xref: /openbmc/linux/tools/perf/util/hist.c (revision a5a7daa5)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "sort.h"
14 #include "units.h"
15 #include "evlist.h"
16 #include "evsel.h"
17 #include "annotate.h"
18 #include "srcline.h"
19 #include "symbol.h"
20 #include "thread.h"
21 #include "ui/progress.h"
22 #include <errno.h>
23 #include <math.h>
24 #include <inttypes.h>
25 #include <sys/param.h>
26 #include <linux/rbtree.h>
27 #include <linux/string.h>
28 #include <linux/time64.h>
29 #include <linux/zalloc.h>
30 
31 static bool hists__filter_entry_by_dso(struct hists *hists,
32 				       struct hist_entry *he);
33 static bool hists__filter_entry_by_thread(struct hists *hists,
34 					  struct hist_entry *he);
35 static bool hists__filter_entry_by_symbol(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_socket(struct hists *hists,
38 					  struct hist_entry *he);
39 
40 u16 hists__col_len(struct hists *hists, enum hist_column col)
41 {
42 	return hists->col_len[col];
43 }
44 
45 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
46 {
47 	hists->col_len[col] = len;
48 }
49 
50 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
51 {
52 	if (len > hists__col_len(hists, col)) {
53 		hists__set_col_len(hists, col, len);
54 		return true;
55 	}
56 	return false;
57 }
58 
59 void hists__reset_col_len(struct hists *hists)
60 {
61 	enum hist_column col;
62 
63 	for (col = 0; col < HISTC_NR_COLS; ++col)
64 		hists__set_col_len(hists, col, 0);
65 }
66 
67 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
68 {
69 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 
71 	if (hists__col_len(hists, dso) < unresolved_col_width &&
72 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
73 	    !symbol_conf.dso_list)
74 		hists__set_col_len(hists, dso, unresolved_col_width);
75 }
76 
77 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
78 {
79 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
80 	int symlen;
81 	u16 len;
82 
83 	/*
84 	 * +4 accounts for '[x] ' priv level info
85 	 * +2 accounts for 0x prefix on raw addresses
86 	 * +3 accounts for ' y ' symtab origin info
87 	 */
88 	if (h->ms.sym) {
89 		symlen = h->ms.sym->namelen + 4;
90 		if (verbose > 0)
91 			symlen += BITS_PER_LONG / 4 + 2 + 3;
92 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
93 	} else {
94 		symlen = unresolved_col_width + 4 + 2;
95 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
96 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
97 	}
98 
99 	len = thread__comm_len(h->thread);
100 	if (hists__new_col_len(hists, HISTC_COMM, len))
101 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
102 
103 	if (h->ms.map) {
104 		len = dso__name_len(h->ms.map->dso);
105 		hists__new_col_len(hists, HISTC_DSO, len);
106 	}
107 
108 	if (h->parent)
109 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
110 
111 	if (h->branch_info) {
112 		if (h->branch_info->from.sym) {
113 			symlen = (int)h->branch_info->from.sym->namelen + 4;
114 			if (verbose > 0)
115 				symlen += BITS_PER_LONG / 4 + 2 + 3;
116 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
117 
118 			symlen = dso__name_len(h->branch_info->from.map->dso);
119 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
120 		} else {
121 			symlen = unresolved_col_width + 4 + 2;
122 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
123 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
124 		}
125 
126 		if (h->branch_info->to.sym) {
127 			symlen = (int)h->branch_info->to.sym->namelen + 4;
128 			if (verbose > 0)
129 				symlen += BITS_PER_LONG / 4 + 2 + 3;
130 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
131 
132 			symlen = dso__name_len(h->branch_info->to.map->dso);
133 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
134 		} else {
135 			symlen = unresolved_col_width + 4 + 2;
136 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
137 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
138 		}
139 
140 		if (h->branch_info->srcline_from)
141 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
142 					strlen(h->branch_info->srcline_from));
143 		if (h->branch_info->srcline_to)
144 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
145 					strlen(h->branch_info->srcline_to));
146 	}
147 
148 	if (h->mem_info) {
149 		if (h->mem_info->daddr.sym) {
150 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
151 			       + unresolved_col_width + 2;
152 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
153 					   symlen);
154 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
155 					   symlen + 1);
156 		} else {
157 			symlen = unresolved_col_width + 4 + 2;
158 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
159 					   symlen);
160 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
161 					   symlen);
162 		}
163 
164 		if (h->mem_info->iaddr.sym) {
165 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
166 			       + unresolved_col_width + 2;
167 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
168 					   symlen);
169 		} else {
170 			symlen = unresolved_col_width + 4 + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		}
174 
175 		if (h->mem_info->daddr.map) {
176 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
177 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
178 					   symlen);
179 		} else {
180 			symlen = unresolved_col_width + 4 + 2;
181 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 		}
183 
184 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
185 				   unresolved_col_width + 4 + 2);
186 
187 	} else {
188 		symlen = unresolved_col_width + 4 + 2;
189 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
190 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
191 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
192 	}
193 
194 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
195 	hists__new_col_len(hists, HISTC_CPU, 3);
196 	hists__new_col_len(hists, HISTC_SOCKET, 6);
197 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
198 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
199 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
200 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
201 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
202 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
203 	if (symbol_conf.nanosecs)
204 		hists__new_col_len(hists, HISTC_TIME, 16);
205 	else
206 		hists__new_col_len(hists, HISTC_TIME, 12);
207 
208 	if (h->srcline) {
209 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
210 		hists__new_col_len(hists, HISTC_SRCLINE, len);
211 	}
212 
213 	if (h->srcfile)
214 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
215 
216 	if (h->transaction)
217 		hists__new_col_len(hists, HISTC_TRANSACTION,
218 				   hist_entry__transaction_len());
219 
220 	if (h->trace_output)
221 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
222 }
223 
224 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
225 {
226 	struct rb_node *next = rb_first_cached(&hists->entries);
227 	struct hist_entry *n;
228 	int row = 0;
229 
230 	hists__reset_col_len(hists);
231 
232 	while (next && row++ < max_rows) {
233 		n = rb_entry(next, struct hist_entry, rb_node);
234 		if (!n->filtered)
235 			hists__calc_col_len(hists, n);
236 		next = rb_next(&n->rb_node);
237 	}
238 }
239 
240 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
241 					unsigned int cpumode, u64 period)
242 {
243 	switch (cpumode) {
244 	case PERF_RECORD_MISC_KERNEL:
245 		he_stat->period_sys += period;
246 		break;
247 	case PERF_RECORD_MISC_USER:
248 		he_stat->period_us += period;
249 		break;
250 	case PERF_RECORD_MISC_GUEST_KERNEL:
251 		he_stat->period_guest_sys += period;
252 		break;
253 	case PERF_RECORD_MISC_GUEST_USER:
254 		he_stat->period_guest_us += period;
255 		break;
256 	default:
257 		break;
258 	}
259 }
260 
261 static long hist_time(unsigned long htime)
262 {
263 	unsigned long time_quantum = symbol_conf.time_quantum;
264 	if (time_quantum)
265 		return (htime / time_quantum) * time_quantum;
266 	return htime;
267 }
268 
269 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
270 				u64 weight)
271 {
272 
273 	he_stat->period		+= period;
274 	he_stat->weight		+= weight;
275 	he_stat->nr_events	+= 1;
276 }
277 
278 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
279 {
280 	dest->period		+= src->period;
281 	dest->period_sys	+= src->period_sys;
282 	dest->period_us		+= src->period_us;
283 	dest->period_guest_sys	+= src->period_guest_sys;
284 	dest->period_guest_us	+= src->period_guest_us;
285 	dest->nr_events		+= src->nr_events;
286 	dest->weight		+= src->weight;
287 }
288 
289 static void he_stat__decay(struct he_stat *he_stat)
290 {
291 	he_stat->period = (he_stat->period * 7) / 8;
292 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
293 	/* XXX need decay for weight too? */
294 }
295 
296 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
297 
298 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
299 {
300 	u64 prev_period = he->stat.period;
301 	u64 diff;
302 
303 	if (prev_period == 0)
304 		return true;
305 
306 	he_stat__decay(&he->stat);
307 	if (symbol_conf.cumulate_callchain)
308 		he_stat__decay(he->stat_acc);
309 	decay_callchain(he->callchain);
310 
311 	diff = prev_period - he->stat.period;
312 
313 	if (!he->depth) {
314 		hists->stats.total_period -= diff;
315 		if (!he->filtered)
316 			hists->stats.total_non_filtered_period -= diff;
317 	}
318 
319 	if (!he->leaf) {
320 		struct hist_entry *child;
321 		struct rb_node *node = rb_first_cached(&he->hroot_out);
322 		while (node) {
323 			child = rb_entry(node, struct hist_entry, rb_node);
324 			node = rb_next(node);
325 
326 			if (hists__decay_entry(hists, child))
327 				hists__delete_entry(hists, child);
328 		}
329 	}
330 
331 	return he->stat.period == 0;
332 }
333 
334 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
335 {
336 	struct rb_root_cached *root_in;
337 	struct rb_root_cached *root_out;
338 
339 	if (he->parent_he) {
340 		root_in  = &he->parent_he->hroot_in;
341 		root_out = &he->parent_he->hroot_out;
342 	} else {
343 		if (hists__has(hists, need_collapse))
344 			root_in = &hists->entries_collapsed;
345 		else
346 			root_in = hists->entries_in;
347 		root_out = &hists->entries;
348 	}
349 
350 	rb_erase_cached(&he->rb_node_in, root_in);
351 	rb_erase_cached(&he->rb_node, root_out);
352 
353 	--hists->nr_entries;
354 	if (!he->filtered)
355 		--hists->nr_non_filtered_entries;
356 
357 	hist_entry__delete(he);
358 }
359 
360 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
361 {
362 	struct rb_node *next = rb_first_cached(&hists->entries);
363 	struct hist_entry *n;
364 
365 	while (next) {
366 		n = rb_entry(next, struct hist_entry, rb_node);
367 		next = rb_next(&n->rb_node);
368 		if (((zap_user && n->level == '.') ||
369 		     (zap_kernel && n->level != '.') ||
370 		     hists__decay_entry(hists, n))) {
371 			hists__delete_entry(hists, n);
372 		}
373 	}
374 }
375 
376 void hists__delete_entries(struct hists *hists)
377 {
378 	struct rb_node *next = rb_first_cached(&hists->entries);
379 	struct hist_entry *n;
380 
381 	while (next) {
382 		n = rb_entry(next, struct hist_entry, rb_node);
383 		next = rb_next(&n->rb_node);
384 
385 		hists__delete_entry(hists, n);
386 	}
387 }
388 
389 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
390 {
391 	struct rb_node *next = rb_first_cached(&hists->entries);
392 	struct hist_entry *n;
393 	int i = 0;
394 
395 	while (next) {
396 		n = rb_entry(next, struct hist_entry, rb_node);
397 		if (i == idx)
398 			return n;
399 
400 		next = rb_next(&n->rb_node);
401 		i++;
402 	}
403 
404 	return NULL;
405 }
406 
407 /*
408  * histogram, sorted on item, collects periods
409  */
410 
411 static int hist_entry__init(struct hist_entry *he,
412 			    struct hist_entry *template,
413 			    bool sample_self,
414 			    size_t callchain_size)
415 {
416 	*he = *template;
417 	he->callchain_size = callchain_size;
418 
419 	if (symbol_conf.cumulate_callchain) {
420 		he->stat_acc = malloc(sizeof(he->stat));
421 		if (he->stat_acc == NULL)
422 			return -ENOMEM;
423 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
424 		if (!sample_self)
425 			memset(&he->stat, 0, sizeof(he->stat));
426 	}
427 
428 	map__get(he->ms.map);
429 
430 	if (he->branch_info) {
431 		/*
432 		 * This branch info is (a part of) allocated from
433 		 * sample__resolve_bstack() and will be freed after
434 		 * adding new entries.  So we need to save a copy.
435 		 */
436 		he->branch_info = malloc(sizeof(*he->branch_info));
437 		if (he->branch_info == NULL)
438 			goto err;
439 
440 		memcpy(he->branch_info, template->branch_info,
441 		       sizeof(*he->branch_info));
442 
443 		map__get(he->branch_info->from.map);
444 		map__get(he->branch_info->to.map);
445 	}
446 
447 	if (he->mem_info) {
448 		map__get(he->mem_info->iaddr.map);
449 		map__get(he->mem_info->daddr.map);
450 	}
451 
452 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
453 		callchain_init(he->callchain);
454 
455 	if (he->raw_data) {
456 		he->raw_data = memdup(he->raw_data, he->raw_size);
457 		if (he->raw_data == NULL)
458 			goto err_infos;
459 	}
460 
461 	if (he->srcline) {
462 		he->srcline = strdup(he->srcline);
463 		if (he->srcline == NULL)
464 			goto err_rawdata;
465 	}
466 
467 	if (symbol_conf.res_sample) {
468 		he->res_samples = calloc(sizeof(struct res_sample),
469 					symbol_conf.res_sample);
470 		if (!he->res_samples)
471 			goto err_srcline;
472 	}
473 
474 	INIT_LIST_HEAD(&he->pairs.node);
475 	thread__get(he->thread);
476 	he->hroot_in  = RB_ROOT_CACHED;
477 	he->hroot_out = RB_ROOT_CACHED;
478 
479 	if (!symbol_conf.report_hierarchy)
480 		he->leaf = true;
481 
482 	return 0;
483 
484 err_srcline:
485 	zfree(&he->srcline);
486 
487 err_rawdata:
488 	zfree(&he->raw_data);
489 
490 err_infos:
491 	if (he->branch_info) {
492 		map__put(he->branch_info->from.map);
493 		map__put(he->branch_info->to.map);
494 		zfree(&he->branch_info);
495 	}
496 	if (he->mem_info) {
497 		map__put(he->mem_info->iaddr.map);
498 		map__put(he->mem_info->daddr.map);
499 	}
500 err:
501 	map__zput(he->ms.map);
502 	zfree(&he->stat_acc);
503 	return -ENOMEM;
504 }
505 
506 static void *hist_entry__zalloc(size_t size)
507 {
508 	return zalloc(size + sizeof(struct hist_entry));
509 }
510 
511 static void hist_entry__free(void *ptr)
512 {
513 	free(ptr);
514 }
515 
516 static struct hist_entry_ops default_ops = {
517 	.new	= hist_entry__zalloc,
518 	.free	= hist_entry__free,
519 };
520 
521 static struct hist_entry *hist_entry__new(struct hist_entry *template,
522 					  bool sample_self)
523 {
524 	struct hist_entry_ops *ops = template->ops;
525 	size_t callchain_size = 0;
526 	struct hist_entry *he;
527 	int err = 0;
528 
529 	if (!ops)
530 		ops = template->ops = &default_ops;
531 
532 	if (symbol_conf.use_callchain)
533 		callchain_size = sizeof(struct callchain_root);
534 
535 	he = ops->new(callchain_size);
536 	if (he) {
537 		err = hist_entry__init(he, template, sample_self, callchain_size);
538 		if (err) {
539 			ops->free(he);
540 			he = NULL;
541 		}
542 	}
543 
544 	return he;
545 }
546 
547 static u8 symbol__parent_filter(const struct symbol *parent)
548 {
549 	if (symbol_conf.exclude_other && parent == NULL)
550 		return 1 << HIST_FILTER__PARENT;
551 	return 0;
552 }
553 
554 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
555 {
556 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
557 		return;
558 
559 	he->hists->callchain_period += period;
560 	if (!he->filtered)
561 		he->hists->callchain_non_filtered_period += period;
562 }
563 
564 static struct hist_entry *hists__findnew_entry(struct hists *hists,
565 					       struct hist_entry *entry,
566 					       struct addr_location *al,
567 					       bool sample_self)
568 {
569 	struct rb_node **p;
570 	struct rb_node *parent = NULL;
571 	struct hist_entry *he;
572 	int64_t cmp;
573 	u64 period = entry->stat.period;
574 	u64 weight = entry->stat.weight;
575 	bool leftmost = true;
576 
577 	p = &hists->entries_in->rb_root.rb_node;
578 
579 	while (*p != NULL) {
580 		parent = *p;
581 		he = rb_entry(parent, struct hist_entry, rb_node_in);
582 
583 		/*
584 		 * Make sure that it receives arguments in a same order as
585 		 * hist_entry__collapse() so that we can use an appropriate
586 		 * function when searching an entry regardless which sort
587 		 * keys were used.
588 		 */
589 		cmp = hist_entry__cmp(he, entry);
590 
591 		if (!cmp) {
592 			if (sample_self) {
593 				he_stat__add_period(&he->stat, period, weight);
594 				hist_entry__add_callchain_period(he, period);
595 			}
596 			if (symbol_conf.cumulate_callchain)
597 				he_stat__add_period(he->stat_acc, period, weight);
598 
599 			/*
600 			 * This mem info was allocated from sample__resolve_mem
601 			 * and will not be used anymore.
602 			 */
603 			mem_info__zput(entry->mem_info);
604 
605 			block_info__zput(entry->block_info);
606 
607 			/* If the map of an existing hist_entry has
608 			 * become out-of-date due to an exec() or
609 			 * similar, update it.  Otherwise we will
610 			 * mis-adjust symbol addresses when computing
611 			 * the history counter to increment.
612 			 */
613 			if (he->ms.map != entry->ms.map) {
614 				map__put(he->ms.map);
615 				he->ms.map = map__get(entry->ms.map);
616 			}
617 			goto out;
618 		}
619 
620 		if (cmp < 0)
621 			p = &(*p)->rb_left;
622 		else {
623 			p = &(*p)->rb_right;
624 			leftmost = false;
625 		}
626 	}
627 
628 	he = hist_entry__new(entry, sample_self);
629 	if (!he)
630 		return NULL;
631 
632 	if (sample_self)
633 		hist_entry__add_callchain_period(he, period);
634 	hists->nr_entries++;
635 
636 	rb_link_node(&he->rb_node_in, parent, p);
637 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
638 out:
639 	if (sample_self)
640 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
641 	if (symbol_conf.cumulate_callchain)
642 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
643 	return he;
644 }
645 
646 static unsigned random_max(unsigned high)
647 {
648 	unsigned thresh = -high % high;
649 	for (;;) {
650 		unsigned r = random();
651 		if (r >= thresh)
652 			return r % high;
653 	}
654 }
655 
656 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
657 {
658 	struct res_sample *r;
659 	int j;
660 
661 	if (he->num_res < symbol_conf.res_sample) {
662 		j = he->num_res++;
663 	} else {
664 		j = random_max(symbol_conf.res_sample);
665 	}
666 	r = &he->res_samples[j];
667 	r->time = sample->time;
668 	r->cpu = sample->cpu;
669 	r->tid = sample->tid;
670 }
671 
672 static struct hist_entry*
673 __hists__add_entry(struct hists *hists,
674 		   struct addr_location *al,
675 		   struct symbol *sym_parent,
676 		   struct branch_info *bi,
677 		   struct mem_info *mi,
678 		   struct block_info *block_info,
679 		   struct perf_sample *sample,
680 		   bool sample_self,
681 		   struct hist_entry_ops *ops)
682 {
683 	struct namespaces *ns = thread__namespaces(al->thread);
684 	struct hist_entry entry = {
685 		.thread	= al->thread,
686 		.comm = thread__comm(al->thread),
687 		.cgroup_id = {
688 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
689 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
690 		},
691 		.ms = {
692 			.map	= al->map,
693 			.sym	= al->sym,
694 		},
695 		.srcline = (char *) al->srcline,
696 		.socket	 = al->socket,
697 		.cpu	 = al->cpu,
698 		.cpumode = al->cpumode,
699 		.ip	 = al->addr,
700 		.level	 = al->level,
701 		.stat = {
702 			.nr_events = 1,
703 			.period	= sample->period,
704 			.weight = sample->weight,
705 		},
706 		.parent = sym_parent,
707 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
708 		.hists	= hists,
709 		.branch_info = bi,
710 		.mem_info = mi,
711 		.block_info = block_info,
712 		.transaction = sample->transaction,
713 		.raw_data = sample->raw_data,
714 		.raw_size = sample->raw_size,
715 		.ops = ops,
716 		.time = hist_time(sample->time),
717 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
718 
719 	if (!hists->has_callchains && he && he->callchain_size != 0)
720 		hists->has_callchains = true;
721 	if (he && symbol_conf.res_sample)
722 		hists__res_sample(he, sample);
723 	return he;
724 }
725 
726 struct hist_entry *hists__add_entry(struct hists *hists,
727 				    struct addr_location *al,
728 				    struct symbol *sym_parent,
729 				    struct branch_info *bi,
730 				    struct mem_info *mi,
731 				    struct perf_sample *sample,
732 				    bool sample_self)
733 {
734 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
735 				  sample, sample_self, NULL);
736 }
737 
738 struct hist_entry *hists__add_entry_ops(struct hists *hists,
739 					struct hist_entry_ops *ops,
740 					struct addr_location *al,
741 					struct symbol *sym_parent,
742 					struct branch_info *bi,
743 					struct mem_info *mi,
744 					struct perf_sample *sample,
745 					bool sample_self)
746 {
747 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
748 				  sample, sample_self, ops);
749 }
750 
751 struct hist_entry *hists__add_entry_block(struct hists *hists,
752 					  struct addr_location *al,
753 					  struct block_info *block_info)
754 {
755 	struct hist_entry entry = {
756 		.block_info = block_info,
757 		.hists = hists,
758 	}, *he = hists__findnew_entry(hists, &entry, al, false);
759 
760 	return he;
761 }
762 
763 static int
764 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
765 		    struct addr_location *al __maybe_unused)
766 {
767 	return 0;
768 }
769 
770 static int
771 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
772 			struct addr_location *al __maybe_unused)
773 {
774 	return 0;
775 }
776 
777 static int
778 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
779 {
780 	struct perf_sample *sample = iter->sample;
781 	struct mem_info *mi;
782 
783 	mi = sample__resolve_mem(sample, al);
784 	if (mi == NULL)
785 		return -ENOMEM;
786 
787 	iter->priv = mi;
788 	return 0;
789 }
790 
791 static int
792 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
793 {
794 	u64 cost;
795 	struct mem_info *mi = iter->priv;
796 	struct hists *hists = evsel__hists(iter->evsel);
797 	struct perf_sample *sample = iter->sample;
798 	struct hist_entry *he;
799 
800 	if (mi == NULL)
801 		return -EINVAL;
802 
803 	cost = sample->weight;
804 	if (!cost)
805 		cost = 1;
806 
807 	/*
808 	 * must pass period=weight in order to get the correct
809 	 * sorting from hists__collapse_resort() which is solely
810 	 * based on periods. We want sorting be done on nr_events * weight
811 	 * and this is indirectly achieved by passing period=weight here
812 	 * and the he_stat__add_period() function.
813 	 */
814 	sample->period = cost;
815 
816 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
817 			      sample, true);
818 	if (!he)
819 		return -ENOMEM;
820 
821 	iter->he = he;
822 	return 0;
823 }
824 
825 static int
826 iter_finish_mem_entry(struct hist_entry_iter *iter,
827 		      struct addr_location *al __maybe_unused)
828 {
829 	struct evsel *evsel = iter->evsel;
830 	struct hists *hists = evsel__hists(evsel);
831 	struct hist_entry *he = iter->he;
832 	int err = -EINVAL;
833 
834 	if (he == NULL)
835 		goto out;
836 
837 	hists__inc_nr_samples(hists, he->filtered);
838 
839 	err = hist_entry__append_callchain(he, iter->sample);
840 
841 out:
842 	/*
843 	 * We don't need to free iter->priv (mem_info) here since the mem info
844 	 * was either already freed in hists__findnew_entry() or passed to a
845 	 * new hist entry by hist_entry__new().
846 	 */
847 	iter->priv = NULL;
848 
849 	iter->he = NULL;
850 	return err;
851 }
852 
853 static int
854 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
855 {
856 	struct branch_info *bi;
857 	struct perf_sample *sample = iter->sample;
858 
859 	bi = sample__resolve_bstack(sample, al);
860 	if (!bi)
861 		return -ENOMEM;
862 
863 	iter->curr = 0;
864 	iter->total = sample->branch_stack->nr;
865 
866 	iter->priv = bi;
867 	return 0;
868 }
869 
870 static int
871 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
872 			     struct addr_location *al __maybe_unused)
873 {
874 	return 0;
875 }
876 
877 static int
878 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
879 {
880 	struct branch_info *bi = iter->priv;
881 	int i = iter->curr;
882 
883 	if (bi == NULL)
884 		return 0;
885 
886 	if (iter->curr >= iter->total)
887 		return 0;
888 
889 	al->map = bi[i].to.map;
890 	al->sym = bi[i].to.sym;
891 	al->addr = bi[i].to.addr;
892 	return 1;
893 }
894 
895 static int
896 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
897 {
898 	struct branch_info *bi;
899 	struct evsel *evsel = iter->evsel;
900 	struct hists *hists = evsel__hists(evsel);
901 	struct perf_sample *sample = iter->sample;
902 	struct hist_entry *he = NULL;
903 	int i = iter->curr;
904 	int err = 0;
905 
906 	bi = iter->priv;
907 
908 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
909 		goto out;
910 
911 	/*
912 	 * The report shows the percentage of total branches captured
913 	 * and not events sampled. Thus we use a pseudo period of 1.
914 	 */
915 	sample->period = 1;
916 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
917 
918 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
919 			      sample, true);
920 	if (he == NULL)
921 		return -ENOMEM;
922 
923 	hists__inc_nr_samples(hists, he->filtered);
924 
925 out:
926 	iter->he = he;
927 	iter->curr++;
928 	return err;
929 }
930 
931 static int
932 iter_finish_branch_entry(struct hist_entry_iter *iter,
933 			 struct addr_location *al __maybe_unused)
934 {
935 	zfree(&iter->priv);
936 	iter->he = NULL;
937 
938 	return iter->curr >= iter->total ? 0 : -1;
939 }
940 
941 static int
942 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
943 			  struct addr_location *al __maybe_unused)
944 {
945 	return 0;
946 }
947 
948 static int
949 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
950 {
951 	struct evsel *evsel = iter->evsel;
952 	struct perf_sample *sample = iter->sample;
953 	struct hist_entry *he;
954 
955 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
956 			      sample, true);
957 	if (he == NULL)
958 		return -ENOMEM;
959 
960 	iter->he = he;
961 	return 0;
962 }
963 
964 static int
965 iter_finish_normal_entry(struct hist_entry_iter *iter,
966 			 struct addr_location *al __maybe_unused)
967 {
968 	struct hist_entry *he = iter->he;
969 	struct evsel *evsel = iter->evsel;
970 	struct perf_sample *sample = iter->sample;
971 
972 	if (he == NULL)
973 		return 0;
974 
975 	iter->he = NULL;
976 
977 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
978 
979 	return hist_entry__append_callchain(he, sample);
980 }
981 
982 static int
983 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
984 			      struct addr_location *al __maybe_unused)
985 {
986 	struct hist_entry **he_cache;
987 
988 	callchain_cursor_commit(&callchain_cursor);
989 
990 	/*
991 	 * This is for detecting cycles or recursions so that they're
992 	 * cumulated only one time to prevent entries more than 100%
993 	 * overhead.
994 	 */
995 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
996 	if (he_cache == NULL)
997 		return -ENOMEM;
998 
999 	iter->priv = he_cache;
1000 	iter->curr = 0;
1001 
1002 	return 0;
1003 }
1004 
1005 static int
1006 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1007 				 struct addr_location *al)
1008 {
1009 	struct evsel *evsel = iter->evsel;
1010 	struct hists *hists = evsel__hists(evsel);
1011 	struct perf_sample *sample = iter->sample;
1012 	struct hist_entry **he_cache = iter->priv;
1013 	struct hist_entry *he;
1014 	int err = 0;
1015 
1016 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1017 			      sample, true);
1018 	if (he == NULL)
1019 		return -ENOMEM;
1020 
1021 	iter->he = he;
1022 	he_cache[iter->curr++] = he;
1023 
1024 	hist_entry__append_callchain(he, sample);
1025 
1026 	/*
1027 	 * We need to re-initialize the cursor since callchain_append()
1028 	 * advanced the cursor to the end.
1029 	 */
1030 	callchain_cursor_commit(&callchain_cursor);
1031 
1032 	hists__inc_nr_samples(hists, he->filtered);
1033 
1034 	return err;
1035 }
1036 
1037 static int
1038 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1039 			   struct addr_location *al)
1040 {
1041 	struct callchain_cursor_node *node;
1042 
1043 	node = callchain_cursor_current(&callchain_cursor);
1044 	if (node == NULL)
1045 		return 0;
1046 
1047 	return fill_callchain_info(al, node, iter->hide_unresolved);
1048 }
1049 
1050 static int
1051 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1052 			       struct addr_location *al)
1053 {
1054 	struct evsel *evsel = iter->evsel;
1055 	struct perf_sample *sample = iter->sample;
1056 	struct hist_entry **he_cache = iter->priv;
1057 	struct hist_entry *he;
1058 	struct hist_entry he_tmp = {
1059 		.hists = evsel__hists(evsel),
1060 		.cpu = al->cpu,
1061 		.thread = al->thread,
1062 		.comm = thread__comm(al->thread),
1063 		.ip = al->addr,
1064 		.ms = {
1065 			.map = al->map,
1066 			.sym = al->sym,
1067 		},
1068 		.srcline = (char *) al->srcline,
1069 		.parent = iter->parent,
1070 		.raw_data = sample->raw_data,
1071 		.raw_size = sample->raw_size,
1072 	};
1073 	int i;
1074 	struct callchain_cursor cursor;
1075 
1076 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1077 
1078 	callchain_cursor_advance(&callchain_cursor);
1079 
1080 	/*
1081 	 * Check if there's duplicate entries in the callchain.
1082 	 * It's possible that it has cycles or recursive calls.
1083 	 */
1084 	for (i = 0; i < iter->curr; i++) {
1085 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1086 			/* to avoid calling callback function */
1087 			iter->he = NULL;
1088 			return 0;
1089 		}
1090 	}
1091 
1092 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1093 			      sample, false);
1094 	if (he == NULL)
1095 		return -ENOMEM;
1096 
1097 	iter->he = he;
1098 	he_cache[iter->curr++] = he;
1099 
1100 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1101 		callchain_append(he->callchain, &cursor, sample->period);
1102 	return 0;
1103 }
1104 
1105 static int
1106 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1107 			     struct addr_location *al __maybe_unused)
1108 {
1109 	zfree(&iter->priv);
1110 	iter->he = NULL;
1111 
1112 	return 0;
1113 }
1114 
1115 const struct hist_iter_ops hist_iter_mem = {
1116 	.prepare_entry 		= iter_prepare_mem_entry,
1117 	.add_single_entry 	= iter_add_single_mem_entry,
1118 	.next_entry 		= iter_next_nop_entry,
1119 	.add_next_entry 	= iter_add_next_nop_entry,
1120 	.finish_entry 		= iter_finish_mem_entry,
1121 };
1122 
1123 const struct hist_iter_ops hist_iter_branch = {
1124 	.prepare_entry 		= iter_prepare_branch_entry,
1125 	.add_single_entry 	= iter_add_single_branch_entry,
1126 	.next_entry 		= iter_next_branch_entry,
1127 	.add_next_entry 	= iter_add_next_branch_entry,
1128 	.finish_entry 		= iter_finish_branch_entry,
1129 };
1130 
1131 const struct hist_iter_ops hist_iter_normal = {
1132 	.prepare_entry 		= iter_prepare_normal_entry,
1133 	.add_single_entry 	= iter_add_single_normal_entry,
1134 	.next_entry 		= iter_next_nop_entry,
1135 	.add_next_entry 	= iter_add_next_nop_entry,
1136 	.finish_entry 		= iter_finish_normal_entry,
1137 };
1138 
1139 const struct hist_iter_ops hist_iter_cumulative = {
1140 	.prepare_entry 		= iter_prepare_cumulative_entry,
1141 	.add_single_entry 	= iter_add_single_cumulative_entry,
1142 	.next_entry 		= iter_next_cumulative_entry,
1143 	.add_next_entry 	= iter_add_next_cumulative_entry,
1144 	.finish_entry 		= iter_finish_cumulative_entry,
1145 };
1146 
1147 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1148 			 int max_stack_depth, void *arg)
1149 {
1150 	int err, err2;
1151 	struct map *alm = NULL;
1152 
1153 	if (al)
1154 		alm = map__get(al->map);
1155 
1156 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1157 					iter->evsel, al, max_stack_depth);
1158 	if (err) {
1159 		map__put(alm);
1160 		return err;
1161 	}
1162 
1163 	err = iter->ops->prepare_entry(iter, al);
1164 	if (err)
1165 		goto out;
1166 
1167 	err = iter->ops->add_single_entry(iter, al);
1168 	if (err)
1169 		goto out;
1170 
1171 	if (iter->he && iter->add_entry_cb) {
1172 		err = iter->add_entry_cb(iter, al, true, arg);
1173 		if (err)
1174 			goto out;
1175 	}
1176 
1177 	while (iter->ops->next_entry(iter, al)) {
1178 		err = iter->ops->add_next_entry(iter, al);
1179 		if (err)
1180 			break;
1181 
1182 		if (iter->he && iter->add_entry_cb) {
1183 			err = iter->add_entry_cb(iter, al, false, arg);
1184 			if (err)
1185 				goto out;
1186 		}
1187 	}
1188 
1189 out:
1190 	err2 = iter->ops->finish_entry(iter, al);
1191 	if (!err)
1192 		err = err2;
1193 
1194 	map__put(alm);
1195 
1196 	return err;
1197 }
1198 
1199 int64_t
1200 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1201 {
1202 	struct hists *hists = left->hists;
1203 	struct perf_hpp_fmt *fmt;
1204 	int64_t cmp = 0;
1205 
1206 	hists__for_each_sort_list(hists, fmt) {
1207 		if (perf_hpp__is_dynamic_entry(fmt) &&
1208 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1209 			continue;
1210 
1211 		cmp = fmt->cmp(fmt, left, right);
1212 		if (cmp)
1213 			break;
1214 	}
1215 
1216 	return cmp;
1217 }
1218 
1219 int64_t
1220 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1221 {
1222 	struct hists *hists = left->hists;
1223 	struct perf_hpp_fmt *fmt;
1224 	int64_t cmp = 0;
1225 
1226 	hists__for_each_sort_list(hists, fmt) {
1227 		if (perf_hpp__is_dynamic_entry(fmt) &&
1228 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1229 			continue;
1230 
1231 		cmp = fmt->collapse(fmt, left, right);
1232 		if (cmp)
1233 			break;
1234 	}
1235 
1236 	return cmp;
1237 }
1238 
1239 void hist_entry__delete(struct hist_entry *he)
1240 {
1241 	struct hist_entry_ops *ops = he->ops;
1242 
1243 	thread__zput(he->thread);
1244 	map__zput(he->ms.map);
1245 
1246 	if (he->branch_info) {
1247 		map__zput(he->branch_info->from.map);
1248 		map__zput(he->branch_info->to.map);
1249 		free_srcline(he->branch_info->srcline_from);
1250 		free_srcline(he->branch_info->srcline_to);
1251 		zfree(&he->branch_info);
1252 	}
1253 
1254 	if (he->mem_info) {
1255 		map__zput(he->mem_info->iaddr.map);
1256 		map__zput(he->mem_info->daddr.map);
1257 		mem_info__zput(he->mem_info);
1258 	}
1259 
1260 	if (he->block_info)
1261 		block_info__zput(he->block_info);
1262 
1263 	zfree(&he->res_samples);
1264 	zfree(&he->stat_acc);
1265 	free_srcline(he->srcline);
1266 	if (he->srcfile && he->srcfile[0])
1267 		zfree(&he->srcfile);
1268 	free_callchain(he->callchain);
1269 	zfree(&he->trace_output);
1270 	zfree(&he->raw_data);
1271 	ops->free(he);
1272 }
1273 
1274 /*
1275  * If this is not the last column, then we need to pad it according to the
1276  * pre-calculated max length for this column, otherwise don't bother adding
1277  * spaces because that would break viewing this with, for instance, 'less',
1278  * that would show tons of trailing spaces when a long C++ demangled method
1279  * names is sampled.
1280 */
1281 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1282 				   struct perf_hpp_fmt *fmt, int printed)
1283 {
1284 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1285 		const int width = fmt->width(fmt, hpp, he->hists);
1286 		if (printed < width) {
1287 			advance_hpp(hpp, printed);
1288 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1289 		}
1290 	}
1291 
1292 	return printed;
1293 }
1294 
1295 /*
1296  * collapse the histogram
1297  */
1298 
1299 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1300 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1301 				       enum hist_filter type);
1302 
1303 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1304 
1305 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1306 {
1307 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1308 }
1309 
1310 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1311 						enum hist_filter type,
1312 						fmt_chk_fn check)
1313 {
1314 	struct perf_hpp_fmt *fmt;
1315 	bool type_match = false;
1316 	struct hist_entry *parent = he->parent_he;
1317 
1318 	switch (type) {
1319 	case HIST_FILTER__THREAD:
1320 		if (symbol_conf.comm_list == NULL &&
1321 		    symbol_conf.pid_list == NULL &&
1322 		    symbol_conf.tid_list == NULL)
1323 			return;
1324 		break;
1325 	case HIST_FILTER__DSO:
1326 		if (symbol_conf.dso_list == NULL)
1327 			return;
1328 		break;
1329 	case HIST_FILTER__SYMBOL:
1330 		if (symbol_conf.sym_list == NULL)
1331 			return;
1332 		break;
1333 	case HIST_FILTER__PARENT:
1334 	case HIST_FILTER__GUEST:
1335 	case HIST_FILTER__HOST:
1336 	case HIST_FILTER__SOCKET:
1337 	case HIST_FILTER__C2C:
1338 	default:
1339 		return;
1340 	}
1341 
1342 	/* if it's filtered by own fmt, it has to have filter bits */
1343 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1344 		if (check(fmt)) {
1345 			type_match = true;
1346 			break;
1347 		}
1348 	}
1349 
1350 	if (type_match) {
1351 		/*
1352 		 * If the filter is for current level entry, propagate
1353 		 * filter marker to parents.  The marker bit was
1354 		 * already set by default so it only needs to clear
1355 		 * non-filtered entries.
1356 		 */
1357 		if (!(he->filtered & (1 << type))) {
1358 			while (parent) {
1359 				parent->filtered &= ~(1 << type);
1360 				parent = parent->parent_he;
1361 			}
1362 		}
1363 	} else {
1364 		/*
1365 		 * If current entry doesn't have matching formats, set
1366 		 * filter marker for upper level entries.  it will be
1367 		 * cleared if its lower level entries is not filtered.
1368 		 *
1369 		 * For lower-level entries, it inherits parent's
1370 		 * filter bit so that lower level entries of a
1371 		 * non-filtered entry won't set the filter marker.
1372 		 */
1373 		if (parent == NULL)
1374 			he->filtered |= (1 << type);
1375 		else
1376 			he->filtered |= (parent->filtered & (1 << type));
1377 	}
1378 }
1379 
1380 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1381 {
1382 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1383 					    check_thread_entry);
1384 
1385 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1386 					    perf_hpp__is_dso_entry);
1387 
1388 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1389 					    perf_hpp__is_sym_entry);
1390 
1391 	hists__apply_filters(he->hists, he);
1392 }
1393 
1394 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1395 						 struct rb_root_cached *root,
1396 						 struct hist_entry *he,
1397 						 struct hist_entry *parent_he,
1398 						 struct perf_hpp_list *hpp_list)
1399 {
1400 	struct rb_node **p = &root->rb_root.rb_node;
1401 	struct rb_node *parent = NULL;
1402 	struct hist_entry *iter, *new;
1403 	struct perf_hpp_fmt *fmt;
1404 	int64_t cmp;
1405 	bool leftmost = true;
1406 
1407 	while (*p != NULL) {
1408 		parent = *p;
1409 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1410 
1411 		cmp = 0;
1412 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1413 			cmp = fmt->collapse(fmt, iter, he);
1414 			if (cmp)
1415 				break;
1416 		}
1417 
1418 		if (!cmp) {
1419 			he_stat__add_stat(&iter->stat, &he->stat);
1420 			return iter;
1421 		}
1422 
1423 		if (cmp < 0)
1424 			p = &parent->rb_left;
1425 		else {
1426 			p = &parent->rb_right;
1427 			leftmost = false;
1428 		}
1429 	}
1430 
1431 	new = hist_entry__new(he, true);
1432 	if (new == NULL)
1433 		return NULL;
1434 
1435 	hists->nr_entries++;
1436 
1437 	/* save related format list for output */
1438 	new->hpp_list = hpp_list;
1439 	new->parent_he = parent_he;
1440 
1441 	hist_entry__apply_hierarchy_filters(new);
1442 
1443 	/* some fields are now passed to 'new' */
1444 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1445 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1446 			he->trace_output = NULL;
1447 		else
1448 			new->trace_output = NULL;
1449 
1450 		if (perf_hpp__is_srcline_entry(fmt))
1451 			he->srcline = NULL;
1452 		else
1453 			new->srcline = NULL;
1454 
1455 		if (perf_hpp__is_srcfile_entry(fmt))
1456 			he->srcfile = NULL;
1457 		else
1458 			new->srcfile = NULL;
1459 	}
1460 
1461 	rb_link_node(&new->rb_node_in, parent, p);
1462 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1463 	return new;
1464 }
1465 
1466 static int hists__hierarchy_insert_entry(struct hists *hists,
1467 					 struct rb_root_cached *root,
1468 					 struct hist_entry *he)
1469 {
1470 	struct perf_hpp_list_node *node;
1471 	struct hist_entry *new_he = NULL;
1472 	struct hist_entry *parent = NULL;
1473 	int depth = 0;
1474 	int ret = 0;
1475 
1476 	list_for_each_entry(node, &hists->hpp_formats, list) {
1477 		/* skip period (overhead) and elided columns */
1478 		if (node->level == 0 || node->skip)
1479 			continue;
1480 
1481 		/* insert copy of 'he' for each fmt into the hierarchy */
1482 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1483 		if (new_he == NULL) {
1484 			ret = -1;
1485 			break;
1486 		}
1487 
1488 		root = &new_he->hroot_in;
1489 		new_he->depth = depth++;
1490 		parent = new_he;
1491 	}
1492 
1493 	if (new_he) {
1494 		new_he->leaf = true;
1495 
1496 		if (hist_entry__has_callchains(new_he) &&
1497 		    symbol_conf.use_callchain) {
1498 			callchain_cursor_reset(&callchain_cursor);
1499 			if (callchain_merge(&callchain_cursor,
1500 					    new_he->callchain,
1501 					    he->callchain) < 0)
1502 				ret = -1;
1503 		}
1504 	}
1505 
1506 	/* 'he' is no longer used */
1507 	hist_entry__delete(he);
1508 
1509 	/* return 0 (or -1) since it already applied filters */
1510 	return ret;
1511 }
1512 
1513 static int hists__collapse_insert_entry(struct hists *hists,
1514 					struct rb_root_cached *root,
1515 					struct hist_entry *he)
1516 {
1517 	struct rb_node **p = &root->rb_root.rb_node;
1518 	struct rb_node *parent = NULL;
1519 	struct hist_entry *iter;
1520 	int64_t cmp;
1521 	bool leftmost = true;
1522 
1523 	if (symbol_conf.report_hierarchy)
1524 		return hists__hierarchy_insert_entry(hists, root, he);
1525 
1526 	while (*p != NULL) {
1527 		parent = *p;
1528 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1529 
1530 		cmp = hist_entry__collapse(iter, he);
1531 
1532 		if (!cmp) {
1533 			int ret = 0;
1534 
1535 			he_stat__add_stat(&iter->stat, &he->stat);
1536 			if (symbol_conf.cumulate_callchain)
1537 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1538 
1539 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1540 				callchain_cursor_reset(&callchain_cursor);
1541 				if (callchain_merge(&callchain_cursor,
1542 						    iter->callchain,
1543 						    he->callchain) < 0)
1544 					ret = -1;
1545 			}
1546 			hist_entry__delete(he);
1547 			return ret;
1548 		}
1549 
1550 		if (cmp < 0)
1551 			p = &(*p)->rb_left;
1552 		else {
1553 			p = &(*p)->rb_right;
1554 			leftmost = false;
1555 		}
1556 	}
1557 	hists->nr_entries++;
1558 
1559 	rb_link_node(&he->rb_node_in, parent, p);
1560 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1561 	return 1;
1562 }
1563 
1564 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1565 {
1566 	struct rb_root_cached *root;
1567 
1568 	pthread_mutex_lock(&hists->lock);
1569 
1570 	root = hists->entries_in;
1571 	if (++hists->entries_in > &hists->entries_in_array[1])
1572 		hists->entries_in = &hists->entries_in_array[0];
1573 
1574 	pthread_mutex_unlock(&hists->lock);
1575 
1576 	return root;
1577 }
1578 
1579 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1580 {
1581 	hists__filter_entry_by_dso(hists, he);
1582 	hists__filter_entry_by_thread(hists, he);
1583 	hists__filter_entry_by_symbol(hists, he);
1584 	hists__filter_entry_by_socket(hists, he);
1585 }
1586 
1587 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1588 {
1589 	struct rb_root_cached *root;
1590 	struct rb_node *next;
1591 	struct hist_entry *n;
1592 	int ret;
1593 
1594 	if (!hists__has(hists, need_collapse))
1595 		return 0;
1596 
1597 	hists->nr_entries = 0;
1598 
1599 	root = hists__get_rotate_entries_in(hists);
1600 
1601 	next = rb_first_cached(root);
1602 
1603 	while (next) {
1604 		if (session_done())
1605 			break;
1606 		n = rb_entry(next, struct hist_entry, rb_node_in);
1607 		next = rb_next(&n->rb_node_in);
1608 
1609 		rb_erase_cached(&n->rb_node_in, root);
1610 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1611 		if (ret < 0)
1612 			return -1;
1613 
1614 		if (ret) {
1615 			/*
1616 			 * If it wasn't combined with one of the entries already
1617 			 * collapsed, we need to apply the filters that may have
1618 			 * been set by, say, the hist_browser.
1619 			 */
1620 			hists__apply_filters(hists, n);
1621 		}
1622 		if (prog)
1623 			ui_progress__update(prog, 1);
1624 	}
1625 	return 0;
1626 }
1627 
1628 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1629 {
1630 	struct hists *hists = a->hists;
1631 	struct perf_hpp_fmt *fmt;
1632 	int64_t cmp = 0;
1633 
1634 	hists__for_each_sort_list(hists, fmt) {
1635 		if (perf_hpp__should_skip(fmt, a->hists))
1636 			continue;
1637 
1638 		cmp = fmt->sort(fmt, a, b);
1639 		if (cmp)
1640 			break;
1641 	}
1642 
1643 	return cmp;
1644 }
1645 
1646 static void hists__reset_filter_stats(struct hists *hists)
1647 {
1648 	hists->nr_non_filtered_entries = 0;
1649 	hists->stats.total_non_filtered_period = 0;
1650 }
1651 
1652 void hists__reset_stats(struct hists *hists)
1653 {
1654 	hists->nr_entries = 0;
1655 	hists->stats.total_period = 0;
1656 
1657 	hists__reset_filter_stats(hists);
1658 }
1659 
1660 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1661 {
1662 	hists->nr_non_filtered_entries++;
1663 	hists->stats.total_non_filtered_period += h->stat.period;
1664 }
1665 
1666 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1667 {
1668 	if (!h->filtered)
1669 		hists__inc_filter_stats(hists, h);
1670 
1671 	hists->nr_entries++;
1672 	hists->stats.total_period += h->stat.period;
1673 }
1674 
1675 static void hierarchy_recalc_total_periods(struct hists *hists)
1676 {
1677 	struct rb_node *node;
1678 	struct hist_entry *he;
1679 
1680 	node = rb_first_cached(&hists->entries);
1681 
1682 	hists->stats.total_period = 0;
1683 	hists->stats.total_non_filtered_period = 0;
1684 
1685 	/*
1686 	 * recalculate total period using top-level entries only
1687 	 * since lower level entries only see non-filtered entries
1688 	 * but upper level entries have sum of both entries.
1689 	 */
1690 	while (node) {
1691 		he = rb_entry(node, struct hist_entry, rb_node);
1692 		node = rb_next(node);
1693 
1694 		hists->stats.total_period += he->stat.period;
1695 		if (!he->filtered)
1696 			hists->stats.total_non_filtered_period += he->stat.period;
1697 	}
1698 }
1699 
1700 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1701 					  struct hist_entry *he)
1702 {
1703 	struct rb_node **p = &root->rb_root.rb_node;
1704 	struct rb_node *parent = NULL;
1705 	struct hist_entry *iter;
1706 	struct perf_hpp_fmt *fmt;
1707 	bool leftmost = true;
1708 
1709 	while (*p != NULL) {
1710 		parent = *p;
1711 		iter = rb_entry(parent, struct hist_entry, rb_node);
1712 
1713 		if (hist_entry__sort(he, iter) > 0)
1714 			p = &parent->rb_left;
1715 		else {
1716 			p = &parent->rb_right;
1717 			leftmost = false;
1718 		}
1719 	}
1720 
1721 	rb_link_node(&he->rb_node, parent, p);
1722 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1723 
1724 	/* update column width of dynamic entry */
1725 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1726 		if (perf_hpp__is_dynamic_entry(fmt))
1727 			fmt->sort(fmt, he, NULL);
1728 	}
1729 }
1730 
1731 static void hists__hierarchy_output_resort(struct hists *hists,
1732 					   struct ui_progress *prog,
1733 					   struct rb_root_cached *root_in,
1734 					   struct rb_root_cached *root_out,
1735 					   u64 min_callchain_hits,
1736 					   bool use_callchain)
1737 {
1738 	struct rb_node *node;
1739 	struct hist_entry *he;
1740 
1741 	*root_out = RB_ROOT_CACHED;
1742 	node = rb_first_cached(root_in);
1743 
1744 	while (node) {
1745 		he = rb_entry(node, struct hist_entry, rb_node_in);
1746 		node = rb_next(node);
1747 
1748 		hierarchy_insert_output_entry(root_out, he);
1749 
1750 		if (prog)
1751 			ui_progress__update(prog, 1);
1752 
1753 		hists->nr_entries++;
1754 		if (!he->filtered) {
1755 			hists->nr_non_filtered_entries++;
1756 			hists__calc_col_len(hists, he);
1757 		}
1758 
1759 		if (!he->leaf) {
1760 			hists__hierarchy_output_resort(hists, prog,
1761 						       &he->hroot_in,
1762 						       &he->hroot_out,
1763 						       min_callchain_hits,
1764 						       use_callchain);
1765 			continue;
1766 		}
1767 
1768 		if (!use_callchain)
1769 			continue;
1770 
1771 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1772 			u64 total = he->stat.period;
1773 
1774 			if (symbol_conf.cumulate_callchain)
1775 				total = he->stat_acc->period;
1776 
1777 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1778 		}
1779 
1780 		callchain_param.sort(&he->sorted_chain, he->callchain,
1781 				     min_callchain_hits, &callchain_param);
1782 	}
1783 }
1784 
1785 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1786 					 struct hist_entry *he,
1787 					 u64 min_callchain_hits,
1788 					 bool use_callchain)
1789 {
1790 	struct rb_node **p = &entries->rb_root.rb_node;
1791 	struct rb_node *parent = NULL;
1792 	struct hist_entry *iter;
1793 	struct perf_hpp_fmt *fmt;
1794 	bool leftmost = true;
1795 
1796 	if (use_callchain) {
1797 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1798 			u64 total = he->stat.period;
1799 
1800 			if (symbol_conf.cumulate_callchain)
1801 				total = he->stat_acc->period;
1802 
1803 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1804 		}
1805 		callchain_param.sort(&he->sorted_chain, he->callchain,
1806 				      min_callchain_hits, &callchain_param);
1807 	}
1808 
1809 	while (*p != NULL) {
1810 		parent = *p;
1811 		iter = rb_entry(parent, struct hist_entry, rb_node);
1812 
1813 		if (hist_entry__sort(he, iter) > 0)
1814 			p = &(*p)->rb_left;
1815 		else {
1816 			p = &(*p)->rb_right;
1817 			leftmost = false;
1818 		}
1819 	}
1820 
1821 	rb_link_node(&he->rb_node, parent, p);
1822 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1823 
1824 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1825 		if (perf_hpp__is_dynamic_entry(fmt) &&
1826 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1827 			fmt->sort(fmt, he, NULL);  /* update column width */
1828 	}
1829 }
1830 
1831 static void output_resort(struct hists *hists, struct ui_progress *prog,
1832 			  bool use_callchain, hists__resort_cb_t cb,
1833 			  void *cb_arg)
1834 {
1835 	struct rb_root_cached *root;
1836 	struct rb_node *next;
1837 	struct hist_entry *n;
1838 	u64 callchain_total;
1839 	u64 min_callchain_hits;
1840 
1841 	callchain_total = hists->callchain_period;
1842 	if (symbol_conf.filter_relative)
1843 		callchain_total = hists->callchain_non_filtered_period;
1844 
1845 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1846 
1847 	hists__reset_stats(hists);
1848 	hists__reset_col_len(hists);
1849 
1850 	if (symbol_conf.report_hierarchy) {
1851 		hists__hierarchy_output_resort(hists, prog,
1852 					       &hists->entries_collapsed,
1853 					       &hists->entries,
1854 					       min_callchain_hits,
1855 					       use_callchain);
1856 		hierarchy_recalc_total_periods(hists);
1857 		return;
1858 	}
1859 
1860 	if (hists__has(hists, need_collapse))
1861 		root = &hists->entries_collapsed;
1862 	else
1863 		root = hists->entries_in;
1864 
1865 	next = rb_first_cached(root);
1866 	hists->entries = RB_ROOT_CACHED;
1867 
1868 	while (next) {
1869 		n = rb_entry(next, struct hist_entry, rb_node_in);
1870 		next = rb_next(&n->rb_node_in);
1871 
1872 		if (cb && cb(n, cb_arg))
1873 			continue;
1874 
1875 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1876 		hists__inc_stats(hists, n);
1877 
1878 		if (!n->filtered)
1879 			hists__calc_col_len(hists, n);
1880 
1881 		if (prog)
1882 			ui_progress__update(prog, 1);
1883 	}
1884 }
1885 
1886 void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1887 				  hists__resort_cb_t cb, void *cb_arg)
1888 {
1889 	bool use_callchain;
1890 
1891 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1892 		use_callchain = evsel__has_callchain(evsel);
1893 	else
1894 		use_callchain = symbol_conf.use_callchain;
1895 
1896 	use_callchain |= symbol_conf.show_branchflag_count;
1897 
1898 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1899 }
1900 
1901 void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1902 {
1903 	return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1904 }
1905 
1906 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1907 {
1908 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1909 }
1910 
1911 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1912 			     hists__resort_cb_t cb)
1913 {
1914 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1915 }
1916 
1917 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1918 {
1919 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1920 		return false;
1921 
1922 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1923 		return true;
1924 
1925 	return false;
1926 }
1927 
1928 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1929 {
1930 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1931 
1932 	while (can_goto_child(he, HMD_NORMAL)) {
1933 		node = rb_last(&he->hroot_out.rb_root);
1934 		he = rb_entry(node, struct hist_entry, rb_node);
1935 	}
1936 	return node;
1937 }
1938 
1939 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1940 {
1941 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1942 
1943 	if (can_goto_child(he, hmd))
1944 		node = rb_first_cached(&he->hroot_out);
1945 	else
1946 		node = rb_next(node);
1947 
1948 	while (node == NULL) {
1949 		he = he->parent_he;
1950 		if (he == NULL)
1951 			break;
1952 
1953 		node = rb_next(&he->rb_node);
1954 	}
1955 	return node;
1956 }
1957 
1958 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1959 {
1960 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1961 
1962 	node = rb_prev(node);
1963 	if (node)
1964 		return rb_hierarchy_last(node);
1965 
1966 	he = he->parent_he;
1967 	if (he == NULL)
1968 		return NULL;
1969 
1970 	return &he->rb_node;
1971 }
1972 
1973 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1974 {
1975 	struct rb_node *node;
1976 	struct hist_entry *child;
1977 	float percent;
1978 
1979 	if (he->leaf)
1980 		return false;
1981 
1982 	node = rb_first_cached(&he->hroot_out);
1983 	child = rb_entry(node, struct hist_entry, rb_node);
1984 
1985 	while (node && child->filtered) {
1986 		node = rb_next(node);
1987 		child = rb_entry(node, struct hist_entry, rb_node);
1988 	}
1989 
1990 	if (node)
1991 		percent = hist_entry__get_percent_limit(child);
1992 	else
1993 		percent = 0;
1994 
1995 	return node && percent >= limit;
1996 }
1997 
1998 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1999 				       enum hist_filter filter)
2000 {
2001 	h->filtered &= ~(1 << filter);
2002 
2003 	if (symbol_conf.report_hierarchy) {
2004 		struct hist_entry *parent = h->parent_he;
2005 
2006 		while (parent) {
2007 			he_stat__add_stat(&parent->stat, &h->stat);
2008 
2009 			parent->filtered &= ~(1 << filter);
2010 
2011 			if (parent->filtered)
2012 				goto next;
2013 
2014 			/* force fold unfiltered entry for simplicity */
2015 			parent->unfolded = false;
2016 			parent->has_no_entry = false;
2017 			parent->row_offset = 0;
2018 			parent->nr_rows = 0;
2019 next:
2020 			parent = parent->parent_he;
2021 		}
2022 	}
2023 
2024 	if (h->filtered)
2025 		return;
2026 
2027 	/* force fold unfiltered entry for simplicity */
2028 	h->unfolded = false;
2029 	h->has_no_entry = false;
2030 	h->row_offset = 0;
2031 	h->nr_rows = 0;
2032 
2033 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2034 
2035 	hists__inc_filter_stats(hists, h);
2036 	hists__calc_col_len(hists, h);
2037 }
2038 
2039 
2040 static bool hists__filter_entry_by_dso(struct hists *hists,
2041 				       struct hist_entry *he)
2042 {
2043 	if (hists->dso_filter != NULL &&
2044 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2045 		he->filtered |= (1 << HIST_FILTER__DSO);
2046 		return true;
2047 	}
2048 
2049 	return false;
2050 }
2051 
2052 static bool hists__filter_entry_by_thread(struct hists *hists,
2053 					  struct hist_entry *he)
2054 {
2055 	if (hists->thread_filter != NULL &&
2056 	    he->thread != hists->thread_filter) {
2057 		he->filtered |= (1 << HIST_FILTER__THREAD);
2058 		return true;
2059 	}
2060 
2061 	return false;
2062 }
2063 
2064 static bool hists__filter_entry_by_symbol(struct hists *hists,
2065 					  struct hist_entry *he)
2066 {
2067 	if (hists->symbol_filter_str != NULL &&
2068 	    (!he->ms.sym || strstr(he->ms.sym->name,
2069 				   hists->symbol_filter_str) == NULL)) {
2070 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2071 		return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 static bool hists__filter_entry_by_socket(struct hists *hists,
2078 					  struct hist_entry *he)
2079 {
2080 	if ((hists->socket_filter > -1) &&
2081 	    (he->socket != hists->socket_filter)) {
2082 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2083 		return true;
2084 	}
2085 
2086 	return false;
2087 }
2088 
2089 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2090 
2091 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2092 {
2093 	struct rb_node *nd;
2094 
2095 	hists->stats.nr_non_filtered_samples = 0;
2096 
2097 	hists__reset_filter_stats(hists);
2098 	hists__reset_col_len(hists);
2099 
2100 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2101 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2102 
2103 		if (filter(hists, h))
2104 			continue;
2105 
2106 		hists__remove_entry_filter(hists, h, type);
2107 	}
2108 }
2109 
2110 static void resort_filtered_entry(struct rb_root_cached *root,
2111 				  struct hist_entry *he)
2112 {
2113 	struct rb_node **p = &root->rb_root.rb_node;
2114 	struct rb_node *parent = NULL;
2115 	struct hist_entry *iter;
2116 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2117 	struct rb_node *nd;
2118 	bool leftmost = true;
2119 
2120 	while (*p != NULL) {
2121 		parent = *p;
2122 		iter = rb_entry(parent, struct hist_entry, rb_node);
2123 
2124 		if (hist_entry__sort(he, iter) > 0)
2125 			p = &(*p)->rb_left;
2126 		else {
2127 			p = &(*p)->rb_right;
2128 			leftmost = false;
2129 		}
2130 	}
2131 
2132 	rb_link_node(&he->rb_node, parent, p);
2133 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2134 
2135 	if (he->leaf || he->filtered)
2136 		return;
2137 
2138 	nd = rb_first_cached(&he->hroot_out);
2139 	while (nd) {
2140 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2141 
2142 		nd = rb_next(nd);
2143 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2144 
2145 		resort_filtered_entry(&new_root, h);
2146 	}
2147 
2148 	he->hroot_out = new_root;
2149 }
2150 
2151 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2152 {
2153 	struct rb_node *nd;
2154 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2155 
2156 	hists->stats.nr_non_filtered_samples = 0;
2157 
2158 	hists__reset_filter_stats(hists);
2159 	hists__reset_col_len(hists);
2160 
2161 	nd = rb_first_cached(&hists->entries);
2162 	while (nd) {
2163 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2164 		int ret;
2165 
2166 		ret = hist_entry__filter(h, type, arg);
2167 
2168 		/*
2169 		 * case 1. non-matching type
2170 		 * zero out the period, set filter marker and move to child
2171 		 */
2172 		if (ret < 0) {
2173 			memset(&h->stat, 0, sizeof(h->stat));
2174 			h->filtered |= (1 << type);
2175 
2176 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2177 		}
2178 		/*
2179 		 * case 2. matched type (filter out)
2180 		 * set filter marker and move to next
2181 		 */
2182 		else if (ret == 1) {
2183 			h->filtered |= (1 << type);
2184 
2185 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2186 		}
2187 		/*
2188 		 * case 3. ok (not filtered)
2189 		 * add period to hists and parents, erase the filter marker
2190 		 * and move to next sibling
2191 		 */
2192 		else {
2193 			hists__remove_entry_filter(hists, h, type);
2194 
2195 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2196 		}
2197 	}
2198 
2199 	hierarchy_recalc_total_periods(hists);
2200 
2201 	/*
2202 	 * resort output after applying a new filter since filter in a lower
2203 	 * hierarchy can change periods in a upper hierarchy.
2204 	 */
2205 	nd = rb_first_cached(&hists->entries);
2206 	while (nd) {
2207 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2208 
2209 		nd = rb_next(nd);
2210 		rb_erase_cached(&h->rb_node, &hists->entries);
2211 
2212 		resort_filtered_entry(&new_root, h);
2213 	}
2214 
2215 	hists->entries = new_root;
2216 }
2217 
2218 void hists__filter_by_thread(struct hists *hists)
2219 {
2220 	if (symbol_conf.report_hierarchy)
2221 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2222 					hists->thread_filter);
2223 	else
2224 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2225 				      hists__filter_entry_by_thread);
2226 }
2227 
2228 void hists__filter_by_dso(struct hists *hists)
2229 {
2230 	if (symbol_conf.report_hierarchy)
2231 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2232 					hists->dso_filter);
2233 	else
2234 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2235 				      hists__filter_entry_by_dso);
2236 }
2237 
2238 void hists__filter_by_symbol(struct hists *hists)
2239 {
2240 	if (symbol_conf.report_hierarchy)
2241 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2242 					hists->symbol_filter_str);
2243 	else
2244 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2245 				      hists__filter_entry_by_symbol);
2246 }
2247 
2248 void hists__filter_by_socket(struct hists *hists)
2249 {
2250 	if (symbol_conf.report_hierarchy)
2251 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2252 					&hists->socket_filter);
2253 	else
2254 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2255 				      hists__filter_entry_by_socket);
2256 }
2257 
2258 void events_stats__inc(struct events_stats *stats, u32 type)
2259 {
2260 	++stats->nr_events[0];
2261 	++stats->nr_events[type];
2262 }
2263 
2264 void hists__inc_nr_events(struct hists *hists, u32 type)
2265 {
2266 	events_stats__inc(&hists->stats, type);
2267 }
2268 
2269 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2270 {
2271 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2272 	if (!filtered)
2273 		hists->stats.nr_non_filtered_samples++;
2274 }
2275 
2276 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2277 						 struct hist_entry *pair)
2278 {
2279 	struct rb_root_cached *root;
2280 	struct rb_node **p;
2281 	struct rb_node *parent = NULL;
2282 	struct hist_entry *he;
2283 	int64_t cmp;
2284 	bool leftmost = true;
2285 
2286 	if (hists__has(hists, need_collapse))
2287 		root = &hists->entries_collapsed;
2288 	else
2289 		root = hists->entries_in;
2290 
2291 	p = &root->rb_root.rb_node;
2292 
2293 	while (*p != NULL) {
2294 		parent = *p;
2295 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2296 
2297 		cmp = hist_entry__collapse(he, pair);
2298 
2299 		if (!cmp)
2300 			goto out;
2301 
2302 		if (cmp < 0)
2303 			p = &(*p)->rb_left;
2304 		else {
2305 			p = &(*p)->rb_right;
2306 			leftmost = false;
2307 		}
2308 	}
2309 
2310 	he = hist_entry__new(pair, true);
2311 	if (he) {
2312 		memset(&he->stat, 0, sizeof(he->stat));
2313 		he->hists = hists;
2314 		if (symbol_conf.cumulate_callchain)
2315 			memset(he->stat_acc, 0, sizeof(he->stat));
2316 		rb_link_node(&he->rb_node_in, parent, p);
2317 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2318 		hists__inc_stats(hists, he);
2319 		he->dummy = true;
2320 	}
2321 out:
2322 	return he;
2323 }
2324 
2325 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2326 						    struct rb_root_cached *root,
2327 						    struct hist_entry *pair)
2328 {
2329 	struct rb_node **p;
2330 	struct rb_node *parent = NULL;
2331 	struct hist_entry *he;
2332 	struct perf_hpp_fmt *fmt;
2333 	bool leftmost = true;
2334 
2335 	p = &root->rb_root.rb_node;
2336 	while (*p != NULL) {
2337 		int64_t cmp = 0;
2338 
2339 		parent = *p;
2340 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2341 
2342 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2343 			cmp = fmt->collapse(fmt, he, pair);
2344 			if (cmp)
2345 				break;
2346 		}
2347 		if (!cmp)
2348 			goto out;
2349 
2350 		if (cmp < 0)
2351 			p = &parent->rb_left;
2352 		else {
2353 			p = &parent->rb_right;
2354 			leftmost = false;
2355 		}
2356 	}
2357 
2358 	he = hist_entry__new(pair, true);
2359 	if (he) {
2360 		rb_link_node(&he->rb_node_in, parent, p);
2361 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2362 
2363 		he->dummy = true;
2364 		he->hists = hists;
2365 		memset(&he->stat, 0, sizeof(he->stat));
2366 		hists__inc_stats(hists, he);
2367 	}
2368 out:
2369 	return he;
2370 }
2371 
2372 static struct hist_entry *hists__find_entry(struct hists *hists,
2373 					    struct hist_entry *he)
2374 {
2375 	struct rb_node *n;
2376 
2377 	if (hists__has(hists, need_collapse))
2378 		n = hists->entries_collapsed.rb_root.rb_node;
2379 	else
2380 		n = hists->entries_in->rb_root.rb_node;
2381 
2382 	while (n) {
2383 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2384 		int64_t cmp = hist_entry__collapse(iter, he);
2385 
2386 		if (cmp < 0)
2387 			n = n->rb_left;
2388 		else if (cmp > 0)
2389 			n = n->rb_right;
2390 		else
2391 			return iter;
2392 	}
2393 
2394 	return NULL;
2395 }
2396 
2397 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2398 						      struct hist_entry *he)
2399 {
2400 	struct rb_node *n = root->rb_root.rb_node;
2401 
2402 	while (n) {
2403 		struct hist_entry *iter;
2404 		struct perf_hpp_fmt *fmt;
2405 		int64_t cmp = 0;
2406 
2407 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2408 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2409 			cmp = fmt->collapse(fmt, iter, he);
2410 			if (cmp)
2411 				break;
2412 		}
2413 
2414 		if (cmp < 0)
2415 			n = n->rb_left;
2416 		else if (cmp > 0)
2417 			n = n->rb_right;
2418 		else
2419 			return iter;
2420 	}
2421 
2422 	return NULL;
2423 }
2424 
2425 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2426 				   struct rb_root_cached *other_root)
2427 {
2428 	struct rb_node *nd;
2429 	struct hist_entry *pos, *pair;
2430 
2431 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2432 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2433 		pair = hists__find_hierarchy_entry(other_root, pos);
2434 
2435 		if (pair) {
2436 			hist_entry__add_pair(pair, pos);
2437 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2438 		}
2439 	}
2440 }
2441 
2442 /*
2443  * Look for pairs to link to the leader buckets (hist_entries):
2444  */
2445 void hists__match(struct hists *leader, struct hists *other)
2446 {
2447 	struct rb_root_cached *root;
2448 	struct rb_node *nd;
2449 	struct hist_entry *pos, *pair;
2450 
2451 	if (symbol_conf.report_hierarchy) {
2452 		/* hierarchy report always collapses entries */
2453 		return hists__match_hierarchy(&leader->entries_collapsed,
2454 					      &other->entries_collapsed);
2455 	}
2456 
2457 	if (hists__has(leader, need_collapse))
2458 		root = &leader->entries_collapsed;
2459 	else
2460 		root = leader->entries_in;
2461 
2462 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2463 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2464 		pair = hists__find_entry(other, pos);
2465 
2466 		if (pair)
2467 			hist_entry__add_pair(pair, pos);
2468 	}
2469 }
2470 
2471 static int hists__link_hierarchy(struct hists *leader_hists,
2472 				 struct hist_entry *parent,
2473 				 struct rb_root_cached *leader_root,
2474 				 struct rb_root_cached *other_root)
2475 {
2476 	struct rb_node *nd;
2477 	struct hist_entry *pos, *leader;
2478 
2479 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2480 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2481 
2482 		if (hist_entry__has_pairs(pos)) {
2483 			bool found = false;
2484 
2485 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2486 				if (leader->hists == leader_hists) {
2487 					found = true;
2488 					break;
2489 				}
2490 			}
2491 			if (!found)
2492 				return -1;
2493 		} else {
2494 			leader = add_dummy_hierarchy_entry(leader_hists,
2495 							   leader_root, pos);
2496 			if (leader == NULL)
2497 				return -1;
2498 
2499 			/* do not point parent in the pos */
2500 			leader->parent_he = parent;
2501 
2502 			hist_entry__add_pair(pos, leader);
2503 		}
2504 
2505 		if (!pos->leaf) {
2506 			if (hists__link_hierarchy(leader_hists, leader,
2507 						  &leader->hroot_in,
2508 						  &pos->hroot_in) < 0)
2509 				return -1;
2510 		}
2511 	}
2512 	return 0;
2513 }
2514 
2515 /*
2516  * Look for entries in the other hists that are not present in the leader, if
2517  * we find them, just add a dummy entry on the leader hists, with period=0,
2518  * nr_events=0, to serve as the list header.
2519  */
2520 int hists__link(struct hists *leader, struct hists *other)
2521 {
2522 	struct rb_root_cached *root;
2523 	struct rb_node *nd;
2524 	struct hist_entry *pos, *pair;
2525 
2526 	if (symbol_conf.report_hierarchy) {
2527 		/* hierarchy report always collapses entries */
2528 		return hists__link_hierarchy(leader, NULL,
2529 					     &leader->entries_collapsed,
2530 					     &other->entries_collapsed);
2531 	}
2532 
2533 	if (hists__has(other, need_collapse))
2534 		root = &other->entries_collapsed;
2535 	else
2536 		root = other->entries_in;
2537 
2538 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2539 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2540 
2541 		if (!hist_entry__has_pairs(pos)) {
2542 			pair = hists__add_dummy_entry(leader, pos);
2543 			if (pair == NULL)
2544 				return -1;
2545 			hist_entry__add_pair(pos, pair);
2546 		}
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 int hists__unlink(struct hists *hists)
2553 {
2554 	struct rb_root_cached *root;
2555 	struct rb_node *nd;
2556 	struct hist_entry *pos;
2557 
2558 	if (hists__has(hists, need_collapse))
2559 		root = &hists->entries_collapsed;
2560 	else
2561 		root = hists->entries_in;
2562 
2563 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2564 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2565 		list_del_init(&pos->pairs.node);
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2572 			  struct perf_sample *sample, bool nonany_branch_mode)
2573 {
2574 	struct branch_info *bi;
2575 
2576 	/* If we have branch cycles always annotate them. */
2577 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2578 		int i;
2579 
2580 		bi = sample__resolve_bstack(sample, al);
2581 		if (bi) {
2582 			struct addr_map_symbol *prev = NULL;
2583 
2584 			/*
2585 			 * Ignore errors, still want to process the
2586 			 * other entries.
2587 			 *
2588 			 * For non standard branch modes always
2589 			 * force no IPC (prev == NULL)
2590 			 *
2591 			 * Note that perf stores branches reversed from
2592 			 * program order!
2593 			 */
2594 			for (i = bs->nr - 1; i >= 0; i--) {
2595 				addr_map_symbol__account_cycles(&bi[i].from,
2596 					nonany_branch_mode ? NULL : prev,
2597 					bi[i].flags.cycles);
2598 				prev = &bi[i].to;
2599 			}
2600 			free(bi);
2601 		}
2602 	}
2603 }
2604 
2605 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2606 {
2607 	struct evsel *pos;
2608 	size_t ret = 0;
2609 
2610 	evlist__for_each_entry(evlist, pos) {
2611 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2612 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 
2619 u64 hists__total_period(struct hists *hists)
2620 {
2621 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2622 		hists->stats.total_period;
2623 }
2624 
2625 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2626 {
2627 	char unit;
2628 	int printed;
2629 	const struct dso *dso = hists->dso_filter;
2630 	struct thread *thread = hists->thread_filter;
2631 	int socket_id = hists->socket_filter;
2632 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2633 	u64 nr_events = hists->stats.total_period;
2634 	struct evsel *evsel = hists_to_evsel(hists);
2635 	const char *ev_name = perf_evsel__name(evsel);
2636 	char buf[512], sample_freq_str[64] = "";
2637 	size_t buflen = sizeof(buf);
2638 	char ref[30] = " show reference callgraph, ";
2639 	bool enable_ref = false;
2640 
2641 	if (symbol_conf.filter_relative) {
2642 		nr_samples = hists->stats.nr_non_filtered_samples;
2643 		nr_events = hists->stats.total_non_filtered_period;
2644 	}
2645 
2646 	if (perf_evsel__is_group_event(evsel)) {
2647 		struct evsel *pos;
2648 
2649 		perf_evsel__group_desc(evsel, buf, buflen);
2650 		ev_name = buf;
2651 
2652 		for_each_group_member(pos, evsel) {
2653 			struct hists *pos_hists = evsel__hists(pos);
2654 
2655 			if (symbol_conf.filter_relative) {
2656 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2657 				nr_events += pos_hists->stats.total_non_filtered_period;
2658 			} else {
2659 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2660 				nr_events += pos_hists->stats.total_period;
2661 			}
2662 		}
2663 	}
2664 
2665 	if (symbol_conf.show_ref_callgraph &&
2666 	    strstr(ev_name, "call-graph=no"))
2667 		enable_ref = true;
2668 
2669 	if (show_freq)
2670 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2671 
2672 	nr_samples = convert_unit(nr_samples, &unit);
2673 	printed = scnprintf(bf, size,
2674 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2675 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2676 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2677 
2678 
2679 	if (hists->uid_filter_str)
2680 		printed += snprintf(bf + printed, size - printed,
2681 				    ", UID: %s", hists->uid_filter_str);
2682 	if (thread) {
2683 		if (hists__has(hists, thread)) {
2684 			printed += scnprintf(bf + printed, size - printed,
2685 				    ", Thread: %s(%d)",
2686 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2687 				    thread->tid);
2688 		} else {
2689 			printed += scnprintf(bf + printed, size - printed,
2690 				    ", Thread: %s",
2691 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2692 		}
2693 	}
2694 	if (dso)
2695 		printed += scnprintf(bf + printed, size - printed,
2696 				    ", DSO: %s", dso->short_name);
2697 	if (socket_id > -1)
2698 		printed += scnprintf(bf + printed, size - printed,
2699 				    ", Processor Socket: %d", socket_id);
2700 
2701 	return printed;
2702 }
2703 
2704 int parse_filter_percentage(const struct option *opt __maybe_unused,
2705 			    const char *arg, int unset __maybe_unused)
2706 {
2707 	if (!strcmp(arg, "relative"))
2708 		symbol_conf.filter_relative = true;
2709 	else if (!strcmp(arg, "absolute"))
2710 		symbol_conf.filter_relative = false;
2711 	else {
2712 		pr_debug("Invalid percentage: %s\n", arg);
2713 		return -1;
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 int perf_hist_config(const char *var, const char *value)
2720 {
2721 	if (!strcmp(var, "hist.percentage"))
2722 		return parse_filter_percentage(NULL, value, 0);
2723 
2724 	return 0;
2725 }
2726 
2727 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2728 {
2729 	memset(hists, 0, sizeof(*hists));
2730 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2731 	hists->entries_in = &hists->entries_in_array[0];
2732 	hists->entries_collapsed = RB_ROOT_CACHED;
2733 	hists->entries = RB_ROOT_CACHED;
2734 	pthread_mutex_init(&hists->lock, NULL);
2735 	hists->socket_filter = -1;
2736 	hists->hpp_list = hpp_list;
2737 	INIT_LIST_HEAD(&hists->hpp_formats);
2738 	return 0;
2739 }
2740 
2741 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2742 {
2743 	struct rb_node *node;
2744 	struct hist_entry *he;
2745 
2746 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2747 		node = rb_first_cached(root);
2748 		rb_erase_cached(node, root);
2749 
2750 		he = rb_entry(node, struct hist_entry, rb_node_in);
2751 		hist_entry__delete(he);
2752 	}
2753 }
2754 
2755 static void hists__delete_all_entries(struct hists *hists)
2756 {
2757 	hists__delete_entries(hists);
2758 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2759 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2760 	hists__delete_remaining_entries(&hists->entries_collapsed);
2761 }
2762 
2763 static void hists_evsel__exit(struct evsel *evsel)
2764 {
2765 	struct hists *hists = evsel__hists(evsel);
2766 	struct perf_hpp_fmt *fmt, *pos;
2767 	struct perf_hpp_list_node *node, *tmp;
2768 
2769 	hists__delete_all_entries(hists);
2770 
2771 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2772 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2773 			list_del_init(&fmt->list);
2774 			free(fmt);
2775 		}
2776 		list_del_init(&node->list);
2777 		free(node);
2778 	}
2779 }
2780 
2781 static int hists_evsel__init(struct evsel *evsel)
2782 {
2783 	struct hists *hists = evsel__hists(evsel);
2784 
2785 	__hists__init(hists, &perf_hpp_list);
2786 	return 0;
2787 }
2788 
2789 /*
2790  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2791  * stored in the rbtree...
2792  */
2793 
2794 int hists__init(void)
2795 {
2796 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2797 					    hists_evsel__init,
2798 					    hists_evsel__exit);
2799 	if (err)
2800 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2801 
2802 	return err;
2803 }
2804 
2805 void perf_hpp_list__init(struct perf_hpp_list *list)
2806 {
2807 	INIT_LIST_HEAD(&list->fields);
2808 	INIT_LIST_HEAD(&list->sorts);
2809 }
2810