1 // SPDX-License-Identifier: GPL-2.0 2 #include "callchain.h" 3 #include "debug.h" 4 #include "dso.h" 5 #include "build-id.h" 6 #include "hist.h" 7 #include "map.h" 8 #include "map_symbol.h" 9 #include "branch.h" 10 #include "mem-events.h" 11 #include "session.h" 12 #include "namespaces.h" 13 #include "cgroup.h" 14 #include "sort.h" 15 #include "units.h" 16 #include "evlist.h" 17 #include "evsel.h" 18 #include "annotate.h" 19 #include "srcline.h" 20 #include "symbol.h" 21 #include "thread.h" 22 #include "block-info.h" 23 #include "ui/progress.h" 24 #include <errno.h> 25 #include <math.h> 26 #include <inttypes.h> 27 #include <sys/param.h> 28 #include <linux/rbtree.h> 29 #include <linux/string.h> 30 #include <linux/time64.h> 31 #include <linux/zalloc.h> 32 33 static bool hists__filter_entry_by_dso(struct hists *hists, 34 struct hist_entry *he); 35 static bool hists__filter_entry_by_thread(struct hists *hists, 36 struct hist_entry *he); 37 static bool hists__filter_entry_by_symbol(struct hists *hists, 38 struct hist_entry *he); 39 static bool hists__filter_entry_by_socket(struct hists *hists, 40 struct hist_entry *he); 41 42 u16 hists__col_len(struct hists *hists, enum hist_column col) 43 { 44 return hists->col_len[col]; 45 } 46 47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 48 { 49 hists->col_len[col] = len; 50 } 51 52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 53 { 54 if (len > hists__col_len(hists, col)) { 55 hists__set_col_len(hists, col, len); 56 return true; 57 } 58 return false; 59 } 60 61 void hists__reset_col_len(struct hists *hists) 62 { 63 enum hist_column col; 64 65 for (col = 0; col < HISTC_NR_COLS; ++col) 66 hists__set_col_len(hists, col, 0); 67 } 68 69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 70 { 71 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 72 73 if (hists__col_len(hists, dso) < unresolved_col_width && 74 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 75 !symbol_conf.dso_list) 76 hists__set_col_len(hists, dso, unresolved_col_width); 77 } 78 79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 80 { 81 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 82 int symlen; 83 u16 len; 84 85 if (h->block_info) 86 return; 87 /* 88 * +4 accounts for '[x] ' priv level info 89 * +2 accounts for 0x prefix on raw addresses 90 * +3 accounts for ' y ' symtab origin info 91 */ 92 if (h->ms.sym) { 93 symlen = h->ms.sym->namelen + 4; 94 if (verbose > 0) 95 symlen += BITS_PER_LONG / 4 + 2 + 3; 96 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 97 } else { 98 symlen = unresolved_col_width + 4 + 2; 99 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 100 hists__set_unres_dso_col_len(hists, HISTC_DSO); 101 } 102 103 len = thread__comm_len(h->thread); 104 if (hists__new_col_len(hists, HISTC_COMM, len)) 105 hists__set_col_len(hists, HISTC_THREAD, len + 8); 106 107 if (h->ms.map) { 108 len = dso__name_len(h->ms.map->dso); 109 hists__new_col_len(hists, HISTC_DSO, len); 110 } 111 112 if (h->parent) 113 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 114 115 if (h->branch_info) { 116 if (h->branch_info->from.ms.sym) { 117 symlen = (int)h->branch_info->from.ms.sym->namelen + 4; 118 if (verbose > 0) 119 symlen += BITS_PER_LONG / 4 + 2 + 3; 120 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 121 122 symlen = dso__name_len(h->branch_info->from.ms.map->dso); 123 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 124 } else { 125 symlen = unresolved_col_width + 4 + 2; 126 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 127 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 128 } 129 130 if (h->branch_info->to.ms.sym) { 131 symlen = (int)h->branch_info->to.ms.sym->namelen + 4; 132 if (verbose > 0) 133 symlen += BITS_PER_LONG / 4 + 2 + 3; 134 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 135 136 symlen = dso__name_len(h->branch_info->to.ms.map->dso); 137 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 138 } else { 139 symlen = unresolved_col_width + 4 + 2; 140 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 141 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 142 } 143 144 if (h->branch_info->srcline_from) 145 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 146 strlen(h->branch_info->srcline_from)); 147 if (h->branch_info->srcline_to) 148 hists__new_col_len(hists, HISTC_SRCLINE_TO, 149 strlen(h->branch_info->srcline_to)); 150 } 151 152 if (h->mem_info) { 153 if (h->mem_info->daddr.ms.sym) { 154 symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4 155 + unresolved_col_width + 2; 156 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 157 symlen); 158 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 159 symlen + 1); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 163 symlen); 164 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 165 symlen); 166 } 167 168 if (h->mem_info->iaddr.ms.sym) { 169 symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4 170 + unresolved_col_width + 2; 171 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 172 symlen); 173 } else { 174 symlen = unresolved_col_width + 4 + 2; 175 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 176 symlen); 177 } 178 179 if (h->mem_info->daddr.ms.map) { 180 symlen = dso__name_len(h->mem_info->daddr.ms.map->dso); 181 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 182 symlen); 183 } else { 184 symlen = unresolved_col_width + 4 + 2; 185 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 186 } 187 188 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 189 unresolved_col_width + 4 + 2); 190 191 } else { 192 symlen = unresolved_col_width + 4 + 2; 193 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 194 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 195 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 196 } 197 198 hists__new_col_len(hists, HISTC_CGROUP, 6); 199 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 200 hists__new_col_len(hists, HISTC_CPU, 3); 201 hists__new_col_len(hists, HISTC_SOCKET, 6); 202 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 203 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 204 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 205 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 206 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 207 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 208 if (symbol_conf.nanosecs) 209 hists__new_col_len(hists, HISTC_TIME, 16); 210 else 211 hists__new_col_len(hists, HISTC_TIME, 12); 212 213 if (h->srcline) { 214 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 215 hists__new_col_len(hists, HISTC_SRCLINE, len); 216 } 217 218 if (h->srcfile) 219 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 220 221 if (h->transaction) 222 hists__new_col_len(hists, HISTC_TRANSACTION, 223 hist_entry__transaction_len()); 224 225 if (h->trace_output) 226 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 227 228 if (h->cgroup) { 229 const char *cgrp_name = "unknown"; 230 struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env, 231 h->cgroup); 232 if (cgrp != NULL) 233 cgrp_name = cgrp->name; 234 235 hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name)); 236 } 237 } 238 239 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 240 { 241 struct rb_node *next = rb_first_cached(&hists->entries); 242 struct hist_entry *n; 243 int row = 0; 244 245 hists__reset_col_len(hists); 246 247 while (next && row++ < max_rows) { 248 n = rb_entry(next, struct hist_entry, rb_node); 249 if (!n->filtered) 250 hists__calc_col_len(hists, n); 251 next = rb_next(&n->rb_node); 252 } 253 } 254 255 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 256 unsigned int cpumode, u64 period) 257 { 258 switch (cpumode) { 259 case PERF_RECORD_MISC_KERNEL: 260 he_stat->period_sys += period; 261 break; 262 case PERF_RECORD_MISC_USER: 263 he_stat->period_us += period; 264 break; 265 case PERF_RECORD_MISC_GUEST_KERNEL: 266 he_stat->period_guest_sys += period; 267 break; 268 case PERF_RECORD_MISC_GUEST_USER: 269 he_stat->period_guest_us += period; 270 break; 271 default: 272 break; 273 } 274 } 275 276 static long hist_time(unsigned long htime) 277 { 278 unsigned long time_quantum = symbol_conf.time_quantum; 279 if (time_quantum) 280 return (htime / time_quantum) * time_quantum; 281 return htime; 282 } 283 284 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 285 u64 weight) 286 { 287 288 he_stat->period += period; 289 he_stat->weight += weight; 290 he_stat->nr_events += 1; 291 } 292 293 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 294 { 295 dest->period += src->period; 296 dest->period_sys += src->period_sys; 297 dest->period_us += src->period_us; 298 dest->period_guest_sys += src->period_guest_sys; 299 dest->period_guest_us += src->period_guest_us; 300 dest->nr_events += src->nr_events; 301 dest->weight += src->weight; 302 } 303 304 static void he_stat__decay(struct he_stat *he_stat) 305 { 306 he_stat->period = (he_stat->period * 7) / 8; 307 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 308 /* XXX need decay for weight too? */ 309 } 310 311 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 312 313 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 314 { 315 u64 prev_period = he->stat.period; 316 u64 diff; 317 318 if (prev_period == 0) 319 return true; 320 321 he_stat__decay(&he->stat); 322 if (symbol_conf.cumulate_callchain) 323 he_stat__decay(he->stat_acc); 324 decay_callchain(he->callchain); 325 326 diff = prev_period - he->stat.period; 327 328 if (!he->depth) { 329 hists->stats.total_period -= diff; 330 if (!he->filtered) 331 hists->stats.total_non_filtered_period -= diff; 332 } 333 334 if (!he->leaf) { 335 struct hist_entry *child; 336 struct rb_node *node = rb_first_cached(&he->hroot_out); 337 while (node) { 338 child = rb_entry(node, struct hist_entry, rb_node); 339 node = rb_next(node); 340 341 if (hists__decay_entry(hists, child)) 342 hists__delete_entry(hists, child); 343 } 344 } 345 346 return he->stat.period == 0; 347 } 348 349 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 350 { 351 struct rb_root_cached *root_in; 352 struct rb_root_cached *root_out; 353 354 if (he->parent_he) { 355 root_in = &he->parent_he->hroot_in; 356 root_out = &he->parent_he->hroot_out; 357 } else { 358 if (hists__has(hists, need_collapse)) 359 root_in = &hists->entries_collapsed; 360 else 361 root_in = hists->entries_in; 362 root_out = &hists->entries; 363 } 364 365 rb_erase_cached(&he->rb_node_in, root_in); 366 rb_erase_cached(&he->rb_node, root_out); 367 368 --hists->nr_entries; 369 if (!he->filtered) 370 --hists->nr_non_filtered_entries; 371 372 hist_entry__delete(he); 373 } 374 375 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 376 { 377 struct rb_node *next = rb_first_cached(&hists->entries); 378 struct hist_entry *n; 379 380 while (next) { 381 n = rb_entry(next, struct hist_entry, rb_node); 382 next = rb_next(&n->rb_node); 383 if (((zap_user && n->level == '.') || 384 (zap_kernel && n->level != '.') || 385 hists__decay_entry(hists, n))) { 386 hists__delete_entry(hists, n); 387 } 388 } 389 } 390 391 void hists__delete_entries(struct hists *hists) 392 { 393 struct rb_node *next = rb_first_cached(&hists->entries); 394 struct hist_entry *n; 395 396 while (next) { 397 n = rb_entry(next, struct hist_entry, rb_node); 398 next = rb_next(&n->rb_node); 399 400 hists__delete_entry(hists, n); 401 } 402 } 403 404 struct hist_entry *hists__get_entry(struct hists *hists, int idx) 405 { 406 struct rb_node *next = rb_first_cached(&hists->entries); 407 struct hist_entry *n; 408 int i = 0; 409 410 while (next) { 411 n = rb_entry(next, struct hist_entry, rb_node); 412 if (i == idx) 413 return n; 414 415 next = rb_next(&n->rb_node); 416 i++; 417 } 418 419 return NULL; 420 } 421 422 /* 423 * histogram, sorted on item, collects periods 424 */ 425 426 static int hist_entry__init(struct hist_entry *he, 427 struct hist_entry *template, 428 bool sample_self, 429 size_t callchain_size) 430 { 431 *he = *template; 432 he->callchain_size = callchain_size; 433 434 if (symbol_conf.cumulate_callchain) { 435 he->stat_acc = malloc(sizeof(he->stat)); 436 if (he->stat_acc == NULL) 437 return -ENOMEM; 438 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 439 if (!sample_self) 440 memset(&he->stat, 0, sizeof(he->stat)); 441 } 442 443 map__get(he->ms.map); 444 445 if (he->branch_info) { 446 /* 447 * This branch info is (a part of) allocated from 448 * sample__resolve_bstack() and will be freed after 449 * adding new entries. So we need to save a copy. 450 */ 451 he->branch_info = malloc(sizeof(*he->branch_info)); 452 if (he->branch_info == NULL) 453 goto err; 454 455 memcpy(he->branch_info, template->branch_info, 456 sizeof(*he->branch_info)); 457 458 map__get(he->branch_info->from.ms.map); 459 map__get(he->branch_info->to.ms.map); 460 } 461 462 if (he->mem_info) { 463 map__get(he->mem_info->iaddr.ms.map); 464 map__get(he->mem_info->daddr.ms.map); 465 } 466 467 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 468 callchain_init(he->callchain); 469 470 if (he->raw_data) { 471 he->raw_data = memdup(he->raw_data, he->raw_size); 472 if (he->raw_data == NULL) 473 goto err_infos; 474 } 475 476 if (he->srcline) { 477 he->srcline = strdup(he->srcline); 478 if (he->srcline == NULL) 479 goto err_rawdata; 480 } 481 482 if (symbol_conf.res_sample) { 483 he->res_samples = calloc(sizeof(struct res_sample), 484 symbol_conf.res_sample); 485 if (!he->res_samples) 486 goto err_srcline; 487 } 488 489 INIT_LIST_HEAD(&he->pairs.node); 490 thread__get(he->thread); 491 he->hroot_in = RB_ROOT_CACHED; 492 he->hroot_out = RB_ROOT_CACHED; 493 494 if (!symbol_conf.report_hierarchy) 495 he->leaf = true; 496 497 return 0; 498 499 err_srcline: 500 zfree(&he->srcline); 501 502 err_rawdata: 503 zfree(&he->raw_data); 504 505 err_infos: 506 if (he->branch_info) { 507 map__put(he->branch_info->from.ms.map); 508 map__put(he->branch_info->to.ms.map); 509 zfree(&he->branch_info); 510 } 511 if (he->mem_info) { 512 map__put(he->mem_info->iaddr.ms.map); 513 map__put(he->mem_info->daddr.ms.map); 514 } 515 err: 516 map__zput(he->ms.map); 517 zfree(&he->stat_acc); 518 return -ENOMEM; 519 } 520 521 static void *hist_entry__zalloc(size_t size) 522 { 523 return zalloc(size + sizeof(struct hist_entry)); 524 } 525 526 static void hist_entry__free(void *ptr) 527 { 528 free(ptr); 529 } 530 531 static struct hist_entry_ops default_ops = { 532 .new = hist_entry__zalloc, 533 .free = hist_entry__free, 534 }; 535 536 static struct hist_entry *hist_entry__new(struct hist_entry *template, 537 bool sample_self) 538 { 539 struct hist_entry_ops *ops = template->ops; 540 size_t callchain_size = 0; 541 struct hist_entry *he; 542 int err = 0; 543 544 if (!ops) 545 ops = template->ops = &default_ops; 546 547 if (symbol_conf.use_callchain) 548 callchain_size = sizeof(struct callchain_root); 549 550 he = ops->new(callchain_size); 551 if (he) { 552 err = hist_entry__init(he, template, sample_self, callchain_size); 553 if (err) { 554 ops->free(he); 555 he = NULL; 556 } 557 } 558 559 return he; 560 } 561 562 static u8 symbol__parent_filter(const struct symbol *parent) 563 { 564 if (symbol_conf.exclude_other && parent == NULL) 565 return 1 << HIST_FILTER__PARENT; 566 return 0; 567 } 568 569 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 570 { 571 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain) 572 return; 573 574 he->hists->callchain_period += period; 575 if (!he->filtered) 576 he->hists->callchain_non_filtered_period += period; 577 } 578 579 static struct hist_entry *hists__findnew_entry(struct hists *hists, 580 struct hist_entry *entry, 581 struct addr_location *al, 582 bool sample_self) 583 { 584 struct rb_node **p; 585 struct rb_node *parent = NULL; 586 struct hist_entry *he; 587 int64_t cmp; 588 u64 period = entry->stat.period; 589 u64 weight = entry->stat.weight; 590 bool leftmost = true; 591 592 p = &hists->entries_in->rb_root.rb_node; 593 594 while (*p != NULL) { 595 parent = *p; 596 he = rb_entry(parent, struct hist_entry, rb_node_in); 597 598 /* 599 * Make sure that it receives arguments in a same order as 600 * hist_entry__collapse() so that we can use an appropriate 601 * function when searching an entry regardless which sort 602 * keys were used. 603 */ 604 cmp = hist_entry__cmp(he, entry); 605 606 if (!cmp) { 607 if (sample_self) { 608 he_stat__add_period(&he->stat, period, weight); 609 hist_entry__add_callchain_period(he, period); 610 } 611 if (symbol_conf.cumulate_callchain) 612 he_stat__add_period(he->stat_acc, period, weight); 613 614 /* 615 * This mem info was allocated from sample__resolve_mem 616 * and will not be used anymore. 617 */ 618 mem_info__zput(entry->mem_info); 619 620 block_info__zput(entry->block_info); 621 622 /* If the map of an existing hist_entry has 623 * become out-of-date due to an exec() or 624 * similar, update it. Otherwise we will 625 * mis-adjust symbol addresses when computing 626 * the history counter to increment. 627 */ 628 if (he->ms.map != entry->ms.map) { 629 map__put(he->ms.map); 630 he->ms.map = map__get(entry->ms.map); 631 } 632 goto out; 633 } 634 635 if (cmp < 0) 636 p = &(*p)->rb_left; 637 else { 638 p = &(*p)->rb_right; 639 leftmost = false; 640 } 641 } 642 643 he = hist_entry__new(entry, sample_self); 644 if (!he) 645 return NULL; 646 647 if (sample_self) 648 hist_entry__add_callchain_period(he, period); 649 hists->nr_entries++; 650 651 rb_link_node(&he->rb_node_in, parent, p); 652 rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost); 653 out: 654 if (sample_self) 655 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 656 if (symbol_conf.cumulate_callchain) 657 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 658 return he; 659 } 660 661 static unsigned random_max(unsigned high) 662 { 663 unsigned thresh = -high % high; 664 for (;;) { 665 unsigned r = random(); 666 if (r >= thresh) 667 return r % high; 668 } 669 } 670 671 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample) 672 { 673 struct res_sample *r; 674 int j; 675 676 if (he->num_res < symbol_conf.res_sample) { 677 j = he->num_res++; 678 } else { 679 j = random_max(symbol_conf.res_sample); 680 } 681 r = &he->res_samples[j]; 682 r->time = sample->time; 683 r->cpu = sample->cpu; 684 r->tid = sample->tid; 685 } 686 687 static struct hist_entry* 688 __hists__add_entry(struct hists *hists, 689 struct addr_location *al, 690 struct symbol *sym_parent, 691 struct branch_info *bi, 692 struct mem_info *mi, 693 struct block_info *block_info, 694 struct perf_sample *sample, 695 bool sample_self, 696 struct hist_entry_ops *ops) 697 { 698 struct namespaces *ns = thread__namespaces(al->thread); 699 struct hist_entry entry = { 700 .thread = al->thread, 701 .comm = thread__comm(al->thread), 702 .cgroup_id = { 703 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 704 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 705 }, 706 .cgroup = sample->cgroup, 707 .ms = { 708 .maps = al->maps, 709 .map = al->map, 710 .sym = al->sym, 711 }, 712 .srcline = (char *) al->srcline, 713 .socket = al->socket, 714 .cpu = al->cpu, 715 .cpumode = al->cpumode, 716 .ip = al->addr, 717 .level = al->level, 718 .stat = { 719 .nr_events = 1, 720 .period = sample->period, 721 .weight = sample->weight, 722 }, 723 .parent = sym_parent, 724 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 725 .hists = hists, 726 .branch_info = bi, 727 .mem_info = mi, 728 .block_info = block_info, 729 .transaction = sample->transaction, 730 .raw_data = sample->raw_data, 731 .raw_size = sample->raw_size, 732 .ops = ops, 733 .time = hist_time(sample->time), 734 }, *he = hists__findnew_entry(hists, &entry, al, sample_self); 735 736 if (!hists->has_callchains && he && he->callchain_size != 0) 737 hists->has_callchains = true; 738 if (he && symbol_conf.res_sample) 739 hists__res_sample(he, sample); 740 return he; 741 } 742 743 struct hist_entry *hists__add_entry(struct hists *hists, 744 struct addr_location *al, 745 struct symbol *sym_parent, 746 struct branch_info *bi, 747 struct mem_info *mi, 748 struct perf_sample *sample, 749 bool sample_self) 750 { 751 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 752 sample, sample_self, NULL); 753 } 754 755 struct hist_entry *hists__add_entry_ops(struct hists *hists, 756 struct hist_entry_ops *ops, 757 struct addr_location *al, 758 struct symbol *sym_parent, 759 struct branch_info *bi, 760 struct mem_info *mi, 761 struct perf_sample *sample, 762 bool sample_self) 763 { 764 return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL, 765 sample, sample_self, ops); 766 } 767 768 struct hist_entry *hists__add_entry_block(struct hists *hists, 769 struct addr_location *al, 770 struct block_info *block_info) 771 { 772 struct hist_entry entry = { 773 .block_info = block_info, 774 .hists = hists, 775 .ms = { 776 .maps = al->maps, 777 .map = al->map, 778 .sym = al->sym, 779 }, 780 }, *he = hists__findnew_entry(hists, &entry, al, false); 781 782 return he; 783 } 784 785 static int 786 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 787 struct addr_location *al __maybe_unused) 788 { 789 return 0; 790 } 791 792 static int 793 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 794 struct addr_location *al __maybe_unused) 795 { 796 return 0; 797 } 798 799 static int 800 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 801 { 802 struct perf_sample *sample = iter->sample; 803 struct mem_info *mi; 804 805 mi = sample__resolve_mem(sample, al); 806 if (mi == NULL) 807 return -ENOMEM; 808 809 iter->priv = mi; 810 return 0; 811 } 812 813 static int 814 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 815 { 816 u64 cost; 817 struct mem_info *mi = iter->priv; 818 struct hists *hists = evsel__hists(iter->evsel); 819 struct perf_sample *sample = iter->sample; 820 struct hist_entry *he; 821 822 if (mi == NULL) 823 return -EINVAL; 824 825 cost = sample->weight; 826 if (!cost) 827 cost = 1; 828 829 /* 830 * must pass period=weight in order to get the correct 831 * sorting from hists__collapse_resort() which is solely 832 * based on periods. We want sorting be done on nr_events * weight 833 * and this is indirectly achieved by passing period=weight here 834 * and the he_stat__add_period() function. 835 */ 836 sample->period = cost; 837 838 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 839 sample, true); 840 if (!he) 841 return -ENOMEM; 842 843 iter->he = he; 844 return 0; 845 } 846 847 static int 848 iter_finish_mem_entry(struct hist_entry_iter *iter, 849 struct addr_location *al __maybe_unused) 850 { 851 struct evsel *evsel = iter->evsel; 852 struct hists *hists = evsel__hists(evsel); 853 struct hist_entry *he = iter->he; 854 int err = -EINVAL; 855 856 if (he == NULL) 857 goto out; 858 859 hists__inc_nr_samples(hists, he->filtered); 860 861 err = hist_entry__append_callchain(he, iter->sample); 862 863 out: 864 /* 865 * We don't need to free iter->priv (mem_info) here since the mem info 866 * was either already freed in hists__findnew_entry() or passed to a 867 * new hist entry by hist_entry__new(). 868 */ 869 iter->priv = NULL; 870 871 iter->he = NULL; 872 return err; 873 } 874 875 static int 876 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 877 { 878 struct branch_info *bi; 879 struct perf_sample *sample = iter->sample; 880 881 bi = sample__resolve_bstack(sample, al); 882 if (!bi) 883 return -ENOMEM; 884 885 iter->curr = 0; 886 iter->total = sample->branch_stack->nr; 887 888 iter->priv = bi; 889 return 0; 890 } 891 892 static int 893 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 894 struct addr_location *al __maybe_unused) 895 { 896 return 0; 897 } 898 899 static int 900 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 901 { 902 struct branch_info *bi = iter->priv; 903 int i = iter->curr; 904 905 if (bi == NULL) 906 return 0; 907 908 if (iter->curr >= iter->total) 909 return 0; 910 911 al->maps = bi[i].to.ms.maps; 912 al->map = bi[i].to.ms.map; 913 al->sym = bi[i].to.ms.sym; 914 al->addr = bi[i].to.addr; 915 return 1; 916 } 917 918 static int 919 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 920 { 921 struct branch_info *bi; 922 struct evsel *evsel = iter->evsel; 923 struct hists *hists = evsel__hists(evsel); 924 struct perf_sample *sample = iter->sample; 925 struct hist_entry *he = NULL; 926 int i = iter->curr; 927 int err = 0; 928 929 bi = iter->priv; 930 931 if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym)) 932 goto out; 933 934 /* 935 * The report shows the percentage of total branches captured 936 * and not events sampled. Thus we use a pseudo period of 1. 937 */ 938 sample->period = 1; 939 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 940 941 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 942 sample, true); 943 if (he == NULL) 944 return -ENOMEM; 945 946 hists__inc_nr_samples(hists, he->filtered); 947 948 out: 949 iter->he = he; 950 iter->curr++; 951 return err; 952 } 953 954 static int 955 iter_finish_branch_entry(struct hist_entry_iter *iter, 956 struct addr_location *al __maybe_unused) 957 { 958 zfree(&iter->priv); 959 iter->he = NULL; 960 961 return iter->curr >= iter->total ? 0 : -1; 962 } 963 964 static int 965 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 966 struct addr_location *al __maybe_unused) 967 { 968 return 0; 969 } 970 971 static int 972 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 973 { 974 struct evsel *evsel = iter->evsel; 975 struct perf_sample *sample = iter->sample; 976 struct hist_entry *he; 977 978 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 979 sample, true); 980 if (he == NULL) 981 return -ENOMEM; 982 983 iter->he = he; 984 return 0; 985 } 986 987 static int 988 iter_finish_normal_entry(struct hist_entry_iter *iter, 989 struct addr_location *al __maybe_unused) 990 { 991 struct hist_entry *he = iter->he; 992 struct evsel *evsel = iter->evsel; 993 struct perf_sample *sample = iter->sample; 994 995 if (he == NULL) 996 return 0; 997 998 iter->he = NULL; 999 1000 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 1001 1002 return hist_entry__append_callchain(he, sample); 1003 } 1004 1005 static int 1006 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 1007 struct addr_location *al __maybe_unused) 1008 { 1009 struct hist_entry **he_cache; 1010 1011 callchain_cursor_commit(&callchain_cursor); 1012 1013 /* 1014 * This is for detecting cycles or recursions so that they're 1015 * cumulated only one time to prevent entries more than 100% 1016 * overhead. 1017 */ 1018 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 1019 if (he_cache == NULL) 1020 return -ENOMEM; 1021 1022 iter->priv = he_cache; 1023 iter->curr = 0; 1024 1025 return 0; 1026 } 1027 1028 static int 1029 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 1030 struct addr_location *al) 1031 { 1032 struct evsel *evsel = iter->evsel; 1033 struct hists *hists = evsel__hists(evsel); 1034 struct perf_sample *sample = iter->sample; 1035 struct hist_entry **he_cache = iter->priv; 1036 struct hist_entry *he; 1037 int err = 0; 1038 1039 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 1040 sample, true); 1041 if (he == NULL) 1042 return -ENOMEM; 1043 1044 iter->he = he; 1045 he_cache[iter->curr++] = he; 1046 1047 hist_entry__append_callchain(he, sample); 1048 1049 /* 1050 * We need to re-initialize the cursor since callchain_append() 1051 * advanced the cursor to the end. 1052 */ 1053 callchain_cursor_commit(&callchain_cursor); 1054 1055 hists__inc_nr_samples(hists, he->filtered); 1056 1057 return err; 1058 } 1059 1060 static int 1061 iter_next_cumulative_entry(struct hist_entry_iter *iter, 1062 struct addr_location *al) 1063 { 1064 struct callchain_cursor_node *node; 1065 1066 node = callchain_cursor_current(&callchain_cursor); 1067 if (node == NULL) 1068 return 0; 1069 1070 return fill_callchain_info(al, node, iter->hide_unresolved); 1071 } 1072 1073 static bool 1074 hist_entry__fast__sym_diff(struct hist_entry *left, 1075 struct hist_entry *right) 1076 { 1077 struct symbol *sym_l = left->ms.sym; 1078 struct symbol *sym_r = right->ms.sym; 1079 1080 if (!sym_l && !sym_r) 1081 return left->ip != right->ip; 1082 1083 return !!_sort__sym_cmp(sym_l, sym_r); 1084 } 1085 1086 1087 static int 1088 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 1089 struct addr_location *al) 1090 { 1091 struct evsel *evsel = iter->evsel; 1092 struct perf_sample *sample = iter->sample; 1093 struct hist_entry **he_cache = iter->priv; 1094 struct hist_entry *he; 1095 struct hist_entry he_tmp = { 1096 .hists = evsel__hists(evsel), 1097 .cpu = al->cpu, 1098 .thread = al->thread, 1099 .comm = thread__comm(al->thread), 1100 .ip = al->addr, 1101 .ms = { 1102 .maps = al->maps, 1103 .map = al->map, 1104 .sym = al->sym, 1105 }, 1106 .srcline = (char *) al->srcline, 1107 .parent = iter->parent, 1108 .raw_data = sample->raw_data, 1109 .raw_size = sample->raw_size, 1110 }; 1111 int i; 1112 struct callchain_cursor cursor; 1113 bool fast = hists__has(he_tmp.hists, sym); 1114 1115 callchain_cursor_snapshot(&cursor, &callchain_cursor); 1116 1117 callchain_cursor_advance(&callchain_cursor); 1118 1119 /* 1120 * Check if there's duplicate entries in the callchain. 1121 * It's possible that it has cycles or recursive calls. 1122 */ 1123 for (i = 0; i < iter->curr; i++) { 1124 /* 1125 * For most cases, there are no duplicate entries in callchain. 1126 * The symbols are usually different. Do a quick check for 1127 * symbols first. 1128 */ 1129 if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp)) 1130 continue; 1131 1132 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 1133 /* to avoid calling callback function */ 1134 iter->he = NULL; 1135 return 0; 1136 } 1137 } 1138 1139 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 1140 sample, false); 1141 if (he == NULL) 1142 return -ENOMEM; 1143 1144 iter->he = he; 1145 he_cache[iter->curr++] = he; 1146 1147 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) 1148 callchain_append(he->callchain, &cursor, sample->period); 1149 return 0; 1150 } 1151 1152 static int 1153 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 1154 struct addr_location *al __maybe_unused) 1155 { 1156 zfree(&iter->priv); 1157 iter->he = NULL; 1158 1159 return 0; 1160 } 1161 1162 const struct hist_iter_ops hist_iter_mem = { 1163 .prepare_entry = iter_prepare_mem_entry, 1164 .add_single_entry = iter_add_single_mem_entry, 1165 .next_entry = iter_next_nop_entry, 1166 .add_next_entry = iter_add_next_nop_entry, 1167 .finish_entry = iter_finish_mem_entry, 1168 }; 1169 1170 const struct hist_iter_ops hist_iter_branch = { 1171 .prepare_entry = iter_prepare_branch_entry, 1172 .add_single_entry = iter_add_single_branch_entry, 1173 .next_entry = iter_next_branch_entry, 1174 .add_next_entry = iter_add_next_branch_entry, 1175 .finish_entry = iter_finish_branch_entry, 1176 }; 1177 1178 const struct hist_iter_ops hist_iter_normal = { 1179 .prepare_entry = iter_prepare_normal_entry, 1180 .add_single_entry = iter_add_single_normal_entry, 1181 .next_entry = iter_next_nop_entry, 1182 .add_next_entry = iter_add_next_nop_entry, 1183 .finish_entry = iter_finish_normal_entry, 1184 }; 1185 1186 const struct hist_iter_ops hist_iter_cumulative = { 1187 .prepare_entry = iter_prepare_cumulative_entry, 1188 .add_single_entry = iter_add_single_cumulative_entry, 1189 .next_entry = iter_next_cumulative_entry, 1190 .add_next_entry = iter_add_next_cumulative_entry, 1191 .finish_entry = iter_finish_cumulative_entry, 1192 }; 1193 1194 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1195 int max_stack_depth, void *arg) 1196 { 1197 int err, err2; 1198 struct map *alm = NULL; 1199 1200 if (al) 1201 alm = map__get(al->map); 1202 1203 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1204 iter->evsel, al, max_stack_depth); 1205 if (err) { 1206 map__put(alm); 1207 return err; 1208 } 1209 1210 err = iter->ops->prepare_entry(iter, al); 1211 if (err) 1212 goto out; 1213 1214 err = iter->ops->add_single_entry(iter, al); 1215 if (err) 1216 goto out; 1217 1218 if (iter->he && iter->add_entry_cb) { 1219 err = iter->add_entry_cb(iter, al, true, arg); 1220 if (err) 1221 goto out; 1222 } 1223 1224 while (iter->ops->next_entry(iter, al)) { 1225 err = iter->ops->add_next_entry(iter, al); 1226 if (err) 1227 break; 1228 1229 if (iter->he && iter->add_entry_cb) { 1230 err = iter->add_entry_cb(iter, al, false, arg); 1231 if (err) 1232 goto out; 1233 } 1234 } 1235 1236 out: 1237 err2 = iter->ops->finish_entry(iter, al); 1238 if (!err) 1239 err = err2; 1240 1241 map__put(alm); 1242 1243 return err; 1244 } 1245 1246 int64_t 1247 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1248 { 1249 struct hists *hists = left->hists; 1250 struct perf_hpp_fmt *fmt; 1251 int64_t cmp = 0; 1252 1253 hists__for_each_sort_list(hists, fmt) { 1254 if (perf_hpp__is_dynamic_entry(fmt) && 1255 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1256 continue; 1257 1258 cmp = fmt->cmp(fmt, left, right); 1259 if (cmp) 1260 break; 1261 } 1262 1263 return cmp; 1264 } 1265 1266 int64_t 1267 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1268 { 1269 struct hists *hists = left->hists; 1270 struct perf_hpp_fmt *fmt; 1271 int64_t cmp = 0; 1272 1273 hists__for_each_sort_list(hists, fmt) { 1274 if (perf_hpp__is_dynamic_entry(fmt) && 1275 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1276 continue; 1277 1278 cmp = fmt->collapse(fmt, left, right); 1279 if (cmp) 1280 break; 1281 } 1282 1283 return cmp; 1284 } 1285 1286 void hist_entry__delete(struct hist_entry *he) 1287 { 1288 struct hist_entry_ops *ops = he->ops; 1289 1290 thread__zput(he->thread); 1291 map__zput(he->ms.map); 1292 1293 if (he->branch_info) { 1294 map__zput(he->branch_info->from.ms.map); 1295 map__zput(he->branch_info->to.ms.map); 1296 free_srcline(he->branch_info->srcline_from); 1297 free_srcline(he->branch_info->srcline_to); 1298 zfree(&he->branch_info); 1299 } 1300 1301 if (he->mem_info) { 1302 map__zput(he->mem_info->iaddr.ms.map); 1303 map__zput(he->mem_info->daddr.ms.map); 1304 mem_info__zput(he->mem_info); 1305 } 1306 1307 if (he->block_info) 1308 block_info__zput(he->block_info); 1309 1310 zfree(&he->res_samples); 1311 zfree(&he->stat_acc); 1312 free_srcline(he->srcline); 1313 if (he->srcfile && he->srcfile[0]) 1314 zfree(&he->srcfile); 1315 free_callchain(he->callchain); 1316 zfree(&he->trace_output); 1317 zfree(&he->raw_data); 1318 ops->free(he); 1319 } 1320 1321 /* 1322 * If this is not the last column, then we need to pad it according to the 1323 * pre-calculated max length for this column, otherwise don't bother adding 1324 * spaces because that would break viewing this with, for instance, 'less', 1325 * that would show tons of trailing spaces when a long C++ demangled method 1326 * names is sampled. 1327 */ 1328 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1329 struct perf_hpp_fmt *fmt, int printed) 1330 { 1331 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1332 const int width = fmt->width(fmt, hpp, he->hists); 1333 if (printed < width) { 1334 advance_hpp(hpp, printed); 1335 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1336 } 1337 } 1338 1339 return printed; 1340 } 1341 1342 /* 1343 * collapse the histogram 1344 */ 1345 1346 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1347 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1348 enum hist_filter type); 1349 1350 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1351 1352 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1353 { 1354 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1355 } 1356 1357 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1358 enum hist_filter type, 1359 fmt_chk_fn check) 1360 { 1361 struct perf_hpp_fmt *fmt; 1362 bool type_match = false; 1363 struct hist_entry *parent = he->parent_he; 1364 1365 switch (type) { 1366 case HIST_FILTER__THREAD: 1367 if (symbol_conf.comm_list == NULL && 1368 symbol_conf.pid_list == NULL && 1369 symbol_conf.tid_list == NULL) 1370 return; 1371 break; 1372 case HIST_FILTER__DSO: 1373 if (symbol_conf.dso_list == NULL) 1374 return; 1375 break; 1376 case HIST_FILTER__SYMBOL: 1377 if (symbol_conf.sym_list == NULL) 1378 return; 1379 break; 1380 case HIST_FILTER__PARENT: 1381 case HIST_FILTER__GUEST: 1382 case HIST_FILTER__HOST: 1383 case HIST_FILTER__SOCKET: 1384 case HIST_FILTER__C2C: 1385 default: 1386 return; 1387 } 1388 1389 /* if it's filtered by own fmt, it has to have filter bits */ 1390 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1391 if (check(fmt)) { 1392 type_match = true; 1393 break; 1394 } 1395 } 1396 1397 if (type_match) { 1398 /* 1399 * If the filter is for current level entry, propagate 1400 * filter marker to parents. The marker bit was 1401 * already set by default so it only needs to clear 1402 * non-filtered entries. 1403 */ 1404 if (!(he->filtered & (1 << type))) { 1405 while (parent) { 1406 parent->filtered &= ~(1 << type); 1407 parent = parent->parent_he; 1408 } 1409 } 1410 } else { 1411 /* 1412 * If current entry doesn't have matching formats, set 1413 * filter marker for upper level entries. it will be 1414 * cleared if its lower level entries is not filtered. 1415 * 1416 * For lower-level entries, it inherits parent's 1417 * filter bit so that lower level entries of a 1418 * non-filtered entry won't set the filter marker. 1419 */ 1420 if (parent == NULL) 1421 he->filtered |= (1 << type); 1422 else 1423 he->filtered |= (parent->filtered & (1 << type)); 1424 } 1425 } 1426 1427 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1428 { 1429 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1430 check_thread_entry); 1431 1432 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1433 perf_hpp__is_dso_entry); 1434 1435 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1436 perf_hpp__is_sym_entry); 1437 1438 hists__apply_filters(he->hists, he); 1439 } 1440 1441 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1442 struct rb_root_cached *root, 1443 struct hist_entry *he, 1444 struct hist_entry *parent_he, 1445 struct perf_hpp_list *hpp_list) 1446 { 1447 struct rb_node **p = &root->rb_root.rb_node; 1448 struct rb_node *parent = NULL; 1449 struct hist_entry *iter, *new; 1450 struct perf_hpp_fmt *fmt; 1451 int64_t cmp; 1452 bool leftmost = true; 1453 1454 while (*p != NULL) { 1455 parent = *p; 1456 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1457 1458 cmp = 0; 1459 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1460 cmp = fmt->collapse(fmt, iter, he); 1461 if (cmp) 1462 break; 1463 } 1464 1465 if (!cmp) { 1466 he_stat__add_stat(&iter->stat, &he->stat); 1467 return iter; 1468 } 1469 1470 if (cmp < 0) 1471 p = &parent->rb_left; 1472 else { 1473 p = &parent->rb_right; 1474 leftmost = false; 1475 } 1476 } 1477 1478 new = hist_entry__new(he, true); 1479 if (new == NULL) 1480 return NULL; 1481 1482 hists->nr_entries++; 1483 1484 /* save related format list for output */ 1485 new->hpp_list = hpp_list; 1486 new->parent_he = parent_he; 1487 1488 hist_entry__apply_hierarchy_filters(new); 1489 1490 /* some fields are now passed to 'new' */ 1491 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1492 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1493 he->trace_output = NULL; 1494 else 1495 new->trace_output = NULL; 1496 1497 if (perf_hpp__is_srcline_entry(fmt)) 1498 he->srcline = NULL; 1499 else 1500 new->srcline = NULL; 1501 1502 if (perf_hpp__is_srcfile_entry(fmt)) 1503 he->srcfile = NULL; 1504 else 1505 new->srcfile = NULL; 1506 } 1507 1508 rb_link_node(&new->rb_node_in, parent, p); 1509 rb_insert_color_cached(&new->rb_node_in, root, leftmost); 1510 return new; 1511 } 1512 1513 static int hists__hierarchy_insert_entry(struct hists *hists, 1514 struct rb_root_cached *root, 1515 struct hist_entry *he) 1516 { 1517 struct perf_hpp_list_node *node; 1518 struct hist_entry *new_he = NULL; 1519 struct hist_entry *parent = NULL; 1520 int depth = 0; 1521 int ret = 0; 1522 1523 list_for_each_entry(node, &hists->hpp_formats, list) { 1524 /* skip period (overhead) and elided columns */ 1525 if (node->level == 0 || node->skip) 1526 continue; 1527 1528 /* insert copy of 'he' for each fmt into the hierarchy */ 1529 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1530 if (new_he == NULL) { 1531 ret = -1; 1532 break; 1533 } 1534 1535 root = &new_he->hroot_in; 1536 new_he->depth = depth++; 1537 parent = new_he; 1538 } 1539 1540 if (new_he) { 1541 new_he->leaf = true; 1542 1543 if (hist_entry__has_callchains(new_he) && 1544 symbol_conf.use_callchain) { 1545 callchain_cursor_reset(&callchain_cursor); 1546 if (callchain_merge(&callchain_cursor, 1547 new_he->callchain, 1548 he->callchain) < 0) 1549 ret = -1; 1550 } 1551 } 1552 1553 /* 'he' is no longer used */ 1554 hist_entry__delete(he); 1555 1556 /* return 0 (or -1) since it already applied filters */ 1557 return ret; 1558 } 1559 1560 static int hists__collapse_insert_entry(struct hists *hists, 1561 struct rb_root_cached *root, 1562 struct hist_entry *he) 1563 { 1564 struct rb_node **p = &root->rb_root.rb_node; 1565 struct rb_node *parent = NULL; 1566 struct hist_entry *iter; 1567 int64_t cmp; 1568 bool leftmost = true; 1569 1570 if (symbol_conf.report_hierarchy) 1571 return hists__hierarchy_insert_entry(hists, root, he); 1572 1573 while (*p != NULL) { 1574 parent = *p; 1575 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1576 1577 cmp = hist_entry__collapse(iter, he); 1578 1579 if (!cmp) { 1580 int ret = 0; 1581 1582 he_stat__add_stat(&iter->stat, &he->stat); 1583 if (symbol_conf.cumulate_callchain) 1584 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1585 1586 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) { 1587 callchain_cursor_reset(&callchain_cursor); 1588 if (callchain_merge(&callchain_cursor, 1589 iter->callchain, 1590 he->callchain) < 0) 1591 ret = -1; 1592 } 1593 hist_entry__delete(he); 1594 return ret; 1595 } 1596 1597 if (cmp < 0) 1598 p = &(*p)->rb_left; 1599 else { 1600 p = &(*p)->rb_right; 1601 leftmost = false; 1602 } 1603 } 1604 hists->nr_entries++; 1605 1606 rb_link_node(&he->rb_node_in, parent, p); 1607 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 1608 return 1; 1609 } 1610 1611 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists) 1612 { 1613 struct rb_root_cached *root; 1614 1615 pthread_mutex_lock(&hists->lock); 1616 1617 root = hists->entries_in; 1618 if (++hists->entries_in > &hists->entries_in_array[1]) 1619 hists->entries_in = &hists->entries_in_array[0]; 1620 1621 pthread_mutex_unlock(&hists->lock); 1622 1623 return root; 1624 } 1625 1626 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1627 { 1628 hists__filter_entry_by_dso(hists, he); 1629 hists__filter_entry_by_thread(hists, he); 1630 hists__filter_entry_by_symbol(hists, he); 1631 hists__filter_entry_by_socket(hists, he); 1632 } 1633 1634 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1635 { 1636 struct rb_root_cached *root; 1637 struct rb_node *next; 1638 struct hist_entry *n; 1639 int ret; 1640 1641 if (!hists__has(hists, need_collapse)) 1642 return 0; 1643 1644 hists->nr_entries = 0; 1645 1646 root = hists__get_rotate_entries_in(hists); 1647 1648 next = rb_first_cached(root); 1649 1650 while (next) { 1651 if (session_done()) 1652 break; 1653 n = rb_entry(next, struct hist_entry, rb_node_in); 1654 next = rb_next(&n->rb_node_in); 1655 1656 rb_erase_cached(&n->rb_node_in, root); 1657 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1658 if (ret < 0) 1659 return -1; 1660 1661 if (ret) { 1662 /* 1663 * If it wasn't combined with one of the entries already 1664 * collapsed, we need to apply the filters that may have 1665 * been set by, say, the hist_browser. 1666 */ 1667 hists__apply_filters(hists, n); 1668 } 1669 if (prog) 1670 ui_progress__update(prog, 1); 1671 } 1672 return 0; 1673 } 1674 1675 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1676 { 1677 struct hists *hists = a->hists; 1678 struct perf_hpp_fmt *fmt; 1679 int64_t cmp = 0; 1680 1681 hists__for_each_sort_list(hists, fmt) { 1682 if (perf_hpp__should_skip(fmt, a->hists)) 1683 continue; 1684 1685 cmp = fmt->sort(fmt, a, b); 1686 if (cmp) 1687 break; 1688 } 1689 1690 return cmp; 1691 } 1692 1693 static void hists__reset_filter_stats(struct hists *hists) 1694 { 1695 hists->nr_non_filtered_entries = 0; 1696 hists->stats.total_non_filtered_period = 0; 1697 } 1698 1699 void hists__reset_stats(struct hists *hists) 1700 { 1701 hists->nr_entries = 0; 1702 hists->stats.total_period = 0; 1703 1704 hists__reset_filter_stats(hists); 1705 } 1706 1707 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1708 { 1709 hists->nr_non_filtered_entries++; 1710 hists->stats.total_non_filtered_period += h->stat.period; 1711 } 1712 1713 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1714 { 1715 if (!h->filtered) 1716 hists__inc_filter_stats(hists, h); 1717 1718 hists->nr_entries++; 1719 hists->stats.total_period += h->stat.period; 1720 } 1721 1722 static void hierarchy_recalc_total_periods(struct hists *hists) 1723 { 1724 struct rb_node *node; 1725 struct hist_entry *he; 1726 1727 node = rb_first_cached(&hists->entries); 1728 1729 hists->stats.total_period = 0; 1730 hists->stats.total_non_filtered_period = 0; 1731 1732 /* 1733 * recalculate total period using top-level entries only 1734 * since lower level entries only see non-filtered entries 1735 * but upper level entries have sum of both entries. 1736 */ 1737 while (node) { 1738 he = rb_entry(node, struct hist_entry, rb_node); 1739 node = rb_next(node); 1740 1741 hists->stats.total_period += he->stat.period; 1742 if (!he->filtered) 1743 hists->stats.total_non_filtered_period += he->stat.period; 1744 } 1745 } 1746 1747 static void hierarchy_insert_output_entry(struct rb_root_cached *root, 1748 struct hist_entry *he) 1749 { 1750 struct rb_node **p = &root->rb_root.rb_node; 1751 struct rb_node *parent = NULL; 1752 struct hist_entry *iter; 1753 struct perf_hpp_fmt *fmt; 1754 bool leftmost = true; 1755 1756 while (*p != NULL) { 1757 parent = *p; 1758 iter = rb_entry(parent, struct hist_entry, rb_node); 1759 1760 if (hist_entry__sort(he, iter) > 0) 1761 p = &parent->rb_left; 1762 else { 1763 p = &parent->rb_right; 1764 leftmost = false; 1765 } 1766 } 1767 1768 rb_link_node(&he->rb_node, parent, p); 1769 rb_insert_color_cached(&he->rb_node, root, leftmost); 1770 1771 /* update column width of dynamic entry */ 1772 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1773 if (perf_hpp__is_dynamic_entry(fmt)) 1774 fmt->sort(fmt, he, NULL); 1775 } 1776 } 1777 1778 static void hists__hierarchy_output_resort(struct hists *hists, 1779 struct ui_progress *prog, 1780 struct rb_root_cached *root_in, 1781 struct rb_root_cached *root_out, 1782 u64 min_callchain_hits, 1783 bool use_callchain) 1784 { 1785 struct rb_node *node; 1786 struct hist_entry *he; 1787 1788 *root_out = RB_ROOT_CACHED; 1789 node = rb_first_cached(root_in); 1790 1791 while (node) { 1792 he = rb_entry(node, struct hist_entry, rb_node_in); 1793 node = rb_next(node); 1794 1795 hierarchy_insert_output_entry(root_out, he); 1796 1797 if (prog) 1798 ui_progress__update(prog, 1); 1799 1800 hists->nr_entries++; 1801 if (!he->filtered) { 1802 hists->nr_non_filtered_entries++; 1803 hists__calc_col_len(hists, he); 1804 } 1805 1806 if (!he->leaf) { 1807 hists__hierarchy_output_resort(hists, prog, 1808 &he->hroot_in, 1809 &he->hroot_out, 1810 min_callchain_hits, 1811 use_callchain); 1812 continue; 1813 } 1814 1815 if (!use_callchain) 1816 continue; 1817 1818 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1819 u64 total = he->stat.period; 1820 1821 if (symbol_conf.cumulate_callchain) 1822 total = he->stat_acc->period; 1823 1824 min_callchain_hits = total * (callchain_param.min_percent / 100); 1825 } 1826 1827 callchain_param.sort(&he->sorted_chain, he->callchain, 1828 min_callchain_hits, &callchain_param); 1829 } 1830 } 1831 1832 static void __hists__insert_output_entry(struct rb_root_cached *entries, 1833 struct hist_entry *he, 1834 u64 min_callchain_hits, 1835 bool use_callchain) 1836 { 1837 struct rb_node **p = &entries->rb_root.rb_node; 1838 struct rb_node *parent = NULL; 1839 struct hist_entry *iter; 1840 struct perf_hpp_fmt *fmt; 1841 bool leftmost = true; 1842 1843 if (use_callchain) { 1844 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1845 u64 total = he->stat.period; 1846 1847 if (symbol_conf.cumulate_callchain) 1848 total = he->stat_acc->period; 1849 1850 min_callchain_hits = total * (callchain_param.min_percent / 100); 1851 } 1852 callchain_param.sort(&he->sorted_chain, he->callchain, 1853 min_callchain_hits, &callchain_param); 1854 } 1855 1856 while (*p != NULL) { 1857 parent = *p; 1858 iter = rb_entry(parent, struct hist_entry, rb_node); 1859 1860 if (hist_entry__sort(he, iter) > 0) 1861 p = &(*p)->rb_left; 1862 else { 1863 p = &(*p)->rb_right; 1864 leftmost = false; 1865 } 1866 } 1867 1868 rb_link_node(&he->rb_node, parent, p); 1869 rb_insert_color_cached(&he->rb_node, entries, leftmost); 1870 1871 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1872 if (perf_hpp__is_dynamic_entry(fmt) && 1873 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1874 fmt->sort(fmt, he, NULL); /* update column width */ 1875 } 1876 } 1877 1878 static void output_resort(struct hists *hists, struct ui_progress *prog, 1879 bool use_callchain, hists__resort_cb_t cb, 1880 void *cb_arg) 1881 { 1882 struct rb_root_cached *root; 1883 struct rb_node *next; 1884 struct hist_entry *n; 1885 u64 callchain_total; 1886 u64 min_callchain_hits; 1887 1888 callchain_total = hists->callchain_period; 1889 if (symbol_conf.filter_relative) 1890 callchain_total = hists->callchain_non_filtered_period; 1891 1892 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1893 1894 hists__reset_stats(hists); 1895 hists__reset_col_len(hists); 1896 1897 if (symbol_conf.report_hierarchy) { 1898 hists__hierarchy_output_resort(hists, prog, 1899 &hists->entries_collapsed, 1900 &hists->entries, 1901 min_callchain_hits, 1902 use_callchain); 1903 hierarchy_recalc_total_periods(hists); 1904 return; 1905 } 1906 1907 if (hists__has(hists, need_collapse)) 1908 root = &hists->entries_collapsed; 1909 else 1910 root = hists->entries_in; 1911 1912 next = rb_first_cached(root); 1913 hists->entries = RB_ROOT_CACHED; 1914 1915 while (next) { 1916 n = rb_entry(next, struct hist_entry, rb_node_in); 1917 next = rb_next(&n->rb_node_in); 1918 1919 if (cb && cb(n, cb_arg)) 1920 continue; 1921 1922 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1923 hists__inc_stats(hists, n); 1924 1925 if (!n->filtered) 1926 hists__calc_col_len(hists, n); 1927 1928 if (prog) 1929 ui_progress__update(prog, 1); 1930 } 1931 } 1932 1933 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog, 1934 hists__resort_cb_t cb, void *cb_arg) 1935 { 1936 bool use_callchain; 1937 1938 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1939 use_callchain = evsel__has_callchain(evsel); 1940 else 1941 use_callchain = symbol_conf.use_callchain; 1942 1943 use_callchain |= symbol_conf.show_branchflag_count; 1944 1945 output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg); 1946 } 1947 1948 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog) 1949 { 1950 return evsel__output_resort_cb(evsel, prog, NULL, NULL); 1951 } 1952 1953 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1954 { 1955 output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL); 1956 } 1957 1958 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1959 hists__resort_cb_t cb) 1960 { 1961 output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL); 1962 } 1963 1964 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1965 { 1966 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1967 return false; 1968 1969 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1970 return true; 1971 1972 return false; 1973 } 1974 1975 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1976 { 1977 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1978 1979 while (can_goto_child(he, HMD_NORMAL)) { 1980 node = rb_last(&he->hroot_out.rb_root); 1981 he = rb_entry(node, struct hist_entry, rb_node); 1982 } 1983 return node; 1984 } 1985 1986 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1987 { 1988 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1989 1990 if (can_goto_child(he, hmd)) 1991 node = rb_first_cached(&he->hroot_out); 1992 else 1993 node = rb_next(node); 1994 1995 while (node == NULL) { 1996 he = he->parent_he; 1997 if (he == NULL) 1998 break; 1999 2000 node = rb_next(&he->rb_node); 2001 } 2002 return node; 2003 } 2004 2005 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 2006 { 2007 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 2008 2009 node = rb_prev(node); 2010 if (node) 2011 return rb_hierarchy_last(node); 2012 2013 he = he->parent_he; 2014 if (he == NULL) 2015 return NULL; 2016 2017 return &he->rb_node; 2018 } 2019 2020 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 2021 { 2022 struct rb_node *node; 2023 struct hist_entry *child; 2024 float percent; 2025 2026 if (he->leaf) 2027 return false; 2028 2029 node = rb_first_cached(&he->hroot_out); 2030 child = rb_entry(node, struct hist_entry, rb_node); 2031 2032 while (node && child->filtered) { 2033 node = rb_next(node); 2034 child = rb_entry(node, struct hist_entry, rb_node); 2035 } 2036 2037 if (node) 2038 percent = hist_entry__get_percent_limit(child); 2039 else 2040 percent = 0; 2041 2042 return node && percent >= limit; 2043 } 2044 2045 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 2046 enum hist_filter filter) 2047 { 2048 h->filtered &= ~(1 << filter); 2049 2050 if (symbol_conf.report_hierarchy) { 2051 struct hist_entry *parent = h->parent_he; 2052 2053 while (parent) { 2054 he_stat__add_stat(&parent->stat, &h->stat); 2055 2056 parent->filtered &= ~(1 << filter); 2057 2058 if (parent->filtered) 2059 goto next; 2060 2061 /* force fold unfiltered entry for simplicity */ 2062 parent->unfolded = false; 2063 parent->has_no_entry = false; 2064 parent->row_offset = 0; 2065 parent->nr_rows = 0; 2066 next: 2067 parent = parent->parent_he; 2068 } 2069 } 2070 2071 if (h->filtered) 2072 return; 2073 2074 /* force fold unfiltered entry for simplicity */ 2075 h->unfolded = false; 2076 h->has_no_entry = false; 2077 h->row_offset = 0; 2078 h->nr_rows = 0; 2079 2080 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 2081 2082 hists__inc_filter_stats(hists, h); 2083 hists__calc_col_len(hists, h); 2084 } 2085 2086 2087 static bool hists__filter_entry_by_dso(struct hists *hists, 2088 struct hist_entry *he) 2089 { 2090 if (hists->dso_filter != NULL && 2091 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 2092 he->filtered |= (1 << HIST_FILTER__DSO); 2093 return true; 2094 } 2095 2096 return false; 2097 } 2098 2099 static bool hists__filter_entry_by_thread(struct hists *hists, 2100 struct hist_entry *he) 2101 { 2102 if (hists->thread_filter != NULL && 2103 he->thread != hists->thread_filter) { 2104 he->filtered |= (1 << HIST_FILTER__THREAD); 2105 return true; 2106 } 2107 2108 return false; 2109 } 2110 2111 static bool hists__filter_entry_by_symbol(struct hists *hists, 2112 struct hist_entry *he) 2113 { 2114 if (hists->symbol_filter_str != NULL && 2115 (!he->ms.sym || strstr(he->ms.sym->name, 2116 hists->symbol_filter_str) == NULL)) { 2117 he->filtered |= (1 << HIST_FILTER__SYMBOL); 2118 return true; 2119 } 2120 2121 return false; 2122 } 2123 2124 static bool hists__filter_entry_by_socket(struct hists *hists, 2125 struct hist_entry *he) 2126 { 2127 if ((hists->socket_filter > -1) && 2128 (he->socket != hists->socket_filter)) { 2129 he->filtered |= (1 << HIST_FILTER__SOCKET); 2130 return true; 2131 } 2132 2133 return false; 2134 } 2135 2136 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 2137 2138 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 2139 { 2140 struct rb_node *nd; 2141 2142 hists->stats.nr_non_filtered_samples = 0; 2143 2144 hists__reset_filter_stats(hists); 2145 hists__reset_col_len(hists); 2146 2147 for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) { 2148 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2149 2150 if (filter(hists, h)) 2151 continue; 2152 2153 hists__remove_entry_filter(hists, h, type); 2154 } 2155 } 2156 2157 static void resort_filtered_entry(struct rb_root_cached *root, 2158 struct hist_entry *he) 2159 { 2160 struct rb_node **p = &root->rb_root.rb_node; 2161 struct rb_node *parent = NULL; 2162 struct hist_entry *iter; 2163 struct rb_root_cached new_root = RB_ROOT_CACHED; 2164 struct rb_node *nd; 2165 bool leftmost = true; 2166 2167 while (*p != NULL) { 2168 parent = *p; 2169 iter = rb_entry(parent, struct hist_entry, rb_node); 2170 2171 if (hist_entry__sort(he, iter) > 0) 2172 p = &(*p)->rb_left; 2173 else { 2174 p = &(*p)->rb_right; 2175 leftmost = false; 2176 } 2177 } 2178 2179 rb_link_node(&he->rb_node, parent, p); 2180 rb_insert_color_cached(&he->rb_node, root, leftmost); 2181 2182 if (he->leaf || he->filtered) 2183 return; 2184 2185 nd = rb_first_cached(&he->hroot_out); 2186 while (nd) { 2187 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2188 2189 nd = rb_next(nd); 2190 rb_erase_cached(&h->rb_node, &he->hroot_out); 2191 2192 resort_filtered_entry(&new_root, h); 2193 } 2194 2195 he->hroot_out = new_root; 2196 } 2197 2198 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2199 { 2200 struct rb_node *nd; 2201 struct rb_root_cached new_root = RB_ROOT_CACHED; 2202 2203 hists->stats.nr_non_filtered_samples = 0; 2204 2205 hists__reset_filter_stats(hists); 2206 hists__reset_col_len(hists); 2207 2208 nd = rb_first_cached(&hists->entries); 2209 while (nd) { 2210 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2211 int ret; 2212 2213 ret = hist_entry__filter(h, type, arg); 2214 2215 /* 2216 * case 1. non-matching type 2217 * zero out the period, set filter marker and move to child 2218 */ 2219 if (ret < 0) { 2220 memset(&h->stat, 0, sizeof(h->stat)); 2221 h->filtered |= (1 << type); 2222 2223 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2224 } 2225 /* 2226 * case 2. matched type (filter out) 2227 * set filter marker and move to next 2228 */ 2229 else if (ret == 1) { 2230 h->filtered |= (1 << type); 2231 2232 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2233 } 2234 /* 2235 * case 3. ok (not filtered) 2236 * add period to hists and parents, erase the filter marker 2237 * and move to next sibling 2238 */ 2239 else { 2240 hists__remove_entry_filter(hists, h, type); 2241 2242 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2243 } 2244 } 2245 2246 hierarchy_recalc_total_periods(hists); 2247 2248 /* 2249 * resort output after applying a new filter since filter in a lower 2250 * hierarchy can change periods in a upper hierarchy. 2251 */ 2252 nd = rb_first_cached(&hists->entries); 2253 while (nd) { 2254 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2255 2256 nd = rb_next(nd); 2257 rb_erase_cached(&h->rb_node, &hists->entries); 2258 2259 resort_filtered_entry(&new_root, h); 2260 } 2261 2262 hists->entries = new_root; 2263 } 2264 2265 void hists__filter_by_thread(struct hists *hists) 2266 { 2267 if (symbol_conf.report_hierarchy) 2268 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2269 hists->thread_filter); 2270 else 2271 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2272 hists__filter_entry_by_thread); 2273 } 2274 2275 void hists__filter_by_dso(struct hists *hists) 2276 { 2277 if (symbol_conf.report_hierarchy) 2278 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2279 hists->dso_filter); 2280 else 2281 hists__filter_by_type(hists, HIST_FILTER__DSO, 2282 hists__filter_entry_by_dso); 2283 } 2284 2285 void hists__filter_by_symbol(struct hists *hists) 2286 { 2287 if (symbol_conf.report_hierarchy) 2288 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2289 hists->symbol_filter_str); 2290 else 2291 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2292 hists__filter_entry_by_symbol); 2293 } 2294 2295 void hists__filter_by_socket(struct hists *hists) 2296 { 2297 if (symbol_conf.report_hierarchy) 2298 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2299 &hists->socket_filter); 2300 else 2301 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2302 hists__filter_entry_by_socket); 2303 } 2304 2305 void events_stats__inc(struct events_stats *stats, u32 type) 2306 { 2307 ++stats->nr_events[0]; 2308 ++stats->nr_events[type]; 2309 } 2310 2311 void hists__inc_nr_events(struct hists *hists, u32 type) 2312 { 2313 events_stats__inc(&hists->stats, type); 2314 } 2315 2316 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2317 { 2318 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2319 if (!filtered) 2320 hists->stats.nr_non_filtered_samples++; 2321 } 2322 2323 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2324 struct hist_entry *pair) 2325 { 2326 struct rb_root_cached *root; 2327 struct rb_node **p; 2328 struct rb_node *parent = NULL; 2329 struct hist_entry *he; 2330 int64_t cmp; 2331 bool leftmost = true; 2332 2333 if (hists__has(hists, need_collapse)) 2334 root = &hists->entries_collapsed; 2335 else 2336 root = hists->entries_in; 2337 2338 p = &root->rb_root.rb_node; 2339 2340 while (*p != NULL) { 2341 parent = *p; 2342 he = rb_entry(parent, struct hist_entry, rb_node_in); 2343 2344 cmp = hist_entry__collapse(he, pair); 2345 2346 if (!cmp) 2347 goto out; 2348 2349 if (cmp < 0) 2350 p = &(*p)->rb_left; 2351 else { 2352 p = &(*p)->rb_right; 2353 leftmost = false; 2354 } 2355 } 2356 2357 he = hist_entry__new(pair, true); 2358 if (he) { 2359 memset(&he->stat, 0, sizeof(he->stat)); 2360 he->hists = hists; 2361 if (symbol_conf.cumulate_callchain) 2362 memset(he->stat_acc, 0, sizeof(he->stat)); 2363 rb_link_node(&he->rb_node_in, parent, p); 2364 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2365 hists__inc_stats(hists, he); 2366 he->dummy = true; 2367 } 2368 out: 2369 return he; 2370 } 2371 2372 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2373 struct rb_root_cached *root, 2374 struct hist_entry *pair) 2375 { 2376 struct rb_node **p; 2377 struct rb_node *parent = NULL; 2378 struct hist_entry *he; 2379 struct perf_hpp_fmt *fmt; 2380 bool leftmost = true; 2381 2382 p = &root->rb_root.rb_node; 2383 while (*p != NULL) { 2384 int64_t cmp = 0; 2385 2386 parent = *p; 2387 he = rb_entry(parent, struct hist_entry, rb_node_in); 2388 2389 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2390 cmp = fmt->collapse(fmt, he, pair); 2391 if (cmp) 2392 break; 2393 } 2394 if (!cmp) 2395 goto out; 2396 2397 if (cmp < 0) 2398 p = &parent->rb_left; 2399 else { 2400 p = &parent->rb_right; 2401 leftmost = false; 2402 } 2403 } 2404 2405 he = hist_entry__new(pair, true); 2406 if (he) { 2407 rb_link_node(&he->rb_node_in, parent, p); 2408 rb_insert_color_cached(&he->rb_node_in, root, leftmost); 2409 2410 he->dummy = true; 2411 he->hists = hists; 2412 memset(&he->stat, 0, sizeof(he->stat)); 2413 hists__inc_stats(hists, he); 2414 } 2415 out: 2416 return he; 2417 } 2418 2419 static struct hist_entry *hists__find_entry(struct hists *hists, 2420 struct hist_entry *he) 2421 { 2422 struct rb_node *n; 2423 2424 if (hists__has(hists, need_collapse)) 2425 n = hists->entries_collapsed.rb_root.rb_node; 2426 else 2427 n = hists->entries_in->rb_root.rb_node; 2428 2429 while (n) { 2430 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2431 int64_t cmp = hist_entry__collapse(iter, he); 2432 2433 if (cmp < 0) 2434 n = n->rb_left; 2435 else if (cmp > 0) 2436 n = n->rb_right; 2437 else 2438 return iter; 2439 } 2440 2441 return NULL; 2442 } 2443 2444 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root, 2445 struct hist_entry *he) 2446 { 2447 struct rb_node *n = root->rb_root.rb_node; 2448 2449 while (n) { 2450 struct hist_entry *iter; 2451 struct perf_hpp_fmt *fmt; 2452 int64_t cmp = 0; 2453 2454 iter = rb_entry(n, struct hist_entry, rb_node_in); 2455 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2456 cmp = fmt->collapse(fmt, iter, he); 2457 if (cmp) 2458 break; 2459 } 2460 2461 if (cmp < 0) 2462 n = n->rb_left; 2463 else if (cmp > 0) 2464 n = n->rb_right; 2465 else 2466 return iter; 2467 } 2468 2469 return NULL; 2470 } 2471 2472 static void hists__match_hierarchy(struct rb_root_cached *leader_root, 2473 struct rb_root_cached *other_root) 2474 { 2475 struct rb_node *nd; 2476 struct hist_entry *pos, *pair; 2477 2478 for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) { 2479 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2480 pair = hists__find_hierarchy_entry(other_root, pos); 2481 2482 if (pair) { 2483 hist_entry__add_pair(pair, pos); 2484 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2485 } 2486 } 2487 } 2488 2489 /* 2490 * Look for pairs to link to the leader buckets (hist_entries): 2491 */ 2492 void hists__match(struct hists *leader, struct hists *other) 2493 { 2494 struct rb_root_cached *root; 2495 struct rb_node *nd; 2496 struct hist_entry *pos, *pair; 2497 2498 if (symbol_conf.report_hierarchy) { 2499 /* hierarchy report always collapses entries */ 2500 return hists__match_hierarchy(&leader->entries_collapsed, 2501 &other->entries_collapsed); 2502 } 2503 2504 if (hists__has(leader, need_collapse)) 2505 root = &leader->entries_collapsed; 2506 else 2507 root = leader->entries_in; 2508 2509 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2510 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2511 pair = hists__find_entry(other, pos); 2512 2513 if (pair) 2514 hist_entry__add_pair(pair, pos); 2515 } 2516 } 2517 2518 static int hists__link_hierarchy(struct hists *leader_hists, 2519 struct hist_entry *parent, 2520 struct rb_root_cached *leader_root, 2521 struct rb_root_cached *other_root) 2522 { 2523 struct rb_node *nd; 2524 struct hist_entry *pos, *leader; 2525 2526 for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) { 2527 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2528 2529 if (hist_entry__has_pairs(pos)) { 2530 bool found = false; 2531 2532 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2533 if (leader->hists == leader_hists) { 2534 found = true; 2535 break; 2536 } 2537 } 2538 if (!found) 2539 return -1; 2540 } else { 2541 leader = add_dummy_hierarchy_entry(leader_hists, 2542 leader_root, pos); 2543 if (leader == NULL) 2544 return -1; 2545 2546 /* do not point parent in the pos */ 2547 leader->parent_he = parent; 2548 2549 hist_entry__add_pair(pos, leader); 2550 } 2551 2552 if (!pos->leaf) { 2553 if (hists__link_hierarchy(leader_hists, leader, 2554 &leader->hroot_in, 2555 &pos->hroot_in) < 0) 2556 return -1; 2557 } 2558 } 2559 return 0; 2560 } 2561 2562 /* 2563 * Look for entries in the other hists that are not present in the leader, if 2564 * we find them, just add a dummy entry on the leader hists, with period=0, 2565 * nr_events=0, to serve as the list header. 2566 */ 2567 int hists__link(struct hists *leader, struct hists *other) 2568 { 2569 struct rb_root_cached *root; 2570 struct rb_node *nd; 2571 struct hist_entry *pos, *pair; 2572 2573 if (symbol_conf.report_hierarchy) { 2574 /* hierarchy report always collapses entries */ 2575 return hists__link_hierarchy(leader, NULL, 2576 &leader->entries_collapsed, 2577 &other->entries_collapsed); 2578 } 2579 2580 if (hists__has(other, need_collapse)) 2581 root = &other->entries_collapsed; 2582 else 2583 root = other->entries_in; 2584 2585 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2586 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2587 2588 if (!hist_entry__has_pairs(pos)) { 2589 pair = hists__add_dummy_entry(leader, pos); 2590 if (pair == NULL) 2591 return -1; 2592 hist_entry__add_pair(pos, pair); 2593 } 2594 } 2595 2596 return 0; 2597 } 2598 2599 int hists__unlink(struct hists *hists) 2600 { 2601 struct rb_root_cached *root; 2602 struct rb_node *nd; 2603 struct hist_entry *pos; 2604 2605 if (hists__has(hists, need_collapse)) 2606 root = &hists->entries_collapsed; 2607 else 2608 root = hists->entries_in; 2609 2610 for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) { 2611 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2612 list_del_init(&pos->pairs.node); 2613 } 2614 2615 return 0; 2616 } 2617 2618 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2619 struct perf_sample *sample, bool nonany_branch_mode, 2620 u64 *total_cycles) 2621 { 2622 struct branch_info *bi; 2623 struct branch_entry *entries = perf_sample__branch_entries(sample); 2624 2625 /* If we have branch cycles always annotate them. */ 2626 if (bs && bs->nr && entries[0].flags.cycles) { 2627 int i; 2628 2629 bi = sample__resolve_bstack(sample, al); 2630 if (bi) { 2631 struct addr_map_symbol *prev = NULL; 2632 2633 /* 2634 * Ignore errors, still want to process the 2635 * other entries. 2636 * 2637 * For non standard branch modes always 2638 * force no IPC (prev == NULL) 2639 * 2640 * Note that perf stores branches reversed from 2641 * program order! 2642 */ 2643 for (i = bs->nr - 1; i >= 0; i--) { 2644 addr_map_symbol__account_cycles(&bi[i].from, 2645 nonany_branch_mode ? NULL : prev, 2646 bi[i].flags.cycles); 2647 prev = &bi[i].to; 2648 2649 if (total_cycles) 2650 *total_cycles += bi[i].flags.cycles; 2651 } 2652 free(bi); 2653 } 2654 } 2655 } 2656 2657 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp) 2658 { 2659 struct evsel *pos; 2660 size_t ret = 0; 2661 2662 evlist__for_each_entry(evlist, pos) { 2663 ret += fprintf(fp, "%s stats:\n", evsel__name(pos)); 2664 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2665 } 2666 2667 return ret; 2668 } 2669 2670 2671 u64 hists__total_period(struct hists *hists) 2672 { 2673 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2674 hists->stats.total_period; 2675 } 2676 2677 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2678 { 2679 char unit; 2680 int printed; 2681 const struct dso *dso = hists->dso_filter; 2682 struct thread *thread = hists->thread_filter; 2683 int socket_id = hists->socket_filter; 2684 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2685 u64 nr_events = hists->stats.total_period; 2686 struct evsel *evsel = hists_to_evsel(hists); 2687 const char *ev_name = evsel__name(evsel); 2688 char buf[512], sample_freq_str[64] = ""; 2689 size_t buflen = sizeof(buf); 2690 char ref[30] = " show reference callgraph, "; 2691 bool enable_ref = false; 2692 2693 if (symbol_conf.filter_relative) { 2694 nr_samples = hists->stats.nr_non_filtered_samples; 2695 nr_events = hists->stats.total_non_filtered_period; 2696 } 2697 2698 if (evsel__is_group_event(evsel)) { 2699 struct evsel *pos; 2700 2701 evsel__group_desc(evsel, buf, buflen); 2702 ev_name = buf; 2703 2704 for_each_group_member(pos, evsel) { 2705 struct hists *pos_hists = evsel__hists(pos); 2706 2707 if (symbol_conf.filter_relative) { 2708 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2709 nr_events += pos_hists->stats.total_non_filtered_period; 2710 } else { 2711 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2712 nr_events += pos_hists->stats.total_period; 2713 } 2714 } 2715 } 2716 2717 if (symbol_conf.show_ref_callgraph && 2718 strstr(ev_name, "call-graph=no")) 2719 enable_ref = true; 2720 2721 if (show_freq) 2722 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq); 2723 2724 nr_samples = convert_unit(nr_samples, &unit); 2725 printed = scnprintf(bf, size, 2726 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2727 nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "", 2728 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2729 2730 2731 if (hists->uid_filter_str) 2732 printed += snprintf(bf + printed, size - printed, 2733 ", UID: %s", hists->uid_filter_str); 2734 if (thread) { 2735 if (hists__has(hists, thread)) { 2736 printed += scnprintf(bf + printed, size - printed, 2737 ", Thread: %s(%d)", 2738 (thread->comm_set ? thread__comm_str(thread) : ""), 2739 thread->tid); 2740 } else { 2741 printed += scnprintf(bf + printed, size - printed, 2742 ", Thread: %s", 2743 (thread->comm_set ? thread__comm_str(thread) : "")); 2744 } 2745 } 2746 if (dso) 2747 printed += scnprintf(bf + printed, size - printed, 2748 ", DSO: %s", dso->short_name); 2749 if (socket_id > -1) 2750 printed += scnprintf(bf + printed, size - printed, 2751 ", Processor Socket: %d", socket_id); 2752 2753 return printed; 2754 } 2755 2756 int parse_filter_percentage(const struct option *opt __maybe_unused, 2757 const char *arg, int unset __maybe_unused) 2758 { 2759 if (!strcmp(arg, "relative")) 2760 symbol_conf.filter_relative = true; 2761 else if (!strcmp(arg, "absolute")) 2762 symbol_conf.filter_relative = false; 2763 else { 2764 pr_debug("Invalid percentage: %s\n", arg); 2765 return -1; 2766 } 2767 2768 return 0; 2769 } 2770 2771 int perf_hist_config(const char *var, const char *value) 2772 { 2773 if (!strcmp(var, "hist.percentage")) 2774 return parse_filter_percentage(NULL, value, 0); 2775 2776 return 0; 2777 } 2778 2779 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2780 { 2781 memset(hists, 0, sizeof(*hists)); 2782 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED; 2783 hists->entries_in = &hists->entries_in_array[0]; 2784 hists->entries_collapsed = RB_ROOT_CACHED; 2785 hists->entries = RB_ROOT_CACHED; 2786 pthread_mutex_init(&hists->lock, NULL); 2787 hists->socket_filter = -1; 2788 hists->hpp_list = hpp_list; 2789 INIT_LIST_HEAD(&hists->hpp_formats); 2790 return 0; 2791 } 2792 2793 static void hists__delete_remaining_entries(struct rb_root_cached *root) 2794 { 2795 struct rb_node *node; 2796 struct hist_entry *he; 2797 2798 while (!RB_EMPTY_ROOT(&root->rb_root)) { 2799 node = rb_first_cached(root); 2800 rb_erase_cached(node, root); 2801 2802 he = rb_entry(node, struct hist_entry, rb_node_in); 2803 hist_entry__delete(he); 2804 } 2805 } 2806 2807 static void hists__delete_all_entries(struct hists *hists) 2808 { 2809 hists__delete_entries(hists); 2810 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2811 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2812 hists__delete_remaining_entries(&hists->entries_collapsed); 2813 } 2814 2815 static void hists_evsel__exit(struct evsel *evsel) 2816 { 2817 struct hists *hists = evsel__hists(evsel); 2818 struct perf_hpp_fmt *fmt, *pos; 2819 struct perf_hpp_list_node *node, *tmp; 2820 2821 hists__delete_all_entries(hists); 2822 2823 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2824 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2825 list_del_init(&fmt->list); 2826 free(fmt); 2827 } 2828 list_del_init(&node->list); 2829 free(node); 2830 } 2831 } 2832 2833 static int hists_evsel__init(struct evsel *evsel) 2834 { 2835 struct hists *hists = evsel__hists(evsel); 2836 2837 __hists__init(hists, &perf_hpp_list); 2838 return 0; 2839 } 2840 2841 /* 2842 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2843 * stored in the rbtree... 2844 */ 2845 2846 int hists__init(void) 2847 { 2848 int err = evsel__object_config(sizeof(struct hists_evsel), 2849 hists_evsel__init, hists_evsel__exit); 2850 if (err) 2851 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2852 2853 return err; 2854 } 2855 2856 void perf_hpp_list__init(struct perf_hpp_list *list) 2857 { 2858 INIT_LIST_HEAD(&list->fields); 2859 INIT_LIST_HEAD(&list->sorts); 2860 } 2861