xref: /openbmc/linux/tools/perf/util/hist.c (revision b9890054)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "sort.h"
14 #include "units.h"
15 #include "evlist.h"
16 #include "evsel.h"
17 #include "annotate.h"
18 #include "srcline.h"
19 #include "symbol.h"
20 #include "thread.h"
21 #include "block-info.h"
22 #include "ui/progress.h"
23 #include <errno.h>
24 #include <math.h>
25 #include <inttypes.h>
26 #include <sys/param.h>
27 #include <linux/rbtree.h>
28 #include <linux/string.h>
29 #include <linux/time64.h>
30 #include <linux/zalloc.h>
31 
32 static bool hists__filter_entry_by_dso(struct hists *hists,
33 				       struct hist_entry *he);
34 static bool hists__filter_entry_by_thread(struct hists *hists,
35 					  struct hist_entry *he);
36 static bool hists__filter_entry_by_symbol(struct hists *hists,
37 					  struct hist_entry *he);
38 static bool hists__filter_entry_by_socket(struct hists *hists,
39 					  struct hist_entry *he);
40 
41 u16 hists__col_len(struct hists *hists, enum hist_column col)
42 {
43 	return hists->col_len[col];
44 }
45 
46 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
47 {
48 	hists->col_len[col] = len;
49 }
50 
51 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
52 {
53 	if (len > hists__col_len(hists, col)) {
54 		hists__set_col_len(hists, col, len);
55 		return true;
56 	}
57 	return false;
58 }
59 
60 void hists__reset_col_len(struct hists *hists)
61 {
62 	enum hist_column col;
63 
64 	for (col = 0; col < HISTC_NR_COLS; ++col)
65 		hists__set_col_len(hists, col, 0);
66 }
67 
68 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
69 {
70 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
71 
72 	if (hists__col_len(hists, dso) < unresolved_col_width &&
73 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
74 	    !symbol_conf.dso_list)
75 		hists__set_col_len(hists, dso, unresolved_col_width);
76 }
77 
78 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
79 {
80 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
81 	int symlen;
82 	u16 len;
83 
84 	if (h->block_info)
85 		return;
86 	/*
87 	 * +4 accounts for '[x] ' priv level info
88 	 * +2 accounts for 0x prefix on raw addresses
89 	 * +3 accounts for ' y ' symtab origin info
90 	 */
91 	if (h->ms.sym) {
92 		symlen = h->ms.sym->namelen + 4;
93 		if (verbose > 0)
94 			symlen += BITS_PER_LONG / 4 + 2 + 3;
95 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
96 	} else {
97 		symlen = unresolved_col_width + 4 + 2;
98 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
99 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
100 	}
101 
102 	len = thread__comm_len(h->thread);
103 	if (hists__new_col_len(hists, HISTC_COMM, len))
104 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
105 
106 	if (h->ms.map) {
107 		len = dso__name_len(h->ms.map->dso);
108 		hists__new_col_len(hists, HISTC_DSO, len);
109 	}
110 
111 	if (h->parent)
112 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
113 
114 	if (h->branch_info) {
115 		if (h->branch_info->from.ms.sym) {
116 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
117 			if (verbose > 0)
118 				symlen += BITS_PER_LONG / 4 + 2 + 3;
119 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
120 
121 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
122 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
123 		} else {
124 			symlen = unresolved_col_width + 4 + 2;
125 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
126 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
127 		}
128 
129 		if (h->branch_info->to.ms.sym) {
130 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
131 			if (verbose > 0)
132 				symlen += BITS_PER_LONG / 4 + 2 + 3;
133 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
134 
135 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
136 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
137 		} else {
138 			symlen = unresolved_col_width + 4 + 2;
139 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
140 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
141 		}
142 
143 		if (h->branch_info->srcline_from)
144 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
145 					strlen(h->branch_info->srcline_from));
146 		if (h->branch_info->srcline_to)
147 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
148 					strlen(h->branch_info->srcline_to));
149 	}
150 
151 	if (h->mem_info) {
152 		if (h->mem_info->daddr.ms.sym) {
153 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
154 			       + unresolved_col_width + 2;
155 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
156 					   symlen);
157 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
158 					   symlen + 1);
159 		} else {
160 			symlen = unresolved_col_width + 4 + 2;
161 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
162 					   symlen);
163 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
164 					   symlen);
165 		}
166 
167 		if (h->mem_info->iaddr.ms.sym) {
168 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
169 			       + unresolved_col_width + 2;
170 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
171 					   symlen);
172 		} else {
173 			symlen = unresolved_col_width + 4 + 2;
174 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
175 					   symlen);
176 		}
177 
178 		if (h->mem_info->daddr.ms.map) {
179 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
180 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
181 					   symlen);
182 		} else {
183 			symlen = unresolved_col_width + 4 + 2;
184 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
185 		}
186 
187 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
188 				   unresolved_col_width + 4 + 2);
189 
190 	} else {
191 		symlen = unresolved_col_width + 4 + 2;
192 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
193 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
194 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
195 	}
196 
197 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
198 	hists__new_col_len(hists, HISTC_CPU, 3);
199 	hists__new_col_len(hists, HISTC_SOCKET, 6);
200 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
201 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
202 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
203 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
204 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
205 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
206 	if (symbol_conf.nanosecs)
207 		hists__new_col_len(hists, HISTC_TIME, 16);
208 	else
209 		hists__new_col_len(hists, HISTC_TIME, 12);
210 
211 	if (h->srcline) {
212 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
213 		hists__new_col_len(hists, HISTC_SRCLINE, len);
214 	}
215 
216 	if (h->srcfile)
217 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
218 
219 	if (h->transaction)
220 		hists__new_col_len(hists, HISTC_TRANSACTION,
221 				   hist_entry__transaction_len());
222 
223 	if (h->trace_output)
224 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
225 }
226 
227 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
228 {
229 	struct rb_node *next = rb_first_cached(&hists->entries);
230 	struct hist_entry *n;
231 	int row = 0;
232 
233 	hists__reset_col_len(hists);
234 
235 	while (next && row++ < max_rows) {
236 		n = rb_entry(next, struct hist_entry, rb_node);
237 		if (!n->filtered)
238 			hists__calc_col_len(hists, n);
239 		next = rb_next(&n->rb_node);
240 	}
241 }
242 
243 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
244 					unsigned int cpumode, u64 period)
245 {
246 	switch (cpumode) {
247 	case PERF_RECORD_MISC_KERNEL:
248 		he_stat->period_sys += period;
249 		break;
250 	case PERF_RECORD_MISC_USER:
251 		he_stat->period_us += period;
252 		break;
253 	case PERF_RECORD_MISC_GUEST_KERNEL:
254 		he_stat->period_guest_sys += period;
255 		break;
256 	case PERF_RECORD_MISC_GUEST_USER:
257 		he_stat->period_guest_us += period;
258 		break;
259 	default:
260 		break;
261 	}
262 }
263 
264 static long hist_time(unsigned long htime)
265 {
266 	unsigned long time_quantum = symbol_conf.time_quantum;
267 	if (time_quantum)
268 		return (htime / time_quantum) * time_quantum;
269 	return htime;
270 }
271 
272 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
273 				u64 weight)
274 {
275 
276 	he_stat->period		+= period;
277 	he_stat->weight		+= weight;
278 	he_stat->nr_events	+= 1;
279 }
280 
281 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
282 {
283 	dest->period		+= src->period;
284 	dest->period_sys	+= src->period_sys;
285 	dest->period_us		+= src->period_us;
286 	dest->period_guest_sys	+= src->period_guest_sys;
287 	dest->period_guest_us	+= src->period_guest_us;
288 	dest->nr_events		+= src->nr_events;
289 	dest->weight		+= src->weight;
290 }
291 
292 static void he_stat__decay(struct he_stat *he_stat)
293 {
294 	he_stat->period = (he_stat->period * 7) / 8;
295 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
296 	/* XXX need decay for weight too? */
297 }
298 
299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
300 
301 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
302 {
303 	u64 prev_period = he->stat.period;
304 	u64 diff;
305 
306 	if (prev_period == 0)
307 		return true;
308 
309 	he_stat__decay(&he->stat);
310 	if (symbol_conf.cumulate_callchain)
311 		he_stat__decay(he->stat_acc);
312 	decay_callchain(he->callchain);
313 
314 	diff = prev_period - he->stat.period;
315 
316 	if (!he->depth) {
317 		hists->stats.total_period -= diff;
318 		if (!he->filtered)
319 			hists->stats.total_non_filtered_period -= diff;
320 	}
321 
322 	if (!he->leaf) {
323 		struct hist_entry *child;
324 		struct rb_node *node = rb_first_cached(&he->hroot_out);
325 		while (node) {
326 			child = rb_entry(node, struct hist_entry, rb_node);
327 			node = rb_next(node);
328 
329 			if (hists__decay_entry(hists, child))
330 				hists__delete_entry(hists, child);
331 		}
332 	}
333 
334 	return he->stat.period == 0;
335 }
336 
337 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
338 {
339 	struct rb_root_cached *root_in;
340 	struct rb_root_cached *root_out;
341 
342 	if (he->parent_he) {
343 		root_in  = &he->parent_he->hroot_in;
344 		root_out = &he->parent_he->hroot_out;
345 	} else {
346 		if (hists__has(hists, need_collapse))
347 			root_in = &hists->entries_collapsed;
348 		else
349 			root_in = hists->entries_in;
350 		root_out = &hists->entries;
351 	}
352 
353 	rb_erase_cached(&he->rb_node_in, root_in);
354 	rb_erase_cached(&he->rb_node, root_out);
355 
356 	--hists->nr_entries;
357 	if (!he->filtered)
358 		--hists->nr_non_filtered_entries;
359 
360 	hist_entry__delete(he);
361 }
362 
363 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
364 {
365 	struct rb_node *next = rb_first_cached(&hists->entries);
366 	struct hist_entry *n;
367 
368 	while (next) {
369 		n = rb_entry(next, struct hist_entry, rb_node);
370 		next = rb_next(&n->rb_node);
371 		if (((zap_user && n->level == '.') ||
372 		     (zap_kernel && n->level != '.') ||
373 		     hists__decay_entry(hists, n))) {
374 			hists__delete_entry(hists, n);
375 		}
376 	}
377 }
378 
379 void hists__delete_entries(struct hists *hists)
380 {
381 	struct rb_node *next = rb_first_cached(&hists->entries);
382 	struct hist_entry *n;
383 
384 	while (next) {
385 		n = rb_entry(next, struct hist_entry, rb_node);
386 		next = rb_next(&n->rb_node);
387 
388 		hists__delete_entry(hists, n);
389 	}
390 }
391 
392 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
393 {
394 	struct rb_node *next = rb_first_cached(&hists->entries);
395 	struct hist_entry *n;
396 	int i = 0;
397 
398 	while (next) {
399 		n = rb_entry(next, struct hist_entry, rb_node);
400 		if (i == idx)
401 			return n;
402 
403 		next = rb_next(&n->rb_node);
404 		i++;
405 	}
406 
407 	return NULL;
408 }
409 
410 /*
411  * histogram, sorted on item, collects periods
412  */
413 
414 static int hist_entry__init(struct hist_entry *he,
415 			    struct hist_entry *template,
416 			    bool sample_self,
417 			    size_t callchain_size)
418 {
419 	*he = *template;
420 	he->callchain_size = callchain_size;
421 
422 	if (symbol_conf.cumulate_callchain) {
423 		he->stat_acc = malloc(sizeof(he->stat));
424 		if (he->stat_acc == NULL)
425 			return -ENOMEM;
426 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
427 		if (!sample_self)
428 			memset(&he->stat, 0, sizeof(he->stat));
429 	}
430 
431 	map__get(he->ms.map);
432 
433 	if (he->branch_info) {
434 		/*
435 		 * This branch info is (a part of) allocated from
436 		 * sample__resolve_bstack() and will be freed after
437 		 * adding new entries.  So we need to save a copy.
438 		 */
439 		he->branch_info = malloc(sizeof(*he->branch_info));
440 		if (he->branch_info == NULL)
441 			goto err;
442 
443 		memcpy(he->branch_info, template->branch_info,
444 		       sizeof(*he->branch_info));
445 
446 		map__get(he->branch_info->from.ms.map);
447 		map__get(he->branch_info->to.ms.map);
448 	}
449 
450 	if (he->mem_info) {
451 		map__get(he->mem_info->iaddr.ms.map);
452 		map__get(he->mem_info->daddr.ms.map);
453 	}
454 
455 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
456 		callchain_init(he->callchain);
457 
458 	if (he->raw_data) {
459 		he->raw_data = memdup(he->raw_data, he->raw_size);
460 		if (he->raw_data == NULL)
461 			goto err_infos;
462 	}
463 
464 	if (he->srcline) {
465 		he->srcline = strdup(he->srcline);
466 		if (he->srcline == NULL)
467 			goto err_rawdata;
468 	}
469 
470 	if (symbol_conf.res_sample) {
471 		he->res_samples = calloc(sizeof(struct res_sample),
472 					symbol_conf.res_sample);
473 		if (!he->res_samples)
474 			goto err_srcline;
475 	}
476 
477 	INIT_LIST_HEAD(&he->pairs.node);
478 	thread__get(he->thread);
479 	he->hroot_in  = RB_ROOT_CACHED;
480 	he->hroot_out = RB_ROOT_CACHED;
481 
482 	if (!symbol_conf.report_hierarchy)
483 		he->leaf = true;
484 
485 	return 0;
486 
487 err_srcline:
488 	zfree(&he->srcline);
489 
490 err_rawdata:
491 	zfree(&he->raw_data);
492 
493 err_infos:
494 	if (he->branch_info) {
495 		map__put(he->branch_info->from.ms.map);
496 		map__put(he->branch_info->to.ms.map);
497 		zfree(&he->branch_info);
498 	}
499 	if (he->mem_info) {
500 		map__put(he->mem_info->iaddr.ms.map);
501 		map__put(he->mem_info->daddr.ms.map);
502 	}
503 err:
504 	map__zput(he->ms.map);
505 	zfree(&he->stat_acc);
506 	return -ENOMEM;
507 }
508 
509 static void *hist_entry__zalloc(size_t size)
510 {
511 	return zalloc(size + sizeof(struct hist_entry));
512 }
513 
514 static void hist_entry__free(void *ptr)
515 {
516 	free(ptr);
517 }
518 
519 static struct hist_entry_ops default_ops = {
520 	.new	= hist_entry__zalloc,
521 	.free	= hist_entry__free,
522 };
523 
524 static struct hist_entry *hist_entry__new(struct hist_entry *template,
525 					  bool sample_self)
526 {
527 	struct hist_entry_ops *ops = template->ops;
528 	size_t callchain_size = 0;
529 	struct hist_entry *he;
530 	int err = 0;
531 
532 	if (!ops)
533 		ops = template->ops = &default_ops;
534 
535 	if (symbol_conf.use_callchain)
536 		callchain_size = sizeof(struct callchain_root);
537 
538 	he = ops->new(callchain_size);
539 	if (he) {
540 		err = hist_entry__init(he, template, sample_self, callchain_size);
541 		if (err) {
542 			ops->free(he);
543 			he = NULL;
544 		}
545 	}
546 
547 	return he;
548 }
549 
550 static u8 symbol__parent_filter(const struct symbol *parent)
551 {
552 	if (symbol_conf.exclude_other && parent == NULL)
553 		return 1 << HIST_FILTER__PARENT;
554 	return 0;
555 }
556 
557 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
558 {
559 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
560 		return;
561 
562 	he->hists->callchain_period += period;
563 	if (!he->filtered)
564 		he->hists->callchain_non_filtered_period += period;
565 }
566 
567 static struct hist_entry *hists__findnew_entry(struct hists *hists,
568 					       struct hist_entry *entry,
569 					       struct addr_location *al,
570 					       bool sample_self)
571 {
572 	struct rb_node **p;
573 	struct rb_node *parent = NULL;
574 	struct hist_entry *he;
575 	int64_t cmp;
576 	u64 period = entry->stat.period;
577 	u64 weight = entry->stat.weight;
578 	bool leftmost = true;
579 
580 	p = &hists->entries_in->rb_root.rb_node;
581 
582 	while (*p != NULL) {
583 		parent = *p;
584 		he = rb_entry(parent, struct hist_entry, rb_node_in);
585 
586 		/*
587 		 * Make sure that it receives arguments in a same order as
588 		 * hist_entry__collapse() so that we can use an appropriate
589 		 * function when searching an entry regardless which sort
590 		 * keys were used.
591 		 */
592 		cmp = hist_entry__cmp(he, entry);
593 
594 		if (!cmp) {
595 			if (sample_self) {
596 				he_stat__add_period(&he->stat, period, weight);
597 				hist_entry__add_callchain_period(he, period);
598 			}
599 			if (symbol_conf.cumulate_callchain)
600 				he_stat__add_period(he->stat_acc, period, weight);
601 
602 			/*
603 			 * This mem info was allocated from sample__resolve_mem
604 			 * and will not be used anymore.
605 			 */
606 			mem_info__zput(entry->mem_info);
607 
608 			block_info__zput(entry->block_info);
609 
610 			/* If the map of an existing hist_entry has
611 			 * become out-of-date due to an exec() or
612 			 * similar, update it.  Otherwise we will
613 			 * mis-adjust symbol addresses when computing
614 			 * the history counter to increment.
615 			 */
616 			if (he->ms.map != entry->ms.map) {
617 				map__put(he->ms.map);
618 				he->ms.map = map__get(entry->ms.map);
619 			}
620 			goto out;
621 		}
622 
623 		if (cmp < 0)
624 			p = &(*p)->rb_left;
625 		else {
626 			p = &(*p)->rb_right;
627 			leftmost = false;
628 		}
629 	}
630 
631 	he = hist_entry__new(entry, sample_self);
632 	if (!he)
633 		return NULL;
634 
635 	if (sample_self)
636 		hist_entry__add_callchain_period(he, period);
637 	hists->nr_entries++;
638 
639 	rb_link_node(&he->rb_node_in, parent, p);
640 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
641 out:
642 	if (sample_self)
643 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
644 	if (symbol_conf.cumulate_callchain)
645 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
646 	return he;
647 }
648 
649 static unsigned random_max(unsigned high)
650 {
651 	unsigned thresh = -high % high;
652 	for (;;) {
653 		unsigned r = random();
654 		if (r >= thresh)
655 			return r % high;
656 	}
657 }
658 
659 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
660 {
661 	struct res_sample *r;
662 	int j;
663 
664 	if (he->num_res < symbol_conf.res_sample) {
665 		j = he->num_res++;
666 	} else {
667 		j = random_max(symbol_conf.res_sample);
668 	}
669 	r = &he->res_samples[j];
670 	r->time = sample->time;
671 	r->cpu = sample->cpu;
672 	r->tid = sample->tid;
673 }
674 
675 static struct hist_entry*
676 __hists__add_entry(struct hists *hists,
677 		   struct addr_location *al,
678 		   struct symbol *sym_parent,
679 		   struct branch_info *bi,
680 		   struct mem_info *mi,
681 		   struct block_info *block_info,
682 		   struct perf_sample *sample,
683 		   bool sample_self,
684 		   struct hist_entry_ops *ops)
685 {
686 	struct namespaces *ns = thread__namespaces(al->thread);
687 	struct hist_entry entry = {
688 		.thread	= al->thread,
689 		.comm = thread__comm(al->thread),
690 		.cgroup_id = {
691 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
692 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
693 		},
694 		.ms = {
695 			.maps	= al->maps,
696 			.map	= al->map,
697 			.sym	= al->sym,
698 		},
699 		.srcline = (char *) al->srcline,
700 		.socket	 = al->socket,
701 		.cpu	 = al->cpu,
702 		.cpumode = al->cpumode,
703 		.ip	 = al->addr,
704 		.level	 = al->level,
705 		.stat = {
706 			.nr_events = 1,
707 			.period	= sample->period,
708 			.weight = sample->weight,
709 		},
710 		.parent = sym_parent,
711 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
712 		.hists	= hists,
713 		.branch_info = bi,
714 		.mem_info = mi,
715 		.block_info = block_info,
716 		.transaction = sample->transaction,
717 		.raw_data = sample->raw_data,
718 		.raw_size = sample->raw_size,
719 		.ops = ops,
720 		.time = hist_time(sample->time),
721 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
722 
723 	if (!hists->has_callchains && he && he->callchain_size != 0)
724 		hists->has_callchains = true;
725 	if (he && symbol_conf.res_sample)
726 		hists__res_sample(he, sample);
727 	return he;
728 }
729 
730 struct hist_entry *hists__add_entry(struct hists *hists,
731 				    struct addr_location *al,
732 				    struct symbol *sym_parent,
733 				    struct branch_info *bi,
734 				    struct mem_info *mi,
735 				    struct perf_sample *sample,
736 				    bool sample_self)
737 {
738 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
739 				  sample, sample_self, NULL);
740 }
741 
742 struct hist_entry *hists__add_entry_ops(struct hists *hists,
743 					struct hist_entry_ops *ops,
744 					struct addr_location *al,
745 					struct symbol *sym_parent,
746 					struct branch_info *bi,
747 					struct mem_info *mi,
748 					struct perf_sample *sample,
749 					bool sample_self)
750 {
751 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
752 				  sample, sample_self, ops);
753 }
754 
755 struct hist_entry *hists__add_entry_block(struct hists *hists,
756 					  struct addr_location *al,
757 					  struct block_info *block_info)
758 {
759 	struct hist_entry entry = {
760 		.block_info = block_info,
761 		.hists = hists,
762 		.ms = {
763 			.maps = al->maps,
764 			.map = al->map,
765 			.sym = al->sym,
766 		},
767 	}, *he = hists__findnew_entry(hists, &entry, al, false);
768 
769 	return he;
770 }
771 
772 static int
773 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
774 		    struct addr_location *al __maybe_unused)
775 {
776 	return 0;
777 }
778 
779 static int
780 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
781 			struct addr_location *al __maybe_unused)
782 {
783 	return 0;
784 }
785 
786 static int
787 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
788 {
789 	struct perf_sample *sample = iter->sample;
790 	struct mem_info *mi;
791 
792 	mi = sample__resolve_mem(sample, al);
793 	if (mi == NULL)
794 		return -ENOMEM;
795 
796 	iter->priv = mi;
797 	return 0;
798 }
799 
800 static int
801 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
802 {
803 	u64 cost;
804 	struct mem_info *mi = iter->priv;
805 	struct hists *hists = evsel__hists(iter->evsel);
806 	struct perf_sample *sample = iter->sample;
807 	struct hist_entry *he;
808 
809 	if (mi == NULL)
810 		return -EINVAL;
811 
812 	cost = sample->weight;
813 	if (!cost)
814 		cost = 1;
815 
816 	/*
817 	 * must pass period=weight in order to get the correct
818 	 * sorting from hists__collapse_resort() which is solely
819 	 * based on periods. We want sorting be done on nr_events * weight
820 	 * and this is indirectly achieved by passing period=weight here
821 	 * and the he_stat__add_period() function.
822 	 */
823 	sample->period = cost;
824 
825 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
826 			      sample, true);
827 	if (!he)
828 		return -ENOMEM;
829 
830 	iter->he = he;
831 	return 0;
832 }
833 
834 static int
835 iter_finish_mem_entry(struct hist_entry_iter *iter,
836 		      struct addr_location *al __maybe_unused)
837 {
838 	struct evsel *evsel = iter->evsel;
839 	struct hists *hists = evsel__hists(evsel);
840 	struct hist_entry *he = iter->he;
841 	int err = -EINVAL;
842 
843 	if (he == NULL)
844 		goto out;
845 
846 	hists__inc_nr_samples(hists, he->filtered);
847 
848 	err = hist_entry__append_callchain(he, iter->sample);
849 
850 out:
851 	/*
852 	 * We don't need to free iter->priv (mem_info) here since the mem info
853 	 * was either already freed in hists__findnew_entry() or passed to a
854 	 * new hist entry by hist_entry__new().
855 	 */
856 	iter->priv = NULL;
857 
858 	iter->he = NULL;
859 	return err;
860 }
861 
862 static int
863 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
864 {
865 	struct branch_info *bi;
866 	struct perf_sample *sample = iter->sample;
867 
868 	bi = sample__resolve_bstack(sample, al);
869 	if (!bi)
870 		return -ENOMEM;
871 
872 	iter->curr = 0;
873 	iter->total = sample->branch_stack->nr;
874 
875 	iter->priv = bi;
876 	return 0;
877 }
878 
879 static int
880 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
881 			     struct addr_location *al __maybe_unused)
882 {
883 	return 0;
884 }
885 
886 static int
887 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
888 {
889 	struct branch_info *bi = iter->priv;
890 	int i = iter->curr;
891 
892 	if (bi == NULL)
893 		return 0;
894 
895 	if (iter->curr >= iter->total)
896 		return 0;
897 
898 	al->maps = bi[i].to.ms.maps;
899 	al->map = bi[i].to.ms.map;
900 	al->sym = bi[i].to.ms.sym;
901 	al->addr = bi[i].to.addr;
902 	return 1;
903 }
904 
905 static int
906 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
907 {
908 	struct branch_info *bi;
909 	struct evsel *evsel = iter->evsel;
910 	struct hists *hists = evsel__hists(evsel);
911 	struct perf_sample *sample = iter->sample;
912 	struct hist_entry *he = NULL;
913 	int i = iter->curr;
914 	int err = 0;
915 
916 	bi = iter->priv;
917 
918 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
919 		goto out;
920 
921 	/*
922 	 * The report shows the percentage of total branches captured
923 	 * and not events sampled. Thus we use a pseudo period of 1.
924 	 */
925 	sample->period = 1;
926 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
927 
928 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
929 			      sample, true);
930 	if (he == NULL)
931 		return -ENOMEM;
932 
933 	hists__inc_nr_samples(hists, he->filtered);
934 
935 out:
936 	iter->he = he;
937 	iter->curr++;
938 	return err;
939 }
940 
941 static int
942 iter_finish_branch_entry(struct hist_entry_iter *iter,
943 			 struct addr_location *al __maybe_unused)
944 {
945 	zfree(&iter->priv);
946 	iter->he = NULL;
947 
948 	return iter->curr >= iter->total ? 0 : -1;
949 }
950 
951 static int
952 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
953 			  struct addr_location *al __maybe_unused)
954 {
955 	return 0;
956 }
957 
958 static int
959 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
960 {
961 	struct evsel *evsel = iter->evsel;
962 	struct perf_sample *sample = iter->sample;
963 	struct hist_entry *he;
964 
965 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
966 			      sample, true);
967 	if (he == NULL)
968 		return -ENOMEM;
969 
970 	iter->he = he;
971 	return 0;
972 }
973 
974 static int
975 iter_finish_normal_entry(struct hist_entry_iter *iter,
976 			 struct addr_location *al __maybe_unused)
977 {
978 	struct hist_entry *he = iter->he;
979 	struct evsel *evsel = iter->evsel;
980 	struct perf_sample *sample = iter->sample;
981 
982 	if (he == NULL)
983 		return 0;
984 
985 	iter->he = NULL;
986 
987 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
988 
989 	return hist_entry__append_callchain(he, sample);
990 }
991 
992 static int
993 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
994 			      struct addr_location *al __maybe_unused)
995 {
996 	struct hist_entry **he_cache;
997 
998 	callchain_cursor_commit(&callchain_cursor);
999 
1000 	/*
1001 	 * This is for detecting cycles or recursions so that they're
1002 	 * cumulated only one time to prevent entries more than 100%
1003 	 * overhead.
1004 	 */
1005 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1006 	if (he_cache == NULL)
1007 		return -ENOMEM;
1008 
1009 	iter->priv = he_cache;
1010 	iter->curr = 0;
1011 
1012 	return 0;
1013 }
1014 
1015 static int
1016 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1017 				 struct addr_location *al)
1018 {
1019 	struct evsel *evsel = iter->evsel;
1020 	struct hists *hists = evsel__hists(evsel);
1021 	struct perf_sample *sample = iter->sample;
1022 	struct hist_entry **he_cache = iter->priv;
1023 	struct hist_entry *he;
1024 	int err = 0;
1025 
1026 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1027 			      sample, true);
1028 	if (he == NULL)
1029 		return -ENOMEM;
1030 
1031 	iter->he = he;
1032 	he_cache[iter->curr++] = he;
1033 
1034 	hist_entry__append_callchain(he, sample);
1035 
1036 	/*
1037 	 * We need to re-initialize the cursor since callchain_append()
1038 	 * advanced the cursor to the end.
1039 	 */
1040 	callchain_cursor_commit(&callchain_cursor);
1041 
1042 	hists__inc_nr_samples(hists, he->filtered);
1043 
1044 	return err;
1045 }
1046 
1047 static int
1048 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1049 			   struct addr_location *al)
1050 {
1051 	struct callchain_cursor_node *node;
1052 
1053 	node = callchain_cursor_current(&callchain_cursor);
1054 	if (node == NULL)
1055 		return 0;
1056 
1057 	return fill_callchain_info(al, node, iter->hide_unresolved);
1058 }
1059 
1060 static int
1061 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1062 			       struct addr_location *al)
1063 {
1064 	struct evsel *evsel = iter->evsel;
1065 	struct perf_sample *sample = iter->sample;
1066 	struct hist_entry **he_cache = iter->priv;
1067 	struct hist_entry *he;
1068 	struct hist_entry he_tmp = {
1069 		.hists = evsel__hists(evsel),
1070 		.cpu = al->cpu,
1071 		.thread = al->thread,
1072 		.comm = thread__comm(al->thread),
1073 		.ip = al->addr,
1074 		.ms = {
1075 			.maps = al->maps,
1076 			.map = al->map,
1077 			.sym = al->sym,
1078 		},
1079 		.srcline = (char *) al->srcline,
1080 		.parent = iter->parent,
1081 		.raw_data = sample->raw_data,
1082 		.raw_size = sample->raw_size,
1083 	};
1084 	int i;
1085 	struct callchain_cursor cursor;
1086 
1087 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1088 
1089 	callchain_cursor_advance(&callchain_cursor);
1090 
1091 	/*
1092 	 * Check if there's duplicate entries in the callchain.
1093 	 * It's possible that it has cycles or recursive calls.
1094 	 */
1095 	for (i = 0; i < iter->curr; i++) {
1096 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1097 			/* to avoid calling callback function */
1098 			iter->he = NULL;
1099 			return 0;
1100 		}
1101 	}
1102 
1103 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1104 			      sample, false);
1105 	if (he == NULL)
1106 		return -ENOMEM;
1107 
1108 	iter->he = he;
1109 	he_cache[iter->curr++] = he;
1110 
1111 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1112 		callchain_append(he->callchain, &cursor, sample->period);
1113 	return 0;
1114 }
1115 
1116 static int
1117 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1118 			     struct addr_location *al __maybe_unused)
1119 {
1120 	zfree(&iter->priv);
1121 	iter->he = NULL;
1122 
1123 	return 0;
1124 }
1125 
1126 const struct hist_iter_ops hist_iter_mem = {
1127 	.prepare_entry 		= iter_prepare_mem_entry,
1128 	.add_single_entry 	= iter_add_single_mem_entry,
1129 	.next_entry 		= iter_next_nop_entry,
1130 	.add_next_entry 	= iter_add_next_nop_entry,
1131 	.finish_entry 		= iter_finish_mem_entry,
1132 };
1133 
1134 const struct hist_iter_ops hist_iter_branch = {
1135 	.prepare_entry 		= iter_prepare_branch_entry,
1136 	.add_single_entry 	= iter_add_single_branch_entry,
1137 	.next_entry 		= iter_next_branch_entry,
1138 	.add_next_entry 	= iter_add_next_branch_entry,
1139 	.finish_entry 		= iter_finish_branch_entry,
1140 };
1141 
1142 const struct hist_iter_ops hist_iter_normal = {
1143 	.prepare_entry 		= iter_prepare_normal_entry,
1144 	.add_single_entry 	= iter_add_single_normal_entry,
1145 	.next_entry 		= iter_next_nop_entry,
1146 	.add_next_entry 	= iter_add_next_nop_entry,
1147 	.finish_entry 		= iter_finish_normal_entry,
1148 };
1149 
1150 const struct hist_iter_ops hist_iter_cumulative = {
1151 	.prepare_entry 		= iter_prepare_cumulative_entry,
1152 	.add_single_entry 	= iter_add_single_cumulative_entry,
1153 	.next_entry 		= iter_next_cumulative_entry,
1154 	.add_next_entry 	= iter_add_next_cumulative_entry,
1155 	.finish_entry 		= iter_finish_cumulative_entry,
1156 };
1157 
1158 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1159 			 int max_stack_depth, void *arg)
1160 {
1161 	int err, err2;
1162 	struct map *alm = NULL;
1163 
1164 	if (al)
1165 		alm = map__get(al->map);
1166 
1167 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1168 					iter->evsel, al, max_stack_depth);
1169 	if (err) {
1170 		map__put(alm);
1171 		return err;
1172 	}
1173 
1174 	err = iter->ops->prepare_entry(iter, al);
1175 	if (err)
1176 		goto out;
1177 
1178 	err = iter->ops->add_single_entry(iter, al);
1179 	if (err)
1180 		goto out;
1181 
1182 	if (iter->he && iter->add_entry_cb) {
1183 		err = iter->add_entry_cb(iter, al, true, arg);
1184 		if (err)
1185 			goto out;
1186 	}
1187 
1188 	while (iter->ops->next_entry(iter, al)) {
1189 		err = iter->ops->add_next_entry(iter, al);
1190 		if (err)
1191 			break;
1192 
1193 		if (iter->he && iter->add_entry_cb) {
1194 			err = iter->add_entry_cb(iter, al, false, arg);
1195 			if (err)
1196 				goto out;
1197 		}
1198 	}
1199 
1200 out:
1201 	err2 = iter->ops->finish_entry(iter, al);
1202 	if (!err)
1203 		err = err2;
1204 
1205 	map__put(alm);
1206 
1207 	return err;
1208 }
1209 
1210 int64_t
1211 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1212 {
1213 	struct hists *hists = left->hists;
1214 	struct perf_hpp_fmt *fmt;
1215 	int64_t cmp = 0;
1216 
1217 	hists__for_each_sort_list(hists, fmt) {
1218 		if (perf_hpp__is_dynamic_entry(fmt) &&
1219 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1220 			continue;
1221 
1222 		cmp = fmt->cmp(fmt, left, right);
1223 		if (cmp)
1224 			break;
1225 	}
1226 
1227 	return cmp;
1228 }
1229 
1230 int64_t
1231 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1232 {
1233 	struct hists *hists = left->hists;
1234 	struct perf_hpp_fmt *fmt;
1235 	int64_t cmp = 0;
1236 
1237 	hists__for_each_sort_list(hists, fmt) {
1238 		if (perf_hpp__is_dynamic_entry(fmt) &&
1239 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1240 			continue;
1241 
1242 		cmp = fmt->collapse(fmt, left, right);
1243 		if (cmp)
1244 			break;
1245 	}
1246 
1247 	return cmp;
1248 }
1249 
1250 void hist_entry__delete(struct hist_entry *he)
1251 {
1252 	struct hist_entry_ops *ops = he->ops;
1253 
1254 	thread__zput(he->thread);
1255 	map__zput(he->ms.map);
1256 
1257 	if (he->branch_info) {
1258 		map__zput(he->branch_info->from.ms.map);
1259 		map__zput(he->branch_info->to.ms.map);
1260 		free_srcline(he->branch_info->srcline_from);
1261 		free_srcline(he->branch_info->srcline_to);
1262 		zfree(&he->branch_info);
1263 	}
1264 
1265 	if (he->mem_info) {
1266 		map__zput(he->mem_info->iaddr.ms.map);
1267 		map__zput(he->mem_info->daddr.ms.map);
1268 		mem_info__zput(he->mem_info);
1269 	}
1270 
1271 	if (he->block_info)
1272 		block_info__zput(he->block_info);
1273 
1274 	zfree(&he->res_samples);
1275 	zfree(&he->stat_acc);
1276 	free_srcline(he->srcline);
1277 	if (he->srcfile && he->srcfile[0])
1278 		zfree(&he->srcfile);
1279 	free_callchain(he->callchain);
1280 	zfree(&he->trace_output);
1281 	zfree(&he->raw_data);
1282 	ops->free(he);
1283 }
1284 
1285 /*
1286  * If this is not the last column, then we need to pad it according to the
1287  * pre-calculated max length for this column, otherwise don't bother adding
1288  * spaces because that would break viewing this with, for instance, 'less',
1289  * that would show tons of trailing spaces when a long C++ demangled method
1290  * names is sampled.
1291 */
1292 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1293 				   struct perf_hpp_fmt *fmt, int printed)
1294 {
1295 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1296 		const int width = fmt->width(fmt, hpp, he->hists);
1297 		if (printed < width) {
1298 			advance_hpp(hpp, printed);
1299 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1300 		}
1301 	}
1302 
1303 	return printed;
1304 }
1305 
1306 /*
1307  * collapse the histogram
1308  */
1309 
1310 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1311 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1312 				       enum hist_filter type);
1313 
1314 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1315 
1316 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1317 {
1318 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1319 }
1320 
1321 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1322 						enum hist_filter type,
1323 						fmt_chk_fn check)
1324 {
1325 	struct perf_hpp_fmt *fmt;
1326 	bool type_match = false;
1327 	struct hist_entry *parent = he->parent_he;
1328 
1329 	switch (type) {
1330 	case HIST_FILTER__THREAD:
1331 		if (symbol_conf.comm_list == NULL &&
1332 		    symbol_conf.pid_list == NULL &&
1333 		    symbol_conf.tid_list == NULL)
1334 			return;
1335 		break;
1336 	case HIST_FILTER__DSO:
1337 		if (symbol_conf.dso_list == NULL)
1338 			return;
1339 		break;
1340 	case HIST_FILTER__SYMBOL:
1341 		if (symbol_conf.sym_list == NULL)
1342 			return;
1343 		break;
1344 	case HIST_FILTER__PARENT:
1345 	case HIST_FILTER__GUEST:
1346 	case HIST_FILTER__HOST:
1347 	case HIST_FILTER__SOCKET:
1348 	case HIST_FILTER__C2C:
1349 	default:
1350 		return;
1351 	}
1352 
1353 	/* if it's filtered by own fmt, it has to have filter bits */
1354 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1355 		if (check(fmt)) {
1356 			type_match = true;
1357 			break;
1358 		}
1359 	}
1360 
1361 	if (type_match) {
1362 		/*
1363 		 * If the filter is for current level entry, propagate
1364 		 * filter marker to parents.  The marker bit was
1365 		 * already set by default so it only needs to clear
1366 		 * non-filtered entries.
1367 		 */
1368 		if (!(he->filtered & (1 << type))) {
1369 			while (parent) {
1370 				parent->filtered &= ~(1 << type);
1371 				parent = parent->parent_he;
1372 			}
1373 		}
1374 	} else {
1375 		/*
1376 		 * If current entry doesn't have matching formats, set
1377 		 * filter marker for upper level entries.  it will be
1378 		 * cleared if its lower level entries is not filtered.
1379 		 *
1380 		 * For lower-level entries, it inherits parent's
1381 		 * filter bit so that lower level entries of a
1382 		 * non-filtered entry won't set the filter marker.
1383 		 */
1384 		if (parent == NULL)
1385 			he->filtered |= (1 << type);
1386 		else
1387 			he->filtered |= (parent->filtered & (1 << type));
1388 	}
1389 }
1390 
1391 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1392 {
1393 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1394 					    check_thread_entry);
1395 
1396 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1397 					    perf_hpp__is_dso_entry);
1398 
1399 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1400 					    perf_hpp__is_sym_entry);
1401 
1402 	hists__apply_filters(he->hists, he);
1403 }
1404 
1405 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1406 						 struct rb_root_cached *root,
1407 						 struct hist_entry *he,
1408 						 struct hist_entry *parent_he,
1409 						 struct perf_hpp_list *hpp_list)
1410 {
1411 	struct rb_node **p = &root->rb_root.rb_node;
1412 	struct rb_node *parent = NULL;
1413 	struct hist_entry *iter, *new;
1414 	struct perf_hpp_fmt *fmt;
1415 	int64_t cmp;
1416 	bool leftmost = true;
1417 
1418 	while (*p != NULL) {
1419 		parent = *p;
1420 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1421 
1422 		cmp = 0;
1423 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1424 			cmp = fmt->collapse(fmt, iter, he);
1425 			if (cmp)
1426 				break;
1427 		}
1428 
1429 		if (!cmp) {
1430 			he_stat__add_stat(&iter->stat, &he->stat);
1431 			return iter;
1432 		}
1433 
1434 		if (cmp < 0)
1435 			p = &parent->rb_left;
1436 		else {
1437 			p = &parent->rb_right;
1438 			leftmost = false;
1439 		}
1440 	}
1441 
1442 	new = hist_entry__new(he, true);
1443 	if (new == NULL)
1444 		return NULL;
1445 
1446 	hists->nr_entries++;
1447 
1448 	/* save related format list for output */
1449 	new->hpp_list = hpp_list;
1450 	new->parent_he = parent_he;
1451 
1452 	hist_entry__apply_hierarchy_filters(new);
1453 
1454 	/* some fields are now passed to 'new' */
1455 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1456 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1457 			he->trace_output = NULL;
1458 		else
1459 			new->trace_output = NULL;
1460 
1461 		if (perf_hpp__is_srcline_entry(fmt))
1462 			he->srcline = NULL;
1463 		else
1464 			new->srcline = NULL;
1465 
1466 		if (perf_hpp__is_srcfile_entry(fmt))
1467 			he->srcfile = NULL;
1468 		else
1469 			new->srcfile = NULL;
1470 	}
1471 
1472 	rb_link_node(&new->rb_node_in, parent, p);
1473 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1474 	return new;
1475 }
1476 
1477 static int hists__hierarchy_insert_entry(struct hists *hists,
1478 					 struct rb_root_cached *root,
1479 					 struct hist_entry *he)
1480 {
1481 	struct perf_hpp_list_node *node;
1482 	struct hist_entry *new_he = NULL;
1483 	struct hist_entry *parent = NULL;
1484 	int depth = 0;
1485 	int ret = 0;
1486 
1487 	list_for_each_entry(node, &hists->hpp_formats, list) {
1488 		/* skip period (overhead) and elided columns */
1489 		if (node->level == 0 || node->skip)
1490 			continue;
1491 
1492 		/* insert copy of 'he' for each fmt into the hierarchy */
1493 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1494 		if (new_he == NULL) {
1495 			ret = -1;
1496 			break;
1497 		}
1498 
1499 		root = &new_he->hroot_in;
1500 		new_he->depth = depth++;
1501 		parent = new_he;
1502 	}
1503 
1504 	if (new_he) {
1505 		new_he->leaf = true;
1506 
1507 		if (hist_entry__has_callchains(new_he) &&
1508 		    symbol_conf.use_callchain) {
1509 			callchain_cursor_reset(&callchain_cursor);
1510 			if (callchain_merge(&callchain_cursor,
1511 					    new_he->callchain,
1512 					    he->callchain) < 0)
1513 				ret = -1;
1514 		}
1515 	}
1516 
1517 	/* 'he' is no longer used */
1518 	hist_entry__delete(he);
1519 
1520 	/* return 0 (or -1) since it already applied filters */
1521 	return ret;
1522 }
1523 
1524 static int hists__collapse_insert_entry(struct hists *hists,
1525 					struct rb_root_cached *root,
1526 					struct hist_entry *he)
1527 {
1528 	struct rb_node **p = &root->rb_root.rb_node;
1529 	struct rb_node *parent = NULL;
1530 	struct hist_entry *iter;
1531 	int64_t cmp;
1532 	bool leftmost = true;
1533 
1534 	if (symbol_conf.report_hierarchy)
1535 		return hists__hierarchy_insert_entry(hists, root, he);
1536 
1537 	while (*p != NULL) {
1538 		parent = *p;
1539 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1540 
1541 		cmp = hist_entry__collapse(iter, he);
1542 
1543 		if (!cmp) {
1544 			int ret = 0;
1545 
1546 			he_stat__add_stat(&iter->stat, &he->stat);
1547 			if (symbol_conf.cumulate_callchain)
1548 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1549 
1550 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1551 				callchain_cursor_reset(&callchain_cursor);
1552 				if (callchain_merge(&callchain_cursor,
1553 						    iter->callchain,
1554 						    he->callchain) < 0)
1555 					ret = -1;
1556 			}
1557 			hist_entry__delete(he);
1558 			return ret;
1559 		}
1560 
1561 		if (cmp < 0)
1562 			p = &(*p)->rb_left;
1563 		else {
1564 			p = &(*p)->rb_right;
1565 			leftmost = false;
1566 		}
1567 	}
1568 	hists->nr_entries++;
1569 
1570 	rb_link_node(&he->rb_node_in, parent, p);
1571 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1572 	return 1;
1573 }
1574 
1575 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1576 {
1577 	struct rb_root_cached *root;
1578 
1579 	pthread_mutex_lock(&hists->lock);
1580 
1581 	root = hists->entries_in;
1582 	if (++hists->entries_in > &hists->entries_in_array[1])
1583 		hists->entries_in = &hists->entries_in_array[0];
1584 
1585 	pthread_mutex_unlock(&hists->lock);
1586 
1587 	return root;
1588 }
1589 
1590 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1591 {
1592 	hists__filter_entry_by_dso(hists, he);
1593 	hists__filter_entry_by_thread(hists, he);
1594 	hists__filter_entry_by_symbol(hists, he);
1595 	hists__filter_entry_by_socket(hists, he);
1596 }
1597 
1598 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1599 {
1600 	struct rb_root_cached *root;
1601 	struct rb_node *next;
1602 	struct hist_entry *n;
1603 	int ret;
1604 
1605 	if (!hists__has(hists, need_collapse))
1606 		return 0;
1607 
1608 	hists->nr_entries = 0;
1609 
1610 	root = hists__get_rotate_entries_in(hists);
1611 
1612 	next = rb_first_cached(root);
1613 
1614 	while (next) {
1615 		if (session_done())
1616 			break;
1617 		n = rb_entry(next, struct hist_entry, rb_node_in);
1618 		next = rb_next(&n->rb_node_in);
1619 
1620 		rb_erase_cached(&n->rb_node_in, root);
1621 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1622 		if (ret < 0)
1623 			return -1;
1624 
1625 		if (ret) {
1626 			/*
1627 			 * If it wasn't combined with one of the entries already
1628 			 * collapsed, we need to apply the filters that may have
1629 			 * been set by, say, the hist_browser.
1630 			 */
1631 			hists__apply_filters(hists, n);
1632 		}
1633 		if (prog)
1634 			ui_progress__update(prog, 1);
1635 	}
1636 	return 0;
1637 }
1638 
1639 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1640 {
1641 	struct hists *hists = a->hists;
1642 	struct perf_hpp_fmt *fmt;
1643 	int64_t cmp = 0;
1644 
1645 	hists__for_each_sort_list(hists, fmt) {
1646 		if (perf_hpp__should_skip(fmt, a->hists))
1647 			continue;
1648 
1649 		cmp = fmt->sort(fmt, a, b);
1650 		if (cmp)
1651 			break;
1652 	}
1653 
1654 	return cmp;
1655 }
1656 
1657 static void hists__reset_filter_stats(struct hists *hists)
1658 {
1659 	hists->nr_non_filtered_entries = 0;
1660 	hists->stats.total_non_filtered_period = 0;
1661 }
1662 
1663 void hists__reset_stats(struct hists *hists)
1664 {
1665 	hists->nr_entries = 0;
1666 	hists->stats.total_period = 0;
1667 
1668 	hists__reset_filter_stats(hists);
1669 }
1670 
1671 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1672 {
1673 	hists->nr_non_filtered_entries++;
1674 	hists->stats.total_non_filtered_period += h->stat.period;
1675 }
1676 
1677 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1678 {
1679 	if (!h->filtered)
1680 		hists__inc_filter_stats(hists, h);
1681 
1682 	hists->nr_entries++;
1683 	hists->stats.total_period += h->stat.period;
1684 }
1685 
1686 static void hierarchy_recalc_total_periods(struct hists *hists)
1687 {
1688 	struct rb_node *node;
1689 	struct hist_entry *he;
1690 
1691 	node = rb_first_cached(&hists->entries);
1692 
1693 	hists->stats.total_period = 0;
1694 	hists->stats.total_non_filtered_period = 0;
1695 
1696 	/*
1697 	 * recalculate total period using top-level entries only
1698 	 * since lower level entries only see non-filtered entries
1699 	 * but upper level entries have sum of both entries.
1700 	 */
1701 	while (node) {
1702 		he = rb_entry(node, struct hist_entry, rb_node);
1703 		node = rb_next(node);
1704 
1705 		hists->stats.total_period += he->stat.period;
1706 		if (!he->filtered)
1707 			hists->stats.total_non_filtered_period += he->stat.period;
1708 	}
1709 }
1710 
1711 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1712 					  struct hist_entry *he)
1713 {
1714 	struct rb_node **p = &root->rb_root.rb_node;
1715 	struct rb_node *parent = NULL;
1716 	struct hist_entry *iter;
1717 	struct perf_hpp_fmt *fmt;
1718 	bool leftmost = true;
1719 
1720 	while (*p != NULL) {
1721 		parent = *p;
1722 		iter = rb_entry(parent, struct hist_entry, rb_node);
1723 
1724 		if (hist_entry__sort(he, iter) > 0)
1725 			p = &parent->rb_left;
1726 		else {
1727 			p = &parent->rb_right;
1728 			leftmost = false;
1729 		}
1730 	}
1731 
1732 	rb_link_node(&he->rb_node, parent, p);
1733 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1734 
1735 	/* update column width of dynamic entry */
1736 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1737 		if (perf_hpp__is_dynamic_entry(fmt))
1738 			fmt->sort(fmt, he, NULL);
1739 	}
1740 }
1741 
1742 static void hists__hierarchy_output_resort(struct hists *hists,
1743 					   struct ui_progress *prog,
1744 					   struct rb_root_cached *root_in,
1745 					   struct rb_root_cached *root_out,
1746 					   u64 min_callchain_hits,
1747 					   bool use_callchain)
1748 {
1749 	struct rb_node *node;
1750 	struct hist_entry *he;
1751 
1752 	*root_out = RB_ROOT_CACHED;
1753 	node = rb_first_cached(root_in);
1754 
1755 	while (node) {
1756 		he = rb_entry(node, struct hist_entry, rb_node_in);
1757 		node = rb_next(node);
1758 
1759 		hierarchy_insert_output_entry(root_out, he);
1760 
1761 		if (prog)
1762 			ui_progress__update(prog, 1);
1763 
1764 		hists->nr_entries++;
1765 		if (!he->filtered) {
1766 			hists->nr_non_filtered_entries++;
1767 			hists__calc_col_len(hists, he);
1768 		}
1769 
1770 		if (!he->leaf) {
1771 			hists__hierarchy_output_resort(hists, prog,
1772 						       &he->hroot_in,
1773 						       &he->hroot_out,
1774 						       min_callchain_hits,
1775 						       use_callchain);
1776 			continue;
1777 		}
1778 
1779 		if (!use_callchain)
1780 			continue;
1781 
1782 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1783 			u64 total = he->stat.period;
1784 
1785 			if (symbol_conf.cumulate_callchain)
1786 				total = he->stat_acc->period;
1787 
1788 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1789 		}
1790 
1791 		callchain_param.sort(&he->sorted_chain, he->callchain,
1792 				     min_callchain_hits, &callchain_param);
1793 	}
1794 }
1795 
1796 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1797 					 struct hist_entry *he,
1798 					 u64 min_callchain_hits,
1799 					 bool use_callchain)
1800 {
1801 	struct rb_node **p = &entries->rb_root.rb_node;
1802 	struct rb_node *parent = NULL;
1803 	struct hist_entry *iter;
1804 	struct perf_hpp_fmt *fmt;
1805 	bool leftmost = true;
1806 
1807 	if (use_callchain) {
1808 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1809 			u64 total = he->stat.period;
1810 
1811 			if (symbol_conf.cumulate_callchain)
1812 				total = he->stat_acc->period;
1813 
1814 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1815 		}
1816 		callchain_param.sort(&he->sorted_chain, he->callchain,
1817 				      min_callchain_hits, &callchain_param);
1818 	}
1819 
1820 	while (*p != NULL) {
1821 		parent = *p;
1822 		iter = rb_entry(parent, struct hist_entry, rb_node);
1823 
1824 		if (hist_entry__sort(he, iter) > 0)
1825 			p = &(*p)->rb_left;
1826 		else {
1827 			p = &(*p)->rb_right;
1828 			leftmost = false;
1829 		}
1830 	}
1831 
1832 	rb_link_node(&he->rb_node, parent, p);
1833 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1834 
1835 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1836 		if (perf_hpp__is_dynamic_entry(fmt) &&
1837 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1838 			fmt->sort(fmt, he, NULL);  /* update column width */
1839 	}
1840 }
1841 
1842 static void output_resort(struct hists *hists, struct ui_progress *prog,
1843 			  bool use_callchain, hists__resort_cb_t cb,
1844 			  void *cb_arg)
1845 {
1846 	struct rb_root_cached *root;
1847 	struct rb_node *next;
1848 	struct hist_entry *n;
1849 	u64 callchain_total;
1850 	u64 min_callchain_hits;
1851 
1852 	callchain_total = hists->callchain_period;
1853 	if (symbol_conf.filter_relative)
1854 		callchain_total = hists->callchain_non_filtered_period;
1855 
1856 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1857 
1858 	hists__reset_stats(hists);
1859 	hists__reset_col_len(hists);
1860 
1861 	if (symbol_conf.report_hierarchy) {
1862 		hists__hierarchy_output_resort(hists, prog,
1863 					       &hists->entries_collapsed,
1864 					       &hists->entries,
1865 					       min_callchain_hits,
1866 					       use_callchain);
1867 		hierarchy_recalc_total_periods(hists);
1868 		return;
1869 	}
1870 
1871 	if (hists__has(hists, need_collapse))
1872 		root = &hists->entries_collapsed;
1873 	else
1874 		root = hists->entries_in;
1875 
1876 	next = rb_first_cached(root);
1877 	hists->entries = RB_ROOT_CACHED;
1878 
1879 	while (next) {
1880 		n = rb_entry(next, struct hist_entry, rb_node_in);
1881 		next = rb_next(&n->rb_node_in);
1882 
1883 		if (cb && cb(n, cb_arg))
1884 			continue;
1885 
1886 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1887 		hists__inc_stats(hists, n);
1888 
1889 		if (!n->filtered)
1890 			hists__calc_col_len(hists, n);
1891 
1892 		if (prog)
1893 			ui_progress__update(prog, 1);
1894 	}
1895 }
1896 
1897 void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1898 				  hists__resort_cb_t cb, void *cb_arg)
1899 {
1900 	bool use_callchain;
1901 
1902 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1903 		use_callchain = evsel__has_callchain(evsel);
1904 	else
1905 		use_callchain = symbol_conf.use_callchain;
1906 
1907 	use_callchain |= symbol_conf.show_branchflag_count;
1908 
1909 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1910 }
1911 
1912 void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1913 {
1914 	return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1915 }
1916 
1917 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1918 {
1919 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1920 }
1921 
1922 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1923 			     hists__resort_cb_t cb)
1924 {
1925 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1926 }
1927 
1928 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1929 {
1930 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1931 		return false;
1932 
1933 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1934 		return true;
1935 
1936 	return false;
1937 }
1938 
1939 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1940 {
1941 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1942 
1943 	while (can_goto_child(he, HMD_NORMAL)) {
1944 		node = rb_last(&he->hroot_out.rb_root);
1945 		he = rb_entry(node, struct hist_entry, rb_node);
1946 	}
1947 	return node;
1948 }
1949 
1950 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1951 {
1952 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1953 
1954 	if (can_goto_child(he, hmd))
1955 		node = rb_first_cached(&he->hroot_out);
1956 	else
1957 		node = rb_next(node);
1958 
1959 	while (node == NULL) {
1960 		he = he->parent_he;
1961 		if (he == NULL)
1962 			break;
1963 
1964 		node = rb_next(&he->rb_node);
1965 	}
1966 	return node;
1967 }
1968 
1969 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1970 {
1971 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1972 
1973 	node = rb_prev(node);
1974 	if (node)
1975 		return rb_hierarchy_last(node);
1976 
1977 	he = he->parent_he;
1978 	if (he == NULL)
1979 		return NULL;
1980 
1981 	return &he->rb_node;
1982 }
1983 
1984 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1985 {
1986 	struct rb_node *node;
1987 	struct hist_entry *child;
1988 	float percent;
1989 
1990 	if (he->leaf)
1991 		return false;
1992 
1993 	node = rb_first_cached(&he->hroot_out);
1994 	child = rb_entry(node, struct hist_entry, rb_node);
1995 
1996 	while (node && child->filtered) {
1997 		node = rb_next(node);
1998 		child = rb_entry(node, struct hist_entry, rb_node);
1999 	}
2000 
2001 	if (node)
2002 		percent = hist_entry__get_percent_limit(child);
2003 	else
2004 		percent = 0;
2005 
2006 	return node && percent >= limit;
2007 }
2008 
2009 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2010 				       enum hist_filter filter)
2011 {
2012 	h->filtered &= ~(1 << filter);
2013 
2014 	if (symbol_conf.report_hierarchy) {
2015 		struct hist_entry *parent = h->parent_he;
2016 
2017 		while (parent) {
2018 			he_stat__add_stat(&parent->stat, &h->stat);
2019 
2020 			parent->filtered &= ~(1 << filter);
2021 
2022 			if (parent->filtered)
2023 				goto next;
2024 
2025 			/* force fold unfiltered entry for simplicity */
2026 			parent->unfolded = false;
2027 			parent->has_no_entry = false;
2028 			parent->row_offset = 0;
2029 			parent->nr_rows = 0;
2030 next:
2031 			parent = parent->parent_he;
2032 		}
2033 	}
2034 
2035 	if (h->filtered)
2036 		return;
2037 
2038 	/* force fold unfiltered entry for simplicity */
2039 	h->unfolded = false;
2040 	h->has_no_entry = false;
2041 	h->row_offset = 0;
2042 	h->nr_rows = 0;
2043 
2044 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2045 
2046 	hists__inc_filter_stats(hists, h);
2047 	hists__calc_col_len(hists, h);
2048 }
2049 
2050 
2051 static bool hists__filter_entry_by_dso(struct hists *hists,
2052 				       struct hist_entry *he)
2053 {
2054 	if (hists->dso_filter != NULL &&
2055 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2056 		he->filtered |= (1 << HIST_FILTER__DSO);
2057 		return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 static bool hists__filter_entry_by_thread(struct hists *hists,
2064 					  struct hist_entry *he)
2065 {
2066 	if (hists->thread_filter != NULL &&
2067 	    he->thread != hists->thread_filter) {
2068 		he->filtered |= (1 << HIST_FILTER__THREAD);
2069 		return true;
2070 	}
2071 
2072 	return false;
2073 }
2074 
2075 static bool hists__filter_entry_by_symbol(struct hists *hists,
2076 					  struct hist_entry *he)
2077 {
2078 	if (hists->symbol_filter_str != NULL &&
2079 	    (!he->ms.sym || strstr(he->ms.sym->name,
2080 				   hists->symbol_filter_str) == NULL)) {
2081 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2082 		return true;
2083 	}
2084 
2085 	return false;
2086 }
2087 
2088 static bool hists__filter_entry_by_socket(struct hists *hists,
2089 					  struct hist_entry *he)
2090 {
2091 	if ((hists->socket_filter > -1) &&
2092 	    (he->socket != hists->socket_filter)) {
2093 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2094 		return true;
2095 	}
2096 
2097 	return false;
2098 }
2099 
2100 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2101 
2102 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2103 {
2104 	struct rb_node *nd;
2105 
2106 	hists->stats.nr_non_filtered_samples = 0;
2107 
2108 	hists__reset_filter_stats(hists);
2109 	hists__reset_col_len(hists);
2110 
2111 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2112 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2113 
2114 		if (filter(hists, h))
2115 			continue;
2116 
2117 		hists__remove_entry_filter(hists, h, type);
2118 	}
2119 }
2120 
2121 static void resort_filtered_entry(struct rb_root_cached *root,
2122 				  struct hist_entry *he)
2123 {
2124 	struct rb_node **p = &root->rb_root.rb_node;
2125 	struct rb_node *parent = NULL;
2126 	struct hist_entry *iter;
2127 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2128 	struct rb_node *nd;
2129 	bool leftmost = true;
2130 
2131 	while (*p != NULL) {
2132 		parent = *p;
2133 		iter = rb_entry(parent, struct hist_entry, rb_node);
2134 
2135 		if (hist_entry__sort(he, iter) > 0)
2136 			p = &(*p)->rb_left;
2137 		else {
2138 			p = &(*p)->rb_right;
2139 			leftmost = false;
2140 		}
2141 	}
2142 
2143 	rb_link_node(&he->rb_node, parent, p);
2144 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2145 
2146 	if (he->leaf || he->filtered)
2147 		return;
2148 
2149 	nd = rb_first_cached(&he->hroot_out);
2150 	while (nd) {
2151 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2152 
2153 		nd = rb_next(nd);
2154 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2155 
2156 		resort_filtered_entry(&new_root, h);
2157 	}
2158 
2159 	he->hroot_out = new_root;
2160 }
2161 
2162 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2163 {
2164 	struct rb_node *nd;
2165 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2166 
2167 	hists->stats.nr_non_filtered_samples = 0;
2168 
2169 	hists__reset_filter_stats(hists);
2170 	hists__reset_col_len(hists);
2171 
2172 	nd = rb_first_cached(&hists->entries);
2173 	while (nd) {
2174 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2175 		int ret;
2176 
2177 		ret = hist_entry__filter(h, type, arg);
2178 
2179 		/*
2180 		 * case 1. non-matching type
2181 		 * zero out the period, set filter marker and move to child
2182 		 */
2183 		if (ret < 0) {
2184 			memset(&h->stat, 0, sizeof(h->stat));
2185 			h->filtered |= (1 << type);
2186 
2187 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2188 		}
2189 		/*
2190 		 * case 2. matched type (filter out)
2191 		 * set filter marker and move to next
2192 		 */
2193 		else if (ret == 1) {
2194 			h->filtered |= (1 << type);
2195 
2196 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2197 		}
2198 		/*
2199 		 * case 3. ok (not filtered)
2200 		 * add period to hists and parents, erase the filter marker
2201 		 * and move to next sibling
2202 		 */
2203 		else {
2204 			hists__remove_entry_filter(hists, h, type);
2205 
2206 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2207 		}
2208 	}
2209 
2210 	hierarchy_recalc_total_periods(hists);
2211 
2212 	/*
2213 	 * resort output after applying a new filter since filter in a lower
2214 	 * hierarchy can change periods in a upper hierarchy.
2215 	 */
2216 	nd = rb_first_cached(&hists->entries);
2217 	while (nd) {
2218 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2219 
2220 		nd = rb_next(nd);
2221 		rb_erase_cached(&h->rb_node, &hists->entries);
2222 
2223 		resort_filtered_entry(&new_root, h);
2224 	}
2225 
2226 	hists->entries = new_root;
2227 }
2228 
2229 void hists__filter_by_thread(struct hists *hists)
2230 {
2231 	if (symbol_conf.report_hierarchy)
2232 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2233 					hists->thread_filter);
2234 	else
2235 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2236 				      hists__filter_entry_by_thread);
2237 }
2238 
2239 void hists__filter_by_dso(struct hists *hists)
2240 {
2241 	if (symbol_conf.report_hierarchy)
2242 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2243 					hists->dso_filter);
2244 	else
2245 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2246 				      hists__filter_entry_by_dso);
2247 }
2248 
2249 void hists__filter_by_symbol(struct hists *hists)
2250 {
2251 	if (symbol_conf.report_hierarchy)
2252 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2253 					hists->symbol_filter_str);
2254 	else
2255 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2256 				      hists__filter_entry_by_symbol);
2257 }
2258 
2259 void hists__filter_by_socket(struct hists *hists)
2260 {
2261 	if (symbol_conf.report_hierarchy)
2262 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2263 					&hists->socket_filter);
2264 	else
2265 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2266 				      hists__filter_entry_by_socket);
2267 }
2268 
2269 void events_stats__inc(struct events_stats *stats, u32 type)
2270 {
2271 	++stats->nr_events[0];
2272 	++stats->nr_events[type];
2273 }
2274 
2275 void hists__inc_nr_events(struct hists *hists, u32 type)
2276 {
2277 	events_stats__inc(&hists->stats, type);
2278 }
2279 
2280 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2281 {
2282 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2283 	if (!filtered)
2284 		hists->stats.nr_non_filtered_samples++;
2285 }
2286 
2287 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2288 						 struct hist_entry *pair)
2289 {
2290 	struct rb_root_cached *root;
2291 	struct rb_node **p;
2292 	struct rb_node *parent = NULL;
2293 	struct hist_entry *he;
2294 	int64_t cmp;
2295 	bool leftmost = true;
2296 
2297 	if (hists__has(hists, need_collapse))
2298 		root = &hists->entries_collapsed;
2299 	else
2300 		root = hists->entries_in;
2301 
2302 	p = &root->rb_root.rb_node;
2303 
2304 	while (*p != NULL) {
2305 		parent = *p;
2306 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2307 
2308 		cmp = hist_entry__collapse(he, pair);
2309 
2310 		if (!cmp)
2311 			goto out;
2312 
2313 		if (cmp < 0)
2314 			p = &(*p)->rb_left;
2315 		else {
2316 			p = &(*p)->rb_right;
2317 			leftmost = false;
2318 		}
2319 	}
2320 
2321 	he = hist_entry__new(pair, true);
2322 	if (he) {
2323 		memset(&he->stat, 0, sizeof(he->stat));
2324 		he->hists = hists;
2325 		if (symbol_conf.cumulate_callchain)
2326 			memset(he->stat_acc, 0, sizeof(he->stat));
2327 		rb_link_node(&he->rb_node_in, parent, p);
2328 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2329 		hists__inc_stats(hists, he);
2330 		he->dummy = true;
2331 	}
2332 out:
2333 	return he;
2334 }
2335 
2336 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2337 						    struct rb_root_cached *root,
2338 						    struct hist_entry *pair)
2339 {
2340 	struct rb_node **p;
2341 	struct rb_node *parent = NULL;
2342 	struct hist_entry *he;
2343 	struct perf_hpp_fmt *fmt;
2344 	bool leftmost = true;
2345 
2346 	p = &root->rb_root.rb_node;
2347 	while (*p != NULL) {
2348 		int64_t cmp = 0;
2349 
2350 		parent = *p;
2351 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2352 
2353 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2354 			cmp = fmt->collapse(fmt, he, pair);
2355 			if (cmp)
2356 				break;
2357 		}
2358 		if (!cmp)
2359 			goto out;
2360 
2361 		if (cmp < 0)
2362 			p = &parent->rb_left;
2363 		else {
2364 			p = &parent->rb_right;
2365 			leftmost = false;
2366 		}
2367 	}
2368 
2369 	he = hist_entry__new(pair, true);
2370 	if (he) {
2371 		rb_link_node(&he->rb_node_in, parent, p);
2372 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2373 
2374 		he->dummy = true;
2375 		he->hists = hists;
2376 		memset(&he->stat, 0, sizeof(he->stat));
2377 		hists__inc_stats(hists, he);
2378 	}
2379 out:
2380 	return he;
2381 }
2382 
2383 static struct hist_entry *hists__find_entry(struct hists *hists,
2384 					    struct hist_entry *he)
2385 {
2386 	struct rb_node *n;
2387 
2388 	if (hists__has(hists, need_collapse))
2389 		n = hists->entries_collapsed.rb_root.rb_node;
2390 	else
2391 		n = hists->entries_in->rb_root.rb_node;
2392 
2393 	while (n) {
2394 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2395 		int64_t cmp = hist_entry__collapse(iter, he);
2396 
2397 		if (cmp < 0)
2398 			n = n->rb_left;
2399 		else if (cmp > 0)
2400 			n = n->rb_right;
2401 		else
2402 			return iter;
2403 	}
2404 
2405 	return NULL;
2406 }
2407 
2408 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2409 						      struct hist_entry *he)
2410 {
2411 	struct rb_node *n = root->rb_root.rb_node;
2412 
2413 	while (n) {
2414 		struct hist_entry *iter;
2415 		struct perf_hpp_fmt *fmt;
2416 		int64_t cmp = 0;
2417 
2418 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2419 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2420 			cmp = fmt->collapse(fmt, iter, he);
2421 			if (cmp)
2422 				break;
2423 		}
2424 
2425 		if (cmp < 0)
2426 			n = n->rb_left;
2427 		else if (cmp > 0)
2428 			n = n->rb_right;
2429 		else
2430 			return iter;
2431 	}
2432 
2433 	return NULL;
2434 }
2435 
2436 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2437 				   struct rb_root_cached *other_root)
2438 {
2439 	struct rb_node *nd;
2440 	struct hist_entry *pos, *pair;
2441 
2442 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2443 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2444 		pair = hists__find_hierarchy_entry(other_root, pos);
2445 
2446 		if (pair) {
2447 			hist_entry__add_pair(pair, pos);
2448 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2449 		}
2450 	}
2451 }
2452 
2453 /*
2454  * Look for pairs to link to the leader buckets (hist_entries):
2455  */
2456 void hists__match(struct hists *leader, struct hists *other)
2457 {
2458 	struct rb_root_cached *root;
2459 	struct rb_node *nd;
2460 	struct hist_entry *pos, *pair;
2461 
2462 	if (symbol_conf.report_hierarchy) {
2463 		/* hierarchy report always collapses entries */
2464 		return hists__match_hierarchy(&leader->entries_collapsed,
2465 					      &other->entries_collapsed);
2466 	}
2467 
2468 	if (hists__has(leader, need_collapse))
2469 		root = &leader->entries_collapsed;
2470 	else
2471 		root = leader->entries_in;
2472 
2473 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2474 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2475 		pair = hists__find_entry(other, pos);
2476 
2477 		if (pair)
2478 			hist_entry__add_pair(pair, pos);
2479 	}
2480 }
2481 
2482 static int hists__link_hierarchy(struct hists *leader_hists,
2483 				 struct hist_entry *parent,
2484 				 struct rb_root_cached *leader_root,
2485 				 struct rb_root_cached *other_root)
2486 {
2487 	struct rb_node *nd;
2488 	struct hist_entry *pos, *leader;
2489 
2490 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2491 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2492 
2493 		if (hist_entry__has_pairs(pos)) {
2494 			bool found = false;
2495 
2496 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2497 				if (leader->hists == leader_hists) {
2498 					found = true;
2499 					break;
2500 				}
2501 			}
2502 			if (!found)
2503 				return -1;
2504 		} else {
2505 			leader = add_dummy_hierarchy_entry(leader_hists,
2506 							   leader_root, pos);
2507 			if (leader == NULL)
2508 				return -1;
2509 
2510 			/* do not point parent in the pos */
2511 			leader->parent_he = parent;
2512 
2513 			hist_entry__add_pair(pos, leader);
2514 		}
2515 
2516 		if (!pos->leaf) {
2517 			if (hists__link_hierarchy(leader_hists, leader,
2518 						  &leader->hroot_in,
2519 						  &pos->hroot_in) < 0)
2520 				return -1;
2521 		}
2522 	}
2523 	return 0;
2524 }
2525 
2526 /*
2527  * Look for entries in the other hists that are not present in the leader, if
2528  * we find them, just add a dummy entry on the leader hists, with period=0,
2529  * nr_events=0, to serve as the list header.
2530  */
2531 int hists__link(struct hists *leader, struct hists *other)
2532 {
2533 	struct rb_root_cached *root;
2534 	struct rb_node *nd;
2535 	struct hist_entry *pos, *pair;
2536 
2537 	if (symbol_conf.report_hierarchy) {
2538 		/* hierarchy report always collapses entries */
2539 		return hists__link_hierarchy(leader, NULL,
2540 					     &leader->entries_collapsed,
2541 					     &other->entries_collapsed);
2542 	}
2543 
2544 	if (hists__has(other, need_collapse))
2545 		root = &other->entries_collapsed;
2546 	else
2547 		root = other->entries_in;
2548 
2549 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2550 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2551 
2552 		if (!hist_entry__has_pairs(pos)) {
2553 			pair = hists__add_dummy_entry(leader, pos);
2554 			if (pair == NULL)
2555 				return -1;
2556 			hist_entry__add_pair(pos, pair);
2557 		}
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 int hists__unlink(struct hists *hists)
2564 {
2565 	struct rb_root_cached *root;
2566 	struct rb_node *nd;
2567 	struct hist_entry *pos;
2568 
2569 	if (hists__has(hists, need_collapse))
2570 		root = &hists->entries_collapsed;
2571 	else
2572 		root = hists->entries_in;
2573 
2574 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2575 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2576 		list_del_init(&pos->pairs.node);
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2583 			  struct perf_sample *sample, bool nonany_branch_mode,
2584 			  u64 *total_cycles)
2585 {
2586 	struct branch_info *bi;
2587 
2588 	/* If we have branch cycles always annotate them. */
2589 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2590 		int i;
2591 
2592 		bi = sample__resolve_bstack(sample, al);
2593 		if (bi) {
2594 			struct addr_map_symbol *prev = NULL;
2595 
2596 			/*
2597 			 * Ignore errors, still want to process the
2598 			 * other entries.
2599 			 *
2600 			 * For non standard branch modes always
2601 			 * force no IPC (prev == NULL)
2602 			 *
2603 			 * Note that perf stores branches reversed from
2604 			 * program order!
2605 			 */
2606 			for (i = bs->nr - 1; i >= 0; i--) {
2607 				addr_map_symbol__account_cycles(&bi[i].from,
2608 					nonany_branch_mode ? NULL : prev,
2609 					bi[i].flags.cycles);
2610 				prev = &bi[i].to;
2611 
2612 				if (total_cycles)
2613 					*total_cycles += bi[i].flags.cycles;
2614 			}
2615 			free(bi);
2616 		}
2617 	}
2618 }
2619 
2620 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2621 {
2622 	struct evsel *pos;
2623 	size_t ret = 0;
2624 
2625 	evlist__for_each_entry(evlist, pos) {
2626 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2627 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2628 	}
2629 
2630 	return ret;
2631 }
2632 
2633 
2634 u64 hists__total_period(struct hists *hists)
2635 {
2636 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2637 		hists->stats.total_period;
2638 }
2639 
2640 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2641 {
2642 	char unit;
2643 	int printed;
2644 	const struct dso *dso = hists->dso_filter;
2645 	struct thread *thread = hists->thread_filter;
2646 	int socket_id = hists->socket_filter;
2647 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2648 	u64 nr_events = hists->stats.total_period;
2649 	struct evsel *evsel = hists_to_evsel(hists);
2650 	const char *ev_name = perf_evsel__name(evsel);
2651 	char buf[512], sample_freq_str[64] = "";
2652 	size_t buflen = sizeof(buf);
2653 	char ref[30] = " show reference callgraph, ";
2654 	bool enable_ref = false;
2655 
2656 	if (symbol_conf.filter_relative) {
2657 		nr_samples = hists->stats.nr_non_filtered_samples;
2658 		nr_events = hists->stats.total_non_filtered_period;
2659 	}
2660 
2661 	if (perf_evsel__is_group_event(evsel)) {
2662 		struct evsel *pos;
2663 
2664 		perf_evsel__group_desc(evsel, buf, buflen);
2665 		ev_name = buf;
2666 
2667 		for_each_group_member(pos, evsel) {
2668 			struct hists *pos_hists = evsel__hists(pos);
2669 
2670 			if (symbol_conf.filter_relative) {
2671 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2672 				nr_events += pos_hists->stats.total_non_filtered_period;
2673 			} else {
2674 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2675 				nr_events += pos_hists->stats.total_period;
2676 			}
2677 		}
2678 	}
2679 
2680 	if (symbol_conf.show_ref_callgraph &&
2681 	    strstr(ev_name, "call-graph=no"))
2682 		enable_ref = true;
2683 
2684 	if (show_freq)
2685 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2686 
2687 	nr_samples = convert_unit(nr_samples, &unit);
2688 	printed = scnprintf(bf, size,
2689 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2690 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2691 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2692 
2693 
2694 	if (hists->uid_filter_str)
2695 		printed += snprintf(bf + printed, size - printed,
2696 				    ", UID: %s", hists->uid_filter_str);
2697 	if (thread) {
2698 		if (hists__has(hists, thread)) {
2699 			printed += scnprintf(bf + printed, size - printed,
2700 				    ", Thread: %s(%d)",
2701 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2702 				    thread->tid);
2703 		} else {
2704 			printed += scnprintf(bf + printed, size - printed,
2705 				    ", Thread: %s",
2706 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2707 		}
2708 	}
2709 	if (dso)
2710 		printed += scnprintf(bf + printed, size - printed,
2711 				    ", DSO: %s", dso->short_name);
2712 	if (socket_id > -1)
2713 		printed += scnprintf(bf + printed, size - printed,
2714 				    ", Processor Socket: %d", socket_id);
2715 
2716 	return printed;
2717 }
2718 
2719 int parse_filter_percentage(const struct option *opt __maybe_unused,
2720 			    const char *arg, int unset __maybe_unused)
2721 {
2722 	if (!strcmp(arg, "relative"))
2723 		symbol_conf.filter_relative = true;
2724 	else if (!strcmp(arg, "absolute"))
2725 		symbol_conf.filter_relative = false;
2726 	else {
2727 		pr_debug("Invalid percentage: %s\n", arg);
2728 		return -1;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 int perf_hist_config(const char *var, const char *value)
2735 {
2736 	if (!strcmp(var, "hist.percentage"))
2737 		return parse_filter_percentage(NULL, value, 0);
2738 
2739 	return 0;
2740 }
2741 
2742 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2743 {
2744 	memset(hists, 0, sizeof(*hists));
2745 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2746 	hists->entries_in = &hists->entries_in_array[0];
2747 	hists->entries_collapsed = RB_ROOT_CACHED;
2748 	hists->entries = RB_ROOT_CACHED;
2749 	pthread_mutex_init(&hists->lock, NULL);
2750 	hists->socket_filter = -1;
2751 	hists->hpp_list = hpp_list;
2752 	INIT_LIST_HEAD(&hists->hpp_formats);
2753 	return 0;
2754 }
2755 
2756 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2757 {
2758 	struct rb_node *node;
2759 	struct hist_entry *he;
2760 
2761 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2762 		node = rb_first_cached(root);
2763 		rb_erase_cached(node, root);
2764 
2765 		he = rb_entry(node, struct hist_entry, rb_node_in);
2766 		hist_entry__delete(he);
2767 	}
2768 }
2769 
2770 static void hists__delete_all_entries(struct hists *hists)
2771 {
2772 	hists__delete_entries(hists);
2773 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2774 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2775 	hists__delete_remaining_entries(&hists->entries_collapsed);
2776 }
2777 
2778 static void hists_evsel__exit(struct evsel *evsel)
2779 {
2780 	struct hists *hists = evsel__hists(evsel);
2781 	struct perf_hpp_fmt *fmt, *pos;
2782 	struct perf_hpp_list_node *node, *tmp;
2783 
2784 	hists__delete_all_entries(hists);
2785 
2786 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2787 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2788 			list_del_init(&fmt->list);
2789 			free(fmt);
2790 		}
2791 		list_del_init(&node->list);
2792 		free(node);
2793 	}
2794 }
2795 
2796 static int hists_evsel__init(struct evsel *evsel)
2797 {
2798 	struct hists *hists = evsel__hists(evsel);
2799 
2800 	__hists__init(hists, &perf_hpp_list);
2801 	return 0;
2802 }
2803 
2804 /*
2805  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2806  * stored in the rbtree...
2807  */
2808 
2809 int hists__init(void)
2810 {
2811 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2812 					    hists_evsel__init,
2813 					    hists_evsel__exit);
2814 	if (err)
2815 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2816 
2817 	return err;
2818 }
2819 
2820 void perf_hpp_list__init(struct perf_hpp_list *list)
2821 {
2822 	INIT_LIST_HEAD(&list->fields);
2823 	INIT_LIST_HEAD(&list->sorts);
2824 }
2825