1 #include "util.h" 2 #include "build-id.h" 3 #include "hist.h" 4 #include "session.h" 5 #include "sort.h" 6 #include "evlist.h" 7 #include "evsel.h" 8 #include "annotate.h" 9 #include "ui/progress.h" 10 #include <math.h> 11 12 static bool hists__filter_entry_by_dso(struct hists *hists, 13 struct hist_entry *he); 14 static bool hists__filter_entry_by_thread(struct hists *hists, 15 struct hist_entry *he); 16 static bool hists__filter_entry_by_symbol(struct hists *hists, 17 struct hist_entry *he); 18 static bool hists__filter_entry_by_socket(struct hists *hists, 19 struct hist_entry *he); 20 21 u16 hists__col_len(struct hists *hists, enum hist_column col) 22 { 23 return hists->col_len[col]; 24 } 25 26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 27 { 28 hists->col_len[col] = len; 29 } 30 31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 32 { 33 if (len > hists__col_len(hists, col)) { 34 hists__set_col_len(hists, col, len); 35 return true; 36 } 37 return false; 38 } 39 40 void hists__reset_col_len(struct hists *hists) 41 { 42 enum hist_column col; 43 44 for (col = 0; col < HISTC_NR_COLS; ++col) 45 hists__set_col_len(hists, col, 0); 46 } 47 48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 49 { 50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 51 52 if (hists__col_len(hists, dso) < unresolved_col_width && 53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 54 !symbol_conf.dso_list) 55 hists__set_col_len(hists, dso, unresolved_col_width); 56 } 57 58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 59 { 60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 61 int symlen; 62 u16 len; 63 64 /* 65 * +4 accounts for '[x] ' priv level info 66 * +2 accounts for 0x prefix on raw addresses 67 * +3 accounts for ' y ' symtab origin info 68 */ 69 if (h->ms.sym) { 70 symlen = h->ms.sym->namelen + 4; 71 if (verbose) 72 symlen += BITS_PER_LONG / 4 + 2 + 3; 73 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 74 } else { 75 symlen = unresolved_col_width + 4 + 2; 76 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 77 hists__set_unres_dso_col_len(hists, HISTC_DSO); 78 } 79 80 len = thread__comm_len(h->thread); 81 if (hists__new_col_len(hists, HISTC_COMM, len)) 82 hists__set_col_len(hists, HISTC_THREAD, len + 8); 83 84 if (h->ms.map) { 85 len = dso__name_len(h->ms.map->dso); 86 hists__new_col_len(hists, HISTC_DSO, len); 87 } 88 89 if (h->parent) 90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 91 92 if (h->branch_info) { 93 if (h->branch_info->from.sym) { 94 symlen = (int)h->branch_info->from.sym->namelen + 4; 95 if (verbose) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 98 99 symlen = dso__name_len(h->branch_info->from.map->dso); 100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 101 } else { 102 symlen = unresolved_col_width + 4 + 2; 103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 105 } 106 107 if (h->branch_info->to.sym) { 108 symlen = (int)h->branch_info->to.sym->namelen + 4; 109 if (verbose) 110 symlen += BITS_PER_LONG / 4 + 2 + 3; 111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 112 113 symlen = dso__name_len(h->branch_info->to.map->dso); 114 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 115 } else { 116 symlen = unresolved_col_width + 4 + 2; 117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 119 } 120 121 if (h->branch_info->srcline_from) 122 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 123 strlen(h->branch_info->srcline_from)); 124 if (h->branch_info->srcline_to) 125 hists__new_col_len(hists, HISTC_SRCLINE_TO, 126 strlen(h->branch_info->srcline_to)); 127 } 128 129 if (h->mem_info) { 130 if (h->mem_info->daddr.sym) { 131 symlen = (int)h->mem_info->daddr.sym->namelen + 4 132 + unresolved_col_width + 2; 133 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 134 symlen); 135 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 136 symlen + 1); 137 } else { 138 symlen = unresolved_col_width + 4 + 2; 139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 140 symlen); 141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 142 symlen); 143 } 144 145 if (h->mem_info->iaddr.sym) { 146 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 147 + unresolved_col_width + 2; 148 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 149 symlen); 150 } else { 151 symlen = unresolved_col_width + 4 + 2; 152 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 153 symlen); 154 } 155 156 if (h->mem_info->daddr.map) { 157 symlen = dso__name_len(h->mem_info->daddr.map->dso); 158 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 159 symlen); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 163 } 164 } else { 165 symlen = unresolved_col_width + 4 + 2; 166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 169 } 170 171 hists__new_col_len(hists, HISTC_CPU, 3); 172 hists__new_col_len(hists, HISTC_SOCKET, 6); 173 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 174 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 175 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 176 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 177 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 178 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 179 180 if (h->srcline) { 181 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 182 hists__new_col_len(hists, HISTC_SRCLINE, len); 183 } 184 185 if (h->srcfile) 186 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 187 188 if (h->transaction) 189 hists__new_col_len(hists, HISTC_TRANSACTION, 190 hist_entry__transaction_len()); 191 192 if (h->trace_output) 193 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 194 } 195 196 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 197 { 198 struct rb_node *next = rb_first(&hists->entries); 199 struct hist_entry *n; 200 int row = 0; 201 202 hists__reset_col_len(hists); 203 204 while (next && row++ < max_rows) { 205 n = rb_entry(next, struct hist_entry, rb_node); 206 if (!n->filtered) 207 hists__calc_col_len(hists, n); 208 next = rb_next(&n->rb_node); 209 } 210 } 211 212 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 213 unsigned int cpumode, u64 period) 214 { 215 switch (cpumode) { 216 case PERF_RECORD_MISC_KERNEL: 217 he_stat->period_sys += period; 218 break; 219 case PERF_RECORD_MISC_USER: 220 he_stat->period_us += period; 221 break; 222 case PERF_RECORD_MISC_GUEST_KERNEL: 223 he_stat->period_guest_sys += period; 224 break; 225 case PERF_RECORD_MISC_GUEST_USER: 226 he_stat->period_guest_us += period; 227 break; 228 default: 229 break; 230 } 231 } 232 233 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 234 u64 weight) 235 { 236 237 he_stat->period += period; 238 he_stat->weight += weight; 239 he_stat->nr_events += 1; 240 } 241 242 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 243 { 244 dest->period += src->period; 245 dest->period_sys += src->period_sys; 246 dest->period_us += src->period_us; 247 dest->period_guest_sys += src->period_guest_sys; 248 dest->period_guest_us += src->period_guest_us; 249 dest->nr_events += src->nr_events; 250 dest->weight += src->weight; 251 } 252 253 static void he_stat__decay(struct he_stat *he_stat) 254 { 255 he_stat->period = (he_stat->period * 7) / 8; 256 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 257 /* XXX need decay for weight too? */ 258 } 259 260 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 261 262 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 263 { 264 u64 prev_period = he->stat.period; 265 u64 diff; 266 267 if (prev_period == 0) 268 return true; 269 270 he_stat__decay(&he->stat); 271 if (symbol_conf.cumulate_callchain) 272 he_stat__decay(he->stat_acc); 273 decay_callchain(he->callchain); 274 275 diff = prev_period - he->stat.period; 276 277 if (!he->depth) { 278 hists->stats.total_period -= diff; 279 if (!he->filtered) 280 hists->stats.total_non_filtered_period -= diff; 281 } 282 283 if (!he->leaf) { 284 struct hist_entry *child; 285 struct rb_node *node = rb_first(&he->hroot_out); 286 while (node) { 287 child = rb_entry(node, struct hist_entry, rb_node); 288 node = rb_next(node); 289 290 if (hists__decay_entry(hists, child)) 291 hists__delete_entry(hists, child); 292 } 293 } 294 295 return he->stat.period == 0; 296 } 297 298 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 299 { 300 struct rb_root *root_in; 301 struct rb_root *root_out; 302 303 if (he->parent_he) { 304 root_in = &he->parent_he->hroot_in; 305 root_out = &he->parent_he->hroot_out; 306 } else { 307 if (hists__has(hists, need_collapse)) 308 root_in = &hists->entries_collapsed; 309 else 310 root_in = hists->entries_in; 311 root_out = &hists->entries; 312 } 313 314 rb_erase(&he->rb_node_in, root_in); 315 rb_erase(&he->rb_node, root_out); 316 317 --hists->nr_entries; 318 if (!he->filtered) 319 --hists->nr_non_filtered_entries; 320 321 hist_entry__delete(he); 322 } 323 324 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 325 { 326 struct rb_node *next = rb_first(&hists->entries); 327 struct hist_entry *n; 328 329 while (next) { 330 n = rb_entry(next, struct hist_entry, rb_node); 331 next = rb_next(&n->rb_node); 332 if (((zap_user && n->level == '.') || 333 (zap_kernel && n->level != '.') || 334 hists__decay_entry(hists, n))) { 335 hists__delete_entry(hists, n); 336 } 337 } 338 } 339 340 void hists__delete_entries(struct hists *hists) 341 { 342 struct rb_node *next = rb_first(&hists->entries); 343 struct hist_entry *n; 344 345 while (next) { 346 n = rb_entry(next, struct hist_entry, rb_node); 347 next = rb_next(&n->rb_node); 348 349 hists__delete_entry(hists, n); 350 } 351 } 352 353 /* 354 * histogram, sorted on item, collects periods 355 */ 356 357 static int hist_entry__init(struct hist_entry *he, 358 struct hist_entry *template, 359 bool sample_self) 360 { 361 *he = *template; 362 363 if (symbol_conf.cumulate_callchain) { 364 he->stat_acc = malloc(sizeof(he->stat)); 365 if (he->stat_acc == NULL) 366 return -ENOMEM; 367 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 368 if (!sample_self) 369 memset(&he->stat, 0, sizeof(he->stat)); 370 } 371 372 map__get(he->ms.map); 373 374 if (he->branch_info) { 375 /* 376 * This branch info is (a part of) allocated from 377 * sample__resolve_bstack() and will be freed after 378 * adding new entries. So we need to save a copy. 379 */ 380 he->branch_info = malloc(sizeof(*he->branch_info)); 381 if (he->branch_info == NULL) { 382 map__zput(he->ms.map); 383 free(he->stat_acc); 384 return -ENOMEM; 385 } 386 387 memcpy(he->branch_info, template->branch_info, 388 sizeof(*he->branch_info)); 389 390 map__get(he->branch_info->from.map); 391 map__get(he->branch_info->to.map); 392 } 393 394 if (he->mem_info) { 395 map__get(he->mem_info->iaddr.map); 396 map__get(he->mem_info->daddr.map); 397 } 398 399 if (symbol_conf.use_callchain) 400 callchain_init(he->callchain); 401 402 if (he->raw_data) { 403 he->raw_data = memdup(he->raw_data, he->raw_size); 404 405 if (he->raw_data == NULL) { 406 map__put(he->ms.map); 407 if (he->branch_info) { 408 map__put(he->branch_info->from.map); 409 map__put(he->branch_info->to.map); 410 free(he->branch_info); 411 } 412 if (he->mem_info) { 413 map__put(he->mem_info->iaddr.map); 414 map__put(he->mem_info->daddr.map); 415 } 416 free(he->stat_acc); 417 return -ENOMEM; 418 } 419 } 420 INIT_LIST_HEAD(&he->pairs.node); 421 thread__get(he->thread); 422 he->hroot_in = RB_ROOT; 423 he->hroot_out = RB_ROOT; 424 425 if (!symbol_conf.report_hierarchy) 426 he->leaf = true; 427 428 return 0; 429 } 430 431 static void *hist_entry__zalloc(size_t size) 432 { 433 return zalloc(size + sizeof(struct hist_entry)); 434 } 435 436 static void hist_entry__free(void *ptr) 437 { 438 free(ptr); 439 } 440 441 static struct hist_entry_ops default_ops = { 442 .new = hist_entry__zalloc, 443 .free = hist_entry__free, 444 }; 445 446 static struct hist_entry *hist_entry__new(struct hist_entry *template, 447 bool sample_self) 448 { 449 struct hist_entry_ops *ops = template->ops; 450 size_t callchain_size = 0; 451 struct hist_entry *he; 452 int err = 0; 453 454 if (!ops) 455 ops = template->ops = &default_ops; 456 457 if (symbol_conf.use_callchain) 458 callchain_size = sizeof(struct callchain_root); 459 460 he = ops->new(callchain_size); 461 if (he) { 462 err = hist_entry__init(he, template, sample_self); 463 if (err) { 464 ops->free(he); 465 he = NULL; 466 } 467 } 468 469 return he; 470 } 471 472 static u8 symbol__parent_filter(const struct symbol *parent) 473 { 474 if (symbol_conf.exclude_other && parent == NULL) 475 return 1 << HIST_FILTER__PARENT; 476 return 0; 477 } 478 479 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 480 { 481 if (!symbol_conf.use_callchain) 482 return; 483 484 he->hists->callchain_period += period; 485 if (!he->filtered) 486 he->hists->callchain_non_filtered_period += period; 487 } 488 489 static struct hist_entry *hists__findnew_entry(struct hists *hists, 490 struct hist_entry *entry, 491 struct addr_location *al, 492 bool sample_self) 493 { 494 struct rb_node **p; 495 struct rb_node *parent = NULL; 496 struct hist_entry *he; 497 int64_t cmp; 498 u64 period = entry->stat.period; 499 u64 weight = entry->stat.weight; 500 501 p = &hists->entries_in->rb_node; 502 503 while (*p != NULL) { 504 parent = *p; 505 he = rb_entry(parent, struct hist_entry, rb_node_in); 506 507 /* 508 * Make sure that it receives arguments in a same order as 509 * hist_entry__collapse() so that we can use an appropriate 510 * function when searching an entry regardless which sort 511 * keys were used. 512 */ 513 cmp = hist_entry__cmp(he, entry); 514 515 if (!cmp) { 516 if (sample_self) { 517 he_stat__add_period(&he->stat, period, weight); 518 hist_entry__add_callchain_period(he, period); 519 } 520 if (symbol_conf.cumulate_callchain) 521 he_stat__add_period(he->stat_acc, period, weight); 522 523 /* 524 * This mem info was allocated from sample__resolve_mem 525 * and will not be used anymore. 526 */ 527 zfree(&entry->mem_info); 528 529 /* If the map of an existing hist_entry has 530 * become out-of-date due to an exec() or 531 * similar, update it. Otherwise we will 532 * mis-adjust symbol addresses when computing 533 * the history counter to increment. 534 */ 535 if (he->ms.map != entry->ms.map) { 536 map__put(he->ms.map); 537 he->ms.map = map__get(entry->ms.map); 538 } 539 goto out; 540 } 541 542 if (cmp < 0) 543 p = &(*p)->rb_left; 544 else 545 p = &(*p)->rb_right; 546 } 547 548 he = hist_entry__new(entry, sample_self); 549 if (!he) 550 return NULL; 551 552 if (sample_self) 553 hist_entry__add_callchain_period(he, period); 554 hists->nr_entries++; 555 556 rb_link_node(&he->rb_node_in, parent, p); 557 rb_insert_color(&he->rb_node_in, hists->entries_in); 558 out: 559 if (sample_self) 560 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 561 if (symbol_conf.cumulate_callchain) 562 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 563 return he; 564 } 565 566 static struct hist_entry* 567 __hists__add_entry(struct hists *hists, 568 struct addr_location *al, 569 struct symbol *sym_parent, 570 struct branch_info *bi, 571 struct mem_info *mi, 572 struct perf_sample *sample, 573 bool sample_self, 574 struct hist_entry_ops *ops) 575 { 576 struct hist_entry entry = { 577 .thread = al->thread, 578 .comm = thread__comm(al->thread), 579 .ms = { 580 .map = al->map, 581 .sym = al->sym, 582 }, 583 .socket = al->socket, 584 .cpu = al->cpu, 585 .cpumode = al->cpumode, 586 .ip = al->addr, 587 .level = al->level, 588 .stat = { 589 .nr_events = 1, 590 .period = sample->period, 591 .weight = sample->weight, 592 }, 593 .parent = sym_parent, 594 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 595 .hists = hists, 596 .branch_info = bi, 597 .mem_info = mi, 598 .transaction = sample->transaction, 599 .raw_data = sample->raw_data, 600 .raw_size = sample->raw_size, 601 .ops = ops, 602 }; 603 604 return hists__findnew_entry(hists, &entry, al, sample_self); 605 } 606 607 struct hist_entry *hists__add_entry(struct hists *hists, 608 struct addr_location *al, 609 struct symbol *sym_parent, 610 struct branch_info *bi, 611 struct mem_info *mi, 612 struct perf_sample *sample, 613 bool sample_self) 614 { 615 return __hists__add_entry(hists, al, sym_parent, bi, mi, 616 sample, sample_self, NULL); 617 } 618 619 struct hist_entry *hists__add_entry_ops(struct hists *hists, 620 struct hist_entry_ops *ops, 621 struct addr_location *al, 622 struct symbol *sym_parent, 623 struct branch_info *bi, 624 struct mem_info *mi, 625 struct perf_sample *sample, 626 bool sample_self) 627 { 628 return __hists__add_entry(hists, al, sym_parent, bi, mi, 629 sample, sample_self, ops); 630 } 631 632 static int 633 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 634 struct addr_location *al __maybe_unused) 635 { 636 return 0; 637 } 638 639 static int 640 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 641 struct addr_location *al __maybe_unused) 642 { 643 return 0; 644 } 645 646 static int 647 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 648 { 649 struct perf_sample *sample = iter->sample; 650 struct mem_info *mi; 651 652 mi = sample__resolve_mem(sample, al); 653 if (mi == NULL) 654 return -ENOMEM; 655 656 iter->priv = mi; 657 return 0; 658 } 659 660 static int 661 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 662 { 663 u64 cost; 664 struct mem_info *mi = iter->priv; 665 struct hists *hists = evsel__hists(iter->evsel); 666 struct perf_sample *sample = iter->sample; 667 struct hist_entry *he; 668 669 if (mi == NULL) 670 return -EINVAL; 671 672 cost = sample->weight; 673 if (!cost) 674 cost = 1; 675 676 /* 677 * must pass period=weight in order to get the correct 678 * sorting from hists__collapse_resort() which is solely 679 * based on periods. We want sorting be done on nr_events * weight 680 * and this is indirectly achieved by passing period=weight here 681 * and the he_stat__add_period() function. 682 */ 683 sample->period = cost; 684 685 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 686 sample, true); 687 if (!he) 688 return -ENOMEM; 689 690 iter->he = he; 691 return 0; 692 } 693 694 static int 695 iter_finish_mem_entry(struct hist_entry_iter *iter, 696 struct addr_location *al __maybe_unused) 697 { 698 struct perf_evsel *evsel = iter->evsel; 699 struct hists *hists = evsel__hists(evsel); 700 struct hist_entry *he = iter->he; 701 int err = -EINVAL; 702 703 if (he == NULL) 704 goto out; 705 706 hists__inc_nr_samples(hists, he->filtered); 707 708 err = hist_entry__append_callchain(he, iter->sample); 709 710 out: 711 /* 712 * We don't need to free iter->priv (mem_info) here since the mem info 713 * was either already freed in hists__findnew_entry() or passed to a 714 * new hist entry by hist_entry__new(). 715 */ 716 iter->priv = NULL; 717 718 iter->he = NULL; 719 return err; 720 } 721 722 static int 723 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 724 { 725 struct branch_info *bi; 726 struct perf_sample *sample = iter->sample; 727 728 bi = sample__resolve_bstack(sample, al); 729 if (!bi) 730 return -ENOMEM; 731 732 iter->curr = 0; 733 iter->total = sample->branch_stack->nr; 734 735 iter->priv = bi; 736 return 0; 737 } 738 739 static int 740 iter_add_single_branch_entry(struct hist_entry_iter *iter, 741 struct addr_location *al __maybe_unused) 742 { 743 /* to avoid calling callback function */ 744 iter->he = NULL; 745 746 return 0; 747 } 748 749 static int 750 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 751 { 752 struct branch_info *bi = iter->priv; 753 int i = iter->curr; 754 755 if (bi == NULL) 756 return 0; 757 758 if (iter->curr >= iter->total) 759 return 0; 760 761 al->map = bi[i].to.map; 762 al->sym = bi[i].to.sym; 763 al->addr = bi[i].to.addr; 764 return 1; 765 } 766 767 static int 768 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 769 { 770 struct branch_info *bi; 771 struct perf_evsel *evsel = iter->evsel; 772 struct hists *hists = evsel__hists(evsel); 773 struct perf_sample *sample = iter->sample; 774 struct hist_entry *he = NULL; 775 int i = iter->curr; 776 int err = 0; 777 778 bi = iter->priv; 779 780 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 781 goto out; 782 783 /* 784 * The report shows the percentage of total branches captured 785 * and not events sampled. Thus we use a pseudo period of 1. 786 */ 787 sample->period = 1; 788 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 789 790 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 791 sample, true); 792 if (he == NULL) 793 return -ENOMEM; 794 795 hists__inc_nr_samples(hists, he->filtered); 796 797 out: 798 iter->he = he; 799 iter->curr++; 800 return err; 801 } 802 803 static int 804 iter_finish_branch_entry(struct hist_entry_iter *iter, 805 struct addr_location *al __maybe_unused) 806 { 807 zfree(&iter->priv); 808 iter->he = NULL; 809 810 return iter->curr >= iter->total ? 0 : -1; 811 } 812 813 static int 814 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 815 struct addr_location *al __maybe_unused) 816 { 817 return 0; 818 } 819 820 static int 821 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 822 { 823 struct perf_evsel *evsel = iter->evsel; 824 struct perf_sample *sample = iter->sample; 825 struct hist_entry *he; 826 827 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 828 sample, true); 829 if (he == NULL) 830 return -ENOMEM; 831 832 iter->he = he; 833 return 0; 834 } 835 836 static int 837 iter_finish_normal_entry(struct hist_entry_iter *iter, 838 struct addr_location *al __maybe_unused) 839 { 840 struct hist_entry *he = iter->he; 841 struct perf_evsel *evsel = iter->evsel; 842 struct perf_sample *sample = iter->sample; 843 844 if (he == NULL) 845 return 0; 846 847 iter->he = NULL; 848 849 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 850 851 return hist_entry__append_callchain(he, sample); 852 } 853 854 static int 855 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 856 struct addr_location *al __maybe_unused) 857 { 858 struct hist_entry **he_cache; 859 860 callchain_cursor_commit(&callchain_cursor); 861 862 /* 863 * This is for detecting cycles or recursions so that they're 864 * cumulated only one time to prevent entries more than 100% 865 * overhead. 866 */ 867 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 868 if (he_cache == NULL) 869 return -ENOMEM; 870 871 iter->priv = he_cache; 872 iter->curr = 0; 873 874 return 0; 875 } 876 877 static int 878 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 879 struct addr_location *al) 880 { 881 struct perf_evsel *evsel = iter->evsel; 882 struct hists *hists = evsel__hists(evsel); 883 struct perf_sample *sample = iter->sample; 884 struct hist_entry **he_cache = iter->priv; 885 struct hist_entry *he; 886 int err = 0; 887 888 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 889 sample, true); 890 if (he == NULL) 891 return -ENOMEM; 892 893 iter->he = he; 894 he_cache[iter->curr++] = he; 895 896 hist_entry__append_callchain(he, sample); 897 898 /* 899 * We need to re-initialize the cursor since callchain_append() 900 * advanced the cursor to the end. 901 */ 902 callchain_cursor_commit(&callchain_cursor); 903 904 hists__inc_nr_samples(hists, he->filtered); 905 906 return err; 907 } 908 909 static int 910 iter_next_cumulative_entry(struct hist_entry_iter *iter, 911 struct addr_location *al) 912 { 913 struct callchain_cursor_node *node; 914 915 node = callchain_cursor_current(&callchain_cursor); 916 if (node == NULL) 917 return 0; 918 919 return fill_callchain_info(al, node, iter->hide_unresolved); 920 } 921 922 static int 923 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 924 struct addr_location *al) 925 { 926 struct perf_evsel *evsel = iter->evsel; 927 struct perf_sample *sample = iter->sample; 928 struct hist_entry **he_cache = iter->priv; 929 struct hist_entry *he; 930 struct hist_entry he_tmp = { 931 .hists = evsel__hists(evsel), 932 .cpu = al->cpu, 933 .thread = al->thread, 934 .comm = thread__comm(al->thread), 935 .ip = al->addr, 936 .ms = { 937 .map = al->map, 938 .sym = al->sym, 939 }, 940 .parent = iter->parent, 941 .raw_data = sample->raw_data, 942 .raw_size = sample->raw_size, 943 }; 944 int i; 945 struct callchain_cursor cursor; 946 947 callchain_cursor_snapshot(&cursor, &callchain_cursor); 948 949 callchain_cursor_advance(&callchain_cursor); 950 951 /* 952 * Check if there's duplicate entries in the callchain. 953 * It's possible that it has cycles or recursive calls. 954 */ 955 for (i = 0; i < iter->curr; i++) { 956 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 957 /* to avoid calling callback function */ 958 iter->he = NULL; 959 return 0; 960 } 961 } 962 963 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 964 sample, false); 965 if (he == NULL) 966 return -ENOMEM; 967 968 iter->he = he; 969 he_cache[iter->curr++] = he; 970 971 if (symbol_conf.use_callchain) 972 callchain_append(he->callchain, &cursor, sample->period); 973 return 0; 974 } 975 976 static int 977 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 978 struct addr_location *al __maybe_unused) 979 { 980 zfree(&iter->priv); 981 iter->he = NULL; 982 983 return 0; 984 } 985 986 const struct hist_iter_ops hist_iter_mem = { 987 .prepare_entry = iter_prepare_mem_entry, 988 .add_single_entry = iter_add_single_mem_entry, 989 .next_entry = iter_next_nop_entry, 990 .add_next_entry = iter_add_next_nop_entry, 991 .finish_entry = iter_finish_mem_entry, 992 }; 993 994 const struct hist_iter_ops hist_iter_branch = { 995 .prepare_entry = iter_prepare_branch_entry, 996 .add_single_entry = iter_add_single_branch_entry, 997 .next_entry = iter_next_branch_entry, 998 .add_next_entry = iter_add_next_branch_entry, 999 .finish_entry = iter_finish_branch_entry, 1000 }; 1001 1002 const struct hist_iter_ops hist_iter_normal = { 1003 .prepare_entry = iter_prepare_normal_entry, 1004 .add_single_entry = iter_add_single_normal_entry, 1005 .next_entry = iter_next_nop_entry, 1006 .add_next_entry = iter_add_next_nop_entry, 1007 .finish_entry = iter_finish_normal_entry, 1008 }; 1009 1010 const struct hist_iter_ops hist_iter_cumulative = { 1011 .prepare_entry = iter_prepare_cumulative_entry, 1012 .add_single_entry = iter_add_single_cumulative_entry, 1013 .next_entry = iter_next_cumulative_entry, 1014 .add_next_entry = iter_add_next_cumulative_entry, 1015 .finish_entry = iter_finish_cumulative_entry, 1016 }; 1017 1018 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1019 int max_stack_depth, void *arg) 1020 { 1021 int err, err2; 1022 1023 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1024 iter->evsel, al, max_stack_depth); 1025 if (err) 1026 return err; 1027 1028 iter->max_stack = max_stack_depth; 1029 1030 err = iter->ops->prepare_entry(iter, al); 1031 if (err) 1032 goto out; 1033 1034 err = iter->ops->add_single_entry(iter, al); 1035 if (err) 1036 goto out; 1037 1038 if (iter->he && iter->add_entry_cb) { 1039 err = iter->add_entry_cb(iter, al, true, arg); 1040 if (err) 1041 goto out; 1042 } 1043 1044 while (iter->ops->next_entry(iter, al)) { 1045 err = iter->ops->add_next_entry(iter, al); 1046 if (err) 1047 break; 1048 1049 if (iter->he && iter->add_entry_cb) { 1050 err = iter->add_entry_cb(iter, al, false, arg); 1051 if (err) 1052 goto out; 1053 } 1054 } 1055 1056 out: 1057 err2 = iter->ops->finish_entry(iter, al); 1058 if (!err) 1059 err = err2; 1060 1061 return err; 1062 } 1063 1064 int64_t 1065 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1066 { 1067 struct hists *hists = left->hists; 1068 struct perf_hpp_fmt *fmt; 1069 int64_t cmp = 0; 1070 1071 hists__for_each_sort_list(hists, fmt) { 1072 if (perf_hpp__is_dynamic_entry(fmt) && 1073 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1074 continue; 1075 1076 cmp = fmt->cmp(fmt, left, right); 1077 if (cmp) 1078 break; 1079 } 1080 1081 return cmp; 1082 } 1083 1084 int64_t 1085 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1086 { 1087 struct hists *hists = left->hists; 1088 struct perf_hpp_fmt *fmt; 1089 int64_t cmp = 0; 1090 1091 hists__for_each_sort_list(hists, fmt) { 1092 if (perf_hpp__is_dynamic_entry(fmt) && 1093 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1094 continue; 1095 1096 cmp = fmt->collapse(fmt, left, right); 1097 if (cmp) 1098 break; 1099 } 1100 1101 return cmp; 1102 } 1103 1104 void hist_entry__delete(struct hist_entry *he) 1105 { 1106 struct hist_entry_ops *ops = he->ops; 1107 1108 thread__zput(he->thread); 1109 map__zput(he->ms.map); 1110 1111 if (he->branch_info) { 1112 map__zput(he->branch_info->from.map); 1113 map__zput(he->branch_info->to.map); 1114 free_srcline(he->branch_info->srcline_from); 1115 free_srcline(he->branch_info->srcline_to); 1116 zfree(&he->branch_info); 1117 } 1118 1119 if (he->mem_info) { 1120 map__zput(he->mem_info->iaddr.map); 1121 map__zput(he->mem_info->daddr.map); 1122 zfree(&he->mem_info); 1123 } 1124 1125 zfree(&he->stat_acc); 1126 free_srcline(he->srcline); 1127 if (he->srcfile && he->srcfile[0]) 1128 free(he->srcfile); 1129 free_callchain(he->callchain); 1130 free(he->trace_output); 1131 free(he->raw_data); 1132 ops->free(he); 1133 } 1134 1135 /* 1136 * If this is not the last column, then we need to pad it according to the 1137 * pre-calculated max lenght for this column, otherwise don't bother adding 1138 * spaces because that would break viewing this with, for instance, 'less', 1139 * that would show tons of trailing spaces when a long C++ demangled method 1140 * names is sampled. 1141 */ 1142 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1143 struct perf_hpp_fmt *fmt, int printed) 1144 { 1145 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1146 const int width = fmt->width(fmt, hpp, he->hists); 1147 if (printed < width) { 1148 advance_hpp(hpp, printed); 1149 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1150 } 1151 } 1152 1153 return printed; 1154 } 1155 1156 /* 1157 * collapse the histogram 1158 */ 1159 1160 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1161 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1162 enum hist_filter type); 1163 1164 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1165 1166 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1167 { 1168 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1169 } 1170 1171 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1172 enum hist_filter type, 1173 fmt_chk_fn check) 1174 { 1175 struct perf_hpp_fmt *fmt; 1176 bool type_match = false; 1177 struct hist_entry *parent = he->parent_he; 1178 1179 switch (type) { 1180 case HIST_FILTER__THREAD: 1181 if (symbol_conf.comm_list == NULL && 1182 symbol_conf.pid_list == NULL && 1183 symbol_conf.tid_list == NULL) 1184 return; 1185 break; 1186 case HIST_FILTER__DSO: 1187 if (symbol_conf.dso_list == NULL) 1188 return; 1189 break; 1190 case HIST_FILTER__SYMBOL: 1191 if (symbol_conf.sym_list == NULL) 1192 return; 1193 break; 1194 case HIST_FILTER__PARENT: 1195 case HIST_FILTER__GUEST: 1196 case HIST_FILTER__HOST: 1197 case HIST_FILTER__SOCKET: 1198 case HIST_FILTER__C2C: 1199 default: 1200 return; 1201 } 1202 1203 /* if it's filtered by own fmt, it has to have filter bits */ 1204 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1205 if (check(fmt)) { 1206 type_match = true; 1207 break; 1208 } 1209 } 1210 1211 if (type_match) { 1212 /* 1213 * If the filter is for current level entry, propagate 1214 * filter marker to parents. The marker bit was 1215 * already set by default so it only needs to clear 1216 * non-filtered entries. 1217 */ 1218 if (!(he->filtered & (1 << type))) { 1219 while (parent) { 1220 parent->filtered &= ~(1 << type); 1221 parent = parent->parent_he; 1222 } 1223 } 1224 } else { 1225 /* 1226 * If current entry doesn't have matching formats, set 1227 * filter marker for upper level entries. it will be 1228 * cleared if its lower level entries is not filtered. 1229 * 1230 * For lower-level entries, it inherits parent's 1231 * filter bit so that lower level entries of a 1232 * non-filtered entry won't set the filter marker. 1233 */ 1234 if (parent == NULL) 1235 he->filtered |= (1 << type); 1236 else 1237 he->filtered |= (parent->filtered & (1 << type)); 1238 } 1239 } 1240 1241 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1242 { 1243 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1244 check_thread_entry); 1245 1246 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1247 perf_hpp__is_dso_entry); 1248 1249 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1250 perf_hpp__is_sym_entry); 1251 1252 hists__apply_filters(he->hists, he); 1253 } 1254 1255 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1256 struct rb_root *root, 1257 struct hist_entry *he, 1258 struct hist_entry *parent_he, 1259 struct perf_hpp_list *hpp_list) 1260 { 1261 struct rb_node **p = &root->rb_node; 1262 struct rb_node *parent = NULL; 1263 struct hist_entry *iter, *new; 1264 struct perf_hpp_fmt *fmt; 1265 int64_t cmp; 1266 1267 while (*p != NULL) { 1268 parent = *p; 1269 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1270 1271 cmp = 0; 1272 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1273 cmp = fmt->collapse(fmt, iter, he); 1274 if (cmp) 1275 break; 1276 } 1277 1278 if (!cmp) { 1279 he_stat__add_stat(&iter->stat, &he->stat); 1280 return iter; 1281 } 1282 1283 if (cmp < 0) 1284 p = &parent->rb_left; 1285 else 1286 p = &parent->rb_right; 1287 } 1288 1289 new = hist_entry__new(he, true); 1290 if (new == NULL) 1291 return NULL; 1292 1293 hists->nr_entries++; 1294 1295 /* save related format list for output */ 1296 new->hpp_list = hpp_list; 1297 new->parent_he = parent_he; 1298 1299 hist_entry__apply_hierarchy_filters(new); 1300 1301 /* some fields are now passed to 'new' */ 1302 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1303 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1304 he->trace_output = NULL; 1305 else 1306 new->trace_output = NULL; 1307 1308 if (perf_hpp__is_srcline_entry(fmt)) 1309 he->srcline = NULL; 1310 else 1311 new->srcline = NULL; 1312 1313 if (perf_hpp__is_srcfile_entry(fmt)) 1314 he->srcfile = NULL; 1315 else 1316 new->srcfile = NULL; 1317 } 1318 1319 rb_link_node(&new->rb_node_in, parent, p); 1320 rb_insert_color(&new->rb_node_in, root); 1321 return new; 1322 } 1323 1324 static int hists__hierarchy_insert_entry(struct hists *hists, 1325 struct rb_root *root, 1326 struct hist_entry *he) 1327 { 1328 struct perf_hpp_list_node *node; 1329 struct hist_entry *new_he = NULL; 1330 struct hist_entry *parent = NULL; 1331 int depth = 0; 1332 int ret = 0; 1333 1334 list_for_each_entry(node, &hists->hpp_formats, list) { 1335 /* skip period (overhead) and elided columns */ 1336 if (node->level == 0 || node->skip) 1337 continue; 1338 1339 /* insert copy of 'he' for each fmt into the hierarchy */ 1340 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1341 if (new_he == NULL) { 1342 ret = -1; 1343 break; 1344 } 1345 1346 root = &new_he->hroot_in; 1347 new_he->depth = depth++; 1348 parent = new_he; 1349 } 1350 1351 if (new_he) { 1352 new_he->leaf = true; 1353 1354 if (symbol_conf.use_callchain) { 1355 callchain_cursor_reset(&callchain_cursor); 1356 if (callchain_merge(&callchain_cursor, 1357 new_he->callchain, 1358 he->callchain) < 0) 1359 ret = -1; 1360 } 1361 } 1362 1363 /* 'he' is no longer used */ 1364 hist_entry__delete(he); 1365 1366 /* return 0 (or -1) since it already applied filters */ 1367 return ret; 1368 } 1369 1370 static int hists__collapse_insert_entry(struct hists *hists, 1371 struct rb_root *root, 1372 struct hist_entry *he) 1373 { 1374 struct rb_node **p = &root->rb_node; 1375 struct rb_node *parent = NULL; 1376 struct hist_entry *iter; 1377 int64_t cmp; 1378 1379 if (symbol_conf.report_hierarchy) 1380 return hists__hierarchy_insert_entry(hists, root, he); 1381 1382 while (*p != NULL) { 1383 parent = *p; 1384 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1385 1386 cmp = hist_entry__collapse(iter, he); 1387 1388 if (!cmp) { 1389 int ret = 0; 1390 1391 he_stat__add_stat(&iter->stat, &he->stat); 1392 if (symbol_conf.cumulate_callchain) 1393 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1394 1395 if (symbol_conf.use_callchain) { 1396 callchain_cursor_reset(&callchain_cursor); 1397 if (callchain_merge(&callchain_cursor, 1398 iter->callchain, 1399 he->callchain) < 0) 1400 ret = -1; 1401 } 1402 hist_entry__delete(he); 1403 return ret; 1404 } 1405 1406 if (cmp < 0) 1407 p = &(*p)->rb_left; 1408 else 1409 p = &(*p)->rb_right; 1410 } 1411 hists->nr_entries++; 1412 1413 rb_link_node(&he->rb_node_in, parent, p); 1414 rb_insert_color(&he->rb_node_in, root); 1415 return 1; 1416 } 1417 1418 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1419 { 1420 struct rb_root *root; 1421 1422 pthread_mutex_lock(&hists->lock); 1423 1424 root = hists->entries_in; 1425 if (++hists->entries_in > &hists->entries_in_array[1]) 1426 hists->entries_in = &hists->entries_in_array[0]; 1427 1428 pthread_mutex_unlock(&hists->lock); 1429 1430 return root; 1431 } 1432 1433 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1434 { 1435 hists__filter_entry_by_dso(hists, he); 1436 hists__filter_entry_by_thread(hists, he); 1437 hists__filter_entry_by_symbol(hists, he); 1438 hists__filter_entry_by_socket(hists, he); 1439 } 1440 1441 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1442 { 1443 struct rb_root *root; 1444 struct rb_node *next; 1445 struct hist_entry *n; 1446 int ret; 1447 1448 if (!hists__has(hists, need_collapse)) 1449 return 0; 1450 1451 hists->nr_entries = 0; 1452 1453 root = hists__get_rotate_entries_in(hists); 1454 1455 next = rb_first(root); 1456 1457 while (next) { 1458 if (session_done()) 1459 break; 1460 n = rb_entry(next, struct hist_entry, rb_node_in); 1461 next = rb_next(&n->rb_node_in); 1462 1463 rb_erase(&n->rb_node_in, root); 1464 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1465 if (ret < 0) 1466 return -1; 1467 1468 if (ret) { 1469 /* 1470 * If it wasn't combined with one of the entries already 1471 * collapsed, we need to apply the filters that may have 1472 * been set by, say, the hist_browser. 1473 */ 1474 hists__apply_filters(hists, n); 1475 } 1476 if (prog) 1477 ui_progress__update(prog, 1); 1478 } 1479 return 0; 1480 } 1481 1482 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1483 { 1484 struct hists *hists = a->hists; 1485 struct perf_hpp_fmt *fmt; 1486 int64_t cmp = 0; 1487 1488 hists__for_each_sort_list(hists, fmt) { 1489 if (perf_hpp__should_skip(fmt, a->hists)) 1490 continue; 1491 1492 cmp = fmt->sort(fmt, a, b); 1493 if (cmp) 1494 break; 1495 } 1496 1497 return cmp; 1498 } 1499 1500 static void hists__reset_filter_stats(struct hists *hists) 1501 { 1502 hists->nr_non_filtered_entries = 0; 1503 hists->stats.total_non_filtered_period = 0; 1504 } 1505 1506 void hists__reset_stats(struct hists *hists) 1507 { 1508 hists->nr_entries = 0; 1509 hists->stats.total_period = 0; 1510 1511 hists__reset_filter_stats(hists); 1512 } 1513 1514 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1515 { 1516 hists->nr_non_filtered_entries++; 1517 hists->stats.total_non_filtered_period += h->stat.period; 1518 } 1519 1520 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1521 { 1522 if (!h->filtered) 1523 hists__inc_filter_stats(hists, h); 1524 1525 hists->nr_entries++; 1526 hists->stats.total_period += h->stat.period; 1527 } 1528 1529 static void hierarchy_recalc_total_periods(struct hists *hists) 1530 { 1531 struct rb_node *node; 1532 struct hist_entry *he; 1533 1534 node = rb_first(&hists->entries); 1535 1536 hists->stats.total_period = 0; 1537 hists->stats.total_non_filtered_period = 0; 1538 1539 /* 1540 * recalculate total period using top-level entries only 1541 * since lower level entries only see non-filtered entries 1542 * but upper level entries have sum of both entries. 1543 */ 1544 while (node) { 1545 he = rb_entry(node, struct hist_entry, rb_node); 1546 node = rb_next(node); 1547 1548 hists->stats.total_period += he->stat.period; 1549 if (!he->filtered) 1550 hists->stats.total_non_filtered_period += he->stat.period; 1551 } 1552 } 1553 1554 static void hierarchy_insert_output_entry(struct rb_root *root, 1555 struct hist_entry *he) 1556 { 1557 struct rb_node **p = &root->rb_node; 1558 struct rb_node *parent = NULL; 1559 struct hist_entry *iter; 1560 struct perf_hpp_fmt *fmt; 1561 1562 while (*p != NULL) { 1563 parent = *p; 1564 iter = rb_entry(parent, struct hist_entry, rb_node); 1565 1566 if (hist_entry__sort(he, iter) > 0) 1567 p = &parent->rb_left; 1568 else 1569 p = &parent->rb_right; 1570 } 1571 1572 rb_link_node(&he->rb_node, parent, p); 1573 rb_insert_color(&he->rb_node, root); 1574 1575 /* update column width of dynamic entry */ 1576 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1577 if (perf_hpp__is_dynamic_entry(fmt)) 1578 fmt->sort(fmt, he, NULL); 1579 } 1580 } 1581 1582 static void hists__hierarchy_output_resort(struct hists *hists, 1583 struct ui_progress *prog, 1584 struct rb_root *root_in, 1585 struct rb_root *root_out, 1586 u64 min_callchain_hits, 1587 bool use_callchain) 1588 { 1589 struct rb_node *node; 1590 struct hist_entry *he; 1591 1592 *root_out = RB_ROOT; 1593 node = rb_first(root_in); 1594 1595 while (node) { 1596 he = rb_entry(node, struct hist_entry, rb_node_in); 1597 node = rb_next(node); 1598 1599 hierarchy_insert_output_entry(root_out, he); 1600 1601 if (prog) 1602 ui_progress__update(prog, 1); 1603 1604 hists->nr_entries++; 1605 if (!he->filtered) { 1606 hists->nr_non_filtered_entries++; 1607 hists__calc_col_len(hists, he); 1608 } 1609 1610 if (!he->leaf) { 1611 hists__hierarchy_output_resort(hists, prog, 1612 &he->hroot_in, 1613 &he->hroot_out, 1614 min_callchain_hits, 1615 use_callchain); 1616 continue; 1617 } 1618 1619 if (!use_callchain) 1620 continue; 1621 1622 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1623 u64 total = he->stat.period; 1624 1625 if (symbol_conf.cumulate_callchain) 1626 total = he->stat_acc->period; 1627 1628 min_callchain_hits = total * (callchain_param.min_percent / 100); 1629 } 1630 1631 callchain_param.sort(&he->sorted_chain, he->callchain, 1632 min_callchain_hits, &callchain_param); 1633 } 1634 } 1635 1636 static void __hists__insert_output_entry(struct rb_root *entries, 1637 struct hist_entry *he, 1638 u64 min_callchain_hits, 1639 bool use_callchain) 1640 { 1641 struct rb_node **p = &entries->rb_node; 1642 struct rb_node *parent = NULL; 1643 struct hist_entry *iter; 1644 struct perf_hpp_fmt *fmt; 1645 1646 if (use_callchain) { 1647 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1648 u64 total = he->stat.period; 1649 1650 if (symbol_conf.cumulate_callchain) 1651 total = he->stat_acc->period; 1652 1653 min_callchain_hits = total * (callchain_param.min_percent / 100); 1654 } 1655 callchain_param.sort(&he->sorted_chain, he->callchain, 1656 min_callchain_hits, &callchain_param); 1657 } 1658 1659 while (*p != NULL) { 1660 parent = *p; 1661 iter = rb_entry(parent, struct hist_entry, rb_node); 1662 1663 if (hist_entry__sort(he, iter) > 0) 1664 p = &(*p)->rb_left; 1665 else 1666 p = &(*p)->rb_right; 1667 } 1668 1669 rb_link_node(&he->rb_node, parent, p); 1670 rb_insert_color(&he->rb_node, entries); 1671 1672 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1673 if (perf_hpp__is_dynamic_entry(fmt) && 1674 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1675 fmt->sort(fmt, he, NULL); /* update column width */ 1676 } 1677 } 1678 1679 static void output_resort(struct hists *hists, struct ui_progress *prog, 1680 bool use_callchain, hists__resort_cb_t cb) 1681 { 1682 struct rb_root *root; 1683 struct rb_node *next; 1684 struct hist_entry *n; 1685 u64 callchain_total; 1686 u64 min_callchain_hits; 1687 1688 callchain_total = hists->callchain_period; 1689 if (symbol_conf.filter_relative) 1690 callchain_total = hists->callchain_non_filtered_period; 1691 1692 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1693 1694 hists__reset_stats(hists); 1695 hists__reset_col_len(hists); 1696 1697 if (symbol_conf.report_hierarchy) { 1698 hists__hierarchy_output_resort(hists, prog, 1699 &hists->entries_collapsed, 1700 &hists->entries, 1701 min_callchain_hits, 1702 use_callchain); 1703 hierarchy_recalc_total_periods(hists); 1704 return; 1705 } 1706 1707 if (hists__has(hists, need_collapse)) 1708 root = &hists->entries_collapsed; 1709 else 1710 root = hists->entries_in; 1711 1712 next = rb_first(root); 1713 hists->entries = RB_ROOT; 1714 1715 while (next) { 1716 n = rb_entry(next, struct hist_entry, rb_node_in); 1717 next = rb_next(&n->rb_node_in); 1718 1719 if (cb && cb(n)) 1720 continue; 1721 1722 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1723 hists__inc_stats(hists, n); 1724 1725 if (!n->filtered) 1726 hists__calc_col_len(hists, n); 1727 1728 if (prog) 1729 ui_progress__update(prog, 1); 1730 } 1731 } 1732 1733 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1734 { 1735 bool use_callchain; 1736 1737 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1738 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1739 else 1740 use_callchain = symbol_conf.use_callchain; 1741 1742 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1743 } 1744 1745 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1746 { 1747 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1748 } 1749 1750 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1751 hists__resort_cb_t cb) 1752 { 1753 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1754 } 1755 1756 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1757 { 1758 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1759 return false; 1760 1761 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1762 return true; 1763 1764 return false; 1765 } 1766 1767 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1768 { 1769 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1770 1771 while (can_goto_child(he, HMD_NORMAL)) { 1772 node = rb_last(&he->hroot_out); 1773 he = rb_entry(node, struct hist_entry, rb_node); 1774 } 1775 return node; 1776 } 1777 1778 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1779 { 1780 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1781 1782 if (can_goto_child(he, hmd)) 1783 node = rb_first(&he->hroot_out); 1784 else 1785 node = rb_next(node); 1786 1787 while (node == NULL) { 1788 he = he->parent_he; 1789 if (he == NULL) 1790 break; 1791 1792 node = rb_next(&he->rb_node); 1793 } 1794 return node; 1795 } 1796 1797 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1798 { 1799 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1800 1801 node = rb_prev(node); 1802 if (node) 1803 return rb_hierarchy_last(node); 1804 1805 he = he->parent_he; 1806 if (he == NULL) 1807 return NULL; 1808 1809 return &he->rb_node; 1810 } 1811 1812 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1813 { 1814 struct rb_node *node; 1815 struct hist_entry *child; 1816 float percent; 1817 1818 if (he->leaf) 1819 return false; 1820 1821 node = rb_first(&he->hroot_out); 1822 child = rb_entry(node, struct hist_entry, rb_node); 1823 1824 while (node && child->filtered) { 1825 node = rb_next(node); 1826 child = rb_entry(node, struct hist_entry, rb_node); 1827 } 1828 1829 if (node) 1830 percent = hist_entry__get_percent_limit(child); 1831 else 1832 percent = 0; 1833 1834 return node && percent >= limit; 1835 } 1836 1837 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1838 enum hist_filter filter) 1839 { 1840 h->filtered &= ~(1 << filter); 1841 1842 if (symbol_conf.report_hierarchy) { 1843 struct hist_entry *parent = h->parent_he; 1844 1845 while (parent) { 1846 he_stat__add_stat(&parent->stat, &h->stat); 1847 1848 parent->filtered &= ~(1 << filter); 1849 1850 if (parent->filtered) 1851 goto next; 1852 1853 /* force fold unfiltered entry for simplicity */ 1854 parent->unfolded = false; 1855 parent->has_no_entry = false; 1856 parent->row_offset = 0; 1857 parent->nr_rows = 0; 1858 next: 1859 parent = parent->parent_he; 1860 } 1861 } 1862 1863 if (h->filtered) 1864 return; 1865 1866 /* force fold unfiltered entry for simplicity */ 1867 h->unfolded = false; 1868 h->has_no_entry = false; 1869 h->row_offset = 0; 1870 h->nr_rows = 0; 1871 1872 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1873 1874 hists__inc_filter_stats(hists, h); 1875 hists__calc_col_len(hists, h); 1876 } 1877 1878 1879 static bool hists__filter_entry_by_dso(struct hists *hists, 1880 struct hist_entry *he) 1881 { 1882 if (hists->dso_filter != NULL && 1883 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1884 he->filtered |= (1 << HIST_FILTER__DSO); 1885 return true; 1886 } 1887 1888 return false; 1889 } 1890 1891 static bool hists__filter_entry_by_thread(struct hists *hists, 1892 struct hist_entry *he) 1893 { 1894 if (hists->thread_filter != NULL && 1895 he->thread != hists->thread_filter) { 1896 he->filtered |= (1 << HIST_FILTER__THREAD); 1897 return true; 1898 } 1899 1900 return false; 1901 } 1902 1903 static bool hists__filter_entry_by_symbol(struct hists *hists, 1904 struct hist_entry *he) 1905 { 1906 if (hists->symbol_filter_str != NULL && 1907 (!he->ms.sym || strstr(he->ms.sym->name, 1908 hists->symbol_filter_str) == NULL)) { 1909 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1910 return true; 1911 } 1912 1913 return false; 1914 } 1915 1916 static bool hists__filter_entry_by_socket(struct hists *hists, 1917 struct hist_entry *he) 1918 { 1919 if ((hists->socket_filter > -1) && 1920 (he->socket != hists->socket_filter)) { 1921 he->filtered |= (1 << HIST_FILTER__SOCKET); 1922 return true; 1923 } 1924 1925 return false; 1926 } 1927 1928 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1929 1930 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1931 { 1932 struct rb_node *nd; 1933 1934 hists->stats.nr_non_filtered_samples = 0; 1935 1936 hists__reset_filter_stats(hists); 1937 hists__reset_col_len(hists); 1938 1939 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1940 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1941 1942 if (filter(hists, h)) 1943 continue; 1944 1945 hists__remove_entry_filter(hists, h, type); 1946 } 1947 } 1948 1949 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1950 { 1951 struct rb_node **p = &root->rb_node; 1952 struct rb_node *parent = NULL; 1953 struct hist_entry *iter; 1954 struct rb_root new_root = RB_ROOT; 1955 struct rb_node *nd; 1956 1957 while (*p != NULL) { 1958 parent = *p; 1959 iter = rb_entry(parent, struct hist_entry, rb_node); 1960 1961 if (hist_entry__sort(he, iter) > 0) 1962 p = &(*p)->rb_left; 1963 else 1964 p = &(*p)->rb_right; 1965 } 1966 1967 rb_link_node(&he->rb_node, parent, p); 1968 rb_insert_color(&he->rb_node, root); 1969 1970 if (he->leaf || he->filtered) 1971 return; 1972 1973 nd = rb_first(&he->hroot_out); 1974 while (nd) { 1975 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1976 1977 nd = rb_next(nd); 1978 rb_erase(&h->rb_node, &he->hroot_out); 1979 1980 resort_filtered_entry(&new_root, h); 1981 } 1982 1983 he->hroot_out = new_root; 1984 } 1985 1986 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 1987 { 1988 struct rb_node *nd; 1989 struct rb_root new_root = RB_ROOT; 1990 1991 hists->stats.nr_non_filtered_samples = 0; 1992 1993 hists__reset_filter_stats(hists); 1994 hists__reset_col_len(hists); 1995 1996 nd = rb_first(&hists->entries); 1997 while (nd) { 1998 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1999 int ret; 2000 2001 ret = hist_entry__filter(h, type, arg); 2002 2003 /* 2004 * case 1. non-matching type 2005 * zero out the period, set filter marker and move to child 2006 */ 2007 if (ret < 0) { 2008 memset(&h->stat, 0, sizeof(h->stat)); 2009 h->filtered |= (1 << type); 2010 2011 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2012 } 2013 /* 2014 * case 2. matched type (filter out) 2015 * set filter marker and move to next 2016 */ 2017 else if (ret == 1) { 2018 h->filtered |= (1 << type); 2019 2020 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2021 } 2022 /* 2023 * case 3. ok (not filtered) 2024 * add period to hists and parents, erase the filter marker 2025 * and move to next sibling 2026 */ 2027 else { 2028 hists__remove_entry_filter(hists, h, type); 2029 2030 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2031 } 2032 } 2033 2034 hierarchy_recalc_total_periods(hists); 2035 2036 /* 2037 * resort output after applying a new filter since filter in a lower 2038 * hierarchy can change periods in a upper hierarchy. 2039 */ 2040 nd = rb_first(&hists->entries); 2041 while (nd) { 2042 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2043 2044 nd = rb_next(nd); 2045 rb_erase(&h->rb_node, &hists->entries); 2046 2047 resort_filtered_entry(&new_root, h); 2048 } 2049 2050 hists->entries = new_root; 2051 } 2052 2053 void hists__filter_by_thread(struct hists *hists) 2054 { 2055 if (symbol_conf.report_hierarchy) 2056 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2057 hists->thread_filter); 2058 else 2059 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2060 hists__filter_entry_by_thread); 2061 } 2062 2063 void hists__filter_by_dso(struct hists *hists) 2064 { 2065 if (symbol_conf.report_hierarchy) 2066 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2067 hists->dso_filter); 2068 else 2069 hists__filter_by_type(hists, HIST_FILTER__DSO, 2070 hists__filter_entry_by_dso); 2071 } 2072 2073 void hists__filter_by_symbol(struct hists *hists) 2074 { 2075 if (symbol_conf.report_hierarchy) 2076 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2077 hists->symbol_filter_str); 2078 else 2079 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2080 hists__filter_entry_by_symbol); 2081 } 2082 2083 void hists__filter_by_socket(struct hists *hists) 2084 { 2085 if (symbol_conf.report_hierarchy) 2086 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2087 &hists->socket_filter); 2088 else 2089 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2090 hists__filter_entry_by_socket); 2091 } 2092 2093 void events_stats__inc(struct events_stats *stats, u32 type) 2094 { 2095 ++stats->nr_events[0]; 2096 ++stats->nr_events[type]; 2097 } 2098 2099 void hists__inc_nr_events(struct hists *hists, u32 type) 2100 { 2101 events_stats__inc(&hists->stats, type); 2102 } 2103 2104 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2105 { 2106 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2107 if (!filtered) 2108 hists->stats.nr_non_filtered_samples++; 2109 } 2110 2111 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2112 struct hist_entry *pair) 2113 { 2114 struct rb_root *root; 2115 struct rb_node **p; 2116 struct rb_node *parent = NULL; 2117 struct hist_entry *he; 2118 int64_t cmp; 2119 2120 if (hists__has(hists, need_collapse)) 2121 root = &hists->entries_collapsed; 2122 else 2123 root = hists->entries_in; 2124 2125 p = &root->rb_node; 2126 2127 while (*p != NULL) { 2128 parent = *p; 2129 he = rb_entry(parent, struct hist_entry, rb_node_in); 2130 2131 cmp = hist_entry__collapse(he, pair); 2132 2133 if (!cmp) 2134 goto out; 2135 2136 if (cmp < 0) 2137 p = &(*p)->rb_left; 2138 else 2139 p = &(*p)->rb_right; 2140 } 2141 2142 he = hist_entry__new(pair, true); 2143 if (he) { 2144 memset(&he->stat, 0, sizeof(he->stat)); 2145 he->hists = hists; 2146 if (symbol_conf.cumulate_callchain) 2147 memset(he->stat_acc, 0, sizeof(he->stat)); 2148 rb_link_node(&he->rb_node_in, parent, p); 2149 rb_insert_color(&he->rb_node_in, root); 2150 hists__inc_stats(hists, he); 2151 he->dummy = true; 2152 } 2153 out: 2154 return he; 2155 } 2156 2157 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2158 struct rb_root *root, 2159 struct hist_entry *pair) 2160 { 2161 struct rb_node **p; 2162 struct rb_node *parent = NULL; 2163 struct hist_entry *he; 2164 struct perf_hpp_fmt *fmt; 2165 2166 p = &root->rb_node; 2167 while (*p != NULL) { 2168 int64_t cmp = 0; 2169 2170 parent = *p; 2171 he = rb_entry(parent, struct hist_entry, rb_node_in); 2172 2173 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2174 cmp = fmt->collapse(fmt, he, pair); 2175 if (cmp) 2176 break; 2177 } 2178 if (!cmp) 2179 goto out; 2180 2181 if (cmp < 0) 2182 p = &parent->rb_left; 2183 else 2184 p = &parent->rb_right; 2185 } 2186 2187 he = hist_entry__new(pair, true); 2188 if (he) { 2189 rb_link_node(&he->rb_node_in, parent, p); 2190 rb_insert_color(&he->rb_node_in, root); 2191 2192 he->dummy = true; 2193 he->hists = hists; 2194 memset(&he->stat, 0, sizeof(he->stat)); 2195 hists__inc_stats(hists, he); 2196 } 2197 out: 2198 return he; 2199 } 2200 2201 static struct hist_entry *hists__find_entry(struct hists *hists, 2202 struct hist_entry *he) 2203 { 2204 struct rb_node *n; 2205 2206 if (hists__has(hists, need_collapse)) 2207 n = hists->entries_collapsed.rb_node; 2208 else 2209 n = hists->entries_in->rb_node; 2210 2211 while (n) { 2212 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2213 int64_t cmp = hist_entry__collapse(iter, he); 2214 2215 if (cmp < 0) 2216 n = n->rb_left; 2217 else if (cmp > 0) 2218 n = n->rb_right; 2219 else 2220 return iter; 2221 } 2222 2223 return NULL; 2224 } 2225 2226 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2227 struct hist_entry *he) 2228 { 2229 struct rb_node *n = root->rb_node; 2230 2231 while (n) { 2232 struct hist_entry *iter; 2233 struct perf_hpp_fmt *fmt; 2234 int64_t cmp = 0; 2235 2236 iter = rb_entry(n, struct hist_entry, rb_node_in); 2237 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2238 cmp = fmt->collapse(fmt, iter, he); 2239 if (cmp) 2240 break; 2241 } 2242 2243 if (cmp < 0) 2244 n = n->rb_left; 2245 else if (cmp > 0) 2246 n = n->rb_right; 2247 else 2248 return iter; 2249 } 2250 2251 return NULL; 2252 } 2253 2254 static void hists__match_hierarchy(struct rb_root *leader_root, 2255 struct rb_root *other_root) 2256 { 2257 struct rb_node *nd; 2258 struct hist_entry *pos, *pair; 2259 2260 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2261 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2262 pair = hists__find_hierarchy_entry(other_root, pos); 2263 2264 if (pair) { 2265 hist_entry__add_pair(pair, pos); 2266 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2267 } 2268 } 2269 } 2270 2271 /* 2272 * Look for pairs to link to the leader buckets (hist_entries): 2273 */ 2274 void hists__match(struct hists *leader, struct hists *other) 2275 { 2276 struct rb_root *root; 2277 struct rb_node *nd; 2278 struct hist_entry *pos, *pair; 2279 2280 if (symbol_conf.report_hierarchy) { 2281 /* hierarchy report always collapses entries */ 2282 return hists__match_hierarchy(&leader->entries_collapsed, 2283 &other->entries_collapsed); 2284 } 2285 2286 if (hists__has(leader, need_collapse)) 2287 root = &leader->entries_collapsed; 2288 else 2289 root = leader->entries_in; 2290 2291 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2292 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2293 pair = hists__find_entry(other, pos); 2294 2295 if (pair) 2296 hist_entry__add_pair(pair, pos); 2297 } 2298 } 2299 2300 static int hists__link_hierarchy(struct hists *leader_hists, 2301 struct hist_entry *parent, 2302 struct rb_root *leader_root, 2303 struct rb_root *other_root) 2304 { 2305 struct rb_node *nd; 2306 struct hist_entry *pos, *leader; 2307 2308 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2309 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2310 2311 if (hist_entry__has_pairs(pos)) { 2312 bool found = false; 2313 2314 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2315 if (leader->hists == leader_hists) { 2316 found = true; 2317 break; 2318 } 2319 } 2320 if (!found) 2321 return -1; 2322 } else { 2323 leader = add_dummy_hierarchy_entry(leader_hists, 2324 leader_root, pos); 2325 if (leader == NULL) 2326 return -1; 2327 2328 /* do not point parent in the pos */ 2329 leader->parent_he = parent; 2330 2331 hist_entry__add_pair(pos, leader); 2332 } 2333 2334 if (!pos->leaf) { 2335 if (hists__link_hierarchy(leader_hists, leader, 2336 &leader->hroot_in, 2337 &pos->hroot_in) < 0) 2338 return -1; 2339 } 2340 } 2341 return 0; 2342 } 2343 2344 /* 2345 * Look for entries in the other hists that are not present in the leader, if 2346 * we find them, just add a dummy entry on the leader hists, with period=0, 2347 * nr_events=0, to serve as the list header. 2348 */ 2349 int hists__link(struct hists *leader, struct hists *other) 2350 { 2351 struct rb_root *root; 2352 struct rb_node *nd; 2353 struct hist_entry *pos, *pair; 2354 2355 if (symbol_conf.report_hierarchy) { 2356 /* hierarchy report always collapses entries */ 2357 return hists__link_hierarchy(leader, NULL, 2358 &leader->entries_collapsed, 2359 &other->entries_collapsed); 2360 } 2361 2362 if (hists__has(other, need_collapse)) 2363 root = &other->entries_collapsed; 2364 else 2365 root = other->entries_in; 2366 2367 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2368 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2369 2370 if (!hist_entry__has_pairs(pos)) { 2371 pair = hists__add_dummy_entry(leader, pos); 2372 if (pair == NULL) 2373 return -1; 2374 hist_entry__add_pair(pos, pair); 2375 } 2376 } 2377 2378 return 0; 2379 } 2380 2381 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2382 struct perf_sample *sample, bool nonany_branch_mode) 2383 { 2384 struct branch_info *bi; 2385 2386 /* If we have branch cycles always annotate them. */ 2387 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2388 int i; 2389 2390 bi = sample__resolve_bstack(sample, al); 2391 if (bi) { 2392 struct addr_map_symbol *prev = NULL; 2393 2394 /* 2395 * Ignore errors, still want to process the 2396 * other entries. 2397 * 2398 * For non standard branch modes always 2399 * force no IPC (prev == NULL) 2400 * 2401 * Note that perf stores branches reversed from 2402 * program order! 2403 */ 2404 for (i = bs->nr - 1; i >= 0; i--) { 2405 addr_map_symbol__account_cycles(&bi[i].from, 2406 nonany_branch_mode ? NULL : prev, 2407 bi[i].flags.cycles); 2408 prev = &bi[i].to; 2409 } 2410 free(bi); 2411 } 2412 } 2413 } 2414 2415 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2416 { 2417 struct perf_evsel *pos; 2418 size_t ret = 0; 2419 2420 evlist__for_each_entry(evlist, pos) { 2421 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2422 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2423 } 2424 2425 return ret; 2426 } 2427 2428 2429 u64 hists__total_period(struct hists *hists) 2430 { 2431 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2432 hists->stats.total_period; 2433 } 2434 2435 int parse_filter_percentage(const struct option *opt __maybe_unused, 2436 const char *arg, int unset __maybe_unused) 2437 { 2438 if (!strcmp(arg, "relative")) 2439 symbol_conf.filter_relative = true; 2440 else if (!strcmp(arg, "absolute")) 2441 symbol_conf.filter_relative = false; 2442 else 2443 return -1; 2444 2445 return 0; 2446 } 2447 2448 int perf_hist_config(const char *var, const char *value) 2449 { 2450 if (!strcmp(var, "hist.percentage")) 2451 return parse_filter_percentage(NULL, value, 0); 2452 2453 return 0; 2454 } 2455 2456 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2457 { 2458 memset(hists, 0, sizeof(*hists)); 2459 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2460 hists->entries_in = &hists->entries_in_array[0]; 2461 hists->entries_collapsed = RB_ROOT; 2462 hists->entries = RB_ROOT; 2463 pthread_mutex_init(&hists->lock, NULL); 2464 hists->socket_filter = -1; 2465 hists->hpp_list = hpp_list; 2466 INIT_LIST_HEAD(&hists->hpp_formats); 2467 return 0; 2468 } 2469 2470 static void hists__delete_remaining_entries(struct rb_root *root) 2471 { 2472 struct rb_node *node; 2473 struct hist_entry *he; 2474 2475 while (!RB_EMPTY_ROOT(root)) { 2476 node = rb_first(root); 2477 rb_erase(node, root); 2478 2479 he = rb_entry(node, struct hist_entry, rb_node_in); 2480 hist_entry__delete(he); 2481 } 2482 } 2483 2484 static void hists__delete_all_entries(struct hists *hists) 2485 { 2486 hists__delete_entries(hists); 2487 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2488 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2489 hists__delete_remaining_entries(&hists->entries_collapsed); 2490 } 2491 2492 static void hists_evsel__exit(struct perf_evsel *evsel) 2493 { 2494 struct hists *hists = evsel__hists(evsel); 2495 struct perf_hpp_fmt *fmt, *pos; 2496 struct perf_hpp_list_node *node, *tmp; 2497 2498 hists__delete_all_entries(hists); 2499 2500 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2501 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2502 list_del(&fmt->list); 2503 free(fmt); 2504 } 2505 list_del(&node->list); 2506 free(node); 2507 } 2508 } 2509 2510 static int hists_evsel__init(struct perf_evsel *evsel) 2511 { 2512 struct hists *hists = evsel__hists(evsel); 2513 2514 __hists__init(hists, &perf_hpp_list); 2515 return 0; 2516 } 2517 2518 /* 2519 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2520 * stored in the rbtree... 2521 */ 2522 2523 int hists__init(void) 2524 { 2525 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2526 hists_evsel__init, 2527 hists_evsel__exit); 2528 if (err) 2529 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2530 2531 return err; 2532 } 2533 2534 void perf_hpp_list__init(struct perf_hpp_list *list) 2535 { 2536 INIT_LIST_HEAD(&list->fields); 2537 INIT_LIST_HEAD(&list->sorts); 2538 } 2539