xref: /openbmc/linux/tools/perf/util/hist.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "units.h"
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "annotate.h"
13 #include "srcline.h"
14 #include "thread.h"
15 #include "ui/progress.h"
16 #include <errno.h>
17 #include <math.h>
18 #include <inttypes.h>
19 #include <sys/param.h>
20 
21 static bool hists__filter_entry_by_dso(struct hists *hists,
22 				       struct hist_entry *he);
23 static bool hists__filter_entry_by_thread(struct hists *hists,
24 					  struct hist_entry *he);
25 static bool hists__filter_entry_by_symbol(struct hists *hists,
26 					  struct hist_entry *he);
27 static bool hists__filter_entry_by_socket(struct hists *hists,
28 					  struct hist_entry *he);
29 
30 u16 hists__col_len(struct hists *hists, enum hist_column col)
31 {
32 	return hists->col_len[col];
33 }
34 
35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36 {
37 	hists->col_len[col] = len;
38 }
39 
40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42 	if (len > hists__col_len(hists, col)) {
43 		hists__set_col_len(hists, col, len);
44 		return true;
45 	}
46 	return false;
47 }
48 
49 void hists__reset_col_len(struct hists *hists)
50 {
51 	enum hist_column col;
52 
53 	for (col = 0; col < HISTC_NR_COLS; ++col)
54 		hists__set_col_len(hists, col, 0);
55 }
56 
57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58 {
59 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60 
61 	if (hists__col_len(hists, dso) < unresolved_col_width &&
62 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63 	    !symbol_conf.dso_list)
64 		hists__set_col_len(hists, dso, unresolved_col_width);
65 }
66 
67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68 {
69 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 	int symlen;
71 	u16 len;
72 
73 	/*
74 	 * +4 accounts for '[x] ' priv level info
75 	 * +2 accounts for 0x prefix on raw addresses
76 	 * +3 accounts for ' y ' symtab origin info
77 	 */
78 	if (h->ms.sym) {
79 		symlen = h->ms.sym->namelen + 4;
80 		if (verbose > 0)
81 			symlen += BITS_PER_LONG / 4 + 2 + 3;
82 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 	} else {
84 		symlen = unresolved_col_width + 4 + 2;
85 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
87 	}
88 
89 	len = thread__comm_len(h->thread);
90 	if (hists__new_col_len(hists, HISTC_COMM, len))
91 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
92 
93 	if (h->ms.map) {
94 		len = dso__name_len(h->ms.map->dso);
95 		hists__new_col_len(hists, HISTC_DSO, len);
96 	}
97 
98 	if (h->parent)
99 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100 
101 	if (h->branch_info) {
102 		if (h->branch_info->from.sym) {
103 			symlen = (int)h->branch_info->from.sym->namelen + 4;
104 			if (verbose > 0)
105 				symlen += BITS_PER_LONG / 4 + 2 + 3;
106 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107 
108 			symlen = dso__name_len(h->branch_info->from.map->dso);
109 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110 		} else {
111 			symlen = unresolved_col_width + 4 + 2;
112 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114 		}
115 
116 		if (h->branch_info->to.sym) {
117 			symlen = (int)h->branch_info->to.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->to.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128 		}
129 
130 		if (h->branch_info->srcline_from)
131 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132 					strlen(h->branch_info->srcline_from));
133 		if (h->branch_info->srcline_to)
134 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
135 					strlen(h->branch_info->srcline_to));
136 	}
137 
138 	if (h->mem_info) {
139 		if (h->mem_info->daddr.sym) {
140 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
141 			       + unresolved_col_width + 2;
142 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143 					   symlen);
144 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145 					   symlen + 1);
146 		} else {
147 			symlen = unresolved_col_width + 4 + 2;
148 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149 					   symlen);
150 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151 					   symlen);
152 		}
153 
154 		if (h->mem_info->iaddr.sym) {
155 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156 			       + unresolved_col_width + 2;
157 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158 					   symlen);
159 		} else {
160 			symlen = unresolved_col_width + 4 + 2;
161 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162 					   symlen);
163 		}
164 
165 		if (h->mem_info->daddr.map) {
166 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
167 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168 					   symlen);
169 		} else {
170 			symlen = unresolved_col_width + 4 + 2;
171 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172 		}
173 
174 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175 				   unresolved_col_width + 4 + 2);
176 
177 	} else {
178 		symlen = unresolved_col_width + 4 + 2;
179 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 	}
183 
184 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185 	hists__new_col_len(hists, HISTC_CPU, 3);
186 	hists__new_col_len(hists, HISTC_SOCKET, 6);
187 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193 
194 	if (h->srcline) {
195 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196 		hists__new_col_len(hists, HISTC_SRCLINE, len);
197 	}
198 
199 	if (h->srcfile)
200 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201 
202 	if (h->transaction)
203 		hists__new_col_len(hists, HISTC_TRANSACTION,
204 				   hist_entry__transaction_len());
205 
206 	if (h->trace_output)
207 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208 }
209 
210 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211 {
212 	struct rb_node *next = rb_first(&hists->entries);
213 	struct hist_entry *n;
214 	int row = 0;
215 
216 	hists__reset_col_len(hists);
217 
218 	while (next && row++ < max_rows) {
219 		n = rb_entry(next, struct hist_entry, rb_node);
220 		if (!n->filtered)
221 			hists__calc_col_len(hists, n);
222 		next = rb_next(&n->rb_node);
223 	}
224 }
225 
226 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227 					unsigned int cpumode, u64 period)
228 {
229 	switch (cpumode) {
230 	case PERF_RECORD_MISC_KERNEL:
231 		he_stat->period_sys += period;
232 		break;
233 	case PERF_RECORD_MISC_USER:
234 		he_stat->period_us += period;
235 		break;
236 	case PERF_RECORD_MISC_GUEST_KERNEL:
237 		he_stat->period_guest_sys += period;
238 		break;
239 	case PERF_RECORD_MISC_GUEST_USER:
240 		he_stat->period_guest_us += period;
241 		break;
242 	default:
243 		break;
244 	}
245 }
246 
247 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248 				u64 weight)
249 {
250 
251 	he_stat->period		+= period;
252 	he_stat->weight		+= weight;
253 	he_stat->nr_events	+= 1;
254 }
255 
256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257 {
258 	dest->period		+= src->period;
259 	dest->period_sys	+= src->period_sys;
260 	dest->period_us		+= src->period_us;
261 	dest->period_guest_sys	+= src->period_guest_sys;
262 	dest->period_guest_us	+= src->period_guest_us;
263 	dest->nr_events		+= src->nr_events;
264 	dest->weight		+= src->weight;
265 }
266 
267 static void he_stat__decay(struct he_stat *he_stat)
268 {
269 	he_stat->period = (he_stat->period * 7) / 8;
270 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271 	/* XXX need decay for weight too? */
272 }
273 
274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275 
276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277 {
278 	u64 prev_period = he->stat.period;
279 	u64 diff;
280 
281 	if (prev_period == 0)
282 		return true;
283 
284 	he_stat__decay(&he->stat);
285 	if (symbol_conf.cumulate_callchain)
286 		he_stat__decay(he->stat_acc);
287 	decay_callchain(he->callchain);
288 
289 	diff = prev_period - he->stat.period;
290 
291 	if (!he->depth) {
292 		hists->stats.total_period -= diff;
293 		if (!he->filtered)
294 			hists->stats.total_non_filtered_period -= diff;
295 	}
296 
297 	if (!he->leaf) {
298 		struct hist_entry *child;
299 		struct rb_node *node = rb_first(&he->hroot_out);
300 		while (node) {
301 			child = rb_entry(node, struct hist_entry, rb_node);
302 			node = rb_next(node);
303 
304 			if (hists__decay_entry(hists, child))
305 				hists__delete_entry(hists, child);
306 		}
307 	}
308 
309 	return he->stat.period == 0;
310 }
311 
312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313 {
314 	struct rb_root *root_in;
315 	struct rb_root *root_out;
316 
317 	if (he->parent_he) {
318 		root_in  = &he->parent_he->hroot_in;
319 		root_out = &he->parent_he->hroot_out;
320 	} else {
321 		if (hists__has(hists, need_collapse))
322 			root_in = &hists->entries_collapsed;
323 		else
324 			root_in = hists->entries_in;
325 		root_out = &hists->entries;
326 	}
327 
328 	rb_erase(&he->rb_node_in, root_in);
329 	rb_erase(&he->rb_node, root_out);
330 
331 	--hists->nr_entries;
332 	if (!he->filtered)
333 		--hists->nr_non_filtered_entries;
334 
335 	hist_entry__delete(he);
336 }
337 
338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339 {
340 	struct rb_node *next = rb_first(&hists->entries);
341 	struct hist_entry *n;
342 
343 	while (next) {
344 		n = rb_entry(next, struct hist_entry, rb_node);
345 		next = rb_next(&n->rb_node);
346 		if (((zap_user && n->level == '.') ||
347 		     (zap_kernel && n->level != '.') ||
348 		     hists__decay_entry(hists, n))) {
349 			hists__delete_entry(hists, n);
350 		}
351 	}
352 }
353 
354 void hists__delete_entries(struct hists *hists)
355 {
356 	struct rb_node *next = rb_first(&hists->entries);
357 	struct hist_entry *n;
358 
359 	while (next) {
360 		n = rb_entry(next, struct hist_entry, rb_node);
361 		next = rb_next(&n->rb_node);
362 
363 		hists__delete_entry(hists, n);
364 	}
365 }
366 
367 /*
368  * histogram, sorted on item, collects periods
369  */
370 
371 static int hist_entry__init(struct hist_entry *he,
372 			    struct hist_entry *template,
373 			    bool sample_self)
374 {
375 	*he = *template;
376 
377 	if (symbol_conf.cumulate_callchain) {
378 		he->stat_acc = malloc(sizeof(he->stat));
379 		if (he->stat_acc == NULL)
380 			return -ENOMEM;
381 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
382 		if (!sample_self)
383 			memset(&he->stat, 0, sizeof(he->stat));
384 	}
385 
386 	map__get(he->ms.map);
387 
388 	if (he->branch_info) {
389 		/*
390 		 * This branch info is (a part of) allocated from
391 		 * sample__resolve_bstack() and will be freed after
392 		 * adding new entries.  So we need to save a copy.
393 		 */
394 		he->branch_info = malloc(sizeof(*he->branch_info));
395 		if (he->branch_info == NULL) {
396 			map__zput(he->ms.map);
397 			free(he->stat_acc);
398 			return -ENOMEM;
399 		}
400 
401 		memcpy(he->branch_info, template->branch_info,
402 		       sizeof(*he->branch_info));
403 
404 		map__get(he->branch_info->from.map);
405 		map__get(he->branch_info->to.map);
406 	}
407 
408 	if (he->mem_info) {
409 		map__get(he->mem_info->iaddr.map);
410 		map__get(he->mem_info->daddr.map);
411 	}
412 
413 	if (symbol_conf.use_callchain)
414 		callchain_init(he->callchain);
415 
416 	if (he->raw_data) {
417 		he->raw_data = memdup(he->raw_data, he->raw_size);
418 
419 		if (he->raw_data == NULL) {
420 			map__put(he->ms.map);
421 			if (he->branch_info) {
422 				map__put(he->branch_info->from.map);
423 				map__put(he->branch_info->to.map);
424 				free(he->branch_info);
425 			}
426 			if (he->mem_info) {
427 				map__put(he->mem_info->iaddr.map);
428 				map__put(he->mem_info->daddr.map);
429 			}
430 			free(he->stat_acc);
431 			return -ENOMEM;
432 		}
433 	}
434 	INIT_LIST_HEAD(&he->pairs.node);
435 	thread__get(he->thread);
436 	he->hroot_in  = RB_ROOT;
437 	he->hroot_out = RB_ROOT;
438 
439 	if (!symbol_conf.report_hierarchy)
440 		he->leaf = true;
441 
442 	return 0;
443 }
444 
445 static void *hist_entry__zalloc(size_t size)
446 {
447 	return zalloc(size + sizeof(struct hist_entry));
448 }
449 
450 static void hist_entry__free(void *ptr)
451 {
452 	free(ptr);
453 }
454 
455 static struct hist_entry_ops default_ops = {
456 	.new	= hist_entry__zalloc,
457 	.free	= hist_entry__free,
458 };
459 
460 static struct hist_entry *hist_entry__new(struct hist_entry *template,
461 					  bool sample_self)
462 {
463 	struct hist_entry_ops *ops = template->ops;
464 	size_t callchain_size = 0;
465 	struct hist_entry *he;
466 	int err = 0;
467 
468 	if (!ops)
469 		ops = template->ops = &default_ops;
470 
471 	if (symbol_conf.use_callchain)
472 		callchain_size = sizeof(struct callchain_root);
473 
474 	he = ops->new(callchain_size);
475 	if (he) {
476 		err = hist_entry__init(he, template, sample_self);
477 		if (err) {
478 			ops->free(he);
479 			he = NULL;
480 		}
481 	}
482 
483 	return he;
484 }
485 
486 static u8 symbol__parent_filter(const struct symbol *parent)
487 {
488 	if (symbol_conf.exclude_other && parent == NULL)
489 		return 1 << HIST_FILTER__PARENT;
490 	return 0;
491 }
492 
493 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
494 {
495 	if (!symbol_conf.use_callchain)
496 		return;
497 
498 	he->hists->callchain_period += period;
499 	if (!he->filtered)
500 		he->hists->callchain_non_filtered_period += period;
501 }
502 
503 static struct hist_entry *hists__findnew_entry(struct hists *hists,
504 					       struct hist_entry *entry,
505 					       struct addr_location *al,
506 					       bool sample_self)
507 {
508 	struct rb_node **p;
509 	struct rb_node *parent = NULL;
510 	struct hist_entry *he;
511 	int64_t cmp;
512 	u64 period = entry->stat.period;
513 	u64 weight = entry->stat.weight;
514 
515 	p = &hists->entries_in->rb_node;
516 
517 	while (*p != NULL) {
518 		parent = *p;
519 		he = rb_entry(parent, struct hist_entry, rb_node_in);
520 
521 		/*
522 		 * Make sure that it receives arguments in a same order as
523 		 * hist_entry__collapse() so that we can use an appropriate
524 		 * function when searching an entry regardless which sort
525 		 * keys were used.
526 		 */
527 		cmp = hist_entry__cmp(he, entry);
528 
529 		if (!cmp) {
530 			if (sample_self) {
531 				he_stat__add_period(&he->stat, period, weight);
532 				hist_entry__add_callchain_period(he, period);
533 			}
534 			if (symbol_conf.cumulate_callchain)
535 				he_stat__add_period(he->stat_acc, period, weight);
536 
537 			/*
538 			 * This mem info was allocated from sample__resolve_mem
539 			 * and will not be used anymore.
540 			 */
541 			mem_info__zput(entry->mem_info);
542 
543 			/* If the map of an existing hist_entry has
544 			 * become out-of-date due to an exec() or
545 			 * similar, update it.  Otherwise we will
546 			 * mis-adjust symbol addresses when computing
547 			 * the history counter to increment.
548 			 */
549 			if (he->ms.map != entry->ms.map) {
550 				map__put(he->ms.map);
551 				he->ms.map = map__get(entry->ms.map);
552 			}
553 			goto out;
554 		}
555 
556 		if (cmp < 0)
557 			p = &(*p)->rb_left;
558 		else
559 			p = &(*p)->rb_right;
560 	}
561 
562 	he = hist_entry__new(entry, sample_self);
563 	if (!he)
564 		return NULL;
565 
566 	if (sample_self)
567 		hist_entry__add_callchain_period(he, period);
568 	hists->nr_entries++;
569 
570 	rb_link_node(&he->rb_node_in, parent, p);
571 	rb_insert_color(&he->rb_node_in, hists->entries_in);
572 out:
573 	if (sample_self)
574 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
575 	if (symbol_conf.cumulate_callchain)
576 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
577 	return he;
578 }
579 
580 static struct hist_entry*
581 __hists__add_entry(struct hists *hists,
582 		   struct addr_location *al,
583 		   struct symbol *sym_parent,
584 		   struct branch_info *bi,
585 		   struct mem_info *mi,
586 		   struct perf_sample *sample,
587 		   bool sample_self,
588 		   struct hist_entry_ops *ops)
589 {
590 	struct namespaces *ns = thread__namespaces(al->thread);
591 	struct hist_entry entry = {
592 		.thread	= al->thread,
593 		.comm = thread__comm(al->thread),
594 		.cgroup_id = {
595 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
596 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
597 		},
598 		.ms = {
599 			.map	= al->map,
600 			.sym	= al->sym,
601 		},
602 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
603 		.socket	 = al->socket,
604 		.cpu	 = al->cpu,
605 		.cpumode = al->cpumode,
606 		.ip	 = al->addr,
607 		.level	 = al->level,
608 		.stat = {
609 			.nr_events = 1,
610 			.period	= sample->period,
611 			.weight = sample->weight,
612 		},
613 		.parent = sym_parent,
614 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
615 		.hists	= hists,
616 		.branch_info = bi,
617 		.mem_info = mi,
618 		.transaction = sample->transaction,
619 		.raw_data = sample->raw_data,
620 		.raw_size = sample->raw_size,
621 		.ops = ops,
622 	};
623 
624 	return hists__findnew_entry(hists, &entry, al, sample_self);
625 }
626 
627 struct hist_entry *hists__add_entry(struct hists *hists,
628 				    struct addr_location *al,
629 				    struct symbol *sym_parent,
630 				    struct branch_info *bi,
631 				    struct mem_info *mi,
632 				    struct perf_sample *sample,
633 				    bool sample_self)
634 {
635 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
636 				  sample, sample_self, NULL);
637 }
638 
639 struct hist_entry *hists__add_entry_ops(struct hists *hists,
640 					struct hist_entry_ops *ops,
641 					struct addr_location *al,
642 					struct symbol *sym_parent,
643 					struct branch_info *bi,
644 					struct mem_info *mi,
645 					struct perf_sample *sample,
646 					bool sample_self)
647 {
648 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
649 				  sample, sample_self, ops);
650 }
651 
652 static int
653 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
654 		    struct addr_location *al __maybe_unused)
655 {
656 	return 0;
657 }
658 
659 static int
660 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
661 			struct addr_location *al __maybe_unused)
662 {
663 	return 0;
664 }
665 
666 static int
667 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
668 {
669 	struct perf_sample *sample = iter->sample;
670 	struct mem_info *mi;
671 
672 	mi = sample__resolve_mem(sample, al);
673 	if (mi == NULL)
674 		return -ENOMEM;
675 
676 	iter->priv = mi;
677 	return 0;
678 }
679 
680 static int
681 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
682 {
683 	u64 cost;
684 	struct mem_info *mi = iter->priv;
685 	struct hists *hists = evsel__hists(iter->evsel);
686 	struct perf_sample *sample = iter->sample;
687 	struct hist_entry *he;
688 
689 	if (mi == NULL)
690 		return -EINVAL;
691 
692 	cost = sample->weight;
693 	if (!cost)
694 		cost = 1;
695 
696 	/*
697 	 * must pass period=weight in order to get the correct
698 	 * sorting from hists__collapse_resort() which is solely
699 	 * based on periods. We want sorting be done on nr_events * weight
700 	 * and this is indirectly achieved by passing period=weight here
701 	 * and the he_stat__add_period() function.
702 	 */
703 	sample->period = cost;
704 
705 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
706 			      sample, true);
707 	if (!he)
708 		return -ENOMEM;
709 
710 	iter->he = he;
711 	return 0;
712 }
713 
714 static int
715 iter_finish_mem_entry(struct hist_entry_iter *iter,
716 		      struct addr_location *al __maybe_unused)
717 {
718 	struct perf_evsel *evsel = iter->evsel;
719 	struct hists *hists = evsel__hists(evsel);
720 	struct hist_entry *he = iter->he;
721 	int err = -EINVAL;
722 
723 	if (he == NULL)
724 		goto out;
725 
726 	hists__inc_nr_samples(hists, he->filtered);
727 
728 	err = hist_entry__append_callchain(he, iter->sample);
729 
730 out:
731 	/*
732 	 * We don't need to free iter->priv (mem_info) here since the mem info
733 	 * was either already freed in hists__findnew_entry() or passed to a
734 	 * new hist entry by hist_entry__new().
735 	 */
736 	iter->priv = NULL;
737 
738 	iter->he = NULL;
739 	return err;
740 }
741 
742 static int
743 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
744 {
745 	struct branch_info *bi;
746 	struct perf_sample *sample = iter->sample;
747 
748 	bi = sample__resolve_bstack(sample, al);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	iter->curr = 0;
753 	iter->total = sample->branch_stack->nr;
754 
755 	iter->priv = bi;
756 	return 0;
757 }
758 
759 static int
760 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
761 			     struct addr_location *al __maybe_unused)
762 {
763 	return 0;
764 }
765 
766 static int
767 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
768 {
769 	struct branch_info *bi = iter->priv;
770 	int i = iter->curr;
771 
772 	if (bi == NULL)
773 		return 0;
774 
775 	if (iter->curr >= iter->total)
776 		return 0;
777 
778 	al->map = bi[i].to.map;
779 	al->sym = bi[i].to.sym;
780 	al->addr = bi[i].to.addr;
781 	return 1;
782 }
783 
784 static int
785 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
786 {
787 	struct branch_info *bi;
788 	struct perf_evsel *evsel = iter->evsel;
789 	struct hists *hists = evsel__hists(evsel);
790 	struct perf_sample *sample = iter->sample;
791 	struct hist_entry *he = NULL;
792 	int i = iter->curr;
793 	int err = 0;
794 
795 	bi = iter->priv;
796 
797 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
798 		goto out;
799 
800 	/*
801 	 * The report shows the percentage of total branches captured
802 	 * and not events sampled. Thus we use a pseudo period of 1.
803 	 */
804 	sample->period = 1;
805 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
806 
807 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
808 			      sample, true);
809 	if (he == NULL)
810 		return -ENOMEM;
811 
812 	hists__inc_nr_samples(hists, he->filtered);
813 
814 out:
815 	iter->he = he;
816 	iter->curr++;
817 	return err;
818 }
819 
820 static int
821 iter_finish_branch_entry(struct hist_entry_iter *iter,
822 			 struct addr_location *al __maybe_unused)
823 {
824 	zfree(&iter->priv);
825 	iter->he = NULL;
826 
827 	return iter->curr >= iter->total ? 0 : -1;
828 }
829 
830 static int
831 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
832 			  struct addr_location *al __maybe_unused)
833 {
834 	return 0;
835 }
836 
837 static int
838 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
839 {
840 	struct perf_evsel *evsel = iter->evsel;
841 	struct perf_sample *sample = iter->sample;
842 	struct hist_entry *he;
843 
844 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
845 			      sample, true);
846 	if (he == NULL)
847 		return -ENOMEM;
848 
849 	iter->he = he;
850 	return 0;
851 }
852 
853 static int
854 iter_finish_normal_entry(struct hist_entry_iter *iter,
855 			 struct addr_location *al __maybe_unused)
856 {
857 	struct hist_entry *he = iter->he;
858 	struct perf_evsel *evsel = iter->evsel;
859 	struct perf_sample *sample = iter->sample;
860 
861 	if (he == NULL)
862 		return 0;
863 
864 	iter->he = NULL;
865 
866 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
867 
868 	return hist_entry__append_callchain(he, sample);
869 }
870 
871 static int
872 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
873 			      struct addr_location *al __maybe_unused)
874 {
875 	struct hist_entry **he_cache;
876 
877 	callchain_cursor_commit(&callchain_cursor);
878 
879 	/*
880 	 * This is for detecting cycles or recursions so that they're
881 	 * cumulated only one time to prevent entries more than 100%
882 	 * overhead.
883 	 */
884 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
885 	if (he_cache == NULL)
886 		return -ENOMEM;
887 
888 	iter->priv = he_cache;
889 	iter->curr = 0;
890 
891 	return 0;
892 }
893 
894 static int
895 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
896 				 struct addr_location *al)
897 {
898 	struct perf_evsel *evsel = iter->evsel;
899 	struct hists *hists = evsel__hists(evsel);
900 	struct perf_sample *sample = iter->sample;
901 	struct hist_entry **he_cache = iter->priv;
902 	struct hist_entry *he;
903 	int err = 0;
904 
905 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
906 			      sample, true);
907 	if (he == NULL)
908 		return -ENOMEM;
909 
910 	iter->he = he;
911 	he_cache[iter->curr++] = he;
912 
913 	hist_entry__append_callchain(he, sample);
914 
915 	/*
916 	 * We need to re-initialize the cursor since callchain_append()
917 	 * advanced the cursor to the end.
918 	 */
919 	callchain_cursor_commit(&callchain_cursor);
920 
921 	hists__inc_nr_samples(hists, he->filtered);
922 
923 	return err;
924 }
925 
926 static int
927 iter_next_cumulative_entry(struct hist_entry_iter *iter,
928 			   struct addr_location *al)
929 {
930 	struct callchain_cursor_node *node;
931 
932 	node = callchain_cursor_current(&callchain_cursor);
933 	if (node == NULL)
934 		return 0;
935 
936 	return fill_callchain_info(al, node, iter->hide_unresolved);
937 }
938 
939 static int
940 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
941 			       struct addr_location *al)
942 {
943 	struct perf_evsel *evsel = iter->evsel;
944 	struct perf_sample *sample = iter->sample;
945 	struct hist_entry **he_cache = iter->priv;
946 	struct hist_entry *he;
947 	struct hist_entry he_tmp = {
948 		.hists = evsel__hists(evsel),
949 		.cpu = al->cpu,
950 		.thread = al->thread,
951 		.comm = thread__comm(al->thread),
952 		.ip = al->addr,
953 		.ms = {
954 			.map = al->map,
955 			.sym = al->sym,
956 		},
957 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
958 		.parent = iter->parent,
959 		.raw_data = sample->raw_data,
960 		.raw_size = sample->raw_size,
961 	};
962 	int i;
963 	struct callchain_cursor cursor;
964 
965 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
966 
967 	callchain_cursor_advance(&callchain_cursor);
968 
969 	/*
970 	 * Check if there's duplicate entries in the callchain.
971 	 * It's possible that it has cycles or recursive calls.
972 	 */
973 	for (i = 0; i < iter->curr; i++) {
974 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
975 			/* to avoid calling callback function */
976 			iter->he = NULL;
977 			return 0;
978 		}
979 	}
980 
981 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
982 			      sample, false);
983 	if (he == NULL)
984 		return -ENOMEM;
985 
986 	iter->he = he;
987 	he_cache[iter->curr++] = he;
988 
989 	if (symbol_conf.use_callchain)
990 		callchain_append(he->callchain, &cursor, sample->period);
991 	return 0;
992 }
993 
994 static int
995 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
996 			     struct addr_location *al __maybe_unused)
997 {
998 	zfree(&iter->priv);
999 	iter->he = NULL;
1000 
1001 	return 0;
1002 }
1003 
1004 const struct hist_iter_ops hist_iter_mem = {
1005 	.prepare_entry 		= iter_prepare_mem_entry,
1006 	.add_single_entry 	= iter_add_single_mem_entry,
1007 	.next_entry 		= iter_next_nop_entry,
1008 	.add_next_entry 	= iter_add_next_nop_entry,
1009 	.finish_entry 		= iter_finish_mem_entry,
1010 };
1011 
1012 const struct hist_iter_ops hist_iter_branch = {
1013 	.prepare_entry 		= iter_prepare_branch_entry,
1014 	.add_single_entry 	= iter_add_single_branch_entry,
1015 	.next_entry 		= iter_next_branch_entry,
1016 	.add_next_entry 	= iter_add_next_branch_entry,
1017 	.finish_entry 		= iter_finish_branch_entry,
1018 };
1019 
1020 const struct hist_iter_ops hist_iter_normal = {
1021 	.prepare_entry 		= iter_prepare_normal_entry,
1022 	.add_single_entry 	= iter_add_single_normal_entry,
1023 	.next_entry 		= iter_next_nop_entry,
1024 	.add_next_entry 	= iter_add_next_nop_entry,
1025 	.finish_entry 		= iter_finish_normal_entry,
1026 };
1027 
1028 const struct hist_iter_ops hist_iter_cumulative = {
1029 	.prepare_entry 		= iter_prepare_cumulative_entry,
1030 	.add_single_entry 	= iter_add_single_cumulative_entry,
1031 	.next_entry 		= iter_next_cumulative_entry,
1032 	.add_next_entry 	= iter_add_next_cumulative_entry,
1033 	.finish_entry 		= iter_finish_cumulative_entry,
1034 };
1035 
1036 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1037 			 int max_stack_depth, void *arg)
1038 {
1039 	int err, err2;
1040 	struct map *alm = NULL;
1041 
1042 	if (al && al->map)
1043 		alm = map__get(al->map);
1044 
1045 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1046 					iter->evsel, al, max_stack_depth);
1047 	if (err)
1048 		return err;
1049 
1050 	err = iter->ops->prepare_entry(iter, al);
1051 	if (err)
1052 		goto out;
1053 
1054 	err = iter->ops->add_single_entry(iter, al);
1055 	if (err)
1056 		goto out;
1057 
1058 	if (iter->he && iter->add_entry_cb) {
1059 		err = iter->add_entry_cb(iter, al, true, arg);
1060 		if (err)
1061 			goto out;
1062 	}
1063 
1064 	while (iter->ops->next_entry(iter, al)) {
1065 		err = iter->ops->add_next_entry(iter, al);
1066 		if (err)
1067 			break;
1068 
1069 		if (iter->he && iter->add_entry_cb) {
1070 			err = iter->add_entry_cb(iter, al, false, arg);
1071 			if (err)
1072 				goto out;
1073 		}
1074 	}
1075 
1076 out:
1077 	err2 = iter->ops->finish_entry(iter, al);
1078 	if (!err)
1079 		err = err2;
1080 
1081 	map__put(alm);
1082 
1083 	return err;
1084 }
1085 
1086 int64_t
1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1088 {
1089 	struct hists *hists = left->hists;
1090 	struct perf_hpp_fmt *fmt;
1091 	int64_t cmp = 0;
1092 
1093 	hists__for_each_sort_list(hists, fmt) {
1094 		if (perf_hpp__is_dynamic_entry(fmt) &&
1095 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1096 			continue;
1097 
1098 		cmp = fmt->cmp(fmt, left, right);
1099 		if (cmp)
1100 			break;
1101 	}
1102 
1103 	return cmp;
1104 }
1105 
1106 int64_t
1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1108 {
1109 	struct hists *hists = left->hists;
1110 	struct perf_hpp_fmt *fmt;
1111 	int64_t cmp = 0;
1112 
1113 	hists__for_each_sort_list(hists, fmt) {
1114 		if (perf_hpp__is_dynamic_entry(fmt) &&
1115 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1116 			continue;
1117 
1118 		cmp = fmt->collapse(fmt, left, right);
1119 		if (cmp)
1120 			break;
1121 	}
1122 
1123 	return cmp;
1124 }
1125 
1126 void hist_entry__delete(struct hist_entry *he)
1127 {
1128 	struct hist_entry_ops *ops = he->ops;
1129 
1130 	thread__zput(he->thread);
1131 	map__zput(he->ms.map);
1132 
1133 	if (he->branch_info) {
1134 		map__zput(he->branch_info->from.map);
1135 		map__zput(he->branch_info->to.map);
1136 		free_srcline(he->branch_info->srcline_from);
1137 		free_srcline(he->branch_info->srcline_to);
1138 		zfree(&he->branch_info);
1139 	}
1140 
1141 	if (he->mem_info) {
1142 		map__zput(he->mem_info->iaddr.map);
1143 		map__zput(he->mem_info->daddr.map);
1144 		mem_info__zput(he->mem_info);
1145 	}
1146 
1147 	zfree(&he->stat_acc);
1148 	free_srcline(he->srcline);
1149 	if (he->srcfile && he->srcfile[0])
1150 		free(he->srcfile);
1151 	free_callchain(he->callchain);
1152 	free(he->trace_output);
1153 	free(he->raw_data);
1154 	ops->free(he);
1155 }
1156 
1157 /*
1158  * If this is not the last column, then we need to pad it according to the
1159  * pre-calculated max lenght for this column, otherwise don't bother adding
1160  * spaces because that would break viewing this with, for instance, 'less',
1161  * that would show tons of trailing spaces when a long C++ demangled method
1162  * names is sampled.
1163 */
1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1165 				   struct perf_hpp_fmt *fmt, int printed)
1166 {
1167 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1168 		const int width = fmt->width(fmt, hpp, he->hists);
1169 		if (printed < width) {
1170 			advance_hpp(hpp, printed);
1171 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1172 		}
1173 	}
1174 
1175 	return printed;
1176 }
1177 
1178 /*
1179  * collapse the histogram
1180  */
1181 
1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1184 				       enum hist_filter type);
1185 
1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1187 
1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1189 {
1190 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1191 }
1192 
1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1194 						enum hist_filter type,
1195 						fmt_chk_fn check)
1196 {
1197 	struct perf_hpp_fmt *fmt;
1198 	bool type_match = false;
1199 	struct hist_entry *parent = he->parent_he;
1200 
1201 	switch (type) {
1202 	case HIST_FILTER__THREAD:
1203 		if (symbol_conf.comm_list == NULL &&
1204 		    symbol_conf.pid_list == NULL &&
1205 		    symbol_conf.tid_list == NULL)
1206 			return;
1207 		break;
1208 	case HIST_FILTER__DSO:
1209 		if (symbol_conf.dso_list == NULL)
1210 			return;
1211 		break;
1212 	case HIST_FILTER__SYMBOL:
1213 		if (symbol_conf.sym_list == NULL)
1214 			return;
1215 		break;
1216 	case HIST_FILTER__PARENT:
1217 	case HIST_FILTER__GUEST:
1218 	case HIST_FILTER__HOST:
1219 	case HIST_FILTER__SOCKET:
1220 	case HIST_FILTER__C2C:
1221 	default:
1222 		return;
1223 	}
1224 
1225 	/* if it's filtered by own fmt, it has to have filter bits */
1226 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1227 		if (check(fmt)) {
1228 			type_match = true;
1229 			break;
1230 		}
1231 	}
1232 
1233 	if (type_match) {
1234 		/*
1235 		 * If the filter is for current level entry, propagate
1236 		 * filter marker to parents.  The marker bit was
1237 		 * already set by default so it only needs to clear
1238 		 * non-filtered entries.
1239 		 */
1240 		if (!(he->filtered & (1 << type))) {
1241 			while (parent) {
1242 				parent->filtered &= ~(1 << type);
1243 				parent = parent->parent_he;
1244 			}
1245 		}
1246 	} else {
1247 		/*
1248 		 * If current entry doesn't have matching formats, set
1249 		 * filter marker for upper level entries.  it will be
1250 		 * cleared if its lower level entries is not filtered.
1251 		 *
1252 		 * For lower-level entries, it inherits parent's
1253 		 * filter bit so that lower level entries of a
1254 		 * non-filtered entry won't set the filter marker.
1255 		 */
1256 		if (parent == NULL)
1257 			he->filtered |= (1 << type);
1258 		else
1259 			he->filtered |= (parent->filtered & (1 << type));
1260 	}
1261 }
1262 
1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1264 {
1265 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1266 					    check_thread_entry);
1267 
1268 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1269 					    perf_hpp__is_dso_entry);
1270 
1271 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1272 					    perf_hpp__is_sym_entry);
1273 
1274 	hists__apply_filters(he->hists, he);
1275 }
1276 
1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1278 						 struct rb_root *root,
1279 						 struct hist_entry *he,
1280 						 struct hist_entry *parent_he,
1281 						 struct perf_hpp_list *hpp_list)
1282 {
1283 	struct rb_node **p = &root->rb_node;
1284 	struct rb_node *parent = NULL;
1285 	struct hist_entry *iter, *new;
1286 	struct perf_hpp_fmt *fmt;
1287 	int64_t cmp;
1288 
1289 	while (*p != NULL) {
1290 		parent = *p;
1291 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1292 
1293 		cmp = 0;
1294 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1295 			cmp = fmt->collapse(fmt, iter, he);
1296 			if (cmp)
1297 				break;
1298 		}
1299 
1300 		if (!cmp) {
1301 			he_stat__add_stat(&iter->stat, &he->stat);
1302 			return iter;
1303 		}
1304 
1305 		if (cmp < 0)
1306 			p = &parent->rb_left;
1307 		else
1308 			p = &parent->rb_right;
1309 	}
1310 
1311 	new = hist_entry__new(he, true);
1312 	if (new == NULL)
1313 		return NULL;
1314 
1315 	hists->nr_entries++;
1316 
1317 	/* save related format list for output */
1318 	new->hpp_list = hpp_list;
1319 	new->parent_he = parent_he;
1320 
1321 	hist_entry__apply_hierarchy_filters(new);
1322 
1323 	/* some fields are now passed to 'new' */
1324 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1325 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1326 			he->trace_output = NULL;
1327 		else
1328 			new->trace_output = NULL;
1329 
1330 		if (perf_hpp__is_srcline_entry(fmt))
1331 			he->srcline = NULL;
1332 		else
1333 			new->srcline = NULL;
1334 
1335 		if (perf_hpp__is_srcfile_entry(fmt))
1336 			he->srcfile = NULL;
1337 		else
1338 			new->srcfile = NULL;
1339 	}
1340 
1341 	rb_link_node(&new->rb_node_in, parent, p);
1342 	rb_insert_color(&new->rb_node_in, root);
1343 	return new;
1344 }
1345 
1346 static int hists__hierarchy_insert_entry(struct hists *hists,
1347 					 struct rb_root *root,
1348 					 struct hist_entry *he)
1349 {
1350 	struct perf_hpp_list_node *node;
1351 	struct hist_entry *new_he = NULL;
1352 	struct hist_entry *parent = NULL;
1353 	int depth = 0;
1354 	int ret = 0;
1355 
1356 	list_for_each_entry(node, &hists->hpp_formats, list) {
1357 		/* skip period (overhead) and elided columns */
1358 		if (node->level == 0 || node->skip)
1359 			continue;
1360 
1361 		/* insert copy of 'he' for each fmt into the hierarchy */
1362 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1363 		if (new_he == NULL) {
1364 			ret = -1;
1365 			break;
1366 		}
1367 
1368 		root = &new_he->hroot_in;
1369 		new_he->depth = depth++;
1370 		parent = new_he;
1371 	}
1372 
1373 	if (new_he) {
1374 		new_he->leaf = true;
1375 
1376 		if (symbol_conf.use_callchain) {
1377 			callchain_cursor_reset(&callchain_cursor);
1378 			if (callchain_merge(&callchain_cursor,
1379 					    new_he->callchain,
1380 					    he->callchain) < 0)
1381 				ret = -1;
1382 		}
1383 	}
1384 
1385 	/* 'he' is no longer used */
1386 	hist_entry__delete(he);
1387 
1388 	/* return 0 (or -1) since it already applied filters */
1389 	return ret;
1390 }
1391 
1392 static int hists__collapse_insert_entry(struct hists *hists,
1393 					struct rb_root *root,
1394 					struct hist_entry *he)
1395 {
1396 	struct rb_node **p = &root->rb_node;
1397 	struct rb_node *parent = NULL;
1398 	struct hist_entry *iter;
1399 	int64_t cmp;
1400 
1401 	if (symbol_conf.report_hierarchy)
1402 		return hists__hierarchy_insert_entry(hists, root, he);
1403 
1404 	while (*p != NULL) {
1405 		parent = *p;
1406 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1407 
1408 		cmp = hist_entry__collapse(iter, he);
1409 
1410 		if (!cmp) {
1411 			int ret = 0;
1412 
1413 			he_stat__add_stat(&iter->stat, &he->stat);
1414 			if (symbol_conf.cumulate_callchain)
1415 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1416 
1417 			if (symbol_conf.use_callchain) {
1418 				callchain_cursor_reset(&callchain_cursor);
1419 				if (callchain_merge(&callchain_cursor,
1420 						    iter->callchain,
1421 						    he->callchain) < 0)
1422 					ret = -1;
1423 			}
1424 			hist_entry__delete(he);
1425 			return ret;
1426 		}
1427 
1428 		if (cmp < 0)
1429 			p = &(*p)->rb_left;
1430 		else
1431 			p = &(*p)->rb_right;
1432 	}
1433 	hists->nr_entries++;
1434 
1435 	rb_link_node(&he->rb_node_in, parent, p);
1436 	rb_insert_color(&he->rb_node_in, root);
1437 	return 1;
1438 }
1439 
1440 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1441 {
1442 	struct rb_root *root;
1443 
1444 	pthread_mutex_lock(&hists->lock);
1445 
1446 	root = hists->entries_in;
1447 	if (++hists->entries_in > &hists->entries_in_array[1])
1448 		hists->entries_in = &hists->entries_in_array[0];
1449 
1450 	pthread_mutex_unlock(&hists->lock);
1451 
1452 	return root;
1453 }
1454 
1455 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1456 {
1457 	hists__filter_entry_by_dso(hists, he);
1458 	hists__filter_entry_by_thread(hists, he);
1459 	hists__filter_entry_by_symbol(hists, he);
1460 	hists__filter_entry_by_socket(hists, he);
1461 }
1462 
1463 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1464 {
1465 	struct rb_root *root;
1466 	struct rb_node *next;
1467 	struct hist_entry *n;
1468 	int ret;
1469 
1470 	if (!hists__has(hists, need_collapse))
1471 		return 0;
1472 
1473 	hists->nr_entries = 0;
1474 
1475 	root = hists__get_rotate_entries_in(hists);
1476 
1477 	next = rb_first(root);
1478 
1479 	while (next) {
1480 		if (session_done())
1481 			break;
1482 		n = rb_entry(next, struct hist_entry, rb_node_in);
1483 		next = rb_next(&n->rb_node_in);
1484 
1485 		rb_erase(&n->rb_node_in, root);
1486 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1487 		if (ret < 0)
1488 			return -1;
1489 
1490 		if (ret) {
1491 			/*
1492 			 * If it wasn't combined with one of the entries already
1493 			 * collapsed, we need to apply the filters that may have
1494 			 * been set by, say, the hist_browser.
1495 			 */
1496 			hists__apply_filters(hists, n);
1497 		}
1498 		if (prog)
1499 			ui_progress__update(prog, 1);
1500 	}
1501 	return 0;
1502 }
1503 
1504 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1505 {
1506 	struct hists *hists = a->hists;
1507 	struct perf_hpp_fmt *fmt;
1508 	int64_t cmp = 0;
1509 
1510 	hists__for_each_sort_list(hists, fmt) {
1511 		if (perf_hpp__should_skip(fmt, a->hists))
1512 			continue;
1513 
1514 		cmp = fmt->sort(fmt, a, b);
1515 		if (cmp)
1516 			break;
1517 	}
1518 
1519 	return cmp;
1520 }
1521 
1522 static void hists__reset_filter_stats(struct hists *hists)
1523 {
1524 	hists->nr_non_filtered_entries = 0;
1525 	hists->stats.total_non_filtered_period = 0;
1526 }
1527 
1528 void hists__reset_stats(struct hists *hists)
1529 {
1530 	hists->nr_entries = 0;
1531 	hists->stats.total_period = 0;
1532 
1533 	hists__reset_filter_stats(hists);
1534 }
1535 
1536 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1537 {
1538 	hists->nr_non_filtered_entries++;
1539 	hists->stats.total_non_filtered_period += h->stat.period;
1540 }
1541 
1542 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1543 {
1544 	if (!h->filtered)
1545 		hists__inc_filter_stats(hists, h);
1546 
1547 	hists->nr_entries++;
1548 	hists->stats.total_period += h->stat.period;
1549 }
1550 
1551 static void hierarchy_recalc_total_periods(struct hists *hists)
1552 {
1553 	struct rb_node *node;
1554 	struct hist_entry *he;
1555 
1556 	node = rb_first(&hists->entries);
1557 
1558 	hists->stats.total_period = 0;
1559 	hists->stats.total_non_filtered_period = 0;
1560 
1561 	/*
1562 	 * recalculate total period using top-level entries only
1563 	 * since lower level entries only see non-filtered entries
1564 	 * but upper level entries have sum of both entries.
1565 	 */
1566 	while (node) {
1567 		he = rb_entry(node, struct hist_entry, rb_node);
1568 		node = rb_next(node);
1569 
1570 		hists->stats.total_period += he->stat.period;
1571 		if (!he->filtered)
1572 			hists->stats.total_non_filtered_period += he->stat.period;
1573 	}
1574 }
1575 
1576 static void hierarchy_insert_output_entry(struct rb_root *root,
1577 					  struct hist_entry *he)
1578 {
1579 	struct rb_node **p = &root->rb_node;
1580 	struct rb_node *parent = NULL;
1581 	struct hist_entry *iter;
1582 	struct perf_hpp_fmt *fmt;
1583 
1584 	while (*p != NULL) {
1585 		parent = *p;
1586 		iter = rb_entry(parent, struct hist_entry, rb_node);
1587 
1588 		if (hist_entry__sort(he, iter) > 0)
1589 			p = &parent->rb_left;
1590 		else
1591 			p = &parent->rb_right;
1592 	}
1593 
1594 	rb_link_node(&he->rb_node, parent, p);
1595 	rb_insert_color(&he->rb_node, root);
1596 
1597 	/* update column width of dynamic entry */
1598 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1599 		if (perf_hpp__is_dynamic_entry(fmt))
1600 			fmt->sort(fmt, he, NULL);
1601 	}
1602 }
1603 
1604 static void hists__hierarchy_output_resort(struct hists *hists,
1605 					   struct ui_progress *prog,
1606 					   struct rb_root *root_in,
1607 					   struct rb_root *root_out,
1608 					   u64 min_callchain_hits,
1609 					   bool use_callchain)
1610 {
1611 	struct rb_node *node;
1612 	struct hist_entry *he;
1613 
1614 	*root_out = RB_ROOT;
1615 	node = rb_first(root_in);
1616 
1617 	while (node) {
1618 		he = rb_entry(node, struct hist_entry, rb_node_in);
1619 		node = rb_next(node);
1620 
1621 		hierarchy_insert_output_entry(root_out, he);
1622 
1623 		if (prog)
1624 			ui_progress__update(prog, 1);
1625 
1626 		hists->nr_entries++;
1627 		if (!he->filtered) {
1628 			hists->nr_non_filtered_entries++;
1629 			hists__calc_col_len(hists, he);
1630 		}
1631 
1632 		if (!he->leaf) {
1633 			hists__hierarchy_output_resort(hists, prog,
1634 						       &he->hroot_in,
1635 						       &he->hroot_out,
1636 						       min_callchain_hits,
1637 						       use_callchain);
1638 			continue;
1639 		}
1640 
1641 		if (!use_callchain)
1642 			continue;
1643 
1644 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1645 			u64 total = he->stat.period;
1646 
1647 			if (symbol_conf.cumulate_callchain)
1648 				total = he->stat_acc->period;
1649 
1650 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1651 		}
1652 
1653 		callchain_param.sort(&he->sorted_chain, he->callchain,
1654 				     min_callchain_hits, &callchain_param);
1655 	}
1656 }
1657 
1658 static void __hists__insert_output_entry(struct rb_root *entries,
1659 					 struct hist_entry *he,
1660 					 u64 min_callchain_hits,
1661 					 bool use_callchain)
1662 {
1663 	struct rb_node **p = &entries->rb_node;
1664 	struct rb_node *parent = NULL;
1665 	struct hist_entry *iter;
1666 	struct perf_hpp_fmt *fmt;
1667 
1668 	if (use_callchain) {
1669 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1670 			u64 total = he->stat.period;
1671 
1672 			if (symbol_conf.cumulate_callchain)
1673 				total = he->stat_acc->period;
1674 
1675 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1676 		}
1677 		callchain_param.sort(&he->sorted_chain, he->callchain,
1678 				      min_callchain_hits, &callchain_param);
1679 	}
1680 
1681 	while (*p != NULL) {
1682 		parent = *p;
1683 		iter = rb_entry(parent, struct hist_entry, rb_node);
1684 
1685 		if (hist_entry__sort(he, iter) > 0)
1686 			p = &(*p)->rb_left;
1687 		else
1688 			p = &(*p)->rb_right;
1689 	}
1690 
1691 	rb_link_node(&he->rb_node, parent, p);
1692 	rb_insert_color(&he->rb_node, entries);
1693 
1694 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1695 		if (perf_hpp__is_dynamic_entry(fmt) &&
1696 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1697 			fmt->sort(fmt, he, NULL);  /* update column width */
1698 	}
1699 }
1700 
1701 static void output_resort(struct hists *hists, struct ui_progress *prog,
1702 			  bool use_callchain, hists__resort_cb_t cb)
1703 {
1704 	struct rb_root *root;
1705 	struct rb_node *next;
1706 	struct hist_entry *n;
1707 	u64 callchain_total;
1708 	u64 min_callchain_hits;
1709 
1710 	callchain_total = hists->callchain_period;
1711 	if (symbol_conf.filter_relative)
1712 		callchain_total = hists->callchain_non_filtered_period;
1713 
1714 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1715 
1716 	hists__reset_stats(hists);
1717 	hists__reset_col_len(hists);
1718 
1719 	if (symbol_conf.report_hierarchy) {
1720 		hists__hierarchy_output_resort(hists, prog,
1721 					       &hists->entries_collapsed,
1722 					       &hists->entries,
1723 					       min_callchain_hits,
1724 					       use_callchain);
1725 		hierarchy_recalc_total_periods(hists);
1726 		return;
1727 	}
1728 
1729 	if (hists__has(hists, need_collapse))
1730 		root = &hists->entries_collapsed;
1731 	else
1732 		root = hists->entries_in;
1733 
1734 	next = rb_first(root);
1735 	hists->entries = RB_ROOT;
1736 
1737 	while (next) {
1738 		n = rb_entry(next, struct hist_entry, rb_node_in);
1739 		next = rb_next(&n->rb_node_in);
1740 
1741 		if (cb && cb(n))
1742 			continue;
1743 
1744 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1745 		hists__inc_stats(hists, n);
1746 
1747 		if (!n->filtered)
1748 			hists__calc_col_len(hists, n);
1749 
1750 		if (prog)
1751 			ui_progress__update(prog, 1);
1752 	}
1753 }
1754 
1755 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1756 {
1757 	bool use_callchain;
1758 
1759 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1760 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1761 	else
1762 		use_callchain = symbol_conf.use_callchain;
1763 
1764 	use_callchain |= symbol_conf.show_branchflag_count;
1765 
1766 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1767 }
1768 
1769 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1770 {
1771 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1772 }
1773 
1774 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1775 			     hists__resort_cb_t cb)
1776 {
1777 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1778 }
1779 
1780 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1781 {
1782 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1783 		return false;
1784 
1785 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1786 		return true;
1787 
1788 	return false;
1789 }
1790 
1791 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1792 {
1793 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1794 
1795 	while (can_goto_child(he, HMD_NORMAL)) {
1796 		node = rb_last(&he->hroot_out);
1797 		he = rb_entry(node, struct hist_entry, rb_node);
1798 	}
1799 	return node;
1800 }
1801 
1802 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1803 {
1804 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1805 
1806 	if (can_goto_child(he, hmd))
1807 		node = rb_first(&he->hroot_out);
1808 	else
1809 		node = rb_next(node);
1810 
1811 	while (node == NULL) {
1812 		he = he->parent_he;
1813 		if (he == NULL)
1814 			break;
1815 
1816 		node = rb_next(&he->rb_node);
1817 	}
1818 	return node;
1819 }
1820 
1821 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1822 {
1823 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1824 
1825 	node = rb_prev(node);
1826 	if (node)
1827 		return rb_hierarchy_last(node);
1828 
1829 	he = he->parent_he;
1830 	if (he == NULL)
1831 		return NULL;
1832 
1833 	return &he->rb_node;
1834 }
1835 
1836 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1837 {
1838 	struct rb_node *node;
1839 	struct hist_entry *child;
1840 	float percent;
1841 
1842 	if (he->leaf)
1843 		return false;
1844 
1845 	node = rb_first(&he->hroot_out);
1846 	child = rb_entry(node, struct hist_entry, rb_node);
1847 
1848 	while (node && child->filtered) {
1849 		node = rb_next(node);
1850 		child = rb_entry(node, struct hist_entry, rb_node);
1851 	}
1852 
1853 	if (node)
1854 		percent = hist_entry__get_percent_limit(child);
1855 	else
1856 		percent = 0;
1857 
1858 	return node && percent >= limit;
1859 }
1860 
1861 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1862 				       enum hist_filter filter)
1863 {
1864 	h->filtered &= ~(1 << filter);
1865 
1866 	if (symbol_conf.report_hierarchy) {
1867 		struct hist_entry *parent = h->parent_he;
1868 
1869 		while (parent) {
1870 			he_stat__add_stat(&parent->stat, &h->stat);
1871 
1872 			parent->filtered &= ~(1 << filter);
1873 
1874 			if (parent->filtered)
1875 				goto next;
1876 
1877 			/* force fold unfiltered entry for simplicity */
1878 			parent->unfolded = false;
1879 			parent->has_no_entry = false;
1880 			parent->row_offset = 0;
1881 			parent->nr_rows = 0;
1882 next:
1883 			parent = parent->parent_he;
1884 		}
1885 	}
1886 
1887 	if (h->filtered)
1888 		return;
1889 
1890 	/* force fold unfiltered entry for simplicity */
1891 	h->unfolded = false;
1892 	h->has_no_entry = false;
1893 	h->row_offset = 0;
1894 	h->nr_rows = 0;
1895 
1896 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1897 
1898 	hists__inc_filter_stats(hists, h);
1899 	hists__calc_col_len(hists, h);
1900 }
1901 
1902 
1903 static bool hists__filter_entry_by_dso(struct hists *hists,
1904 				       struct hist_entry *he)
1905 {
1906 	if (hists->dso_filter != NULL &&
1907 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1908 		he->filtered |= (1 << HIST_FILTER__DSO);
1909 		return true;
1910 	}
1911 
1912 	return false;
1913 }
1914 
1915 static bool hists__filter_entry_by_thread(struct hists *hists,
1916 					  struct hist_entry *he)
1917 {
1918 	if (hists->thread_filter != NULL &&
1919 	    he->thread != hists->thread_filter) {
1920 		he->filtered |= (1 << HIST_FILTER__THREAD);
1921 		return true;
1922 	}
1923 
1924 	return false;
1925 }
1926 
1927 static bool hists__filter_entry_by_symbol(struct hists *hists,
1928 					  struct hist_entry *he)
1929 {
1930 	if (hists->symbol_filter_str != NULL &&
1931 	    (!he->ms.sym || strstr(he->ms.sym->name,
1932 				   hists->symbol_filter_str) == NULL)) {
1933 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1934 		return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 static bool hists__filter_entry_by_socket(struct hists *hists,
1941 					  struct hist_entry *he)
1942 {
1943 	if ((hists->socket_filter > -1) &&
1944 	    (he->socket != hists->socket_filter)) {
1945 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1946 		return true;
1947 	}
1948 
1949 	return false;
1950 }
1951 
1952 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1953 
1954 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1955 {
1956 	struct rb_node *nd;
1957 
1958 	hists->stats.nr_non_filtered_samples = 0;
1959 
1960 	hists__reset_filter_stats(hists);
1961 	hists__reset_col_len(hists);
1962 
1963 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1964 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1965 
1966 		if (filter(hists, h))
1967 			continue;
1968 
1969 		hists__remove_entry_filter(hists, h, type);
1970 	}
1971 }
1972 
1973 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1974 {
1975 	struct rb_node **p = &root->rb_node;
1976 	struct rb_node *parent = NULL;
1977 	struct hist_entry *iter;
1978 	struct rb_root new_root = RB_ROOT;
1979 	struct rb_node *nd;
1980 
1981 	while (*p != NULL) {
1982 		parent = *p;
1983 		iter = rb_entry(parent, struct hist_entry, rb_node);
1984 
1985 		if (hist_entry__sort(he, iter) > 0)
1986 			p = &(*p)->rb_left;
1987 		else
1988 			p = &(*p)->rb_right;
1989 	}
1990 
1991 	rb_link_node(&he->rb_node, parent, p);
1992 	rb_insert_color(&he->rb_node, root);
1993 
1994 	if (he->leaf || he->filtered)
1995 		return;
1996 
1997 	nd = rb_first(&he->hroot_out);
1998 	while (nd) {
1999 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2000 
2001 		nd = rb_next(nd);
2002 		rb_erase(&h->rb_node, &he->hroot_out);
2003 
2004 		resort_filtered_entry(&new_root, h);
2005 	}
2006 
2007 	he->hroot_out = new_root;
2008 }
2009 
2010 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2011 {
2012 	struct rb_node *nd;
2013 	struct rb_root new_root = RB_ROOT;
2014 
2015 	hists->stats.nr_non_filtered_samples = 0;
2016 
2017 	hists__reset_filter_stats(hists);
2018 	hists__reset_col_len(hists);
2019 
2020 	nd = rb_first(&hists->entries);
2021 	while (nd) {
2022 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2023 		int ret;
2024 
2025 		ret = hist_entry__filter(h, type, arg);
2026 
2027 		/*
2028 		 * case 1. non-matching type
2029 		 * zero out the period, set filter marker and move to child
2030 		 */
2031 		if (ret < 0) {
2032 			memset(&h->stat, 0, sizeof(h->stat));
2033 			h->filtered |= (1 << type);
2034 
2035 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2036 		}
2037 		/*
2038 		 * case 2. matched type (filter out)
2039 		 * set filter marker and move to next
2040 		 */
2041 		else if (ret == 1) {
2042 			h->filtered |= (1 << type);
2043 
2044 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2045 		}
2046 		/*
2047 		 * case 3. ok (not filtered)
2048 		 * add period to hists and parents, erase the filter marker
2049 		 * and move to next sibling
2050 		 */
2051 		else {
2052 			hists__remove_entry_filter(hists, h, type);
2053 
2054 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2055 		}
2056 	}
2057 
2058 	hierarchy_recalc_total_periods(hists);
2059 
2060 	/*
2061 	 * resort output after applying a new filter since filter in a lower
2062 	 * hierarchy can change periods in a upper hierarchy.
2063 	 */
2064 	nd = rb_first(&hists->entries);
2065 	while (nd) {
2066 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2067 
2068 		nd = rb_next(nd);
2069 		rb_erase(&h->rb_node, &hists->entries);
2070 
2071 		resort_filtered_entry(&new_root, h);
2072 	}
2073 
2074 	hists->entries = new_root;
2075 }
2076 
2077 void hists__filter_by_thread(struct hists *hists)
2078 {
2079 	if (symbol_conf.report_hierarchy)
2080 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2081 					hists->thread_filter);
2082 	else
2083 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2084 				      hists__filter_entry_by_thread);
2085 }
2086 
2087 void hists__filter_by_dso(struct hists *hists)
2088 {
2089 	if (symbol_conf.report_hierarchy)
2090 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2091 					hists->dso_filter);
2092 	else
2093 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2094 				      hists__filter_entry_by_dso);
2095 }
2096 
2097 void hists__filter_by_symbol(struct hists *hists)
2098 {
2099 	if (symbol_conf.report_hierarchy)
2100 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2101 					hists->symbol_filter_str);
2102 	else
2103 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2104 				      hists__filter_entry_by_symbol);
2105 }
2106 
2107 void hists__filter_by_socket(struct hists *hists)
2108 {
2109 	if (symbol_conf.report_hierarchy)
2110 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2111 					&hists->socket_filter);
2112 	else
2113 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2114 				      hists__filter_entry_by_socket);
2115 }
2116 
2117 void events_stats__inc(struct events_stats *stats, u32 type)
2118 {
2119 	++stats->nr_events[0];
2120 	++stats->nr_events[type];
2121 }
2122 
2123 void hists__inc_nr_events(struct hists *hists, u32 type)
2124 {
2125 	events_stats__inc(&hists->stats, type);
2126 }
2127 
2128 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2129 {
2130 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2131 	if (!filtered)
2132 		hists->stats.nr_non_filtered_samples++;
2133 }
2134 
2135 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2136 						 struct hist_entry *pair)
2137 {
2138 	struct rb_root *root;
2139 	struct rb_node **p;
2140 	struct rb_node *parent = NULL;
2141 	struct hist_entry *he;
2142 	int64_t cmp;
2143 
2144 	if (hists__has(hists, need_collapse))
2145 		root = &hists->entries_collapsed;
2146 	else
2147 		root = hists->entries_in;
2148 
2149 	p = &root->rb_node;
2150 
2151 	while (*p != NULL) {
2152 		parent = *p;
2153 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2154 
2155 		cmp = hist_entry__collapse(he, pair);
2156 
2157 		if (!cmp)
2158 			goto out;
2159 
2160 		if (cmp < 0)
2161 			p = &(*p)->rb_left;
2162 		else
2163 			p = &(*p)->rb_right;
2164 	}
2165 
2166 	he = hist_entry__new(pair, true);
2167 	if (he) {
2168 		memset(&he->stat, 0, sizeof(he->stat));
2169 		he->hists = hists;
2170 		if (symbol_conf.cumulate_callchain)
2171 			memset(he->stat_acc, 0, sizeof(he->stat));
2172 		rb_link_node(&he->rb_node_in, parent, p);
2173 		rb_insert_color(&he->rb_node_in, root);
2174 		hists__inc_stats(hists, he);
2175 		he->dummy = true;
2176 	}
2177 out:
2178 	return he;
2179 }
2180 
2181 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2182 						    struct rb_root *root,
2183 						    struct hist_entry *pair)
2184 {
2185 	struct rb_node **p;
2186 	struct rb_node *parent = NULL;
2187 	struct hist_entry *he;
2188 	struct perf_hpp_fmt *fmt;
2189 
2190 	p = &root->rb_node;
2191 	while (*p != NULL) {
2192 		int64_t cmp = 0;
2193 
2194 		parent = *p;
2195 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2196 
2197 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2198 			cmp = fmt->collapse(fmt, he, pair);
2199 			if (cmp)
2200 				break;
2201 		}
2202 		if (!cmp)
2203 			goto out;
2204 
2205 		if (cmp < 0)
2206 			p = &parent->rb_left;
2207 		else
2208 			p = &parent->rb_right;
2209 	}
2210 
2211 	he = hist_entry__new(pair, true);
2212 	if (he) {
2213 		rb_link_node(&he->rb_node_in, parent, p);
2214 		rb_insert_color(&he->rb_node_in, root);
2215 
2216 		he->dummy = true;
2217 		he->hists = hists;
2218 		memset(&he->stat, 0, sizeof(he->stat));
2219 		hists__inc_stats(hists, he);
2220 	}
2221 out:
2222 	return he;
2223 }
2224 
2225 static struct hist_entry *hists__find_entry(struct hists *hists,
2226 					    struct hist_entry *he)
2227 {
2228 	struct rb_node *n;
2229 
2230 	if (hists__has(hists, need_collapse))
2231 		n = hists->entries_collapsed.rb_node;
2232 	else
2233 		n = hists->entries_in->rb_node;
2234 
2235 	while (n) {
2236 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2237 		int64_t cmp = hist_entry__collapse(iter, he);
2238 
2239 		if (cmp < 0)
2240 			n = n->rb_left;
2241 		else if (cmp > 0)
2242 			n = n->rb_right;
2243 		else
2244 			return iter;
2245 	}
2246 
2247 	return NULL;
2248 }
2249 
2250 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2251 						      struct hist_entry *he)
2252 {
2253 	struct rb_node *n = root->rb_node;
2254 
2255 	while (n) {
2256 		struct hist_entry *iter;
2257 		struct perf_hpp_fmt *fmt;
2258 		int64_t cmp = 0;
2259 
2260 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2261 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2262 			cmp = fmt->collapse(fmt, iter, he);
2263 			if (cmp)
2264 				break;
2265 		}
2266 
2267 		if (cmp < 0)
2268 			n = n->rb_left;
2269 		else if (cmp > 0)
2270 			n = n->rb_right;
2271 		else
2272 			return iter;
2273 	}
2274 
2275 	return NULL;
2276 }
2277 
2278 static void hists__match_hierarchy(struct rb_root *leader_root,
2279 				   struct rb_root *other_root)
2280 {
2281 	struct rb_node *nd;
2282 	struct hist_entry *pos, *pair;
2283 
2284 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2285 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2286 		pair = hists__find_hierarchy_entry(other_root, pos);
2287 
2288 		if (pair) {
2289 			hist_entry__add_pair(pair, pos);
2290 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2291 		}
2292 	}
2293 }
2294 
2295 /*
2296  * Look for pairs to link to the leader buckets (hist_entries):
2297  */
2298 void hists__match(struct hists *leader, struct hists *other)
2299 {
2300 	struct rb_root *root;
2301 	struct rb_node *nd;
2302 	struct hist_entry *pos, *pair;
2303 
2304 	if (symbol_conf.report_hierarchy) {
2305 		/* hierarchy report always collapses entries */
2306 		return hists__match_hierarchy(&leader->entries_collapsed,
2307 					      &other->entries_collapsed);
2308 	}
2309 
2310 	if (hists__has(leader, need_collapse))
2311 		root = &leader->entries_collapsed;
2312 	else
2313 		root = leader->entries_in;
2314 
2315 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2316 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2317 		pair = hists__find_entry(other, pos);
2318 
2319 		if (pair)
2320 			hist_entry__add_pair(pair, pos);
2321 	}
2322 }
2323 
2324 static int hists__link_hierarchy(struct hists *leader_hists,
2325 				 struct hist_entry *parent,
2326 				 struct rb_root *leader_root,
2327 				 struct rb_root *other_root)
2328 {
2329 	struct rb_node *nd;
2330 	struct hist_entry *pos, *leader;
2331 
2332 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2333 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2334 
2335 		if (hist_entry__has_pairs(pos)) {
2336 			bool found = false;
2337 
2338 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2339 				if (leader->hists == leader_hists) {
2340 					found = true;
2341 					break;
2342 				}
2343 			}
2344 			if (!found)
2345 				return -1;
2346 		} else {
2347 			leader = add_dummy_hierarchy_entry(leader_hists,
2348 							   leader_root, pos);
2349 			if (leader == NULL)
2350 				return -1;
2351 
2352 			/* do not point parent in the pos */
2353 			leader->parent_he = parent;
2354 
2355 			hist_entry__add_pair(pos, leader);
2356 		}
2357 
2358 		if (!pos->leaf) {
2359 			if (hists__link_hierarchy(leader_hists, leader,
2360 						  &leader->hroot_in,
2361 						  &pos->hroot_in) < 0)
2362 				return -1;
2363 		}
2364 	}
2365 	return 0;
2366 }
2367 
2368 /*
2369  * Look for entries in the other hists that are not present in the leader, if
2370  * we find them, just add a dummy entry on the leader hists, with period=0,
2371  * nr_events=0, to serve as the list header.
2372  */
2373 int hists__link(struct hists *leader, struct hists *other)
2374 {
2375 	struct rb_root *root;
2376 	struct rb_node *nd;
2377 	struct hist_entry *pos, *pair;
2378 
2379 	if (symbol_conf.report_hierarchy) {
2380 		/* hierarchy report always collapses entries */
2381 		return hists__link_hierarchy(leader, NULL,
2382 					     &leader->entries_collapsed,
2383 					     &other->entries_collapsed);
2384 	}
2385 
2386 	if (hists__has(other, need_collapse))
2387 		root = &other->entries_collapsed;
2388 	else
2389 		root = other->entries_in;
2390 
2391 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2392 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2393 
2394 		if (!hist_entry__has_pairs(pos)) {
2395 			pair = hists__add_dummy_entry(leader, pos);
2396 			if (pair == NULL)
2397 				return -1;
2398 			hist_entry__add_pair(pos, pair);
2399 		}
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2406 			  struct perf_sample *sample, bool nonany_branch_mode)
2407 {
2408 	struct branch_info *bi;
2409 
2410 	/* If we have branch cycles always annotate them. */
2411 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2412 		int i;
2413 
2414 		bi = sample__resolve_bstack(sample, al);
2415 		if (bi) {
2416 			struct addr_map_symbol *prev = NULL;
2417 
2418 			/*
2419 			 * Ignore errors, still want to process the
2420 			 * other entries.
2421 			 *
2422 			 * For non standard branch modes always
2423 			 * force no IPC (prev == NULL)
2424 			 *
2425 			 * Note that perf stores branches reversed from
2426 			 * program order!
2427 			 */
2428 			for (i = bs->nr - 1; i >= 0; i--) {
2429 				addr_map_symbol__account_cycles(&bi[i].from,
2430 					nonany_branch_mode ? NULL : prev,
2431 					bi[i].flags.cycles);
2432 				prev = &bi[i].to;
2433 			}
2434 			free(bi);
2435 		}
2436 	}
2437 }
2438 
2439 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2440 {
2441 	struct perf_evsel *pos;
2442 	size_t ret = 0;
2443 
2444 	evlist__for_each_entry(evlist, pos) {
2445 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2446 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2447 	}
2448 
2449 	return ret;
2450 }
2451 
2452 
2453 u64 hists__total_period(struct hists *hists)
2454 {
2455 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2456 		hists->stats.total_period;
2457 }
2458 
2459 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2460 {
2461 	char unit;
2462 	int printed;
2463 	const struct dso *dso = hists->dso_filter;
2464 	const struct thread *thread = hists->thread_filter;
2465 	int socket_id = hists->socket_filter;
2466 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2467 	u64 nr_events = hists->stats.total_period;
2468 	struct perf_evsel *evsel = hists_to_evsel(hists);
2469 	const char *ev_name = perf_evsel__name(evsel);
2470 	char buf[512], sample_freq_str[64] = "";
2471 	size_t buflen = sizeof(buf);
2472 	char ref[30] = " show reference callgraph, ";
2473 	bool enable_ref = false;
2474 
2475 	if (symbol_conf.filter_relative) {
2476 		nr_samples = hists->stats.nr_non_filtered_samples;
2477 		nr_events = hists->stats.total_non_filtered_period;
2478 	}
2479 
2480 	if (perf_evsel__is_group_event(evsel)) {
2481 		struct perf_evsel *pos;
2482 
2483 		perf_evsel__group_desc(evsel, buf, buflen);
2484 		ev_name = buf;
2485 
2486 		for_each_group_member(pos, evsel) {
2487 			struct hists *pos_hists = evsel__hists(pos);
2488 
2489 			if (symbol_conf.filter_relative) {
2490 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2491 				nr_events += pos_hists->stats.total_non_filtered_period;
2492 			} else {
2493 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2494 				nr_events += pos_hists->stats.total_period;
2495 			}
2496 		}
2497 	}
2498 
2499 	if (symbol_conf.show_ref_callgraph &&
2500 	    strstr(ev_name, "call-graph=no"))
2501 		enable_ref = true;
2502 
2503 	if (show_freq)
2504 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2505 
2506 	nr_samples = convert_unit(nr_samples, &unit);
2507 	printed = scnprintf(bf, size,
2508 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2509 			   nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2510 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2511 
2512 
2513 	if (hists->uid_filter_str)
2514 		printed += snprintf(bf + printed, size - printed,
2515 				    ", UID: %s", hists->uid_filter_str);
2516 	if (thread) {
2517 		if (hists__has(hists, thread)) {
2518 			printed += scnprintf(bf + printed, size - printed,
2519 				    ", Thread: %s(%d)",
2520 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2521 				    thread->tid);
2522 		} else {
2523 			printed += scnprintf(bf + printed, size - printed,
2524 				    ", Thread: %s",
2525 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2526 		}
2527 	}
2528 	if (dso)
2529 		printed += scnprintf(bf + printed, size - printed,
2530 				    ", DSO: %s", dso->short_name);
2531 	if (socket_id > -1)
2532 		printed += scnprintf(bf + printed, size - printed,
2533 				    ", Processor Socket: %d", socket_id);
2534 
2535 	return printed;
2536 }
2537 
2538 int parse_filter_percentage(const struct option *opt __maybe_unused,
2539 			    const char *arg, int unset __maybe_unused)
2540 {
2541 	if (!strcmp(arg, "relative"))
2542 		symbol_conf.filter_relative = true;
2543 	else if (!strcmp(arg, "absolute"))
2544 		symbol_conf.filter_relative = false;
2545 	else {
2546 		pr_debug("Invalid percentage: %s\n", arg);
2547 		return -1;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 int perf_hist_config(const char *var, const char *value)
2554 {
2555 	if (!strcmp(var, "hist.percentage"))
2556 		return parse_filter_percentage(NULL, value, 0);
2557 
2558 	return 0;
2559 }
2560 
2561 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2562 {
2563 	memset(hists, 0, sizeof(*hists));
2564 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2565 	hists->entries_in = &hists->entries_in_array[0];
2566 	hists->entries_collapsed = RB_ROOT;
2567 	hists->entries = RB_ROOT;
2568 	pthread_mutex_init(&hists->lock, NULL);
2569 	hists->socket_filter = -1;
2570 	hists->hpp_list = hpp_list;
2571 	INIT_LIST_HEAD(&hists->hpp_formats);
2572 	return 0;
2573 }
2574 
2575 static void hists__delete_remaining_entries(struct rb_root *root)
2576 {
2577 	struct rb_node *node;
2578 	struct hist_entry *he;
2579 
2580 	while (!RB_EMPTY_ROOT(root)) {
2581 		node = rb_first(root);
2582 		rb_erase(node, root);
2583 
2584 		he = rb_entry(node, struct hist_entry, rb_node_in);
2585 		hist_entry__delete(he);
2586 	}
2587 }
2588 
2589 static void hists__delete_all_entries(struct hists *hists)
2590 {
2591 	hists__delete_entries(hists);
2592 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2593 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2594 	hists__delete_remaining_entries(&hists->entries_collapsed);
2595 }
2596 
2597 static void hists_evsel__exit(struct perf_evsel *evsel)
2598 {
2599 	struct hists *hists = evsel__hists(evsel);
2600 	struct perf_hpp_fmt *fmt, *pos;
2601 	struct perf_hpp_list_node *node, *tmp;
2602 
2603 	hists__delete_all_entries(hists);
2604 
2605 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2606 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2607 			list_del(&fmt->list);
2608 			free(fmt);
2609 		}
2610 		list_del(&node->list);
2611 		free(node);
2612 	}
2613 }
2614 
2615 static int hists_evsel__init(struct perf_evsel *evsel)
2616 {
2617 	struct hists *hists = evsel__hists(evsel);
2618 
2619 	__hists__init(hists, &perf_hpp_list);
2620 	return 0;
2621 }
2622 
2623 /*
2624  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2625  * stored in the rbtree...
2626  */
2627 
2628 int hists__init(void)
2629 {
2630 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2631 					    hists_evsel__init,
2632 					    hists_evsel__exit);
2633 	if (err)
2634 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2635 
2636 	return err;
2637 }
2638 
2639 void perf_hpp_list__init(struct perf_hpp_list *list)
2640 {
2641 	INIT_LIST_HEAD(&list->fields);
2642 	INIT_LIST_HEAD(&list->sorts);
2643 }
2644