv;
661 	struct hists *hists = evsel__hists(iter->evsel);
662 	struct perf_sample *sample = iter->sample;
663 	struct hist_entry *he;
664 
665 	if (mi == NULL)
666 		return -EINVAL;
667 
668 	cost = sample->weight;
669 	if (!cost)
670 		cost = 1;
671 
672 	/*
673 	 * must pass period=weight in order to get the correct
674 	 * sorting from hists__collapse_resort() which is solely
675 	 * based on periods. We want sorting be done on nr_events * weight
676 	 * and this is indirectly achieved by passing period=weight here
677 	 * and the he_stat__add_period() function.
678 	 */
679 	sample->period = cost;
680 
681 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
682 			      sample, true);
683 	if (!he)
684 		return -ENOMEM;
685 
686 	iter->he = he;
687 	return 0;
688 }
689 
690 static int
691 iter_finish_mem_entry(struct hist_entry_iter *iter,
692 		      struct addr_location *al __maybe_unused)
693 {
694 	struct perf_evsel *evsel = iter->evsel;
695 	struct hists *hists = evsel__hists(evsel);
696 	struct hist_entry *he = iter->he;
697 	int err = -EINVAL;
698 
699 	if (he == NULL)
700 		goto out;
701 
702 	hists__inc_nr_samples(hists, he->filtered);
703 
704 	err = hist_entry__append_callchain(he, iter->sample);
705 
706 out:
707 	/*
708 	 * We don't need to free iter->priv (mem_info) here since the mem info
709 	 * was either already freed in hists__findnew_entry() or passed to a
710 	 * new hist entry by hist_entry__new().
711 	 */
712 	iter->priv = NULL;
713 
714 	iter->he = NULL;
715 	return err;
716 }
717 
718 static int
719 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
720 {
721 	struct branch_info *bi;
722 	struct perf_sample *sample = iter->sample;
723 
724 	bi = sample__resolve_bstack(sample, al);
725 	if (!bi)
726 		return -ENOMEM;
727 
728 	iter->curr = 0;
729 	iter->total = sample->branch_stack->nr;
730 
731 	iter->priv = bi;
732 	return 0;
733 }
734 
735 static int
736 iter_add_single_branch_entry(struct hist_entry_iter *iter,
737 			     struct addr_location *al __maybe_unused)
738 {
739 	/* to avoid calling callback function */
740 	iter->he = NULL;
741 
742 	return 0;
743 }
744 
745 static int
746 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
747 {
748 	struct branch_info *bi = iter->priv;
749 	int i = iter->curr;
750 
751 	if (bi == NULL)
752 		return 0;
753 
754 	if (iter->curr >= iter->total)
755 		return 0;
756 
757 	al->map = bi[i].to.map;
758 	al->sym = bi[i].to.sym;
759 	al->addr = bi[i].to.addr;
760 	return 1;
761 }
762 
763 static int
764 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
765 {
766 	struct branch_info *bi;
767 	struct perf_evsel *evsel = iter->evsel;
768 	struct hists *hists = evsel__hists(evsel);
769 	struct perf_sample *sample = iter->sample;
770 	struct hist_entry *he = NULL;
771 	int i = iter->curr;
772 	int err = 0;
773 
774 	bi = iter->priv;
775 
776 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
777 		goto out;
778 
779 	/*
780 	 * The report shows the percentage of total branches captured
781 	 * and not events sampled. Thus we use a pseudo period of 1.
782 	 */
783 	sample->period = 1;
784 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
785 
786 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
787 			      sample, true);
788 	if (he == NULL)
789 		return -ENOMEM;
790 
791 	hists__inc_nr_samples(hists, he->filtered);
792 
793 out:
794 	iter->he = he;
795 	iter->curr++;
796 	return err;
797 }
798 
799 static int
800 iter_finish_branch_entry(struct hist_entry_iter *iter,
801 			 struct addr_location *al __maybe_unused)
802 {
803 	zfree(&iter->priv);
804 	iter->he = NULL;
805 
806 	return iter->curr >= iter->total ? 0 : -1;
807 }
808 
809 static int
810 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
811 			  struct addr_location *al __maybe_unused)
812 {
813 	return 0;
814 }
815 
816 static int
817 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
818 {
819 	struct perf_evsel *evsel = iter->evsel;
820 	struct perf_sample *sample = iter->sample;
821 	struct hist_entry *he;
822 
823 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
824 			      sample, true);
825 	if (he == NULL)
826 		return -ENOMEM;
827 
828 	iter->he = he;
829 	return 0;
830 }
831 
832 static int
833 iter_finish_normal_entry(struct hist_entry_iter *iter,
834 			 struct addr_location *al __maybe_unused)
835 {
836 	struct hist_entry *he = iter->he;
837 	struct perf_evsel *evsel = iter->evsel;
838 	struct perf_sample *sample = iter->sample;
839 
840 	if (he == NULL)
841 		return 0;
842 
843 	iter->he = NULL;
844 
845 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
846 
847 	return hist_entry__append_callchain(he, sample);
848 }
849 
850 static int
851 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
852 			      struct addr_location *al __maybe_unused)
853 {
854 	struct hist_entry **he_cache;
855 
856 	callchain_cursor_commit(&callchain_cursor);
857 
858 	/*
859 	 * This is for detecting cycles or recursions so that they're
860 	 * cumulated only one time to prevent entries more than 100%
861 	 * overhead.
862 	 */
863 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
864 	if (he_cache == NULL)
865 		return -ENOMEM;
866 
867 	iter->priv = he_cache;
868 	iter->curr = 0;
869 
870 	return 0;
871 }
872 
873 static int
874 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
875 				 struct addr_location *al)
876 {
877 	struct perf_evsel *evsel = iter->evsel;
878 	struct hists *hists = evsel__hists(evsel);
879 	struct perf_sample *sample = iter->sample;
880 	struct hist_entry **he_cache = iter->priv;
881 	struct hist_entry *he;
882 	int err = 0;
883 
884 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
885 			      sample, true);
886 	if (he == NULL)
887 		return -ENOMEM;
888 
889 	iter->he = he;
890 	he_cache[iter->curr++] = he;
891 
892 	hist_entry__append_callchain(he, sample);
893 
894 	/*
895 	 * We need to re-initialize the cursor since callchain_append()
896 	 * advanced the cursor to the end.
897 	 */
898 	callchain_cursor_commit(&callchain_cursor);
899 
900 	hists__inc_nr_samples(hists, he->filtered);
901 
902 	return err;
903 }
904 
905 static int
906 iter_next_cumulative_entry(struct hist_entry_iter *iter,
907 			   struct addr_location *al)
908 {
909 	struct callchain_cursor_node *node;
910 
911 	node = callchain_cursor_current(&callchain_cursor);
912 	if (node == NULL)
913 		return 0;
914 
915 	return fill_callchain_info(al, node, iter->hide_unresolved);
916 }
917 
918 static int
919 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
920 			       struct addr_location *al)
921 {
922 	struct perf_evsel *evsel = iter->evsel;
923 	struct perf_sample *sample = iter->sample;
924 	struct hist_entry **he_cache = iter->priv;
925 	struct hist_entry *he;
926 	struct hist_entry he_tmp = {
927 		.hists = evsel__hists(evsel),
928 		.cpu = al->cpu,
929 		.thread = al->thread,
930 		.comm = thread__comm(al->thread),
931 		.ip = al->addr,
932 		.ms = {
933 			.map = al->map,
934 			.sym = al->sym,
935 		},
936 		.parent = iter->parent,
937 		.raw_data = sample->raw_data,
938 		.raw_size = sample->raw_size,
939 	};
940 	int i;
941 	struct callchain_cursor cursor;
942 
943 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
944 
945 	callchain_cursor_advance(&callchain_cursor);
946 
947 	/*
948 	 * Check if there's duplicate entries in the callchain.
949 	 * It's possible that it has cycles or recursive calls.
950 	 */
951 	for (i = 0; i < iter->curr; i++) {
952 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
953 			/* to avoid calling callback function */
954 			iter->he = NULL;
955 			return 0;
956 		}
957 	}
958 
959 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
960 			      sample, false);
961 	if (he == NULL)
962 		return -ENOMEM;
963 
964 	iter->he = he;
965 	he_cache[iter->curr++] = he;
966 
967 	if (symbol_conf.use_callchain)
968 		callchain_append(he->callchain, &cursor, sample->period);
969 	return 0;
970 }
971 
972 static int
973 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
974 			     struct addr_location *al __maybe_unused)
975 {
976 	zfree(&iter->priv);
977 	iter->he = NULL;
978 
979 	return 0;
980 }
981 
982 const struct hist_iter_ops hist_iter_mem = {
983 	.prepare_entry 		= iter_prepare_mem_entry,
984 	.add_single_entry 	= iter_add_single_mem_entry,
985 	.next_entry 		= iter_next_nop_entry,
986 	.add_next_entry 	= iter_add_next_nop_entry,
987 	.finish_entry 		= iter_finish_mem_entry,
988 };
989 
990 const struct hist_iter_ops hist_iter_branch = {
991 	.prepare_entry 		= iter_prepare_branch_entry,
992 	.add_single_entry 	= iter_add_single_branch_entry,
993 	.next_entry 		= iter_next_branch_entry,
994 	.add_next_entry 	= iter_add_next_branch_entry,
995 	.finish_entry 		= iter_finish_branch_entry,
996 };
997 
998 const struct hist_iter_ops hist_iter_normal = {
999 	.prepare_entry 		= iter_prepare_normal_entry,
1000 	.add_single_entry 	= iter_add_single_normal_entry,
1001 	.next_entry 		= iter_next_nop_entry,
1002 	.add_next_entry 	= iter_add_next_nop_entry,
1003 	.finish_entry 		= iter_finish_normal_entry,
1004 };
1005 
1006 const struct hist_iter_ops hist_iter_cumulative = {
1007 	.prepare_entry 		= iter_prepare_cumulative_entry,
1008 	.add_single_entry 	= iter_add_single_cumulative_entry,
1009 	.next_entry 		= iter_next_cumulative_entry,
1010 	.add_next_entry 	= iter_add_next_cumulative_entry,
1011 	.finish_entry 		= iter_finish_cumulative_entry,
1012 };
1013 
1014 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1015 			 int max_stack_depth, void *arg)
1016 {
1017 	int err, err2;
1018 
1019 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1020 					iter->evsel, al, max_stack_depth);
1021 	if (err)
1022 		return err;
1023 
1024 	iter->max_stack = max_stack_depth;
1025 
1026 	err = iter->ops->prepare_entry(iter, al);
1027 	if (err)
1028 		goto out;
1029 
1030 	err = iter->ops->add_single_entry(iter, al);
1031 	if (err)
1032 		goto out;
1033 
1034 	if (iter->he && iter->add_entry_cb) {
1035 		err = iter->add_entry_cb(iter, al, true, arg);
1036 		if (err)
1037 			goto out;
1038 	}
1039 
1040 	while (iter->ops->next_entry(iter, al)) {
1041 		err = iter->ops->add_next_entry(iter, al);
1042 		if (err)
1043 			break;
1044 
1045 		if (iter->he && iter->add_entry_cb) {
1046 			err = iter->add_entry_cb(iter, al, false, arg);
1047 			if (err)
1048 				goto out;
1049 		}
1050 	}
1051 
1052 out:
1053 	err2 = iter->ops->finish_entry(iter, al);
1054 	if (!err)
1055 		err = err2;
1056 
1057 	return err;
1058 }
1059 
1060 int64_t
1061 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1062 {
1063 	struct hists *hists = left->hists;
1064 	struct perf_hpp_fmt *fmt;
1065 	int64_t cmp = 0;
1066 
1067 	hists__for_each_sort_list(hists, fmt) {
1068 		if (perf_hpp__is_dynamic_entry(fmt) &&
1069 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1070 			continue;
1071 
1072 		cmp = fmt->cmp(fmt, left, right);
1073 		if (cmp)
1074 			break;
1075 	}
1076 
1077 	return cmp;
1078 }
1079 
1080 int64_t
1081 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1082 {
1083 	struct hists *hists = left->hists;
1084 	struct perf_hpp_fmt *fmt;
1085 	int64_t cmp = 0;
1086 
1087 	hists__for_each_sort_list(hists, fmt) {
1088 		if (perf_hpp__is_dynamic_entry(fmt) &&
1089 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1090 			continue;
1091 
1092 		cmp = fmt->collapse(fmt, left, right);
1093 		if (cmp)
1094 			break;
1095 	}
1096 
1097 	return cmp;
1098 }
1099 
1100 void hist_entry__delete(struct hist_entry *he)
1101 {
1102 	struct hist_entry_ops *ops = he->ops;
1103 
1104 	thread__zput(he->thread);
1105 	map__zput(he->ms.map);
1106 
1107 	if (he->branch_info) {
1108 		map__zput(he->branch_info->from.map);
1109 		map__zput(he->branch_info->to.map);
1110 		free_srcline(he->branch_info->srcline_from);
1111 		free_srcline(he->branch_info->srcline_to);
1112 		zfree(&he->branch_info);
1113 	}
1114 
1115 	if (he->mem_info) {
1116 		map__zput(he->mem_info->iaddr.map);
1117 		map__zput(he->mem_info->daddr.map);
1118 		zfree(&he->mem_info);
1119 	}
1120 
1121 	zfree(&he->stat_acc);
1122 	free_srcline(he->srcline);
1123 	if (he->srcfile && he->srcfile[0])
1124 		free(he->srcfile);
1125 	free_callchain(he->callchain);
1126 	free(he->trace_output);
1127 	free(he->raw_data);
1128 	ops->free(he);
1129 }
1130 
1131 /*
1132  * If this is not the last column, then we need to pad it according to the
1133  * pre-calculated max lenght for this column, otherwise don't bother adding
1134  * spaces because that would break viewing this with, for instance, 'less',
1135  * that would show tons of trailing spaces when a long C++ demangled method
1136  * names is sampled.
1137 */
1138 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1139 				   struct perf_hpp_fmt *fmt, int printed)
1140 {
1141 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1142 		const int width = fmt->width(fmt, hpp, he->hists);
1143 		if (printed < width) {
1144 			advance_hpp(hpp, printed);
1145 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1146 		}
1147 	}
1148 
1149 	return printed;
1150 }
1151 
1152 /*
1153  * collapse the histogram
1154  */
1155 
1156 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1157 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1158 				       enum hist_filter type);
1159 
1160 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1161 
1162 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1163 {
1164 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1165 }
1166 
1167 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1168 						enum hist_filter type,
1169 						fmt_chk_fn check)
1170 {
1171 	struct perf_hpp_fmt *fmt;
1172 	bool type_match = false;
1173 	struct hist_entry *parent = he->parent_he;
1174 
1175 	switch (type) {
1176 	case HIST_FILTER__THREAD:
1177 		if (symbol_conf.comm_list == NULL &&
1178 		    symbol_conf.pid_list == NULL &&
1179 		    symbol_conf.tid_list == NULL)
1180 			return;
1181 		break;
1182 	case HIST_FILTER__DSO:
1183 		if (symbol_conf.dso_list == NULL)
1184 			return;
1185 		break;
1186 	case HIST_FILTER__SYMBOL:
1187 		if (symbol_conf.sym_list == NULL)
1188 			return;
1189 		break;
1190 	case HIST_FILTER__PARENT:
1191 	case HIST_FILTER__GUEST:
1192 	case HIST_FILTER__HOST:
1193 	case HIST_FILTER__SOCKET:
1194 	default:
1195 		return;
1196 	}
1197 
1198 	/* if it's filtered by own fmt, it has to have filter bits */
1199 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1200 		if (check(fmt)) {
1201 			type_match = true;
1202 			break;
1203 		}
1204 	}
1205 
1206 	if (type_match) {
1207 		/*
1208 		 * If the filter is for current level entry, propagate
1209 		 * filter marker to parents.  The marker bit was
1210 		 * already set by default so it only needs to clear
1211 		 * non-filtered entries.
1212 		 */
1213 		if (!(he->filtered & (1 << type))) {
1214 			while (parent) {
1215 				parent->filtered &= ~(1 << type);
1216 				parent = parent->parent_he;
1217 			}
1218 		}
1219 	} else {
1220 		/*
1221 		 * If current entry doesn't have matching formats, set
1222 		 * filter marker for upper level entries.  it will be
1223 		 * cleared if its lower level entries is not filtered.
1224 		 *
1225 		 * For lower-level entries, it inherits parent's
1226 		 * filter bit so that lower level entries of a
1227 		 * non-filtered entry won't set the filter marker.
1228 		 */
1229 		if (parent == NULL)
1230 			he->filtered |= (1 << type);
1231 		else
1232 			he->filtered |= (parent->filtered & (1 << type));
1233 	}
1234 }
1235 
1236 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1237 {
1238 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1239 					    check_thread_entry);
1240 
1241 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1242 					    perf_hpp__is_dso_entry);
1243 
1244 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1245 					    perf_hpp__is_sym_entry);
1246 
1247 	hists__apply_filters(he->hists, he);
1248 }
1249 
1250 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1251 						 struct rb_root *root,
1252 						 struct hist_entry *he,
1253 						 struct hist_entry *parent_he,
1254 						 struct perf_hpp_list *hpp_list)
1255 {
1256 	struct rb_node **p = &root->rb_node;
1257 	struct rb_node *parent = NULL;
1258 	struct hist_entry *iter, *new;
1259 	struct perf_hpp_fmt *fmt;
1260 	int64_t cmp;
1261 
1262 	while (*p != NULL) {
1263 		parent = *p;
1264 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1265 
1266 		cmp = 0;
1267 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1268 			cmp = fmt->collapse(fmt, iter, he);
1269 			if (cmp)
1270 				break;
1271 		}
1272 
1273 		if (!cmp) {
1274 			he_stat__add_stat(&iter->stat, &he->stat);
1275 			return iter;
1276 		}
1277 
1278 		if (cmp < 0)
1279 			p = &parent->rb_left;
1280 		else
1281 			p = &parent->rb_right;
1282 	}
1283 
1284 	new = hist_entry__new(he, true);
1285 	if (new == NULL)
1286 		return NULL;
1287 
1288 	hists->nr_entries++;
1289 
1290 	/* save related format list for output */
1291 	new->hpp_list = hpp_list;
1292 	new->parent_he = parent_he;
1293 
1294 	hist_entry__apply_hierarchy_filters(new);
1295 
1296 	/* some fields are now passed to 'new' */
1297 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1298 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1299 			he->trace_output = NULL;
1300 		else
1301 			new->trace_output = NULL;
1302 
1303 		if (perf_hpp__is_srcline_entry(fmt))
1304 			he->srcline = NULL;
1305 		else
1306 			new->srcline = NULL;
1307 
1308 		if (perf_hpp__is_srcfile_entry(fmt))
1309 			he->srcfile = NULL;
1310 		else
1311 			new->srcfile = NULL;
1312 	}
1313 
1314 	rb_link_node(&new->rb_node_in, parent, p);
1315 	rb_insert_color(&new->rb_node_in, root);
1316 	return new;
1317 }
1318 
1319 static int hists__hierarchy_insert_entry(struct hists *hists,
1320 					 struct rb_root *root,
1321 					 struct hist_entry *he)
1322 {
1323 	struct perf_hpp_list_node *node;
1324 	struct hist_entry *new_he = NULL;
1325 	struct hist_entry *parent = NULL;
1326 	int depth = 0;
1327 	int ret = 0;
1328 
1329 	list_for_each_entry(node, &hists->hpp_formats, list) {
1330 		/* skip period (overhead) and elided columns */
1331 		if (node->level == 0 || node->skip)
1332 			continue;
1333 
1334 		/* insert copy of 'he' for each fmt into the hierarchy */
1335 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1336 		if (new_he == NULL) {
1337 			ret = -1;
1338 			break;
1339 		}
1340 
1341 		root = &new_he->hroot_in;
1342 		new_he->depth = depth++;
1343 		parent = new_he;
1344 	}
1345 
1346 	if (new_he) {
1347 		new_he->leaf = true;
1348 
1349 		if (symbol_conf.use_callchain) {
1350 			callchain_cursor_reset(&callchain_cursor);
1351 			if (callchain_merge(&callchain_cursor,
1352 					    new_he->callchain,
1353 					    he->callchain) < 0)
1354 				ret = -1;
1355 		}
1356 	}
1357 
1358 	/* 'he' is no longer used */
1359 	hist_entry__delete(he);
1360 
1361 	/* return 0 (or -1) since it already applied filters */
1362 	return ret;
1363 }
1364 
1365 static int hists__collapse_insert_entry(struct hists *hists,
1366 					struct rb_root *root,
1367 					struct hist_entry *he)
1368 {
1369 	struct rb_node **p = &root->rb_node;
1370 	struct rb_node *parent = NULL;
1371 	struct hist_entry *iter;
1372 	int64_t cmp;
1373 
1374 	if (symbol_conf.report_hierarchy)
1375 		return hists__hierarchy_insert_entry(hists, root, he);
1376 
1377 	while (*p != NULL) {
1378 		parent = *p;
1379 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1380 
1381 		cmp = hist_entry__collapse(iter, he);
1382 
1383 		if (!cmp) {
1384 			int ret = 0;
1385 
1386 			he_stat__add_stat(&iter->stat, &he->stat);
1387 			if (symbol_conf.cumulate_callchain)
1388 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1389 
1390 			if (symbol_conf.use_callchain) {
1391 				callchain_cursor_reset(&callchain_cursor);
1392 				if (callchain_merge(&callchain_cursor,
1393 						    iter->callchain,
1394 						    he->callchain) < 0)
1395 					ret = -1;
1396 			}
1397 			hist_entry__delete(he);
1398 			return ret;
1399 		}
1400 
1401 		if (cmp < 0)
1402 			p = &(*p)->rb_left;
1403 		else
1404 			p = &(*p)->rb_right;
1405 	}
1406 	hists->nr_entries++;
1407 
1408 	rb_link_node(&he->rb_node_in, parent, p);
1409 	rb_insert_color(&he->rb_node_in, root);
1410 	return 1;
1411 }
1412 
1413 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1414 {
1415 	struct rb_root *root;
1416 
1417 	pthread_mutex_lock(&hists->lock);
1418 
1419 	root = hists->entries_in;
1420 	if (++hists->entries_in > &hists->entries_in_array[1])
1421 		hists->entries_in = &hists->entries_in_array[0];
1422 
1423 	pthread_mutex_unlock(&hists->lock);
1424 
1425 	return root;
1426 }
1427 
1428 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1429 {
1430 	hists__filter_entry_by_dso(hists, he);
1431 	hists__filter_entry_by_thread(hists, he);
1432 	hists__filter_entry_by_symbol(hists, he);
1433 	hists__filter_entry_by_socket(hists, he);
1434 }
1435 
1436 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1437 {
1438 	struct rb_root *root;
1439 	struct rb_node *next;
1440 	struct hist_entry *n;
1441 	int ret;
1442 
1443 	if (!hists__has(hists, need_collapse))
1444 		return 0;
1445 
1446 	hists->nr_entries = 0;
1447 
1448 	root = hists__get_rotate_entries_in(hists);
1449 
1450 	next = rb_first(root);
1451 
1452 	while (next) {
1453 		if (session_done())
1454 			break;
1455 		n = rb_entry(next, struct hist_entry, rb_node_in);
1456 		next = rb_next(&n->rb_node_in);
1457 
1458 		rb_erase(&n->rb_node_in, root);
1459 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1460 		if (ret < 0)
1461 			return -1;
1462 
1463 		if (ret) {
1464 			/*
1465 			 * If it wasn't combined with one of the entries already
1466 			 * collapsed, we need to apply the filters that may have
1467 			 * been set by, say, the hist_browser.
1468 			 */
1469 			hists__apply_filters(hists, n);
1470 		}
1471 		if (prog)
1472 			ui_progress__update(prog, 1);
1473 	}
1474 	return 0;
1475 }
1476 
1477 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1478 {
1479 	struct hists *hists = a->hists;
1480 	struct perf_hpp_fmt *fmt;
1481 	int64_t cmp = 0;
1482 
1483 	hists__for_each_sort_list(hists, fmt) {
1484 		if (perf_hpp__should_skip(fmt, a->hists))
1485 			continue;
1486 
1487 		cmp = fmt->sort(fmt, a, b);
1488 		if (cmp)
1489 			break;
1490 	}
1491 
1492 	return cmp;
1493 }
1494 
1495 static void hists__reset_filter_stats(struct hists *hists)
1496 {
1497 	hists->nr_non_filtered_entries = 0;
1498 	hists->stats.total_non_filtered_period = 0;
1499 }
1500 
1501 void hists__reset_stats(struct hists *hists)
1502 {
1503 	hists->nr_entries = 0;
1504 	hists->stats.total_period = 0;
1505 
1506 	hists__reset_filter_stats(hists);
1507 }
1508 
1509 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1510 {
1511 	hists->nr_non_filtered_entries++;
1512 	hists->stats.total_non_filtered_period += h->stat.period;
1513 }
1514 
1515 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1516 {
1517 	if (!h->filtered)
1518 		hists__inc_filter_stats(hists, h);
1519 
1520 	hists->nr_entries++;
1521 	hists->stats.total_period += h->stat.period;
1522 }
1523 
1524 static void hierarchy_recalc_total_periods(struct hists *hists)
1525 {
1526 	struct rb_node *node;
1527 	struct hist_entry *he;
1528 
1529 	node = rb_first(&hists->entries);
1530 
1531 	hists->stats.total_period = 0;
1532 	hists->stats.total_non_filtered_period = 0;
1533 
1534 	/*
1535 	 * recalculate total period using top-level entries only
1536 	 * since lower level entries only see non-filtered entries
1537 	 * but upper level entries have sum of both entries.
1538 	 */
1539 	while (node) {
1540 		he = rb_entry(node, struct hist_entry, rb_node);
1541 		node = rb_next(node);
1542 
1543 		hists->stats.total_period += he->stat.period;
1544 		if (!he->filtered)
1545 			hists->stats.total_non_filtered_period += he->stat.period;
1546 	}
1547 }
1548 
1549 static void hierarchy_insert_output_entry(struct rb_root *root,
1550 					  struct hist_entry *he)
1551 {
1552 	struct rb_node **p = &root->rb_node;
1553 	struct rb_node *parent = NULL;
1554 	struct hist_entry *iter;
1555 	struct perf_hpp_fmt *fmt;
1556 
1557 	while (*p != NULL) {
1558 		parent = *p;
1559 		iter = rb_entry(parent, struct hist_entry, rb_node);
1560 
1561 		if (hist_entry__sort(he, iter) > 0)
1562 			p = &parent->rb_left;
1563 		else
1564 			p = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&he->rb_node, parent, p);
1568 	rb_insert_color(&he->rb_node, root);
1569 
1570 	/* update column width of dynamic entry */
1571 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1572 		if (perf_hpp__is_dynamic_entry(fmt))
1573 			fmt->sort(fmt, he, NULL);
1574 	}
1575 }
1576 
1577 static void hists__hierarchy_output_resort(struct hists *hists,
1578 					   struct ui_progress *prog,
1579 					   struct rb_root *root_in,
1580 					   struct rb_root *root_out,
1581 					   u64 min_callchain_hits,
1582 					   bool use_callchain)
1583 {
1584 	struct rb_node *node;
1585 	struct hist_entry *he;
1586 
1587 	*root_out = RB_ROOT;
1588 	node = rb_first(root_in);
1589 
1590 	while (node) {
1591 		he = rb_entry(node, struct hist_entry, rb_node_in);
1592 		node = rb_next(node);
1593 
1594 		hierarchy_insert_output_entry(root_out, he);
1595 
1596 		if (prog)
1597 			ui_progress__update(prog, 1);
1598 
1599 		if (!he->leaf) {
1600 			hists__hierarchy_output_resort(hists, prog,
1601 						       &he->hroot_in,
1602 						       &he->hroot_out,
1603 						       min_callchain_hits,
1604 						       use_callchain);
1605 			hists->nr_entries++;
1606 			if (!he->filtered) {
1607 				hists->nr_non_filtered_entries++;
1608 				hists__calc_col_len(hists, he);
1609 			}
1610 
1611 			continue;
1612 		}
1613 
1614 		if (!use_callchain)
1615 			continue;
1616 
1617 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1618 			u64 total = he->stat.period;
1619 
1620 			if (symbol_conf.cumulate_callchain)
1621 				total = he->stat_acc->period;
1622 
1623 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1624 		}
1625 
1626 		callchain_param.sort(&he->sorted_chain, he->callchain,
1627 				     min_callchain_hits, &callchain_param);
1628 	}
1629 }
1630 
1631 static void __hists__insert_output_entry(struct rb_root *entries,
1632 					 struct hist_entry *he,
1633 					 u64 min_callchain_hits,
1634 					 bool use_callchain)
1635 {
1636 	struct rb_node **p = &entries->rb_node;
1637 	struct rb_node *parent = NULL;
1638 	struct hist_entry *iter;
1639 	struct perf_hpp_fmt *fmt;
1640 
1641 	if (use_callchain) {
1642 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1643 			u64 total = he->stat.period;
1644 
1645 			if (symbol_conf.cumulate_callchain)
1646 				total = he->stat_acc->period;
1647 
1648 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1649 		}
1650 		callchain_param.sort(&he->sorted_chain, he->callchain,
1651 				      min_callchain_hits, &callchain_param);
1652 	}
1653 
1654 	while (*p != NULL) {
1655 		parent = *p;
1656 		iter = rb_entry(parent, struct hist_entry, rb_node);
1657 
1658 		if (hist_entry__sort(he, iter) > 0)
1659 			p = &(*p)->rb_left;
1660 		else
1661 			p = &(*p)->rb_right;
1662 	}
1663 
1664 	rb_link_node(&he->rb_node, parent, p);
1665 	rb_insert_color(&he->rb_node, entries);
1666 
1667 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1668 		if (perf_hpp__is_dynamic_entry(fmt) &&
1669 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1670 			fmt->sort(fmt, he, NULL);  /* update column width */
1671 	}
1672 }
1673 
1674 static void output_resort(struct hists *hists, struct ui_progress *prog,
1675 			  bool use_callchain, hists__resort_cb_t cb)
1676 {
1677 	struct rb_root *root;
1678 	struct rb_node *next;
1679 	struct hist_entry *n;
1680 	u64 callchain_total;
1681 	u64 min_callchain_hits;
1682 
1683 	callchain_total = hists->callchain_period;
1684 	if (symbol_conf.filter_relative)
1685 		callchain_total = hists->callchain_non_filtered_period;
1686 
1687 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1688 
1689 	hists__reset_stats(hists);
1690 	hists__reset_col_len(hists);
1691 
1692 	if (symbol_conf.report_hierarchy) {
1693 		hists__hierarchy_output_resort(hists, prog,
1694 					       &hists->entries_collapsed,
1695 					       &hists->entries,
1696 					       min_callchain_hits,
1697 					       use_callchain);
1698 		hierarchy_recalc_total_periods(hists);
1699 		return;
1700 	}
1701 
1702 	if (hists__has(hists, need_collapse))
1703 		root = &hists->entries_collapsed;
1704 	else
1705 		root = hists->entries_in;
1706 
1707 	next = rb_first(root);
1708 	hists->entries = RB_ROOT;
1709 
1710 	while (next) {
1711 		n = rb_entry(next, struct hist_entry, rb_node_in);
1712 		next = rb_next(&n->rb_node_in);
1713 
1714 		if (cb && cb(n))
1715 			continue;
1716 
1717 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1718 		hists__inc_stats(hists, n);
1719 
1720 		if (!n->filtered)
1721 			hists__calc_col_len(hists, n);
1722 
1723 		if (prog)
1724 			ui_progress__update(prog, 1);
1725 	}
1726 }
1727 
1728 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1729 {
1730 	bool use_callchain;
1731 
1732 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1733 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1734 	else
1735 		use_callchain = symbol_conf.use_callchain;
1736 
1737 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1738 }
1739 
1740 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1741 {
1742 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1743 }
1744 
1745 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1746 			     hists__resort_cb_t cb)
1747 {
1748 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1749 }
1750 
1751 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1752 {
1753 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1754 		return false;
1755 
1756 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1757 		return true;
1758 
1759 	return false;
1760 }
1761 
1762 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1763 {
1764 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1765 
1766 	while (can_goto_child(he, HMD_NORMAL)) {
1767 		node = rb_last(&he->hroot_out);
1768 		he = rb_entry(node, struct hist_entry, rb_node);
1769 	}
1770 	return node;
1771 }
1772 
1773 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1774 {
1775 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1776 
1777 	if (can_goto_child(he, hmd))
1778 		node = rb_first(&he->hroot_out);
1779 	else
1780 		node = rb_next(node);
1781 
1782 	while (node == NULL) {
1783 		he = he->parent_he;
1784 		if (he == NULL)
1785 			break;
1786 
1787 		node = rb_next(&he->rb_node);
1788 	}
1789 	return node;
1790 }
1791 
1792 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1793 {
1794 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1795 
1796 	node = rb_prev(node);
1797 	if (node)
1798 		return rb_hierarchy_last(node);
1799 
1800 	he = he->parent_he;
1801 	if (he == NULL)
1802 		return NULL;
1803 
1804 	return &he->rb_node;
1805 }
1806 
1807 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1808 {
1809 	struct rb_node *node;
1810 	struct hist_entry *child;
1811 	float percent;
1812 
1813 	if (he->leaf)
1814 		return false;
1815 
1816 	node = rb_first(&he->hroot_out);
1817 	child = rb_entry(node, struct hist_entry, rb_node);
1818 
1819 	while (node && child->filtered) {
1820 		node = rb_next(node);
1821 		child = rb_entry(node, struct hist_entry, rb_node);
1822 	}
1823 
1824 	if (node)
1825 		percent = hist_entry__get_percent_limit(child);
1826 	else
1827 		percent = 0;
1828 
1829 	return node && percent >= limit;
1830 }
1831 
1832 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1833 				       enum hist_filter filter)
1834 {
1835 	h->filtered &= ~(1 << filter);
1836 
1837 	if (symbol_conf.report_hierarchy) {
1838 		struct hist_entry *parent = h->parent_he;
1839 
1840 		while (parent) {
1841 			he_stat__add_stat(&parent->stat, &h->stat);
1842 
1843 			parent->filtered &= ~(1 << filter);
1844 
1845 			if (parent->filtered)
1846 				goto next;
1847 
1848 			/* force fold unfiltered entry for simplicity */
1849 			parent->unfolded = false;
1850 			parent->has_no_entry = false;
1851 			parent->row_offset = 0;
1852 			parent->nr_rows = 0;
1853 next:
1854 			parent = parent->parent_he;
1855 		}
1856 	}
1857 
1858 	if (h->filtered)
1859 		return;
1860 
1861 	/* force fold unfiltered entry for simplicity */
1862 	h->unfolded = false;
1863 	h->has_no_entry = false;
1864 	h->row_offset = 0;
1865 	h->nr_rows = 0;
1866 
1867 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1868 
1869 	hists__inc_filter_stats(hists, h);
1870 	hists__calc_col_len(hists, h);
1871 }
1872 
1873 
1874 static bool hists__filter_entry_by_dso(struct hists *hists,
1875 				       struct hist_entry *he)
1876 {
1877 	if (hists->dso_filter != NULL &&
1878 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1879 		he->filtered |= (1 << HIST_FILTER__DSO);
1880 		return true;
1881 	}
1882 
1883 	return false;
1884 }
1885 
1886 static bool hists__filter_entry_by_thread(struct hists *hists,
1887 					  struct hist_entry *he)
1888 {
1889 	if (hists->thread_filter != NULL &&
1890 	    he->thread != hists->thread_filter) {
1891 		he->filtered |= (1 << HIST_FILTER__THREAD);
1892 		return true;
1893 	}
1894 
1895 	return false;
1896 }
1897 
1898 static bool hists__filter_entry_by_symbol(struct hists *hists,
1899 					  struct hist_entry *he)
1900 {
1901 	if (hists->symbol_filter_str != NULL &&
1902 	    (!he->ms.sym || strstr(he->ms.sym->name,
1903 				   hists->symbol_filter_str) == NULL)) {
1904 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1905 		return true;
1906 	}
1907 
1908 	return false;
1909 }
1910 
1911 static bool hists__filter_entry_by_socket(struct hists *hists,
1912 					  struct hist_entry *he)
1913 {
1914 	if ((hists->socket_filter > -1) &&
1915 	    (he->socket != hists->socket_filter)) {
1916 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1917 		return true;
1918 	}
1919 
1920 	return false;
1921 }
1922 
1923 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1924 
1925 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1926 {
1927 	struct rb_node *nd;
1928 
1929 	hists->stats.nr_non_filtered_samples = 0;
1930 
1931 	hists__reset_filter_stats(hists);
1932 	hists__reset_col_len(hists);
1933 
1934 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1935 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1936 
1937 		if (filter(hists, h))
1938 			continue;
1939 
1940 		hists__remove_entry_filter(hists, h, type);
1941 	}
1942 }
1943 
1944 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1945 {
1946 	struct rb_node **p = &root->rb_node;
1947 	struct rb_node *parent = NULL;
1948 	struct hist_entry *iter;
1949 	struct rb_root new_root = RB_ROOT;
1950 	struct rb_node *nd;
1951 
1952 	while (*p != NULL) {
1953 		parent = *p;
1954 		iter = rb_entry(parent, struct hist_entry, rb_node);
1955 
1956 		if (hist_entry__sort(he, iter) > 0)
1957 			p = &(*p)->rb_left;
1958 		else
1959 			p = &(*p)->rb_right;
1960 	}
1961 
1962 	rb_link_node(&he->rb_node, parent, p);
1963 	rb_insert_color(&he->rb_node, root);
1964 
1965 	if (he->leaf || he->filtered)
1966 		return;
1967 
1968 	nd = rb_first(&he->hroot_out);
1969 	while (nd) {
1970 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1971 
1972 		nd = rb_next(nd);
1973 		rb_erase(&h->rb_node, &he->hroot_out);
1974 
1975 		resort_filtered_entry(&new_root, h);
1976 	}
1977 
1978 	he->hroot_out = new_root;
1979 }
1980 
1981 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1982 {
1983 	struct rb_node *nd;
1984 	struct rb_root new_root = RB_ROOT;
1985 
1986 	hists->stats.nr_non_filtered_samples = 0;
1987 
1988 	hists__reset_filter_stats(hists);
1989 	hists__reset_col_len(hists);
1990 
1991 	nd = rb_first(&hists->entries);
1992 	while (nd) {
1993 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1994 		int ret;
1995 
1996 		ret = hist_entry__filter(h, type, arg);
1997 
1998 		/*
1999 		 * case 1. non-matching type
2000 		 * zero out the period, set filter marker and move to child
2001 		 */
2002 		if (ret < 0) {
2003 			memset(&h->stat, 0, sizeof(h->stat));
2004 			h->filtered |= (1 << type);
2005 
2006 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2007 		}
2008 		/*
2009 		 * case 2. matched type (filter out)
2010 		 * set filter marker and move to next
2011 		 */
2012 		else if (ret == 1) {
2013 			h->filtered |= (1 << type);
2014 
2015 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2016 		}
2017 		/*
2018 		 * case 3. ok (not filtered)
2019 		 * add period to hists and parents, erase the filter marker
2020 		 * and move to next sibling
2021 		 */
2022 		else {
2023 			hists__remove_entry_filter(hists, h, type);
2024 
2025 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2026 		}
2027 	}
2028 
2029 	hierarchy_recalc_total_periods(hists);
2030 
2031 	/*
2032 	 * resort output after applying a new filter since filter in a lower
2033 	 * hierarchy can change periods in a upper hierarchy.
2034 	 */
2035 	nd = rb_first(&hists->entries);
2036 	while (nd) {
2037 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2038 
2039 		nd = rb_next(nd);
2040 		rb_erase(&h->rb_node, &hists->entries);
2041 
2042 		resort_filtered_entry(&new_root, h);
2043 	}
2044 
2045 	hists->entries = new_root;
2046 }
2047 
2048 void hists__filter_by_thread(struct hists *hists)
2049 {
2050 	if (symbol_conf.report_hierarchy)
2051 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2052 					hists->thread_filter);
2053 	else
2054 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2055 				      hists__filter_entry_by_thread);
2056 }
2057 
2058 void hists__filter_by_dso(struct hists *hists)
2059 {
2060 	if (symbol_conf.report_hierarchy)
2061 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2062 					hists->dso_filter);
2063 	else
2064 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2065 				      hists__filter_entry_by_dso);
2066 }
2067 
2068 void hists__filter_by_symbol(struct hists *hists)
2069 {
2070 	if (symbol_conf.report_hierarchy)
2071 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2072 					hists->symbol_filter_str);
2073 	else
2074 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2075 				      hists__filter_entry_by_symbol);
2076 }
2077 
2078 void hists__filter_by_socket(struct hists *hists)
2079 {
2080 	if (symbol_conf.report_hierarchy)
2081 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2082 					&hists->socket_filter);
2083 	else
2084 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2085 				      hists__filter_entry_by_socket);
2086 }
2087 
2088 void events_stats__inc(struct events_stats *stats, u32 type)
2089 {
2090 	++stats->nr_events[0];
2091 	++stats->nr_events[type];
2092 }
2093 
2094 void hists__inc_nr_events(struct hists *hists, u32 type)
2095 {
2096 	events_stats__inc(&hists->stats, type);
2097 }
2098 
2099 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2100 {
2101 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2102 	if (!filtered)
2103 		hists->stats.nr_non_filtered_samples++;
2104 }
2105 
2106 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2107 						 struct hist_entry *pair)
2108 {
2109 	struct rb_root *root;
2110 	struct rb_node **p;
2111 	struct rb_node *parent = NULL;
2112 	struct hist_entry *he;
2113 	int64_t cmp;
2114 
2115 	if (hists__has(hists, need_collapse))
2116 		root = &hists->entries_collapsed;
2117 	else
2118 		root = hists->entries_in;
2119 
2120 	p = &root->rb_node;
2121 
2122 	while (*p != NULL) {
2123 		parent = *p;
2124 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2125 
2126 		cmp = hist_entry__collapse(he, pair);
2127 
2128 		if (!cmp)
2129 			goto out;
2130 
2131 		if (cmp < 0)
2132 			p = &(*p)->rb_left;
2133 		else
2134 			p = &(*p)->rb_right;
2135 	}
2136 
2137 	he = hist_entry__new(pair, true);
2138 	if (he) {
2139 		memset(&he->stat, 0, sizeof(he->stat));
2140 		he->hists = hists;
2141 		if (symbol_conf.cumulate_callchain)
2142 			memset(he->stat_acc, 0, sizeof(he->stat));
2143 		rb_link_node(&he->rb_node_in, parent, p);
2144 		rb_insert_color(&he->rb_node_in, root);
2145 		hists__inc_stats(hists, he);
2146 		he->dummy = true;
2147 	}
2148 out:
2149 	return he;
2150 }
2151 
2152 static struct hist_entry *hists__find_entry(struct hists *hists,
2153 					    struct hist_entry *he)
2154 {
2155 	struct rb_node *n;
2156 
2157 	if (hists__has(hists, need_collapse))
2158 		n = hists->entries_collapsed.rb_node;
2159 	else
2160 		n = hists->entries_in->rb_node;
2161 
2162 	while (n) {
2163 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2164 		int64_t cmp = hist_entry__collapse(iter, he);
2165 
2166 		if (cmp < 0)
2167 			n = n->rb_left;
2168 		else if (cmp > 0)
2169 			n = n->rb_right;
2170 		else
2171 			return iter;
2172 	}
2173 
2174 	return NULL;
2175 }
2176 
2177 /*
2178  * Look for pairs to link to the leader buckets (hist_entries):
2179  */
2180 void hists__match(struct hists *leader, struct hists *other)
2181 {
2182 	struct rb_root *root;
2183 	struct rb_node *nd;
2184 	struct hist_entry *pos, *pair;
2185 
2186 	if (hists__has(leader, need_collapse))
2187 		root = &leader->entries_collapsed;
2188 	else
2189 		root = leader->entries_in;
2190 
2191 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2192 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2193 		pair = hists__find_entry(other, pos);
2194 
2195 		if (pair)
2196 			hist_entry__add_pair(pair, pos);
2197 	}
2198 }
2199 
2200 /*
2201  * Look for entries in the other hists that are not present in the leader, if
2202  * we find them, just add a dummy entry on the leader hists, with period=0,
2203  * nr_events=0, to serve as the list header.
2204  */
2205 int hists__link(struct hists *leader, struct hists *other)
2206 {
2207 	struct rb_root *root;
2208 	struct rb_node *nd;
2209 	struct hist_entry *pos, *pair;
2210 
2211 	if (hists__has(other, need_collapse))
2212 		root = &other->entries_collapsed;
2213 	else
2214 		root = other->entries_in;
2215 
2216 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2217 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2218 
2219 		if (!hist_entry__has_pairs(pos)) {
2220 			pair = hists__add_dummy_entry(leader, pos);
2221 			if (pair == NULL)
2222 				return -1;
2223 			hist_entry__add_pair(pos, pair);
2224 		}
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2231 			  struct perf_sample *sample, bool nonany_branch_mode)
2232 {
2233 	struct branch_info *bi;
2234 
2235 	/* If we have branch cycles always annotate them. */
2236 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2237 		int i;
2238 
2239 		bi = sample__resolve_bstack(sample, al);
2240 		if (bi) {
2241 			struct addr_map_symbol *prev = NULL;
2242 
2243 			/*
2244 			 * Ignore errors, still want to process the
2245 			 * other entries.
2246 			 *
2247 			 * For non standard branch modes always
2248 			 * force no IPC (prev == NULL)
2249 			 *
2250 			 * Note that perf stores branches reversed from
2251 			 * program order!
2252 			 */
2253 			for (i = bs->nr - 1; i >= 0; i--) {
2254 				addr_map_symbol__account_cycles(&bi[i].from,
2255 					nonany_branch_mode ? NULL : prev,
2256 					bi[i].flags.cycles);
2257 				prev = &bi[i].to;
2258 			}
2259 			free(bi);
2260 		}
2261 	}
2262 }
2263 
2264 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2265 {
2266 	struct perf_evsel *pos;
2267 	size_t ret = 0;
2268 
2269 	evlist__for_each_entry(evlist, pos) {
2270 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2271 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2272 	}
2273 
2274 	return ret;
2275 }
2276 
2277 
2278 u64 hists__total_period(struct hists *hists)
2279 {
2280 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2281 		hists->stats.total_period;
2282 }
2283 
2284 int parse_filter_percentage(const struct option *opt __maybe_unused,
2285 			    const char *arg, int unset __maybe_unused)
2286 {
2287 	if (!strcmp(arg, "relative"))
2288 		symbol_conf.filter_relative = true;
2289 	else if (!strcmp(arg, "absolute"))
2290 		symbol_conf.filter_relative = false;
2291 	else
2292 		return -1;
2293 
2294 	return 0;
2295 }
2296 
2297 int perf_hist_config(const char *var, const char *value)
2298 {
2299 	if (!strcmp(var, "hist.percentage"))
2300 		return parse_filter_percentage(NULL, value, 0);
2301 
2302 	return 0;
2303 }
2304 
2305 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2306 {
2307 	memset(hists, 0, sizeof(*hists));
2308 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2309 	hists->entries_in = &hists->entries_in_array[0];
2310 	hists->entries_collapsed = RB_ROOT;
2311 	hists->entries = RB_ROOT;
2312 	pthread_mutex_init(&hists->lock, NULL);
2313 	hists->socket_filter = -1;
2314 	hists->hpp_list = hpp_list;
2315 	INIT_LIST_HEAD(&hists->hpp_formats);
2316 	return 0;
2317 }
2318 
2319 static void hists__delete_remaining_entries(struct rb_root *root)
2320 {
2321 	struct rb_node *node;
2322 	struct hist_entry *he;
2323 
2324 	while (!RB_EMPTY_ROOT(root)) {
2325 		node = rb_first(root);
2326 		rb_erase(node, root);
2327 
2328 		he = rb_entry(node, struct hist_entry, rb_node_in);
2329 		hist_entry__delete(he);
2330 	}
2331 }
2332 
2333 static void hists__delete_all_entries(struct hists *hists)
2334 {
2335 	hists__delete_entries(hists);
2336 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2337 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2338 	hists__delete_remaining_entries(&hists->entries_collapsed);
2339 }
2340 
2341 static void hists_evsel__exit(struct perf_evsel *evsel)
2342 {
2343 	struct hists *hists = evsel__hists(evsel);
2344 	struct perf_hpp_fmt *fmt, *pos;
2345 	struct perf_hpp_list_node *node, *tmp;
2346 
2347 	hists__delete_all_entries(hists);
2348 
2349 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2350 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2351 			list_del(&fmt->list);
2352 			free(fmt);
2353 		}
2354 		list_del(&node->list);
2355 		free(node);
2356 	}
2357 }
2358 
2359 static int hists_evsel__init(struct perf_evsel *evsel)
2360 {
2361 	struct hists *hists = evsel__hists(evsel);
2362 
2363 	__hists__init(hists, &perf_hpp_list);
2364 	return 0;
2365 }
2366 
2367 /*
2368  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2369  * stored in the rbtree...
2370  */
2371 
2372 int hists__init(void)
2373 {
2374 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2375 					    hists_evsel__init,
2376 					    hists_evsel__exit);
2377 	if (err)
2378 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2379 
2380 	return err;
2381 }
2382 
2383 void perf_hpp_list__init(struct perf_hpp_list *list)
2384 {
2385 	INIT_LIST_HEAD(&list->fields);
2386 	INIT_LIST_HEAD(&list->sorts);
2387 }
2388