xref: /openbmc/linux/tools/perf/util/hist.c (revision 99fee508)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17 
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19 				       struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21 					  struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23 					  struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25 					  struct hist_entry *he);
26 
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29 	return hists->col_len[col];
30 }
31 
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34 	hists->col_len[col] = len;
35 }
36 
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39 	if (len > hists__col_len(hists, col)) {
40 		hists__set_col_len(hists, col, len);
41 		return true;
42 	}
43 	return false;
44 }
45 
46 void hists__reset_col_len(struct hists *hists)
47 {
48 	enum hist_column col;
49 
50 	for (col = 0; col < HISTC_NR_COLS; ++col)
51 		hists__set_col_len(hists, col, 0);
52 }
53 
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57 
58 	if (hists__col_len(hists, dso) < unresolved_col_width &&
59 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60 	    !symbol_conf.dso_list)
61 		hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63 
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67 	int symlen;
68 	u16 len;
69 
70 	/*
71 	 * +4 accounts for '[x] ' priv level info
72 	 * +2 accounts for 0x prefix on raw addresses
73 	 * +3 accounts for ' y ' symtab origin info
74 	 */
75 	if (h->ms.sym) {
76 		symlen = h->ms.sym->namelen + 4;
77 		if (verbose > 0)
78 			symlen += BITS_PER_LONG / 4 + 2 + 3;
79 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80 	} else {
81 		symlen = unresolved_col_width + 4 + 2;
82 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
84 	}
85 
86 	len = thread__comm_len(h->thread);
87 	if (hists__new_col_len(hists, HISTC_COMM, len))
88 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
89 
90 	if (h->ms.map) {
91 		len = dso__name_len(h->ms.map->dso);
92 		hists__new_col_len(hists, HISTC_DSO, len);
93 	}
94 
95 	if (h->parent)
96 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97 
98 	if (h->branch_info) {
99 		if (h->branch_info->from.sym) {
100 			symlen = (int)h->branch_info->from.sym->namelen + 4;
101 			if (verbose > 0)
102 				symlen += BITS_PER_LONG / 4 + 2 + 3;
103 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 
105 			symlen = dso__name_len(h->branch_info->from.map->dso);
106 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107 		} else {
108 			symlen = unresolved_col_width + 4 + 2;
109 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111 		}
112 
113 		if (h->branch_info->to.sym) {
114 			symlen = (int)h->branch_info->to.sym->namelen + 4;
115 			if (verbose > 0)
116 				symlen += BITS_PER_LONG / 4 + 2 + 3;
117 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 
119 			symlen = dso__name_len(h->branch_info->to.map->dso);
120 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121 		} else {
122 			symlen = unresolved_col_width + 4 + 2;
123 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125 		}
126 
127 		if (h->branch_info->srcline_from)
128 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129 					strlen(h->branch_info->srcline_from));
130 		if (h->branch_info->srcline_to)
131 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
132 					strlen(h->branch_info->srcline_to));
133 	}
134 
135 	if (h->mem_info) {
136 		if (h->mem_info->daddr.sym) {
137 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
138 			       + unresolved_col_width + 2;
139 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 					   symlen);
141 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 					   symlen + 1);
143 		} else {
144 			symlen = unresolved_col_width + 4 + 2;
145 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146 					   symlen);
147 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148 					   symlen);
149 		}
150 
151 		if (h->mem_info->iaddr.sym) {
152 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153 			       + unresolved_col_width + 2;
154 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155 					   symlen);
156 		} else {
157 			symlen = unresolved_col_width + 4 + 2;
158 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159 					   symlen);
160 		}
161 
162 		if (h->mem_info->daddr.map) {
163 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
164 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165 					   symlen);
166 		} else {
167 			symlen = unresolved_col_width + 4 + 2;
168 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 		}
170 
171 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
172 				   unresolved_col_width + 4 + 2);
173 
174 	} else {
175 		symlen = unresolved_col_width + 4 + 2;
176 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
177 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
178 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
179 	}
180 
181 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
182 	hists__new_col_len(hists, HISTC_CPU, 3);
183 	hists__new_col_len(hists, HISTC_SOCKET, 6);
184 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
185 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
186 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
187 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
188 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
189 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
190 
191 	if (h->srcline) {
192 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
193 		hists__new_col_len(hists, HISTC_SRCLINE, len);
194 	}
195 
196 	if (h->srcfile)
197 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
198 
199 	if (h->transaction)
200 		hists__new_col_len(hists, HISTC_TRANSACTION,
201 				   hist_entry__transaction_len());
202 
203 	if (h->trace_output)
204 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
205 }
206 
207 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
208 {
209 	struct rb_node *next = rb_first(&hists->entries);
210 	struct hist_entry *n;
211 	int row = 0;
212 
213 	hists__reset_col_len(hists);
214 
215 	while (next && row++ < max_rows) {
216 		n = rb_entry(next, struct hist_entry, rb_node);
217 		if (!n->filtered)
218 			hists__calc_col_len(hists, n);
219 		next = rb_next(&n->rb_node);
220 	}
221 }
222 
223 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
224 					unsigned int cpumode, u64 period)
225 {
226 	switch (cpumode) {
227 	case PERF_RECORD_MISC_KERNEL:
228 		he_stat->period_sys += period;
229 		break;
230 	case PERF_RECORD_MISC_USER:
231 		he_stat->period_us += period;
232 		break;
233 	case PERF_RECORD_MISC_GUEST_KERNEL:
234 		he_stat->period_guest_sys += period;
235 		break;
236 	case PERF_RECORD_MISC_GUEST_USER:
237 		he_stat->period_guest_us += period;
238 		break;
239 	default:
240 		break;
241 	}
242 }
243 
244 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
245 				u64 weight)
246 {
247 
248 	he_stat->period		+= period;
249 	he_stat->weight		+= weight;
250 	he_stat->nr_events	+= 1;
251 }
252 
253 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
254 {
255 	dest->period		+= src->period;
256 	dest->period_sys	+= src->period_sys;
257 	dest->period_us		+= src->period_us;
258 	dest->period_guest_sys	+= src->period_guest_sys;
259 	dest->period_guest_us	+= src->period_guest_us;
260 	dest->nr_events		+= src->nr_events;
261 	dest->weight		+= src->weight;
262 }
263 
264 static void he_stat__decay(struct he_stat *he_stat)
265 {
266 	he_stat->period = (he_stat->period * 7) / 8;
267 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
268 	/* XXX need decay for weight too? */
269 }
270 
271 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
272 
273 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
274 {
275 	u64 prev_period = he->stat.period;
276 	u64 diff;
277 
278 	if (prev_period == 0)
279 		return true;
280 
281 	he_stat__decay(&he->stat);
282 	if (symbol_conf.cumulate_callchain)
283 		he_stat__decay(he->stat_acc);
284 	decay_callchain(he->callchain);
285 
286 	diff = prev_period - he->stat.period;
287 
288 	if (!he->depth) {
289 		hists->stats.total_period -= diff;
290 		if (!he->filtered)
291 			hists->stats.total_non_filtered_period -= diff;
292 	}
293 
294 	if (!he->leaf) {
295 		struct hist_entry *child;
296 		struct rb_node *node = rb_first(&he->hroot_out);
297 		while (node) {
298 			child = rb_entry(node, struct hist_entry, rb_node);
299 			node = rb_next(node);
300 
301 			if (hists__decay_entry(hists, child))
302 				hists__delete_entry(hists, child);
303 		}
304 	}
305 
306 	return he->stat.period == 0;
307 }
308 
309 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
310 {
311 	struct rb_root *root_in;
312 	struct rb_root *root_out;
313 
314 	if (he->parent_he) {
315 		root_in  = &he->parent_he->hroot_in;
316 		root_out = &he->parent_he->hroot_out;
317 	} else {
318 		if (hists__has(hists, need_collapse))
319 			root_in = &hists->entries_collapsed;
320 		else
321 			root_in = hists->entries_in;
322 		root_out = &hists->entries;
323 	}
324 
325 	rb_erase(&he->rb_node_in, root_in);
326 	rb_erase(&he->rb_node, root_out);
327 
328 	--hists->nr_entries;
329 	if (!he->filtered)
330 		--hists->nr_non_filtered_entries;
331 
332 	hist_entry__delete(he);
333 }
334 
335 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
336 {
337 	struct rb_node *next = rb_first(&hists->entries);
338 	struct hist_entry *n;
339 
340 	while (next) {
341 		n = rb_entry(next, struct hist_entry, rb_node);
342 		next = rb_next(&n->rb_node);
343 		if (((zap_user && n->level == '.') ||
344 		     (zap_kernel && n->level != '.') ||
345 		     hists__decay_entry(hists, n))) {
346 			hists__delete_entry(hists, n);
347 		}
348 	}
349 }
350 
351 void hists__delete_entries(struct hists *hists)
352 {
353 	struct rb_node *next = rb_first(&hists->entries);
354 	struct hist_entry *n;
355 
356 	while (next) {
357 		n = rb_entry(next, struct hist_entry, rb_node);
358 		next = rb_next(&n->rb_node);
359 
360 		hists__delete_entry(hists, n);
361 	}
362 }
363 
364 /*
365  * histogram, sorted on item, collects periods
366  */
367 
368 static int hist_entry__init(struct hist_entry *he,
369 			    struct hist_entry *template,
370 			    bool sample_self)
371 {
372 	*he = *template;
373 
374 	if (symbol_conf.cumulate_callchain) {
375 		he->stat_acc = malloc(sizeof(he->stat));
376 		if (he->stat_acc == NULL)
377 			return -ENOMEM;
378 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
379 		if (!sample_self)
380 			memset(&he->stat, 0, sizeof(he->stat));
381 	}
382 
383 	map__get(he->ms.map);
384 
385 	if (he->branch_info) {
386 		/*
387 		 * This branch info is (a part of) allocated from
388 		 * sample__resolve_bstack() and will be freed after
389 		 * adding new entries.  So we need to save a copy.
390 		 */
391 		he->branch_info = malloc(sizeof(*he->branch_info));
392 		if (he->branch_info == NULL) {
393 			map__zput(he->ms.map);
394 			free(he->stat_acc);
395 			return -ENOMEM;
396 		}
397 
398 		memcpy(he->branch_info, template->branch_info,
399 		       sizeof(*he->branch_info));
400 
401 		map__get(he->branch_info->from.map);
402 		map__get(he->branch_info->to.map);
403 	}
404 
405 	if (he->mem_info) {
406 		map__get(he->mem_info->iaddr.map);
407 		map__get(he->mem_info->daddr.map);
408 	}
409 
410 	if (symbol_conf.use_callchain)
411 		callchain_init(he->callchain);
412 
413 	if (he->raw_data) {
414 		he->raw_data = memdup(he->raw_data, he->raw_size);
415 
416 		if (he->raw_data == NULL) {
417 			map__put(he->ms.map);
418 			if (he->branch_info) {
419 				map__put(he->branch_info->from.map);
420 				map__put(he->branch_info->to.map);
421 				free(he->branch_info);
422 			}
423 			if (he->mem_info) {
424 				map__put(he->mem_info->iaddr.map);
425 				map__put(he->mem_info->daddr.map);
426 			}
427 			free(he->stat_acc);
428 			return -ENOMEM;
429 		}
430 	}
431 	INIT_LIST_HEAD(&he->pairs.node);
432 	thread__get(he->thread);
433 	he->hroot_in  = RB_ROOT;
434 	he->hroot_out = RB_ROOT;
435 
436 	if (!symbol_conf.report_hierarchy)
437 		he->leaf = true;
438 
439 	return 0;
440 }
441 
442 static void *hist_entry__zalloc(size_t size)
443 {
444 	return zalloc(size + sizeof(struct hist_entry));
445 }
446 
447 static void hist_entry__free(void *ptr)
448 {
449 	free(ptr);
450 }
451 
452 static struct hist_entry_ops default_ops = {
453 	.new	= hist_entry__zalloc,
454 	.free	= hist_entry__free,
455 };
456 
457 static struct hist_entry *hist_entry__new(struct hist_entry *template,
458 					  bool sample_self)
459 {
460 	struct hist_entry_ops *ops = template->ops;
461 	size_t callchain_size = 0;
462 	struct hist_entry *he;
463 	int err = 0;
464 
465 	if (!ops)
466 		ops = template->ops = &default_ops;
467 
468 	if (symbol_conf.use_callchain)
469 		callchain_size = sizeof(struct callchain_root);
470 
471 	he = ops->new(callchain_size);
472 	if (he) {
473 		err = hist_entry__init(he, template, sample_self);
474 		if (err) {
475 			ops->free(he);
476 			he = NULL;
477 		}
478 	}
479 
480 	return he;
481 }
482 
483 static u8 symbol__parent_filter(const struct symbol *parent)
484 {
485 	if (symbol_conf.exclude_other && parent == NULL)
486 		return 1 << HIST_FILTER__PARENT;
487 	return 0;
488 }
489 
490 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
491 {
492 	if (!symbol_conf.use_callchain)
493 		return;
494 
495 	he->hists->callchain_period += period;
496 	if (!he->filtered)
497 		he->hists->callchain_non_filtered_period += period;
498 }
499 
500 static struct hist_entry *hists__findnew_entry(struct hists *hists,
501 					       struct hist_entry *entry,
502 					       struct addr_location *al,
503 					       bool sample_self)
504 {
505 	struct rb_node **p;
506 	struct rb_node *parent = NULL;
507 	struct hist_entry *he;
508 	int64_t cmp;
509 	u64 period = entry->stat.period;
510 	u64 weight = entry->stat.weight;
511 
512 	p = &hists->entries_in->rb_node;
513 
514 	while (*p != NULL) {
515 		parent = *p;
516 		he = rb_entry(parent, struct hist_entry, rb_node_in);
517 
518 		/*
519 		 * Make sure that it receives arguments in a same order as
520 		 * hist_entry__collapse() so that we can use an appropriate
521 		 * function when searching an entry regardless which sort
522 		 * keys were used.
523 		 */
524 		cmp = hist_entry__cmp(he, entry);
525 
526 		if (!cmp) {
527 			if (sample_self) {
528 				he_stat__add_period(&he->stat, period, weight);
529 				hist_entry__add_callchain_period(he, period);
530 			}
531 			if (symbol_conf.cumulate_callchain)
532 				he_stat__add_period(he->stat_acc, period, weight);
533 
534 			/*
535 			 * This mem info was allocated from sample__resolve_mem
536 			 * and will not be used anymore.
537 			 */
538 			zfree(&entry->mem_info);
539 
540 			/* If the map of an existing hist_entry has
541 			 * become out-of-date due to an exec() or
542 			 * similar, update it.  Otherwise we will
543 			 * mis-adjust symbol addresses when computing
544 			 * the history counter to increment.
545 			 */
546 			if (he->ms.map != entry->ms.map) {
547 				map__put(he->ms.map);
548 				he->ms.map = map__get(entry->ms.map);
549 			}
550 			goto out;
551 		}
552 
553 		if (cmp < 0)
554 			p = &(*p)->rb_left;
555 		else
556 			p = &(*p)->rb_right;
557 	}
558 
559 	he = hist_entry__new(entry, sample_self);
560 	if (!he)
561 		return NULL;
562 
563 	if (sample_self)
564 		hist_entry__add_callchain_period(he, period);
565 	hists->nr_entries++;
566 
567 	rb_link_node(&he->rb_node_in, parent, p);
568 	rb_insert_color(&he->rb_node_in, hists->entries_in);
569 out:
570 	if (sample_self)
571 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
572 	if (symbol_conf.cumulate_callchain)
573 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
574 	return he;
575 }
576 
577 static struct hist_entry*
578 __hists__add_entry(struct hists *hists,
579 		   struct addr_location *al,
580 		   struct symbol *sym_parent,
581 		   struct branch_info *bi,
582 		   struct mem_info *mi,
583 		   struct perf_sample *sample,
584 		   bool sample_self,
585 		   struct hist_entry_ops *ops)
586 {
587 	struct namespaces *ns = thread__namespaces(al->thread);
588 	struct hist_entry entry = {
589 		.thread	= al->thread,
590 		.comm = thread__comm(al->thread),
591 		.cgroup_id = {
592 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
593 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
594 		},
595 		.ms = {
596 			.map	= al->map,
597 			.sym	= al->sym,
598 		},
599 		.socket	 = al->socket,
600 		.cpu	 = al->cpu,
601 		.cpumode = al->cpumode,
602 		.ip	 = al->addr,
603 		.level	 = al->level,
604 		.stat = {
605 			.nr_events = 1,
606 			.period	= sample->period,
607 			.weight = sample->weight,
608 		},
609 		.parent = sym_parent,
610 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
611 		.hists	= hists,
612 		.branch_info = bi,
613 		.mem_info = mi,
614 		.transaction = sample->transaction,
615 		.raw_data = sample->raw_data,
616 		.raw_size = sample->raw_size,
617 		.ops = ops,
618 	};
619 
620 	return hists__findnew_entry(hists, &entry, al, sample_self);
621 }
622 
623 struct hist_entry *hists__add_entry(struct hists *hists,
624 				    struct addr_location *al,
625 				    struct symbol *sym_parent,
626 				    struct branch_info *bi,
627 				    struct mem_info *mi,
628 				    struct perf_sample *sample,
629 				    bool sample_self)
630 {
631 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
632 				  sample, sample_self, NULL);
633 }
634 
635 struct hist_entry *hists__add_entry_ops(struct hists *hists,
636 					struct hist_entry_ops *ops,
637 					struct addr_location *al,
638 					struct symbol *sym_parent,
639 					struct branch_info *bi,
640 					struct mem_info *mi,
641 					struct perf_sample *sample,
642 					bool sample_self)
643 {
644 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
645 				  sample, sample_self, ops);
646 }
647 
648 static int
649 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
650 		    struct addr_location *al __maybe_unused)
651 {
652 	return 0;
653 }
654 
655 static int
656 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
657 			struct addr_location *al __maybe_unused)
658 {
659 	return 0;
660 }
661 
662 static int
663 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
664 {
665 	struct perf_sample *sample = iter->sample;
666 	struct mem_info *mi;
667 
668 	mi = sample__resolve_mem(sample, al);
669 	if (mi == NULL)
670 		return -ENOMEM;
671 
672 	iter->priv = mi;
673 	return 0;
674 }
675 
676 static int
677 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
678 {
679 	u64 cost;
680 	struct mem_info *mi = iter->priv;
681 	struct hists *hists = evsel__hists(iter->evsel);
682 	struct perf_sample *sample = iter->sample;
683 	struct hist_entry *he;
684 
685 	if (mi == NULL)
686 		return -EINVAL;
687 
688 	cost = sample->weight;
689 	if (!cost)
690 		cost = 1;
691 
692 	/*
693 	 * must pass period=weight in order to get the correct
694 	 * sorting from hists__collapse_resort() which is solely
695 	 * based on periods. We want sorting be done on nr_events * weight
696 	 * and this is indirectly achieved by passing period=weight here
697 	 * and the he_stat__add_period() function.
698 	 */
699 	sample->period = cost;
700 
701 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
702 			      sample, true);
703 	if (!he)
704 		return -ENOMEM;
705 
706 	iter->he = he;
707 	return 0;
708 }
709 
710 static int
711 iter_finish_mem_entry(struct hist_entry_iter *iter,
712 		      struct addr_location *al __maybe_unused)
713 {
714 	struct perf_evsel *evsel = iter->evsel;
715 	struct hists *hists = evsel__hists(evsel);
716 	struct hist_entry *he = iter->he;
717 	int err = -EINVAL;
718 
719 	if (he == NULL)
720 		goto out;
721 
722 	hists__inc_nr_samples(hists, he->filtered);
723 
724 	err = hist_entry__append_callchain(he, iter->sample);
725 
726 out:
727 	/*
728 	 * We don't need to free iter->priv (mem_info) here since the mem info
729 	 * was either already freed in hists__findnew_entry() or passed to a
730 	 * new hist entry by hist_entry__new().
731 	 */
732 	iter->priv = NULL;
733 
734 	iter->he = NULL;
735 	return err;
736 }
737 
738 static int
739 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
740 {
741 	struct branch_info *bi;
742 	struct perf_sample *sample = iter->sample;
743 
744 	bi = sample__resolve_bstack(sample, al);
745 	if (!bi)
746 		return -ENOMEM;
747 
748 	iter->curr = 0;
749 	iter->total = sample->branch_stack->nr;
750 
751 	iter->priv = bi;
752 	return 0;
753 }
754 
755 static int
756 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
757 			     struct addr_location *al __maybe_unused)
758 {
759 	return 0;
760 }
761 
762 static int
763 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
764 {
765 	struct branch_info *bi = iter->priv;
766 	int i = iter->curr;
767 
768 	if (bi == NULL)
769 		return 0;
770 
771 	if (iter->curr >= iter->total)
772 		return 0;
773 
774 	al->map = bi[i].to.map;
775 	al->sym = bi[i].to.sym;
776 	al->addr = bi[i].to.addr;
777 	return 1;
778 }
779 
780 static int
781 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
782 {
783 	struct branch_info *bi;
784 	struct perf_evsel *evsel = iter->evsel;
785 	struct hists *hists = evsel__hists(evsel);
786 	struct perf_sample *sample = iter->sample;
787 	struct hist_entry *he = NULL;
788 	int i = iter->curr;
789 	int err = 0;
790 
791 	bi = iter->priv;
792 
793 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
794 		goto out;
795 
796 	/*
797 	 * The report shows the percentage of total branches captured
798 	 * and not events sampled. Thus we use a pseudo period of 1.
799 	 */
800 	sample->period = 1;
801 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
802 
803 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
804 			      sample, true);
805 	if (he == NULL)
806 		return -ENOMEM;
807 
808 	hists__inc_nr_samples(hists, he->filtered);
809 
810 out:
811 	iter->he = he;
812 	iter->curr++;
813 	return err;
814 }
815 
816 static int
817 iter_finish_branch_entry(struct hist_entry_iter *iter,
818 			 struct addr_location *al __maybe_unused)
819 {
820 	zfree(&iter->priv);
821 	iter->he = NULL;
822 
823 	return iter->curr >= iter->total ? 0 : -1;
824 }
825 
826 static int
827 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
828 			  struct addr_location *al __maybe_unused)
829 {
830 	return 0;
831 }
832 
833 static int
834 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
835 {
836 	struct perf_evsel *evsel = iter->evsel;
837 	struct perf_sample *sample = iter->sample;
838 	struct hist_entry *he;
839 
840 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
841 			      sample, true);
842 	if (he == NULL)
843 		return -ENOMEM;
844 
845 	iter->he = he;
846 	return 0;
847 }
848 
849 static int
850 iter_finish_normal_entry(struct hist_entry_iter *iter,
851 			 struct addr_location *al __maybe_unused)
852 {
853 	struct hist_entry *he = iter->he;
854 	struct perf_evsel *evsel = iter->evsel;
855 	struct perf_sample *sample = iter->sample;
856 
857 	if (he == NULL)
858 		return 0;
859 
860 	iter->he = NULL;
861 
862 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
863 
864 	return hist_entry__append_callchain(he, sample);
865 }
866 
867 static int
868 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
869 			      struct addr_location *al __maybe_unused)
870 {
871 	struct hist_entry **he_cache;
872 
873 	callchain_cursor_commit(&callchain_cursor);
874 
875 	/*
876 	 * This is for detecting cycles or recursions so that they're
877 	 * cumulated only one time to prevent entries more than 100%
878 	 * overhead.
879 	 */
880 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
881 	if (he_cache == NULL)
882 		return -ENOMEM;
883 
884 	iter->priv = he_cache;
885 	iter->curr = 0;
886 
887 	return 0;
888 }
889 
890 static int
891 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
892 				 struct addr_location *al)
893 {
894 	struct perf_evsel *evsel = iter->evsel;
895 	struct hists *hists = evsel__hists(evsel);
896 	struct perf_sample *sample = iter->sample;
897 	struct hist_entry **he_cache = iter->priv;
898 	struct hist_entry *he;
899 	int err = 0;
900 
901 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
902 			      sample, true);
903 	if (he == NULL)
904 		return -ENOMEM;
905 
906 	iter->he = he;
907 	he_cache[iter->curr++] = he;
908 
909 	hist_entry__append_callchain(he, sample);
910 
911 	/*
912 	 * We need to re-initialize the cursor since callchain_append()
913 	 * advanced the cursor to the end.
914 	 */
915 	callchain_cursor_commit(&callchain_cursor);
916 
917 	hists__inc_nr_samples(hists, he->filtered);
918 
919 	return err;
920 }
921 
922 static int
923 iter_next_cumulative_entry(struct hist_entry_iter *iter,
924 			   struct addr_location *al)
925 {
926 	struct callchain_cursor_node *node;
927 
928 	node = callchain_cursor_current(&callchain_cursor);
929 	if (node == NULL)
930 		return 0;
931 
932 	return fill_callchain_info(al, node, iter->hide_unresolved);
933 }
934 
935 static int
936 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
937 			       struct addr_location *al)
938 {
939 	struct perf_evsel *evsel = iter->evsel;
940 	struct perf_sample *sample = iter->sample;
941 	struct hist_entry **he_cache = iter->priv;
942 	struct hist_entry *he;
943 	struct hist_entry he_tmp = {
944 		.hists = evsel__hists(evsel),
945 		.cpu = al->cpu,
946 		.thread = al->thread,
947 		.comm = thread__comm(al->thread),
948 		.ip = al->addr,
949 		.ms = {
950 			.map = al->map,
951 			.sym = al->sym,
952 		},
953 		.parent = iter->parent,
954 		.raw_data = sample->raw_data,
955 		.raw_size = sample->raw_size,
956 	};
957 	int i;
958 	struct callchain_cursor cursor;
959 
960 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
961 
962 	callchain_cursor_advance(&callchain_cursor);
963 
964 	/*
965 	 * Check if there's duplicate entries in the callchain.
966 	 * It's possible that it has cycles or recursive calls.
967 	 */
968 	for (i = 0; i < iter->curr; i++) {
969 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
970 			/* to avoid calling callback function */
971 			iter->he = NULL;
972 			return 0;
973 		}
974 	}
975 
976 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
977 			      sample, false);
978 	if (he == NULL)
979 		return -ENOMEM;
980 
981 	iter->he = he;
982 	he_cache[iter->curr++] = he;
983 
984 	if (symbol_conf.use_callchain)
985 		callchain_append(he->callchain, &cursor, sample->period);
986 	return 0;
987 }
988 
989 static int
990 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
991 			     struct addr_location *al __maybe_unused)
992 {
993 	zfree(&iter->priv);
994 	iter->he = NULL;
995 
996 	return 0;
997 }
998 
999 const struct hist_iter_ops hist_iter_mem = {
1000 	.prepare_entry 		= iter_prepare_mem_entry,
1001 	.add_single_entry 	= iter_add_single_mem_entry,
1002 	.next_entry 		= iter_next_nop_entry,
1003 	.add_next_entry 	= iter_add_next_nop_entry,
1004 	.finish_entry 		= iter_finish_mem_entry,
1005 };
1006 
1007 const struct hist_iter_ops hist_iter_branch = {
1008 	.prepare_entry 		= iter_prepare_branch_entry,
1009 	.add_single_entry 	= iter_add_single_branch_entry,
1010 	.next_entry 		= iter_next_branch_entry,
1011 	.add_next_entry 	= iter_add_next_branch_entry,
1012 	.finish_entry 		= iter_finish_branch_entry,
1013 };
1014 
1015 const struct hist_iter_ops hist_iter_normal = {
1016 	.prepare_entry 		= iter_prepare_normal_entry,
1017 	.add_single_entry 	= iter_add_single_normal_entry,
1018 	.next_entry 		= iter_next_nop_entry,
1019 	.add_next_entry 	= iter_add_next_nop_entry,
1020 	.finish_entry 		= iter_finish_normal_entry,
1021 };
1022 
1023 const struct hist_iter_ops hist_iter_cumulative = {
1024 	.prepare_entry 		= iter_prepare_cumulative_entry,
1025 	.add_single_entry 	= iter_add_single_cumulative_entry,
1026 	.next_entry 		= iter_next_cumulative_entry,
1027 	.add_next_entry 	= iter_add_next_cumulative_entry,
1028 	.finish_entry 		= iter_finish_cumulative_entry,
1029 };
1030 
1031 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1032 			 int max_stack_depth, void *arg)
1033 {
1034 	int err, err2;
1035 	struct map *alm = NULL;
1036 
1037 	if (al && al->map)
1038 		alm = map__get(al->map);
1039 
1040 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1041 					iter->evsel, al, max_stack_depth);
1042 	if (err)
1043 		return err;
1044 
1045 	iter->max_stack = max_stack_depth;
1046 
1047 	err = iter->ops->prepare_entry(iter, al);
1048 	if (err)
1049 		goto out;
1050 
1051 	err = iter->ops->add_single_entry(iter, al);
1052 	if (err)
1053 		goto out;
1054 
1055 	if (iter->he && iter->add_entry_cb) {
1056 		err = iter->add_entry_cb(iter, al, true, arg);
1057 		if (err)
1058 			goto out;
1059 	}
1060 
1061 	while (iter->ops->next_entry(iter, al)) {
1062 		err = iter->ops->add_next_entry(iter, al);
1063 		if (err)
1064 			break;
1065 
1066 		if (iter->he && iter->add_entry_cb) {
1067 			err = iter->add_entry_cb(iter, al, false, arg);
1068 			if (err)
1069 				goto out;
1070 		}
1071 	}
1072 
1073 out:
1074 	err2 = iter->ops->finish_entry(iter, al);
1075 	if (!err)
1076 		err = err2;
1077 
1078 	map__put(alm);
1079 
1080 	return err;
1081 }
1082 
1083 int64_t
1084 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1085 {
1086 	struct hists *hists = left->hists;
1087 	struct perf_hpp_fmt *fmt;
1088 	int64_t cmp = 0;
1089 
1090 	hists__for_each_sort_list(hists, fmt) {
1091 		if (perf_hpp__is_dynamic_entry(fmt) &&
1092 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1093 			continue;
1094 
1095 		cmp = fmt->cmp(fmt, left, right);
1096 		if (cmp)
1097 			break;
1098 	}
1099 
1100 	return cmp;
1101 }
1102 
1103 int64_t
1104 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1105 {
1106 	struct hists *hists = left->hists;
1107 	struct perf_hpp_fmt *fmt;
1108 	int64_t cmp = 0;
1109 
1110 	hists__for_each_sort_list(hists, fmt) {
1111 		if (perf_hpp__is_dynamic_entry(fmt) &&
1112 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1113 			continue;
1114 
1115 		cmp = fmt->collapse(fmt, left, right);
1116 		if (cmp)
1117 			break;
1118 	}
1119 
1120 	return cmp;
1121 }
1122 
1123 void hist_entry__delete(struct hist_entry *he)
1124 {
1125 	struct hist_entry_ops *ops = he->ops;
1126 
1127 	thread__zput(he->thread);
1128 	map__zput(he->ms.map);
1129 
1130 	if (he->branch_info) {
1131 		map__zput(he->branch_info->from.map);
1132 		map__zput(he->branch_info->to.map);
1133 		free_srcline(he->branch_info->srcline_from);
1134 		free_srcline(he->branch_info->srcline_to);
1135 		zfree(&he->branch_info);
1136 	}
1137 
1138 	if (he->mem_info) {
1139 		map__zput(he->mem_info->iaddr.map);
1140 		map__zput(he->mem_info->daddr.map);
1141 		zfree(&he->mem_info);
1142 	}
1143 
1144 	if (he->inline_node) {
1145 		inline_node__delete(he->inline_node);
1146 		he->inline_node = NULL;
1147 	}
1148 
1149 	zfree(&he->stat_acc);
1150 	free_srcline(he->srcline);
1151 	if (he->srcfile && he->srcfile[0])
1152 		free(he->srcfile);
1153 	free_callchain(he->callchain);
1154 	free(he->trace_output);
1155 	free(he->raw_data);
1156 	ops->free(he);
1157 }
1158 
1159 /*
1160  * If this is not the last column, then we need to pad it according to the
1161  * pre-calculated max lenght for this column, otherwise don't bother adding
1162  * spaces because that would break viewing this with, for instance, 'less',
1163  * that would show tons of trailing spaces when a long C++ demangled method
1164  * names is sampled.
1165 */
1166 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1167 				   struct perf_hpp_fmt *fmt, int printed)
1168 {
1169 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1170 		const int width = fmt->width(fmt, hpp, he->hists);
1171 		if (printed < width) {
1172 			advance_hpp(hpp, printed);
1173 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1174 		}
1175 	}
1176 
1177 	return printed;
1178 }
1179 
1180 /*
1181  * collapse the histogram
1182  */
1183 
1184 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1185 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1186 				       enum hist_filter type);
1187 
1188 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1189 
1190 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1191 {
1192 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1193 }
1194 
1195 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1196 						enum hist_filter type,
1197 						fmt_chk_fn check)
1198 {
1199 	struct perf_hpp_fmt *fmt;
1200 	bool type_match = false;
1201 	struct hist_entry *parent = he->parent_he;
1202 
1203 	switch (type) {
1204 	case HIST_FILTER__THREAD:
1205 		if (symbol_conf.comm_list == NULL &&
1206 		    symbol_conf.pid_list == NULL &&
1207 		    symbol_conf.tid_list == NULL)
1208 			return;
1209 		break;
1210 	case HIST_FILTER__DSO:
1211 		if (symbol_conf.dso_list == NULL)
1212 			return;
1213 		break;
1214 	case HIST_FILTER__SYMBOL:
1215 		if (symbol_conf.sym_list == NULL)
1216 			return;
1217 		break;
1218 	case HIST_FILTER__PARENT:
1219 	case HIST_FILTER__GUEST:
1220 	case HIST_FILTER__HOST:
1221 	case HIST_FILTER__SOCKET:
1222 	case HIST_FILTER__C2C:
1223 	default:
1224 		return;
1225 	}
1226 
1227 	/* if it's filtered by own fmt, it has to have filter bits */
1228 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1229 		if (check(fmt)) {
1230 			type_match = true;
1231 			break;
1232 		}
1233 	}
1234 
1235 	if (type_match) {
1236 		/*
1237 		 * If the filter is for current level entry, propagate
1238 		 * filter marker to parents.  The marker bit was
1239 		 * already set by default so it only needs to clear
1240 		 * non-filtered entries.
1241 		 */
1242 		if (!(he->filtered & (1 << type))) {
1243 			while (parent) {
1244 				parent->filtered &= ~(1 << type);
1245 				parent = parent->parent_he;
1246 			}
1247 		}
1248 	} else {
1249 		/*
1250 		 * If current entry doesn't have matching formats, set
1251 		 * filter marker for upper level entries.  it will be
1252 		 * cleared if its lower level entries is not filtered.
1253 		 *
1254 		 * For lower-level entries, it inherits parent's
1255 		 * filter bit so that lower level entries of a
1256 		 * non-filtered entry won't set the filter marker.
1257 		 */
1258 		if (parent == NULL)
1259 			he->filtered |= (1 << type);
1260 		else
1261 			he->filtered |= (parent->filtered & (1 << type));
1262 	}
1263 }
1264 
1265 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1266 {
1267 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1268 					    check_thread_entry);
1269 
1270 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1271 					    perf_hpp__is_dso_entry);
1272 
1273 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1274 					    perf_hpp__is_sym_entry);
1275 
1276 	hists__apply_filters(he->hists, he);
1277 }
1278 
1279 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1280 						 struct rb_root *root,
1281 						 struct hist_entry *he,
1282 						 struct hist_entry *parent_he,
1283 						 struct perf_hpp_list *hpp_list)
1284 {
1285 	struct rb_node **p = &root->rb_node;
1286 	struct rb_node *parent = NULL;
1287 	struct hist_entry *iter, *new;
1288 	struct perf_hpp_fmt *fmt;
1289 	int64_t cmp;
1290 
1291 	while (*p != NULL) {
1292 		parent = *p;
1293 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1294 
1295 		cmp = 0;
1296 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1297 			cmp = fmt->collapse(fmt, iter, he);
1298 			if (cmp)
1299 				break;
1300 		}
1301 
1302 		if (!cmp) {
1303 			he_stat__add_stat(&iter->stat, &he->stat);
1304 			return iter;
1305 		}
1306 
1307 		if (cmp < 0)
1308 			p = &parent->rb_left;
1309 		else
1310 			p = &parent->rb_right;
1311 	}
1312 
1313 	new = hist_entry__new(he, true);
1314 	if (new == NULL)
1315 		return NULL;
1316 
1317 	hists->nr_entries++;
1318 
1319 	/* save related format list for output */
1320 	new->hpp_list = hpp_list;
1321 	new->parent_he = parent_he;
1322 
1323 	hist_entry__apply_hierarchy_filters(new);
1324 
1325 	/* some fields are now passed to 'new' */
1326 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1327 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1328 			he->trace_output = NULL;
1329 		else
1330 			new->trace_output = NULL;
1331 
1332 		if (perf_hpp__is_srcline_entry(fmt))
1333 			he->srcline = NULL;
1334 		else
1335 			new->srcline = NULL;
1336 
1337 		if (perf_hpp__is_srcfile_entry(fmt))
1338 			he->srcfile = NULL;
1339 		else
1340 			new->srcfile = NULL;
1341 	}
1342 
1343 	rb_link_node(&new->rb_node_in, parent, p);
1344 	rb_insert_color(&new->rb_node_in, root);
1345 	return new;
1346 }
1347 
1348 static int hists__hierarchy_insert_entry(struct hists *hists,
1349 					 struct rb_root *root,
1350 					 struct hist_entry *he)
1351 {
1352 	struct perf_hpp_list_node *node;
1353 	struct hist_entry *new_he = NULL;
1354 	struct hist_entry *parent = NULL;
1355 	int depth = 0;
1356 	int ret = 0;
1357 
1358 	list_for_each_entry(node, &hists->hpp_formats, list) {
1359 		/* skip period (overhead) and elided columns */
1360 		if (node->level == 0 || node->skip)
1361 			continue;
1362 
1363 		/* insert copy of 'he' for each fmt into the hierarchy */
1364 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1365 		if (new_he == NULL) {
1366 			ret = -1;
1367 			break;
1368 		}
1369 
1370 		root = &new_he->hroot_in;
1371 		new_he->depth = depth++;
1372 		parent = new_he;
1373 	}
1374 
1375 	if (new_he) {
1376 		new_he->leaf = true;
1377 
1378 		if (symbol_conf.use_callchain) {
1379 			callchain_cursor_reset(&callchain_cursor);
1380 			if (callchain_merge(&callchain_cursor,
1381 					    new_he->callchain,
1382 					    he->callchain) < 0)
1383 				ret = -1;
1384 		}
1385 	}
1386 
1387 	/* 'he' is no longer used */
1388 	hist_entry__delete(he);
1389 
1390 	/* return 0 (or -1) since it already applied filters */
1391 	return ret;
1392 }
1393 
1394 static int hists__collapse_insert_entry(struct hists *hists,
1395 					struct rb_root *root,
1396 					struct hist_entry *he)
1397 {
1398 	struct rb_node **p = &root->rb_node;
1399 	struct rb_node *parent = NULL;
1400 	struct hist_entry *iter;
1401 	int64_t cmp;
1402 
1403 	if (symbol_conf.report_hierarchy)
1404 		return hists__hierarchy_insert_entry(hists, root, he);
1405 
1406 	while (*p != NULL) {
1407 		parent = *p;
1408 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1409 
1410 		cmp = hist_entry__collapse(iter, he);
1411 
1412 		if (!cmp) {
1413 			int ret = 0;
1414 
1415 			he_stat__add_stat(&iter->stat, &he->stat);
1416 			if (symbol_conf.cumulate_callchain)
1417 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1418 
1419 			if (symbol_conf.use_callchain) {
1420 				callchain_cursor_reset(&callchain_cursor);
1421 				if (callchain_merge(&callchain_cursor,
1422 						    iter->callchain,
1423 						    he->callchain) < 0)
1424 					ret = -1;
1425 			}
1426 			hist_entry__delete(he);
1427 			return ret;
1428 		}
1429 
1430 		if (cmp < 0)
1431 			p = &(*p)->rb_left;
1432 		else
1433 			p = &(*p)->rb_right;
1434 	}
1435 	hists->nr_entries++;
1436 
1437 	rb_link_node(&he->rb_node_in, parent, p);
1438 	rb_insert_color(&he->rb_node_in, root);
1439 	return 1;
1440 }
1441 
1442 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1443 {
1444 	struct rb_root *root;
1445 
1446 	pthread_mutex_lock(&hists->lock);
1447 
1448 	root = hists->entries_in;
1449 	if (++hists->entries_in > &hists->entries_in_array[1])
1450 		hists->entries_in = &hists->entries_in_array[0];
1451 
1452 	pthread_mutex_unlock(&hists->lock);
1453 
1454 	return root;
1455 }
1456 
1457 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1458 {
1459 	hists__filter_entry_by_dso(hists, he);
1460 	hists__filter_entry_by_thread(hists, he);
1461 	hists__filter_entry_by_symbol(hists, he);
1462 	hists__filter_entry_by_socket(hists, he);
1463 }
1464 
1465 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1466 {
1467 	struct rb_root *root;
1468 	struct rb_node *next;
1469 	struct hist_entry *n;
1470 	int ret;
1471 
1472 	if (!hists__has(hists, need_collapse))
1473 		return 0;
1474 
1475 	hists->nr_entries = 0;
1476 
1477 	root = hists__get_rotate_entries_in(hists);
1478 
1479 	next = rb_first(root);
1480 
1481 	while (next) {
1482 		if (session_done())
1483 			break;
1484 		n = rb_entry(next, struct hist_entry, rb_node_in);
1485 		next = rb_next(&n->rb_node_in);
1486 
1487 		rb_erase(&n->rb_node_in, root);
1488 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1489 		if (ret < 0)
1490 			return -1;
1491 
1492 		if (ret) {
1493 			/*
1494 			 * If it wasn't combined with one of the entries already
1495 			 * collapsed, we need to apply the filters that may have
1496 			 * been set by, say, the hist_browser.
1497 			 */
1498 			hists__apply_filters(hists, n);
1499 		}
1500 		if (prog)
1501 			ui_progress__update(prog, 1);
1502 	}
1503 	return 0;
1504 }
1505 
1506 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1507 {
1508 	struct hists *hists = a->hists;
1509 	struct perf_hpp_fmt *fmt;
1510 	int64_t cmp = 0;
1511 
1512 	hists__for_each_sort_list(hists, fmt) {
1513 		if (perf_hpp__should_skip(fmt, a->hists))
1514 			continue;
1515 
1516 		cmp = fmt->sort(fmt, a, b);
1517 		if (cmp)
1518 			break;
1519 	}
1520 
1521 	return cmp;
1522 }
1523 
1524 static void hists__reset_filter_stats(struct hists *hists)
1525 {
1526 	hists->nr_non_filtered_entries = 0;
1527 	hists->stats.total_non_filtered_period = 0;
1528 }
1529 
1530 void hists__reset_stats(struct hists *hists)
1531 {
1532 	hists->nr_entries = 0;
1533 	hists->stats.total_period = 0;
1534 
1535 	hists__reset_filter_stats(hists);
1536 }
1537 
1538 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1539 {
1540 	hists->nr_non_filtered_entries++;
1541 	hists->stats.total_non_filtered_period += h->stat.period;
1542 }
1543 
1544 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1545 {
1546 	if (!h->filtered)
1547 		hists__inc_filter_stats(hists, h);
1548 
1549 	hists->nr_entries++;
1550 	hists->stats.total_period += h->stat.period;
1551 }
1552 
1553 static void hierarchy_recalc_total_periods(struct hists *hists)
1554 {
1555 	struct rb_node *node;
1556 	struct hist_entry *he;
1557 
1558 	node = rb_first(&hists->entries);
1559 
1560 	hists->stats.total_period = 0;
1561 	hists->stats.total_non_filtered_period = 0;
1562 
1563 	/*
1564 	 * recalculate total period using top-level entries only
1565 	 * since lower level entries only see non-filtered entries
1566 	 * but upper level entries have sum of both entries.
1567 	 */
1568 	while (node) {
1569 		he = rb_entry(node, struct hist_entry, rb_node);
1570 		node = rb_next(node);
1571 
1572 		hists->stats.total_period += he->stat.period;
1573 		if (!he->filtered)
1574 			hists->stats.total_non_filtered_period += he->stat.period;
1575 	}
1576 }
1577 
1578 static void hierarchy_insert_output_entry(struct rb_root *root,
1579 					  struct hist_entry *he)
1580 {
1581 	struct rb_node **p = &root->rb_node;
1582 	struct rb_node *parent = NULL;
1583 	struct hist_entry *iter;
1584 	struct perf_hpp_fmt *fmt;
1585 
1586 	while (*p != NULL) {
1587 		parent = *p;
1588 		iter = rb_entry(parent, struct hist_entry, rb_node);
1589 
1590 		if (hist_entry__sort(he, iter) > 0)
1591 			p = &parent->rb_left;
1592 		else
1593 			p = &parent->rb_right;
1594 	}
1595 
1596 	rb_link_node(&he->rb_node, parent, p);
1597 	rb_insert_color(&he->rb_node, root);
1598 
1599 	/* update column width of dynamic entry */
1600 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1601 		if (perf_hpp__is_dynamic_entry(fmt))
1602 			fmt->sort(fmt, he, NULL);
1603 	}
1604 }
1605 
1606 static void hists__hierarchy_output_resort(struct hists *hists,
1607 					   struct ui_progress *prog,
1608 					   struct rb_root *root_in,
1609 					   struct rb_root *root_out,
1610 					   u64 min_callchain_hits,
1611 					   bool use_callchain)
1612 {
1613 	struct rb_node *node;
1614 	struct hist_entry *he;
1615 
1616 	*root_out = RB_ROOT;
1617 	node = rb_first(root_in);
1618 
1619 	while (node) {
1620 		he = rb_entry(node, struct hist_entry, rb_node_in);
1621 		node = rb_next(node);
1622 
1623 		hierarchy_insert_output_entry(root_out, he);
1624 
1625 		if (prog)
1626 			ui_progress__update(prog, 1);
1627 
1628 		hists->nr_entries++;
1629 		if (!he->filtered) {
1630 			hists->nr_non_filtered_entries++;
1631 			hists__calc_col_len(hists, he);
1632 		}
1633 
1634 		if (!he->leaf) {
1635 			hists__hierarchy_output_resort(hists, prog,
1636 						       &he->hroot_in,
1637 						       &he->hroot_out,
1638 						       min_callchain_hits,
1639 						       use_callchain);
1640 			continue;
1641 		}
1642 
1643 		if (!use_callchain)
1644 			continue;
1645 
1646 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1647 			u64 total = he->stat.period;
1648 
1649 			if (symbol_conf.cumulate_callchain)
1650 				total = he->stat_acc->period;
1651 
1652 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1653 		}
1654 
1655 		callchain_param.sort(&he->sorted_chain, he->callchain,
1656 				     min_callchain_hits, &callchain_param);
1657 	}
1658 }
1659 
1660 static void __hists__insert_output_entry(struct rb_root *entries,
1661 					 struct hist_entry *he,
1662 					 u64 min_callchain_hits,
1663 					 bool use_callchain)
1664 {
1665 	struct rb_node **p = &entries->rb_node;
1666 	struct rb_node *parent = NULL;
1667 	struct hist_entry *iter;
1668 	struct perf_hpp_fmt *fmt;
1669 
1670 	if (use_callchain) {
1671 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1672 			u64 total = he->stat.period;
1673 
1674 			if (symbol_conf.cumulate_callchain)
1675 				total = he->stat_acc->period;
1676 
1677 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1678 		}
1679 		callchain_param.sort(&he->sorted_chain, he->callchain,
1680 				      min_callchain_hits, &callchain_param);
1681 	}
1682 
1683 	while (*p != NULL) {
1684 		parent = *p;
1685 		iter = rb_entry(parent, struct hist_entry, rb_node);
1686 
1687 		if (hist_entry__sort(he, iter) > 0)
1688 			p = &(*p)->rb_left;
1689 		else
1690 			p = &(*p)->rb_right;
1691 	}
1692 
1693 	rb_link_node(&he->rb_node, parent, p);
1694 	rb_insert_color(&he->rb_node, entries);
1695 
1696 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1697 		if (perf_hpp__is_dynamic_entry(fmt) &&
1698 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1699 			fmt->sort(fmt, he, NULL);  /* update column width */
1700 	}
1701 }
1702 
1703 static void output_resort(struct hists *hists, struct ui_progress *prog,
1704 			  bool use_callchain, hists__resort_cb_t cb)
1705 {
1706 	struct rb_root *root;
1707 	struct rb_node *next;
1708 	struct hist_entry *n;
1709 	u64 callchain_total;
1710 	u64 min_callchain_hits;
1711 
1712 	callchain_total = hists->callchain_period;
1713 	if (symbol_conf.filter_relative)
1714 		callchain_total = hists->callchain_non_filtered_period;
1715 
1716 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1717 
1718 	hists__reset_stats(hists);
1719 	hists__reset_col_len(hists);
1720 
1721 	if (symbol_conf.report_hierarchy) {
1722 		hists__hierarchy_output_resort(hists, prog,
1723 					       &hists->entries_collapsed,
1724 					       &hists->entries,
1725 					       min_callchain_hits,
1726 					       use_callchain);
1727 		hierarchy_recalc_total_periods(hists);
1728 		return;
1729 	}
1730 
1731 	if (hists__has(hists, need_collapse))
1732 		root = &hists->entries_collapsed;
1733 	else
1734 		root = hists->entries_in;
1735 
1736 	next = rb_first(root);
1737 	hists->entries = RB_ROOT;
1738 
1739 	while (next) {
1740 		n = rb_entry(next, struct hist_entry, rb_node_in);
1741 		next = rb_next(&n->rb_node_in);
1742 
1743 		if (cb && cb(n))
1744 			continue;
1745 
1746 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1747 		hists__inc_stats(hists, n);
1748 
1749 		if (!n->filtered)
1750 			hists__calc_col_len(hists, n);
1751 
1752 		if (prog)
1753 			ui_progress__update(prog, 1);
1754 	}
1755 }
1756 
1757 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1758 {
1759 	bool use_callchain;
1760 
1761 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1762 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1763 	else
1764 		use_callchain = symbol_conf.use_callchain;
1765 
1766 	use_callchain |= symbol_conf.show_branchflag_count;
1767 
1768 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1769 }
1770 
1771 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1772 {
1773 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1774 }
1775 
1776 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1777 			     hists__resort_cb_t cb)
1778 {
1779 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1780 }
1781 
1782 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1783 {
1784 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1785 		return false;
1786 
1787 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1788 		return true;
1789 
1790 	return false;
1791 }
1792 
1793 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1794 {
1795 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1796 
1797 	while (can_goto_child(he, HMD_NORMAL)) {
1798 		node = rb_last(&he->hroot_out);
1799 		he = rb_entry(node, struct hist_entry, rb_node);
1800 	}
1801 	return node;
1802 }
1803 
1804 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1805 {
1806 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1807 
1808 	if (can_goto_child(he, hmd))
1809 		node = rb_first(&he->hroot_out);
1810 	else
1811 		node = rb_next(node);
1812 
1813 	while (node == NULL) {
1814 		he = he->parent_he;
1815 		if (he == NULL)
1816 			break;
1817 
1818 		node = rb_next(&he->rb_node);
1819 	}
1820 	return node;
1821 }
1822 
1823 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1824 {
1825 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1826 
1827 	node = rb_prev(node);
1828 	if (node)
1829 		return rb_hierarchy_last(node);
1830 
1831 	he = he->parent_he;
1832 	if (he == NULL)
1833 		return NULL;
1834 
1835 	return &he->rb_node;
1836 }
1837 
1838 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1839 {
1840 	struct rb_node *node;
1841 	struct hist_entry *child;
1842 	float percent;
1843 
1844 	if (he->leaf)
1845 		return false;
1846 
1847 	node = rb_first(&he->hroot_out);
1848 	child = rb_entry(node, struct hist_entry, rb_node);
1849 
1850 	while (node && child->filtered) {
1851 		node = rb_next(node);
1852 		child = rb_entry(node, struct hist_entry, rb_node);
1853 	}
1854 
1855 	if (node)
1856 		percent = hist_entry__get_percent_limit(child);
1857 	else
1858 		percent = 0;
1859 
1860 	return node && percent >= limit;
1861 }
1862 
1863 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1864 				       enum hist_filter filter)
1865 {
1866 	h->filtered &= ~(1 << filter);
1867 
1868 	if (symbol_conf.report_hierarchy) {
1869 		struct hist_entry *parent = h->parent_he;
1870 
1871 		while (parent) {
1872 			he_stat__add_stat(&parent->stat, &h->stat);
1873 
1874 			parent->filtered &= ~(1 << filter);
1875 
1876 			if (parent->filtered)
1877 				goto next;
1878 
1879 			/* force fold unfiltered entry for simplicity */
1880 			parent->unfolded = false;
1881 			parent->has_no_entry = false;
1882 			parent->row_offset = 0;
1883 			parent->nr_rows = 0;
1884 next:
1885 			parent = parent->parent_he;
1886 		}
1887 	}
1888 
1889 	if (h->filtered)
1890 		return;
1891 
1892 	/* force fold unfiltered entry for simplicity */
1893 	h->unfolded = false;
1894 	h->has_no_entry = false;
1895 	h->row_offset = 0;
1896 	h->nr_rows = 0;
1897 
1898 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1899 
1900 	hists__inc_filter_stats(hists, h);
1901 	hists__calc_col_len(hists, h);
1902 }
1903 
1904 
1905 static bool hists__filter_entry_by_dso(struct hists *hists,
1906 				       struct hist_entry *he)
1907 {
1908 	if (hists->dso_filter != NULL &&
1909 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1910 		he->filtered |= (1 << HIST_FILTER__DSO);
1911 		return true;
1912 	}
1913 
1914 	return false;
1915 }
1916 
1917 static bool hists__filter_entry_by_thread(struct hists *hists,
1918 					  struct hist_entry *he)
1919 {
1920 	if (hists->thread_filter != NULL &&
1921 	    he->thread != hists->thread_filter) {
1922 		he->filtered |= (1 << HIST_FILTER__THREAD);
1923 		return true;
1924 	}
1925 
1926 	return false;
1927 }
1928 
1929 static bool hists__filter_entry_by_symbol(struct hists *hists,
1930 					  struct hist_entry *he)
1931 {
1932 	if (hists->symbol_filter_str != NULL &&
1933 	    (!he->ms.sym || strstr(he->ms.sym->name,
1934 				   hists->symbol_filter_str) == NULL)) {
1935 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1936 		return true;
1937 	}
1938 
1939 	return false;
1940 }
1941 
1942 static bool hists__filter_entry_by_socket(struct hists *hists,
1943 					  struct hist_entry *he)
1944 {
1945 	if ((hists->socket_filter > -1) &&
1946 	    (he->socket != hists->socket_filter)) {
1947 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1948 		return true;
1949 	}
1950 
1951 	return false;
1952 }
1953 
1954 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1955 
1956 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1957 {
1958 	struct rb_node *nd;
1959 
1960 	hists->stats.nr_non_filtered_samples = 0;
1961 
1962 	hists__reset_filter_stats(hists);
1963 	hists__reset_col_len(hists);
1964 
1965 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1966 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1967 
1968 		if (filter(hists, h))
1969 			continue;
1970 
1971 		hists__remove_entry_filter(hists, h, type);
1972 	}
1973 }
1974 
1975 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1976 {
1977 	struct rb_node **p = &root->rb_node;
1978 	struct rb_node *parent = NULL;
1979 	struct hist_entry *iter;
1980 	struct rb_root new_root = RB_ROOT;
1981 	struct rb_node *nd;
1982 
1983 	while (*p != NULL) {
1984 		parent = *p;
1985 		iter = rb_entry(parent, struct hist_entry, rb_node);
1986 
1987 		if (hist_entry__sort(he, iter) > 0)
1988 			p = &(*p)->rb_left;
1989 		else
1990 			p = &(*p)->rb_right;
1991 	}
1992 
1993 	rb_link_node(&he->rb_node, parent, p);
1994 	rb_insert_color(&he->rb_node, root);
1995 
1996 	if (he->leaf || he->filtered)
1997 		return;
1998 
1999 	nd = rb_first(&he->hroot_out);
2000 	while (nd) {
2001 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2002 
2003 		nd = rb_next(nd);
2004 		rb_erase(&h->rb_node, &he->hroot_out);
2005 
2006 		resort_filtered_entry(&new_root, h);
2007 	}
2008 
2009 	he->hroot_out = new_root;
2010 }
2011 
2012 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2013 {
2014 	struct rb_node *nd;
2015 	struct rb_root new_root = RB_ROOT;
2016 
2017 	hists->stats.nr_non_filtered_samples = 0;
2018 
2019 	hists__reset_filter_stats(hists);
2020 	hists__reset_col_len(hists);
2021 
2022 	nd = rb_first(&hists->entries);
2023 	while (nd) {
2024 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2025 		int ret;
2026 
2027 		ret = hist_entry__filter(h, type, arg);
2028 
2029 		/*
2030 		 * case 1. non-matching type
2031 		 * zero out the period, set filter marker and move to child
2032 		 */
2033 		if (ret < 0) {
2034 			memset(&h->stat, 0, sizeof(h->stat));
2035 			h->filtered |= (1 << type);
2036 
2037 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2038 		}
2039 		/*
2040 		 * case 2. matched type (filter out)
2041 		 * set filter marker and move to next
2042 		 */
2043 		else if (ret == 1) {
2044 			h->filtered |= (1 << type);
2045 
2046 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2047 		}
2048 		/*
2049 		 * case 3. ok (not filtered)
2050 		 * add period to hists and parents, erase the filter marker
2051 		 * and move to next sibling
2052 		 */
2053 		else {
2054 			hists__remove_entry_filter(hists, h, type);
2055 
2056 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2057 		}
2058 	}
2059 
2060 	hierarchy_recalc_total_periods(hists);
2061 
2062 	/*
2063 	 * resort output after applying a new filter since filter in a lower
2064 	 * hierarchy can change periods in a upper hierarchy.
2065 	 */
2066 	nd = rb_first(&hists->entries);
2067 	while (nd) {
2068 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2069 
2070 		nd = rb_next(nd);
2071 		rb_erase(&h->rb_node, &hists->entries);
2072 
2073 		resort_filtered_entry(&new_root, h);
2074 	}
2075 
2076 	hists->entries = new_root;
2077 }
2078 
2079 void hists__filter_by_thread(struct hists *hists)
2080 {
2081 	if (symbol_conf.report_hierarchy)
2082 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2083 					hists->thread_filter);
2084 	else
2085 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2086 				      hists__filter_entry_by_thread);
2087 }
2088 
2089 void hists__filter_by_dso(struct hists *hists)
2090 {
2091 	if (symbol_conf.report_hierarchy)
2092 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2093 					hists->dso_filter);
2094 	else
2095 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2096 				      hists__filter_entry_by_dso);
2097 }
2098 
2099 void hists__filter_by_symbol(struct hists *hists)
2100 {
2101 	if (symbol_conf.report_hierarchy)
2102 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2103 					hists->symbol_filter_str);
2104 	else
2105 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2106 				      hists__filter_entry_by_symbol);
2107 }
2108 
2109 void hists__filter_by_socket(struct hists *hists)
2110 {
2111 	if (symbol_conf.report_hierarchy)
2112 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2113 					&hists->socket_filter);
2114 	else
2115 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2116 				      hists__filter_entry_by_socket);
2117 }
2118 
2119 void events_stats__inc(struct events_stats *stats, u32 type)
2120 {
2121 	++stats->nr_events[0];
2122 	++stats->nr_events[type];
2123 }
2124 
2125 void hists__inc_nr_events(struct hists *hists, u32 type)
2126 {
2127 	events_stats__inc(&hists->stats, type);
2128 }
2129 
2130 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2131 {
2132 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2133 	if (!filtered)
2134 		hists->stats.nr_non_filtered_samples++;
2135 }
2136 
2137 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2138 						 struct hist_entry *pair)
2139 {
2140 	struct rb_root *root;
2141 	struct rb_node **p;
2142 	struct rb_node *parent = NULL;
2143 	struct hist_entry *he;
2144 	int64_t cmp;
2145 
2146 	if (hists__has(hists, need_collapse))
2147 		root = &hists->entries_collapsed;
2148 	else
2149 		root = hists->entries_in;
2150 
2151 	p = &root->rb_node;
2152 
2153 	while (*p != NULL) {
2154 		parent = *p;
2155 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2156 
2157 		cmp = hist_entry__collapse(he, pair);
2158 
2159 		if (!cmp)
2160 			goto out;
2161 
2162 		if (cmp < 0)
2163 			p = &(*p)->rb_left;
2164 		else
2165 			p = &(*p)->rb_right;
2166 	}
2167 
2168 	he = hist_entry__new(pair, true);
2169 	if (he) {
2170 		memset(&he->stat, 0, sizeof(he->stat));
2171 		he->hists = hists;
2172 		if (symbol_conf.cumulate_callchain)
2173 			memset(he->stat_acc, 0, sizeof(he->stat));
2174 		rb_link_node(&he->rb_node_in, parent, p);
2175 		rb_insert_color(&he->rb_node_in, root);
2176 		hists__inc_stats(hists, he);
2177 		he->dummy = true;
2178 	}
2179 out:
2180 	return he;
2181 }
2182 
2183 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2184 						    struct rb_root *root,
2185 						    struct hist_entry *pair)
2186 {
2187 	struct rb_node **p;
2188 	struct rb_node *parent = NULL;
2189 	struct hist_entry *he;
2190 	struct perf_hpp_fmt *fmt;
2191 
2192 	p = &root->rb_node;
2193 	while (*p != NULL) {
2194 		int64_t cmp = 0;
2195 
2196 		parent = *p;
2197 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2198 
2199 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2200 			cmp = fmt->collapse(fmt, he, pair);
2201 			if (cmp)
2202 				break;
2203 		}
2204 		if (!cmp)
2205 			goto out;
2206 
2207 		if (cmp < 0)
2208 			p = &parent->rb_left;
2209 		else
2210 			p = &parent->rb_right;
2211 	}
2212 
2213 	he = hist_entry__new(pair, true);
2214 	if (he) {
2215 		rb_link_node(&he->rb_node_in, parent, p);
2216 		rb_insert_color(&he->rb_node_in, root);
2217 
2218 		he->dummy = true;
2219 		he->hists = hists;
2220 		memset(&he->stat, 0, sizeof(he->stat));
2221 		hists__inc_stats(hists, he);
2222 	}
2223 out:
2224 	return he;
2225 }
2226 
2227 static struct hist_entry *hists__find_entry(struct hists *hists,
2228 					    struct hist_entry *he)
2229 {
2230 	struct rb_node *n;
2231 
2232 	if (hists__has(hists, need_collapse))
2233 		n = hists->entries_collapsed.rb_node;
2234 	else
2235 		n = hists->entries_in->rb_node;
2236 
2237 	while (n) {
2238 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2239 		int64_t cmp = hist_entry__collapse(iter, he);
2240 
2241 		if (cmp < 0)
2242 			n = n->rb_left;
2243 		else if (cmp > 0)
2244 			n = n->rb_right;
2245 		else
2246 			return iter;
2247 	}
2248 
2249 	return NULL;
2250 }
2251 
2252 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2253 						      struct hist_entry *he)
2254 {
2255 	struct rb_node *n = root->rb_node;
2256 
2257 	while (n) {
2258 		struct hist_entry *iter;
2259 		struct perf_hpp_fmt *fmt;
2260 		int64_t cmp = 0;
2261 
2262 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2263 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2264 			cmp = fmt->collapse(fmt, iter, he);
2265 			if (cmp)
2266 				break;
2267 		}
2268 
2269 		if (cmp < 0)
2270 			n = n->rb_left;
2271 		else if (cmp > 0)
2272 			n = n->rb_right;
2273 		else
2274 			return iter;
2275 	}
2276 
2277 	return NULL;
2278 }
2279 
2280 static void hists__match_hierarchy(struct rb_root *leader_root,
2281 				   struct rb_root *other_root)
2282 {
2283 	struct rb_node *nd;
2284 	struct hist_entry *pos, *pair;
2285 
2286 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2287 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2288 		pair = hists__find_hierarchy_entry(other_root, pos);
2289 
2290 		if (pair) {
2291 			hist_entry__add_pair(pair, pos);
2292 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2293 		}
2294 	}
2295 }
2296 
2297 /*
2298  * Look for pairs to link to the leader buckets (hist_entries):
2299  */
2300 void hists__match(struct hists *leader, struct hists *other)
2301 {
2302 	struct rb_root *root;
2303 	struct rb_node *nd;
2304 	struct hist_entry *pos, *pair;
2305 
2306 	if (symbol_conf.report_hierarchy) {
2307 		/* hierarchy report always collapses entries */
2308 		return hists__match_hierarchy(&leader->entries_collapsed,
2309 					      &other->entries_collapsed);
2310 	}
2311 
2312 	if (hists__has(leader, need_collapse))
2313 		root = &leader->entries_collapsed;
2314 	else
2315 		root = leader->entries_in;
2316 
2317 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2318 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2319 		pair = hists__find_entry(other, pos);
2320 
2321 		if (pair)
2322 			hist_entry__add_pair(pair, pos);
2323 	}
2324 }
2325 
2326 static int hists__link_hierarchy(struct hists *leader_hists,
2327 				 struct hist_entry *parent,
2328 				 struct rb_root *leader_root,
2329 				 struct rb_root *other_root)
2330 {
2331 	struct rb_node *nd;
2332 	struct hist_entry *pos, *leader;
2333 
2334 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2335 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2336 
2337 		if (hist_entry__has_pairs(pos)) {
2338 			bool found = false;
2339 
2340 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2341 				if (leader->hists == leader_hists) {
2342 					found = true;
2343 					break;
2344 				}
2345 			}
2346 			if (!found)
2347 				return -1;
2348 		} else {
2349 			leader = add_dummy_hierarchy_entry(leader_hists,
2350 							   leader_root, pos);
2351 			if (leader == NULL)
2352 				return -1;
2353 
2354 			/* do not point parent in the pos */
2355 			leader->parent_he = parent;
2356 
2357 			hist_entry__add_pair(pos, leader);
2358 		}
2359 
2360 		if (!pos->leaf) {
2361 			if (hists__link_hierarchy(leader_hists, leader,
2362 						  &leader->hroot_in,
2363 						  &pos->hroot_in) < 0)
2364 				return -1;
2365 		}
2366 	}
2367 	return 0;
2368 }
2369 
2370 /*
2371  * Look for entries in the other hists that are not present in the leader, if
2372  * we find them, just add a dummy entry on the leader hists, with period=0,
2373  * nr_events=0, to serve as the list header.
2374  */
2375 int hists__link(struct hists *leader, struct hists *other)
2376 {
2377 	struct rb_root *root;
2378 	struct rb_node *nd;
2379 	struct hist_entry *pos, *pair;
2380 
2381 	if (symbol_conf.report_hierarchy) {
2382 		/* hierarchy report always collapses entries */
2383 		return hists__link_hierarchy(leader, NULL,
2384 					     &leader->entries_collapsed,
2385 					     &other->entries_collapsed);
2386 	}
2387 
2388 	if (hists__has(other, need_collapse))
2389 		root = &other->entries_collapsed;
2390 	else
2391 		root = other->entries_in;
2392 
2393 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2394 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2395 
2396 		if (!hist_entry__has_pairs(pos)) {
2397 			pair = hists__add_dummy_entry(leader, pos);
2398 			if (pair == NULL)
2399 				return -1;
2400 			hist_entry__add_pair(pos, pair);
2401 		}
2402 	}
2403 
2404 	return 0;
2405 }
2406 
2407 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2408 			  struct perf_sample *sample, bool nonany_branch_mode)
2409 {
2410 	struct branch_info *bi;
2411 
2412 	/* If we have branch cycles always annotate them. */
2413 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2414 		int i;
2415 
2416 		bi = sample__resolve_bstack(sample, al);
2417 		if (bi) {
2418 			struct addr_map_symbol *prev = NULL;
2419 
2420 			/*
2421 			 * Ignore errors, still want to process the
2422 			 * other entries.
2423 			 *
2424 			 * For non standard branch modes always
2425 			 * force no IPC (prev == NULL)
2426 			 *
2427 			 * Note that perf stores branches reversed from
2428 			 * program order!
2429 			 */
2430 			for (i = bs->nr - 1; i >= 0; i--) {
2431 				addr_map_symbol__account_cycles(&bi[i].from,
2432 					nonany_branch_mode ? NULL : prev,
2433 					bi[i].flags.cycles);
2434 				prev = &bi[i].to;
2435 			}
2436 			free(bi);
2437 		}
2438 	}
2439 }
2440 
2441 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2442 {
2443 	struct perf_evsel *pos;
2444 	size_t ret = 0;
2445 
2446 	evlist__for_each_entry(evlist, pos) {
2447 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2448 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2449 	}
2450 
2451 	return ret;
2452 }
2453 
2454 
2455 u64 hists__total_period(struct hists *hists)
2456 {
2457 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2458 		hists->stats.total_period;
2459 }
2460 
2461 int parse_filter_percentage(const struct option *opt __maybe_unused,
2462 			    const char *arg, int unset __maybe_unused)
2463 {
2464 	if (!strcmp(arg, "relative"))
2465 		symbol_conf.filter_relative = true;
2466 	else if (!strcmp(arg, "absolute"))
2467 		symbol_conf.filter_relative = false;
2468 	else {
2469 		pr_debug("Invalid percentage: %s\n", arg);
2470 		return -1;
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 int perf_hist_config(const char *var, const char *value)
2477 {
2478 	if (!strcmp(var, "hist.percentage"))
2479 		return parse_filter_percentage(NULL, value, 0);
2480 
2481 	return 0;
2482 }
2483 
2484 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2485 {
2486 	memset(hists, 0, sizeof(*hists));
2487 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2488 	hists->entries_in = &hists->entries_in_array[0];
2489 	hists->entries_collapsed = RB_ROOT;
2490 	hists->entries = RB_ROOT;
2491 	pthread_mutex_init(&hists->lock, NULL);
2492 	hists->socket_filter = -1;
2493 	hists->hpp_list = hpp_list;
2494 	INIT_LIST_HEAD(&hists->hpp_formats);
2495 	return 0;
2496 }
2497 
2498 static void hists__delete_remaining_entries(struct rb_root *root)
2499 {
2500 	struct rb_node *node;
2501 	struct hist_entry *he;
2502 
2503 	while (!RB_EMPTY_ROOT(root)) {
2504 		node = rb_first(root);
2505 		rb_erase(node, root);
2506 
2507 		he = rb_entry(node, struct hist_entry, rb_node_in);
2508 		hist_entry__delete(he);
2509 	}
2510 }
2511 
2512 static void hists__delete_all_entries(struct hists *hists)
2513 {
2514 	hists__delete_entries(hists);
2515 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2516 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2517 	hists__delete_remaining_entries(&hists->entries_collapsed);
2518 }
2519 
2520 static void hists_evsel__exit(struct perf_evsel *evsel)
2521 {
2522 	struct hists *hists = evsel__hists(evsel);
2523 	struct perf_hpp_fmt *fmt, *pos;
2524 	struct perf_hpp_list_node *node, *tmp;
2525 
2526 	hists__delete_all_entries(hists);
2527 
2528 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2529 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2530 			list_del(&fmt->list);
2531 			free(fmt);
2532 		}
2533 		list_del(&node->list);
2534 		free(node);
2535 	}
2536 }
2537 
2538 static int hists_evsel__init(struct perf_evsel *evsel)
2539 {
2540 	struct hists *hists = evsel__hists(evsel);
2541 
2542 	__hists__init(hists, &perf_hpp_list);
2543 	return 0;
2544 }
2545 
2546 /*
2547  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2548  * stored in the rbtree...
2549  */
2550 
2551 int hists__init(void)
2552 {
2553 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2554 					    hists_evsel__init,
2555 					    hists_evsel__exit);
2556 	if (err)
2557 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2558 
2559 	return err;
2560 }
2561 
2562 void perf_hpp_list__init(struct perf_hpp_list *list)
2563 {
2564 	INIT_LIST_HEAD(&list->fields);
2565 	INIT_LIST_HEAD(&list->sorts);
2566 }
2567