xref: /openbmc/linux/tools/perf/util/hist.c (revision 9d4fa1a1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 		}
129 
130 		if (h->branch_info->to.ms.sym) {
131 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 			if (verbose > 0)
133 				symlen += BITS_PER_LONG / 4 + 2 + 3;
134 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135 
136 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 		}
143 
144 		if (h->branch_info->srcline_from)
145 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 					strlen(h->branch_info->srcline_from));
147 		if (h->branch_info->srcline_to)
148 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 					strlen(h->branch_info->srcline_to));
150 	}
151 
152 	if (h->mem_info) {
153 		if (h->mem_info->daddr.ms.sym) {
154 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 			       + unresolved_col_width + 2;
156 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 					   symlen);
158 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 					   symlen + 1);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 					   symlen);
164 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 					   symlen);
166 		}
167 
168 		if (h->mem_info->iaddr.ms.sym) {
169 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 			       + unresolved_col_width + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		} else {
174 			symlen = unresolved_col_width + 4 + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		}
178 
179 		if (h->mem_info->daddr.ms.map) {
180 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 					   symlen);
183 		} else {
184 			symlen = unresolved_col_width + 4 + 2;
185 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 		}
187 
188 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 				   unresolved_col_width + 4 + 2);
190 
191 	} else {
192 		symlen = unresolved_col_width + 4 + 2;
193 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
194 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
195 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
196 	}
197 
198 	hists__new_col_len(hists, HISTC_CGROUP, 6);
199 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
200 	hists__new_col_len(hists, HISTC_CPU, 3);
201 	hists__new_col_len(hists, HISTC_SOCKET, 6);
202 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
203 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
204 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
205 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
206 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
207 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
208 	if (symbol_conf.nanosecs)
209 		hists__new_col_len(hists, HISTC_TIME, 16);
210 	else
211 		hists__new_col_len(hists, HISTC_TIME, 12);
212 
213 	if (h->srcline) {
214 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
215 		hists__new_col_len(hists, HISTC_SRCLINE, len);
216 	}
217 
218 	if (h->srcfile)
219 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
220 
221 	if (h->transaction)
222 		hists__new_col_len(hists, HISTC_TRANSACTION,
223 				   hist_entry__transaction_len());
224 
225 	if (h->trace_output)
226 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
227 
228 	if (h->cgroup) {
229 		const char *cgrp_name = "unknown";
230 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
231 						   h->cgroup);
232 		if (cgrp != NULL)
233 			cgrp_name = cgrp->name;
234 
235 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
236 	}
237 }
238 
239 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
240 {
241 	struct rb_node *next = rb_first_cached(&hists->entries);
242 	struct hist_entry *n;
243 	int row = 0;
244 
245 	hists__reset_col_len(hists);
246 
247 	while (next && row++ < max_rows) {
248 		n = rb_entry(next, struct hist_entry, rb_node);
249 		if (!n->filtered)
250 			hists__calc_col_len(hists, n);
251 		next = rb_next(&n->rb_node);
252 	}
253 }
254 
255 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
256 					unsigned int cpumode, u64 period)
257 {
258 	switch (cpumode) {
259 	case PERF_RECORD_MISC_KERNEL:
260 		he_stat->period_sys += period;
261 		break;
262 	case PERF_RECORD_MISC_USER:
263 		he_stat->period_us += period;
264 		break;
265 	case PERF_RECORD_MISC_GUEST_KERNEL:
266 		he_stat->period_guest_sys += period;
267 		break;
268 	case PERF_RECORD_MISC_GUEST_USER:
269 		he_stat->period_guest_us += period;
270 		break;
271 	default:
272 		break;
273 	}
274 }
275 
276 static long hist_time(unsigned long htime)
277 {
278 	unsigned long time_quantum = symbol_conf.time_quantum;
279 	if (time_quantum)
280 		return (htime / time_quantum) * time_quantum;
281 	return htime;
282 }
283 
284 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
285 				u64 weight)
286 {
287 
288 	he_stat->period		+= period;
289 	he_stat->weight		+= weight;
290 	he_stat->nr_events	+= 1;
291 }
292 
293 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
294 {
295 	dest->period		+= src->period;
296 	dest->period_sys	+= src->period_sys;
297 	dest->period_us		+= src->period_us;
298 	dest->period_guest_sys	+= src->period_guest_sys;
299 	dest->period_guest_us	+= src->period_guest_us;
300 	dest->nr_events		+= src->nr_events;
301 	dest->weight		+= src->weight;
302 }
303 
304 static void he_stat__decay(struct he_stat *he_stat)
305 {
306 	he_stat->period = (he_stat->period * 7) / 8;
307 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
308 	/* XXX need decay for weight too? */
309 }
310 
311 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
312 
313 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
314 {
315 	u64 prev_period = he->stat.period;
316 	u64 diff;
317 
318 	if (prev_period == 0)
319 		return true;
320 
321 	he_stat__decay(&he->stat);
322 	if (symbol_conf.cumulate_callchain)
323 		he_stat__decay(he->stat_acc);
324 	decay_callchain(he->callchain);
325 
326 	diff = prev_period - he->stat.period;
327 
328 	if (!he->depth) {
329 		hists->stats.total_period -= diff;
330 		if (!he->filtered)
331 			hists->stats.total_non_filtered_period -= diff;
332 	}
333 
334 	if (!he->leaf) {
335 		struct hist_entry *child;
336 		struct rb_node *node = rb_first_cached(&he->hroot_out);
337 		while (node) {
338 			child = rb_entry(node, struct hist_entry, rb_node);
339 			node = rb_next(node);
340 
341 			if (hists__decay_entry(hists, child))
342 				hists__delete_entry(hists, child);
343 		}
344 	}
345 
346 	return he->stat.period == 0;
347 }
348 
349 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
350 {
351 	struct rb_root_cached *root_in;
352 	struct rb_root_cached *root_out;
353 
354 	if (he->parent_he) {
355 		root_in  = &he->parent_he->hroot_in;
356 		root_out = &he->parent_he->hroot_out;
357 	} else {
358 		if (hists__has(hists, need_collapse))
359 			root_in = &hists->entries_collapsed;
360 		else
361 			root_in = hists->entries_in;
362 		root_out = &hists->entries;
363 	}
364 
365 	rb_erase_cached(&he->rb_node_in, root_in);
366 	rb_erase_cached(&he->rb_node, root_out);
367 
368 	--hists->nr_entries;
369 	if (!he->filtered)
370 		--hists->nr_non_filtered_entries;
371 
372 	hist_entry__delete(he);
373 }
374 
375 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
376 {
377 	struct rb_node *next = rb_first_cached(&hists->entries);
378 	struct hist_entry *n;
379 
380 	while (next) {
381 		n = rb_entry(next, struct hist_entry, rb_node);
382 		next = rb_next(&n->rb_node);
383 		if (((zap_user && n->level == '.') ||
384 		     (zap_kernel && n->level != '.') ||
385 		     hists__decay_entry(hists, n))) {
386 			hists__delete_entry(hists, n);
387 		}
388 	}
389 }
390 
391 void hists__delete_entries(struct hists *hists)
392 {
393 	struct rb_node *next = rb_first_cached(&hists->entries);
394 	struct hist_entry *n;
395 
396 	while (next) {
397 		n = rb_entry(next, struct hist_entry, rb_node);
398 		next = rb_next(&n->rb_node);
399 
400 		hists__delete_entry(hists, n);
401 	}
402 }
403 
404 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
405 {
406 	struct rb_node *next = rb_first_cached(&hists->entries);
407 	struct hist_entry *n;
408 	int i = 0;
409 
410 	while (next) {
411 		n = rb_entry(next, struct hist_entry, rb_node);
412 		if (i == idx)
413 			return n;
414 
415 		next = rb_next(&n->rb_node);
416 		i++;
417 	}
418 
419 	return NULL;
420 }
421 
422 /*
423  * histogram, sorted on item, collects periods
424  */
425 
426 static int hist_entry__init(struct hist_entry *he,
427 			    struct hist_entry *template,
428 			    bool sample_self,
429 			    size_t callchain_size)
430 {
431 	*he = *template;
432 	he->callchain_size = callchain_size;
433 
434 	if (symbol_conf.cumulate_callchain) {
435 		he->stat_acc = malloc(sizeof(he->stat));
436 		if (he->stat_acc == NULL)
437 			return -ENOMEM;
438 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
439 		if (!sample_self)
440 			memset(&he->stat, 0, sizeof(he->stat));
441 	}
442 
443 	map__get(he->ms.map);
444 
445 	if (he->branch_info) {
446 		/*
447 		 * This branch info is (a part of) allocated from
448 		 * sample__resolve_bstack() and will be freed after
449 		 * adding new entries.  So we need to save a copy.
450 		 */
451 		he->branch_info = malloc(sizeof(*he->branch_info));
452 		if (he->branch_info == NULL)
453 			goto err;
454 
455 		memcpy(he->branch_info, template->branch_info,
456 		       sizeof(*he->branch_info));
457 
458 		map__get(he->branch_info->from.ms.map);
459 		map__get(he->branch_info->to.ms.map);
460 	}
461 
462 	if (he->mem_info) {
463 		map__get(he->mem_info->iaddr.ms.map);
464 		map__get(he->mem_info->daddr.ms.map);
465 	}
466 
467 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
468 		callchain_init(he->callchain);
469 
470 	if (he->raw_data) {
471 		he->raw_data = memdup(he->raw_data, he->raw_size);
472 		if (he->raw_data == NULL)
473 			goto err_infos;
474 	}
475 
476 	if (he->srcline) {
477 		he->srcline = strdup(he->srcline);
478 		if (he->srcline == NULL)
479 			goto err_rawdata;
480 	}
481 
482 	if (symbol_conf.res_sample) {
483 		he->res_samples = calloc(sizeof(struct res_sample),
484 					symbol_conf.res_sample);
485 		if (!he->res_samples)
486 			goto err_srcline;
487 	}
488 
489 	INIT_LIST_HEAD(&he->pairs.node);
490 	thread__get(he->thread);
491 	he->hroot_in  = RB_ROOT_CACHED;
492 	he->hroot_out = RB_ROOT_CACHED;
493 
494 	if (!symbol_conf.report_hierarchy)
495 		he->leaf = true;
496 
497 	return 0;
498 
499 err_srcline:
500 	zfree(&he->srcline);
501 
502 err_rawdata:
503 	zfree(&he->raw_data);
504 
505 err_infos:
506 	if (he->branch_info) {
507 		map__put(he->branch_info->from.ms.map);
508 		map__put(he->branch_info->to.ms.map);
509 		zfree(&he->branch_info);
510 	}
511 	if (he->mem_info) {
512 		map__put(he->mem_info->iaddr.ms.map);
513 		map__put(he->mem_info->daddr.ms.map);
514 	}
515 err:
516 	map__zput(he->ms.map);
517 	zfree(&he->stat_acc);
518 	return -ENOMEM;
519 }
520 
521 static void *hist_entry__zalloc(size_t size)
522 {
523 	return zalloc(size + sizeof(struct hist_entry));
524 }
525 
526 static void hist_entry__free(void *ptr)
527 {
528 	free(ptr);
529 }
530 
531 static struct hist_entry_ops default_ops = {
532 	.new	= hist_entry__zalloc,
533 	.free	= hist_entry__free,
534 };
535 
536 static struct hist_entry *hist_entry__new(struct hist_entry *template,
537 					  bool sample_self)
538 {
539 	struct hist_entry_ops *ops = template->ops;
540 	size_t callchain_size = 0;
541 	struct hist_entry *he;
542 	int err = 0;
543 
544 	if (!ops)
545 		ops = template->ops = &default_ops;
546 
547 	if (symbol_conf.use_callchain)
548 		callchain_size = sizeof(struct callchain_root);
549 
550 	he = ops->new(callchain_size);
551 	if (he) {
552 		err = hist_entry__init(he, template, sample_self, callchain_size);
553 		if (err) {
554 			ops->free(he);
555 			he = NULL;
556 		}
557 	}
558 
559 	return he;
560 }
561 
562 static u8 symbol__parent_filter(const struct symbol *parent)
563 {
564 	if (symbol_conf.exclude_other && parent == NULL)
565 		return 1 << HIST_FILTER__PARENT;
566 	return 0;
567 }
568 
569 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
570 {
571 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
572 		return;
573 
574 	he->hists->callchain_period += period;
575 	if (!he->filtered)
576 		he->hists->callchain_non_filtered_period += period;
577 }
578 
579 static struct hist_entry *hists__findnew_entry(struct hists *hists,
580 					       struct hist_entry *entry,
581 					       struct addr_location *al,
582 					       bool sample_self)
583 {
584 	struct rb_node **p;
585 	struct rb_node *parent = NULL;
586 	struct hist_entry *he;
587 	int64_t cmp;
588 	u64 period = entry->stat.period;
589 	u64 weight = entry->stat.weight;
590 	bool leftmost = true;
591 
592 	p = &hists->entries_in->rb_root.rb_node;
593 
594 	while (*p != NULL) {
595 		parent = *p;
596 		he = rb_entry(parent, struct hist_entry, rb_node_in);
597 
598 		/*
599 		 * Make sure that it receives arguments in a same order as
600 		 * hist_entry__collapse() so that we can use an appropriate
601 		 * function when searching an entry regardless which sort
602 		 * keys were used.
603 		 */
604 		cmp = hist_entry__cmp(he, entry);
605 
606 		if (!cmp) {
607 			if (sample_self) {
608 				he_stat__add_period(&he->stat, period, weight);
609 				hist_entry__add_callchain_period(he, period);
610 			}
611 			if (symbol_conf.cumulate_callchain)
612 				he_stat__add_period(he->stat_acc, period, weight);
613 
614 			/*
615 			 * This mem info was allocated from sample__resolve_mem
616 			 * and will not be used anymore.
617 			 */
618 			mem_info__zput(entry->mem_info);
619 
620 			block_info__zput(entry->block_info);
621 
622 			/* If the map of an existing hist_entry has
623 			 * become out-of-date due to an exec() or
624 			 * similar, update it.  Otherwise we will
625 			 * mis-adjust symbol addresses when computing
626 			 * the history counter to increment.
627 			 */
628 			if (he->ms.map != entry->ms.map) {
629 				map__put(he->ms.map);
630 				he->ms.map = map__get(entry->ms.map);
631 			}
632 			goto out;
633 		}
634 
635 		if (cmp < 0)
636 			p = &(*p)->rb_left;
637 		else {
638 			p = &(*p)->rb_right;
639 			leftmost = false;
640 		}
641 	}
642 
643 	he = hist_entry__new(entry, sample_self);
644 	if (!he)
645 		return NULL;
646 
647 	if (sample_self)
648 		hist_entry__add_callchain_period(he, period);
649 	hists->nr_entries++;
650 
651 	rb_link_node(&he->rb_node_in, parent, p);
652 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
653 out:
654 	if (sample_self)
655 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
656 	if (symbol_conf.cumulate_callchain)
657 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
658 	return he;
659 }
660 
661 static unsigned random_max(unsigned high)
662 {
663 	unsigned thresh = -high % high;
664 	for (;;) {
665 		unsigned r = random();
666 		if (r >= thresh)
667 			return r % high;
668 	}
669 }
670 
671 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
672 {
673 	struct res_sample *r;
674 	int j;
675 
676 	if (he->num_res < symbol_conf.res_sample) {
677 		j = he->num_res++;
678 	} else {
679 		j = random_max(symbol_conf.res_sample);
680 	}
681 	r = &he->res_samples[j];
682 	r->time = sample->time;
683 	r->cpu = sample->cpu;
684 	r->tid = sample->tid;
685 }
686 
687 static struct hist_entry*
688 __hists__add_entry(struct hists *hists,
689 		   struct addr_location *al,
690 		   struct symbol *sym_parent,
691 		   struct branch_info *bi,
692 		   struct mem_info *mi,
693 		   struct block_info *block_info,
694 		   struct perf_sample *sample,
695 		   bool sample_self,
696 		   struct hist_entry_ops *ops)
697 {
698 	struct namespaces *ns = thread__namespaces(al->thread);
699 	struct hist_entry entry = {
700 		.thread	= al->thread,
701 		.comm = thread__comm(al->thread),
702 		.cgroup_id = {
703 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
704 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
705 		},
706 		.cgroup = sample->cgroup,
707 		.ms = {
708 			.maps	= al->maps,
709 			.map	= al->map,
710 			.sym	= al->sym,
711 		},
712 		.srcline = (char *) al->srcline,
713 		.socket	 = al->socket,
714 		.cpu	 = al->cpu,
715 		.cpumode = al->cpumode,
716 		.ip	 = al->addr,
717 		.level	 = al->level,
718 		.stat = {
719 			.nr_events = 1,
720 			.period	= sample->period,
721 			.weight = sample->weight,
722 		},
723 		.parent = sym_parent,
724 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
725 		.hists	= hists,
726 		.branch_info = bi,
727 		.mem_info = mi,
728 		.block_info = block_info,
729 		.transaction = sample->transaction,
730 		.raw_data = sample->raw_data,
731 		.raw_size = sample->raw_size,
732 		.ops = ops,
733 		.time = hist_time(sample->time),
734 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
735 
736 	if (!hists->has_callchains && he && he->callchain_size != 0)
737 		hists->has_callchains = true;
738 	if (he && symbol_conf.res_sample)
739 		hists__res_sample(he, sample);
740 	return he;
741 }
742 
743 struct hist_entry *hists__add_entry(struct hists *hists,
744 				    struct addr_location *al,
745 				    struct symbol *sym_parent,
746 				    struct branch_info *bi,
747 				    struct mem_info *mi,
748 				    struct perf_sample *sample,
749 				    bool sample_self)
750 {
751 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
752 				  sample, sample_self, NULL);
753 }
754 
755 struct hist_entry *hists__add_entry_ops(struct hists *hists,
756 					struct hist_entry_ops *ops,
757 					struct addr_location *al,
758 					struct symbol *sym_parent,
759 					struct branch_info *bi,
760 					struct mem_info *mi,
761 					struct perf_sample *sample,
762 					bool sample_self)
763 {
764 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
765 				  sample, sample_self, ops);
766 }
767 
768 struct hist_entry *hists__add_entry_block(struct hists *hists,
769 					  struct addr_location *al,
770 					  struct block_info *block_info)
771 {
772 	struct hist_entry entry = {
773 		.block_info = block_info,
774 		.hists = hists,
775 		.ms = {
776 			.maps = al->maps,
777 			.map = al->map,
778 			.sym = al->sym,
779 		},
780 	}, *he = hists__findnew_entry(hists, &entry, al, false);
781 
782 	return he;
783 }
784 
785 static int
786 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
787 		    struct addr_location *al __maybe_unused)
788 {
789 	return 0;
790 }
791 
792 static int
793 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
794 			struct addr_location *al __maybe_unused)
795 {
796 	return 0;
797 }
798 
799 static int
800 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
801 {
802 	struct perf_sample *sample = iter->sample;
803 	struct mem_info *mi;
804 
805 	mi = sample__resolve_mem(sample, al);
806 	if (mi == NULL)
807 		return -ENOMEM;
808 
809 	iter->priv = mi;
810 	return 0;
811 }
812 
813 static int
814 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
815 {
816 	u64 cost;
817 	struct mem_info *mi = iter->priv;
818 	struct hists *hists = evsel__hists(iter->evsel);
819 	struct perf_sample *sample = iter->sample;
820 	struct hist_entry *he;
821 
822 	if (mi == NULL)
823 		return -EINVAL;
824 
825 	cost = sample->weight;
826 	if (!cost)
827 		cost = 1;
828 
829 	/*
830 	 * must pass period=weight in order to get the correct
831 	 * sorting from hists__collapse_resort() which is solely
832 	 * based on periods. We want sorting be done on nr_events * weight
833 	 * and this is indirectly achieved by passing period=weight here
834 	 * and the he_stat__add_period() function.
835 	 */
836 	sample->period = cost;
837 
838 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
839 			      sample, true);
840 	if (!he)
841 		return -ENOMEM;
842 
843 	iter->he = he;
844 	return 0;
845 }
846 
847 static int
848 iter_finish_mem_entry(struct hist_entry_iter *iter,
849 		      struct addr_location *al __maybe_unused)
850 {
851 	struct evsel *evsel = iter->evsel;
852 	struct hists *hists = evsel__hists(evsel);
853 	struct hist_entry *he = iter->he;
854 	int err = -EINVAL;
855 
856 	if (he == NULL)
857 		goto out;
858 
859 	hists__inc_nr_samples(hists, he->filtered);
860 
861 	err = hist_entry__append_callchain(he, iter->sample);
862 
863 out:
864 	/*
865 	 * We don't need to free iter->priv (mem_info) here since the mem info
866 	 * was either already freed in hists__findnew_entry() or passed to a
867 	 * new hist entry by hist_entry__new().
868 	 */
869 	iter->priv = NULL;
870 
871 	iter->he = NULL;
872 	return err;
873 }
874 
875 static int
876 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
877 {
878 	struct branch_info *bi;
879 	struct perf_sample *sample = iter->sample;
880 
881 	bi = sample__resolve_bstack(sample, al);
882 	if (!bi)
883 		return -ENOMEM;
884 
885 	iter->curr = 0;
886 	iter->total = sample->branch_stack->nr;
887 
888 	iter->priv = bi;
889 	return 0;
890 }
891 
892 static int
893 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
894 			     struct addr_location *al __maybe_unused)
895 {
896 	return 0;
897 }
898 
899 static int
900 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
901 {
902 	struct branch_info *bi = iter->priv;
903 	int i = iter->curr;
904 
905 	if (bi == NULL)
906 		return 0;
907 
908 	if (iter->curr >= iter->total)
909 		return 0;
910 
911 	al->maps = bi[i].to.ms.maps;
912 	al->map = bi[i].to.ms.map;
913 	al->sym = bi[i].to.ms.sym;
914 	al->addr = bi[i].to.addr;
915 	return 1;
916 }
917 
918 static int
919 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
920 {
921 	struct branch_info *bi;
922 	struct evsel *evsel = iter->evsel;
923 	struct hists *hists = evsel__hists(evsel);
924 	struct perf_sample *sample = iter->sample;
925 	struct hist_entry *he = NULL;
926 	int i = iter->curr;
927 	int err = 0;
928 
929 	bi = iter->priv;
930 
931 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
932 		goto out;
933 
934 	/*
935 	 * The report shows the percentage of total branches captured
936 	 * and not events sampled. Thus we use a pseudo period of 1.
937 	 */
938 	sample->period = 1;
939 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
940 
941 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
942 			      sample, true);
943 	if (he == NULL)
944 		return -ENOMEM;
945 
946 	hists__inc_nr_samples(hists, he->filtered);
947 
948 out:
949 	iter->he = he;
950 	iter->curr++;
951 	return err;
952 }
953 
954 static int
955 iter_finish_branch_entry(struct hist_entry_iter *iter,
956 			 struct addr_location *al __maybe_unused)
957 {
958 	zfree(&iter->priv);
959 	iter->he = NULL;
960 
961 	return iter->curr >= iter->total ? 0 : -1;
962 }
963 
964 static int
965 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
966 			  struct addr_location *al __maybe_unused)
967 {
968 	return 0;
969 }
970 
971 static int
972 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
973 {
974 	struct evsel *evsel = iter->evsel;
975 	struct perf_sample *sample = iter->sample;
976 	struct hist_entry *he;
977 
978 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
979 			      sample, true);
980 	if (he == NULL)
981 		return -ENOMEM;
982 
983 	iter->he = he;
984 	return 0;
985 }
986 
987 static int
988 iter_finish_normal_entry(struct hist_entry_iter *iter,
989 			 struct addr_location *al __maybe_unused)
990 {
991 	struct hist_entry *he = iter->he;
992 	struct evsel *evsel = iter->evsel;
993 	struct perf_sample *sample = iter->sample;
994 
995 	if (he == NULL)
996 		return 0;
997 
998 	iter->he = NULL;
999 
1000 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1001 
1002 	return hist_entry__append_callchain(he, sample);
1003 }
1004 
1005 static int
1006 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1007 			      struct addr_location *al __maybe_unused)
1008 {
1009 	struct hist_entry **he_cache;
1010 
1011 	callchain_cursor_commit(&callchain_cursor);
1012 
1013 	/*
1014 	 * This is for detecting cycles or recursions so that they're
1015 	 * cumulated only one time to prevent entries more than 100%
1016 	 * overhead.
1017 	 */
1018 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1019 	if (he_cache == NULL)
1020 		return -ENOMEM;
1021 
1022 	iter->priv = he_cache;
1023 	iter->curr = 0;
1024 
1025 	return 0;
1026 }
1027 
1028 static int
1029 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1030 				 struct addr_location *al)
1031 {
1032 	struct evsel *evsel = iter->evsel;
1033 	struct hists *hists = evsel__hists(evsel);
1034 	struct perf_sample *sample = iter->sample;
1035 	struct hist_entry **he_cache = iter->priv;
1036 	struct hist_entry *he;
1037 	int err = 0;
1038 
1039 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1040 			      sample, true);
1041 	if (he == NULL)
1042 		return -ENOMEM;
1043 
1044 	iter->he = he;
1045 	he_cache[iter->curr++] = he;
1046 
1047 	hist_entry__append_callchain(he, sample);
1048 
1049 	/*
1050 	 * We need to re-initialize the cursor since callchain_append()
1051 	 * advanced the cursor to the end.
1052 	 */
1053 	callchain_cursor_commit(&callchain_cursor);
1054 
1055 	hists__inc_nr_samples(hists, he->filtered);
1056 
1057 	return err;
1058 }
1059 
1060 static int
1061 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1062 			   struct addr_location *al)
1063 {
1064 	struct callchain_cursor_node *node;
1065 
1066 	node = callchain_cursor_current(&callchain_cursor);
1067 	if (node == NULL)
1068 		return 0;
1069 
1070 	return fill_callchain_info(al, node, iter->hide_unresolved);
1071 }
1072 
1073 static int
1074 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1075 			       struct addr_location *al)
1076 {
1077 	struct evsel *evsel = iter->evsel;
1078 	struct perf_sample *sample = iter->sample;
1079 	struct hist_entry **he_cache = iter->priv;
1080 	struct hist_entry *he;
1081 	struct hist_entry he_tmp = {
1082 		.hists = evsel__hists(evsel),
1083 		.cpu = al->cpu,
1084 		.thread = al->thread,
1085 		.comm = thread__comm(al->thread),
1086 		.ip = al->addr,
1087 		.ms = {
1088 			.maps = al->maps,
1089 			.map = al->map,
1090 			.sym = al->sym,
1091 		},
1092 		.srcline = (char *) al->srcline,
1093 		.parent = iter->parent,
1094 		.raw_data = sample->raw_data,
1095 		.raw_size = sample->raw_size,
1096 	};
1097 	int i;
1098 	struct callchain_cursor cursor;
1099 
1100 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1101 
1102 	callchain_cursor_advance(&callchain_cursor);
1103 
1104 	/*
1105 	 * Check if there's duplicate entries in the callchain.
1106 	 * It's possible that it has cycles or recursive calls.
1107 	 */
1108 	for (i = 0; i < iter->curr; i++) {
1109 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1110 			/* to avoid calling callback function */
1111 			iter->he = NULL;
1112 			return 0;
1113 		}
1114 	}
1115 
1116 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1117 			      sample, false);
1118 	if (he == NULL)
1119 		return -ENOMEM;
1120 
1121 	iter->he = he;
1122 	he_cache[iter->curr++] = he;
1123 
1124 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1125 		callchain_append(he->callchain, &cursor, sample->period);
1126 	return 0;
1127 }
1128 
1129 static int
1130 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1131 			     struct addr_location *al __maybe_unused)
1132 {
1133 	zfree(&iter->priv);
1134 	iter->he = NULL;
1135 
1136 	return 0;
1137 }
1138 
1139 const struct hist_iter_ops hist_iter_mem = {
1140 	.prepare_entry 		= iter_prepare_mem_entry,
1141 	.add_single_entry 	= iter_add_single_mem_entry,
1142 	.next_entry 		= iter_next_nop_entry,
1143 	.add_next_entry 	= iter_add_next_nop_entry,
1144 	.finish_entry 		= iter_finish_mem_entry,
1145 };
1146 
1147 const struct hist_iter_ops hist_iter_branch = {
1148 	.prepare_entry 		= iter_prepare_branch_entry,
1149 	.add_single_entry 	= iter_add_single_branch_entry,
1150 	.next_entry 		= iter_next_branch_entry,
1151 	.add_next_entry 	= iter_add_next_branch_entry,
1152 	.finish_entry 		= iter_finish_branch_entry,
1153 };
1154 
1155 const struct hist_iter_ops hist_iter_normal = {
1156 	.prepare_entry 		= iter_prepare_normal_entry,
1157 	.add_single_entry 	= iter_add_single_normal_entry,
1158 	.next_entry 		= iter_next_nop_entry,
1159 	.add_next_entry 	= iter_add_next_nop_entry,
1160 	.finish_entry 		= iter_finish_normal_entry,
1161 };
1162 
1163 const struct hist_iter_ops hist_iter_cumulative = {
1164 	.prepare_entry 		= iter_prepare_cumulative_entry,
1165 	.add_single_entry 	= iter_add_single_cumulative_entry,
1166 	.next_entry 		= iter_next_cumulative_entry,
1167 	.add_next_entry 	= iter_add_next_cumulative_entry,
1168 	.finish_entry 		= iter_finish_cumulative_entry,
1169 };
1170 
1171 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1172 			 int max_stack_depth, void *arg)
1173 {
1174 	int err, err2;
1175 	struct map *alm = NULL;
1176 
1177 	if (al)
1178 		alm = map__get(al->map);
1179 
1180 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1181 					iter->evsel, al, max_stack_depth);
1182 	if (err) {
1183 		map__put(alm);
1184 		return err;
1185 	}
1186 
1187 	err = iter->ops->prepare_entry(iter, al);
1188 	if (err)
1189 		goto out;
1190 
1191 	err = iter->ops->add_single_entry(iter, al);
1192 	if (err)
1193 		goto out;
1194 
1195 	if (iter->he && iter->add_entry_cb) {
1196 		err = iter->add_entry_cb(iter, al, true, arg);
1197 		if (err)
1198 			goto out;
1199 	}
1200 
1201 	while (iter->ops->next_entry(iter, al)) {
1202 		err = iter->ops->add_next_entry(iter, al);
1203 		if (err)
1204 			break;
1205 
1206 		if (iter->he && iter->add_entry_cb) {
1207 			err = iter->add_entry_cb(iter, al, false, arg);
1208 			if (err)
1209 				goto out;
1210 		}
1211 	}
1212 
1213 out:
1214 	err2 = iter->ops->finish_entry(iter, al);
1215 	if (!err)
1216 		err = err2;
1217 
1218 	map__put(alm);
1219 
1220 	return err;
1221 }
1222 
1223 int64_t
1224 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1225 {
1226 	struct hists *hists = left->hists;
1227 	struct perf_hpp_fmt *fmt;
1228 	int64_t cmp = 0;
1229 
1230 	hists__for_each_sort_list(hists, fmt) {
1231 		if (perf_hpp__is_dynamic_entry(fmt) &&
1232 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1233 			continue;
1234 
1235 		cmp = fmt->cmp(fmt, left, right);
1236 		if (cmp)
1237 			break;
1238 	}
1239 
1240 	return cmp;
1241 }
1242 
1243 int64_t
1244 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1245 {
1246 	struct hists *hists = left->hists;
1247 	struct perf_hpp_fmt *fmt;
1248 	int64_t cmp = 0;
1249 
1250 	hists__for_each_sort_list(hists, fmt) {
1251 		if (perf_hpp__is_dynamic_entry(fmt) &&
1252 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1253 			continue;
1254 
1255 		cmp = fmt->collapse(fmt, left, right);
1256 		if (cmp)
1257 			break;
1258 	}
1259 
1260 	return cmp;
1261 }
1262 
1263 void hist_entry__delete(struct hist_entry *he)
1264 {
1265 	struct hist_entry_ops *ops = he->ops;
1266 
1267 	thread__zput(he->thread);
1268 	map__zput(he->ms.map);
1269 
1270 	if (he->branch_info) {
1271 		map__zput(he->branch_info->from.ms.map);
1272 		map__zput(he->branch_info->to.ms.map);
1273 		free_srcline(he->branch_info->srcline_from);
1274 		free_srcline(he->branch_info->srcline_to);
1275 		zfree(&he->branch_info);
1276 	}
1277 
1278 	if (he->mem_info) {
1279 		map__zput(he->mem_info->iaddr.ms.map);
1280 		map__zput(he->mem_info->daddr.ms.map);
1281 		mem_info__zput(he->mem_info);
1282 	}
1283 
1284 	if (he->block_info)
1285 		block_info__zput(he->block_info);
1286 
1287 	zfree(&he->res_samples);
1288 	zfree(&he->stat_acc);
1289 	free_srcline(he->srcline);
1290 	if (he->srcfile && he->srcfile[0])
1291 		zfree(&he->srcfile);
1292 	free_callchain(he->callchain);
1293 	zfree(&he->trace_output);
1294 	zfree(&he->raw_data);
1295 	ops->free(he);
1296 }
1297 
1298 /*
1299  * If this is not the last column, then we need to pad it according to the
1300  * pre-calculated max length for this column, otherwise don't bother adding
1301  * spaces because that would break viewing this with, for instance, 'less',
1302  * that would show tons of trailing spaces when a long C++ demangled method
1303  * names is sampled.
1304 */
1305 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1306 				   struct perf_hpp_fmt *fmt, int printed)
1307 {
1308 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1309 		const int width = fmt->width(fmt, hpp, he->hists);
1310 		if (printed < width) {
1311 			advance_hpp(hpp, printed);
1312 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1313 		}
1314 	}
1315 
1316 	return printed;
1317 }
1318 
1319 /*
1320  * collapse the histogram
1321  */
1322 
1323 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1324 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1325 				       enum hist_filter type);
1326 
1327 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1328 
1329 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1330 {
1331 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1332 }
1333 
1334 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1335 						enum hist_filter type,
1336 						fmt_chk_fn check)
1337 {
1338 	struct perf_hpp_fmt *fmt;
1339 	bool type_match = false;
1340 	struct hist_entry *parent = he->parent_he;
1341 
1342 	switch (type) {
1343 	case HIST_FILTER__THREAD:
1344 		if (symbol_conf.comm_list == NULL &&
1345 		    symbol_conf.pid_list == NULL &&
1346 		    symbol_conf.tid_list == NULL)
1347 			return;
1348 		break;
1349 	case HIST_FILTER__DSO:
1350 		if (symbol_conf.dso_list == NULL)
1351 			return;
1352 		break;
1353 	case HIST_FILTER__SYMBOL:
1354 		if (symbol_conf.sym_list == NULL)
1355 			return;
1356 		break;
1357 	case HIST_FILTER__PARENT:
1358 	case HIST_FILTER__GUEST:
1359 	case HIST_FILTER__HOST:
1360 	case HIST_FILTER__SOCKET:
1361 	case HIST_FILTER__C2C:
1362 	default:
1363 		return;
1364 	}
1365 
1366 	/* if it's filtered by own fmt, it has to have filter bits */
1367 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1368 		if (check(fmt)) {
1369 			type_match = true;
1370 			break;
1371 		}
1372 	}
1373 
1374 	if (type_match) {
1375 		/*
1376 		 * If the filter is for current level entry, propagate
1377 		 * filter marker to parents.  The marker bit was
1378 		 * already set by default so it only needs to clear
1379 		 * non-filtered entries.
1380 		 */
1381 		if (!(he->filtered & (1 << type))) {
1382 			while (parent) {
1383 				parent->filtered &= ~(1 << type);
1384 				parent = parent->parent_he;
1385 			}
1386 		}
1387 	} else {
1388 		/*
1389 		 * If current entry doesn't have matching formats, set
1390 		 * filter marker for upper level entries.  it will be
1391 		 * cleared if its lower level entries is not filtered.
1392 		 *
1393 		 * For lower-level entries, it inherits parent's
1394 		 * filter bit so that lower level entries of a
1395 		 * non-filtered entry won't set the filter marker.
1396 		 */
1397 		if (parent == NULL)
1398 			he->filtered |= (1 << type);
1399 		else
1400 			he->filtered |= (parent->filtered & (1 << type));
1401 	}
1402 }
1403 
1404 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1405 {
1406 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1407 					    check_thread_entry);
1408 
1409 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1410 					    perf_hpp__is_dso_entry);
1411 
1412 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1413 					    perf_hpp__is_sym_entry);
1414 
1415 	hists__apply_filters(he->hists, he);
1416 }
1417 
1418 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1419 						 struct rb_root_cached *root,
1420 						 struct hist_entry *he,
1421 						 struct hist_entry *parent_he,
1422 						 struct perf_hpp_list *hpp_list)
1423 {
1424 	struct rb_node **p = &root->rb_root.rb_node;
1425 	struct rb_node *parent = NULL;
1426 	struct hist_entry *iter, *new;
1427 	struct perf_hpp_fmt *fmt;
1428 	int64_t cmp;
1429 	bool leftmost = true;
1430 
1431 	while (*p != NULL) {
1432 		parent = *p;
1433 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1434 
1435 		cmp = 0;
1436 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1437 			cmp = fmt->collapse(fmt, iter, he);
1438 			if (cmp)
1439 				break;
1440 		}
1441 
1442 		if (!cmp) {
1443 			he_stat__add_stat(&iter->stat, &he->stat);
1444 			return iter;
1445 		}
1446 
1447 		if (cmp < 0)
1448 			p = &parent->rb_left;
1449 		else {
1450 			p = &parent->rb_right;
1451 			leftmost = false;
1452 		}
1453 	}
1454 
1455 	new = hist_entry__new(he, true);
1456 	if (new == NULL)
1457 		return NULL;
1458 
1459 	hists->nr_entries++;
1460 
1461 	/* save related format list for output */
1462 	new->hpp_list = hpp_list;
1463 	new->parent_he = parent_he;
1464 
1465 	hist_entry__apply_hierarchy_filters(new);
1466 
1467 	/* some fields are now passed to 'new' */
1468 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1469 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1470 			he->trace_output = NULL;
1471 		else
1472 			new->trace_output = NULL;
1473 
1474 		if (perf_hpp__is_srcline_entry(fmt))
1475 			he->srcline = NULL;
1476 		else
1477 			new->srcline = NULL;
1478 
1479 		if (perf_hpp__is_srcfile_entry(fmt))
1480 			he->srcfile = NULL;
1481 		else
1482 			new->srcfile = NULL;
1483 	}
1484 
1485 	rb_link_node(&new->rb_node_in, parent, p);
1486 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1487 	return new;
1488 }
1489 
1490 static int hists__hierarchy_insert_entry(struct hists *hists,
1491 					 struct rb_root_cached *root,
1492 					 struct hist_entry *he)
1493 {
1494 	struct perf_hpp_list_node *node;
1495 	struct hist_entry *new_he = NULL;
1496 	struct hist_entry *parent = NULL;
1497 	int depth = 0;
1498 	int ret = 0;
1499 
1500 	list_for_each_entry(node, &hists->hpp_formats, list) {
1501 		/* skip period (overhead) and elided columns */
1502 		if (node->level == 0 || node->skip)
1503 			continue;
1504 
1505 		/* insert copy of 'he' for each fmt into the hierarchy */
1506 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1507 		if (new_he == NULL) {
1508 			ret = -1;
1509 			break;
1510 		}
1511 
1512 		root = &new_he->hroot_in;
1513 		new_he->depth = depth++;
1514 		parent = new_he;
1515 	}
1516 
1517 	if (new_he) {
1518 		new_he->leaf = true;
1519 
1520 		if (hist_entry__has_callchains(new_he) &&
1521 		    symbol_conf.use_callchain) {
1522 			callchain_cursor_reset(&callchain_cursor);
1523 			if (callchain_merge(&callchain_cursor,
1524 					    new_he->callchain,
1525 					    he->callchain) < 0)
1526 				ret = -1;
1527 		}
1528 	}
1529 
1530 	/* 'he' is no longer used */
1531 	hist_entry__delete(he);
1532 
1533 	/* return 0 (or -1) since it already applied filters */
1534 	return ret;
1535 }
1536 
1537 static int hists__collapse_insert_entry(struct hists *hists,
1538 					struct rb_root_cached *root,
1539 					struct hist_entry *he)
1540 {
1541 	struct rb_node **p = &root->rb_root.rb_node;
1542 	struct rb_node *parent = NULL;
1543 	struct hist_entry *iter;
1544 	int64_t cmp;
1545 	bool leftmost = true;
1546 
1547 	if (symbol_conf.report_hierarchy)
1548 		return hists__hierarchy_insert_entry(hists, root, he);
1549 
1550 	while (*p != NULL) {
1551 		parent = *p;
1552 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1553 
1554 		cmp = hist_entry__collapse(iter, he);
1555 
1556 		if (!cmp) {
1557 			int ret = 0;
1558 
1559 			he_stat__add_stat(&iter->stat, &he->stat);
1560 			if (symbol_conf.cumulate_callchain)
1561 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1562 
1563 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1564 				callchain_cursor_reset(&callchain_cursor);
1565 				if (callchain_merge(&callchain_cursor,
1566 						    iter->callchain,
1567 						    he->callchain) < 0)
1568 					ret = -1;
1569 			}
1570 			hist_entry__delete(he);
1571 			return ret;
1572 		}
1573 
1574 		if (cmp < 0)
1575 			p = &(*p)->rb_left;
1576 		else {
1577 			p = &(*p)->rb_right;
1578 			leftmost = false;
1579 		}
1580 	}
1581 	hists->nr_entries++;
1582 
1583 	rb_link_node(&he->rb_node_in, parent, p);
1584 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1585 	return 1;
1586 }
1587 
1588 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1589 {
1590 	struct rb_root_cached *root;
1591 
1592 	pthread_mutex_lock(&hists->lock);
1593 
1594 	root = hists->entries_in;
1595 	if (++hists->entries_in > &hists->entries_in_array[1])
1596 		hists->entries_in = &hists->entries_in_array[0];
1597 
1598 	pthread_mutex_unlock(&hists->lock);
1599 
1600 	return root;
1601 }
1602 
1603 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1604 {
1605 	hists__filter_entry_by_dso(hists, he);
1606 	hists__filter_entry_by_thread(hists, he);
1607 	hists__filter_entry_by_symbol(hists, he);
1608 	hists__filter_entry_by_socket(hists, he);
1609 }
1610 
1611 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1612 {
1613 	struct rb_root_cached *root;
1614 	struct rb_node *next;
1615 	struct hist_entry *n;
1616 	int ret;
1617 
1618 	if (!hists__has(hists, need_collapse))
1619 		return 0;
1620 
1621 	hists->nr_entries = 0;
1622 
1623 	root = hists__get_rotate_entries_in(hists);
1624 
1625 	next = rb_first_cached(root);
1626 
1627 	while (next) {
1628 		if (session_done())
1629 			break;
1630 		n = rb_entry(next, struct hist_entry, rb_node_in);
1631 		next = rb_next(&n->rb_node_in);
1632 
1633 		rb_erase_cached(&n->rb_node_in, root);
1634 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1635 		if (ret < 0)
1636 			return -1;
1637 
1638 		if (ret) {
1639 			/*
1640 			 * If it wasn't combined with one of the entries already
1641 			 * collapsed, we need to apply the filters that may have
1642 			 * been set by, say, the hist_browser.
1643 			 */
1644 			hists__apply_filters(hists, n);
1645 		}
1646 		if (prog)
1647 			ui_progress__update(prog, 1);
1648 	}
1649 	return 0;
1650 }
1651 
1652 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1653 {
1654 	struct hists *hists = a->hists;
1655 	struct perf_hpp_fmt *fmt;
1656 	int64_t cmp = 0;
1657 
1658 	hists__for_each_sort_list(hists, fmt) {
1659 		if (perf_hpp__should_skip(fmt, a->hists))
1660 			continue;
1661 
1662 		cmp = fmt->sort(fmt, a, b);
1663 		if (cmp)
1664 			break;
1665 	}
1666 
1667 	return cmp;
1668 }
1669 
1670 static void hists__reset_filter_stats(struct hists *hists)
1671 {
1672 	hists->nr_non_filtered_entries = 0;
1673 	hists->stats.total_non_filtered_period = 0;
1674 }
1675 
1676 void hists__reset_stats(struct hists *hists)
1677 {
1678 	hists->nr_entries = 0;
1679 	hists->stats.total_period = 0;
1680 
1681 	hists__reset_filter_stats(hists);
1682 }
1683 
1684 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1685 {
1686 	hists->nr_non_filtered_entries++;
1687 	hists->stats.total_non_filtered_period += h->stat.period;
1688 }
1689 
1690 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1691 {
1692 	if (!h->filtered)
1693 		hists__inc_filter_stats(hists, h);
1694 
1695 	hists->nr_entries++;
1696 	hists->stats.total_period += h->stat.period;
1697 }
1698 
1699 static void hierarchy_recalc_total_periods(struct hists *hists)
1700 {
1701 	struct rb_node *node;
1702 	struct hist_entry *he;
1703 
1704 	node = rb_first_cached(&hists->entries);
1705 
1706 	hists->stats.total_period = 0;
1707 	hists->stats.total_non_filtered_period = 0;
1708 
1709 	/*
1710 	 * recalculate total period using top-level entries only
1711 	 * since lower level entries only see non-filtered entries
1712 	 * but upper level entries have sum of both entries.
1713 	 */
1714 	while (node) {
1715 		he = rb_entry(node, struct hist_entry, rb_node);
1716 		node = rb_next(node);
1717 
1718 		hists->stats.total_period += he->stat.period;
1719 		if (!he->filtered)
1720 			hists->stats.total_non_filtered_period += he->stat.period;
1721 	}
1722 }
1723 
1724 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1725 					  struct hist_entry *he)
1726 {
1727 	struct rb_node **p = &root->rb_root.rb_node;
1728 	struct rb_node *parent = NULL;
1729 	struct hist_entry *iter;
1730 	struct perf_hpp_fmt *fmt;
1731 	bool leftmost = true;
1732 
1733 	while (*p != NULL) {
1734 		parent = *p;
1735 		iter = rb_entry(parent, struct hist_entry, rb_node);
1736 
1737 		if (hist_entry__sort(he, iter) > 0)
1738 			p = &parent->rb_left;
1739 		else {
1740 			p = &parent->rb_right;
1741 			leftmost = false;
1742 		}
1743 	}
1744 
1745 	rb_link_node(&he->rb_node, parent, p);
1746 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1747 
1748 	/* update column width of dynamic entry */
1749 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1750 		if (perf_hpp__is_dynamic_entry(fmt))
1751 			fmt->sort(fmt, he, NULL);
1752 	}
1753 }
1754 
1755 static void hists__hierarchy_output_resort(struct hists *hists,
1756 					   struct ui_progress *prog,
1757 					   struct rb_root_cached *root_in,
1758 					   struct rb_root_cached *root_out,
1759 					   u64 min_callchain_hits,
1760 					   bool use_callchain)
1761 {
1762 	struct rb_node *node;
1763 	struct hist_entry *he;
1764 
1765 	*root_out = RB_ROOT_CACHED;
1766 	node = rb_first_cached(root_in);
1767 
1768 	while (node) {
1769 		he = rb_entry(node, struct hist_entry, rb_node_in);
1770 		node = rb_next(node);
1771 
1772 		hierarchy_insert_output_entry(root_out, he);
1773 
1774 		if (prog)
1775 			ui_progress__update(prog, 1);
1776 
1777 		hists->nr_entries++;
1778 		if (!he->filtered) {
1779 			hists->nr_non_filtered_entries++;
1780 			hists__calc_col_len(hists, he);
1781 		}
1782 
1783 		if (!he->leaf) {
1784 			hists__hierarchy_output_resort(hists, prog,
1785 						       &he->hroot_in,
1786 						       &he->hroot_out,
1787 						       min_callchain_hits,
1788 						       use_callchain);
1789 			continue;
1790 		}
1791 
1792 		if (!use_callchain)
1793 			continue;
1794 
1795 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1796 			u64 total = he->stat.period;
1797 
1798 			if (symbol_conf.cumulate_callchain)
1799 				total = he->stat_acc->period;
1800 
1801 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1802 		}
1803 
1804 		callchain_param.sort(&he->sorted_chain, he->callchain,
1805 				     min_callchain_hits, &callchain_param);
1806 	}
1807 }
1808 
1809 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1810 					 struct hist_entry *he,
1811 					 u64 min_callchain_hits,
1812 					 bool use_callchain)
1813 {
1814 	struct rb_node **p = &entries->rb_root.rb_node;
1815 	struct rb_node *parent = NULL;
1816 	struct hist_entry *iter;
1817 	struct perf_hpp_fmt *fmt;
1818 	bool leftmost = true;
1819 
1820 	if (use_callchain) {
1821 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1822 			u64 total = he->stat.period;
1823 
1824 			if (symbol_conf.cumulate_callchain)
1825 				total = he->stat_acc->period;
1826 
1827 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1828 		}
1829 		callchain_param.sort(&he->sorted_chain, he->callchain,
1830 				      min_callchain_hits, &callchain_param);
1831 	}
1832 
1833 	while (*p != NULL) {
1834 		parent = *p;
1835 		iter = rb_entry(parent, struct hist_entry, rb_node);
1836 
1837 		if (hist_entry__sort(he, iter) > 0)
1838 			p = &(*p)->rb_left;
1839 		else {
1840 			p = &(*p)->rb_right;
1841 			leftmost = false;
1842 		}
1843 	}
1844 
1845 	rb_link_node(&he->rb_node, parent, p);
1846 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1847 
1848 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1849 		if (perf_hpp__is_dynamic_entry(fmt) &&
1850 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1851 			fmt->sort(fmt, he, NULL);  /* update column width */
1852 	}
1853 }
1854 
1855 static void output_resort(struct hists *hists, struct ui_progress *prog,
1856 			  bool use_callchain, hists__resort_cb_t cb,
1857 			  void *cb_arg)
1858 {
1859 	struct rb_root_cached *root;
1860 	struct rb_node *next;
1861 	struct hist_entry *n;
1862 	u64 callchain_total;
1863 	u64 min_callchain_hits;
1864 
1865 	callchain_total = hists->callchain_period;
1866 	if (symbol_conf.filter_relative)
1867 		callchain_total = hists->callchain_non_filtered_period;
1868 
1869 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1870 
1871 	hists__reset_stats(hists);
1872 	hists__reset_col_len(hists);
1873 
1874 	if (symbol_conf.report_hierarchy) {
1875 		hists__hierarchy_output_resort(hists, prog,
1876 					       &hists->entries_collapsed,
1877 					       &hists->entries,
1878 					       min_callchain_hits,
1879 					       use_callchain);
1880 		hierarchy_recalc_total_periods(hists);
1881 		return;
1882 	}
1883 
1884 	if (hists__has(hists, need_collapse))
1885 		root = &hists->entries_collapsed;
1886 	else
1887 		root = hists->entries_in;
1888 
1889 	next = rb_first_cached(root);
1890 	hists->entries = RB_ROOT_CACHED;
1891 
1892 	while (next) {
1893 		n = rb_entry(next, struct hist_entry, rb_node_in);
1894 		next = rb_next(&n->rb_node_in);
1895 
1896 		if (cb && cb(n, cb_arg))
1897 			continue;
1898 
1899 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1900 		hists__inc_stats(hists, n);
1901 
1902 		if (!n->filtered)
1903 			hists__calc_col_len(hists, n);
1904 
1905 		if (prog)
1906 			ui_progress__update(prog, 1);
1907 	}
1908 }
1909 
1910 void perf_evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1911 				  hists__resort_cb_t cb, void *cb_arg)
1912 {
1913 	bool use_callchain;
1914 
1915 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1916 		use_callchain = evsel__has_callchain(evsel);
1917 	else
1918 		use_callchain = symbol_conf.use_callchain;
1919 
1920 	use_callchain |= symbol_conf.show_branchflag_count;
1921 
1922 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1923 }
1924 
1925 void perf_evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1926 {
1927 	return perf_evsel__output_resort_cb(evsel, prog, NULL, NULL);
1928 }
1929 
1930 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1931 {
1932 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1933 }
1934 
1935 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1936 			     hists__resort_cb_t cb)
1937 {
1938 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1939 }
1940 
1941 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1942 {
1943 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1944 		return false;
1945 
1946 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1947 		return true;
1948 
1949 	return false;
1950 }
1951 
1952 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1953 {
1954 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1955 
1956 	while (can_goto_child(he, HMD_NORMAL)) {
1957 		node = rb_last(&he->hroot_out.rb_root);
1958 		he = rb_entry(node, struct hist_entry, rb_node);
1959 	}
1960 	return node;
1961 }
1962 
1963 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1964 {
1965 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1966 
1967 	if (can_goto_child(he, hmd))
1968 		node = rb_first_cached(&he->hroot_out);
1969 	else
1970 		node = rb_next(node);
1971 
1972 	while (node == NULL) {
1973 		he = he->parent_he;
1974 		if (he == NULL)
1975 			break;
1976 
1977 		node = rb_next(&he->rb_node);
1978 	}
1979 	return node;
1980 }
1981 
1982 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1983 {
1984 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1985 
1986 	node = rb_prev(node);
1987 	if (node)
1988 		return rb_hierarchy_last(node);
1989 
1990 	he = he->parent_he;
1991 	if (he == NULL)
1992 		return NULL;
1993 
1994 	return &he->rb_node;
1995 }
1996 
1997 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1998 {
1999 	struct rb_node *node;
2000 	struct hist_entry *child;
2001 	float percent;
2002 
2003 	if (he->leaf)
2004 		return false;
2005 
2006 	node = rb_first_cached(&he->hroot_out);
2007 	child = rb_entry(node, struct hist_entry, rb_node);
2008 
2009 	while (node && child->filtered) {
2010 		node = rb_next(node);
2011 		child = rb_entry(node, struct hist_entry, rb_node);
2012 	}
2013 
2014 	if (node)
2015 		percent = hist_entry__get_percent_limit(child);
2016 	else
2017 		percent = 0;
2018 
2019 	return node && percent >= limit;
2020 }
2021 
2022 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2023 				       enum hist_filter filter)
2024 {
2025 	h->filtered &= ~(1 << filter);
2026 
2027 	if (symbol_conf.report_hierarchy) {
2028 		struct hist_entry *parent = h->parent_he;
2029 
2030 		while (parent) {
2031 			he_stat__add_stat(&parent->stat, &h->stat);
2032 
2033 			parent->filtered &= ~(1 << filter);
2034 
2035 			if (parent->filtered)
2036 				goto next;
2037 
2038 			/* force fold unfiltered entry for simplicity */
2039 			parent->unfolded = false;
2040 			parent->has_no_entry = false;
2041 			parent->row_offset = 0;
2042 			parent->nr_rows = 0;
2043 next:
2044 			parent = parent->parent_he;
2045 		}
2046 	}
2047 
2048 	if (h->filtered)
2049 		return;
2050 
2051 	/* force fold unfiltered entry for simplicity */
2052 	h->unfolded = false;
2053 	h->has_no_entry = false;
2054 	h->row_offset = 0;
2055 	h->nr_rows = 0;
2056 
2057 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2058 
2059 	hists__inc_filter_stats(hists, h);
2060 	hists__calc_col_len(hists, h);
2061 }
2062 
2063 
2064 static bool hists__filter_entry_by_dso(struct hists *hists,
2065 				       struct hist_entry *he)
2066 {
2067 	if (hists->dso_filter != NULL &&
2068 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2069 		he->filtered |= (1 << HIST_FILTER__DSO);
2070 		return true;
2071 	}
2072 
2073 	return false;
2074 }
2075 
2076 static bool hists__filter_entry_by_thread(struct hists *hists,
2077 					  struct hist_entry *he)
2078 {
2079 	if (hists->thread_filter != NULL &&
2080 	    he->thread != hists->thread_filter) {
2081 		he->filtered |= (1 << HIST_FILTER__THREAD);
2082 		return true;
2083 	}
2084 
2085 	return false;
2086 }
2087 
2088 static bool hists__filter_entry_by_symbol(struct hists *hists,
2089 					  struct hist_entry *he)
2090 {
2091 	if (hists->symbol_filter_str != NULL &&
2092 	    (!he->ms.sym || strstr(he->ms.sym->name,
2093 				   hists->symbol_filter_str) == NULL)) {
2094 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2095 		return true;
2096 	}
2097 
2098 	return false;
2099 }
2100 
2101 static bool hists__filter_entry_by_socket(struct hists *hists,
2102 					  struct hist_entry *he)
2103 {
2104 	if ((hists->socket_filter > -1) &&
2105 	    (he->socket != hists->socket_filter)) {
2106 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2107 		return true;
2108 	}
2109 
2110 	return false;
2111 }
2112 
2113 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2114 
2115 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2116 {
2117 	struct rb_node *nd;
2118 
2119 	hists->stats.nr_non_filtered_samples = 0;
2120 
2121 	hists__reset_filter_stats(hists);
2122 	hists__reset_col_len(hists);
2123 
2124 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2125 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2126 
2127 		if (filter(hists, h))
2128 			continue;
2129 
2130 		hists__remove_entry_filter(hists, h, type);
2131 	}
2132 }
2133 
2134 static void resort_filtered_entry(struct rb_root_cached *root,
2135 				  struct hist_entry *he)
2136 {
2137 	struct rb_node **p = &root->rb_root.rb_node;
2138 	struct rb_node *parent = NULL;
2139 	struct hist_entry *iter;
2140 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2141 	struct rb_node *nd;
2142 	bool leftmost = true;
2143 
2144 	while (*p != NULL) {
2145 		parent = *p;
2146 		iter = rb_entry(parent, struct hist_entry, rb_node);
2147 
2148 		if (hist_entry__sort(he, iter) > 0)
2149 			p = &(*p)->rb_left;
2150 		else {
2151 			p = &(*p)->rb_right;
2152 			leftmost = false;
2153 		}
2154 	}
2155 
2156 	rb_link_node(&he->rb_node, parent, p);
2157 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2158 
2159 	if (he->leaf || he->filtered)
2160 		return;
2161 
2162 	nd = rb_first_cached(&he->hroot_out);
2163 	while (nd) {
2164 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2165 
2166 		nd = rb_next(nd);
2167 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2168 
2169 		resort_filtered_entry(&new_root, h);
2170 	}
2171 
2172 	he->hroot_out = new_root;
2173 }
2174 
2175 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2176 {
2177 	struct rb_node *nd;
2178 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2179 
2180 	hists->stats.nr_non_filtered_samples = 0;
2181 
2182 	hists__reset_filter_stats(hists);
2183 	hists__reset_col_len(hists);
2184 
2185 	nd = rb_first_cached(&hists->entries);
2186 	while (nd) {
2187 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2188 		int ret;
2189 
2190 		ret = hist_entry__filter(h, type, arg);
2191 
2192 		/*
2193 		 * case 1. non-matching type
2194 		 * zero out the period, set filter marker and move to child
2195 		 */
2196 		if (ret < 0) {
2197 			memset(&h->stat, 0, sizeof(h->stat));
2198 			h->filtered |= (1 << type);
2199 
2200 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2201 		}
2202 		/*
2203 		 * case 2. matched type (filter out)
2204 		 * set filter marker and move to next
2205 		 */
2206 		else if (ret == 1) {
2207 			h->filtered |= (1 << type);
2208 
2209 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2210 		}
2211 		/*
2212 		 * case 3. ok (not filtered)
2213 		 * add period to hists and parents, erase the filter marker
2214 		 * and move to next sibling
2215 		 */
2216 		else {
2217 			hists__remove_entry_filter(hists, h, type);
2218 
2219 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2220 		}
2221 	}
2222 
2223 	hierarchy_recalc_total_periods(hists);
2224 
2225 	/*
2226 	 * resort output after applying a new filter since filter in a lower
2227 	 * hierarchy can change periods in a upper hierarchy.
2228 	 */
2229 	nd = rb_first_cached(&hists->entries);
2230 	while (nd) {
2231 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2232 
2233 		nd = rb_next(nd);
2234 		rb_erase_cached(&h->rb_node, &hists->entries);
2235 
2236 		resort_filtered_entry(&new_root, h);
2237 	}
2238 
2239 	hists->entries = new_root;
2240 }
2241 
2242 void hists__filter_by_thread(struct hists *hists)
2243 {
2244 	if (symbol_conf.report_hierarchy)
2245 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2246 					hists->thread_filter);
2247 	else
2248 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2249 				      hists__filter_entry_by_thread);
2250 }
2251 
2252 void hists__filter_by_dso(struct hists *hists)
2253 {
2254 	if (symbol_conf.report_hierarchy)
2255 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2256 					hists->dso_filter);
2257 	else
2258 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2259 				      hists__filter_entry_by_dso);
2260 }
2261 
2262 void hists__filter_by_symbol(struct hists *hists)
2263 {
2264 	if (symbol_conf.report_hierarchy)
2265 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2266 					hists->symbol_filter_str);
2267 	else
2268 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2269 				      hists__filter_entry_by_symbol);
2270 }
2271 
2272 void hists__filter_by_socket(struct hists *hists)
2273 {
2274 	if (symbol_conf.report_hierarchy)
2275 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2276 					&hists->socket_filter);
2277 	else
2278 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2279 				      hists__filter_entry_by_socket);
2280 }
2281 
2282 void events_stats__inc(struct events_stats *stats, u32 type)
2283 {
2284 	++stats->nr_events[0];
2285 	++stats->nr_events[type];
2286 }
2287 
2288 void hists__inc_nr_events(struct hists *hists, u32 type)
2289 {
2290 	events_stats__inc(&hists->stats, type);
2291 }
2292 
2293 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2294 {
2295 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2296 	if (!filtered)
2297 		hists->stats.nr_non_filtered_samples++;
2298 }
2299 
2300 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2301 						 struct hist_entry *pair)
2302 {
2303 	struct rb_root_cached *root;
2304 	struct rb_node **p;
2305 	struct rb_node *parent = NULL;
2306 	struct hist_entry *he;
2307 	int64_t cmp;
2308 	bool leftmost = true;
2309 
2310 	if (hists__has(hists, need_collapse))
2311 		root = &hists->entries_collapsed;
2312 	else
2313 		root = hists->entries_in;
2314 
2315 	p = &root->rb_root.rb_node;
2316 
2317 	while (*p != NULL) {
2318 		parent = *p;
2319 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2320 
2321 		cmp = hist_entry__collapse(he, pair);
2322 
2323 		if (!cmp)
2324 			goto out;
2325 
2326 		if (cmp < 0)
2327 			p = &(*p)->rb_left;
2328 		else {
2329 			p = &(*p)->rb_right;
2330 			leftmost = false;
2331 		}
2332 	}
2333 
2334 	he = hist_entry__new(pair, true);
2335 	if (he) {
2336 		memset(&he->stat, 0, sizeof(he->stat));
2337 		he->hists = hists;
2338 		if (symbol_conf.cumulate_callchain)
2339 			memset(he->stat_acc, 0, sizeof(he->stat));
2340 		rb_link_node(&he->rb_node_in, parent, p);
2341 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2342 		hists__inc_stats(hists, he);
2343 		he->dummy = true;
2344 	}
2345 out:
2346 	return he;
2347 }
2348 
2349 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2350 						    struct rb_root_cached *root,
2351 						    struct hist_entry *pair)
2352 {
2353 	struct rb_node **p;
2354 	struct rb_node *parent = NULL;
2355 	struct hist_entry *he;
2356 	struct perf_hpp_fmt *fmt;
2357 	bool leftmost = true;
2358 
2359 	p = &root->rb_root.rb_node;
2360 	while (*p != NULL) {
2361 		int64_t cmp = 0;
2362 
2363 		parent = *p;
2364 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2365 
2366 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2367 			cmp = fmt->collapse(fmt, he, pair);
2368 			if (cmp)
2369 				break;
2370 		}
2371 		if (!cmp)
2372 			goto out;
2373 
2374 		if (cmp < 0)
2375 			p = &parent->rb_left;
2376 		else {
2377 			p = &parent->rb_right;
2378 			leftmost = false;
2379 		}
2380 	}
2381 
2382 	he = hist_entry__new(pair, true);
2383 	if (he) {
2384 		rb_link_node(&he->rb_node_in, parent, p);
2385 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2386 
2387 		he->dummy = true;
2388 		he->hists = hists;
2389 		memset(&he->stat, 0, sizeof(he->stat));
2390 		hists__inc_stats(hists, he);
2391 	}
2392 out:
2393 	return he;
2394 }
2395 
2396 static struct hist_entry *hists__find_entry(struct hists *hists,
2397 					    struct hist_entry *he)
2398 {
2399 	struct rb_node *n;
2400 
2401 	if (hists__has(hists, need_collapse))
2402 		n = hists->entries_collapsed.rb_root.rb_node;
2403 	else
2404 		n = hists->entries_in->rb_root.rb_node;
2405 
2406 	while (n) {
2407 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2408 		int64_t cmp = hist_entry__collapse(iter, he);
2409 
2410 		if (cmp < 0)
2411 			n = n->rb_left;
2412 		else if (cmp > 0)
2413 			n = n->rb_right;
2414 		else
2415 			return iter;
2416 	}
2417 
2418 	return NULL;
2419 }
2420 
2421 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2422 						      struct hist_entry *he)
2423 {
2424 	struct rb_node *n = root->rb_root.rb_node;
2425 
2426 	while (n) {
2427 		struct hist_entry *iter;
2428 		struct perf_hpp_fmt *fmt;
2429 		int64_t cmp = 0;
2430 
2431 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2432 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2433 			cmp = fmt->collapse(fmt, iter, he);
2434 			if (cmp)
2435 				break;
2436 		}
2437 
2438 		if (cmp < 0)
2439 			n = n->rb_left;
2440 		else if (cmp > 0)
2441 			n = n->rb_right;
2442 		else
2443 			return iter;
2444 	}
2445 
2446 	return NULL;
2447 }
2448 
2449 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2450 				   struct rb_root_cached *other_root)
2451 {
2452 	struct rb_node *nd;
2453 	struct hist_entry *pos, *pair;
2454 
2455 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2456 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2457 		pair = hists__find_hierarchy_entry(other_root, pos);
2458 
2459 		if (pair) {
2460 			hist_entry__add_pair(pair, pos);
2461 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2462 		}
2463 	}
2464 }
2465 
2466 /*
2467  * Look for pairs to link to the leader buckets (hist_entries):
2468  */
2469 void hists__match(struct hists *leader, struct hists *other)
2470 {
2471 	struct rb_root_cached *root;
2472 	struct rb_node *nd;
2473 	struct hist_entry *pos, *pair;
2474 
2475 	if (symbol_conf.report_hierarchy) {
2476 		/* hierarchy report always collapses entries */
2477 		return hists__match_hierarchy(&leader->entries_collapsed,
2478 					      &other->entries_collapsed);
2479 	}
2480 
2481 	if (hists__has(leader, need_collapse))
2482 		root = &leader->entries_collapsed;
2483 	else
2484 		root = leader->entries_in;
2485 
2486 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2487 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2488 		pair = hists__find_entry(other, pos);
2489 
2490 		if (pair)
2491 			hist_entry__add_pair(pair, pos);
2492 	}
2493 }
2494 
2495 static int hists__link_hierarchy(struct hists *leader_hists,
2496 				 struct hist_entry *parent,
2497 				 struct rb_root_cached *leader_root,
2498 				 struct rb_root_cached *other_root)
2499 {
2500 	struct rb_node *nd;
2501 	struct hist_entry *pos, *leader;
2502 
2503 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2504 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2505 
2506 		if (hist_entry__has_pairs(pos)) {
2507 			bool found = false;
2508 
2509 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2510 				if (leader->hists == leader_hists) {
2511 					found = true;
2512 					break;
2513 				}
2514 			}
2515 			if (!found)
2516 				return -1;
2517 		} else {
2518 			leader = add_dummy_hierarchy_entry(leader_hists,
2519 							   leader_root, pos);
2520 			if (leader == NULL)
2521 				return -1;
2522 
2523 			/* do not point parent in the pos */
2524 			leader->parent_he = parent;
2525 
2526 			hist_entry__add_pair(pos, leader);
2527 		}
2528 
2529 		if (!pos->leaf) {
2530 			if (hists__link_hierarchy(leader_hists, leader,
2531 						  &leader->hroot_in,
2532 						  &pos->hroot_in) < 0)
2533 				return -1;
2534 		}
2535 	}
2536 	return 0;
2537 }
2538 
2539 /*
2540  * Look for entries in the other hists that are not present in the leader, if
2541  * we find them, just add a dummy entry on the leader hists, with period=0,
2542  * nr_events=0, to serve as the list header.
2543  */
2544 int hists__link(struct hists *leader, struct hists *other)
2545 {
2546 	struct rb_root_cached *root;
2547 	struct rb_node *nd;
2548 	struct hist_entry *pos, *pair;
2549 
2550 	if (symbol_conf.report_hierarchy) {
2551 		/* hierarchy report always collapses entries */
2552 		return hists__link_hierarchy(leader, NULL,
2553 					     &leader->entries_collapsed,
2554 					     &other->entries_collapsed);
2555 	}
2556 
2557 	if (hists__has(other, need_collapse))
2558 		root = &other->entries_collapsed;
2559 	else
2560 		root = other->entries_in;
2561 
2562 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2563 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2564 
2565 		if (!hist_entry__has_pairs(pos)) {
2566 			pair = hists__add_dummy_entry(leader, pos);
2567 			if (pair == NULL)
2568 				return -1;
2569 			hist_entry__add_pair(pos, pair);
2570 		}
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 int hists__unlink(struct hists *hists)
2577 {
2578 	struct rb_root_cached *root;
2579 	struct rb_node *nd;
2580 	struct hist_entry *pos;
2581 
2582 	if (hists__has(hists, need_collapse))
2583 		root = &hists->entries_collapsed;
2584 	else
2585 		root = hists->entries_in;
2586 
2587 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2588 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2589 		list_del_init(&pos->pairs.node);
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2596 			  struct perf_sample *sample, bool nonany_branch_mode,
2597 			  u64 *total_cycles)
2598 {
2599 	struct branch_info *bi;
2600 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2601 
2602 	/* If we have branch cycles always annotate them. */
2603 	if (bs && bs->nr && entries[0].flags.cycles) {
2604 		int i;
2605 
2606 		bi = sample__resolve_bstack(sample, al);
2607 		if (bi) {
2608 			struct addr_map_symbol *prev = NULL;
2609 
2610 			/*
2611 			 * Ignore errors, still want to process the
2612 			 * other entries.
2613 			 *
2614 			 * For non standard branch modes always
2615 			 * force no IPC (prev == NULL)
2616 			 *
2617 			 * Note that perf stores branches reversed from
2618 			 * program order!
2619 			 */
2620 			for (i = bs->nr - 1; i >= 0; i--) {
2621 				addr_map_symbol__account_cycles(&bi[i].from,
2622 					nonany_branch_mode ? NULL : prev,
2623 					bi[i].flags.cycles);
2624 				prev = &bi[i].to;
2625 
2626 				if (total_cycles)
2627 					*total_cycles += bi[i].flags.cycles;
2628 			}
2629 			free(bi);
2630 		}
2631 	}
2632 }
2633 
2634 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2635 {
2636 	struct evsel *pos;
2637 	size_t ret = 0;
2638 
2639 	evlist__for_each_entry(evlist, pos) {
2640 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2641 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2642 	}
2643 
2644 	return ret;
2645 }
2646 
2647 
2648 u64 hists__total_period(struct hists *hists)
2649 {
2650 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2651 		hists->stats.total_period;
2652 }
2653 
2654 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2655 {
2656 	char unit;
2657 	int printed;
2658 	const struct dso *dso = hists->dso_filter;
2659 	struct thread *thread = hists->thread_filter;
2660 	int socket_id = hists->socket_filter;
2661 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2662 	u64 nr_events = hists->stats.total_period;
2663 	struct evsel *evsel = hists_to_evsel(hists);
2664 	const char *ev_name = perf_evsel__name(evsel);
2665 	char buf[512], sample_freq_str[64] = "";
2666 	size_t buflen = sizeof(buf);
2667 	char ref[30] = " show reference callgraph, ";
2668 	bool enable_ref = false;
2669 
2670 	if (symbol_conf.filter_relative) {
2671 		nr_samples = hists->stats.nr_non_filtered_samples;
2672 		nr_events = hists->stats.total_non_filtered_period;
2673 	}
2674 
2675 	if (perf_evsel__is_group_event(evsel)) {
2676 		struct evsel *pos;
2677 
2678 		perf_evsel__group_desc(evsel, buf, buflen);
2679 		ev_name = buf;
2680 
2681 		for_each_group_member(pos, evsel) {
2682 			struct hists *pos_hists = evsel__hists(pos);
2683 
2684 			if (symbol_conf.filter_relative) {
2685 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2686 				nr_events += pos_hists->stats.total_non_filtered_period;
2687 			} else {
2688 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2689 				nr_events += pos_hists->stats.total_period;
2690 			}
2691 		}
2692 	}
2693 
2694 	if (symbol_conf.show_ref_callgraph &&
2695 	    strstr(ev_name, "call-graph=no"))
2696 		enable_ref = true;
2697 
2698 	if (show_freq)
2699 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2700 
2701 	nr_samples = convert_unit(nr_samples, &unit);
2702 	printed = scnprintf(bf, size,
2703 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2704 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2705 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2706 
2707 
2708 	if (hists->uid_filter_str)
2709 		printed += snprintf(bf + printed, size - printed,
2710 				    ", UID: %s", hists->uid_filter_str);
2711 	if (thread) {
2712 		if (hists__has(hists, thread)) {
2713 			printed += scnprintf(bf + printed, size - printed,
2714 				    ", Thread: %s(%d)",
2715 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2716 				    thread->tid);
2717 		} else {
2718 			printed += scnprintf(bf + printed, size - printed,
2719 				    ", Thread: %s",
2720 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2721 		}
2722 	}
2723 	if (dso)
2724 		printed += scnprintf(bf + printed, size - printed,
2725 				    ", DSO: %s", dso->short_name);
2726 	if (socket_id > -1)
2727 		printed += scnprintf(bf + printed, size - printed,
2728 				    ", Processor Socket: %d", socket_id);
2729 
2730 	return printed;
2731 }
2732 
2733 int parse_filter_percentage(const struct option *opt __maybe_unused,
2734 			    const char *arg, int unset __maybe_unused)
2735 {
2736 	if (!strcmp(arg, "relative"))
2737 		symbol_conf.filter_relative = true;
2738 	else if (!strcmp(arg, "absolute"))
2739 		symbol_conf.filter_relative = false;
2740 	else {
2741 		pr_debug("Invalid percentage: %s\n", arg);
2742 		return -1;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 int perf_hist_config(const char *var, const char *value)
2749 {
2750 	if (!strcmp(var, "hist.percentage"))
2751 		return parse_filter_percentage(NULL, value, 0);
2752 
2753 	return 0;
2754 }
2755 
2756 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2757 {
2758 	memset(hists, 0, sizeof(*hists));
2759 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2760 	hists->entries_in = &hists->entries_in_array[0];
2761 	hists->entries_collapsed = RB_ROOT_CACHED;
2762 	hists->entries = RB_ROOT_CACHED;
2763 	pthread_mutex_init(&hists->lock, NULL);
2764 	hists->socket_filter = -1;
2765 	hists->hpp_list = hpp_list;
2766 	INIT_LIST_HEAD(&hists->hpp_formats);
2767 	return 0;
2768 }
2769 
2770 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2771 {
2772 	struct rb_node *node;
2773 	struct hist_entry *he;
2774 
2775 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2776 		node = rb_first_cached(root);
2777 		rb_erase_cached(node, root);
2778 
2779 		he = rb_entry(node, struct hist_entry, rb_node_in);
2780 		hist_entry__delete(he);
2781 	}
2782 }
2783 
2784 static void hists__delete_all_entries(struct hists *hists)
2785 {
2786 	hists__delete_entries(hists);
2787 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2788 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2789 	hists__delete_remaining_entries(&hists->entries_collapsed);
2790 }
2791 
2792 static void hists_evsel__exit(struct evsel *evsel)
2793 {
2794 	struct hists *hists = evsel__hists(evsel);
2795 	struct perf_hpp_fmt *fmt, *pos;
2796 	struct perf_hpp_list_node *node, *tmp;
2797 
2798 	hists__delete_all_entries(hists);
2799 
2800 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2801 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2802 			list_del_init(&fmt->list);
2803 			free(fmt);
2804 		}
2805 		list_del_init(&node->list);
2806 		free(node);
2807 	}
2808 }
2809 
2810 static int hists_evsel__init(struct evsel *evsel)
2811 {
2812 	struct hists *hists = evsel__hists(evsel);
2813 
2814 	__hists__init(hists, &perf_hpp_list);
2815 	return 0;
2816 }
2817 
2818 /*
2819  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2820  * stored in the rbtree...
2821  */
2822 
2823 int hists__init(void)
2824 {
2825 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2826 					    hists_evsel__init,
2827 					    hists_evsel__exit);
2828 	if (err)
2829 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2830 
2831 	return err;
2832 }
2833 
2834 void perf_hpp_list__init(struct perf_hpp_list *list)
2835 {
2836 	INIT_LIST_HEAD(&list->fields);
2837 	INIT_LIST_HEAD(&list->sorts);
2838 }
2839