xref: /openbmc/linux/tools/perf/util/hist.c (revision a8c5cb99)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "units.h"
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "annotate.h"
13 #include "srcline.h"
14 #include "thread.h"
15 #include "ui/progress.h"
16 #include <errno.h>
17 #include <math.h>
18 #include <inttypes.h>
19 #include <sys/param.h>
20 
21 static bool hists__filter_entry_by_dso(struct hists *hists,
22 				       struct hist_entry *he);
23 static bool hists__filter_entry_by_thread(struct hists *hists,
24 					  struct hist_entry *he);
25 static bool hists__filter_entry_by_symbol(struct hists *hists,
26 					  struct hist_entry *he);
27 static bool hists__filter_entry_by_socket(struct hists *hists,
28 					  struct hist_entry *he);
29 
30 u16 hists__col_len(struct hists *hists, enum hist_column col)
31 {
32 	return hists->col_len[col];
33 }
34 
35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36 {
37 	hists->col_len[col] = len;
38 }
39 
40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42 	if (len > hists__col_len(hists, col)) {
43 		hists__set_col_len(hists, col, len);
44 		return true;
45 	}
46 	return false;
47 }
48 
49 void hists__reset_col_len(struct hists *hists)
50 {
51 	enum hist_column col;
52 
53 	for (col = 0; col < HISTC_NR_COLS; ++col)
54 		hists__set_col_len(hists, col, 0);
55 }
56 
57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58 {
59 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60 
61 	if (hists__col_len(hists, dso) < unresolved_col_width &&
62 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63 	    !symbol_conf.dso_list)
64 		hists__set_col_len(hists, dso, unresolved_col_width);
65 }
66 
67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68 {
69 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 	int symlen;
71 	u16 len;
72 
73 	/*
74 	 * +4 accounts for '[x] ' priv level info
75 	 * +2 accounts for 0x prefix on raw addresses
76 	 * +3 accounts for ' y ' symtab origin info
77 	 */
78 	if (h->ms.sym) {
79 		symlen = h->ms.sym->namelen + 4;
80 		if (verbose > 0)
81 			symlen += BITS_PER_LONG / 4 + 2 + 3;
82 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 	} else {
84 		symlen = unresolved_col_width + 4 + 2;
85 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
87 	}
88 
89 	len = thread__comm_len(h->thread);
90 	if (hists__new_col_len(hists, HISTC_COMM, len))
91 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
92 
93 	if (h->ms.map) {
94 		len = dso__name_len(h->ms.map->dso);
95 		hists__new_col_len(hists, HISTC_DSO, len);
96 	}
97 
98 	if (h->parent)
99 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100 
101 	if (h->branch_info) {
102 		if (h->branch_info->from.sym) {
103 			symlen = (int)h->branch_info->from.sym->namelen + 4;
104 			if (verbose > 0)
105 				symlen += BITS_PER_LONG / 4 + 2 + 3;
106 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107 
108 			symlen = dso__name_len(h->branch_info->from.map->dso);
109 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110 		} else {
111 			symlen = unresolved_col_width + 4 + 2;
112 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114 		}
115 
116 		if (h->branch_info->to.sym) {
117 			symlen = (int)h->branch_info->to.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->to.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128 		}
129 
130 		if (h->branch_info->srcline_from)
131 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132 					strlen(h->branch_info->srcline_from));
133 		if (h->branch_info->srcline_to)
134 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
135 					strlen(h->branch_info->srcline_to));
136 	}
137 
138 	if (h->mem_info) {
139 		if (h->mem_info->daddr.sym) {
140 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
141 			       + unresolved_col_width + 2;
142 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143 					   symlen);
144 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145 					   symlen + 1);
146 		} else {
147 			symlen = unresolved_col_width + 4 + 2;
148 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149 					   symlen);
150 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151 					   symlen);
152 		}
153 
154 		if (h->mem_info->iaddr.sym) {
155 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156 			       + unresolved_col_width + 2;
157 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158 					   symlen);
159 		} else {
160 			symlen = unresolved_col_width + 4 + 2;
161 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162 					   symlen);
163 		}
164 
165 		if (h->mem_info->daddr.map) {
166 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
167 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168 					   symlen);
169 		} else {
170 			symlen = unresolved_col_width + 4 + 2;
171 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172 		}
173 
174 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175 				   unresolved_col_width + 4 + 2);
176 
177 	} else {
178 		symlen = unresolved_col_width + 4 + 2;
179 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 	}
183 
184 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185 	hists__new_col_len(hists, HISTC_CPU, 3);
186 	hists__new_col_len(hists, HISTC_SOCKET, 6);
187 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193 
194 	if (h->srcline) {
195 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196 		hists__new_col_len(hists, HISTC_SRCLINE, len);
197 	}
198 
199 	if (h->srcfile)
200 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201 
202 	if (h->transaction)
203 		hists__new_col_len(hists, HISTC_TRANSACTION,
204 				   hist_entry__transaction_len());
205 
206 	if (h->trace_output)
207 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208 }
209 
210 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211 {
212 	struct rb_node *next = rb_first(&hists->entries);
213 	struct hist_entry *n;
214 	int row = 0;
215 
216 	hists__reset_col_len(hists);
217 
218 	while (next && row++ < max_rows) {
219 		n = rb_entry(next, struct hist_entry, rb_node);
220 		if (!n->filtered)
221 			hists__calc_col_len(hists, n);
222 		next = rb_next(&n->rb_node);
223 	}
224 }
225 
226 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227 					unsigned int cpumode, u64 period)
228 {
229 	switch (cpumode) {
230 	case PERF_RECORD_MISC_KERNEL:
231 		he_stat->period_sys += period;
232 		break;
233 	case PERF_RECORD_MISC_USER:
234 		he_stat->period_us += period;
235 		break;
236 	case PERF_RECORD_MISC_GUEST_KERNEL:
237 		he_stat->period_guest_sys += period;
238 		break;
239 	case PERF_RECORD_MISC_GUEST_USER:
240 		he_stat->period_guest_us += period;
241 		break;
242 	default:
243 		break;
244 	}
245 }
246 
247 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248 				u64 weight)
249 {
250 
251 	he_stat->period		+= period;
252 	he_stat->weight		+= weight;
253 	he_stat->nr_events	+= 1;
254 }
255 
256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257 {
258 	dest->period		+= src->period;
259 	dest->period_sys	+= src->period_sys;
260 	dest->period_us		+= src->period_us;
261 	dest->period_guest_sys	+= src->period_guest_sys;
262 	dest->period_guest_us	+= src->period_guest_us;
263 	dest->nr_events		+= src->nr_events;
264 	dest->weight		+= src->weight;
265 }
266 
267 static void he_stat__decay(struct he_stat *he_stat)
268 {
269 	he_stat->period = (he_stat->period * 7) / 8;
270 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271 	/* XXX need decay for weight too? */
272 }
273 
274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275 
276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277 {
278 	u64 prev_period = he->stat.period;
279 	u64 diff;
280 
281 	if (prev_period == 0)
282 		return true;
283 
284 	he_stat__decay(&he->stat);
285 	if (symbol_conf.cumulate_callchain)
286 		he_stat__decay(he->stat_acc);
287 	decay_callchain(he->callchain);
288 
289 	diff = prev_period - he->stat.period;
290 
291 	if (!he->depth) {
292 		hists->stats.total_period -= diff;
293 		if (!he->filtered)
294 			hists->stats.total_non_filtered_period -= diff;
295 	}
296 
297 	if (!he->leaf) {
298 		struct hist_entry *child;
299 		struct rb_node *node = rb_first(&he->hroot_out);
300 		while (node) {
301 			child = rb_entry(node, struct hist_entry, rb_node);
302 			node = rb_next(node);
303 
304 			if (hists__decay_entry(hists, child))
305 				hists__delete_entry(hists, child);
306 		}
307 	}
308 
309 	return he->stat.period == 0;
310 }
311 
312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313 {
314 	struct rb_root *root_in;
315 	struct rb_root *root_out;
316 
317 	if (he->parent_he) {
318 		root_in  = &he->parent_he->hroot_in;
319 		root_out = &he->parent_he->hroot_out;
320 	} else {
321 		if (hists__has(hists, need_collapse))
322 			root_in = &hists->entries_collapsed;
323 		else
324 			root_in = hists->entries_in;
325 		root_out = &hists->entries;
326 	}
327 
328 	rb_erase(&he->rb_node_in, root_in);
329 	rb_erase(&he->rb_node, root_out);
330 
331 	--hists->nr_entries;
332 	if (!he->filtered)
333 		--hists->nr_non_filtered_entries;
334 
335 	hist_entry__delete(he);
336 }
337 
338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339 {
340 	struct rb_node *next = rb_first(&hists->entries);
341 	struct hist_entry *n;
342 
343 	while (next) {
344 		n = rb_entry(next, struct hist_entry, rb_node);
345 		next = rb_next(&n->rb_node);
346 		if (((zap_user && n->level == '.') ||
347 		     (zap_kernel && n->level != '.') ||
348 		     hists__decay_entry(hists, n))) {
349 			hists__delete_entry(hists, n);
350 		}
351 	}
352 }
353 
354 void hists__delete_entries(struct hists *hists)
355 {
356 	struct rb_node *next = rb_first(&hists->entries);
357 	struct hist_entry *n;
358 
359 	while (next) {
360 		n = rb_entry(next, struct hist_entry, rb_node);
361 		next = rb_next(&n->rb_node);
362 
363 		hists__delete_entry(hists, n);
364 	}
365 }
366 
367 /*
368  * histogram, sorted on item, collects periods
369  */
370 
371 static int hist_entry__init(struct hist_entry *he,
372 			    struct hist_entry *template,
373 			    bool sample_self,
374 			    size_t callchain_size)
375 {
376 	*he = *template;
377 	he->callchain_size = callchain_size;
378 
379 	if (symbol_conf.cumulate_callchain) {
380 		he->stat_acc = malloc(sizeof(he->stat));
381 		if (he->stat_acc == NULL)
382 			return -ENOMEM;
383 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
384 		if (!sample_self)
385 			memset(&he->stat, 0, sizeof(he->stat));
386 	}
387 
388 	map__get(he->ms.map);
389 
390 	if (he->branch_info) {
391 		/*
392 		 * This branch info is (a part of) allocated from
393 		 * sample__resolve_bstack() and will be freed after
394 		 * adding new entries.  So we need to save a copy.
395 		 */
396 		he->branch_info = malloc(sizeof(*he->branch_info));
397 		if (he->branch_info == NULL) {
398 			map__zput(he->ms.map);
399 			free(he->stat_acc);
400 			return -ENOMEM;
401 		}
402 
403 		memcpy(he->branch_info, template->branch_info,
404 		       sizeof(*he->branch_info));
405 
406 		map__get(he->branch_info->from.map);
407 		map__get(he->branch_info->to.map);
408 	}
409 
410 	if (he->mem_info) {
411 		map__get(he->mem_info->iaddr.map);
412 		map__get(he->mem_info->daddr.map);
413 	}
414 
415 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
416 		callchain_init(he->callchain);
417 
418 	if (he->raw_data) {
419 		he->raw_data = memdup(he->raw_data, he->raw_size);
420 
421 		if (he->raw_data == NULL) {
422 			map__put(he->ms.map);
423 			if (he->branch_info) {
424 				map__put(he->branch_info->from.map);
425 				map__put(he->branch_info->to.map);
426 				free(he->branch_info);
427 			}
428 			if (he->mem_info) {
429 				map__put(he->mem_info->iaddr.map);
430 				map__put(he->mem_info->daddr.map);
431 			}
432 			free(he->stat_acc);
433 			return -ENOMEM;
434 		}
435 	}
436 	INIT_LIST_HEAD(&he->pairs.node);
437 	thread__get(he->thread);
438 	he->hroot_in  = RB_ROOT;
439 	he->hroot_out = RB_ROOT;
440 
441 	if (!symbol_conf.report_hierarchy)
442 		he->leaf = true;
443 
444 	return 0;
445 }
446 
447 static void *hist_entry__zalloc(size_t size)
448 {
449 	return zalloc(size + sizeof(struct hist_entry));
450 }
451 
452 static void hist_entry__free(void *ptr)
453 {
454 	free(ptr);
455 }
456 
457 static struct hist_entry_ops default_ops = {
458 	.new	= hist_entry__zalloc,
459 	.free	= hist_entry__free,
460 };
461 
462 static struct hist_entry *hist_entry__new(struct hist_entry *template,
463 					  bool sample_self)
464 {
465 	struct hist_entry_ops *ops = template->ops;
466 	size_t callchain_size = 0;
467 	struct hist_entry *he;
468 	int err = 0;
469 
470 	if (!ops)
471 		ops = template->ops = &default_ops;
472 
473 	if (symbol_conf.use_callchain)
474 		callchain_size = sizeof(struct callchain_root);
475 
476 	he = ops->new(callchain_size);
477 	if (he) {
478 		err = hist_entry__init(he, template, sample_self, callchain_size);
479 		if (err) {
480 			ops->free(he);
481 			he = NULL;
482 		}
483 	}
484 
485 	return he;
486 }
487 
488 static u8 symbol__parent_filter(const struct symbol *parent)
489 {
490 	if (symbol_conf.exclude_other && parent == NULL)
491 		return 1 << HIST_FILTER__PARENT;
492 	return 0;
493 }
494 
495 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
496 {
497 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
498 		return;
499 
500 	he->hists->callchain_period += period;
501 	if (!he->filtered)
502 		he->hists->callchain_non_filtered_period += period;
503 }
504 
505 static struct hist_entry *hists__findnew_entry(struct hists *hists,
506 					       struct hist_entry *entry,
507 					       struct addr_location *al,
508 					       bool sample_self)
509 {
510 	struct rb_node **p;
511 	struct rb_node *parent = NULL;
512 	struct hist_entry *he;
513 	int64_t cmp;
514 	u64 period = entry->stat.period;
515 	u64 weight = entry->stat.weight;
516 
517 	p = &hists->entries_in->rb_node;
518 
519 	while (*p != NULL) {
520 		parent = *p;
521 		he = rb_entry(parent, struct hist_entry, rb_node_in);
522 
523 		/*
524 		 * Make sure that it receives arguments in a same order as
525 		 * hist_entry__collapse() so that we can use an appropriate
526 		 * function when searching an entry regardless which sort
527 		 * keys were used.
528 		 */
529 		cmp = hist_entry__cmp(he, entry);
530 
531 		if (!cmp) {
532 			if (sample_self) {
533 				he_stat__add_period(&he->stat, period, weight);
534 				hist_entry__add_callchain_period(he, period);
535 			}
536 			if (symbol_conf.cumulate_callchain)
537 				he_stat__add_period(he->stat_acc, period, weight);
538 
539 			/*
540 			 * This mem info was allocated from sample__resolve_mem
541 			 * and will not be used anymore.
542 			 */
543 			mem_info__zput(entry->mem_info);
544 
545 			/* If the map of an existing hist_entry has
546 			 * become out-of-date due to an exec() or
547 			 * similar, update it.  Otherwise we will
548 			 * mis-adjust symbol addresses when computing
549 			 * the history counter to increment.
550 			 */
551 			if (he->ms.map != entry->ms.map) {
552 				map__put(he->ms.map);
553 				he->ms.map = map__get(entry->ms.map);
554 			}
555 			goto out;
556 		}
557 
558 		if (cmp < 0)
559 			p = &(*p)->rb_left;
560 		else
561 			p = &(*p)->rb_right;
562 	}
563 
564 	he = hist_entry__new(entry, sample_self);
565 	if (!he)
566 		return NULL;
567 
568 	if (sample_self)
569 		hist_entry__add_callchain_period(he, period);
570 	hists->nr_entries++;
571 
572 	rb_link_node(&he->rb_node_in, parent, p);
573 	rb_insert_color(&he->rb_node_in, hists->entries_in);
574 out:
575 	if (sample_self)
576 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
577 	if (symbol_conf.cumulate_callchain)
578 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
579 	return he;
580 }
581 
582 static struct hist_entry*
583 __hists__add_entry(struct hists *hists,
584 		   struct addr_location *al,
585 		   struct symbol *sym_parent,
586 		   struct branch_info *bi,
587 		   struct mem_info *mi,
588 		   struct perf_sample *sample,
589 		   bool sample_self,
590 		   struct hist_entry_ops *ops)
591 {
592 	struct namespaces *ns = thread__namespaces(al->thread);
593 	struct hist_entry entry = {
594 		.thread	= al->thread,
595 		.comm = thread__comm(al->thread),
596 		.cgroup_id = {
597 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
598 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
599 		},
600 		.ms = {
601 			.map	= al->map,
602 			.sym	= al->sym,
603 		},
604 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
605 		.socket	 = al->socket,
606 		.cpu	 = al->cpu,
607 		.cpumode = al->cpumode,
608 		.ip	 = al->addr,
609 		.level	 = al->level,
610 		.stat = {
611 			.nr_events = 1,
612 			.period	= sample->period,
613 			.weight = sample->weight,
614 		},
615 		.parent = sym_parent,
616 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
617 		.hists	= hists,
618 		.branch_info = bi,
619 		.mem_info = mi,
620 		.transaction = sample->transaction,
621 		.raw_data = sample->raw_data,
622 		.raw_size = sample->raw_size,
623 		.ops = ops,
624 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
625 
626 	if (!hists->has_callchains && he && he->callchain_size != 0)
627 		hists->has_callchains = true;
628 	return he;
629 }
630 
631 struct hist_entry *hists__add_entry(struct hists *hists,
632 				    struct addr_location *al,
633 				    struct symbol *sym_parent,
634 				    struct branch_info *bi,
635 				    struct mem_info *mi,
636 				    struct perf_sample *sample,
637 				    bool sample_self)
638 {
639 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
640 				  sample, sample_self, NULL);
641 }
642 
643 struct hist_entry *hists__add_entry_ops(struct hists *hists,
644 					struct hist_entry_ops *ops,
645 					struct addr_location *al,
646 					struct symbol *sym_parent,
647 					struct branch_info *bi,
648 					struct mem_info *mi,
649 					struct perf_sample *sample,
650 					bool sample_self)
651 {
652 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
653 				  sample, sample_self, ops);
654 }
655 
656 static int
657 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
658 		    struct addr_location *al __maybe_unused)
659 {
660 	return 0;
661 }
662 
663 static int
664 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
665 			struct addr_location *al __maybe_unused)
666 {
667 	return 0;
668 }
669 
670 static int
671 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
672 {
673 	struct perf_sample *sample = iter->sample;
674 	struct mem_info *mi;
675 
676 	mi = sample__resolve_mem(sample, al);
677 	if (mi == NULL)
678 		return -ENOMEM;
679 
680 	iter->priv = mi;
681 	return 0;
682 }
683 
684 static int
685 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
686 {
687 	u64 cost;
688 	struct mem_info *mi = iter->priv;
689 	struct hists *hists = evsel__hists(iter->evsel);
690 	struct perf_sample *sample = iter->sample;
691 	struct hist_entry *he;
692 
693 	if (mi == NULL)
694 		return -EINVAL;
695 
696 	cost = sample->weight;
697 	if (!cost)
698 		cost = 1;
699 
700 	/*
701 	 * must pass period=weight in order to get the correct
702 	 * sorting from hists__collapse_resort() which is solely
703 	 * based on periods. We want sorting be done on nr_events * weight
704 	 * and this is indirectly achieved by passing period=weight here
705 	 * and the he_stat__add_period() function.
706 	 */
707 	sample->period = cost;
708 
709 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
710 			      sample, true);
711 	if (!he)
712 		return -ENOMEM;
713 
714 	iter->he = he;
715 	return 0;
716 }
717 
718 static int
719 iter_finish_mem_entry(struct hist_entry_iter *iter,
720 		      struct addr_location *al __maybe_unused)
721 {
722 	struct perf_evsel *evsel = iter->evsel;
723 	struct hists *hists = evsel__hists(evsel);
724 	struct hist_entry *he = iter->he;
725 	int err = -EINVAL;
726 
727 	if (he == NULL)
728 		goto out;
729 
730 	hists__inc_nr_samples(hists, he->filtered);
731 
732 	err = hist_entry__append_callchain(he, iter->sample);
733 
734 out:
735 	/*
736 	 * We don't need to free iter->priv (mem_info) here since the mem info
737 	 * was either already freed in hists__findnew_entry() or passed to a
738 	 * new hist entry by hist_entry__new().
739 	 */
740 	iter->priv = NULL;
741 
742 	iter->he = NULL;
743 	return err;
744 }
745 
746 static int
747 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
748 {
749 	struct branch_info *bi;
750 	struct perf_sample *sample = iter->sample;
751 
752 	bi = sample__resolve_bstack(sample, al);
753 	if (!bi)
754 		return -ENOMEM;
755 
756 	iter->curr = 0;
757 	iter->total = sample->branch_stack->nr;
758 
759 	iter->priv = bi;
760 	return 0;
761 }
762 
763 static int
764 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
765 			     struct addr_location *al __maybe_unused)
766 {
767 	return 0;
768 }
769 
770 static int
771 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
772 {
773 	struct branch_info *bi = iter->priv;
774 	int i = iter->curr;
775 
776 	if (bi == NULL)
777 		return 0;
778 
779 	if (iter->curr >= iter->total)
780 		return 0;
781 
782 	al->map = bi[i].to.map;
783 	al->sym = bi[i].to.sym;
784 	al->addr = bi[i].to.addr;
785 	return 1;
786 }
787 
788 static int
789 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
790 {
791 	struct branch_info *bi;
792 	struct perf_evsel *evsel = iter->evsel;
793 	struct hists *hists = evsel__hists(evsel);
794 	struct perf_sample *sample = iter->sample;
795 	struct hist_entry *he = NULL;
796 	int i = iter->curr;
797 	int err = 0;
798 
799 	bi = iter->priv;
800 
801 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
802 		goto out;
803 
804 	/*
805 	 * The report shows the percentage of total branches captured
806 	 * and not events sampled. Thus we use a pseudo period of 1.
807 	 */
808 	sample->period = 1;
809 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
810 
811 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
812 			      sample, true);
813 	if (he == NULL)
814 		return -ENOMEM;
815 
816 	hists__inc_nr_samples(hists, he->filtered);
817 
818 out:
819 	iter->he = he;
820 	iter->curr++;
821 	return err;
822 }
823 
824 static int
825 iter_finish_branch_entry(struct hist_entry_iter *iter,
826 			 struct addr_location *al __maybe_unused)
827 {
828 	zfree(&iter->priv);
829 	iter->he = NULL;
830 
831 	return iter->curr >= iter->total ? 0 : -1;
832 }
833 
834 static int
835 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
836 			  struct addr_location *al __maybe_unused)
837 {
838 	return 0;
839 }
840 
841 static int
842 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
843 {
844 	struct perf_evsel *evsel = iter->evsel;
845 	struct perf_sample *sample = iter->sample;
846 	struct hist_entry *he;
847 
848 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
849 			      sample, true);
850 	if (he == NULL)
851 		return -ENOMEM;
852 
853 	iter->he = he;
854 	return 0;
855 }
856 
857 static int
858 iter_finish_normal_entry(struct hist_entry_iter *iter,
859 			 struct addr_location *al __maybe_unused)
860 {
861 	struct hist_entry *he = iter->he;
862 	struct perf_evsel *evsel = iter->evsel;
863 	struct perf_sample *sample = iter->sample;
864 
865 	if (he == NULL)
866 		return 0;
867 
868 	iter->he = NULL;
869 
870 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
871 
872 	return hist_entry__append_callchain(he, sample);
873 }
874 
875 static int
876 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
877 			      struct addr_location *al __maybe_unused)
878 {
879 	struct hist_entry **he_cache;
880 
881 	callchain_cursor_commit(&callchain_cursor);
882 
883 	/*
884 	 * This is for detecting cycles or recursions so that they're
885 	 * cumulated only one time to prevent entries more than 100%
886 	 * overhead.
887 	 */
888 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
889 	if (he_cache == NULL)
890 		return -ENOMEM;
891 
892 	iter->priv = he_cache;
893 	iter->curr = 0;
894 
895 	return 0;
896 }
897 
898 static int
899 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
900 				 struct addr_location *al)
901 {
902 	struct perf_evsel *evsel = iter->evsel;
903 	struct hists *hists = evsel__hists(evsel);
904 	struct perf_sample *sample = iter->sample;
905 	struct hist_entry **he_cache = iter->priv;
906 	struct hist_entry *he;
907 	int err = 0;
908 
909 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
910 			      sample, true);
911 	if (he == NULL)
912 		return -ENOMEM;
913 
914 	iter->he = he;
915 	he_cache[iter->curr++] = he;
916 
917 	hist_entry__append_callchain(he, sample);
918 
919 	/*
920 	 * We need to re-initialize the cursor since callchain_append()
921 	 * advanced the cursor to the end.
922 	 */
923 	callchain_cursor_commit(&callchain_cursor);
924 
925 	hists__inc_nr_samples(hists, he->filtered);
926 
927 	return err;
928 }
929 
930 static int
931 iter_next_cumulative_entry(struct hist_entry_iter *iter,
932 			   struct addr_location *al)
933 {
934 	struct callchain_cursor_node *node;
935 
936 	node = callchain_cursor_current(&callchain_cursor);
937 	if (node == NULL)
938 		return 0;
939 
940 	return fill_callchain_info(al, node, iter->hide_unresolved);
941 }
942 
943 static int
944 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
945 			       struct addr_location *al)
946 {
947 	struct perf_evsel *evsel = iter->evsel;
948 	struct perf_sample *sample = iter->sample;
949 	struct hist_entry **he_cache = iter->priv;
950 	struct hist_entry *he;
951 	struct hist_entry he_tmp = {
952 		.hists = evsel__hists(evsel),
953 		.cpu = al->cpu,
954 		.thread = al->thread,
955 		.comm = thread__comm(al->thread),
956 		.ip = al->addr,
957 		.ms = {
958 			.map = al->map,
959 			.sym = al->sym,
960 		},
961 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
962 		.parent = iter->parent,
963 		.raw_data = sample->raw_data,
964 		.raw_size = sample->raw_size,
965 	};
966 	int i;
967 	struct callchain_cursor cursor;
968 
969 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
970 
971 	callchain_cursor_advance(&callchain_cursor);
972 
973 	/*
974 	 * Check if there's duplicate entries in the callchain.
975 	 * It's possible that it has cycles or recursive calls.
976 	 */
977 	for (i = 0; i < iter->curr; i++) {
978 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
979 			/* to avoid calling callback function */
980 			iter->he = NULL;
981 			return 0;
982 		}
983 	}
984 
985 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
986 			      sample, false);
987 	if (he == NULL)
988 		return -ENOMEM;
989 
990 	iter->he = he;
991 	he_cache[iter->curr++] = he;
992 
993 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
994 		callchain_append(he->callchain, &cursor, sample->period);
995 	return 0;
996 }
997 
998 static int
999 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1000 			     struct addr_location *al __maybe_unused)
1001 {
1002 	zfree(&iter->priv);
1003 	iter->he = NULL;
1004 
1005 	return 0;
1006 }
1007 
1008 const struct hist_iter_ops hist_iter_mem = {
1009 	.prepare_entry 		= iter_prepare_mem_entry,
1010 	.add_single_entry 	= iter_add_single_mem_entry,
1011 	.next_entry 		= iter_next_nop_entry,
1012 	.add_next_entry 	= iter_add_next_nop_entry,
1013 	.finish_entry 		= iter_finish_mem_entry,
1014 };
1015 
1016 const struct hist_iter_ops hist_iter_branch = {
1017 	.prepare_entry 		= iter_prepare_branch_entry,
1018 	.add_single_entry 	= iter_add_single_branch_entry,
1019 	.next_entry 		= iter_next_branch_entry,
1020 	.add_next_entry 	= iter_add_next_branch_entry,
1021 	.finish_entry 		= iter_finish_branch_entry,
1022 };
1023 
1024 const struct hist_iter_ops hist_iter_normal = {
1025 	.prepare_entry 		= iter_prepare_normal_entry,
1026 	.add_single_entry 	= iter_add_single_normal_entry,
1027 	.next_entry 		= iter_next_nop_entry,
1028 	.add_next_entry 	= iter_add_next_nop_entry,
1029 	.finish_entry 		= iter_finish_normal_entry,
1030 };
1031 
1032 const struct hist_iter_ops hist_iter_cumulative = {
1033 	.prepare_entry 		= iter_prepare_cumulative_entry,
1034 	.add_single_entry 	= iter_add_single_cumulative_entry,
1035 	.next_entry 		= iter_next_cumulative_entry,
1036 	.add_next_entry 	= iter_add_next_cumulative_entry,
1037 	.finish_entry 		= iter_finish_cumulative_entry,
1038 };
1039 
1040 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1041 			 int max_stack_depth, void *arg)
1042 {
1043 	int err, err2;
1044 	struct map *alm = NULL;
1045 
1046 	if (al)
1047 		alm = map__get(al->map);
1048 
1049 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1050 					iter->evsel, al, max_stack_depth);
1051 	if (err)
1052 		return err;
1053 
1054 	err = iter->ops->prepare_entry(iter, al);
1055 	if (err)
1056 		goto out;
1057 
1058 	err = iter->ops->add_single_entry(iter, al);
1059 	if (err)
1060 		goto out;
1061 
1062 	if (iter->he && iter->add_entry_cb) {
1063 		err = iter->add_entry_cb(iter, al, true, arg);
1064 		if (err)
1065 			goto out;
1066 	}
1067 
1068 	while (iter->ops->next_entry(iter, al)) {
1069 		err = iter->ops->add_next_entry(iter, al);
1070 		if (err)
1071 			break;
1072 
1073 		if (iter->he && iter->add_entry_cb) {
1074 			err = iter->add_entry_cb(iter, al, false, arg);
1075 			if (err)
1076 				goto out;
1077 		}
1078 	}
1079 
1080 out:
1081 	err2 = iter->ops->finish_entry(iter, al);
1082 	if (!err)
1083 		err = err2;
1084 
1085 	map__put(alm);
1086 
1087 	return err;
1088 }
1089 
1090 int64_t
1091 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1092 {
1093 	struct hists *hists = left->hists;
1094 	struct perf_hpp_fmt *fmt;
1095 	int64_t cmp = 0;
1096 
1097 	hists__for_each_sort_list(hists, fmt) {
1098 		if (perf_hpp__is_dynamic_entry(fmt) &&
1099 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1100 			continue;
1101 
1102 		cmp = fmt->cmp(fmt, left, right);
1103 		if (cmp)
1104 			break;
1105 	}
1106 
1107 	return cmp;
1108 }
1109 
1110 int64_t
1111 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1112 {
1113 	struct hists *hists = left->hists;
1114 	struct perf_hpp_fmt *fmt;
1115 	int64_t cmp = 0;
1116 
1117 	hists__for_each_sort_list(hists, fmt) {
1118 		if (perf_hpp__is_dynamic_entry(fmt) &&
1119 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1120 			continue;
1121 
1122 		cmp = fmt->collapse(fmt, left, right);
1123 		if (cmp)
1124 			break;
1125 	}
1126 
1127 	return cmp;
1128 }
1129 
1130 void hist_entry__delete(struct hist_entry *he)
1131 {
1132 	struct hist_entry_ops *ops = he->ops;
1133 
1134 	thread__zput(he->thread);
1135 	map__zput(he->ms.map);
1136 
1137 	if (he->branch_info) {
1138 		map__zput(he->branch_info->from.map);
1139 		map__zput(he->branch_info->to.map);
1140 		free_srcline(he->branch_info->srcline_from);
1141 		free_srcline(he->branch_info->srcline_to);
1142 		zfree(&he->branch_info);
1143 	}
1144 
1145 	if (he->mem_info) {
1146 		map__zput(he->mem_info->iaddr.map);
1147 		map__zput(he->mem_info->daddr.map);
1148 		mem_info__zput(he->mem_info);
1149 	}
1150 
1151 	zfree(&he->stat_acc);
1152 	free_srcline(he->srcline);
1153 	if (he->srcfile && he->srcfile[0])
1154 		free(he->srcfile);
1155 	free_callchain(he->callchain);
1156 	free(he->trace_output);
1157 	free(he->raw_data);
1158 	ops->free(he);
1159 }
1160 
1161 /*
1162  * If this is not the last column, then we need to pad it according to the
1163  * pre-calculated max lenght for this column, otherwise don't bother adding
1164  * spaces because that would break viewing this with, for instance, 'less',
1165  * that would show tons of trailing spaces when a long C++ demangled method
1166  * names is sampled.
1167 */
1168 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1169 				   struct perf_hpp_fmt *fmt, int printed)
1170 {
1171 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1172 		const int width = fmt->width(fmt, hpp, he->hists);
1173 		if (printed < width) {
1174 			advance_hpp(hpp, printed);
1175 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1176 		}
1177 	}
1178 
1179 	return printed;
1180 }
1181 
1182 /*
1183  * collapse the histogram
1184  */
1185 
1186 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1187 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1188 				       enum hist_filter type);
1189 
1190 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1191 
1192 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1193 {
1194 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1195 }
1196 
1197 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1198 						enum hist_filter type,
1199 						fmt_chk_fn check)
1200 {
1201 	struct perf_hpp_fmt *fmt;
1202 	bool type_match = false;
1203 	struct hist_entry *parent = he->parent_he;
1204 
1205 	switch (type) {
1206 	case HIST_FILTER__THREAD:
1207 		if (symbol_conf.comm_list == NULL &&
1208 		    symbol_conf.pid_list == NULL &&
1209 		    symbol_conf.tid_list == NULL)
1210 			return;
1211 		break;
1212 	case HIST_FILTER__DSO:
1213 		if (symbol_conf.dso_list == NULL)
1214 			return;
1215 		break;
1216 	case HIST_FILTER__SYMBOL:
1217 		if (symbol_conf.sym_list == NULL)
1218 			return;
1219 		break;
1220 	case HIST_FILTER__PARENT:
1221 	case HIST_FILTER__GUEST:
1222 	case HIST_FILTER__HOST:
1223 	case HIST_FILTER__SOCKET:
1224 	case HIST_FILTER__C2C:
1225 	default:
1226 		return;
1227 	}
1228 
1229 	/* if it's filtered by own fmt, it has to have filter bits */
1230 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1231 		if (check(fmt)) {
1232 			type_match = true;
1233 			break;
1234 		}
1235 	}
1236 
1237 	if (type_match) {
1238 		/*
1239 		 * If the filter is for current level entry, propagate
1240 		 * filter marker to parents.  The marker bit was
1241 		 * already set by default so it only needs to clear
1242 		 * non-filtered entries.
1243 		 */
1244 		if (!(he->filtered & (1 << type))) {
1245 			while (parent) {
1246 				parent->filtered &= ~(1 << type);
1247 				parent = parent->parent_he;
1248 			}
1249 		}
1250 	} else {
1251 		/*
1252 		 * If current entry doesn't have matching formats, set
1253 		 * filter marker for upper level entries.  it will be
1254 		 * cleared if its lower level entries is not filtered.
1255 		 *
1256 		 * For lower-level entries, it inherits parent's
1257 		 * filter bit so that lower level entries of a
1258 		 * non-filtered entry won't set the filter marker.
1259 		 */
1260 		if (parent == NULL)
1261 			he->filtered |= (1 << type);
1262 		else
1263 			he->filtered |= (parent->filtered & (1 << type));
1264 	}
1265 }
1266 
1267 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1268 {
1269 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1270 					    check_thread_entry);
1271 
1272 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1273 					    perf_hpp__is_dso_entry);
1274 
1275 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1276 					    perf_hpp__is_sym_entry);
1277 
1278 	hists__apply_filters(he->hists, he);
1279 }
1280 
1281 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1282 						 struct rb_root *root,
1283 						 struct hist_entry *he,
1284 						 struct hist_entry *parent_he,
1285 						 struct perf_hpp_list *hpp_list)
1286 {
1287 	struct rb_node **p = &root->rb_node;
1288 	struct rb_node *parent = NULL;
1289 	struct hist_entry *iter, *new;
1290 	struct perf_hpp_fmt *fmt;
1291 	int64_t cmp;
1292 
1293 	while (*p != NULL) {
1294 		parent = *p;
1295 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1296 
1297 		cmp = 0;
1298 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1299 			cmp = fmt->collapse(fmt, iter, he);
1300 			if (cmp)
1301 				break;
1302 		}
1303 
1304 		if (!cmp) {
1305 			he_stat__add_stat(&iter->stat, &he->stat);
1306 			return iter;
1307 		}
1308 
1309 		if (cmp < 0)
1310 			p = &parent->rb_left;
1311 		else
1312 			p = &parent->rb_right;
1313 	}
1314 
1315 	new = hist_entry__new(he, true);
1316 	if (new == NULL)
1317 		return NULL;
1318 
1319 	hists->nr_entries++;
1320 
1321 	/* save related format list for output */
1322 	new->hpp_list = hpp_list;
1323 	new->parent_he = parent_he;
1324 
1325 	hist_entry__apply_hierarchy_filters(new);
1326 
1327 	/* some fields are now passed to 'new' */
1328 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1329 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1330 			he->trace_output = NULL;
1331 		else
1332 			new->trace_output = NULL;
1333 
1334 		if (perf_hpp__is_srcline_entry(fmt))
1335 			he->srcline = NULL;
1336 		else
1337 			new->srcline = NULL;
1338 
1339 		if (perf_hpp__is_srcfile_entry(fmt))
1340 			he->srcfile = NULL;
1341 		else
1342 			new->srcfile = NULL;
1343 	}
1344 
1345 	rb_link_node(&new->rb_node_in, parent, p);
1346 	rb_insert_color(&new->rb_node_in, root);
1347 	return new;
1348 }
1349 
1350 static int hists__hierarchy_insert_entry(struct hists *hists,
1351 					 struct rb_root *root,
1352 					 struct hist_entry *he)
1353 {
1354 	struct perf_hpp_list_node *node;
1355 	struct hist_entry *new_he = NULL;
1356 	struct hist_entry *parent = NULL;
1357 	int depth = 0;
1358 	int ret = 0;
1359 
1360 	list_for_each_entry(node, &hists->hpp_formats, list) {
1361 		/* skip period (overhead) and elided columns */
1362 		if (node->level == 0 || node->skip)
1363 			continue;
1364 
1365 		/* insert copy of 'he' for each fmt into the hierarchy */
1366 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1367 		if (new_he == NULL) {
1368 			ret = -1;
1369 			break;
1370 		}
1371 
1372 		root = &new_he->hroot_in;
1373 		new_he->depth = depth++;
1374 		parent = new_he;
1375 	}
1376 
1377 	if (new_he) {
1378 		new_he->leaf = true;
1379 
1380 		if (hist_entry__has_callchains(new_he) &&
1381 		    symbol_conf.use_callchain) {
1382 			callchain_cursor_reset(&callchain_cursor);
1383 			if (callchain_merge(&callchain_cursor,
1384 					    new_he->callchain,
1385 					    he->callchain) < 0)
1386 				ret = -1;
1387 		}
1388 	}
1389 
1390 	/* 'he' is no longer used */
1391 	hist_entry__delete(he);
1392 
1393 	/* return 0 (or -1) since it already applied filters */
1394 	return ret;
1395 }
1396 
1397 static int hists__collapse_insert_entry(struct hists *hists,
1398 					struct rb_root *root,
1399 					struct hist_entry *he)
1400 {
1401 	struct rb_node **p = &root->rb_node;
1402 	struct rb_node *parent = NULL;
1403 	struct hist_entry *iter;
1404 	int64_t cmp;
1405 
1406 	if (symbol_conf.report_hierarchy)
1407 		return hists__hierarchy_insert_entry(hists, root, he);
1408 
1409 	while (*p != NULL) {
1410 		parent = *p;
1411 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1412 
1413 		cmp = hist_entry__collapse(iter, he);
1414 
1415 		if (!cmp) {
1416 			int ret = 0;
1417 
1418 			he_stat__add_stat(&iter->stat, &he->stat);
1419 			if (symbol_conf.cumulate_callchain)
1420 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1421 
1422 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1423 				callchain_cursor_reset(&callchain_cursor);
1424 				if (callchain_merge(&callchain_cursor,
1425 						    iter->callchain,
1426 						    he->callchain) < 0)
1427 					ret = -1;
1428 			}
1429 			hist_entry__delete(he);
1430 			return ret;
1431 		}
1432 
1433 		if (cmp < 0)
1434 			p = &(*p)->rb_left;
1435 		else
1436 			p = &(*p)->rb_right;
1437 	}
1438 	hists->nr_entries++;
1439 
1440 	rb_link_node(&he->rb_node_in, parent, p);
1441 	rb_insert_color(&he->rb_node_in, root);
1442 	return 1;
1443 }
1444 
1445 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1446 {
1447 	struct rb_root *root;
1448 
1449 	pthread_mutex_lock(&hists->lock);
1450 
1451 	root = hists->entries_in;
1452 	if (++hists->entries_in > &hists->entries_in_array[1])
1453 		hists->entries_in = &hists->entries_in_array[0];
1454 
1455 	pthread_mutex_unlock(&hists->lock);
1456 
1457 	return root;
1458 }
1459 
1460 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1461 {
1462 	hists__filter_entry_by_dso(hists, he);
1463 	hists__filter_entry_by_thread(hists, he);
1464 	hists__filter_entry_by_symbol(hists, he);
1465 	hists__filter_entry_by_socket(hists, he);
1466 }
1467 
1468 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1469 {
1470 	struct rb_root *root;
1471 	struct rb_node *next;
1472 	struct hist_entry *n;
1473 	int ret;
1474 
1475 	if (!hists__has(hists, need_collapse))
1476 		return 0;
1477 
1478 	hists->nr_entries = 0;
1479 
1480 	root = hists__get_rotate_entries_in(hists);
1481 
1482 	next = rb_first(root);
1483 
1484 	while (next) {
1485 		if (session_done())
1486 			break;
1487 		n = rb_entry(next, struct hist_entry, rb_node_in);
1488 		next = rb_next(&n->rb_node_in);
1489 
1490 		rb_erase(&n->rb_node_in, root);
1491 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1492 		if (ret < 0)
1493 			return -1;
1494 
1495 		if (ret) {
1496 			/*
1497 			 * If it wasn't combined with one of the entries already
1498 			 * collapsed, we need to apply the filters that may have
1499 			 * been set by, say, the hist_browser.
1500 			 */
1501 			hists__apply_filters(hists, n);
1502 		}
1503 		if (prog)
1504 			ui_progress__update(prog, 1);
1505 	}
1506 	return 0;
1507 }
1508 
1509 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1510 {
1511 	struct hists *hists = a->hists;
1512 	struct perf_hpp_fmt *fmt;
1513 	int64_t cmp = 0;
1514 
1515 	hists__for_each_sort_list(hists, fmt) {
1516 		if (perf_hpp__should_skip(fmt, a->hists))
1517 			continue;
1518 
1519 		cmp = fmt->sort(fmt, a, b);
1520 		if (cmp)
1521 			break;
1522 	}
1523 
1524 	return cmp;
1525 }
1526 
1527 static void hists__reset_filter_stats(struct hists *hists)
1528 {
1529 	hists->nr_non_filtered_entries = 0;
1530 	hists->stats.total_non_filtered_period = 0;
1531 }
1532 
1533 void hists__reset_stats(struct hists *hists)
1534 {
1535 	hists->nr_entries = 0;
1536 	hists->stats.total_period = 0;
1537 
1538 	hists__reset_filter_stats(hists);
1539 }
1540 
1541 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1542 {
1543 	hists->nr_non_filtered_entries++;
1544 	hists->stats.total_non_filtered_period += h->stat.period;
1545 }
1546 
1547 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1548 {
1549 	if (!h->filtered)
1550 		hists__inc_filter_stats(hists, h);
1551 
1552 	hists->nr_entries++;
1553 	hists->stats.total_period += h->stat.period;
1554 }
1555 
1556 static void hierarchy_recalc_total_periods(struct hists *hists)
1557 {
1558 	struct rb_node *node;
1559 	struct hist_entry *he;
1560 
1561 	node = rb_first(&hists->entries);
1562 
1563 	hists->stats.total_period = 0;
1564 	hists->stats.total_non_filtered_period = 0;
1565 
1566 	/*
1567 	 * recalculate total period using top-level entries only
1568 	 * since lower level entries only see non-filtered entries
1569 	 * but upper level entries have sum of both entries.
1570 	 */
1571 	while (node) {
1572 		he = rb_entry(node, struct hist_entry, rb_node);
1573 		node = rb_next(node);
1574 
1575 		hists->stats.total_period += he->stat.period;
1576 		if (!he->filtered)
1577 			hists->stats.total_non_filtered_period += he->stat.period;
1578 	}
1579 }
1580 
1581 static void hierarchy_insert_output_entry(struct rb_root *root,
1582 					  struct hist_entry *he)
1583 {
1584 	struct rb_node **p = &root->rb_node;
1585 	struct rb_node *parent = NULL;
1586 	struct hist_entry *iter;
1587 	struct perf_hpp_fmt *fmt;
1588 
1589 	while (*p != NULL) {
1590 		parent = *p;
1591 		iter = rb_entry(parent, struct hist_entry, rb_node);
1592 
1593 		if (hist_entry__sort(he, iter) > 0)
1594 			p = &parent->rb_left;
1595 		else
1596 			p = &parent->rb_right;
1597 	}
1598 
1599 	rb_link_node(&he->rb_node, parent, p);
1600 	rb_insert_color(&he->rb_node, root);
1601 
1602 	/* update column width of dynamic entry */
1603 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1604 		if (perf_hpp__is_dynamic_entry(fmt))
1605 			fmt->sort(fmt, he, NULL);
1606 	}
1607 }
1608 
1609 static void hists__hierarchy_output_resort(struct hists *hists,
1610 					   struct ui_progress *prog,
1611 					   struct rb_root *root_in,
1612 					   struct rb_root *root_out,
1613 					   u64 min_callchain_hits,
1614 					   bool use_callchain)
1615 {
1616 	struct rb_node *node;
1617 	struct hist_entry *he;
1618 
1619 	*root_out = RB_ROOT;
1620 	node = rb_first(root_in);
1621 
1622 	while (node) {
1623 		he = rb_entry(node, struct hist_entry, rb_node_in);
1624 		node = rb_next(node);
1625 
1626 		hierarchy_insert_output_entry(root_out, he);
1627 
1628 		if (prog)
1629 			ui_progress__update(prog, 1);
1630 
1631 		hists->nr_entries++;
1632 		if (!he->filtered) {
1633 			hists->nr_non_filtered_entries++;
1634 			hists__calc_col_len(hists, he);
1635 		}
1636 
1637 		if (!he->leaf) {
1638 			hists__hierarchy_output_resort(hists, prog,
1639 						       &he->hroot_in,
1640 						       &he->hroot_out,
1641 						       min_callchain_hits,
1642 						       use_callchain);
1643 			continue;
1644 		}
1645 
1646 		if (!use_callchain)
1647 			continue;
1648 
1649 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1650 			u64 total = he->stat.period;
1651 
1652 			if (symbol_conf.cumulate_callchain)
1653 				total = he->stat_acc->period;
1654 
1655 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1656 		}
1657 
1658 		callchain_param.sort(&he->sorted_chain, he->callchain,
1659 				     min_callchain_hits, &callchain_param);
1660 	}
1661 }
1662 
1663 static void __hists__insert_output_entry(struct rb_root *entries,
1664 					 struct hist_entry *he,
1665 					 u64 min_callchain_hits,
1666 					 bool use_callchain)
1667 {
1668 	struct rb_node **p = &entries->rb_node;
1669 	struct rb_node *parent = NULL;
1670 	struct hist_entry *iter;
1671 	struct perf_hpp_fmt *fmt;
1672 
1673 	if (use_callchain) {
1674 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1675 			u64 total = he->stat.period;
1676 
1677 			if (symbol_conf.cumulate_callchain)
1678 				total = he->stat_acc->period;
1679 
1680 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1681 		}
1682 		callchain_param.sort(&he->sorted_chain, he->callchain,
1683 				      min_callchain_hits, &callchain_param);
1684 	}
1685 
1686 	while (*p != NULL) {
1687 		parent = *p;
1688 		iter = rb_entry(parent, struct hist_entry, rb_node);
1689 
1690 		if (hist_entry__sort(he, iter) > 0)
1691 			p = &(*p)->rb_left;
1692 		else
1693 			p = &(*p)->rb_right;
1694 	}
1695 
1696 	rb_link_node(&he->rb_node, parent, p);
1697 	rb_insert_color(&he->rb_node, entries);
1698 
1699 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1700 		if (perf_hpp__is_dynamic_entry(fmt) &&
1701 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1702 			fmt->sort(fmt, he, NULL);  /* update column width */
1703 	}
1704 }
1705 
1706 static void output_resort(struct hists *hists, struct ui_progress *prog,
1707 			  bool use_callchain, hists__resort_cb_t cb)
1708 {
1709 	struct rb_root *root;
1710 	struct rb_node *next;
1711 	struct hist_entry *n;
1712 	u64 callchain_total;
1713 	u64 min_callchain_hits;
1714 
1715 	callchain_total = hists->callchain_period;
1716 	if (symbol_conf.filter_relative)
1717 		callchain_total = hists->callchain_non_filtered_period;
1718 
1719 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1720 
1721 	hists__reset_stats(hists);
1722 	hists__reset_col_len(hists);
1723 
1724 	if (symbol_conf.report_hierarchy) {
1725 		hists__hierarchy_output_resort(hists, prog,
1726 					       &hists->entries_collapsed,
1727 					       &hists->entries,
1728 					       min_callchain_hits,
1729 					       use_callchain);
1730 		hierarchy_recalc_total_periods(hists);
1731 		return;
1732 	}
1733 
1734 	if (hists__has(hists, need_collapse))
1735 		root = &hists->entries_collapsed;
1736 	else
1737 		root = hists->entries_in;
1738 
1739 	next = rb_first(root);
1740 	hists->entries = RB_ROOT;
1741 
1742 	while (next) {
1743 		n = rb_entry(next, struct hist_entry, rb_node_in);
1744 		next = rb_next(&n->rb_node_in);
1745 
1746 		if (cb && cb(n))
1747 			continue;
1748 
1749 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1750 		hists__inc_stats(hists, n);
1751 
1752 		if (!n->filtered)
1753 			hists__calc_col_len(hists, n);
1754 
1755 		if (prog)
1756 			ui_progress__update(prog, 1);
1757 	}
1758 }
1759 
1760 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1761 {
1762 	bool use_callchain;
1763 
1764 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1765 		use_callchain = evsel__has_callchain(evsel);
1766 	else
1767 		use_callchain = symbol_conf.use_callchain;
1768 
1769 	use_callchain |= symbol_conf.show_branchflag_count;
1770 
1771 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1772 }
1773 
1774 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1775 {
1776 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1777 }
1778 
1779 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1780 			     hists__resort_cb_t cb)
1781 {
1782 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1783 }
1784 
1785 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1786 {
1787 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1788 		return false;
1789 
1790 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1791 		return true;
1792 
1793 	return false;
1794 }
1795 
1796 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1797 {
1798 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1799 
1800 	while (can_goto_child(he, HMD_NORMAL)) {
1801 		node = rb_last(&he->hroot_out);
1802 		he = rb_entry(node, struct hist_entry, rb_node);
1803 	}
1804 	return node;
1805 }
1806 
1807 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1808 {
1809 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1810 
1811 	if (can_goto_child(he, hmd))
1812 		node = rb_first(&he->hroot_out);
1813 	else
1814 		node = rb_next(node);
1815 
1816 	while (node == NULL) {
1817 		he = he->parent_he;
1818 		if (he == NULL)
1819 			break;
1820 
1821 		node = rb_next(&he->rb_node);
1822 	}
1823 	return node;
1824 }
1825 
1826 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1827 {
1828 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1829 
1830 	node = rb_prev(node);
1831 	if (node)
1832 		return rb_hierarchy_last(node);
1833 
1834 	he = he->parent_he;
1835 	if (he == NULL)
1836 		return NULL;
1837 
1838 	return &he->rb_node;
1839 }
1840 
1841 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1842 {
1843 	struct rb_node *node;
1844 	struct hist_entry *child;
1845 	float percent;
1846 
1847 	if (he->leaf)
1848 		return false;
1849 
1850 	node = rb_first(&he->hroot_out);
1851 	child = rb_entry(node, struct hist_entry, rb_node);
1852 
1853 	while (node && child->filtered) {
1854 		node = rb_next(node);
1855 		child = rb_entry(node, struct hist_entry, rb_node);
1856 	}
1857 
1858 	if (node)
1859 		percent = hist_entry__get_percent_limit(child);
1860 	else
1861 		percent = 0;
1862 
1863 	return node && percent >= limit;
1864 }
1865 
1866 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1867 				       enum hist_filter filter)
1868 {
1869 	h->filtered &= ~(1 << filter);
1870 
1871 	if (symbol_conf.report_hierarchy) {
1872 		struct hist_entry *parent = h->parent_he;
1873 
1874 		while (parent) {
1875 			he_stat__add_stat(&parent->stat, &h->stat);
1876 
1877 			parent->filtered &= ~(1 << filter);
1878 
1879 			if (parent->filtered)
1880 				goto next;
1881 
1882 			/* force fold unfiltered entry for simplicity */
1883 			parent->unfolded = false;
1884 			parent->has_no_entry = false;
1885 			parent->row_offset = 0;
1886 			parent->nr_rows = 0;
1887 next:
1888 			parent = parent->parent_he;
1889 		}
1890 	}
1891 
1892 	if (h->filtered)
1893 		return;
1894 
1895 	/* force fold unfiltered entry for simplicity */
1896 	h->unfolded = false;
1897 	h->has_no_entry = false;
1898 	h->row_offset = 0;
1899 	h->nr_rows = 0;
1900 
1901 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1902 
1903 	hists__inc_filter_stats(hists, h);
1904 	hists__calc_col_len(hists, h);
1905 }
1906 
1907 
1908 static bool hists__filter_entry_by_dso(struct hists *hists,
1909 				       struct hist_entry *he)
1910 {
1911 	if (hists->dso_filter != NULL &&
1912 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1913 		he->filtered |= (1 << HIST_FILTER__DSO);
1914 		return true;
1915 	}
1916 
1917 	return false;
1918 }
1919 
1920 static bool hists__filter_entry_by_thread(struct hists *hists,
1921 					  struct hist_entry *he)
1922 {
1923 	if (hists->thread_filter != NULL &&
1924 	    he->thread != hists->thread_filter) {
1925 		he->filtered |= (1 << HIST_FILTER__THREAD);
1926 		return true;
1927 	}
1928 
1929 	return false;
1930 }
1931 
1932 static bool hists__filter_entry_by_symbol(struct hists *hists,
1933 					  struct hist_entry *he)
1934 {
1935 	if (hists->symbol_filter_str != NULL &&
1936 	    (!he->ms.sym || strstr(he->ms.sym->name,
1937 				   hists->symbol_filter_str) == NULL)) {
1938 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1939 		return true;
1940 	}
1941 
1942 	return false;
1943 }
1944 
1945 static bool hists__filter_entry_by_socket(struct hists *hists,
1946 					  struct hist_entry *he)
1947 {
1948 	if ((hists->socket_filter > -1) &&
1949 	    (he->socket != hists->socket_filter)) {
1950 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1951 		return true;
1952 	}
1953 
1954 	return false;
1955 }
1956 
1957 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1958 
1959 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1960 {
1961 	struct rb_node *nd;
1962 
1963 	hists->stats.nr_non_filtered_samples = 0;
1964 
1965 	hists__reset_filter_stats(hists);
1966 	hists__reset_col_len(hists);
1967 
1968 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1969 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1970 
1971 		if (filter(hists, h))
1972 			continue;
1973 
1974 		hists__remove_entry_filter(hists, h, type);
1975 	}
1976 }
1977 
1978 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1979 {
1980 	struct rb_node **p = &root->rb_node;
1981 	struct rb_node *parent = NULL;
1982 	struct hist_entry *iter;
1983 	struct rb_root new_root = RB_ROOT;
1984 	struct rb_node *nd;
1985 
1986 	while (*p != NULL) {
1987 		parent = *p;
1988 		iter = rb_entry(parent, struct hist_entry, rb_node);
1989 
1990 		if (hist_entry__sort(he, iter) > 0)
1991 			p = &(*p)->rb_left;
1992 		else
1993 			p = &(*p)->rb_right;
1994 	}
1995 
1996 	rb_link_node(&he->rb_node, parent, p);
1997 	rb_insert_color(&he->rb_node, root);
1998 
1999 	if (he->leaf || he->filtered)
2000 		return;
2001 
2002 	nd = rb_first(&he->hroot_out);
2003 	while (nd) {
2004 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2005 
2006 		nd = rb_next(nd);
2007 		rb_erase(&h->rb_node, &he->hroot_out);
2008 
2009 		resort_filtered_entry(&new_root, h);
2010 	}
2011 
2012 	he->hroot_out = new_root;
2013 }
2014 
2015 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2016 {
2017 	struct rb_node *nd;
2018 	struct rb_root new_root = RB_ROOT;
2019 
2020 	hists->stats.nr_non_filtered_samples = 0;
2021 
2022 	hists__reset_filter_stats(hists);
2023 	hists__reset_col_len(hists);
2024 
2025 	nd = rb_first(&hists->entries);
2026 	while (nd) {
2027 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2028 		int ret;
2029 
2030 		ret = hist_entry__filter(h, type, arg);
2031 
2032 		/*
2033 		 * case 1. non-matching type
2034 		 * zero out the period, set filter marker and move to child
2035 		 */
2036 		if (ret < 0) {
2037 			memset(&h->stat, 0, sizeof(h->stat));
2038 			h->filtered |= (1 << type);
2039 
2040 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2041 		}
2042 		/*
2043 		 * case 2. matched type (filter out)
2044 		 * set filter marker and move to next
2045 		 */
2046 		else if (ret == 1) {
2047 			h->filtered |= (1 << type);
2048 
2049 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2050 		}
2051 		/*
2052 		 * case 3. ok (not filtered)
2053 		 * add period to hists and parents, erase the filter marker
2054 		 * and move to next sibling
2055 		 */
2056 		else {
2057 			hists__remove_entry_filter(hists, h, type);
2058 
2059 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2060 		}
2061 	}
2062 
2063 	hierarchy_recalc_total_periods(hists);
2064 
2065 	/*
2066 	 * resort output after applying a new filter since filter in a lower
2067 	 * hierarchy can change periods in a upper hierarchy.
2068 	 */
2069 	nd = rb_first(&hists->entries);
2070 	while (nd) {
2071 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2072 
2073 		nd = rb_next(nd);
2074 		rb_erase(&h->rb_node, &hists->entries);
2075 
2076 		resort_filtered_entry(&new_root, h);
2077 	}
2078 
2079 	hists->entries = new_root;
2080 }
2081 
2082 void hists__filter_by_thread(struct hists *hists)
2083 {
2084 	if (symbol_conf.report_hierarchy)
2085 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2086 					hists->thread_filter);
2087 	else
2088 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2089 				      hists__filter_entry_by_thread);
2090 }
2091 
2092 void hists__filter_by_dso(struct hists *hists)
2093 {
2094 	if (symbol_conf.report_hierarchy)
2095 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2096 					hists->dso_filter);
2097 	else
2098 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2099 				      hists__filter_entry_by_dso);
2100 }
2101 
2102 void hists__filter_by_symbol(struct hists *hists)
2103 {
2104 	if (symbol_conf.report_hierarchy)
2105 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2106 					hists->symbol_filter_str);
2107 	else
2108 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2109 				      hists__filter_entry_by_symbol);
2110 }
2111 
2112 void hists__filter_by_socket(struct hists *hists)
2113 {
2114 	if (symbol_conf.report_hierarchy)
2115 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2116 					&hists->socket_filter);
2117 	else
2118 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2119 				      hists__filter_entry_by_socket);
2120 }
2121 
2122 void events_stats__inc(struct events_stats *stats, u32 type)
2123 {
2124 	++stats->nr_events[0];
2125 	++stats->nr_events[type];
2126 }
2127 
2128 void hists__inc_nr_events(struct hists *hists, u32 type)
2129 {
2130 	events_stats__inc(&hists->stats, type);
2131 }
2132 
2133 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2134 {
2135 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2136 	if (!filtered)
2137 		hists->stats.nr_non_filtered_samples++;
2138 }
2139 
2140 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2141 						 struct hist_entry *pair)
2142 {
2143 	struct rb_root *root;
2144 	struct rb_node **p;
2145 	struct rb_node *parent = NULL;
2146 	struct hist_entry *he;
2147 	int64_t cmp;
2148 
2149 	if (hists__has(hists, need_collapse))
2150 		root = &hists->entries_collapsed;
2151 	else
2152 		root = hists->entries_in;
2153 
2154 	p = &root->rb_node;
2155 
2156 	while (*p != NULL) {
2157 		parent = *p;
2158 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2159 
2160 		cmp = hist_entry__collapse(he, pair);
2161 
2162 		if (!cmp)
2163 			goto out;
2164 
2165 		if (cmp < 0)
2166 			p = &(*p)->rb_left;
2167 		else
2168 			p = &(*p)->rb_right;
2169 	}
2170 
2171 	he = hist_entry__new(pair, true);
2172 	if (he) {
2173 		memset(&he->stat, 0, sizeof(he->stat));
2174 		he->hists = hists;
2175 		if (symbol_conf.cumulate_callchain)
2176 			memset(he->stat_acc, 0, sizeof(he->stat));
2177 		rb_link_node(&he->rb_node_in, parent, p);
2178 		rb_insert_color(&he->rb_node_in, root);
2179 		hists__inc_stats(hists, he);
2180 		he->dummy = true;
2181 	}
2182 out:
2183 	return he;
2184 }
2185 
2186 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2187 						    struct rb_root *root,
2188 						    struct hist_entry *pair)
2189 {
2190 	struct rb_node **p;
2191 	struct rb_node *parent = NULL;
2192 	struct hist_entry *he;
2193 	struct perf_hpp_fmt *fmt;
2194 
2195 	p = &root->rb_node;
2196 	while (*p != NULL) {
2197 		int64_t cmp = 0;
2198 
2199 		parent = *p;
2200 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2201 
2202 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2203 			cmp = fmt->collapse(fmt, he, pair);
2204 			if (cmp)
2205 				break;
2206 		}
2207 		if (!cmp)
2208 			goto out;
2209 
2210 		if (cmp < 0)
2211 			p = &parent->rb_left;
2212 		else
2213 			p = &parent->rb_right;
2214 	}
2215 
2216 	he = hist_entry__new(pair, true);
2217 	if (he) {
2218 		rb_link_node(&he->rb_node_in, parent, p);
2219 		rb_insert_color(&he->rb_node_in, root);
2220 
2221 		he->dummy = true;
2222 		he->hists = hists;
2223 		memset(&he->stat, 0, sizeof(he->stat));
2224 		hists__inc_stats(hists, he);
2225 	}
2226 out:
2227 	return he;
2228 }
2229 
2230 static struct hist_entry *hists__find_entry(struct hists *hists,
2231 					    struct hist_entry *he)
2232 {
2233 	struct rb_node *n;
2234 
2235 	if (hists__has(hists, need_collapse))
2236 		n = hists->entries_collapsed.rb_node;
2237 	else
2238 		n = hists->entries_in->rb_node;
2239 
2240 	while (n) {
2241 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2242 		int64_t cmp = hist_entry__collapse(iter, he);
2243 
2244 		if (cmp < 0)
2245 			n = n->rb_left;
2246 		else if (cmp > 0)
2247 			n = n->rb_right;
2248 		else
2249 			return iter;
2250 	}
2251 
2252 	return NULL;
2253 }
2254 
2255 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2256 						      struct hist_entry *he)
2257 {
2258 	struct rb_node *n = root->rb_node;
2259 
2260 	while (n) {
2261 		struct hist_entry *iter;
2262 		struct perf_hpp_fmt *fmt;
2263 		int64_t cmp = 0;
2264 
2265 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2266 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2267 			cmp = fmt->collapse(fmt, iter, he);
2268 			if (cmp)
2269 				break;
2270 		}
2271 
2272 		if (cmp < 0)
2273 			n = n->rb_left;
2274 		else if (cmp > 0)
2275 			n = n->rb_right;
2276 		else
2277 			return iter;
2278 	}
2279 
2280 	return NULL;
2281 }
2282 
2283 static void hists__match_hierarchy(struct rb_root *leader_root,
2284 				   struct rb_root *other_root)
2285 {
2286 	struct rb_node *nd;
2287 	struct hist_entry *pos, *pair;
2288 
2289 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2290 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2291 		pair = hists__find_hierarchy_entry(other_root, pos);
2292 
2293 		if (pair) {
2294 			hist_entry__add_pair(pair, pos);
2295 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2296 		}
2297 	}
2298 }
2299 
2300 /*
2301  * Look for pairs to link to the leader buckets (hist_entries):
2302  */
2303 void hists__match(struct hists *leader, struct hists *other)
2304 {
2305 	struct rb_root *root;
2306 	struct rb_node *nd;
2307 	struct hist_entry *pos, *pair;
2308 
2309 	if (symbol_conf.report_hierarchy) {
2310 		/* hierarchy report always collapses entries */
2311 		return hists__match_hierarchy(&leader->entries_collapsed,
2312 					      &other->entries_collapsed);
2313 	}
2314 
2315 	if (hists__has(leader, need_collapse))
2316 		root = &leader->entries_collapsed;
2317 	else
2318 		root = leader->entries_in;
2319 
2320 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2321 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2322 		pair = hists__find_entry(other, pos);
2323 
2324 		if (pair)
2325 			hist_entry__add_pair(pair, pos);
2326 	}
2327 }
2328 
2329 static int hists__link_hierarchy(struct hists *leader_hists,
2330 				 struct hist_entry *parent,
2331 				 struct rb_root *leader_root,
2332 				 struct rb_root *other_root)
2333 {
2334 	struct rb_node *nd;
2335 	struct hist_entry *pos, *leader;
2336 
2337 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2338 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2339 
2340 		if (hist_entry__has_pairs(pos)) {
2341 			bool found = false;
2342 
2343 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2344 				if (leader->hists == leader_hists) {
2345 					found = true;
2346 					break;
2347 				}
2348 			}
2349 			if (!found)
2350 				return -1;
2351 		} else {
2352 			leader = add_dummy_hierarchy_entry(leader_hists,
2353 							   leader_root, pos);
2354 			if (leader == NULL)
2355 				return -1;
2356 
2357 			/* do not point parent in the pos */
2358 			leader->parent_he = parent;
2359 
2360 			hist_entry__add_pair(pos, leader);
2361 		}
2362 
2363 		if (!pos->leaf) {
2364 			if (hists__link_hierarchy(leader_hists, leader,
2365 						  &leader->hroot_in,
2366 						  &pos->hroot_in) < 0)
2367 				return -1;
2368 		}
2369 	}
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Look for entries in the other hists that are not present in the leader, if
2375  * we find them, just add a dummy entry on the leader hists, with period=0,
2376  * nr_events=0, to serve as the list header.
2377  */
2378 int hists__link(struct hists *leader, struct hists *other)
2379 {
2380 	struct rb_root *root;
2381 	struct rb_node *nd;
2382 	struct hist_entry *pos, *pair;
2383 
2384 	if (symbol_conf.report_hierarchy) {
2385 		/* hierarchy report always collapses entries */
2386 		return hists__link_hierarchy(leader, NULL,
2387 					     &leader->entries_collapsed,
2388 					     &other->entries_collapsed);
2389 	}
2390 
2391 	if (hists__has(other, need_collapse))
2392 		root = &other->entries_collapsed;
2393 	else
2394 		root = other->entries_in;
2395 
2396 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2397 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2398 
2399 		if (!hist_entry__has_pairs(pos)) {
2400 			pair = hists__add_dummy_entry(leader, pos);
2401 			if (pair == NULL)
2402 				return -1;
2403 			hist_entry__add_pair(pos, pair);
2404 		}
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2411 			  struct perf_sample *sample, bool nonany_branch_mode)
2412 {
2413 	struct branch_info *bi;
2414 
2415 	/* If we have branch cycles always annotate them. */
2416 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2417 		int i;
2418 
2419 		bi = sample__resolve_bstack(sample, al);
2420 		if (bi) {
2421 			struct addr_map_symbol *prev = NULL;
2422 
2423 			/*
2424 			 * Ignore errors, still want to process the
2425 			 * other entries.
2426 			 *
2427 			 * For non standard branch modes always
2428 			 * force no IPC (prev == NULL)
2429 			 *
2430 			 * Note that perf stores branches reversed from
2431 			 * program order!
2432 			 */
2433 			for (i = bs->nr - 1; i >= 0; i--) {
2434 				addr_map_symbol__account_cycles(&bi[i].from,
2435 					nonany_branch_mode ? NULL : prev,
2436 					bi[i].flags.cycles);
2437 				prev = &bi[i].to;
2438 			}
2439 			free(bi);
2440 		}
2441 	}
2442 }
2443 
2444 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2445 {
2446 	struct perf_evsel *pos;
2447 	size_t ret = 0;
2448 
2449 	evlist__for_each_entry(evlist, pos) {
2450 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2451 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 
2458 u64 hists__total_period(struct hists *hists)
2459 {
2460 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2461 		hists->stats.total_period;
2462 }
2463 
2464 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2465 {
2466 	char unit;
2467 	int printed;
2468 	const struct dso *dso = hists->dso_filter;
2469 	const struct thread *thread = hists->thread_filter;
2470 	int socket_id = hists->socket_filter;
2471 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2472 	u64 nr_events = hists->stats.total_period;
2473 	struct perf_evsel *evsel = hists_to_evsel(hists);
2474 	const char *ev_name = perf_evsel__name(evsel);
2475 	char buf[512], sample_freq_str[64] = "";
2476 	size_t buflen = sizeof(buf);
2477 	char ref[30] = " show reference callgraph, ";
2478 	bool enable_ref = false;
2479 
2480 	if (symbol_conf.filter_relative) {
2481 		nr_samples = hists->stats.nr_non_filtered_samples;
2482 		nr_events = hists->stats.total_non_filtered_period;
2483 	}
2484 
2485 	if (perf_evsel__is_group_event(evsel)) {
2486 		struct perf_evsel *pos;
2487 
2488 		perf_evsel__group_desc(evsel, buf, buflen);
2489 		ev_name = buf;
2490 
2491 		for_each_group_member(pos, evsel) {
2492 			struct hists *pos_hists = evsel__hists(pos);
2493 
2494 			if (symbol_conf.filter_relative) {
2495 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2496 				nr_events += pos_hists->stats.total_non_filtered_period;
2497 			} else {
2498 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2499 				nr_events += pos_hists->stats.total_period;
2500 			}
2501 		}
2502 	}
2503 
2504 	if (symbol_conf.show_ref_callgraph &&
2505 	    strstr(ev_name, "call-graph=no"))
2506 		enable_ref = true;
2507 
2508 	if (show_freq)
2509 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2510 
2511 	nr_samples = convert_unit(nr_samples, &unit);
2512 	printed = scnprintf(bf, size,
2513 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2514 			   nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2515 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2516 
2517 
2518 	if (hists->uid_filter_str)
2519 		printed += snprintf(bf + printed, size - printed,
2520 				    ", UID: %s", hists->uid_filter_str);
2521 	if (thread) {
2522 		if (hists__has(hists, thread)) {
2523 			printed += scnprintf(bf + printed, size - printed,
2524 				    ", Thread: %s(%d)",
2525 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2526 				    thread->tid);
2527 		} else {
2528 			printed += scnprintf(bf + printed, size - printed,
2529 				    ", Thread: %s",
2530 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2531 		}
2532 	}
2533 	if (dso)
2534 		printed += scnprintf(bf + printed, size - printed,
2535 				    ", DSO: %s", dso->short_name);
2536 	if (socket_id > -1)
2537 		printed += scnprintf(bf + printed, size - printed,
2538 				    ", Processor Socket: %d", socket_id);
2539 
2540 	return printed;
2541 }
2542 
2543 int parse_filter_percentage(const struct option *opt __maybe_unused,
2544 			    const char *arg, int unset __maybe_unused)
2545 {
2546 	if (!strcmp(arg, "relative"))
2547 		symbol_conf.filter_relative = true;
2548 	else if (!strcmp(arg, "absolute"))
2549 		symbol_conf.filter_relative = false;
2550 	else {
2551 		pr_debug("Invalid percentage: %s\n", arg);
2552 		return -1;
2553 	}
2554 
2555 	return 0;
2556 }
2557 
2558 int perf_hist_config(const char *var, const char *value)
2559 {
2560 	if (!strcmp(var, "hist.percentage"))
2561 		return parse_filter_percentage(NULL, value, 0);
2562 
2563 	return 0;
2564 }
2565 
2566 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2567 {
2568 	memset(hists, 0, sizeof(*hists));
2569 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2570 	hists->entries_in = &hists->entries_in_array[0];
2571 	hists->entries_collapsed = RB_ROOT;
2572 	hists->entries = RB_ROOT;
2573 	pthread_mutex_init(&hists->lock, NULL);
2574 	hists->socket_filter = -1;
2575 	hists->hpp_list = hpp_list;
2576 	INIT_LIST_HEAD(&hists->hpp_formats);
2577 	return 0;
2578 }
2579 
2580 static void hists__delete_remaining_entries(struct rb_root *root)
2581 {
2582 	struct rb_node *node;
2583 	struct hist_entry *he;
2584 
2585 	while (!RB_EMPTY_ROOT(root)) {
2586 		node = rb_first(root);
2587 		rb_erase(node, root);
2588 
2589 		he = rb_entry(node, struct hist_entry, rb_node_in);
2590 		hist_entry__delete(he);
2591 	}
2592 }
2593 
2594 static void hists__delete_all_entries(struct hists *hists)
2595 {
2596 	hists__delete_entries(hists);
2597 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2598 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2599 	hists__delete_remaining_entries(&hists->entries_collapsed);
2600 }
2601 
2602 static void hists_evsel__exit(struct perf_evsel *evsel)
2603 {
2604 	struct hists *hists = evsel__hists(evsel);
2605 	struct perf_hpp_fmt *fmt, *pos;
2606 	struct perf_hpp_list_node *node, *tmp;
2607 
2608 	hists__delete_all_entries(hists);
2609 
2610 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2611 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2612 			list_del(&fmt->list);
2613 			free(fmt);
2614 		}
2615 		list_del(&node->list);
2616 		free(node);
2617 	}
2618 }
2619 
2620 static int hists_evsel__init(struct perf_evsel *evsel)
2621 {
2622 	struct hists *hists = evsel__hists(evsel);
2623 
2624 	__hists__init(hists, &perf_hpp_list);
2625 	return 0;
2626 }
2627 
2628 /*
2629  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2630  * stored in the rbtree...
2631  */
2632 
2633 int hists__init(void)
2634 {
2635 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2636 					    hists_evsel__init,
2637 					    hists_evsel__exit);
2638 	if (err)
2639 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2640 
2641 	return err;
2642 }
2643 
2644 void perf_hpp_list__init(struct perf_hpp_list *list)
2645 {
2646 	INIT_LIST_HEAD(&list->fields);
2647 	INIT_LIST_HEAD(&list->sorts);
2648 }
2649