1 // SPDX-License-Identifier: GPL-2.0 2 #include "util.h" 3 #include "build-id.h" 4 #include "hist.h" 5 #include "map.h" 6 #include "session.h" 7 #include "namespaces.h" 8 #include "sort.h" 9 #include "units.h" 10 #include "evlist.h" 11 #include "evsel.h" 12 #include "annotate.h" 13 #include "srcline.h" 14 #include "thread.h" 15 #include "ui/progress.h" 16 #include <errno.h> 17 #include <math.h> 18 #include <inttypes.h> 19 #include <sys/param.h> 20 21 static bool hists__filter_entry_by_dso(struct hists *hists, 22 struct hist_entry *he); 23 static bool hists__filter_entry_by_thread(struct hists *hists, 24 struct hist_entry *he); 25 static bool hists__filter_entry_by_symbol(struct hists *hists, 26 struct hist_entry *he); 27 static bool hists__filter_entry_by_socket(struct hists *hists, 28 struct hist_entry *he); 29 30 u16 hists__col_len(struct hists *hists, enum hist_column col) 31 { 32 return hists->col_len[col]; 33 } 34 35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 36 { 37 hists->col_len[col] = len; 38 } 39 40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 41 { 42 if (len > hists__col_len(hists, col)) { 43 hists__set_col_len(hists, col, len); 44 return true; 45 } 46 return false; 47 } 48 49 void hists__reset_col_len(struct hists *hists) 50 { 51 enum hist_column col; 52 53 for (col = 0; col < HISTC_NR_COLS; ++col) 54 hists__set_col_len(hists, col, 0); 55 } 56 57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 58 { 59 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 60 61 if (hists__col_len(hists, dso) < unresolved_col_width && 62 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 63 !symbol_conf.dso_list) 64 hists__set_col_len(hists, dso, unresolved_col_width); 65 } 66 67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 68 { 69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 70 int symlen; 71 u16 len; 72 73 /* 74 * +4 accounts for '[x] ' priv level info 75 * +2 accounts for 0x prefix on raw addresses 76 * +3 accounts for ' y ' symtab origin info 77 */ 78 if (h->ms.sym) { 79 symlen = h->ms.sym->namelen + 4; 80 if (verbose > 0) 81 symlen += BITS_PER_LONG / 4 + 2 + 3; 82 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 83 } else { 84 symlen = unresolved_col_width + 4 + 2; 85 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 86 hists__set_unres_dso_col_len(hists, HISTC_DSO); 87 } 88 89 len = thread__comm_len(h->thread); 90 if (hists__new_col_len(hists, HISTC_COMM, len)) 91 hists__set_col_len(hists, HISTC_THREAD, len + 8); 92 93 if (h->ms.map) { 94 len = dso__name_len(h->ms.map->dso); 95 hists__new_col_len(hists, HISTC_DSO, len); 96 } 97 98 if (h->parent) 99 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 100 101 if (h->branch_info) { 102 if (h->branch_info->from.sym) { 103 symlen = (int)h->branch_info->from.sym->namelen + 4; 104 if (verbose > 0) 105 symlen += BITS_PER_LONG / 4 + 2 + 3; 106 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 107 108 symlen = dso__name_len(h->branch_info->from.map->dso); 109 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 110 } else { 111 symlen = unresolved_col_width + 4 + 2; 112 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 113 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 114 } 115 116 if (h->branch_info->to.sym) { 117 symlen = (int)h->branch_info->to.sym->namelen + 4; 118 if (verbose > 0) 119 symlen += BITS_PER_LONG / 4 + 2 + 3; 120 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 121 122 symlen = dso__name_len(h->branch_info->to.map->dso); 123 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 124 } else { 125 symlen = unresolved_col_width + 4 + 2; 126 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 127 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 128 } 129 130 if (h->branch_info->srcline_from) 131 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 132 strlen(h->branch_info->srcline_from)); 133 if (h->branch_info->srcline_to) 134 hists__new_col_len(hists, HISTC_SRCLINE_TO, 135 strlen(h->branch_info->srcline_to)); 136 } 137 138 if (h->mem_info) { 139 if (h->mem_info->daddr.sym) { 140 symlen = (int)h->mem_info->daddr.sym->namelen + 4 141 + unresolved_col_width + 2; 142 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 143 symlen); 144 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 145 symlen + 1); 146 } else { 147 symlen = unresolved_col_width + 4 + 2; 148 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 149 symlen); 150 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 151 symlen); 152 } 153 154 if (h->mem_info->iaddr.sym) { 155 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 156 + unresolved_col_width + 2; 157 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 158 symlen); 159 } else { 160 symlen = unresolved_col_width + 4 + 2; 161 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 162 symlen); 163 } 164 165 if (h->mem_info->daddr.map) { 166 symlen = dso__name_len(h->mem_info->daddr.map->dso); 167 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 168 symlen); 169 } else { 170 symlen = unresolved_col_width + 4 + 2; 171 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 172 } 173 174 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR, 175 unresolved_col_width + 4 + 2); 176 177 } else { 178 symlen = unresolved_col_width + 4 + 2; 179 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 180 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 182 } 183 184 hists__new_col_len(hists, HISTC_CGROUP_ID, 20); 185 hists__new_col_len(hists, HISTC_CPU, 3); 186 hists__new_col_len(hists, HISTC_SOCKET, 6); 187 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 188 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 189 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 190 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 191 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 192 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 193 194 if (h->srcline) { 195 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header)); 196 hists__new_col_len(hists, HISTC_SRCLINE, len); 197 } 198 199 if (h->srcfile) 200 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 201 202 if (h->transaction) 203 hists__new_col_len(hists, HISTC_TRANSACTION, 204 hist_entry__transaction_len()); 205 206 if (h->trace_output) 207 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 208 } 209 210 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 211 { 212 struct rb_node *next = rb_first(&hists->entries); 213 struct hist_entry *n; 214 int row = 0; 215 216 hists__reset_col_len(hists); 217 218 while (next && row++ < max_rows) { 219 n = rb_entry(next, struct hist_entry, rb_node); 220 if (!n->filtered) 221 hists__calc_col_len(hists, n); 222 next = rb_next(&n->rb_node); 223 } 224 } 225 226 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 227 unsigned int cpumode, u64 period) 228 { 229 switch (cpumode) { 230 case PERF_RECORD_MISC_KERNEL: 231 he_stat->period_sys += period; 232 break; 233 case PERF_RECORD_MISC_USER: 234 he_stat->period_us += period; 235 break; 236 case PERF_RECORD_MISC_GUEST_KERNEL: 237 he_stat->period_guest_sys += period; 238 break; 239 case PERF_RECORD_MISC_GUEST_USER: 240 he_stat->period_guest_us += period; 241 break; 242 default: 243 break; 244 } 245 } 246 247 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 248 u64 weight) 249 { 250 251 he_stat->period += period; 252 he_stat->weight += weight; 253 he_stat->nr_events += 1; 254 } 255 256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 257 { 258 dest->period += src->period; 259 dest->period_sys += src->period_sys; 260 dest->period_us += src->period_us; 261 dest->period_guest_sys += src->period_guest_sys; 262 dest->period_guest_us += src->period_guest_us; 263 dest->nr_events += src->nr_events; 264 dest->weight += src->weight; 265 } 266 267 static void he_stat__decay(struct he_stat *he_stat) 268 { 269 he_stat->period = (he_stat->period * 7) / 8; 270 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 271 /* XXX need decay for weight too? */ 272 } 273 274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 275 276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 277 { 278 u64 prev_period = he->stat.period; 279 u64 diff; 280 281 if (prev_period == 0) 282 return true; 283 284 he_stat__decay(&he->stat); 285 if (symbol_conf.cumulate_callchain) 286 he_stat__decay(he->stat_acc); 287 decay_callchain(he->callchain); 288 289 diff = prev_period - he->stat.period; 290 291 if (!he->depth) { 292 hists->stats.total_period -= diff; 293 if (!he->filtered) 294 hists->stats.total_non_filtered_period -= diff; 295 } 296 297 if (!he->leaf) { 298 struct hist_entry *child; 299 struct rb_node *node = rb_first(&he->hroot_out); 300 while (node) { 301 child = rb_entry(node, struct hist_entry, rb_node); 302 node = rb_next(node); 303 304 if (hists__decay_entry(hists, child)) 305 hists__delete_entry(hists, child); 306 } 307 } 308 309 return he->stat.period == 0; 310 } 311 312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 313 { 314 struct rb_root *root_in; 315 struct rb_root *root_out; 316 317 if (he->parent_he) { 318 root_in = &he->parent_he->hroot_in; 319 root_out = &he->parent_he->hroot_out; 320 } else { 321 if (hists__has(hists, need_collapse)) 322 root_in = &hists->entries_collapsed; 323 else 324 root_in = hists->entries_in; 325 root_out = &hists->entries; 326 } 327 328 rb_erase(&he->rb_node_in, root_in); 329 rb_erase(&he->rb_node, root_out); 330 331 --hists->nr_entries; 332 if (!he->filtered) 333 --hists->nr_non_filtered_entries; 334 335 hist_entry__delete(he); 336 } 337 338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 339 { 340 struct rb_node *next = rb_first(&hists->entries); 341 struct hist_entry *n; 342 343 while (next) { 344 n = rb_entry(next, struct hist_entry, rb_node); 345 next = rb_next(&n->rb_node); 346 if (((zap_user && n->level == '.') || 347 (zap_kernel && n->level != '.') || 348 hists__decay_entry(hists, n))) { 349 hists__delete_entry(hists, n); 350 } 351 } 352 } 353 354 void hists__delete_entries(struct hists *hists) 355 { 356 struct rb_node *next = rb_first(&hists->entries); 357 struct hist_entry *n; 358 359 while (next) { 360 n = rb_entry(next, struct hist_entry, rb_node); 361 next = rb_next(&n->rb_node); 362 363 hists__delete_entry(hists, n); 364 } 365 } 366 367 /* 368 * histogram, sorted on item, collects periods 369 */ 370 371 static int hist_entry__init(struct hist_entry *he, 372 struct hist_entry *template, 373 bool sample_self) 374 { 375 *he = *template; 376 377 if (symbol_conf.cumulate_callchain) { 378 he->stat_acc = malloc(sizeof(he->stat)); 379 if (he->stat_acc == NULL) 380 return -ENOMEM; 381 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 382 if (!sample_self) 383 memset(&he->stat, 0, sizeof(he->stat)); 384 } 385 386 map__get(he->ms.map); 387 388 if (he->branch_info) { 389 /* 390 * This branch info is (a part of) allocated from 391 * sample__resolve_bstack() and will be freed after 392 * adding new entries. So we need to save a copy. 393 */ 394 he->branch_info = malloc(sizeof(*he->branch_info)); 395 if (he->branch_info == NULL) { 396 map__zput(he->ms.map); 397 free(he->stat_acc); 398 return -ENOMEM; 399 } 400 401 memcpy(he->branch_info, template->branch_info, 402 sizeof(*he->branch_info)); 403 404 map__get(he->branch_info->from.map); 405 map__get(he->branch_info->to.map); 406 } 407 408 if (he->mem_info) { 409 map__get(he->mem_info->iaddr.map); 410 map__get(he->mem_info->daddr.map); 411 } 412 413 if (symbol_conf.use_callchain) 414 callchain_init(he->callchain); 415 416 if (he->raw_data) { 417 he->raw_data = memdup(he->raw_data, he->raw_size); 418 419 if (he->raw_data == NULL) { 420 map__put(he->ms.map); 421 if (he->branch_info) { 422 map__put(he->branch_info->from.map); 423 map__put(he->branch_info->to.map); 424 free(he->branch_info); 425 } 426 if (he->mem_info) { 427 map__put(he->mem_info->iaddr.map); 428 map__put(he->mem_info->daddr.map); 429 } 430 free(he->stat_acc); 431 return -ENOMEM; 432 } 433 } 434 INIT_LIST_HEAD(&he->pairs.node); 435 thread__get(he->thread); 436 he->hroot_in = RB_ROOT; 437 he->hroot_out = RB_ROOT; 438 439 if (!symbol_conf.report_hierarchy) 440 he->leaf = true; 441 442 return 0; 443 } 444 445 static void *hist_entry__zalloc(size_t size) 446 { 447 return zalloc(size + sizeof(struct hist_entry)); 448 } 449 450 static void hist_entry__free(void *ptr) 451 { 452 free(ptr); 453 } 454 455 static struct hist_entry_ops default_ops = { 456 .new = hist_entry__zalloc, 457 .free = hist_entry__free, 458 }; 459 460 static struct hist_entry *hist_entry__new(struct hist_entry *template, 461 bool sample_self) 462 { 463 struct hist_entry_ops *ops = template->ops; 464 size_t callchain_size = 0; 465 struct hist_entry *he; 466 int err = 0; 467 468 if (!ops) 469 ops = template->ops = &default_ops; 470 471 if (symbol_conf.use_callchain) 472 callchain_size = sizeof(struct callchain_root); 473 474 he = ops->new(callchain_size); 475 if (he) { 476 err = hist_entry__init(he, template, sample_self); 477 if (err) { 478 ops->free(he); 479 he = NULL; 480 } 481 } 482 483 return he; 484 } 485 486 static u8 symbol__parent_filter(const struct symbol *parent) 487 { 488 if (symbol_conf.exclude_other && parent == NULL) 489 return 1 << HIST_FILTER__PARENT; 490 return 0; 491 } 492 493 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 494 { 495 if (!symbol_conf.use_callchain) 496 return; 497 498 he->hists->callchain_period += period; 499 if (!he->filtered) 500 he->hists->callchain_non_filtered_period += period; 501 } 502 503 static struct hist_entry *hists__findnew_entry(struct hists *hists, 504 struct hist_entry *entry, 505 struct addr_location *al, 506 bool sample_self) 507 { 508 struct rb_node **p; 509 struct rb_node *parent = NULL; 510 struct hist_entry *he; 511 int64_t cmp; 512 u64 period = entry->stat.period; 513 u64 weight = entry->stat.weight; 514 515 p = &hists->entries_in->rb_node; 516 517 while (*p != NULL) { 518 parent = *p; 519 he = rb_entry(parent, struct hist_entry, rb_node_in); 520 521 /* 522 * Make sure that it receives arguments in a same order as 523 * hist_entry__collapse() so that we can use an appropriate 524 * function when searching an entry regardless which sort 525 * keys were used. 526 */ 527 cmp = hist_entry__cmp(he, entry); 528 529 if (!cmp) { 530 if (sample_self) { 531 he_stat__add_period(&he->stat, period, weight); 532 hist_entry__add_callchain_period(he, period); 533 } 534 if (symbol_conf.cumulate_callchain) 535 he_stat__add_period(he->stat_acc, period, weight); 536 537 /* 538 * This mem info was allocated from sample__resolve_mem 539 * and will not be used anymore. 540 */ 541 mem_info__zput(entry->mem_info); 542 543 /* If the map of an existing hist_entry has 544 * become out-of-date due to an exec() or 545 * similar, update it. Otherwise we will 546 * mis-adjust symbol addresses when computing 547 * the history counter to increment. 548 */ 549 if (he->ms.map != entry->ms.map) { 550 map__put(he->ms.map); 551 he->ms.map = map__get(entry->ms.map); 552 } 553 goto out; 554 } 555 556 if (cmp < 0) 557 p = &(*p)->rb_left; 558 else 559 p = &(*p)->rb_right; 560 } 561 562 he = hist_entry__new(entry, sample_self); 563 if (!he) 564 return NULL; 565 566 if (sample_self) 567 hist_entry__add_callchain_period(he, period); 568 hists->nr_entries++; 569 570 rb_link_node(&he->rb_node_in, parent, p); 571 rb_insert_color(&he->rb_node_in, hists->entries_in); 572 out: 573 if (sample_self) 574 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 575 if (symbol_conf.cumulate_callchain) 576 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 577 return he; 578 } 579 580 static struct hist_entry* 581 __hists__add_entry(struct hists *hists, 582 struct addr_location *al, 583 struct symbol *sym_parent, 584 struct branch_info *bi, 585 struct mem_info *mi, 586 struct perf_sample *sample, 587 bool sample_self, 588 struct hist_entry_ops *ops) 589 { 590 struct namespaces *ns = thread__namespaces(al->thread); 591 struct hist_entry entry = { 592 .thread = al->thread, 593 .comm = thread__comm(al->thread), 594 .cgroup_id = { 595 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0, 596 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0, 597 }, 598 .ms = { 599 .map = al->map, 600 .sym = al->sym, 601 }, 602 .srcline = al->srcline ? strdup(al->srcline) : NULL, 603 .socket = al->socket, 604 .cpu = al->cpu, 605 .cpumode = al->cpumode, 606 .ip = al->addr, 607 .level = al->level, 608 .stat = { 609 .nr_events = 1, 610 .period = sample->period, 611 .weight = sample->weight, 612 }, 613 .parent = sym_parent, 614 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 615 .hists = hists, 616 .branch_info = bi, 617 .mem_info = mi, 618 .transaction = sample->transaction, 619 .raw_data = sample->raw_data, 620 .raw_size = sample->raw_size, 621 .ops = ops, 622 }; 623 624 return hists__findnew_entry(hists, &entry, al, sample_self); 625 } 626 627 struct hist_entry *hists__add_entry(struct hists *hists, 628 struct addr_location *al, 629 struct symbol *sym_parent, 630 struct branch_info *bi, 631 struct mem_info *mi, 632 struct perf_sample *sample, 633 bool sample_self) 634 { 635 return __hists__add_entry(hists, al, sym_parent, bi, mi, 636 sample, sample_self, NULL); 637 } 638 639 struct hist_entry *hists__add_entry_ops(struct hists *hists, 640 struct hist_entry_ops *ops, 641 struct addr_location *al, 642 struct symbol *sym_parent, 643 struct branch_info *bi, 644 struct mem_info *mi, 645 struct perf_sample *sample, 646 bool sample_self) 647 { 648 return __hists__add_entry(hists, al, sym_parent, bi, mi, 649 sample, sample_self, ops); 650 } 651 652 static int 653 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 654 struct addr_location *al __maybe_unused) 655 { 656 return 0; 657 } 658 659 static int 660 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 661 struct addr_location *al __maybe_unused) 662 { 663 return 0; 664 } 665 666 static int 667 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 668 { 669 struct perf_sample *sample = iter->sample; 670 struct mem_info *mi; 671 672 mi = sample__resolve_mem(sample, al); 673 if (mi == NULL) 674 return -ENOMEM; 675 676 iter->priv = mi; 677 return 0; 678 } 679 680 static int 681 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 682 { 683 u64 cost; 684 struct mem_info *mi = iter->priv; 685 struct hists *hists = evsel__hists(iter->evsel); 686 struct perf_sample *sample = iter->sample; 687 struct hist_entry *he; 688 689 if (mi == NULL) 690 return -EINVAL; 691 692 cost = sample->weight; 693 if (!cost) 694 cost = 1; 695 696 /* 697 * must pass period=weight in order to get the correct 698 * sorting from hists__collapse_resort() which is solely 699 * based on periods. We want sorting be done on nr_events * weight 700 * and this is indirectly achieved by passing period=weight here 701 * and the he_stat__add_period() function. 702 */ 703 sample->period = cost; 704 705 he = hists__add_entry(hists, al, iter->parent, NULL, mi, 706 sample, true); 707 if (!he) 708 return -ENOMEM; 709 710 iter->he = he; 711 return 0; 712 } 713 714 static int 715 iter_finish_mem_entry(struct hist_entry_iter *iter, 716 struct addr_location *al __maybe_unused) 717 { 718 struct perf_evsel *evsel = iter->evsel; 719 struct hists *hists = evsel__hists(evsel); 720 struct hist_entry *he = iter->he; 721 int err = -EINVAL; 722 723 if (he == NULL) 724 goto out; 725 726 hists__inc_nr_samples(hists, he->filtered); 727 728 err = hist_entry__append_callchain(he, iter->sample); 729 730 out: 731 /* 732 * We don't need to free iter->priv (mem_info) here since the mem info 733 * was either already freed in hists__findnew_entry() or passed to a 734 * new hist entry by hist_entry__new(). 735 */ 736 iter->priv = NULL; 737 738 iter->he = NULL; 739 return err; 740 } 741 742 static int 743 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 744 { 745 struct branch_info *bi; 746 struct perf_sample *sample = iter->sample; 747 748 bi = sample__resolve_bstack(sample, al); 749 if (!bi) 750 return -ENOMEM; 751 752 iter->curr = 0; 753 iter->total = sample->branch_stack->nr; 754 755 iter->priv = bi; 756 return 0; 757 } 758 759 static int 760 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused, 761 struct addr_location *al __maybe_unused) 762 { 763 return 0; 764 } 765 766 static int 767 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 768 { 769 struct branch_info *bi = iter->priv; 770 int i = iter->curr; 771 772 if (bi == NULL) 773 return 0; 774 775 if (iter->curr >= iter->total) 776 return 0; 777 778 al->map = bi[i].to.map; 779 al->sym = bi[i].to.sym; 780 al->addr = bi[i].to.addr; 781 return 1; 782 } 783 784 static int 785 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 786 { 787 struct branch_info *bi; 788 struct perf_evsel *evsel = iter->evsel; 789 struct hists *hists = evsel__hists(evsel); 790 struct perf_sample *sample = iter->sample; 791 struct hist_entry *he = NULL; 792 int i = iter->curr; 793 int err = 0; 794 795 bi = iter->priv; 796 797 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 798 goto out; 799 800 /* 801 * The report shows the percentage of total branches captured 802 * and not events sampled. Thus we use a pseudo period of 1. 803 */ 804 sample->period = 1; 805 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 806 807 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 808 sample, true); 809 if (he == NULL) 810 return -ENOMEM; 811 812 hists__inc_nr_samples(hists, he->filtered); 813 814 out: 815 iter->he = he; 816 iter->curr++; 817 return err; 818 } 819 820 static int 821 iter_finish_branch_entry(struct hist_entry_iter *iter, 822 struct addr_location *al __maybe_unused) 823 { 824 zfree(&iter->priv); 825 iter->he = NULL; 826 827 return iter->curr >= iter->total ? 0 : -1; 828 } 829 830 static int 831 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 832 struct addr_location *al __maybe_unused) 833 { 834 return 0; 835 } 836 837 static int 838 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 839 { 840 struct perf_evsel *evsel = iter->evsel; 841 struct perf_sample *sample = iter->sample; 842 struct hist_entry *he; 843 844 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 845 sample, true); 846 if (he == NULL) 847 return -ENOMEM; 848 849 iter->he = he; 850 return 0; 851 } 852 853 static int 854 iter_finish_normal_entry(struct hist_entry_iter *iter, 855 struct addr_location *al __maybe_unused) 856 { 857 struct hist_entry *he = iter->he; 858 struct perf_evsel *evsel = iter->evsel; 859 struct perf_sample *sample = iter->sample; 860 861 if (he == NULL) 862 return 0; 863 864 iter->he = NULL; 865 866 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 867 868 return hist_entry__append_callchain(he, sample); 869 } 870 871 static int 872 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 873 struct addr_location *al __maybe_unused) 874 { 875 struct hist_entry **he_cache; 876 877 callchain_cursor_commit(&callchain_cursor); 878 879 /* 880 * This is for detecting cycles or recursions so that they're 881 * cumulated only one time to prevent entries more than 100% 882 * overhead. 883 */ 884 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1)); 885 if (he_cache == NULL) 886 return -ENOMEM; 887 888 iter->priv = he_cache; 889 iter->curr = 0; 890 891 return 0; 892 } 893 894 static int 895 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 896 struct addr_location *al) 897 { 898 struct perf_evsel *evsel = iter->evsel; 899 struct hists *hists = evsel__hists(evsel); 900 struct perf_sample *sample = iter->sample; 901 struct hist_entry **he_cache = iter->priv; 902 struct hist_entry *he; 903 int err = 0; 904 905 he = hists__add_entry(hists, al, iter->parent, NULL, NULL, 906 sample, true); 907 if (he == NULL) 908 return -ENOMEM; 909 910 iter->he = he; 911 he_cache[iter->curr++] = he; 912 913 hist_entry__append_callchain(he, sample); 914 915 /* 916 * We need to re-initialize the cursor since callchain_append() 917 * advanced the cursor to the end. 918 */ 919 callchain_cursor_commit(&callchain_cursor); 920 921 hists__inc_nr_samples(hists, he->filtered); 922 923 return err; 924 } 925 926 static int 927 iter_next_cumulative_entry(struct hist_entry_iter *iter, 928 struct addr_location *al) 929 { 930 struct callchain_cursor_node *node; 931 932 node = callchain_cursor_current(&callchain_cursor); 933 if (node == NULL) 934 return 0; 935 936 return fill_callchain_info(al, node, iter->hide_unresolved); 937 } 938 939 static int 940 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 941 struct addr_location *al) 942 { 943 struct perf_evsel *evsel = iter->evsel; 944 struct perf_sample *sample = iter->sample; 945 struct hist_entry **he_cache = iter->priv; 946 struct hist_entry *he; 947 struct hist_entry he_tmp = { 948 .hists = evsel__hists(evsel), 949 .cpu = al->cpu, 950 .thread = al->thread, 951 .comm = thread__comm(al->thread), 952 .ip = al->addr, 953 .ms = { 954 .map = al->map, 955 .sym = al->sym, 956 }, 957 .srcline = al->srcline ? strdup(al->srcline) : NULL, 958 .parent = iter->parent, 959 .raw_data = sample->raw_data, 960 .raw_size = sample->raw_size, 961 }; 962 int i; 963 struct callchain_cursor cursor; 964 965 callchain_cursor_snapshot(&cursor, &callchain_cursor); 966 967 callchain_cursor_advance(&callchain_cursor); 968 969 /* 970 * Check if there's duplicate entries in the callchain. 971 * It's possible that it has cycles or recursive calls. 972 */ 973 for (i = 0; i < iter->curr; i++) { 974 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 975 /* to avoid calling callback function */ 976 iter->he = NULL; 977 return 0; 978 } 979 } 980 981 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 982 sample, false); 983 if (he == NULL) 984 return -ENOMEM; 985 986 iter->he = he; 987 he_cache[iter->curr++] = he; 988 989 if (symbol_conf.use_callchain) 990 callchain_append(he->callchain, &cursor, sample->period); 991 return 0; 992 } 993 994 static int 995 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 996 struct addr_location *al __maybe_unused) 997 { 998 zfree(&iter->priv); 999 iter->he = NULL; 1000 1001 return 0; 1002 } 1003 1004 const struct hist_iter_ops hist_iter_mem = { 1005 .prepare_entry = iter_prepare_mem_entry, 1006 .add_single_entry = iter_add_single_mem_entry, 1007 .next_entry = iter_next_nop_entry, 1008 .add_next_entry = iter_add_next_nop_entry, 1009 .finish_entry = iter_finish_mem_entry, 1010 }; 1011 1012 const struct hist_iter_ops hist_iter_branch = { 1013 .prepare_entry = iter_prepare_branch_entry, 1014 .add_single_entry = iter_add_single_branch_entry, 1015 .next_entry = iter_next_branch_entry, 1016 .add_next_entry = iter_add_next_branch_entry, 1017 .finish_entry = iter_finish_branch_entry, 1018 }; 1019 1020 const struct hist_iter_ops hist_iter_normal = { 1021 .prepare_entry = iter_prepare_normal_entry, 1022 .add_single_entry = iter_add_single_normal_entry, 1023 .next_entry = iter_next_nop_entry, 1024 .add_next_entry = iter_add_next_nop_entry, 1025 .finish_entry = iter_finish_normal_entry, 1026 }; 1027 1028 const struct hist_iter_ops hist_iter_cumulative = { 1029 .prepare_entry = iter_prepare_cumulative_entry, 1030 .add_single_entry = iter_add_single_cumulative_entry, 1031 .next_entry = iter_next_cumulative_entry, 1032 .add_next_entry = iter_add_next_cumulative_entry, 1033 .finish_entry = iter_finish_cumulative_entry, 1034 }; 1035 1036 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 1037 int max_stack_depth, void *arg) 1038 { 1039 int err, err2; 1040 struct map *alm = NULL; 1041 1042 if (al && al->map) 1043 alm = map__get(al->map); 1044 1045 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 1046 iter->evsel, al, max_stack_depth); 1047 if (err) 1048 return err; 1049 1050 err = iter->ops->prepare_entry(iter, al); 1051 if (err) 1052 goto out; 1053 1054 err = iter->ops->add_single_entry(iter, al); 1055 if (err) 1056 goto out; 1057 1058 if (iter->he && iter->add_entry_cb) { 1059 err = iter->add_entry_cb(iter, al, true, arg); 1060 if (err) 1061 goto out; 1062 } 1063 1064 while (iter->ops->next_entry(iter, al)) { 1065 err = iter->ops->add_next_entry(iter, al); 1066 if (err) 1067 break; 1068 1069 if (iter->he && iter->add_entry_cb) { 1070 err = iter->add_entry_cb(iter, al, false, arg); 1071 if (err) 1072 goto out; 1073 } 1074 } 1075 1076 out: 1077 err2 = iter->ops->finish_entry(iter, al); 1078 if (!err) 1079 err = err2; 1080 1081 map__put(alm); 1082 1083 return err; 1084 } 1085 1086 int64_t 1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1088 { 1089 struct hists *hists = left->hists; 1090 struct perf_hpp_fmt *fmt; 1091 int64_t cmp = 0; 1092 1093 hists__for_each_sort_list(hists, fmt) { 1094 if (perf_hpp__is_dynamic_entry(fmt) && 1095 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1096 continue; 1097 1098 cmp = fmt->cmp(fmt, left, right); 1099 if (cmp) 1100 break; 1101 } 1102 1103 return cmp; 1104 } 1105 1106 int64_t 1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1108 { 1109 struct hists *hists = left->hists; 1110 struct perf_hpp_fmt *fmt; 1111 int64_t cmp = 0; 1112 1113 hists__for_each_sort_list(hists, fmt) { 1114 if (perf_hpp__is_dynamic_entry(fmt) && 1115 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1116 continue; 1117 1118 cmp = fmt->collapse(fmt, left, right); 1119 if (cmp) 1120 break; 1121 } 1122 1123 return cmp; 1124 } 1125 1126 void hist_entry__delete(struct hist_entry *he) 1127 { 1128 struct hist_entry_ops *ops = he->ops; 1129 1130 thread__zput(he->thread); 1131 map__zput(he->ms.map); 1132 1133 if (he->branch_info) { 1134 map__zput(he->branch_info->from.map); 1135 map__zput(he->branch_info->to.map); 1136 free_srcline(he->branch_info->srcline_from); 1137 free_srcline(he->branch_info->srcline_to); 1138 zfree(&he->branch_info); 1139 } 1140 1141 if (he->mem_info) { 1142 map__zput(he->mem_info->iaddr.map); 1143 map__zput(he->mem_info->daddr.map); 1144 mem_info__zput(he->mem_info); 1145 } 1146 1147 zfree(&he->stat_acc); 1148 free_srcline(he->srcline); 1149 if (he->srcfile && he->srcfile[0]) 1150 free(he->srcfile); 1151 free_callchain(he->callchain); 1152 free(he->trace_output); 1153 free(he->raw_data); 1154 ops->free(he); 1155 } 1156 1157 /* 1158 * If this is not the last column, then we need to pad it according to the 1159 * pre-calculated max lenght for this column, otherwise don't bother adding 1160 * spaces because that would break viewing this with, for instance, 'less', 1161 * that would show tons of trailing spaces when a long C++ demangled method 1162 * names is sampled. 1163 */ 1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1165 struct perf_hpp_fmt *fmt, int printed) 1166 { 1167 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1168 const int width = fmt->width(fmt, hpp, he->hists); 1169 if (printed < width) { 1170 advance_hpp(hpp, printed); 1171 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1172 } 1173 } 1174 1175 return printed; 1176 } 1177 1178 /* 1179 * collapse the histogram 1180 */ 1181 1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1184 enum hist_filter type); 1185 1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1187 1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1189 { 1190 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1191 } 1192 1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1194 enum hist_filter type, 1195 fmt_chk_fn check) 1196 { 1197 struct perf_hpp_fmt *fmt; 1198 bool type_match = false; 1199 struct hist_entry *parent = he->parent_he; 1200 1201 switch (type) { 1202 case HIST_FILTER__THREAD: 1203 if (symbol_conf.comm_list == NULL && 1204 symbol_conf.pid_list == NULL && 1205 symbol_conf.tid_list == NULL) 1206 return; 1207 break; 1208 case HIST_FILTER__DSO: 1209 if (symbol_conf.dso_list == NULL) 1210 return; 1211 break; 1212 case HIST_FILTER__SYMBOL: 1213 if (symbol_conf.sym_list == NULL) 1214 return; 1215 break; 1216 case HIST_FILTER__PARENT: 1217 case HIST_FILTER__GUEST: 1218 case HIST_FILTER__HOST: 1219 case HIST_FILTER__SOCKET: 1220 case HIST_FILTER__C2C: 1221 default: 1222 return; 1223 } 1224 1225 /* if it's filtered by own fmt, it has to have filter bits */ 1226 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1227 if (check(fmt)) { 1228 type_match = true; 1229 break; 1230 } 1231 } 1232 1233 if (type_match) { 1234 /* 1235 * If the filter is for current level entry, propagate 1236 * filter marker to parents. The marker bit was 1237 * already set by default so it only needs to clear 1238 * non-filtered entries. 1239 */ 1240 if (!(he->filtered & (1 << type))) { 1241 while (parent) { 1242 parent->filtered &= ~(1 << type); 1243 parent = parent->parent_he; 1244 } 1245 } 1246 } else { 1247 /* 1248 * If current entry doesn't have matching formats, set 1249 * filter marker for upper level entries. it will be 1250 * cleared if its lower level entries is not filtered. 1251 * 1252 * For lower-level entries, it inherits parent's 1253 * filter bit so that lower level entries of a 1254 * non-filtered entry won't set the filter marker. 1255 */ 1256 if (parent == NULL) 1257 he->filtered |= (1 << type); 1258 else 1259 he->filtered |= (parent->filtered & (1 << type)); 1260 } 1261 } 1262 1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1264 { 1265 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1266 check_thread_entry); 1267 1268 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1269 perf_hpp__is_dso_entry); 1270 1271 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1272 perf_hpp__is_sym_entry); 1273 1274 hists__apply_filters(he->hists, he); 1275 } 1276 1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1278 struct rb_root *root, 1279 struct hist_entry *he, 1280 struct hist_entry *parent_he, 1281 struct perf_hpp_list *hpp_list) 1282 { 1283 struct rb_node **p = &root->rb_node; 1284 struct rb_node *parent = NULL; 1285 struct hist_entry *iter, *new; 1286 struct perf_hpp_fmt *fmt; 1287 int64_t cmp; 1288 1289 while (*p != NULL) { 1290 parent = *p; 1291 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1292 1293 cmp = 0; 1294 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1295 cmp = fmt->collapse(fmt, iter, he); 1296 if (cmp) 1297 break; 1298 } 1299 1300 if (!cmp) { 1301 he_stat__add_stat(&iter->stat, &he->stat); 1302 return iter; 1303 } 1304 1305 if (cmp < 0) 1306 p = &parent->rb_left; 1307 else 1308 p = &parent->rb_right; 1309 } 1310 1311 new = hist_entry__new(he, true); 1312 if (new == NULL) 1313 return NULL; 1314 1315 hists->nr_entries++; 1316 1317 /* save related format list for output */ 1318 new->hpp_list = hpp_list; 1319 new->parent_he = parent_he; 1320 1321 hist_entry__apply_hierarchy_filters(new); 1322 1323 /* some fields are now passed to 'new' */ 1324 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1325 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1326 he->trace_output = NULL; 1327 else 1328 new->trace_output = NULL; 1329 1330 if (perf_hpp__is_srcline_entry(fmt)) 1331 he->srcline = NULL; 1332 else 1333 new->srcline = NULL; 1334 1335 if (perf_hpp__is_srcfile_entry(fmt)) 1336 he->srcfile = NULL; 1337 else 1338 new->srcfile = NULL; 1339 } 1340 1341 rb_link_node(&new->rb_node_in, parent, p); 1342 rb_insert_color(&new->rb_node_in, root); 1343 return new; 1344 } 1345 1346 static int hists__hierarchy_insert_entry(struct hists *hists, 1347 struct rb_root *root, 1348 struct hist_entry *he) 1349 { 1350 struct perf_hpp_list_node *node; 1351 struct hist_entry *new_he = NULL; 1352 struct hist_entry *parent = NULL; 1353 int depth = 0; 1354 int ret = 0; 1355 1356 list_for_each_entry(node, &hists->hpp_formats, list) { 1357 /* skip period (overhead) and elided columns */ 1358 if (node->level == 0 || node->skip) 1359 continue; 1360 1361 /* insert copy of 'he' for each fmt into the hierarchy */ 1362 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1363 if (new_he == NULL) { 1364 ret = -1; 1365 break; 1366 } 1367 1368 root = &new_he->hroot_in; 1369 new_he->depth = depth++; 1370 parent = new_he; 1371 } 1372 1373 if (new_he) { 1374 new_he->leaf = true; 1375 1376 if (symbol_conf.use_callchain) { 1377 callchain_cursor_reset(&callchain_cursor); 1378 if (callchain_merge(&callchain_cursor, 1379 new_he->callchain, 1380 he->callchain) < 0) 1381 ret = -1; 1382 } 1383 } 1384 1385 /* 'he' is no longer used */ 1386 hist_entry__delete(he); 1387 1388 /* return 0 (or -1) since it already applied filters */ 1389 return ret; 1390 } 1391 1392 static int hists__collapse_insert_entry(struct hists *hists, 1393 struct rb_root *root, 1394 struct hist_entry *he) 1395 { 1396 struct rb_node **p = &root->rb_node; 1397 struct rb_node *parent = NULL; 1398 struct hist_entry *iter; 1399 int64_t cmp; 1400 1401 if (symbol_conf.report_hierarchy) 1402 return hists__hierarchy_insert_entry(hists, root, he); 1403 1404 while (*p != NULL) { 1405 parent = *p; 1406 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1407 1408 cmp = hist_entry__collapse(iter, he); 1409 1410 if (!cmp) { 1411 int ret = 0; 1412 1413 he_stat__add_stat(&iter->stat, &he->stat); 1414 if (symbol_conf.cumulate_callchain) 1415 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1416 1417 if (symbol_conf.use_callchain) { 1418 callchain_cursor_reset(&callchain_cursor); 1419 if (callchain_merge(&callchain_cursor, 1420 iter->callchain, 1421 he->callchain) < 0) 1422 ret = -1; 1423 } 1424 hist_entry__delete(he); 1425 return ret; 1426 } 1427 1428 if (cmp < 0) 1429 p = &(*p)->rb_left; 1430 else 1431 p = &(*p)->rb_right; 1432 } 1433 hists->nr_entries++; 1434 1435 rb_link_node(&he->rb_node_in, parent, p); 1436 rb_insert_color(&he->rb_node_in, root); 1437 return 1; 1438 } 1439 1440 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1441 { 1442 struct rb_root *root; 1443 1444 pthread_mutex_lock(&hists->lock); 1445 1446 root = hists->entries_in; 1447 if (++hists->entries_in > &hists->entries_in_array[1]) 1448 hists->entries_in = &hists->entries_in_array[0]; 1449 1450 pthread_mutex_unlock(&hists->lock); 1451 1452 return root; 1453 } 1454 1455 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1456 { 1457 hists__filter_entry_by_dso(hists, he); 1458 hists__filter_entry_by_thread(hists, he); 1459 hists__filter_entry_by_symbol(hists, he); 1460 hists__filter_entry_by_socket(hists, he); 1461 } 1462 1463 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1464 { 1465 struct rb_root *root; 1466 struct rb_node *next; 1467 struct hist_entry *n; 1468 int ret; 1469 1470 if (!hists__has(hists, need_collapse)) 1471 return 0; 1472 1473 hists->nr_entries = 0; 1474 1475 root = hists__get_rotate_entries_in(hists); 1476 1477 next = rb_first(root); 1478 1479 while (next) { 1480 if (session_done()) 1481 break; 1482 n = rb_entry(next, struct hist_entry, rb_node_in); 1483 next = rb_next(&n->rb_node_in); 1484 1485 rb_erase(&n->rb_node_in, root); 1486 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1487 if (ret < 0) 1488 return -1; 1489 1490 if (ret) { 1491 /* 1492 * If it wasn't combined with one of the entries already 1493 * collapsed, we need to apply the filters that may have 1494 * been set by, say, the hist_browser. 1495 */ 1496 hists__apply_filters(hists, n); 1497 } 1498 if (prog) 1499 ui_progress__update(prog, 1); 1500 } 1501 return 0; 1502 } 1503 1504 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1505 { 1506 struct hists *hists = a->hists; 1507 struct perf_hpp_fmt *fmt; 1508 int64_t cmp = 0; 1509 1510 hists__for_each_sort_list(hists, fmt) { 1511 if (perf_hpp__should_skip(fmt, a->hists)) 1512 continue; 1513 1514 cmp = fmt->sort(fmt, a, b); 1515 if (cmp) 1516 break; 1517 } 1518 1519 return cmp; 1520 } 1521 1522 static void hists__reset_filter_stats(struct hists *hists) 1523 { 1524 hists->nr_non_filtered_entries = 0; 1525 hists->stats.total_non_filtered_period = 0; 1526 } 1527 1528 void hists__reset_stats(struct hists *hists) 1529 { 1530 hists->nr_entries = 0; 1531 hists->stats.total_period = 0; 1532 1533 hists__reset_filter_stats(hists); 1534 } 1535 1536 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1537 { 1538 hists->nr_non_filtered_entries++; 1539 hists->stats.total_non_filtered_period += h->stat.period; 1540 } 1541 1542 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1543 { 1544 if (!h->filtered) 1545 hists__inc_filter_stats(hists, h); 1546 1547 hists->nr_entries++; 1548 hists->stats.total_period += h->stat.period; 1549 } 1550 1551 static void hierarchy_recalc_total_periods(struct hists *hists) 1552 { 1553 struct rb_node *node; 1554 struct hist_entry *he; 1555 1556 node = rb_first(&hists->entries); 1557 1558 hists->stats.total_period = 0; 1559 hists->stats.total_non_filtered_period = 0; 1560 1561 /* 1562 * recalculate total period using top-level entries only 1563 * since lower level entries only see non-filtered entries 1564 * but upper level entries have sum of both entries. 1565 */ 1566 while (node) { 1567 he = rb_entry(node, struct hist_entry, rb_node); 1568 node = rb_next(node); 1569 1570 hists->stats.total_period += he->stat.period; 1571 if (!he->filtered) 1572 hists->stats.total_non_filtered_period += he->stat.period; 1573 } 1574 } 1575 1576 static void hierarchy_insert_output_entry(struct rb_root *root, 1577 struct hist_entry *he) 1578 { 1579 struct rb_node **p = &root->rb_node; 1580 struct rb_node *parent = NULL; 1581 struct hist_entry *iter; 1582 struct perf_hpp_fmt *fmt; 1583 1584 while (*p != NULL) { 1585 parent = *p; 1586 iter = rb_entry(parent, struct hist_entry, rb_node); 1587 1588 if (hist_entry__sort(he, iter) > 0) 1589 p = &parent->rb_left; 1590 else 1591 p = &parent->rb_right; 1592 } 1593 1594 rb_link_node(&he->rb_node, parent, p); 1595 rb_insert_color(&he->rb_node, root); 1596 1597 /* update column width of dynamic entry */ 1598 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1599 if (perf_hpp__is_dynamic_entry(fmt)) 1600 fmt->sort(fmt, he, NULL); 1601 } 1602 } 1603 1604 static void hists__hierarchy_output_resort(struct hists *hists, 1605 struct ui_progress *prog, 1606 struct rb_root *root_in, 1607 struct rb_root *root_out, 1608 u64 min_callchain_hits, 1609 bool use_callchain) 1610 { 1611 struct rb_node *node; 1612 struct hist_entry *he; 1613 1614 *root_out = RB_ROOT; 1615 node = rb_first(root_in); 1616 1617 while (node) { 1618 he = rb_entry(node, struct hist_entry, rb_node_in); 1619 node = rb_next(node); 1620 1621 hierarchy_insert_output_entry(root_out, he); 1622 1623 if (prog) 1624 ui_progress__update(prog, 1); 1625 1626 hists->nr_entries++; 1627 if (!he->filtered) { 1628 hists->nr_non_filtered_entries++; 1629 hists__calc_col_len(hists, he); 1630 } 1631 1632 if (!he->leaf) { 1633 hists__hierarchy_output_resort(hists, prog, 1634 &he->hroot_in, 1635 &he->hroot_out, 1636 min_callchain_hits, 1637 use_callchain); 1638 continue; 1639 } 1640 1641 if (!use_callchain) 1642 continue; 1643 1644 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1645 u64 total = he->stat.period; 1646 1647 if (symbol_conf.cumulate_callchain) 1648 total = he->stat_acc->period; 1649 1650 min_callchain_hits = total * (callchain_param.min_percent / 100); 1651 } 1652 1653 callchain_param.sort(&he->sorted_chain, he->callchain, 1654 min_callchain_hits, &callchain_param); 1655 } 1656 } 1657 1658 static void __hists__insert_output_entry(struct rb_root *entries, 1659 struct hist_entry *he, 1660 u64 min_callchain_hits, 1661 bool use_callchain) 1662 { 1663 struct rb_node **p = &entries->rb_node; 1664 struct rb_node *parent = NULL; 1665 struct hist_entry *iter; 1666 struct perf_hpp_fmt *fmt; 1667 1668 if (use_callchain) { 1669 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1670 u64 total = he->stat.period; 1671 1672 if (symbol_conf.cumulate_callchain) 1673 total = he->stat_acc->period; 1674 1675 min_callchain_hits = total * (callchain_param.min_percent / 100); 1676 } 1677 callchain_param.sort(&he->sorted_chain, he->callchain, 1678 min_callchain_hits, &callchain_param); 1679 } 1680 1681 while (*p != NULL) { 1682 parent = *p; 1683 iter = rb_entry(parent, struct hist_entry, rb_node); 1684 1685 if (hist_entry__sort(he, iter) > 0) 1686 p = &(*p)->rb_left; 1687 else 1688 p = &(*p)->rb_right; 1689 } 1690 1691 rb_link_node(&he->rb_node, parent, p); 1692 rb_insert_color(&he->rb_node, entries); 1693 1694 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1695 if (perf_hpp__is_dynamic_entry(fmt) && 1696 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1697 fmt->sort(fmt, he, NULL); /* update column width */ 1698 } 1699 } 1700 1701 static void output_resort(struct hists *hists, struct ui_progress *prog, 1702 bool use_callchain, hists__resort_cb_t cb) 1703 { 1704 struct rb_root *root; 1705 struct rb_node *next; 1706 struct hist_entry *n; 1707 u64 callchain_total; 1708 u64 min_callchain_hits; 1709 1710 callchain_total = hists->callchain_period; 1711 if (symbol_conf.filter_relative) 1712 callchain_total = hists->callchain_non_filtered_period; 1713 1714 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1715 1716 hists__reset_stats(hists); 1717 hists__reset_col_len(hists); 1718 1719 if (symbol_conf.report_hierarchy) { 1720 hists__hierarchy_output_resort(hists, prog, 1721 &hists->entries_collapsed, 1722 &hists->entries, 1723 min_callchain_hits, 1724 use_callchain); 1725 hierarchy_recalc_total_periods(hists); 1726 return; 1727 } 1728 1729 if (hists__has(hists, need_collapse)) 1730 root = &hists->entries_collapsed; 1731 else 1732 root = hists->entries_in; 1733 1734 next = rb_first(root); 1735 hists->entries = RB_ROOT; 1736 1737 while (next) { 1738 n = rb_entry(next, struct hist_entry, rb_node_in); 1739 next = rb_next(&n->rb_node_in); 1740 1741 if (cb && cb(n)) 1742 continue; 1743 1744 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1745 hists__inc_stats(hists, n); 1746 1747 if (!n->filtered) 1748 hists__calc_col_len(hists, n); 1749 1750 if (prog) 1751 ui_progress__update(prog, 1); 1752 } 1753 } 1754 1755 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1756 { 1757 bool use_callchain; 1758 1759 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1760 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1761 else 1762 use_callchain = symbol_conf.use_callchain; 1763 1764 use_callchain |= symbol_conf.show_branchflag_count; 1765 1766 output_resort(evsel__hists(evsel), prog, use_callchain, NULL); 1767 } 1768 1769 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1770 { 1771 output_resort(hists, prog, symbol_conf.use_callchain, NULL); 1772 } 1773 1774 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog, 1775 hists__resort_cb_t cb) 1776 { 1777 output_resort(hists, prog, symbol_conf.use_callchain, cb); 1778 } 1779 1780 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1781 { 1782 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1783 return false; 1784 1785 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1786 return true; 1787 1788 return false; 1789 } 1790 1791 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1792 { 1793 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1794 1795 while (can_goto_child(he, HMD_NORMAL)) { 1796 node = rb_last(&he->hroot_out); 1797 he = rb_entry(node, struct hist_entry, rb_node); 1798 } 1799 return node; 1800 } 1801 1802 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1803 { 1804 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1805 1806 if (can_goto_child(he, hmd)) 1807 node = rb_first(&he->hroot_out); 1808 else 1809 node = rb_next(node); 1810 1811 while (node == NULL) { 1812 he = he->parent_he; 1813 if (he == NULL) 1814 break; 1815 1816 node = rb_next(&he->rb_node); 1817 } 1818 return node; 1819 } 1820 1821 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1822 { 1823 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1824 1825 node = rb_prev(node); 1826 if (node) 1827 return rb_hierarchy_last(node); 1828 1829 he = he->parent_he; 1830 if (he == NULL) 1831 return NULL; 1832 1833 return &he->rb_node; 1834 } 1835 1836 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1837 { 1838 struct rb_node *node; 1839 struct hist_entry *child; 1840 float percent; 1841 1842 if (he->leaf) 1843 return false; 1844 1845 node = rb_first(&he->hroot_out); 1846 child = rb_entry(node, struct hist_entry, rb_node); 1847 1848 while (node && child->filtered) { 1849 node = rb_next(node); 1850 child = rb_entry(node, struct hist_entry, rb_node); 1851 } 1852 1853 if (node) 1854 percent = hist_entry__get_percent_limit(child); 1855 else 1856 percent = 0; 1857 1858 return node && percent >= limit; 1859 } 1860 1861 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1862 enum hist_filter filter) 1863 { 1864 h->filtered &= ~(1 << filter); 1865 1866 if (symbol_conf.report_hierarchy) { 1867 struct hist_entry *parent = h->parent_he; 1868 1869 while (parent) { 1870 he_stat__add_stat(&parent->stat, &h->stat); 1871 1872 parent->filtered &= ~(1 << filter); 1873 1874 if (parent->filtered) 1875 goto next; 1876 1877 /* force fold unfiltered entry for simplicity */ 1878 parent->unfolded = false; 1879 parent->has_no_entry = false; 1880 parent->row_offset = 0; 1881 parent->nr_rows = 0; 1882 next: 1883 parent = parent->parent_he; 1884 } 1885 } 1886 1887 if (h->filtered) 1888 return; 1889 1890 /* force fold unfiltered entry for simplicity */ 1891 h->unfolded = false; 1892 h->has_no_entry = false; 1893 h->row_offset = 0; 1894 h->nr_rows = 0; 1895 1896 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1897 1898 hists__inc_filter_stats(hists, h); 1899 hists__calc_col_len(hists, h); 1900 } 1901 1902 1903 static bool hists__filter_entry_by_dso(struct hists *hists, 1904 struct hist_entry *he) 1905 { 1906 if (hists->dso_filter != NULL && 1907 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1908 he->filtered |= (1 << HIST_FILTER__DSO); 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 static bool hists__filter_entry_by_thread(struct hists *hists, 1916 struct hist_entry *he) 1917 { 1918 if (hists->thread_filter != NULL && 1919 he->thread != hists->thread_filter) { 1920 he->filtered |= (1 << HIST_FILTER__THREAD); 1921 return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 static bool hists__filter_entry_by_symbol(struct hists *hists, 1928 struct hist_entry *he) 1929 { 1930 if (hists->symbol_filter_str != NULL && 1931 (!he->ms.sym || strstr(he->ms.sym->name, 1932 hists->symbol_filter_str) == NULL)) { 1933 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1934 return true; 1935 } 1936 1937 return false; 1938 } 1939 1940 static bool hists__filter_entry_by_socket(struct hists *hists, 1941 struct hist_entry *he) 1942 { 1943 if ((hists->socket_filter > -1) && 1944 (he->socket != hists->socket_filter)) { 1945 he->filtered |= (1 << HIST_FILTER__SOCKET); 1946 return true; 1947 } 1948 1949 return false; 1950 } 1951 1952 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1953 1954 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1955 { 1956 struct rb_node *nd; 1957 1958 hists->stats.nr_non_filtered_samples = 0; 1959 1960 hists__reset_filter_stats(hists); 1961 hists__reset_col_len(hists); 1962 1963 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1964 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1965 1966 if (filter(hists, h)) 1967 continue; 1968 1969 hists__remove_entry_filter(hists, h, type); 1970 } 1971 } 1972 1973 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1974 { 1975 struct rb_node **p = &root->rb_node; 1976 struct rb_node *parent = NULL; 1977 struct hist_entry *iter; 1978 struct rb_root new_root = RB_ROOT; 1979 struct rb_node *nd; 1980 1981 while (*p != NULL) { 1982 parent = *p; 1983 iter = rb_entry(parent, struct hist_entry, rb_node); 1984 1985 if (hist_entry__sort(he, iter) > 0) 1986 p = &(*p)->rb_left; 1987 else 1988 p = &(*p)->rb_right; 1989 } 1990 1991 rb_link_node(&he->rb_node, parent, p); 1992 rb_insert_color(&he->rb_node, root); 1993 1994 if (he->leaf || he->filtered) 1995 return; 1996 1997 nd = rb_first(&he->hroot_out); 1998 while (nd) { 1999 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2000 2001 nd = rb_next(nd); 2002 rb_erase(&h->rb_node, &he->hroot_out); 2003 2004 resort_filtered_entry(&new_root, h); 2005 } 2006 2007 he->hroot_out = new_root; 2008 } 2009 2010 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 2011 { 2012 struct rb_node *nd; 2013 struct rb_root new_root = RB_ROOT; 2014 2015 hists->stats.nr_non_filtered_samples = 0; 2016 2017 hists__reset_filter_stats(hists); 2018 hists__reset_col_len(hists); 2019 2020 nd = rb_first(&hists->entries); 2021 while (nd) { 2022 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2023 int ret; 2024 2025 ret = hist_entry__filter(h, type, arg); 2026 2027 /* 2028 * case 1. non-matching type 2029 * zero out the period, set filter marker and move to child 2030 */ 2031 if (ret < 0) { 2032 memset(&h->stat, 0, sizeof(h->stat)); 2033 h->filtered |= (1 << type); 2034 2035 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 2036 } 2037 /* 2038 * case 2. matched type (filter out) 2039 * set filter marker and move to next 2040 */ 2041 else if (ret == 1) { 2042 h->filtered |= (1 << type); 2043 2044 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2045 } 2046 /* 2047 * case 3. ok (not filtered) 2048 * add period to hists and parents, erase the filter marker 2049 * and move to next sibling 2050 */ 2051 else { 2052 hists__remove_entry_filter(hists, h, type); 2053 2054 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 2055 } 2056 } 2057 2058 hierarchy_recalc_total_periods(hists); 2059 2060 /* 2061 * resort output after applying a new filter since filter in a lower 2062 * hierarchy can change periods in a upper hierarchy. 2063 */ 2064 nd = rb_first(&hists->entries); 2065 while (nd) { 2066 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 2067 2068 nd = rb_next(nd); 2069 rb_erase(&h->rb_node, &hists->entries); 2070 2071 resort_filtered_entry(&new_root, h); 2072 } 2073 2074 hists->entries = new_root; 2075 } 2076 2077 void hists__filter_by_thread(struct hists *hists) 2078 { 2079 if (symbol_conf.report_hierarchy) 2080 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 2081 hists->thread_filter); 2082 else 2083 hists__filter_by_type(hists, HIST_FILTER__THREAD, 2084 hists__filter_entry_by_thread); 2085 } 2086 2087 void hists__filter_by_dso(struct hists *hists) 2088 { 2089 if (symbol_conf.report_hierarchy) 2090 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 2091 hists->dso_filter); 2092 else 2093 hists__filter_by_type(hists, HIST_FILTER__DSO, 2094 hists__filter_entry_by_dso); 2095 } 2096 2097 void hists__filter_by_symbol(struct hists *hists) 2098 { 2099 if (symbol_conf.report_hierarchy) 2100 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2101 hists->symbol_filter_str); 2102 else 2103 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2104 hists__filter_entry_by_symbol); 2105 } 2106 2107 void hists__filter_by_socket(struct hists *hists) 2108 { 2109 if (symbol_conf.report_hierarchy) 2110 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2111 &hists->socket_filter); 2112 else 2113 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2114 hists__filter_entry_by_socket); 2115 } 2116 2117 void events_stats__inc(struct events_stats *stats, u32 type) 2118 { 2119 ++stats->nr_events[0]; 2120 ++stats->nr_events[type]; 2121 } 2122 2123 void hists__inc_nr_events(struct hists *hists, u32 type) 2124 { 2125 events_stats__inc(&hists->stats, type); 2126 } 2127 2128 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2129 { 2130 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2131 if (!filtered) 2132 hists->stats.nr_non_filtered_samples++; 2133 } 2134 2135 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2136 struct hist_entry *pair) 2137 { 2138 struct rb_root *root; 2139 struct rb_node **p; 2140 struct rb_node *parent = NULL; 2141 struct hist_entry *he; 2142 int64_t cmp; 2143 2144 if (hists__has(hists, need_collapse)) 2145 root = &hists->entries_collapsed; 2146 else 2147 root = hists->entries_in; 2148 2149 p = &root->rb_node; 2150 2151 while (*p != NULL) { 2152 parent = *p; 2153 he = rb_entry(parent, struct hist_entry, rb_node_in); 2154 2155 cmp = hist_entry__collapse(he, pair); 2156 2157 if (!cmp) 2158 goto out; 2159 2160 if (cmp < 0) 2161 p = &(*p)->rb_left; 2162 else 2163 p = &(*p)->rb_right; 2164 } 2165 2166 he = hist_entry__new(pair, true); 2167 if (he) { 2168 memset(&he->stat, 0, sizeof(he->stat)); 2169 he->hists = hists; 2170 if (symbol_conf.cumulate_callchain) 2171 memset(he->stat_acc, 0, sizeof(he->stat)); 2172 rb_link_node(&he->rb_node_in, parent, p); 2173 rb_insert_color(&he->rb_node_in, root); 2174 hists__inc_stats(hists, he); 2175 he->dummy = true; 2176 } 2177 out: 2178 return he; 2179 } 2180 2181 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists, 2182 struct rb_root *root, 2183 struct hist_entry *pair) 2184 { 2185 struct rb_node **p; 2186 struct rb_node *parent = NULL; 2187 struct hist_entry *he; 2188 struct perf_hpp_fmt *fmt; 2189 2190 p = &root->rb_node; 2191 while (*p != NULL) { 2192 int64_t cmp = 0; 2193 2194 parent = *p; 2195 he = rb_entry(parent, struct hist_entry, rb_node_in); 2196 2197 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2198 cmp = fmt->collapse(fmt, he, pair); 2199 if (cmp) 2200 break; 2201 } 2202 if (!cmp) 2203 goto out; 2204 2205 if (cmp < 0) 2206 p = &parent->rb_left; 2207 else 2208 p = &parent->rb_right; 2209 } 2210 2211 he = hist_entry__new(pair, true); 2212 if (he) { 2213 rb_link_node(&he->rb_node_in, parent, p); 2214 rb_insert_color(&he->rb_node_in, root); 2215 2216 he->dummy = true; 2217 he->hists = hists; 2218 memset(&he->stat, 0, sizeof(he->stat)); 2219 hists__inc_stats(hists, he); 2220 } 2221 out: 2222 return he; 2223 } 2224 2225 static struct hist_entry *hists__find_entry(struct hists *hists, 2226 struct hist_entry *he) 2227 { 2228 struct rb_node *n; 2229 2230 if (hists__has(hists, need_collapse)) 2231 n = hists->entries_collapsed.rb_node; 2232 else 2233 n = hists->entries_in->rb_node; 2234 2235 while (n) { 2236 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2237 int64_t cmp = hist_entry__collapse(iter, he); 2238 2239 if (cmp < 0) 2240 n = n->rb_left; 2241 else if (cmp > 0) 2242 n = n->rb_right; 2243 else 2244 return iter; 2245 } 2246 2247 return NULL; 2248 } 2249 2250 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root, 2251 struct hist_entry *he) 2252 { 2253 struct rb_node *n = root->rb_node; 2254 2255 while (n) { 2256 struct hist_entry *iter; 2257 struct perf_hpp_fmt *fmt; 2258 int64_t cmp = 0; 2259 2260 iter = rb_entry(n, struct hist_entry, rb_node_in); 2261 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 2262 cmp = fmt->collapse(fmt, iter, he); 2263 if (cmp) 2264 break; 2265 } 2266 2267 if (cmp < 0) 2268 n = n->rb_left; 2269 else if (cmp > 0) 2270 n = n->rb_right; 2271 else 2272 return iter; 2273 } 2274 2275 return NULL; 2276 } 2277 2278 static void hists__match_hierarchy(struct rb_root *leader_root, 2279 struct rb_root *other_root) 2280 { 2281 struct rb_node *nd; 2282 struct hist_entry *pos, *pair; 2283 2284 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) { 2285 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2286 pair = hists__find_hierarchy_entry(other_root, pos); 2287 2288 if (pair) { 2289 hist_entry__add_pair(pair, pos); 2290 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in); 2291 } 2292 } 2293 } 2294 2295 /* 2296 * Look for pairs to link to the leader buckets (hist_entries): 2297 */ 2298 void hists__match(struct hists *leader, struct hists *other) 2299 { 2300 struct rb_root *root; 2301 struct rb_node *nd; 2302 struct hist_entry *pos, *pair; 2303 2304 if (symbol_conf.report_hierarchy) { 2305 /* hierarchy report always collapses entries */ 2306 return hists__match_hierarchy(&leader->entries_collapsed, 2307 &other->entries_collapsed); 2308 } 2309 2310 if (hists__has(leader, need_collapse)) 2311 root = &leader->entries_collapsed; 2312 else 2313 root = leader->entries_in; 2314 2315 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2316 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2317 pair = hists__find_entry(other, pos); 2318 2319 if (pair) 2320 hist_entry__add_pair(pair, pos); 2321 } 2322 } 2323 2324 static int hists__link_hierarchy(struct hists *leader_hists, 2325 struct hist_entry *parent, 2326 struct rb_root *leader_root, 2327 struct rb_root *other_root) 2328 { 2329 struct rb_node *nd; 2330 struct hist_entry *pos, *leader; 2331 2332 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) { 2333 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2334 2335 if (hist_entry__has_pairs(pos)) { 2336 bool found = false; 2337 2338 list_for_each_entry(leader, &pos->pairs.head, pairs.node) { 2339 if (leader->hists == leader_hists) { 2340 found = true; 2341 break; 2342 } 2343 } 2344 if (!found) 2345 return -1; 2346 } else { 2347 leader = add_dummy_hierarchy_entry(leader_hists, 2348 leader_root, pos); 2349 if (leader == NULL) 2350 return -1; 2351 2352 /* do not point parent in the pos */ 2353 leader->parent_he = parent; 2354 2355 hist_entry__add_pair(pos, leader); 2356 } 2357 2358 if (!pos->leaf) { 2359 if (hists__link_hierarchy(leader_hists, leader, 2360 &leader->hroot_in, 2361 &pos->hroot_in) < 0) 2362 return -1; 2363 } 2364 } 2365 return 0; 2366 } 2367 2368 /* 2369 * Look for entries in the other hists that are not present in the leader, if 2370 * we find them, just add a dummy entry on the leader hists, with period=0, 2371 * nr_events=0, to serve as the list header. 2372 */ 2373 int hists__link(struct hists *leader, struct hists *other) 2374 { 2375 struct rb_root *root; 2376 struct rb_node *nd; 2377 struct hist_entry *pos, *pair; 2378 2379 if (symbol_conf.report_hierarchy) { 2380 /* hierarchy report always collapses entries */ 2381 return hists__link_hierarchy(leader, NULL, 2382 &leader->entries_collapsed, 2383 &other->entries_collapsed); 2384 } 2385 2386 if (hists__has(other, need_collapse)) 2387 root = &other->entries_collapsed; 2388 else 2389 root = other->entries_in; 2390 2391 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2392 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2393 2394 if (!hist_entry__has_pairs(pos)) { 2395 pair = hists__add_dummy_entry(leader, pos); 2396 if (pair == NULL) 2397 return -1; 2398 hist_entry__add_pair(pos, pair); 2399 } 2400 } 2401 2402 return 0; 2403 } 2404 2405 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2406 struct perf_sample *sample, bool nonany_branch_mode) 2407 { 2408 struct branch_info *bi; 2409 2410 /* If we have branch cycles always annotate them. */ 2411 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2412 int i; 2413 2414 bi = sample__resolve_bstack(sample, al); 2415 if (bi) { 2416 struct addr_map_symbol *prev = NULL; 2417 2418 /* 2419 * Ignore errors, still want to process the 2420 * other entries. 2421 * 2422 * For non standard branch modes always 2423 * force no IPC (prev == NULL) 2424 * 2425 * Note that perf stores branches reversed from 2426 * program order! 2427 */ 2428 for (i = bs->nr - 1; i >= 0; i--) { 2429 addr_map_symbol__account_cycles(&bi[i].from, 2430 nonany_branch_mode ? NULL : prev, 2431 bi[i].flags.cycles); 2432 prev = &bi[i].to; 2433 } 2434 free(bi); 2435 } 2436 } 2437 } 2438 2439 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2440 { 2441 struct perf_evsel *pos; 2442 size_t ret = 0; 2443 2444 evlist__for_each_entry(evlist, pos) { 2445 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2446 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2447 } 2448 2449 return ret; 2450 } 2451 2452 2453 u64 hists__total_period(struct hists *hists) 2454 { 2455 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2456 hists->stats.total_period; 2457 } 2458 2459 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq) 2460 { 2461 char unit; 2462 int printed; 2463 const struct dso *dso = hists->dso_filter; 2464 const struct thread *thread = hists->thread_filter; 2465 int socket_id = hists->socket_filter; 2466 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2467 u64 nr_events = hists->stats.total_period; 2468 struct perf_evsel *evsel = hists_to_evsel(hists); 2469 const char *ev_name = perf_evsel__name(evsel); 2470 char buf[512], sample_freq_str[64] = ""; 2471 size_t buflen = sizeof(buf); 2472 char ref[30] = " show reference callgraph, "; 2473 bool enable_ref = false; 2474 2475 if (symbol_conf.filter_relative) { 2476 nr_samples = hists->stats.nr_non_filtered_samples; 2477 nr_events = hists->stats.total_non_filtered_period; 2478 } 2479 2480 if (perf_evsel__is_group_event(evsel)) { 2481 struct perf_evsel *pos; 2482 2483 perf_evsel__group_desc(evsel, buf, buflen); 2484 ev_name = buf; 2485 2486 for_each_group_member(pos, evsel) { 2487 struct hists *pos_hists = evsel__hists(pos); 2488 2489 if (symbol_conf.filter_relative) { 2490 nr_samples += pos_hists->stats.nr_non_filtered_samples; 2491 nr_events += pos_hists->stats.total_non_filtered_period; 2492 } else { 2493 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE]; 2494 nr_events += pos_hists->stats.total_period; 2495 } 2496 } 2497 } 2498 2499 if (symbol_conf.show_ref_callgraph && 2500 strstr(ev_name, "call-graph=no")) 2501 enable_ref = true; 2502 2503 if (show_freq) 2504 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq); 2505 2506 nr_samples = convert_unit(nr_samples, &unit); 2507 printed = scnprintf(bf, size, 2508 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64, 2509 nr_samples, unit, evsel->nr_members > 1 ? "s" : "", 2510 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events); 2511 2512 2513 if (hists->uid_filter_str) 2514 printed += snprintf(bf + printed, size - printed, 2515 ", UID: %s", hists->uid_filter_str); 2516 if (thread) { 2517 if (hists__has(hists, thread)) { 2518 printed += scnprintf(bf + printed, size - printed, 2519 ", Thread: %s(%d)", 2520 (thread->comm_set ? thread__comm_str(thread) : ""), 2521 thread->tid); 2522 } else { 2523 printed += scnprintf(bf + printed, size - printed, 2524 ", Thread: %s", 2525 (thread->comm_set ? thread__comm_str(thread) : "")); 2526 } 2527 } 2528 if (dso) 2529 printed += scnprintf(bf + printed, size - printed, 2530 ", DSO: %s", dso->short_name); 2531 if (socket_id > -1) 2532 printed += scnprintf(bf + printed, size - printed, 2533 ", Processor Socket: %d", socket_id); 2534 2535 return printed; 2536 } 2537 2538 int parse_filter_percentage(const struct option *opt __maybe_unused, 2539 const char *arg, int unset __maybe_unused) 2540 { 2541 if (!strcmp(arg, "relative")) 2542 symbol_conf.filter_relative = true; 2543 else if (!strcmp(arg, "absolute")) 2544 symbol_conf.filter_relative = false; 2545 else { 2546 pr_debug("Invalid percentage: %s\n", arg); 2547 return -1; 2548 } 2549 2550 return 0; 2551 } 2552 2553 int perf_hist_config(const char *var, const char *value) 2554 { 2555 if (!strcmp(var, "hist.percentage")) 2556 return parse_filter_percentage(NULL, value, 0); 2557 2558 return 0; 2559 } 2560 2561 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2562 { 2563 memset(hists, 0, sizeof(*hists)); 2564 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2565 hists->entries_in = &hists->entries_in_array[0]; 2566 hists->entries_collapsed = RB_ROOT; 2567 hists->entries = RB_ROOT; 2568 pthread_mutex_init(&hists->lock, NULL); 2569 hists->socket_filter = -1; 2570 hists->hpp_list = hpp_list; 2571 INIT_LIST_HEAD(&hists->hpp_formats); 2572 return 0; 2573 } 2574 2575 static void hists__delete_remaining_entries(struct rb_root *root) 2576 { 2577 struct rb_node *node; 2578 struct hist_entry *he; 2579 2580 while (!RB_EMPTY_ROOT(root)) { 2581 node = rb_first(root); 2582 rb_erase(node, root); 2583 2584 he = rb_entry(node, struct hist_entry, rb_node_in); 2585 hist_entry__delete(he); 2586 } 2587 } 2588 2589 static void hists__delete_all_entries(struct hists *hists) 2590 { 2591 hists__delete_entries(hists); 2592 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2593 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2594 hists__delete_remaining_entries(&hists->entries_collapsed); 2595 } 2596 2597 static void hists_evsel__exit(struct perf_evsel *evsel) 2598 { 2599 struct hists *hists = evsel__hists(evsel); 2600 struct perf_hpp_fmt *fmt, *pos; 2601 struct perf_hpp_list_node *node, *tmp; 2602 2603 hists__delete_all_entries(hists); 2604 2605 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2606 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2607 list_del(&fmt->list); 2608 free(fmt); 2609 } 2610 list_del(&node->list); 2611 free(node); 2612 } 2613 } 2614 2615 static int hists_evsel__init(struct perf_evsel *evsel) 2616 { 2617 struct hists *hists = evsel__hists(evsel); 2618 2619 __hists__init(hists, &perf_hpp_list); 2620 return 0; 2621 } 2622 2623 /* 2624 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2625 * stored in the rbtree... 2626 */ 2627 2628 int hists__init(void) 2629 { 2630 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2631 hists_evsel__init, 2632 hists_evsel__exit); 2633 if (err) 2634 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2635 2636 return err; 2637 } 2638 2639 void perf_hpp_list__init(struct perf_hpp_list *list) 2640 { 2641 INIT_LIST_HEAD(&list->fields); 2642 INIT_LIST_HEAD(&list->sorts); 2643 } 2644