xref: /openbmc/linux/tools/perf/util/hist.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 		}
129 
130 		if (h->branch_info->to.ms.sym) {
131 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 			if (verbose > 0)
133 				symlen += BITS_PER_LONG / 4 + 2 + 3;
134 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135 
136 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 		}
143 
144 		if (h->branch_info->srcline_from)
145 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 					strlen(h->branch_info->srcline_from));
147 		if (h->branch_info->srcline_to)
148 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 					strlen(h->branch_info->srcline_to));
150 	}
151 
152 	if (h->mem_info) {
153 		if (h->mem_info->daddr.ms.sym) {
154 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 			       + unresolved_col_width + 2;
156 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 					   symlen);
158 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 					   symlen + 1);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 					   symlen);
164 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 					   symlen);
166 		}
167 
168 		if (h->mem_info->iaddr.ms.sym) {
169 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 			       + unresolved_col_width + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		} else {
174 			symlen = unresolved_col_width + 4 + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		}
178 
179 		if (h->mem_info->daddr.ms.map) {
180 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 					   symlen);
183 		} else {
184 			symlen = unresolved_col_width + 4 + 2;
185 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 		}
187 
188 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 				   unresolved_col_width + 4 + 2);
190 
191 		hists__new_col_len(hists, HISTC_MEM_DATA_PAGE_SIZE,
192 				   unresolved_col_width + 4 + 2);
193 
194 	} else {
195 		symlen = unresolved_col_width + 4 + 2;
196 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
197 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
198 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
199 	}
200 
201 	hists__new_col_len(hists, HISTC_CGROUP, 6);
202 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
203 	hists__new_col_len(hists, HISTC_CPU, 3);
204 	hists__new_col_len(hists, HISTC_SOCKET, 6);
205 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
206 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
207 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
208 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
209 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
210 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
211 	hists__new_col_len(hists, HISTC_MEM_BLOCKED, 10);
212 	hists__new_col_len(hists, HISTC_LOCAL_INS_LAT, 13);
213 	hists__new_col_len(hists, HISTC_GLOBAL_INS_LAT, 13);
214 	if (symbol_conf.nanosecs)
215 		hists__new_col_len(hists, HISTC_TIME, 16);
216 	else
217 		hists__new_col_len(hists, HISTC_TIME, 12);
218 	hists__new_col_len(hists, HISTC_CODE_PAGE_SIZE, 6);
219 
220 	if (h->srcline) {
221 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
222 		hists__new_col_len(hists, HISTC_SRCLINE, len);
223 	}
224 
225 	if (h->srcfile)
226 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
227 
228 	if (h->transaction)
229 		hists__new_col_len(hists, HISTC_TRANSACTION,
230 				   hist_entry__transaction_len());
231 
232 	if (h->trace_output)
233 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
234 
235 	if (h->cgroup) {
236 		const char *cgrp_name = "unknown";
237 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
238 						   h->cgroup);
239 		if (cgrp != NULL)
240 			cgrp_name = cgrp->name;
241 
242 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
243 	}
244 }
245 
246 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
247 {
248 	struct rb_node *next = rb_first_cached(&hists->entries);
249 	struct hist_entry *n;
250 	int row = 0;
251 
252 	hists__reset_col_len(hists);
253 
254 	while (next && row++ < max_rows) {
255 		n = rb_entry(next, struct hist_entry, rb_node);
256 		if (!n->filtered)
257 			hists__calc_col_len(hists, n);
258 		next = rb_next(&n->rb_node);
259 	}
260 }
261 
262 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
263 					unsigned int cpumode, u64 period)
264 {
265 	switch (cpumode) {
266 	case PERF_RECORD_MISC_KERNEL:
267 		he_stat->period_sys += period;
268 		break;
269 	case PERF_RECORD_MISC_USER:
270 		he_stat->period_us += period;
271 		break;
272 	case PERF_RECORD_MISC_GUEST_KERNEL:
273 		he_stat->period_guest_sys += period;
274 		break;
275 	case PERF_RECORD_MISC_GUEST_USER:
276 		he_stat->period_guest_us += period;
277 		break;
278 	default:
279 		break;
280 	}
281 }
282 
283 static long hist_time(unsigned long htime)
284 {
285 	unsigned long time_quantum = symbol_conf.time_quantum;
286 	if (time_quantum)
287 		return (htime / time_quantum) * time_quantum;
288 	return htime;
289 }
290 
291 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
292 				u64 weight, u64 ins_lat)
293 {
294 
295 	he_stat->period		+= period;
296 	he_stat->weight		+= weight;
297 	he_stat->nr_events	+= 1;
298 	he_stat->ins_lat	+= ins_lat;
299 }
300 
301 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
302 {
303 	dest->period		+= src->period;
304 	dest->period_sys	+= src->period_sys;
305 	dest->period_us		+= src->period_us;
306 	dest->period_guest_sys	+= src->period_guest_sys;
307 	dest->period_guest_us	+= src->period_guest_us;
308 	dest->nr_events		+= src->nr_events;
309 	dest->weight		+= src->weight;
310 	dest->ins_lat		+= src->ins_lat;
311 }
312 
313 static void he_stat__decay(struct he_stat *he_stat)
314 {
315 	he_stat->period = (he_stat->period * 7) / 8;
316 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
317 	/* XXX need decay for weight too? */
318 }
319 
320 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
321 
322 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
323 {
324 	u64 prev_period = he->stat.period;
325 	u64 diff;
326 
327 	if (prev_period == 0)
328 		return true;
329 
330 	he_stat__decay(&he->stat);
331 	if (symbol_conf.cumulate_callchain)
332 		he_stat__decay(he->stat_acc);
333 	decay_callchain(he->callchain);
334 
335 	diff = prev_period - he->stat.period;
336 
337 	if (!he->depth) {
338 		hists->stats.total_period -= diff;
339 		if (!he->filtered)
340 			hists->stats.total_non_filtered_period -= diff;
341 	}
342 
343 	if (!he->leaf) {
344 		struct hist_entry *child;
345 		struct rb_node *node = rb_first_cached(&he->hroot_out);
346 		while (node) {
347 			child = rb_entry(node, struct hist_entry, rb_node);
348 			node = rb_next(node);
349 
350 			if (hists__decay_entry(hists, child))
351 				hists__delete_entry(hists, child);
352 		}
353 	}
354 
355 	return he->stat.period == 0;
356 }
357 
358 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
359 {
360 	struct rb_root_cached *root_in;
361 	struct rb_root_cached *root_out;
362 
363 	if (he->parent_he) {
364 		root_in  = &he->parent_he->hroot_in;
365 		root_out = &he->parent_he->hroot_out;
366 	} else {
367 		if (hists__has(hists, need_collapse))
368 			root_in = &hists->entries_collapsed;
369 		else
370 			root_in = hists->entries_in;
371 		root_out = &hists->entries;
372 	}
373 
374 	rb_erase_cached(&he->rb_node_in, root_in);
375 	rb_erase_cached(&he->rb_node, root_out);
376 
377 	--hists->nr_entries;
378 	if (!he->filtered)
379 		--hists->nr_non_filtered_entries;
380 
381 	hist_entry__delete(he);
382 }
383 
384 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
385 {
386 	struct rb_node *next = rb_first_cached(&hists->entries);
387 	struct hist_entry *n;
388 
389 	while (next) {
390 		n = rb_entry(next, struct hist_entry, rb_node);
391 		next = rb_next(&n->rb_node);
392 		if (((zap_user && n->level == '.') ||
393 		     (zap_kernel && n->level != '.') ||
394 		     hists__decay_entry(hists, n))) {
395 			hists__delete_entry(hists, n);
396 		}
397 	}
398 }
399 
400 void hists__delete_entries(struct hists *hists)
401 {
402 	struct rb_node *next = rb_first_cached(&hists->entries);
403 	struct hist_entry *n;
404 
405 	while (next) {
406 		n = rb_entry(next, struct hist_entry, rb_node);
407 		next = rb_next(&n->rb_node);
408 
409 		hists__delete_entry(hists, n);
410 	}
411 }
412 
413 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
414 {
415 	struct rb_node *next = rb_first_cached(&hists->entries);
416 	struct hist_entry *n;
417 	int i = 0;
418 
419 	while (next) {
420 		n = rb_entry(next, struct hist_entry, rb_node);
421 		if (i == idx)
422 			return n;
423 
424 		next = rb_next(&n->rb_node);
425 		i++;
426 	}
427 
428 	return NULL;
429 }
430 
431 /*
432  * histogram, sorted on item, collects periods
433  */
434 
435 static int hist_entry__init(struct hist_entry *he,
436 			    struct hist_entry *template,
437 			    bool sample_self,
438 			    size_t callchain_size)
439 {
440 	*he = *template;
441 	he->callchain_size = callchain_size;
442 
443 	if (symbol_conf.cumulate_callchain) {
444 		he->stat_acc = malloc(sizeof(he->stat));
445 		if (he->stat_acc == NULL)
446 			return -ENOMEM;
447 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
448 		if (!sample_self)
449 			memset(&he->stat, 0, sizeof(he->stat));
450 	}
451 
452 	map__get(he->ms.map);
453 
454 	if (he->branch_info) {
455 		/*
456 		 * This branch info is (a part of) allocated from
457 		 * sample__resolve_bstack() and will be freed after
458 		 * adding new entries.  So we need to save a copy.
459 		 */
460 		he->branch_info = malloc(sizeof(*he->branch_info));
461 		if (he->branch_info == NULL)
462 			goto err;
463 
464 		memcpy(he->branch_info, template->branch_info,
465 		       sizeof(*he->branch_info));
466 
467 		map__get(he->branch_info->from.ms.map);
468 		map__get(he->branch_info->to.ms.map);
469 	}
470 
471 	if (he->mem_info) {
472 		map__get(he->mem_info->iaddr.ms.map);
473 		map__get(he->mem_info->daddr.ms.map);
474 	}
475 
476 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
477 		callchain_init(he->callchain);
478 
479 	if (he->raw_data) {
480 		he->raw_data = memdup(he->raw_data, he->raw_size);
481 		if (he->raw_data == NULL)
482 			goto err_infos;
483 	}
484 
485 	if (he->srcline) {
486 		he->srcline = strdup(he->srcline);
487 		if (he->srcline == NULL)
488 			goto err_rawdata;
489 	}
490 
491 	if (symbol_conf.res_sample) {
492 		he->res_samples = calloc(sizeof(struct res_sample),
493 					symbol_conf.res_sample);
494 		if (!he->res_samples)
495 			goto err_srcline;
496 	}
497 
498 	INIT_LIST_HEAD(&he->pairs.node);
499 	thread__get(he->thread);
500 	he->hroot_in  = RB_ROOT_CACHED;
501 	he->hroot_out = RB_ROOT_CACHED;
502 
503 	if (!symbol_conf.report_hierarchy)
504 		he->leaf = true;
505 
506 	return 0;
507 
508 err_srcline:
509 	zfree(&he->srcline);
510 
511 err_rawdata:
512 	zfree(&he->raw_data);
513 
514 err_infos:
515 	if (he->branch_info) {
516 		map__put(he->branch_info->from.ms.map);
517 		map__put(he->branch_info->to.ms.map);
518 		zfree(&he->branch_info);
519 	}
520 	if (he->mem_info) {
521 		map__put(he->mem_info->iaddr.ms.map);
522 		map__put(he->mem_info->daddr.ms.map);
523 	}
524 err:
525 	map__zput(he->ms.map);
526 	zfree(&he->stat_acc);
527 	return -ENOMEM;
528 }
529 
530 static void *hist_entry__zalloc(size_t size)
531 {
532 	return zalloc(size + sizeof(struct hist_entry));
533 }
534 
535 static void hist_entry__free(void *ptr)
536 {
537 	free(ptr);
538 }
539 
540 static struct hist_entry_ops default_ops = {
541 	.new	= hist_entry__zalloc,
542 	.free	= hist_entry__free,
543 };
544 
545 static struct hist_entry *hist_entry__new(struct hist_entry *template,
546 					  bool sample_self)
547 {
548 	struct hist_entry_ops *ops = template->ops;
549 	size_t callchain_size = 0;
550 	struct hist_entry *he;
551 	int err = 0;
552 
553 	if (!ops)
554 		ops = template->ops = &default_ops;
555 
556 	if (symbol_conf.use_callchain)
557 		callchain_size = sizeof(struct callchain_root);
558 
559 	he = ops->new(callchain_size);
560 	if (he) {
561 		err = hist_entry__init(he, template, sample_self, callchain_size);
562 		if (err) {
563 			ops->free(he);
564 			he = NULL;
565 		}
566 	}
567 
568 	return he;
569 }
570 
571 static u8 symbol__parent_filter(const struct symbol *parent)
572 {
573 	if (symbol_conf.exclude_other && parent == NULL)
574 		return 1 << HIST_FILTER__PARENT;
575 	return 0;
576 }
577 
578 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
579 {
580 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
581 		return;
582 
583 	he->hists->callchain_period += period;
584 	if (!he->filtered)
585 		he->hists->callchain_non_filtered_period += period;
586 }
587 
588 static struct hist_entry *hists__findnew_entry(struct hists *hists,
589 					       struct hist_entry *entry,
590 					       struct addr_location *al,
591 					       bool sample_self)
592 {
593 	struct rb_node **p;
594 	struct rb_node *parent = NULL;
595 	struct hist_entry *he;
596 	int64_t cmp;
597 	u64 period = entry->stat.period;
598 	u64 weight = entry->stat.weight;
599 	u64 ins_lat = entry->stat.ins_lat;
600 	bool leftmost = true;
601 
602 	p = &hists->entries_in->rb_root.rb_node;
603 
604 	while (*p != NULL) {
605 		parent = *p;
606 		he = rb_entry(parent, struct hist_entry, rb_node_in);
607 
608 		/*
609 		 * Make sure that it receives arguments in a same order as
610 		 * hist_entry__collapse() so that we can use an appropriate
611 		 * function when searching an entry regardless which sort
612 		 * keys were used.
613 		 */
614 		cmp = hist_entry__cmp(he, entry);
615 
616 		if (!cmp) {
617 			if (sample_self) {
618 				he_stat__add_period(&he->stat, period, weight, ins_lat);
619 				hist_entry__add_callchain_period(he, period);
620 			}
621 			if (symbol_conf.cumulate_callchain)
622 				he_stat__add_period(he->stat_acc, period, weight, ins_lat);
623 
624 			/*
625 			 * This mem info was allocated from sample__resolve_mem
626 			 * and will not be used anymore.
627 			 */
628 			mem_info__zput(entry->mem_info);
629 
630 			block_info__zput(entry->block_info);
631 
632 			/* If the map of an existing hist_entry has
633 			 * become out-of-date due to an exec() or
634 			 * similar, update it.  Otherwise we will
635 			 * mis-adjust symbol addresses when computing
636 			 * the history counter to increment.
637 			 */
638 			if (he->ms.map != entry->ms.map) {
639 				map__put(he->ms.map);
640 				he->ms.map = map__get(entry->ms.map);
641 			}
642 			goto out;
643 		}
644 
645 		if (cmp < 0)
646 			p = &(*p)->rb_left;
647 		else {
648 			p = &(*p)->rb_right;
649 			leftmost = false;
650 		}
651 	}
652 
653 	he = hist_entry__new(entry, sample_self);
654 	if (!he)
655 		return NULL;
656 
657 	if (sample_self)
658 		hist_entry__add_callchain_period(he, period);
659 	hists->nr_entries++;
660 
661 	rb_link_node(&he->rb_node_in, parent, p);
662 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
663 out:
664 	if (sample_self)
665 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
666 	if (symbol_conf.cumulate_callchain)
667 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
668 	return he;
669 }
670 
671 static unsigned random_max(unsigned high)
672 {
673 	unsigned thresh = -high % high;
674 	for (;;) {
675 		unsigned r = random();
676 		if (r >= thresh)
677 			return r % high;
678 	}
679 }
680 
681 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
682 {
683 	struct res_sample *r;
684 	int j;
685 
686 	if (he->num_res < symbol_conf.res_sample) {
687 		j = he->num_res++;
688 	} else {
689 		j = random_max(symbol_conf.res_sample);
690 	}
691 	r = &he->res_samples[j];
692 	r->time = sample->time;
693 	r->cpu = sample->cpu;
694 	r->tid = sample->tid;
695 }
696 
697 static struct hist_entry*
698 __hists__add_entry(struct hists *hists,
699 		   struct addr_location *al,
700 		   struct symbol *sym_parent,
701 		   struct branch_info *bi,
702 		   struct mem_info *mi,
703 		   struct block_info *block_info,
704 		   struct perf_sample *sample,
705 		   bool sample_self,
706 		   struct hist_entry_ops *ops)
707 {
708 	struct namespaces *ns = thread__namespaces(al->thread);
709 	struct hist_entry entry = {
710 		.thread	= al->thread,
711 		.comm = thread__comm(al->thread),
712 		.cgroup_id = {
713 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
714 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
715 		},
716 		.cgroup = sample->cgroup,
717 		.ms = {
718 			.maps	= al->maps,
719 			.map	= al->map,
720 			.sym	= al->sym,
721 		},
722 		.srcline = (char *) al->srcline,
723 		.socket	 = al->socket,
724 		.cpu	 = al->cpu,
725 		.cpumode = al->cpumode,
726 		.ip	 = al->addr,
727 		.level	 = al->level,
728 		.code_page_size = sample->code_page_size,
729 		.stat = {
730 			.nr_events = 1,
731 			.period	= sample->period,
732 			.weight = sample->weight,
733 			.ins_lat = sample->ins_lat,
734 		},
735 		.parent = sym_parent,
736 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
737 		.hists	= hists,
738 		.branch_info = bi,
739 		.mem_info = mi,
740 		.block_info = block_info,
741 		.transaction = sample->transaction,
742 		.raw_data = sample->raw_data,
743 		.raw_size = sample->raw_size,
744 		.ops = ops,
745 		.time = hist_time(sample->time),
746 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
747 
748 	if (!hists->has_callchains && he && he->callchain_size != 0)
749 		hists->has_callchains = true;
750 	if (he && symbol_conf.res_sample)
751 		hists__res_sample(he, sample);
752 	return he;
753 }
754 
755 struct hist_entry *hists__add_entry(struct hists *hists,
756 				    struct addr_location *al,
757 				    struct symbol *sym_parent,
758 				    struct branch_info *bi,
759 				    struct mem_info *mi,
760 				    struct perf_sample *sample,
761 				    bool sample_self)
762 {
763 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
764 				  sample, sample_self, NULL);
765 }
766 
767 struct hist_entry *hists__add_entry_ops(struct hists *hists,
768 					struct hist_entry_ops *ops,
769 					struct addr_location *al,
770 					struct symbol *sym_parent,
771 					struct branch_info *bi,
772 					struct mem_info *mi,
773 					struct perf_sample *sample,
774 					bool sample_self)
775 {
776 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
777 				  sample, sample_self, ops);
778 }
779 
780 struct hist_entry *hists__add_entry_block(struct hists *hists,
781 					  struct addr_location *al,
782 					  struct block_info *block_info)
783 {
784 	struct hist_entry entry = {
785 		.block_info = block_info,
786 		.hists = hists,
787 		.ms = {
788 			.maps = al->maps,
789 			.map = al->map,
790 			.sym = al->sym,
791 		},
792 	}, *he = hists__findnew_entry(hists, &entry, al, false);
793 
794 	return he;
795 }
796 
797 static int
798 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
799 		    struct addr_location *al __maybe_unused)
800 {
801 	return 0;
802 }
803 
804 static int
805 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
806 			struct addr_location *al __maybe_unused)
807 {
808 	return 0;
809 }
810 
811 static int
812 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
813 {
814 	struct perf_sample *sample = iter->sample;
815 	struct mem_info *mi;
816 
817 	mi = sample__resolve_mem(sample, al);
818 	if (mi == NULL)
819 		return -ENOMEM;
820 
821 	iter->priv = mi;
822 	return 0;
823 }
824 
825 static int
826 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
827 {
828 	u64 cost;
829 	struct mem_info *mi = iter->priv;
830 	struct hists *hists = evsel__hists(iter->evsel);
831 	struct perf_sample *sample = iter->sample;
832 	struct hist_entry *he;
833 
834 	if (mi == NULL)
835 		return -EINVAL;
836 
837 	cost = sample->weight;
838 	if (!cost)
839 		cost = 1;
840 
841 	/*
842 	 * must pass period=weight in order to get the correct
843 	 * sorting from hists__collapse_resort() which is solely
844 	 * based on periods. We want sorting be done on nr_events * weight
845 	 * and this is indirectly achieved by passing period=weight here
846 	 * and the he_stat__add_period() function.
847 	 */
848 	sample->period = cost;
849 
850 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
851 			      sample, true);
852 	if (!he)
853 		return -ENOMEM;
854 
855 	iter->he = he;
856 	return 0;
857 }
858 
859 static int
860 iter_finish_mem_entry(struct hist_entry_iter *iter,
861 		      struct addr_location *al __maybe_unused)
862 {
863 	struct evsel *evsel = iter->evsel;
864 	struct hists *hists = evsel__hists(evsel);
865 	struct hist_entry *he = iter->he;
866 	int err = -EINVAL;
867 
868 	if (he == NULL)
869 		goto out;
870 
871 	hists__inc_nr_samples(hists, he->filtered);
872 
873 	err = hist_entry__append_callchain(he, iter->sample);
874 
875 out:
876 	/*
877 	 * We don't need to free iter->priv (mem_info) here since the mem info
878 	 * was either already freed in hists__findnew_entry() or passed to a
879 	 * new hist entry by hist_entry__new().
880 	 */
881 	iter->priv = NULL;
882 
883 	iter->he = NULL;
884 	return err;
885 }
886 
887 static int
888 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
889 {
890 	struct branch_info *bi;
891 	struct perf_sample *sample = iter->sample;
892 
893 	bi = sample__resolve_bstack(sample, al);
894 	if (!bi)
895 		return -ENOMEM;
896 
897 	iter->curr = 0;
898 	iter->total = sample->branch_stack->nr;
899 
900 	iter->priv = bi;
901 	return 0;
902 }
903 
904 static int
905 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
906 			     struct addr_location *al __maybe_unused)
907 {
908 	return 0;
909 }
910 
911 static int
912 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
913 {
914 	struct branch_info *bi = iter->priv;
915 	int i = iter->curr;
916 
917 	if (bi == NULL)
918 		return 0;
919 
920 	if (iter->curr >= iter->total)
921 		return 0;
922 
923 	al->maps = bi[i].to.ms.maps;
924 	al->map = bi[i].to.ms.map;
925 	al->sym = bi[i].to.ms.sym;
926 	al->addr = bi[i].to.addr;
927 	return 1;
928 }
929 
930 static int
931 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
932 {
933 	struct branch_info *bi;
934 	struct evsel *evsel = iter->evsel;
935 	struct hists *hists = evsel__hists(evsel);
936 	struct perf_sample *sample = iter->sample;
937 	struct hist_entry *he = NULL;
938 	int i = iter->curr;
939 	int err = 0;
940 
941 	bi = iter->priv;
942 
943 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
944 		goto out;
945 
946 	/*
947 	 * The report shows the percentage of total branches captured
948 	 * and not events sampled. Thus we use a pseudo period of 1.
949 	 */
950 	sample->period = 1;
951 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
952 
953 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
954 			      sample, true);
955 	if (he == NULL)
956 		return -ENOMEM;
957 
958 	hists__inc_nr_samples(hists, he->filtered);
959 
960 out:
961 	iter->he = he;
962 	iter->curr++;
963 	return err;
964 }
965 
966 static int
967 iter_finish_branch_entry(struct hist_entry_iter *iter,
968 			 struct addr_location *al __maybe_unused)
969 {
970 	zfree(&iter->priv);
971 	iter->he = NULL;
972 
973 	return iter->curr >= iter->total ? 0 : -1;
974 }
975 
976 static int
977 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
978 			  struct addr_location *al __maybe_unused)
979 {
980 	return 0;
981 }
982 
983 static int
984 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
985 {
986 	struct evsel *evsel = iter->evsel;
987 	struct perf_sample *sample = iter->sample;
988 	struct hist_entry *he;
989 
990 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
991 			      sample, true);
992 	if (he == NULL)
993 		return -ENOMEM;
994 
995 	iter->he = he;
996 	return 0;
997 }
998 
999 static int
1000 iter_finish_normal_entry(struct hist_entry_iter *iter,
1001 			 struct addr_location *al __maybe_unused)
1002 {
1003 	struct hist_entry *he = iter->he;
1004 	struct evsel *evsel = iter->evsel;
1005 	struct perf_sample *sample = iter->sample;
1006 
1007 	if (he == NULL)
1008 		return 0;
1009 
1010 	iter->he = NULL;
1011 
1012 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1013 
1014 	return hist_entry__append_callchain(he, sample);
1015 }
1016 
1017 static int
1018 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1019 			      struct addr_location *al __maybe_unused)
1020 {
1021 	struct hist_entry **he_cache;
1022 
1023 	callchain_cursor_commit(&callchain_cursor);
1024 
1025 	/*
1026 	 * This is for detecting cycles or recursions so that they're
1027 	 * cumulated only one time to prevent entries more than 100%
1028 	 * overhead.
1029 	 */
1030 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1031 	if (he_cache == NULL)
1032 		return -ENOMEM;
1033 
1034 	iter->priv = he_cache;
1035 	iter->curr = 0;
1036 
1037 	return 0;
1038 }
1039 
1040 static int
1041 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1042 				 struct addr_location *al)
1043 {
1044 	struct evsel *evsel = iter->evsel;
1045 	struct hists *hists = evsel__hists(evsel);
1046 	struct perf_sample *sample = iter->sample;
1047 	struct hist_entry **he_cache = iter->priv;
1048 	struct hist_entry *he;
1049 	int err = 0;
1050 
1051 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1052 			      sample, true);
1053 	if (he == NULL)
1054 		return -ENOMEM;
1055 
1056 	iter->he = he;
1057 	he_cache[iter->curr++] = he;
1058 
1059 	hist_entry__append_callchain(he, sample);
1060 
1061 	/*
1062 	 * We need to re-initialize the cursor since callchain_append()
1063 	 * advanced the cursor to the end.
1064 	 */
1065 	callchain_cursor_commit(&callchain_cursor);
1066 
1067 	hists__inc_nr_samples(hists, he->filtered);
1068 
1069 	return err;
1070 }
1071 
1072 static int
1073 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1074 			   struct addr_location *al)
1075 {
1076 	struct callchain_cursor_node *node;
1077 
1078 	node = callchain_cursor_current(&callchain_cursor);
1079 	if (node == NULL)
1080 		return 0;
1081 
1082 	return fill_callchain_info(al, node, iter->hide_unresolved);
1083 }
1084 
1085 static bool
1086 hist_entry__fast__sym_diff(struct hist_entry *left,
1087 			   struct hist_entry *right)
1088 {
1089 	struct symbol *sym_l = left->ms.sym;
1090 	struct symbol *sym_r = right->ms.sym;
1091 
1092 	if (!sym_l && !sym_r)
1093 		return left->ip != right->ip;
1094 
1095 	return !!_sort__sym_cmp(sym_l, sym_r);
1096 }
1097 
1098 
1099 static int
1100 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1101 			       struct addr_location *al)
1102 {
1103 	struct evsel *evsel = iter->evsel;
1104 	struct perf_sample *sample = iter->sample;
1105 	struct hist_entry **he_cache = iter->priv;
1106 	struct hist_entry *he;
1107 	struct hist_entry he_tmp = {
1108 		.hists = evsel__hists(evsel),
1109 		.cpu = al->cpu,
1110 		.thread = al->thread,
1111 		.comm = thread__comm(al->thread),
1112 		.ip = al->addr,
1113 		.ms = {
1114 			.maps = al->maps,
1115 			.map = al->map,
1116 			.sym = al->sym,
1117 		},
1118 		.srcline = (char *) al->srcline,
1119 		.parent = iter->parent,
1120 		.raw_data = sample->raw_data,
1121 		.raw_size = sample->raw_size,
1122 	};
1123 	int i;
1124 	struct callchain_cursor cursor;
1125 	bool fast = hists__has(he_tmp.hists, sym);
1126 
1127 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1128 
1129 	callchain_cursor_advance(&callchain_cursor);
1130 
1131 	/*
1132 	 * Check if there's duplicate entries in the callchain.
1133 	 * It's possible that it has cycles or recursive calls.
1134 	 */
1135 	for (i = 0; i < iter->curr; i++) {
1136 		/*
1137 		 * For most cases, there are no duplicate entries in callchain.
1138 		 * The symbols are usually different. Do a quick check for
1139 		 * symbols first.
1140 		 */
1141 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1142 			continue;
1143 
1144 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1145 			/* to avoid calling callback function */
1146 			iter->he = NULL;
1147 			return 0;
1148 		}
1149 	}
1150 
1151 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1152 			      sample, false);
1153 	if (he == NULL)
1154 		return -ENOMEM;
1155 
1156 	iter->he = he;
1157 	he_cache[iter->curr++] = he;
1158 
1159 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1160 		callchain_append(he->callchain, &cursor, sample->period);
1161 	return 0;
1162 }
1163 
1164 static int
1165 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1166 			     struct addr_location *al __maybe_unused)
1167 {
1168 	zfree(&iter->priv);
1169 	iter->he = NULL;
1170 
1171 	return 0;
1172 }
1173 
1174 const struct hist_iter_ops hist_iter_mem = {
1175 	.prepare_entry 		= iter_prepare_mem_entry,
1176 	.add_single_entry 	= iter_add_single_mem_entry,
1177 	.next_entry 		= iter_next_nop_entry,
1178 	.add_next_entry 	= iter_add_next_nop_entry,
1179 	.finish_entry 		= iter_finish_mem_entry,
1180 };
1181 
1182 const struct hist_iter_ops hist_iter_branch = {
1183 	.prepare_entry 		= iter_prepare_branch_entry,
1184 	.add_single_entry 	= iter_add_single_branch_entry,
1185 	.next_entry 		= iter_next_branch_entry,
1186 	.add_next_entry 	= iter_add_next_branch_entry,
1187 	.finish_entry 		= iter_finish_branch_entry,
1188 };
1189 
1190 const struct hist_iter_ops hist_iter_normal = {
1191 	.prepare_entry 		= iter_prepare_normal_entry,
1192 	.add_single_entry 	= iter_add_single_normal_entry,
1193 	.next_entry 		= iter_next_nop_entry,
1194 	.add_next_entry 	= iter_add_next_nop_entry,
1195 	.finish_entry 		= iter_finish_normal_entry,
1196 };
1197 
1198 const struct hist_iter_ops hist_iter_cumulative = {
1199 	.prepare_entry 		= iter_prepare_cumulative_entry,
1200 	.add_single_entry 	= iter_add_single_cumulative_entry,
1201 	.next_entry 		= iter_next_cumulative_entry,
1202 	.add_next_entry 	= iter_add_next_cumulative_entry,
1203 	.finish_entry 		= iter_finish_cumulative_entry,
1204 };
1205 
1206 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1207 			 int max_stack_depth, void *arg)
1208 {
1209 	int err, err2;
1210 	struct map *alm = NULL;
1211 
1212 	if (al)
1213 		alm = map__get(al->map);
1214 
1215 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1216 					iter->evsel, al, max_stack_depth);
1217 	if (err) {
1218 		map__put(alm);
1219 		return err;
1220 	}
1221 
1222 	err = iter->ops->prepare_entry(iter, al);
1223 	if (err)
1224 		goto out;
1225 
1226 	err = iter->ops->add_single_entry(iter, al);
1227 	if (err)
1228 		goto out;
1229 
1230 	if (iter->he && iter->add_entry_cb) {
1231 		err = iter->add_entry_cb(iter, al, true, arg);
1232 		if (err)
1233 			goto out;
1234 	}
1235 
1236 	while (iter->ops->next_entry(iter, al)) {
1237 		err = iter->ops->add_next_entry(iter, al);
1238 		if (err)
1239 			break;
1240 
1241 		if (iter->he && iter->add_entry_cb) {
1242 			err = iter->add_entry_cb(iter, al, false, arg);
1243 			if (err)
1244 				goto out;
1245 		}
1246 	}
1247 
1248 out:
1249 	err2 = iter->ops->finish_entry(iter, al);
1250 	if (!err)
1251 		err = err2;
1252 
1253 	map__put(alm);
1254 
1255 	return err;
1256 }
1257 
1258 int64_t
1259 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1260 {
1261 	struct hists *hists = left->hists;
1262 	struct perf_hpp_fmt *fmt;
1263 	int64_t cmp = 0;
1264 
1265 	hists__for_each_sort_list(hists, fmt) {
1266 		if (perf_hpp__is_dynamic_entry(fmt) &&
1267 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1268 			continue;
1269 
1270 		cmp = fmt->cmp(fmt, left, right);
1271 		if (cmp)
1272 			break;
1273 	}
1274 
1275 	return cmp;
1276 }
1277 
1278 int64_t
1279 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1280 {
1281 	struct hists *hists = left->hists;
1282 	struct perf_hpp_fmt *fmt;
1283 	int64_t cmp = 0;
1284 
1285 	hists__for_each_sort_list(hists, fmt) {
1286 		if (perf_hpp__is_dynamic_entry(fmt) &&
1287 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1288 			continue;
1289 
1290 		cmp = fmt->collapse(fmt, left, right);
1291 		if (cmp)
1292 			break;
1293 	}
1294 
1295 	return cmp;
1296 }
1297 
1298 void hist_entry__delete(struct hist_entry *he)
1299 {
1300 	struct hist_entry_ops *ops = he->ops;
1301 
1302 	thread__zput(he->thread);
1303 	map__zput(he->ms.map);
1304 
1305 	if (he->branch_info) {
1306 		map__zput(he->branch_info->from.ms.map);
1307 		map__zput(he->branch_info->to.ms.map);
1308 		free_srcline(he->branch_info->srcline_from);
1309 		free_srcline(he->branch_info->srcline_to);
1310 		zfree(&he->branch_info);
1311 	}
1312 
1313 	if (he->mem_info) {
1314 		map__zput(he->mem_info->iaddr.ms.map);
1315 		map__zput(he->mem_info->daddr.ms.map);
1316 		mem_info__zput(he->mem_info);
1317 	}
1318 
1319 	if (he->block_info)
1320 		block_info__zput(he->block_info);
1321 
1322 	zfree(&he->res_samples);
1323 	zfree(&he->stat_acc);
1324 	free_srcline(he->srcline);
1325 	if (he->srcfile && he->srcfile[0])
1326 		zfree(&he->srcfile);
1327 	free_callchain(he->callchain);
1328 	zfree(&he->trace_output);
1329 	zfree(&he->raw_data);
1330 	ops->free(he);
1331 }
1332 
1333 /*
1334  * If this is not the last column, then we need to pad it according to the
1335  * pre-calculated max length for this column, otherwise don't bother adding
1336  * spaces because that would break viewing this with, for instance, 'less',
1337  * that would show tons of trailing spaces when a long C++ demangled method
1338  * names is sampled.
1339 */
1340 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1341 				   struct perf_hpp_fmt *fmt, int printed)
1342 {
1343 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1344 		const int width = fmt->width(fmt, hpp, he->hists);
1345 		if (printed < width) {
1346 			advance_hpp(hpp, printed);
1347 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1348 		}
1349 	}
1350 
1351 	return printed;
1352 }
1353 
1354 /*
1355  * collapse the histogram
1356  */
1357 
1358 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1359 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1360 				       enum hist_filter type);
1361 
1362 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1363 
1364 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1365 {
1366 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1367 }
1368 
1369 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1370 						enum hist_filter type,
1371 						fmt_chk_fn check)
1372 {
1373 	struct perf_hpp_fmt *fmt;
1374 	bool type_match = false;
1375 	struct hist_entry *parent = he->parent_he;
1376 
1377 	switch (type) {
1378 	case HIST_FILTER__THREAD:
1379 		if (symbol_conf.comm_list == NULL &&
1380 		    symbol_conf.pid_list == NULL &&
1381 		    symbol_conf.tid_list == NULL)
1382 			return;
1383 		break;
1384 	case HIST_FILTER__DSO:
1385 		if (symbol_conf.dso_list == NULL)
1386 			return;
1387 		break;
1388 	case HIST_FILTER__SYMBOL:
1389 		if (symbol_conf.sym_list == NULL)
1390 			return;
1391 		break;
1392 	case HIST_FILTER__PARENT:
1393 	case HIST_FILTER__GUEST:
1394 	case HIST_FILTER__HOST:
1395 	case HIST_FILTER__SOCKET:
1396 	case HIST_FILTER__C2C:
1397 	default:
1398 		return;
1399 	}
1400 
1401 	/* if it's filtered by own fmt, it has to have filter bits */
1402 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1403 		if (check(fmt)) {
1404 			type_match = true;
1405 			break;
1406 		}
1407 	}
1408 
1409 	if (type_match) {
1410 		/*
1411 		 * If the filter is for current level entry, propagate
1412 		 * filter marker to parents.  The marker bit was
1413 		 * already set by default so it only needs to clear
1414 		 * non-filtered entries.
1415 		 */
1416 		if (!(he->filtered & (1 << type))) {
1417 			while (parent) {
1418 				parent->filtered &= ~(1 << type);
1419 				parent = parent->parent_he;
1420 			}
1421 		}
1422 	} else {
1423 		/*
1424 		 * If current entry doesn't have matching formats, set
1425 		 * filter marker for upper level entries.  it will be
1426 		 * cleared if its lower level entries is not filtered.
1427 		 *
1428 		 * For lower-level entries, it inherits parent's
1429 		 * filter bit so that lower level entries of a
1430 		 * non-filtered entry won't set the filter marker.
1431 		 */
1432 		if (parent == NULL)
1433 			he->filtered |= (1 << type);
1434 		else
1435 			he->filtered |= (parent->filtered & (1 << type));
1436 	}
1437 }
1438 
1439 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1440 {
1441 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1442 					    check_thread_entry);
1443 
1444 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1445 					    perf_hpp__is_dso_entry);
1446 
1447 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1448 					    perf_hpp__is_sym_entry);
1449 
1450 	hists__apply_filters(he->hists, he);
1451 }
1452 
1453 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1454 						 struct rb_root_cached *root,
1455 						 struct hist_entry *he,
1456 						 struct hist_entry *parent_he,
1457 						 struct perf_hpp_list *hpp_list)
1458 {
1459 	struct rb_node **p = &root->rb_root.rb_node;
1460 	struct rb_node *parent = NULL;
1461 	struct hist_entry *iter, *new;
1462 	struct perf_hpp_fmt *fmt;
1463 	int64_t cmp;
1464 	bool leftmost = true;
1465 
1466 	while (*p != NULL) {
1467 		parent = *p;
1468 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1469 
1470 		cmp = 0;
1471 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1472 			cmp = fmt->collapse(fmt, iter, he);
1473 			if (cmp)
1474 				break;
1475 		}
1476 
1477 		if (!cmp) {
1478 			he_stat__add_stat(&iter->stat, &he->stat);
1479 			return iter;
1480 		}
1481 
1482 		if (cmp < 0)
1483 			p = &parent->rb_left;
1484 		else {
1485 			p = &parent->rb_right;
1486 			leftmost = false;
1487 		}
1488 	}
1489 
1490 	new = hist_entry__new(he, true);
1491 	if (new == NULL)
1492 		return NULL;
1493 
1494 	hists->nr_entries++;
1495 
1496 	/* save related format list for output */
1497 	new->hpp_list = hpp_list;
1498 	new->parent_he = parent_he;
1499 
1500 	hist_entry__apply_hierarchy_filters(new);
1501 
1502 	/* some fields are now passed to 'new' */
1503 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1504 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1505 			he->trace_output = NULL;
1506 		else
1507 			new->trace_output = NULL;
1508 
1509 		if (perf_hpp__is_srcline_entry(fmt))
1510 			he->srcline = NULL;
1511 		else
1512 			new->srcline = NULL;
1513 
1514 		if (perf_hpp__is_srcfile_entry(fmt))
1515 			he->srcfile = NULL;
1516 		else
1517 			new->srcfile = NULL;
1518 	}
1519 
1520 	rb_link_node(&new->rb_node_in, parent, p);
1521 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1522 	return new;
1523 }
1524 
1525 static int hists__hierarchy_insert_entry(struct hists *hists,
1526 					 struct rb_root_cached *root,
1527 					 struct hist_entry *he)
1528 {
1529 	struct perf_hpp_list_node *node;
1530 	struct hist_entry *new_he = NULL;
1531 	struct hist_entry *parent = NULL;
1532 	int depth = 0;
1533 	int ret = 0;
1534 
1535 	list_for_each_entry(node, &hists->hpp_formats, list) {
1536 		/* skip period (overhead) and elided columns */
1537 		if (node->level == 0 || node->skip)
1538 			continue;
1539 
1540 		/* insert copy of 'he' for each fmt into the hierarchy */
1541 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1542 		if (new_he == NULL) {
1543 			ret = -1;
1544 			break;
1545 		}
1546 
1547 		root = &new_he->hroot_in;
1548 		new_he->depth = depth++;
1549 		parent = new_he;
1550 	}
1551 
1552 	if (new_he) {
1553 		new_he->leaf = true;
1554 
1555 		if (hist_entry__has_callchains(new_he) &&
1556 		    symbol_conf.use_callchain) {
1557 			callchain_cursor_reset(&callchain_cursor);
1558 			if (callchain_merge(&callchain_cursor,
1559 					    new_he->callchain,
1560 					    he->callchain) < 0)
1561 				ret = -1;
1562 		}
1563 	}
1564 
1565 	/* 'he' is no longer used */
1566 	hist_entry__delete(he);
1567 
1568 	/* return 0 (or -1) since it already applied filters */
1569 	return ret;
1570 }
1571 
1572 static int hists__collapse_insert_entry(struct hists *hists,
1573 					struct rb_root_cached *root,
1574 					struct hist_entry *he)
1575 {
1576 	struct rb_node **p = &root->rb_root.rb_node;
1577 	struct rb_node *parent = NULL;
1578 	struct hist_entry *iter;
1579 	int64_t cmp;
1580 	bool leftmost = true;
1581 
1582 	if (symbol_conf.report_hierarchy)
1583 		return hists__hierarchy_insert_entry(hists, root, he);
1584 
1585 	while (*p != NULL) {
1586 		parent = *p;
1587 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1588 
1589 		cmp = hist_entry__collapse(iter, he);
1590 
1591 		if (!cmp) {
1592 			int ret = 0;
1593 
1594 			he_stat__add_stat(&iter->stat, &he->stat);
1595 			if (symbol_conf.cumulate_callchain)
1596 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1597 
1598 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1599 				callchain_cursor_reset(&callchain_cursor);
1600 				if (callchain_merge(&callchain_cursor,
1601 						    iter->callchain,
1602 						    he->callchain) < 0)
1603 					ret = -1;
1604 			}
1605 			hist_entry__delete(he);
1606 			return ret;
1607 		}
1608 
1609 		if (cmp < 0)
1610 			p = &(*p)->rb_left;
1611 		else {
1612 			p = &(*p)->rb_right;
1613 			leftmost = false;
1614 		}
1615 	}
1616 	hists->nr_entries++;
1617 
1618 	rb_link_node(&he->rb_node_in, parent, p);
1619 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1620 	return 1;
1621 }
1622 
1623 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1624 {
1625 	struct rb_root_cached *root;
1626 
1627 	pthread_mutex_lock(&hists->lock);
1628 
1629 	root = hists->entries_in;
1630 	if (++hists->entries_in > &hists->entries_in_array[1])
1631 		hists->entries_in = &hists->entries_in_array[0];
1632 
1633 	pthread_mutex_unlock(&hists->lock);
1634 
1635 	return root;
1636 }
1637 
1638 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1639 {
1640 	hists__filter_entry_by_dso(hists, he);
1641 	hists__filter_entry_by_thread(hists, he);
1642 	hists__filter_entry_by_symbol(hists, he);
1643 	hists__filter_entry_by_socket(hists, he);
1644 }
1645 
1646 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1647 {
1648 	struct rb_root_cached *root;
1649 	struct rb_node *next;
1650 	struct hist_entry *n;
1651 	int ret;
1652 
1653 	if (!hists__has(hists, need_collapse))
1654 		return 0;
1655 
1656 	hists->nr_entries = 0;
1657 
1658 	root = hists__get_rotate_entries_in(hists);
1659 
1660 	next = rb_first_cached(root);
1661 
1662 	while (next) {
1663 		if (session_done())
1664 			break;
1665 		n = rb_entry(next, struct hist_entry, rb_node_in);
1666 		next = rb_next(&n->rb_node_in);
1667 
1668 		rb_erase_cached(&n->rb_node_in, root);
1669 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1670 		if (ret < 0)
1671 			return -1;
1672 
1673 		if (ret) {
1674 			/*
1675 			 * If it wasn't combined with one of the entries already
1676 			 * collapsed, we need to apply the filters that may have
1677 			 * been set by, say, the hist_browser.
1678 			 */
1679 			hists__apply_filters(hists, n);
1680 		}
1681 		if (prog)
1682 			ui_progress__update(prog, 1);
1683 	}
1684 	return 0;
1685 }
1686 
1687 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1688 {
1689 	struct hists *hists = a->hists;
1690 	struct perf_hpp_fmt *fmt;
1691 	int64_t cmp = 0;
1692 
1693 	hists__for_each_sort_list(hists, fmt) {
1694 		if (perf_hpp__should_skip(fmt, a->hists))
1695 			continue;
1696 
1697 		cmp = fmt->sort(fmt, a, b);
1698 		if (cmp)
1699 			break;
1700 	}
1701 
1702 	return cmp;
1703 }
1704 
1705 static void hists__reset_filter_stats(struct hists *hists)
1706 {
1707 	hists->nr_non_filtered_entries = 0;
1708 	hists->stats.total_non_filtered_period = 0;
1709 }
1710 
1711 void hists__reset_stats(struct hists *hists)
1712 {
1713 	hists->nr_entries = 0;
1714 	hists->stats.total_period = 0;
1715 
1716 	hists__reset_filter_stats(hists);
1717 }
1718 
1719 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1720 {
1721 	hists->nr_non_filtered_entries++;
1722 	hists->stats.total_non_filtered_period += h->stat.period;
1723 }
1724 
1725 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1726 {
1727 	if (!h->filtered)
1728 		hists__inc_filter_stats(hists, h);
1729 
1730 	hists->nr_entries++;
1731 	hists->stats.total_period += h->stat.period;
1732 }
1733 
1734 static void hierarchy_recalc_total_periods(struct hists *hists)
1735 {
1736 	struct rb_node *node;
1737 	struct hist_entry *he;
1738 
1739 	node = rb_first_cached(&hists->entries);
1740 
1741 	hists->stats.total_period = 0;
1742 	hists->stats.total_non_filtered_period = 0;
1743 
1744 	/*
1745 	 * recalculate total period using top-level entries only
1746 	 * since lower level entries only see non-filtered entries
1747 	 * but upper level entries have sum of both entries.
1748 	 */
1749 	while (node) {
1750 		he = rb_entry(node, struct hist_entry, rb_node);
1751 		node = rb_next(node);
1752 
1753 		hists->stats.total_period += he->stat.period;
1754 		if (!he->filtered)
1755 			hists->stats.total_non_filtered_period += he->stat.period;
1756 	}
1757 }
1758 
1759 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1760 					  struct hist_entry *he)
1761 {
1762 	struct rb_node **p = &root->rb_root.rb_node;
1763 	struct rb_node *parent = NULL;
1764 	struct hist_entry *iter;
1765 	struct perf_hpp_fmt *fmt;
1766 	bool leftmost = true;
1767 
1768 	while (*p != NULL) {
1769 		parent = *p;
1770 		iter = rb_entry(parent, struct hist_entry, rb_node);
1771 
1772 		if (hist_entry__sort(he, iter) > 0)
1773 			p = &parent->rb_left;
1774 		else {
1775 			p = &parent->rb_right;
1776 			leftmost = false;
1777 		}
1778 	}
1779 
1780 	rb_link_node(&he->rb_node, parent, p);
1781 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1782 
1783 	/* update column width of dynamic entry */
1784 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1785 		if (perf_hpp__is_dynamic_entry(fmt))
1786 			fmt->sort(fmt, he, NULL);
1787 	}
1788 }
1789 
1790 static void hists__hierarchy_output_resort(struct hists *hists,
1791 					   struct ui_progress *prog,
1792 					   struct rb_root_cached *root_in,
1793 					   struct rb_root_cached *root_out,
1794 					   u64 min_callchain_hits,
1795 					   bool use_callchain)
1796 {
1797 	struct rb_node *node;
1798 	struct hist_entry *he;
1799 
1800 	*root_out = RB_ROOT_CACHED;
1801 	node = rb_first_cached(root_in);
1802 
1803 	while (node) {
1804 		he = rb_entry(node, struct hist_entry, rb_node_in);
1805 		node = rb_next(node);
1806 
1807 		hierarchy_insert_output_entry(root_out, he);
1808 
1809 		if (prog)
1810 			ui_progress__update(prog, 1);
1811 
1812 		hists->nr_entries++;
1813 		if (!he->filtered) {
1814 			hists->nr_non_filtered_entries++;
1815 			hists__calc_col_len(hists, he);
1816 		}
1817 
1818 		if (!he->leaf) {
1819 			hists__hierarchy_output_resort(hists, prog,
1820 						       &he->hroot_in,
1821 						       &he->hroot_out,
1822 						       min_callchain_hits,
1823 						       use_callchain);
1824 			continue;
1825 		}
1826 
1827 		if (!use_callchain)
1828 			continue;
1829 
1830 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1831 			u64 total = he->stat.period;
1832 
1833 			if (symbol_conf.cumulate_callchain)
1834 				total = he->stat_acc->period;
1835 
1836 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1837 		}
1838 
1839 		callchain_param.sort(&he->sorted_chain, he->callchain,
1840 				     min_callchain_hits, &callchain_param);
1841 	}
1842 }
1843 
1844 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1845 					 struct hist_entry *he,
1846 					 u64 min_callchain_hits,
1847 					 bool use_callchain)
1848 {
1849 	struct rb_node **p = &entries->rb_root.rb_node;
1850 	struct rb_node *parent = NULL;
1851 	struct hist_entry *iter;
1852 	struct perf_hpp_fmt *fmt;
1853 	bool leftmost = true;
1854 
1855 	if (use_callchain) {
1856 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1857 			u64 total = he->stat.period;
1858 
1859 			if (symbol_conf.cumulate_callchain)
1860 				total = he->stat_acc->period;
1861 
1862 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1863 		}
1864 		callchain_param.sort(&he->sorted_chain, he->callchain,
1865 				      min_callchain_hits, &callchain_param);
1866 	}
1867 
1868 	while (*p != NULL) {
1869 		parent = *p;
1870 		iter = rb_entry(parent, struct hist_entry, rb_node);
1871 
1872 		if (hist_entry__sort(he, iter) > 0)
1873 			p = &(*p)->rb_left;
1874 		else {
1875 			p = &(*p)->rb_right;
1876 			leftmost = false;
1877 		}
1878 	}
1879 
1880 	rb_link_node(&he->rb_node, parent, p);
1881 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1882 
1883 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1884 		if (perf_hpp__is_dynamic_entry(fmt) &&
1885 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1886 			fmt->sort(fmt, he, NULL);  /* update column width */
1887 	}
1888 }
1889 
1890 static void output_resort(struct hists *hists, struct ui_progress *prog,
1891 			  bool use_callchain, hists__resort_cb_t cb,
1892 			  void *cb_arg)
1893 {
1894 	struct rb_root_cached *root;
1895 	struct rb_node *next;
1896 	struct hist_entry *n;
1897 	u64 callchain_total;
1898 	u64 min_callchain_hits;
1899 
1900 	callchain_total = hists->callchain_period;
1901 	if (symbol_conf.filter_relative)
1902 		callchain_total = hists->callchain_non_filtered_period;
1903 
1904 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1905 
1906 	hists__reset_stats(hists);
1907 	hists__reset_col_len(hists);
1908 
1909 	if (symbol_conf.report_hierarchy) {
1910 		hists__hierarchy_output_resort(hists, prog,
1911 					       &hists->entries_collapsed,
1912 					       &hists->entries,
1913 					       min_callchain_hits,
1914 					       use_callchain);
1915 		hierarchy_recalc_total_periods(hists);
1916 		return;
1917 	}
1918 
1919 	if (hists__has(hists, need_collapse))
1920 		root = &hists->entries_collapsed;
1921 	else
1922 		root = hists->entries_in;
1923 
1924 	next = rb_first_cached(root);
1925 	hists->entries = RB_ROOT_CACHED;
1926 
1927 	while (next) {
1928 		n = rb_entry(next, struct hist_entry, rb_node_in);
1929 		next = rb_next(&n->rb_node_in);
1930 
1931 		if (cb && cb(n, cb_arg))
1932 			continue;
1933 
1934 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1935 		hists__inc_stats(hists, n);
1936 
1937 		if (!n->filtered)
1938 			hists__calc_col_len(hists, n);
1939 
1940 		if (prog)
1941 			ui_progress__update(prog, 1);
1942 	}
1943 }
1944 
1945 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1946 			     hists__resort_cb_t cb, void *cb_arg)
1947 {
1948 	bool use_callchain;
1949 
1950 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1951 		use_callchain = evsel__has_callchain(evsel);
1952 	else
1953 		use_callchain = symbol_conf.use_callchain;
1954 
1955 	use_callchain |= symbol_conf.show_branchflag_count;
1956 
1957 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1958 }
1959 
1960 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1961 {
1962 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1963 }
1964 
1965 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1966 {
1967 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1968 }
1969 
1970 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1971 			     hists__resort_cb_t cb)
1972 {
1973 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1974 }
1975 
1976 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1977 {
1978 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1979 		return false;
1980 
1981 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1982 		return true;
1983 
1984 	return false;
1985 }
1986 
1987 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1988 {
1989 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1990 
1991 	while (can_goto_child(he, HMD_NORMAL)) {
1992 		node = rb_last(&he->hroot_out.rb_root);
1993 		he = rb_entry(node, struct hist_entry, rb_node);
1994 	}
1995 	return node;
1996 }
1997 
1998 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1999 {
2000 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2001 
2002 	if (can_goto_child(he, hmd))
2003 		node = rb_first_cached(&he->hroot_out);
2004 	else
2005 		node = rb_next(node);
2006 
2007 	while (node == NULL) {
2008 		he = he->parent_he;
2009 		if (he == NULL)
2010 			break;
2011 
2012 		node = rb_next(&he->rb_node);
2013 	}
2014 	return node;
2015 }
2016 
2017 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2018 {
2019 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2020 
2021 	node = rb_prev(node);
2022 	if (node)
2023 		return rb_hierarchy_last(node);
2024 
2025 	he = he->parent_he;
2026 	if (he == NULL)
2027 		return NULL;
2028 
2029 	return &he->rb_node;
2030 }
2031 
2032 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2033 {
2034 	struct rb_node *node;
2035 	struct hist_entry *child;
2036 	float percent;
2037 
2038 	if (he->leaf)
2039 		return false;
2040 
2041 	node = rb_first_cached(&he->hroot_out);
2042 	child = rb_entry(node, struct hist_entry, rb_node);
2043 
2044 	while (node && child->filtered) {
2045 		node = rb_next(node);
2046 		child = rb_entry(node, struct hist_entry, rb_node);
2047 	}
2048 
2049 	if (node)
2050 		percent = hist_entry__get_percent_limit(child);
2051 	else
2052 		percent = 0;
2053 
2054 	return node && percent >= limit;
2055 }
2056 
2057 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2058 				       enum hist_filter filter)
2059 {
2060 	h->filtered &= ~(1 << filter);
2061 
2062 	if (symbol_conf.report_hierarchy) {
2063 		struct hist_entry *parent = h->parent_he;
2064 
2065 		while (parent) {
2066 			he_stat__add_stat(&parent->stat, &h->stat);
2067 
2068 			parent->filtered &= ~(1 << filter);
2069 
2070 			if (parent->filtered)
2071 				goto next;
2072 
2073 			/* force fold unfiltered entry for simplicity */
2074 			parent->unfolded = false;
2075 			parent->has_no_entry = false;
2076 			parent->row_offset = 0;
2077 			parent->nr_rows = 0;
2078 next:
2079 			parent = parent->parent_he;
2080 		}
2081 	}
2082 
2083 	if (h->filtered)
2084 		return;
2085 
2086 	/* force fold unfiltered entry for simplicity */
2087 	h->unfolded = false;
2088 	h->has_no_entry = false;
2089 	h->row_offset = 0;
2090 	h->nr_rows = 0;
2091 
2092 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2093 
2094 	hists__inc_filter_stats(hists, h);
2095 	hists__calc_col_len(hists, h);
2096 }
2097 
2098 
2099 static bool hists__filter_entry_by_dso(struct hists *hists,
2100 				       struct hist_entry *he)
2101 {
2102 	if (hists->dso_filter != NULL &&
2103 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2104 		he->filtered |= (1 << HIST_FILTER__DSO);
2105 		return true;
2106 	}
2107 
2108 	return false;
2109 }
2110 
2111 static bool hists__filter_entry_by_thread(struct hists *hists,
2112 					  struct hist_entry *he)
2113 {
2114 	if (hists->thread_filter != NULL &&
2115 	    he->thread != hists->thread_filter) {
2116 		he->filtered |= (1 << HIST_FILTER__THREAD);
2117 		return true;
2118 	}
2119 
2120 	return false;
2121 }
2122 
2123 static bool hists__filter_entry_by_symbol(struct hists *hists,
2124 					  struct hist_entry *he)
2125 {
2126 	if (hists->symbol_filter_str != NULL &&
2127 	    (!he->ms.sym || strstr(he->ms.sym->name,
2128 				   hists->symbol_filter_str) == NULL)) {
2129 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2130 		return true;
2131 	}
2132 
2133 	return false;
2134 }
2135 
2136 static bool hists__filter_entry_by_socket(struct hists *hists,
2137 					  struct hist_entry *he)
2138 {
2139 	if ((hists->socket_filter > -1) &&
2140 	    (he->socket != hists->socket_filter)) {
2141 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2142 		return true;
2143 	}
2144 
2145 	return false;
2146 }
2147 
2148 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2149 
2150 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2151 {
2152 	struct rb_node *nd;
2153 
2154 	hists->stats.nr_non_filtered_samples = 0;
2155 
2156 	hists__reset_filter_stats(hists);
2157 	hists__reset_col_len(hists);
2158 
2159 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2160 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2161 
2162 		if (filter(hists, h))
2163 			continue;
2164 
2165 		hists__remove_entry_filter(hists, h, type);
2166 	}
2167 }
2168 
2169 static void resort_filtered_entry(struct rb_root_cached *root,
2170 				  struct hist_entry *he)
2171 {
2172 	struct rb_node **p = &root->rb_root.rb_node;
2173 	struct rb_node *parent = NULL;
2174 	struct hist_entry *iter;
2175 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2176 	struct rb_node *nd;
2177 	bool leftmost = true;
2178 
2179 	while (*p != NULL) {
2180 		parent = *p;
2181 		iter = rb_entry(parent, struct hist_entry, rb_node);
2182 
2183 		if (hist_entry__sort(he, iter) > 0)
2184 			p = &(*p)->rb_left;
2185 		else {
2186 			p = &(*p)->rb_right;
2187 			leftmost = false;
2188 		}
2189 	}
2190 
2191 	rb_link_node(&he->rb_node, parent, p);
2192 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2193 
2194 	if (he->leaf || he->filtered)
2195 		return;
2196 
2197 	nd = rb_first_cached(&he->hroot_out);
2198 	while (nd) {
2199 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2200 
2201 		nd = rb_next(nd);
2202 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2203 
2204 		resort_filtered_entry(&new_root, h);
2205 	}
2206 
2207 	he->hroot_out = new_root;
2208 }
2209 
2210 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2211 {
2212 	struct rb_node *nd;
2213 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2214 
2215 	hists->stats.nr_non_filtered_samples = 0;
2216 
2217 	hists__reset_filter_stats(hists);
2218 	hists__reset_col_len(hists);
2219 
2220 	nd = rb_first_cached(&hists->entries);
2221 	while (nd) {
2222 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2223 		int ret;
2224 
2225 		ret = hist_entry__filter(h, type, arg);
2226 
2227 		/*
2228 		 * case 1. non-matching type
2229 		 * zero out the period, set filter marker and move to child
2230 		 */
2231 		if (ret < 0) {
2232 			memset(&h->stat, 0, sizeof(h->stat));
2233 			h->filtered |= (1 << type);
2234 
2235 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2236 		}
2237 		/*
2238 		 * case 2. matched type (filter out)
2239 		 * set filter marker and move to next
2240 		 */
2241 		else if (ret == 1) {
2242 			h->filtered |= (1 << type);
2243 
2244 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2245 		}
2246 		/*
2247 		 * case 3. ok (not filtered)
2248 		 * add period to hists and parents, erase the filter marker
2249 		 * and move to next sibling
2250 		 */
2251 		else {
2252 			hists__remove_entry_filter(hists, h, type);
2253 
2254 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2255 		}
2256 	}
2257 
2258 	hierarchy_recalc_total_periods(hists);
2259 
2260 	/*
2261 	 * resort output after applying a new filter since filter in a lower
2262 	 * hierarchy can change periods in a upper hierarchy.
2263 	 */
2264 	nd = rb_first_cached(&hists->entries);
2265 	while (nd) {
2266 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2267 
2268 		nd = rb_next(nd);
2269 		rb_erase_cached(&h->rb_node, &hists->entries);
2270 
2271 		resort_filtered_entry(&new_root, h);
2272 	}
2273 
2274 	hists->entries = new_root;
2275 }
2276 
2277 void hists__filter_by_thread(struct hists *hists)
2278 {
2279 	if (symbol_conf.report_hierarchy)
2280 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2281 					hists->thread_filter);
2282 	else
2283 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2284 				      hists__filter_entry_by_thread);
2285 }
2286 
2287 void hists__filter_by_dso(struct hists *hists)
2288 {
2289 	if (symbol_conf.report_hierarchy)
2290 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2291 					hists->dso_filter);
2292 	else
2293 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2294 				      hists__filter_entry_by_dso);
2295 }
2296 
2297 void hists__filter_by_symbol(struct hists *hists)
2298 {
2299 	if (symbol_conf.report_hierarchy)
2300 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2301 					hists->symbol_filter_str);
2302 	else
2303 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2304 				      hists__filter_entry_by_symbol);
2305 }
2306 
2307 void hists__filter_by_socket(struct hists *hists)
2308 {
2309 	if (symbol_conf.report_hierarchy)
2310 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2311 					&hists->socket_filter);
2312 	else
2313 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2314 				      hists__filter_entry_by_socket);
2315 }
2316 
2317 void events_stats__inc(struct events_stats *stats, u32 type)
2318 {
2319 	++stats->nr_events[0];
2320 	++stats->nr_events[type];
2321 }
2322 
2323 void hists__inc_nr_events(struct hists *hists, u32 type)
2324 {
2325 	events_stats__inc(&hists->stats, type);
2326 }
2327 
2328 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2329 {
2330 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2331 	if (!filtered)
2332 		hists->stats.nr_non_filtered_samples++;
2333 }
2334 
2335 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2336 						 struct hist_entry *pair)
2337 {
2338 	struct rb_root_cached *root;
2339 	struct rb_node **p;
2340 	struct rb_node *parent = NULL;
2341 	struct hist_entry *he;
2342 	int64_t cmp;
2343 	bool leftmost = true;
2344 
2345 	if (hists__has(hists, need_collapse))
2346 		root = &hists->entries_collapsed;
2347 	else
2348 		root = hists->entries_in;
2349 
2350 	p = &root->rb_root.rb_node;
2351 
2352 	while (*p != NULL) {
2353 		parent = *p;
2354 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2355 
2356 		cmp = hist_entry__collapse(he, pair);
2357 
2358 		if (!cmp)
2359 			goto out;
2360 
2361 		if (cmp < 0)
2362 			p = &(*p)->rb_left;
2363 		else {
2364 			p = &(*p)->rb_right;
2365 			leftmost = false;
2366 		}
2367 	}
2368 
2369 	he = hist_entry__new(pair, true);
2370 	if (he) {
2371 		memset(&he->stat, 0, sizeof(he->stat));
2372 		he->hists = hists;
2373 		if (symbol_conf.cumulate_callchain)
2374 			memset(he->stat_acc, 0, sizeof(he->stat));
2375 		rb_link_node(&he->rb_node_in, parent, p);
2376 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2377 		hists__inc_stats(hists, he);
2378 		he->dummy = true;
2379 	}
2380 out:
2381 	return he;
2382 }
2383 
2384 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2385 						    struct rb_root_cached *root,
2386 						    struct hist_entry *pair)
2387 {
2388 	struct rb_node **p;
2389 	struct rb_node *parent = NULL;
2390 	struct hist_entry *he;
2391 	struct perf_hpp_fmt *fmt;
2392 	bool leftmost = true;
2393 
2394 	p = &root->rb_root.rb_node;
2395 	while (*p != NULL) {
2396 		int64_t cmp = 0;
2397 
2398 		parent = *p;
2399 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2400 
2401 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2402 			cmp = fmt->collapse(fmt, he, pair);
2403 			if (cmp)
2404 				break;
2405 		}
2406 		if (!cmp)
2407 			goto out;
2408 
2409 		if (cmp < 0)
2410 			p = &parent->rb_left;
2411 		else {
2412 			p = &parent->rb_right;
2413 			leftmost = false;
2414 		}
2415 	}
2416 
2417 	he = hist_entry__new(pair, true);
2418 	if (he) {
2419 		rb_link_node(&he->rb_node_in, parent, p);
2420 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2421 
2422 		he->dummy = true;
2423 		he->hists = hists;
2424 		memset(&he->stat, 0, sizeof(he->stat));
2425 		hists__inc_stats(hists, he);
2426 	}
2427 out:
2428 	return he;
2429 }
2430 
2431 static struct hist_entry *hists__find_entry(struct hists *hists,
2432 					    struct hist_entry *he)
2433 {
2434 	struct rb_node *n;
2435 
2436 	if (hists__has(hists, need_collapse))
2437 		n = hists->entries_collapsed.rb_root.rb_node;
2438 	else
2439 		n = hists->entries_in->rb_root.rb_node;
2440 
2441 	while (n) {
2442 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2443 		int64_t cmp = hist_entry__collapse(iter, he);
2444 
2445 		if (cmp < 0)
2446 			n = n->rb_left;
2447 		else if (cmp > 0)
2448 			n = n->rb_right;
2449 		else
2450 			return iter;
2451 	}
2452 
2453 	return NULL;
2454 }
2455 
2456 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2457 						      struct hist_entry *he)
2458 {
2459 	struct rb_node *n = root->rb_root.rb_node;
2460 
2461 	while (n) {
2462 		struct hist_entry *iter;
2463 		struct perf_hpp_fmt *fmt;
2464 		int64_t cmp = 0;
2465 
2466 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2467 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2468 			cmp = fmt->collapse(fmt, iter, he);
2469 			if (cmp)
2470 				break;
2471 		}
2472 
2473 		if (cmp < 0)
2474 			n = n->rb_left;
2475 		else if (cmp > 0)
2476 			n = n->rb_right;
2477 		else
2478 			return iter;
2479 	}
2480 
2481 	return NULL;
2482 }
2483 
2484 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2485 				   struct rb_root_cached *other_root)
2486 {
2487 	struct rb_node *nd;
2488 	struct hist_entry *pos, *pair;
2489 
2490 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2491 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2492 		pair = hists__find_hierarchy_entry(other_root, pos);
2493 
2494 		if (pair) {
2495 			hist_entry__add_pair(pair, pos);
2496 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2497 		}
2498 	}
2499 }
2500 
2501 /*
2502  * Look for pairs to link to the leader buckets (hist_entries):
2503  */
2504 void hists__match(struct hists *leader, struct hists *other)
2505 {
2506 	struct rb_root_cached *root;
2507 	struct rb_node *nd;
2508 	struct hist_entry *pos, *pair;
2509 
2510 	if (symbol_conf.report_hierarchy) {
2511 		/* hierarchy report always collapses entries */
2512 		return hists__match_hierarchy(&leader->entries_collapsed,
2513 					      &other->entries_collapsed);
2514 	}
2515 
2516 	if (hists__has(leader, need_collapse))
2517 		root = &leader->entries_collapsed;
2518 	else
2519 		root = leader->entries_in;
2520 
2521 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2522 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2523 		pair = hists__find_entry(other, pos);
2524 
2525 		if (pair)
2526 			hist_entry__add_pair(pair, pos);
2527 	}
2528 }
2529 
2530 static int hists__link_hierarchy(struct hists *leader_hists,
2531 				 struct hist_entry *parent,
2532 				 struct rb_root_cached *leader_root,
2533 				 struct rb_root_cached *other_root)
2534 {
2535 	struct rb_node *nd;
2536 	struct hist_entry *pos, *leader;
2537 
2538 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2539 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2540 
2541 		if (hist_entry__has_pairs(pos)) {
2542 			bool found = false;
2543 
2544 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2545 				if (leader->hists == leader_hists) {
2546 					found = true;
2547 					break;
2548 				}
2549 			}
2550 			if (!found)
2551 				return -1;
2552 		} else {
2553 			leader = add_dummy_hierarchy_entry(leader_hists,
2554 							   leader_root, pos);
2555 			if (leader == NULL)
2556 				return -1;
2557 
2558 			/* do not point parent in the pos */
2559 			leader->parent_he = parent;
2560 
2561 			hist_entry__add_pair(pos, leader);
2562 		}
2563 
2564 		if (!pos->leaf) {
2565 			if (hists__link_hierarchy(leader_hists, leader,
2566 						  &leader->hroot_in,
2567 						  &pos->hroot_in) < 0)
2568 				return -1;
2569 		}
2570 	}
2571 	return 0;
2572 }
2573 
2574 /*
2575  * Look for entries in the other hists that are not present in the leader, if
2576  * we find them, just add a dummy entry on the leader hists, with period=0,
2577  * nr_events=0, to serve as the list header.
2578  */
2579 int hists__link(struct hists *leader, struct hists *other)
2580 {
2581 	struct rb_root_cached *root;
2582 	struct rb_node *nd;
2583 	struct hist_entry *pos, *pair;
2584 
2585 	if (symbol_conf.report_hierarchy) {
2586 		/* hierarchy report always collapses entries */
2587 		return hists__link_hierarchy(leader, NULL,
2588 					     &leader->entries_collapsed,
2589 					     &other->entries_collapsed);
2590 	}
2591 
2592 	if (hists__has(other, need_collapse))
2593 		root = &other->entries_collapsed;
2594 	else
2595 		root = other->entries_in;
2596 
2597 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2598 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2599 
2600 		if (!hist_entry__has_pairs(pos)) {
2601 			pair = hists__add_dummy_entry(leader, pos);
2602 			if (pair == NULL)
2603 				return -1;
2604 			hist_entry__add_pair(pos, pair);
2605 		}
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 int hists__unlink(struct hists *hists)
2612 {
2613 	struct rb_root_cached *root;
2614 	struct rb_node *nd;
2615 	struct hist_entry *pos;
2616 
2617 	if (hists__has(hists, need_collapse))
2618 		root = &hists->entries_collapsed;
2619 	else
2620 		root = hists->entries_in;
2621 
2622 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2623 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2624 		list_del_init(&pos->pairs.node);
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2631 			  struct perf_sample *sample, bool nonany_branch_mode,
2632 			  u64 *total_cycles)
2633 {
2634 	struct branch_info *bi;
2635 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2636 
2637 	/* If we have branch cycles always annotate them. */
2638 	if (bs && bs->nr && entries[0].flags.cycles) {
2639 		int i;
2640 
2641 		bi = sample__resolve_bstack(sample, al);
2642 		if (bi) {
2643 			struct addr_map_symbol *prev = NULL;
2644 
2645 			/*
2646 			 * Ignore errors, still want to process the
2647 			 * other entries.
2648 			 *
2649 			 * For non standard branch modes always
2650 			 * force no IPC (prev == NULL)
2651 			 *
2652 			 * Note that perf stores branches reversed from
2653 			 * program order!
2654 			 */
2655 			for (i = bs->nr - 1; i >= 0; i--) {
2656 				addr_map_symbol__account_cycles(&bi[i].from,
2657 					nonany_branch_mode ? NULL : prev,
2658 					bi[i].flags.cycles);
2659 				prev = &bi[i].to;
2660 
2661 				if (total_cycles)
2662 					*total_cycles += bi[i].flags.cycles;
2663 			}
2664 			free(bi);
2665 		}
2666 	}
2667 }
2668 
2669 size_t evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2670 {
2671 	struct evsel *pos;
2672 	size_t ret = 0;
2673 
2674 	evlist__for_each_entry(evlist, pos) {
2675 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2676 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 
2683 u64 hists__total_period(struct hists *hists)
2684 {
2685 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2686 		hists->stats.total_period;
2687 }
2688 
2689 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2690 {
2691 	char unit;
2692 	int printed;
2693 	const struct dso *dso = hists->dso_filter;
2694 	struct thread *thread = hists->thread_filter;
2695 	int socket_id = hists->socket_filter;
2696 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2697 	u64 nr_events = hists->stats.total_period;
2698 	struct evsel *evsel = hists_to_evsel(hists);
2699 	const char *ev_name = evsel__name(evsel);
2700 	char buf[512], sample_freq_str[64] = "";
2701 	size_t buflen = sizeof(buf);
2702 	char ref[30] = " show reference callgraph, ";
2703 	bool enable_ref = false;
2704 
2705 	if (symbol_conf.filter_relative) {
2706 		nr_samples = hists->stats.nr_non_filtered_samples;
2707 		nr_events = hists->stats.total_non_filtered_period;
2708 	}
2709 
2710 	if (evsel__is_group_event(evsel)) {
2711 		struct evsel *pos;
2712 
2713 		evsel__group_desc(evsel, buf, buflen);
2714 		ev_name = buf;
2715 
2716 		for_each_group_member(pos, evsel) {
2717 			struct hists *pos_hists = evsel__hists(pos);
2718 
2719 			if (symbol_conf.filter_relative) {
2720 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2721 				nr_events += pos_hists->stats.total_non_filtered_period;
2722 			} else {
2723 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2724 				nr_events += pos_hists->stats.total_period;
2725 			}
2726 		}
2727 	}
2728 
2729 	if (symbol_conf.show_ref_callgraph &&
2730 	    strstr(ev_name, "call-graph=no"))
2731 		enable_ref = true;
2732 
2733 	if (show_freq)
2734 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2735 
2736 	nr_samples = convert_unit(nr_samples, &unit);
2737 	printed = scnprintf(bf, size,
2738 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2739 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2740 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2741 
2742 
2743 	if (hists->uid_filter_str)
2744 		printed += snprintf(bf + printed, size - printed,
2745 				    ", UID: %s", hists->uid_filter_str);
2746 	if (thread) {
2747 		if (hists__has(hists, thread)) {
2748 			printed += scnprintf(bf + printed, size - printed,
2749 				    ", Thread: %s(%d)",
2750 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2751 				    thread->tid);
2752 		} else {
2753 			printed += scnprintf(bf + printed, size - printed,
2754 				    ", Thread: %s",
2755 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2756 		}
2757 	}
2758 	if (dso)
2759 		printed += scnprintf(bf + printed, size - printed,
2760 				    ", DSO: %s", dso->short_name);
2761 	if (socket_id > -1)
2762 		printed += scnprintf(bf + printed, size - printed,
2763 				    ", Processor Socket: %d", socket_id);
2764 
2765 	return printed;
2766 }
2767 
2768 int parse_filter_percentage(const struct option *opt __maybe_unused,
2769 			    const char *arg, int unset __maybe_unused)
2770 {
2771 	if (!strcmp(arg, "relative"))
2772 		symbol_conf.filter_relative = true;
2773 	else if (!strcmp(arg, "absolute"))
2774 		symbol_conf.filter_relative = false;
2775 	else {
2776 		pr_debug("Invalid percentage: %s\n", arg);
2777 		return -1;
2778 	}
2779 
2780 	return 0;
2781 }
2782 
2783 int perf_hist_config(const char *var, const char *value)
2784 {
2785 	if (!strcmp(var, "hist.percentage"))
2786 		return parse_filter_percentage(NULL, value, 0);
2787 
2788 	return 0;
2789 }
2790 
2791 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2792 {
2793 	memset(hists, 0, sizeof(*hists));
2794 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2795 	hists->entries_in = &hists->entries_in_array[0];
2796 	hists->entries_collapsed = RB_ROOT_CACHED;
2797 	hists->entries = RB_ROOT_CACHED;
2798 	pthread_mutex_init(&hists->lock, NULL);
2799 	hists->socket_filter = -1;
2800 	hists->hpp_list = hpp_list;
2801 	INIT_LIST_HEAD(&hists->hpp_formats);
2802 	return 0;
2803 }
2804 
2805 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2806 {
2807 	struct rb_node *node;
2808 	struct hist_entry *he;
2809 
2810 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2811 		node = rb_first_cached(root);
2812 		rb_erase_cached(node, root);
2813 
2814 		he = rb_entry(node, struct hist_entry, rb_node_in);
2815 		hist_entry__delete(he);
2816 	}
2817 }
2818 
2819 static void hists__delete_all_entries(struct hists *hists)
2820 {
2821 	hists__delete_entries(hists);
2822 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2823 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2824 	hists__delete_remaining_entries(&hists->entries_collapsed);
2825 }
2826 
2827 static void hists_evsel__exit(struct evsel *evsel)
2828 {
2829 	struct hists *hists = evsel__hists(evsel);
2830 	struct perf_hpp_fmt *fmt, *pos;
2831 	struct perf_hpp_list_node *node, *tmp;
2832 
2833 	hists__delete_all_entries(hists);
2834 
2835 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2836 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2837 			list_del_init(&fmt->list);
2838 			free(fmt);
2839 		}
2840 		list_del_init(&node->list);
2841 		free(node);
2842 	}
2843 }
2844 
2845 static int hists_evsel__init(struct evsel *evsel)
2846 {
2847 	struct hists *hists = evsel__hists(evsel);
2848 
2849 	__hists__init(hists, &perf_hpp_list);
2850 	return 0;
2851 }
2852 
2853 /*
2854  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2855  * stored in the rbtree...
2856  */
2857 
2858 int hists__init(void)
2859 {
2860 	int err = evsel__object_config(sizeof(struct hists_evsel),
2861 				       hists_evsel__init, hists_evsel__exit);
2862 	if (err)
2863 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2864 
2865 	return err;
2866 }
2867 
2868 void perf_hpp_list__init(struct perf_hpp_list *list)
2869 {
2870 	INIT_LIST_HEAD(&list->fields);
2871 	INIT_LIST_HEAD(&list->sorts);
2872 }
2873