xref: /openbmc/linux/tools/perf/util/hist.c (revision 8ec90bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "callchain.h"
3 #include "debug.h"
4 #include "dso.h"
5 #include "build-id.h"
6 #include "hist.h"
7 #include "map.h"
8 #include "map_symbol.h"
9 #include "branch.h"
10 #include "mem-events.h"
11 #include "session.h"
12 #include "namespaces.h"
13 #include "cgroup.h"
14 #include "sort.h"
15 #include "units.h"
16 #include "evlist.h"
17 #include "evsel.h"
18 #include "annotate.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "thread.h"
22 #include "block-info.h"
23 #include "ui/progress.h"
24 #include <errno.h>
25 #include <math.h>
26 #include <inttypes.h>
27 #include <sys/param.h>
28 #include <linux/rbtree.h>
29 #include <linux/string.h>
30 #include <linux/time64.h>
31 #include <linux/zalloc.h>
32 
33 static bool hists__filter_entry_by_dso(struct hists *hists,
34 				       struct hist_entry *he);
35 static bool hists__filter_entry_by_thread(struct hists *hists,
36 					  struct hist_entry *he);
37 static bool hists__filter_entry_by_symbol(struct hists *hists,
38 					  struct hist_entry *he);
39 static bool hists__filter_entry_by_socket(struct hists *hists,
40 					  struct hist_entry *he);
41 
42 u16 hists__col_len(struct hists *hists, enum hist_column col)
43 {
44 	return hists->col_len[col];
45 }
46 
47 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
48 {
49 	hists->col_len[col] = len;
50 }
51 
52 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
53 {
54 	if (len > hists__col_len(hists, col)) {
55 		hists__set_col_len(hists, col, len);
56 		return true;
57 	}
58 	return false;
59 }
60 
61 void hists__reset_col_len(struct hists *hists)
62 {
63 	enum hist_column col;
64 
65 	for (col = 0; col < HISTC_NR_COLS; ++col)
66 		hists__set_col_len(hists, col, 0);
67 }
68 
69 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
70 {
71 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
72 
73 	if (hists__col_len(hists, dso) < unresolved_col_width &&
74 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
75 	    !symbol_conf.dso_list)
76 		hists__set_col_len(hists, dso, unresolved_col_width);
77 }
78 
79 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
80 {
81 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
82 	int symlen;
83 	u16 len;
84 
85 	if (h->block_info)
86 		return;
87 	/*
88 	 * +4 accounts for '[x] ' priv level info
89 	 * +2 accounts for 0x prefix on raw addresses
90 	 * +3 accounts for ' y ' symtab origin info
91 	 */
92 	if (h->ms.sym) {
93 		symlen = h->ms.sym->namelen + 4;
94 		if (verbose > 0)
95 			symlen += BITS_PER_LONG / 4 + 2 + 3;
96 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
97 	} else {
98 		symlen = unresolved_col_width + 4 + 2;
99 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
100 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
101 	}
102 
103 	len = thread__comm_len(h->thread);
104 	if (hists__new_col_len(hists, HISTC_COMM, len))
105 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
106 
107 	if (h->ms.map) {
108 		len = dso__name_len(h->ms.map->dso);
109 		hists__new_col_len(hists, HISTC_DSO, len);
110 	}
111 
112 	if (h->parent)
113 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
114 
115 	if (h->branch_info) {
116 		if (h->branch_info->from.ms.sym) {
117 			symlen = (int)h->branch_info->from.ms.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->from.ms.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
128 		}
129 
130 		if (h->branch_info->to.ms.sym) {
131 			symlen = (int)h->branch_info->to.ms.sym->namelen + 4;
132 			if (verbose > 0)
133 				symlen += BITS_PER_LONG / 4 + 2 + 3;
134 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
135 
136 			symlen = dso__name_len(h->branch_info->to.ms.map->dso);
137 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
138 		} else {
139 			symlen = unresolved_col_width + 4 + 2;
140 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
141 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
142 		}
143 
144 		if (h->branch_info->srcline_from)
145 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
146 					strlen(h->branch_info->srcline_from));
147 		if (h->branch_info->srcline_to)
148 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
149 					strlen(h->branch_info->srcline_to));
150 	}
151 
152 	if (h->mem_info) {
153 		if (h->mem_info->daddr.ms.sym) {
154 			symlen = (int)h->mem_info->daddr.ms.sym->namelen + 4
155 			       + unresolved_col_width + 2;
156 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
157 					   symlen);
158 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
159 					   symlen + 1);
160 		} else {
161 			symlen = unresolved_col_width + 4 + 2;
162 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
163 					   symlen);
164 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
165 					   symlen);
166 		}
167 
168 		if (h->mem_info->iaddr.ms.sym) {
169 			symlen = (int)h->mem_info->iaddr.ms.sym->namelen + 4
170 			       + unresolved_col_width + 2;
171 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
172 					   symlen);
173 		} else {
174 			symlen = unresolved_col_width + 4 + 2;
175 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
176 					   symlen);
177 		}
178 
179 		if (h->mem_info->daddr.ms.map) {
180 			symlen = dso__name_len(h->mem_info->daddr.ms.map->dso);
181 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
182 					   symlen);
183 		} else {
184 			symlen = unresolved_col_width + 4 + 2;
185 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
186 		}
187 
188 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
189 				   unresolved_col_width + 4 + 2);
190 
191 	} else {
192 		symlen = unresolved_col_width + 4 + 2;
193 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
194 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
195 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
196 	}
197 
198 	hists__new_col_len(hists, HISTC_CGROUP, 6);
199 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
200 	hists__new_col_len(hists, HISTC_CPU, 3);
201 	hists__new_col_len(hists, HISTC_SOCKET, 6);
202 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
203 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
204 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
205 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
206 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
207 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
208 	if (symbol_conf.nanosecs)
209 		hists__new_col_len(hists, HISTC_TIME, 16);
210 	else
211 		hists__new_col_len(hists, HISTC_TIME, 12);
212 
213 	if (h->srcline) {
214 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
215 		hists__new_col_len(hists, HISTC_SRCLINE, len);
216 	}
217 
218 	if (h->srcfile)
219 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
220 
221 	if (h->transaction)
222 		hists__new_col_len(hists, HISTC_TRANSACTION,
223 				   hist_entry__transaction_len());
224 
225 	if (h->trace_output)
226 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
227 
228 	if (h->cgroup) {
229 		const char *cgrp_name = "unknown";
230 		struct cgroup *cgrp = cgroup__find(h->ms.maps->machine->env,
231 						   h->cgroup);
232 		if (cgrp != NULL)
233 			cgrp_name = cgrp->name;
234 
235 		hists__new_col_len(hists, HISTC_CGROUP, strlen(cgrp_name));
236 	}
237 }
238 
239 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
240 {
241 	struct rb_node *next = rb_first_cached(&hists->entries);
242 	struct hist_entry *n;
243 	int row = 0;
244 
245 	hists__reset_col_len(hists);
246 
247 	while (next && row++ < max_rows) {
248 		n = rb_entry(next, struct hist_entry, rb_node);
249 		if (!n->filtered)
250 			hists__calc_col_len(hists, n);
251 		next = rb_next(&n->rb_node);
252 	}
253 }
254 
255 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
256 					unsigned int cpumode, u64 period)
257 {
258 	switch (cpumode) {
259 	case PERF_RECORD_MISC_KERNEL:
260 		he_stat->period_sys += period;
261 		break;
262 	case PERF_RECORD_MISC_USER:
263 		he_stat->period_us += period;
264 		break;
265 	case PERF_RECORD_MISC_GUEST_KERNEL:
266 		he_stat->period_guest_sys += period;
267 		break;
268 	case PERF_RECORD_MISC_GUEST_USER:
269 		he_stat->period_guest_us += period;
270 		break;
271 	default:
272 		break;
273 	}
274 }
275 
276 static long hist_time(unsigned long htime)
277 {
278 	unsigned long time_quantum = symbol_conf.time_quantum;
279 	if (time_quantum)
280 		return (htime / time_quantum) * time_quantum;
281 	return htime;
282 }
283 
284 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
285 				u64 weight)
286 {
287 
288 	he_stat->period		+= period;
289 	he_stat->weight		+= weight;
290 	he_stat->nr_events	+= 1;
291 }
292 
293 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
294 {
295 	dest->period		+= src->period;
296 	dest->period_sys	+= src->period_sys;
297 	dest->period_us		+= src->period_us;
298 	dest->period_guest_sys	+= src->period_guest_sys;
299 	dest->period_guest_us	+= src->period_guest_us;
300 	dest->nr_events		+= src->nr_events;
301 	dest->weight		+= src->weight;
302 }
303 
304 static void he_stat__decay(struct he_stat *he_stat)
305 {
306 	he_stat->period = (he_stat->period * 7) / 8;
307 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
308 	/* XXX need decay for weight too? */
309 }
310 
311 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
312 
313 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
314 {
315 	u64 prev_period = he->stat.period;
316 	u64 diff;
317 
318 	if (prev_period == 0)
319 		return true;
320 
321 	he_stat__decay(&he->stat);
322 	if (symbol_conf.cumulate_callchain)
323 		he_stat__decay(he->stat_acc);
324 	decay_callchain(he->callchain);
325 
326 	diff = prev_period - he->stat.period;
327 
328 	if (!he->depth) {
329 		hists->stats.total_period -= diff;
330 		if (!he->filtered)
331 			hists->stats.total_non_filtered_period -= diff;
332 	}
333 
334 	if (!he->leaf) {
335 		struct hist_entry *child;
336 		struct rb_node *node = rb_first_cached(&he->hroot_out);
337 		while (node) {
338 			child = rb_entry(node, struct hist_entry, rb_node);
339 			node = rb_next(node);
340 
341 			if (hists__decay_entry(hists, child))
342 				hists__delete_entry(hists, child);
343 		}
344 	}
345 
346 	return he->stat.period == 0;
347 }
348 
349 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
350 {
351 	struct rb_root_cached *root_in;
352 	struct rb_root_cached *root_out;
353 
354 	if (he->parent_he) {
355 		root_in  = &he->parent_he->hroot_in;
356 		root_out = &he->parent_he->hroot_out;
357 	} else {
358 		if (hists__has(hists, need_collapse))
359 			root_in = &hists->entries_collapsed;
360 		else
361 			root_in = hists->entries_in;
362 		root_out = &hists->entries;
363 	}
364 
365 	rb_erase_cached(&he->rb_node_in, root_in);
366 	rb_erase_cached(&he->rb_node, root_out);
367 
368 	--hists->nr_entries;
369 	if (!he->filtered)
370 		--hists->nr_non_filtered_entries;
371 
372 	hist_entry__delete(he);
373 }
374 
375 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
376 {
377 	struct rb_node *next = rb_first_cached(&hists->entries);
378 	struct hist_entry *n;
379 
380 	while (next) {
381 		n = rb_entry(next, struct hist_entry, rb_node);
382 		next = rb_next(&n->rb_node);
383 		if (((zap_user && n->level == '.') ||
384 		     (zap_kernel && n->level != '.') ||
385 		     hists__decay_entry(hists, n))) {
386 			hists__delete_entry(hists, n);
387 		}
388 	}
389 }
390 
391 void hists__delete_entries(struct hists *hists)
392 {
393 	struct rb_node *next = rb_first_cached(&hists->entries);
394 	struct hist_entry *n;
395 
396 	while (next) {
397 		n = rb_entry(next, struct hist_entry, rb_node);
398 		next = rb_next(&n->rb_node);
399 
400 		hists__delete_entry(hists, n);
401 	}
402 }
403 
404 struct hist_entry *hists__get_entry(struct hists *hists, int idx)
405 {
406 	struct rb_node *next = rb_first_cached(&hists->entries);
407 	struct hist_entry *n;
408 	int i = 0;
409 
410 	while (next) {
411 		n = rb_entry(next, struct hist_entry, rb_node);
412 		if (i == idx)
413 			return n;
414 
415 		next = rb_next(&n->rb_node);
416 		i++;
417 	}
418 
419 	return NULL;
420 }
421 
422 /*
423  * histogram, sorted on item, collects periods
424  */
425 
426 static int hist_entry__init(struct hist_entry *he,
427 			    struct hist_entry *template,
428 			    bool sample_self,
429 			    size_t callchain_size)
430 {
431 	*he = *template;
432 	he->callchain_size = callchain_size;
433 
434 	if (symbol_conf.cumulate_callchain) {
435 		he->stat_acc = malloc(sizeof(he->stat));
436 		if (he->stat_acc == NULL)
437 			return -ENOMEM;
438 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
439 		if (!sample_self)
440 			memset(&he->stat, 0, sizeof(he->stat));
441 	}
442 
443 	map__get(he->ms.map);
444 
445 	if (he->branch_info) {
446 		/*
447 		 * This branch info is (a part of) allocated from
448 		 * sample__resolve_bstack() and will be freed after
449 		 * adding new entries.  So we need to save a copy.
450 		 */
451 		he->branch_info = malloc(sizeof(*he->branch_info));
452 		if (he->branch_info == NULL)
453 			goto err;
454 
455 		memcpy(he->branch_info, template->branch_info,
456 		       sizeof(*he->branch_info));
457 
458 		map__get(he->branch_info->from.ms.map);
459 		map__get(he->branch_info->to.ms.map);
460 	}
461 
462 	if (he->mem_info) {
463 		map__get(he->mem_info->iaddr.ms.map);
464 		map__get(he->mem_info->daddr.ms.map);
465 	}
466 
467 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
468 		callchain_init(he->callchain);
469 
470 	if (he->raw_data) {
471 		he->raw_data = memdup(he->raw_data, he->raw_size);
472 		if (he->raw_data == NULL)
473 			goto err_infos;
474 	}
475 
476 	if (he->srcline) {
477 		he->srcline = strdup(he->srcline);
478 		if (he->srcline == NULL)
479 			goto err_rawdata;
480 	}
481 
482 	if (symbol_conf.res_sample) {
483 		he->res_samples = calloc(sizeof(struct res_sample),
484 					symbol_conf.res_sample);
485 		if (!he->res_samples)
486 			goto err_srcline;
487 	}
488 
489 	INIT_LIST_HEAD(&he->pairs.node);
490 	thread__get(he->thread);
491 	he->hroot_in  = RB_ROOT_CACHED;
492 	he->hroot_out = RB_ROOT_CACHED;
493 
494 	if (!symbol_conf.report_hierarchy)
495 		he->leaf = true;
496 
497 	return 0;
498 
499 err_srcline:
500 	zfree(&he->srcline);
501 
502 err_rawdata:
503 	zfree(&he->raw_data);
504 
505 err_infos:
506 	if (he->branch_info) {
507 		map__put(he->branch_info->from.ms.map);
508 		map__put(he->branch_info->to.ms.map);
509 		zfree(&he->branch_info);
510 	}
511 	if (he->mem_info) {
512 		map__put(he->mem_info->iaddr.ms.map);
513 		map__put(he->mem_info->daddr.ms.map);
514 	}
515 err:
516 	map__zput(he->ms.map);
517 	zfree(&he->stat_acc);
518 	return -ENOMEM;
519 }
520 
521 static void *hist_entry__zalloc(size_t size)
522 {
523 	return zalloc(size + sizeof(struct hist_entry));
524 }
525 
526 static void hist_entry__free(void *ptr)
527 {
528 	free(ptr);
529 }
530 
531 static struct hist_entry_ops default_ops = {
532 	.new	= hist_entry__zalloc,
533 	.free	= hist_entry__free,
534 };
535 
536 static struct hist_entry *hist_entry__new(struct hist_entry *template,
537 					  bool sample_self)
538 {
539 	struct hist_entry_ops *ops = template->ops;
540 	size_t callchain_size = 0;
541 	struct hist_entry *he;
542 	int err = 0;
543 
544 	if (!ops)
545 		ops = template->ops = &default_ops;
546 
547 	if (symbol_conf.use_callchain)
548 		callchain_size = sizeof(struct callchain_root);
549 
550 	he = ops->new(callchain_size);
551 	if (he) {
552 		err = hist_entry__init(he, template, sample_self, callchain_size);
553 		if (err) {
554 			ops->free(he);
555 			he = NULL;
556 		}
557 	}
558 
559 	return he;
560 }
561 
562 static u8 symbol__parent_filter(const struct symbol *parent)
563 {
564 	if (symbol_conf.exclude_other && parent == NULL)
565 		return 1 << HIST_FILTER__PARENT;
566 	return 0;
567 }
568 
569 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
570 {
571 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
572 		return;
573 
574 	he->hists->callchain_period += period;
575 	if (!he->filtered)
576 		he->hists->callchain_non_filtered_period += period;
577 }
578 
579 static struct hist_entry *hists__findnew_entry(struct hists *hists,
580 					       struct hist_entry *entry,
581 					       struct addr_location *al,
582 					       bool sample_self)
583 {
584 	struct rb_node **p;
585 	struct rb_node *parent = NULL;
586 	struct hist_entry *he;
587 	int64_t cmp;
588 	u64 period = entry->stat.period;
589 	u64 weight = entry->stat.weight;
590 	bool leftmost = true;
591 
592 	p = &hists->entries_in->rb_root.rb_node;
593 
594 	while (*p != NULL) {
595 		parent = *p;
596 		he = rb_entry(parent, struct hist_entry, rb_node_in);
597 
598 		/*
599 		 * Make sure that it receives arguments in a same order as
600 		 * hist_entry__collapse() so that we can use an appropriate
601 		 * function when searching an entry regardless which sort
602 		 * keys were used.
603 		 */
604 		cmp = hist_entry__cmp(he, entry);
605 
606 		if (!cmp) {
607 			if (sample_self) {
608 				he_stat__add_period(&he->stat, period, weight);
609 				hist_entry__add_callchain_period(he, period);
610 			}
611 			if (symbol_conf.cumulate_callchain)
612 				he_stat__add_period(he->stat_acc, period, weight);
613 
614 			/*
615 			 * This mem info was allocated from sample__resolve_mem
616 			 * and will not be used anymore.
617 			 */
618 			mem_info__zput(entry->mem_info);
619 
620 			block_info__zput(entry->block_info);
621 
622 			/* If the map of an existing hist_entry has
623 			 * become out-of-date due to an exec() or
624 			 * similar, update it.  Otherwise we will
625 			 * mis-adjust symbol addresses when computing
626 			 * the history counter to increment.
627 			 */
628 			if (he->ms.map != entry->ms.map) {
629 				map__put(he->ms.map);
630 				he->ms.map = map__get(entry->ms.map);
631 			}
632 			goto out;
633 		}
634 
635 		if (cmp < 0)
636 			p = &(*p)->rb_left;
637 		else {
638 			p = &(*p)->rb_right;
639 			leftmost = false;
640 		}
641 	}
642 
643 	he = hist_entry__new(entry, sample_self);
644 	if (!he)
645 		return NULL;
646 
647 	if (sample_self)
648 		hist_entry__add_callchain_period(he, period);
649 	hists->nr_entries++;
650 
651 	rb_link_node(&he->rb_node_in, parent, p);
652 	rb_insert_color_cached(&he->rb_node_in, hists->entries_in, leftmost);
653 out:
654 	if (sample_self)
655 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
656 	if (symbol_conf.cumulate_callchain)
657 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
658 	return he;
659 }
660 
661 static unsigned random_max(unsigned high)
662 {
663 	unsigned thresh = -high % high;
664 	for (;;) {
665 		unsigned r = random();
666 		if (r >= thresh)
667 			return r % high;
668 	}
669 }
670 
671 static void hists__res_sample(struct hist_entry *he, struct perf_sample *sample)
672 {
673 	struct res_sample *r;
674 	int j;
675 
676 	if (he->num_res < symbol_conf.res_sample) {
677 		j = he->num_res++;
678 	} else {
679 		j = random_max(symbol_conf.res_sample);
680 	}
681 	r = &he->res_samples[j];
682 	r->time = sample->time;
683 	r->cpu = sample->cpu;
684 	r->tid = sample->tid;
685 }
686 
687 static struct hist_entry*
688 __hists__add_entry(struct hists *hists,
689 		   struct addr_location *al,
690 		   struct symbol *sym_parent,
691 		   struct branch_info *bi,
692 		   struct mem_info *mi,
693 		   struct block_info *block_info,
694 		   struct perf_sample *sample,
695 		   bool sample_self,
696 		   struct hist_entry_ops *ops)
697 {
698 	struct namespaces *ns = thread__namespaces(al->thread);
699 	struct hist_entry entry = {
700 		.thread	= al->thread,
701 		.comm = thread__comm(al->thread),
702 		.cgroup_id = {
703 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
704 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
705 		},
706 		.cgroup = sample->cgroup,
707 		.ms = {
708 			.maps	= al->maps,
709 			.map	= al->map,
710 			.sym	= al->sym,
711 		},
712 		.srcline = (char *) al->srcline,
713 		.socket	 = al->socket,
714 		.cpu	 = al->cpu,
715 		.cpumode = al->cpumode,
716 		.ip	 = al->addr,
717 		.level	 = al->level,
718 		.stat = {
719 			.nr_events = 1,
720 			.period	= sample->period,
721 			.weight = sample->weight,
722 		},
723 		.parent = sym_parent,
724 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
725 		.hists	= hists,
726 		.branch_info = bi,
727 		.mem_info = mi,
728 		.block_info = block_info,
729 		.transaction = sample->transaction,
730 		.raw_data = sample->raw_data,
731 		.raw_size = sample->raw_size,
732 		.ops = ops,
733 		.time = hist_time(sample->time),
734 	}, *he = hists__findnew_entry(hists, &entry, al, sample_self);
735 
736 	if (!hists->has_callchains && he && he->callchain_size != 0)
737 		hists->has_callchains = true;
738 	if (he && symbol_conf.res_sample)
739 		hists__res_sample(he, sample);
740 	return he;
741 }
742 
743 struct hist_entry *hists__add_entry(struct hists *hists,
744 				    struct addr_location *al,
745 				    struct symbol *sym_parent,
746 				    struct branch_info *bi,
747 				    struct mem_info *mi,
748 				    struct perf_sample *sample,
749 				    bool sample_self)
750 {
751 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
752 				  sample, sample_self, NULL);
753 }
754 
755 struct hist_entry *hists__add_entry_ops(struct hists *hists,
756 					struct hist_entry_ops *ops,
757 					struct addr_location *al,
758 					struct symbol *sym_parent,
759 					struct branch_info *bi,
760 					struct mem_info *mi,
761 					struct perf_sample *sample,
762 					bool sample_self)
763 {
764 	return __hists__add_entry(hists, al, sym_parent, bi, mi, NULL,
765 				  sample, sample_self, ops);
766 }
767 
768 struct hist_entry *hists__add_entry_block(struct hists *hists,
769 					  struct addr_location *al,
770 					  struct block_info *block_info)
771 {
772 	struct hist_entry entry = {
773 		.block_info = block_info,
774 		.hists = hists,
775 		.ms = {
776 			.maps = al->maps,
777 			.map = al->map,
778 			.sym = al->sym,
779 		},
780 	}, *he = hists__findnew_entry(hists, &entry, al, false);
781 
782 	return he;
783 }
784 
785 static int
786 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
787 		    struct addr_location *al __maybe_unused)
788 {
789 	return 0;
790 }
791 
792 static int
793 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
794 			struct addr_location *al __maybe_unused)
795 {
796 	return 0;
797 }
798 
799 static int
800 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
801 {
802 	struct perf_sample *sample = iter->sample;
803 	struct mem_info *mi;
804 
805 	mi = sample__resolve_mem(sample, al);
806 	if (mi == NULL)
807 		return -ENOMEM;
808 
809 	iter->priv = mi;
810 	return 0;
811 }
812 
813 static int
814 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
815 {
816 	u64 cost;
817 	struct mem_info *mi = iter->priv;
818 	struct hists *hists = evsel__hists(iter->evsel);
819 	struct perf_sample *sample = iter->sample;
820 	struct hist_entry *he;
821 
822 	if (mi == NULL)
823 		return -EINVAL;
824 
825 	cost = sample->weight;
826 	if (!cost)
827 		cost = 1;
828 
829 	/*
830 	 * must pass period=weight in order to get the correct
831 	 * sorting from hists__collapse_resort() which is solely
832 	 * based on periods. We want sorting be done on nr_events * weight
833 	 * and this is indirectly achieved by passing period=weight here
834 	 * and the he_stat__add_period() function.
835 	 */
836 	sample->period = cost;
837 
838 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
839 			      sample, true);
840 	if (!he)
841 		return -ENOMEM;
842 
843 	iter->he = he;
844 	return 0;
845 }
846 
847 static int
848 iter_finish_mem_entry(struct hist_entry_iter *iter,
849 		      struct addr_location *al __maybe_unused)
850 {
851 	struct evsel *evsel = iter->evsel;
852 	struct hists *hists = evsel__hists(evsel);
853 	struct hist_entry *he = iter->he;
854 	int err = -EINVAL;
855 
856 	if (he == NULL)
857 		goto out;
858 
859 	hists__inc_nr_samples(hists, he->filtered);
860 
861 	err = hist_entry__append_callchain(he, iter->sample);
862 
863 out:
864 	/*
865 	 * We don't need to free iter->priv (mem_info) here since the mem info
866 	 * was either already freed in hists__findnew_entry() or passed to a
867 	 * new hist entry by hist_entry__new().
868 	 */
869 	iter->priv = NULL;
870 
871 	iter->he = NULL;
872 	return err;
873 }
874 
875 static int
876 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
877 {
878 	struct branch_info *bi;
879 	struct perf_sample *sample = iter->sample;
880 
881 	bi = sample__resolve_bstack(sample, al);
882 	if (!bi)
883 		return -ENOMEM;
884 
885 	iter->curr = 0;
886 	iter->total = sample->branch_stack->nr;
887 
888 	iter->priv = bi;
889 	return 0;
890 }
891 
892 static int
893 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
894 			     struct addr_location *al __maybe_unused)
895 {
896 	return 0;
897 }
898 
899 static int
900 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
901 {
902 	struct branch_info *bi = iter->priv;
903 	int i = iter->curr;
904 
905 	if (bi == NULL)
906 		return 0;
907 
908 	if (iter->curr >= iter->total)
909 		return 0;
910 
911 	al->maps = bi[i].to.ms.maps;
912 	al->map = bi[i].to.ms.map;
913 	al->sym = bi[i].to.ms.sym;
914 	al->addr = bi[i].to.addr;
915 	return 1;
916 }
917 
918 static int
919 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
920 {
921 	struct branch_info *bi;
922 	struct evsel *evsel = iter->evsel;
923 	struct hists *hists = evsel__hists(evsel);
924 	struct perf_sample *sample = iter->sample;
925 	struct hist_entry *he = NULL;
926 	int i = iter->curr;
927 	int err = 0;
928 
929 	bi = iter->priv;
930 
931 	if (iter->hide_unresolved && !(bi[i].from.ms.sym && bi[i].to.ms.sym))
932 		goto out;
933 
934 	/*
935 	 * The report shows the percentage of total branches captured
936 	 * and not events sampled. Thus we use a pseudo period of 1.
937 	 */
938 	sample->period = 1;
939 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
940 
941 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
942 			      sample, true);
943 	if (he == NULL)
944 		return -ENOMEM;
945 
946 	hists__inc_nr_samples(hists, he->filtered);
947 
948 out:
949 	iter->he = he;
950 	iter->curr++;
951 	return err;
952 }
953 
954 static int
955 iter_finish_branch_entry(struct hist_entry_iter *iter,
956 			 struct addr_location *al __maybe_unused)
957 {
958 	zfree(&iter->priv);
959 	iter->he = NULL;
960 
961 	return iter->curr >= iter->total ? 0 : -1;
962 }
963 
964 static int
965 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
966 			  struct addr_location *al __maybe_unused)
967 {
968 	return 0;
969 }
970 
971 static int
972 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
973 {
974 	struct evsel *evsel = iter->evsel;
975 	struct perf_sample *sample = iter->sample;
976 	struct hist_entry *he;
977 
978 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
979 			      sample, true);
980 	if (he == NULL)
981 		return -ENOMEM;
982 
983 	iter->he = he;
984 	return 0;
985 }
986 
987 static int
988 iter_finish_normal_entry(struct hist_entry_iter *iter,
989 			 struct addr_location *al __maybe_unused)
990 {
991 	struct hist_entry *he = iter->he;
992 	struct evsel *evsel = iter->evsel;
993 	struct perf_sample *sample = iter->sample;
994 
995 	if (he == NULL)
996 		return 0;
997 
998 	iter->he = NULL;
999 
1000 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
1001 
1002 	return hist_entry__append_callchain(he, sample);
1003 }
1004 
1005 static int
1006 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
1007 			      struct addr_location *al __maybe_unused)
1008 {
1009 	struct hist_entry **he_cache;
1010 
1011 	callchain_cursor_commit(&callchain_cursor);
1012 
1013 	/*
1014 	 * This is for detecting cycles or recursions so that they're
1015 	 * cumulated only one time to prevent entries more than 100%
1016 	 * overhead.
1017 	 */
1018 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
1019 	if (he_cache == NULL)
1020 		return -ENOMEM;
1021 
1022 	iter->priv = he_cache;
1023 	iter->curr = 0;
1024 
1025 	return 0;
1026 }
1027 
1028 static int
1029 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
1030 				 struct addr_location *al)
1031 {
1032 	struct evsel *evsel = iter->evsel;
1033 	struct hists *hists = evsel__hists(evsel);
1034 	struct perf_sample *sample = iter->sample;
1035 	struct hist_entry **he_cache = iter->priv;
1036 	struct hist_entry *he;
1037 	int err = 0;
1038 
1039 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
1040 			      sample, true);
1041 	if (he == NULL)
1042 		return -ENOMEM;
1043 
1044 	iter->he = he;
1045 	he_cache[iter->curr++] = he;
1046 
1047 	hist_entry__append_callchain(he, sample);
1048 
1049 	/*
1050 	 * We need to re-initialize the cursor since callchain_append()
1051 	 * advanced the cursor to the end.
1052 	 */
1053 	callchain_cursor_commit(&callchain_cursor);
1054 
1055 	hists__inc_nr_samples(hists, he->filtered);
1056 
1057 	return err;
1058 }
1059 
1060 static int
1061 iter_next_cumulative_entry(struct hist_entry_iter *iter,
1062 			   struct addr_location *al)
1063 {
1064 	struct callchain_cursor_node *node;
1065 
1066 	node = callchain_cursor_current(&callchain_cursor);
1067 	if (node == NULL)
1068 		return 0;
1069 
1070 	return fill_callchain_info(al, node, iter->hide_unresolved);
1071 }
1072 
1073 static bool
1074 hist_entry__fast__sym_diff(struct hist_entry *left,
1075 			   struct hist_entry *right)
1076 {
1077 	struct symbol *sym_l = left->ms.sym;
1078 	struct symbol *sym_r = right->ms.sym;
1079 
1080 	if (!sym_l && !sym_r)
1081 		return left->ip != right->ip;
1082 
1083 	return !!_sort__sym_cmp(sym_l, sym_r);
1084 }
1085 
1086 
1087 static int
1088 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
1089 			       struct addr_location *al)
1090 {
1091 	struct evsel *evsel = iter->evsel;
1092 	struct perf_sample *sample = iter->sample;
1093 	struct hist_entry **he_cache = iter->priv;
1094 	struct hist_entry *he;
1095 	struct hist_entry he_tmp = {
1096 		.hists = evsel__hists(evsel),
1097 		.cpu = al->cpu,
1098 		.thread = al->thread,
1099 		.comm = thread__comm(al->thread),
1100 		.ip = al->addr,
1101 		.ms = {
1102 			.maps = al->maps,
1103 			.map = al->map,
1104 			.sym = al->sym,
1105 		},
1106 		.srcline = (char *) al->srcline,
1107 		.parent = iter->parent,
1108 		.raw_data = sample->raw_data,
1109 		.raw_size = sample->raw_size,
1110 	};
1111 	int i;
1112 	struct callchain_cursor cursor;
1113 	bool fast = hists__has(he_tmp.hists, sym);
1114 
1115 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
1116 
1117 	callchain_cursor_advance(&callchain_cursor);
1118 
1119 	/*
1120 	 * Check if there's duplicate entries in the callchain.
1121 	 * It's possible that it has cycles or recursive calls.
1122 	 */
1123 	for (i = 0; i < iter->curr; i++) {
1124 		/*
1125 		 * For most cases, there are no duplicate entries in callchain.
1126 		 * The symbols are usually different. Do a quick check for
1127 		 * symbols first.
1128 		 */
1129 		if (fast && hist_entry__fast__sym_diff(he_cache[i], &he_tmp))
1130 			continue;
1131 
1132 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
1133 			/* to avoid calling callback function */
1134 			iter->he = NULL;
1135 			return 0;
1136 		}
1137 	}
1138 
1139 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
1140 			      sample, false);
1141 	if (he == NULL)
1142 		return -ENOMEM;
1143 
1144 	iter->he = he;
1145 	he_cache[iter->curr++] = he;
1146 
1147 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
1148 		callchain_append(he->callchain, &cursor, sample->period);
1149 	return 0;
1150 }
1151 
1152 static int
1153 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1154 			     struct addr_location *al __maybe_unused)
1155 {
1156 	zfree(&iter->priv);
1157 	iter->he = NULL;
1158 
1159 	return 0;
1160 }
1161 
1162 const struct hist_iter_ops hist_iter_mem = {
1163 	.prepare_entry 		= iter_prepare_mem_entry,
1164 	.add_single_entry 	= iter_add_single_mem_entry,
1165 	.next_entry 		= iter_next_nop_entry,
1166 	.add_next_entry 	= iter_add_next_nop_entry,
1167 	.finish_entry 		= iter_finish_mem_entry,
1168 };
1169 
1170 const struct hist_iter_ops hist_iter_branch = {
1171 	.prepare_entry 		= iter_prepare_branch_entry,
1172 	.add_single_entry 	= iter_add_single_branch_entry,
1173 	.next_entry 		= iter_next_branch_entry,
1174 	.add_next_entry 	= iter_add_next_branch_entry,
1175 	.finish_entry 		= iter_finish_branch_entry,
1176 };
1177 
1178 const struct hist_iter_ops hist_iter_normal = {
1179 	.prepare_entry 		= iter_prepare_normal_entry,
1180 	.add_single_entry 	= iter_add_single_normal_entry,
1181 	.next_entry 		= iter_next_nop_entry,
1182 	.add_next_entry 	= iter_add_next_nop_entry,
1183 	.finish_entry 		= iter_finish_normal_entry,
1184 };
1185 
1186 const struct hist_iter_ops hist_iter_cumulative = {
1187 	.prepare_entry 		= iter_prepare_cumulative_entry,
1188 	.add_single_entry 	= iter_add_single_cumulative_entry,
1189 	.next_entry 		= iter_next_cumulative_entry,
1190 	.add_next_entry 	= iter_add_next_cumulative_entry,
1191 	.finish_entry 		= iter_finish_cumulative_entry,
1192 };
1193 
1194 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1195 			 int max_stack_depth, void *arg)
1196 {
1197 	int err, err2;
1198 	struct map *alm = NULL;
1199 
1200 	if (al)
1201 		alm = map__get(al->map);
1202 
1203 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1204 					iter->evsel, al, max_stack_depth);
1205 	if (err) {
1206 		map__put(alm);
1207 		return err;
1208 	}
1209 
1210 	err = iter->ops->prepare_entry(iter, al);
1211 	if (err)
1212 		goto out;
1213 
1214 	err = iter->ops->add_single_entry(iter, al);
1215 	if (err)
1216 		goto out;
1217 
1218 	if (iter->he && iter->add_entry_cb) {
1219 		err = iter->add_entry_cb(iter, al, true, arg);
1220 		if (err)
1221 			goto out;
1222 	}
1223 
1224 	while (iter->ops->next_entry(iter, al)) {
1225 		err = iter->ops->add_next_entry(iter, al);
1226 		if (err)
1227 			break;
1228 
1229 		if (iter->he && iter->add_entry_cb) {
1230 			err = iter->add_entry_cb(iter, al, false, arg);
1231 			if (err)
1232 				goto out;
1233 		}
1234 	}
1235 
1236 out:
1237 	err2 = iter->ops->finish_entry(iter, al);
1238 	if (!err)
1239 		err = err2;
1240 
1241 	map__put(alm);
1242 
1243 	return err;
1244 }
1245 
1246 int64_t
1247 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1248 {
1249 	struct hists *hists = left->hists;
1250 	struct perf_hpp_fmt *fmt;
1251 	int64_t cmp = 0;
1252 
1253 	hists__for_each_sort_list(hists, fmt) {
1254 		if (perf_hpp__is_dynamic_entry(fmt) &&
1255 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1256 			continue;
1257 
1258 		cmp = fmt->cmp(fmt, left, right);
1259 		if (cmp)
1260 			break;
1261 	}
1262 
1263 	return cmp;
1264 }
1265 
1266 int64_t
1267 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1268 {
1269 	struct hists *hists = left->hists;
1270 	struct perf_hpp_fmt *fmt;
1271 	int64_t cmp = 0;
1272 
1273 	hists__for_each_sort_list(hists, fmt) {
1274 		if (perf_hpp__is_dynamic_entry(fmt) &&
1275 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1276 			continue;
1277 
1278 		cmp = fmt->collapse(fmt, left, right);
1279 		if (cmp)
1280 			break;
1281 	}
1282 
1283 	return cmp;
1284 }
1285 
1286 void hist_entry__delete(struct hist_entry *he)
1287 {
1288 	struct hist_entry_ops *ops = he->ops;
1289 
1290 	thread__zput(he->thread);
1291 	map__zput(he->ms.map);
1292 
1293 	if (he->branch_info) {
1294 		map__zput(he->branch_info->from.ms.map);
1295 		map__zput(he->branch_info->to.ms.map);
1296 		free_srcline(he->branch_info->srcline_from);
1297 		free_srcline(he->branch_info->srcline_to);
1298 		zfree(&he->branch_info);
1299 	}
1300 
1301 	if (he->mem_info) {
1302 		map__zput(he->mem_info->iaddr.ms.map);
1303 		map__zput(he->mem_info->daddr.ms.map);
1304 		mem_info__zput(he->mem_info);
1305 	}
1306 
1307 	if (he->block_info)
1308 		block_info__zput(he->block_info);
1309 
1310 	zfree(&he->res_samples);
1311 	zfree(&he->stat_acc);
1312 	free_srcline(he->srcline);
1313 	if (he->srcfile && he->srcfile[0])
1314 		zfree(&he->srcfile);
1315 	free_callchain(he->callchain);
1316 	zfree(&he->trace_output);
1317 	zfree(&he->raw_data);
1318 	ops->free(he);
1319 }
1320 
1321 /*
1322  * If this is not the last column, then we need to pad it according to the
1323  * pre-calculated max length for this column, otherwise don't bother adding
1324  * spaces because that would break viewing this with, for instance, 'less',
1325  * that would show tons of trailing spaces when a long C++ demangled method
1326  * names is sampled.
1327 */
1328 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1329 				   struct perf_hpp_fmt *fmt, int printed)
1330 {
1331 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1332 		const int width = fmt->width(fmt, hpp, he->hists);
1333 		if (printed < width) {
1334 			advance_hpp(hpp, printed);
1335 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1336 		}
1337 	}
1338 
1339 	return printed;
1340 }
1341 
1342 /*
1343  * collapse the histogram
1344  */
1345 
1346 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1347 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1348 				       enum hist_filter type);
1349 
1350 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1351 
1352 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1353 {
1354 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1355 }
1356 
1357 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1358 						enum hist_filter type,
1359 						fmt_chk_fn check)
1360 {
1361 	struct perf_hpp_fmt *fmt;
1362 	bool type_match = false;
1363 	struct hist_entry *parent = he->parent_he;
1364 
1365 	switch (type) {
1366 	case HIST_FILTER__THREAD:
1367 		if (symbol_conf.comm_list == NULL &&
1368 		    symbol_conf.pid_list == NULL &&
1369 		    symbol_conf.tid_list == NULL)
1370 			return;
1371 		break;
1372 	case HIST_FILTER__DSO:
1373 		if (symbol_conf.dso_list == NULL)
1374 			return;
1375 		break;
1376 	case HIST_FILTER__SYMBOL:
1377 		if (symbol_conf.sym_list == NULL)
1378 			return;
1379 		break;
1380 	case HIST_FILTER__PARENT:
1381 	case HIST_FILTER__GUEST:
1382 	case HIST_FILTER__HOST:
1383 	case HIST_FILTER__SOCKET:
1384 	case HIST_FILTER__C2C:
1385 	default:
1386 		return;
1387 	}
1388 
1389 	/* if it's filtered by own fmt, it has to have filter bits */
1390 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1391 		if (check(fmt)) {
1392 			type_match = true;
1393 			break;
1394 		}
1395 	}
1396 
1397 	if (type_match) {
1398 		/*
1399 		 * If the filter is for current level entry, propagate
1400 		 * filter marker to parents.  The marker bit was
1401 		 * already set by default so it only needs to clear
1402 		 * non-filtered entries.
1403 		 */
1404 		if (!(he->filtered & (1 << type))) {
1405 			while (parent) {
1406 				parent->filtered &= ~(1 << type);
1407 				parent = parent->parent_he;
1408 			}
1409 		}
1410 	} else {
1411 		/*
1412 		 * If current entry doesn't have matching formats, set
1413 		 * filter marker for upper level entries.  it will be
1414 		 * cleared if its lower level entries is not filtered.
1415 		 *
1416 		 * For lower-level entries, it inherits parent's
1417 		 * filter bit so that lower level entries of a
1418 		 * non-filtered entry won't set the filter marker.
1419 		 */
1420 		if (parent == NULL)
1421 			he->filtered |= (1 << type);
1422 		else
1423 			he->filtered |= (parent->filtered & (1 << type));
1424 	}
1425 }
1426 
1427 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1428 {
1429 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1430 					    check_thread_entry);
1431 
1432 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1433 					    perf_hpp__is_dso_entry);
1434 
1435 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1436 					    perf_hpp__is_sym_entry);
1437 
1438 	hists__apply_filters(he->hists, he);
1439 }
1440 
1441 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1442 						 struct rb_root_cached *root,
1443 						 struct hist_entry *he,
1444 						 struct hist_entry *parent_he,
1445 						 struct perf_hpp_list *hpp_list)
1446 {
1447 	struct rb_node **p = &root->rb_root.rb_node;
1448 	struct rb_node *parent = NULL;
1449 	struct hist_entry *iter, *new;
1450 	struct perf_hpp_fmt *fmt;
1451 	int64_t cmp;
1452 	bool leftmost = true;
1453 
1454 	while (*p != NULL) {
1455 		parent = *p;
1456 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1457 
1458 		cmp = 0;
1459 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1460 			cmp = fmt->collapse(fmt, iter, he);
1461 			if (cmp)
1462 				break;
1463 		}
1464 
1465 		if (!cmp) {
1466 			he_stat__add_stat(&iter->stat, &he->stat);
1467 			return iter;
1468 		}
1469 
1470 		if (cmp < 0)
1471 			p = &parent->rb_left;
1472 		else {
1473 			p = &parent->rb_right;
1474 			leftmost = false;
1475 		}
1476 	}
1477 
1478 	new = hist_entry__new(he, true);
1479 	if (new == NULL)
1480 		return NULL;
1481 
1482 	hists->nr_entries++;
1483 
1484 	/* save related format list for output */
1485 	new->hpp_list = hpp_list;
1486 	new->parent_he = parent_he;
1487 
1488 	hist_entry__apply_hierarchy_filters(new);
1489 
1490 	/* some fields are now passed to 'new' */
1491 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1492 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1493 			he->trace_output = NULL;
1494 		else
1495 			new->trace_output = NULL;
1496 
1497 		if (perf_hpp__is_srcline_entry(fmt))
1498 			he->srcline = NULL;
1499 		else
1500 			new->srcline = NULL;
1501 
1502 		if (perf_hpp__is_srcfile_entry(fmt))
1503 			he->srcfile = NULL;
1504 		else
1505 			new->srcfile = NULL;
1506 	}
1507 
1508 	rb_link_node(&new->rb_node_in, parent, p);
1509 	rb_insert_color_cached(&new->rb_node_in, root, leftmost);
1510 	return new;
1511 }
1512 
1513 static int hists__hierarchy_insert_entry(struct hists *hists,
1514 					 struct rb_root_cached *root,
1515 					 struct hist_entry *he)
1516 {
1517 	struct perf_hpp_list_node *node;
1518 	struct hist_entry *new_he = NULL;
1519 	struct hist_entry *parent = NULL;
1520 	int depth = 0;
1521 	int ret = 0;
1522 
1523 	list_for_each_entry(node, &hists->hpp_formats, list) {
1524 		/* skip period (overhead) and elided columns */
1525 		if (node->level == 0 || node->skip)
1526 			continue;
1527 
1528 		/* insert copy of 'he' for each fmt into the hierarchy */
1529 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1530 		if (new_he == NULL) {
1531 			ret = -1;
1532 			break;
1533 		}
1534 
1535 		root = &new_he->hroot_in;
1536 		new_he->depth = depth++;
1537 		parent = new_he;
1538 	}
1539 
1540 	if (new_he) {
1541 		new_he->leaf = true;
1542 
1543 		if (hist_entry__has_callchains(new_he) &&
1544 		    symbol_conf.use_callchain) {
1545 			callchain_cursor_reset(&callchain_cursor);
1546 			if (callchain_merge(&callchain_cursor,
1547 					    new_he->callchain,
1548 					    he->callchain) < 0)
1549 				ret = -1;
1550 		}
1551 	}
1552 
1553 	/* 'he' is no longer used */
1554 	hist_entry__delete(he);
1555 
1556 	/* return 0 (or -1) since it already applied filters */
1557 	return ret;
1558 }
1559 
1560 static int hists__collapse_insert_entry(struct hists *hists,
1561 					struct rb_root_cached *root,
1562 					struct hist_entry *he)
1563 {
1564 	struct rb_node **p = &root->rb_root.rb_node;
1565 	struct rb_node *parent = NULL;
1566 	struct hist_entry *iter;
1567 	int64_t cmp;
1568 	bool leftmost = true;
1569 
1570 	if (symbol_conf.report_hierarchy)
1571 		return hists__hierarchy_insert_entry(hists, root, he);
1572 
1573 	while (*p != NULL) {
1574 		parent = *p;
1575 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1576 
1577 		cmp = hist_entry__collapse(iter, he);
1578 
1579 		if (!cmp) {
1580 			int ret = 0;
1581 
1582 			he_stat__add_stat(&iter->stat, &he->stat);
1583 			if (symbol_conf.cumulate_callchain)
1584 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1585 
1586 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1587 				callchain_cursor_reset(&callchain_cursor);
1588 				if (callchain_merge(&callchain_cursor,
1589 						    iter->callchain,
1590 						    he->callchain) < 0)
1591 					ret = -1;
1592 			}
1593 			hist_entry__delete(he);
1594 			return ret;
1595 		}
1596 
1597 		if (cmp < 0)
1598 			p = &(*p)->rb_left;
1599 		else {
1600 			p = &(*p)->rb_right;
1601 			leftmost = false;
1602 		}
1603 	}
1604 	hists->nr_entries++;
1605 
1606 	rb_link_node(&he->rb_node_in, parent, p);
1607 	rb_insert_color_cached(&he->rb_node_in, root, leftmost);
1608 	return 1;
1609 }
1610 
1611 struct rb_root_cached *hists__get_rotate_entries_in(struct hists *hists)
1612 {
1613 	struct rb_root_cached *root;
1614 
1615 	pthread_mutex_lock(&hists->lock);
1616 
1617 	root = hists->entries_in;
1618 	if (++hists->entries_in > &hists->entries_in_array[1])
1619 		hists->entries_in = &hists->entries_in_array[0];
1620 
1621 	pthread_mutex_unlock(&hists->lock);
1622 
1623 	return root;
1624 }
1625 
1626 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1627 {
1628 	hists__filter_entry_by_dso(hists, he);
1629 	hists__filter_entry_by_thread(hists, he);
1630 	hists__filter_entry_by_symbol(hists, he);
1631 	hists__filter_entry_by_socket(hists, he);
1632 }
1633 
1634 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1635 {
1636 	struct rb_root_cached *root;
1637 	struct rb_node *next;
1638 	struct hist_entry *n;
1639 	int ret;
1640 
1641 	if (!hists__has(hists, need_collapse))
1642 		return 0;
1643 
1644 	hists->nr_entries = 0;
1645 
1646 	root = hists__get_rotate_entries_in(hists);
1647 
1648 	next = rb_first_cached(root);
1649 
1650 	while (next) {
1651 		if (session_done())
1652 			break;
1653 		n = rb_entry(next, struct hist_entry, rb_node_in);
1654 		next = rb_next(&n->rb_node_in);
1655 
1656 		rb_erase_cached(&n->rb_node_in, root);
1657 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1658 		if (ret < 0)
1659 			return -1;
1660 
1661 		if (ret) {
1662 			/*
1663 			 * If it wasn't combined with one of the entries already
1664 			 * collapsed, we need to apply the filters that may have
1665 			 * been set by, say, the hist_browser.
1666 			 */
1667 			hists__apply_filters(hists, n);
1668 		}
1669 		if (prog)
1670 			ui_progress__update(prog, 1);
1671 	}
1672 	return 0;
1673 }
1674 
1675 static int64_t hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1676 {
1677 	struct hists *hists = a->hists;
1678 	struct perf_hpp_fmt *fmt;
1679 	int64_t cmp = 0;
1680 
1681 	hists__for_each_sort_list(hists, fmt) {
1682 		if (perf_hpp__should_skip(fmt, a->hists))
1683 			continue;
1684 
1685 		cmp = fmt->sort(fmt, a, b);
1686 		if (cmp)
1687 			break;
1688 	}
1689 
1690 	return cmp;
1691 }
1692 
1693 static void hists__reset_filter_stats(struct hists *hists)
1694 {
1695 	hists->nr_non_filtered_entries = 0;
1696 	hists->stats.total_non_filtered_period = 0;
1697 }
1698 
1699 void hists__reset_stats(struct hists *hists)
1700 {
1701 	hists->nr_entries = 0;
1702 	hists->stats.total_period = 0;
1703 
1704 	hists__reset_filter_stats(hists);
1705 }
1706 
1707 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1708 {
1709 	hists->nr_non_filtered_entries++;
1710 	hists->stats.total_non_filtered_period += h->stat.period;
1711 }
1712 
1713 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1714 {
1715 	if (!h->filtered)
1716 		hists__inc_filter_stats(hists, h);
1717 
1718 	hists->nr_entries++;
1719 	hists->stats.total_period += h->stat.period;
1720 }
1721 
1722 static void hierarchy_recalc_total_periods(struct hists *hists)
1723 {
1724 	struct rb_node *node;
1725 	struct hist_entry *he;
1726 
1727 	node = rb_first_cached(&hists->entries);
1728 
1729 	hists->stats.total_period = 0;
1730 	hists->stats.total_non_filtered_period = 0;
1731 
1732 	/*
1733 	 * recalculate total period using top-level entries only
1734 	 * since lower level entries only see non-filtered entries
1735 	 * but upper level entries have sum of both entries.
1736 	 */
1737 	while (node) {
1738 		he = rb_entry(node, struct hist_entry, rb_node);
1739 		node = rb_next(node);
1740 
1741 		hists->stats.total_period += he->stat.period;
1742 		if (!he->filtered)
1743 			hists->stats.total_non_filtered_period += he->stat.period;
1744 	}
1745 }
1746 
1747 static void hierarchy_insert_output_entry(struct rb_root_cached *root,
1748 					  struct hist_entry *he)
1749 {
1750 	struct rb_node **p = &root->rb_root.rb_node;
1751 	struct rb_node *parent = NULL;
1752 	struct hist_entry *iter;
1753 	struct perf_hpp_fmt *fmt;
1754 	bool leftmost = true;
1755 
1756 	while (*p != NULL) {
1757 		parent = *p;
1758 		iter = rb_entry(parent, struct hist_entry, rb_node);
1759 
1760 		if (hist_entry__sort(he, iter) > 0)
1761 			p = &parent->rb_left;
1762 		else {
1763 			p = &parent->rb_right;
1764 			leftmost = false;
1765 		}
1766 	}
1767 
1768 	rb_link_node(&he->rb_node, parent, p);
1769 	rb_insert_color_cached(&he->rb_node, root, leftmost);
1770 
1771 	/* update column width of dynamic entry */
1772 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1773 		if (perf_hpp__is_dynamic_entry(fmt))
1774 			fmt->sort(fmt, he, NULL);
1775 	}
1776 }
1777 
1778 static void hists__hierarchy_output_resort(struct hists *hists,
1779 					   struct ui_progress *prog,
1780 					   struct rb_root_cached *root_in,
1781 					   struct rb_root_cached *root_out,
1782 					   u64 min_callchain_hits,
1783 					   bool use_callchain)
1784 {
1785 	struct rb_node *node;
1786 	struct hist_entry *he;
1787 
1788 	*root_out = RB_ROOT_CACHED;
1789 	node = rb_first_cached(root_in);
1790 
1791 	while (node) {
1792 		he = rb_entry(node, struct hist_entry, rb_node_in);
1793 		node = rb_next(node);
1794 
1795 		hierarchy_insert_output_entry(root_out, he);
1796 
1797 		if (prog)
1798 			ui_progress__update(prog, 1);
1799 
1800 		hists->nr_entries++;
1801 		if (!he->filtered) {
1802 			hists->nr_non_filtered_entries++;
1803 			hists__calc_col_len(hists, he);
1804 		}
1805 
1806 		if (!he->leaf) {
1807 			hists__hierarchy_output_resort(hists, prog,
1808 						       &he->hroot_in,
1809 						       &he->hroot_out,
1810 						       min_callchain_hits,
1811 						       use_callchain);
1812 			continue;
1813 		}
1814 
1815 		if (!use_callchain)
1816 			continue;
1817 
1818 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1819 			u64 total = he->stat.period;
1820 
1821 			if (symbol_conf.cumulate_callchain)
1822 				total = he->stat_acc->period;
1823 
1824 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1825 		}
1826 
1827 		callchain_param.sort(&he->sorted_chain, he->callchain,
1828 				     min_callchain_hits, &callchain_param);
1829 	}
1830 }
1831 
1832 static void __hists__insert_output_entry(struct rb_root_cached *entries,
1833 					 struct hist_entry *he,
1834 					 u64 min_callchain_hits,
1835 					 bool use_callchain)
1836 {
1837 	struct rb_node **p = &entries->rb_root.rb_node;
1838 	struct rb_node *parent = NULL;
1839 	struct hist_entry *iter;
1840 	struct perf_hpp_fmt *fmt;
1841 	bool leftmost = true;
1842 
1843 	if (use_callchain) {
1844 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1845 			u64 total = he->stat.period;
1846 
1847 			if (symbol_conf.cumulate_callchain)
1848 				total = he->stat_acc->period;
1849 
1850 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1851 		}
1852 		callchain_param.sort(&he->sorted_chain, he->callchain,
1853 				      min_callchain_hits, &callchain_param);
1854 	}
1855 
1856 	while (*p != NULL) {
1857 		parent = *p;
1858 		iter = rb_entry(parent, struct hist_entry, rb_node);
1859 
1860 		if (hist_entry__sort(he, iter) > 0)
1861 			p = &(*p)->rb_left;
1862 		else {
1863 			p = &(*p)->rb_right;
1864 			leftmost = false;
1865 		}
1866 	}
1867 
1868 	rb_link_node(&he->rb_node, parent, p);
1869 	rb_insert_color_cached(&he->rb_node, entries, leftmost);
1870 
1871 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1872 		if (perf_hpp__is_dynamic_entry(fmt) &&
1873 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1874 			fmt->sort(fmt, he, NULL);  /* update column width */
1875 	}
1876 }
1877 
1878 static void output_resort(struct hists *hists, struct ui_progress *prog,
1879 			  bool use_callchain, hists__resort_cb_t cb,
1880 			  void *cb_arg)
1881 {
1882 	struct rb_root_cached *root;
1883 	struct rb_node *next;
1884 	struct hist_entry *n;
1885 	u64 callchain_total;
1886 	u64 min_callchain_hits;
1887 
1888 	callchain_total = hists->callchain_period;
1889 	if (symbol_conf.filter_relative)
1890 		callchain_total = hists->callchain_non_filtered_period;
1891 
1892 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1893 
1894 	hists__reset_stats(hists);
1895 	hists__reset_col_len(hists);
1896 
1897 	if (symbol_conf.report_hierarchy) {
1898 		hists__hierarchy_output_resort(hists, prog,
1899 					       &hists->entries_collapsed,
1900 					       &hists->entries,
1901 					       min_callchain_hits,
1902 					       use_callchain);
1903 		hierarchy_recalc_total_periods(hists);
1904 		return;
1905 	}
1906 
1907 	if (hists__has(hists, need_collapse))
1908 		root = &hists->entries_collapsed;
1909 	else
1910 		root = hists->entries_in;
1911 
1912 	next = rb_first_cached(root);
1913 	hists->entries = RB_ROOT_CACHED;
1914 
1915 	while (next) {
1916 		n = rb_entry(next, struct hist_entry, rb_node_in);
1917 		next = rb_next(&n->rb_node_in);
1918 
1919 		if (cb && cb(n, cb_arg))
1920 			continue;
1921 
1922 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1923 		hists__inc_stats(hists, n);
1924 
1925 		if (!n->filtered)
1926 			hists__calc_col_len(hists, n);
1927 
1928 		if (prog)
1929 			ui_progress__update(prog, 1);
1930 	}
1931 }
1932 
1933 void evsel__output_resort_cb(struct evsel *evsel, struct ui_progress *prog,
1934 			     hists__resort_cb_t cb, void *cb_arg)
1935 {
1936 	bool use_callchain;
1937 
1938 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1939 		use_callchain = evsel__has_callchain(evsel);
1940 	else
1941 		use_callchain = symbol_conf.use_callchain;
1942 
1943 	use_callchain |= symbol_conf.show_branchflag_count;
1944 
1945 	output_resort(evsel__hists(evsel), prog, use_callchain, cb, cb_arg);
1946 }
1947 
1948 void evsel__output_resort(struct evsel *evsel, struct ui_progress *prog)
1949 {
1950 	return evsel__output_resort_cb(evsel, prog, NULL, NULL);
1951 }
1952 
1953 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1954 {
1955 	output_resort(hists, prog, symbol_conf.use_callchain, NULL, NULL);
1956 }
1957 
1958 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1959 			     hists__resort_cb_t cb)
1960 {
1961 	output_resort(hists, prog, symbol_conf.use_callchain, cb, NULL);
1962 }
1963 
1964 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1965 {
1966 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1967 		return false;
1968 
1969 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1970 		return true;
1971 
1972 	return false;
1973 }
1974 
1975 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1976 {
1977 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1978 
1979 	while (can_goto_child(he, HMD_NORMAL)) {
1980 		node = rb_last(&he->hroot_out.rb_root);
1981 		he = rb_entry(node, struct hist_entry, rb_node);
1982 	}
1983 	return node;
1984 }
1985 
1986 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1987 {
1988 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1989 
1990 	if (can_goto_child(he, hmd))
1991 		node = rb_first_cached(&he->hroot_out);
1992 	else
1993 		node = rb_next(node);
1994 
1995 	while (node == NULL) {
1996 		he = he->parent_he;
1997 		if (he == NULL)
1998 			break;
1999 
2000 		node = rb_next(&he->rb_node);
2001 	}
2002 	return node;
2003 }
2004 
2005 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
2006 {
2007 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
2008 
2009 	node = rb_prev(node);
2010 	if (node)
2011 		return rb_hierarchy_last(node);
2012 
2013 	he = he->parent_he;
2014 	if (he == NULL)
2015 		return NULL;
2016 
2017 	return &he->rb_node;
2018 }
2019 
2020 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
2021 {
2022 	struct rb_node *node;
2023 	struct hist_entry *child;
2024 	float percent;
2025 
2026 	if (he->leaf)
2027 		return false;
2028 
2029 	node = rb_first_cached(&he->hroot_out);
2030 	child = rb_entry(node, struct hist_entry, rb_node);
2031 
2032 	while (node && child->filtered) {
2033 		node = rb_next(node);
2034 		child = rb_entry(node, struct hist_entry, rb_node);
2035 	}
2036 
2037 	if (node)
2038 		percent = hist_entry__get_percent_limit(child);
2039 	else
2040 		percent = 0;
2041 
2042 	return node && percent >= limit;
2043 }
2044 
2045 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
2046 				       enum hist_filter filter)
2047 {
2048 	h->filtered &= ~(1 << filter);
2049 
2050 	if (symbol_conf.report_hierarchy) {
2051 		struct hist_entry *parent = h->parent_he;
2052 
2053 		while (parent) {
2054 			he_stat__add_stat(&parent->stat, &h->stat);
2055 
2056 			parent->filtered &= ~(1 << filter);
2057 
2058 			if (parent->filtered)
2059 				goto next;
2060 
2061 			/* force fold unfiltered entry for simplicity */
2062 			parent->unfolded = false;
2063 			parent->has_no_entry = false;
2064 			parent->row_offset = 0;
2065 			parent->nr_rows = 0;
2066 next:
2067 			parent = parent->parent_he;
2068 		}
2069 	}
2070 
2071 	if (h->filtered)
2072 		return;
2073 
2074 	/* force fold unfiltered entry for simplicity */
2075 	h->unfolded = false;
2076 	h->has_no_entry = false;
2077 	h->row_offset = 0;
2078 	h->nr_rows = 0;
2079 
2080 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
2081 
2082 	hists__inc_filter_stats(hists, h);
2083 	hists__calc_col_len(hists, h);
2084 }
2085 
2086 
2087 static bool hists__filter_entry_by_dso(struct hists *hists,
2088 				       struct hist_entry *he)
2089 {
2090 	if (hists->dso_filter != NULL &&
2091 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
2092 		he->filtered |= (1 << HIST_FILTER__DSO);
2093 		return true;
2094 	}
2095 
2096 	return false;
2097 }
2098 
2099 static bool hists__filter_entry_by_thread(struct hists *hists,
2100 					  struct hist_entry *he)
2101 {
2102 	if (hists->thread_filter != NULL &&
2103 	    he->thread != hists->thread_filter) {
2104 		he->filtered |= (1 << HIST_FILTER__THREAD);
2105 		return true;
2106 	}
2107 
2108 	return false;
2109 }
2110 
2111 static bool hists__filter_entry_by_symbol(struct hists *hists,
2112 					  struct hist_entry *he)
2113 {
2114 	if (hists->symbol_filter_str != NULL &&
2115 	    (!he->ms.sym || strstr(he->ms.sym->name,
2116 				   hists->symbol_filter_str) == NULL)) {
2117 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
2118 		return true;
2119 	}
2120 
2121 	return false;
2122 }
2123 
2124 static bool hists__filter_entry_by_socket(struct hists *hists,
2125 					  struct hist_entry *he)
2126 {
2127 	if ((hists->socket_filter > -1) &&
2128 	    (he->socket != hists->socket_filter)) {
2129 		he->filtered |= (1 << HIST_FILTER__SOCKET);
2130 		return true;
2131 	}
2132 
2133 	return false;
2134 }
2135 
2136 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
2137 
2138 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
2139 {
2140 	struct rb_node *nd;
2141 
2142 	hists->stats.nr_non_filtered_samples = 0;
2143 
2144 	hists__reset_filter_stats(hists);
2145 	hists__reset_col_len(hists);
2146 
2147 	for (nd = rb_first_cached(&hists->entries); nd; nd = rb_next(nd)) {
2148 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2149 
2150 		if (filter(hists, h))
2151 			continue;
2152 
2153 		hists__remove_entry_filter(hists, h, type);
2154 	}
2155 }
2156 
2157 static void resort_filtered_entry(struct rb_root_cached *root,
2158 				  struct hist_entry *he)
2159 {
2160 	struct rb_node **p = &root->rb_root.rb_node;
2161 	struct rb_node *parent = NULL;
2162 	struct hist_entry *iter;
2163 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2164 	struct rb_node *nd;
2165 	bool leftmost = true;
2166 
2167 	while (*p != NULL) {
2168 		parent = *p;
2169 		iter = rb_entry(parent, struct hist_entry, rb_node);
2170 
2171 		if (hist_entry__sort(he, iter) > 0)
2172 			p = &(*p)->rb_left;
2173 		else {
2174 			p = &(*p)->rb_right;
2175 			leftmost = false;
2176 		}
2177 	}
2178 
2179 	rb_link_node(&he->rb_node, parent, p);
2180 	rb_insert_color_cached(&he->rb_node, root, leftmost);
2181 
2182 	if (he->leaf || he->filtered)
2183 		return;
2184 
2185 	nd = rb_first_cached(&he->hroot_out);
2186 	while (nd) {
2187 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2188 
2189 		nd = rb_next(nd);
2190 		rb_erase_cached(&h->rb_node, &he->hroot_out);
2191 
2192 		resort_filtered_entry(&new_root, h);
2193 	}
2194 
2195 	he->hroot_out = new_root;
2196 }
2197 
2198 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2199 {
2200 	struct rb_node *nd;
2201 	struct rb_root_cached new_root = RB_ROOT_CACHED;
2202 
2203 	hists->stats.nr_non_filtered_samples = 0;
2204 
2205 	hists__reset_filter_stats(hists);
2206 	hists__reset_col_len(hists);
2207 
2208 	nd = rb_first_cached(&hists->entries);
2209 	while (nd) {
2210 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2211 		int ret;
2212 
2213 		ret = hist_entry__filter(h, type, arg);
2214 
2215 		/*
2216 		 * case 1. non-matching type
2217 		 * zero out the period, set filter marker and move to child
2218 		 */
2219 		if (ret < 0) {
2220 			memset(&h->stat, 0, sizeof(h->stat));
2221 			h->filtered |= (1 << type);
2222 
2223 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2224 		}
2225 		/*
2226 		 * case 2. matched type (filter out)
2227 		 * set filter marker and move to next
2228 		 */
2229 		else if (ret == 1) {
2230 			h->filtered |= (1 << type);
2231 
2232 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2233 		}
2234 		/*
2235 		 * case 3. ok (not filtered)
2236 		 * add period to hists and parents, erase the filter marker
2237 		 * and move to next sibling
2238 		 */
2239 		else {
2240 			hists__remove_entry_filter(hists, h, type);
2241 
2242 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2243 		}
2244 	}
2245 
2246 	hierarchy_recalc_total_periods(hists);
2247 
2248 	/*
2249 	 * resort output after applying a new filter since filter in a lower
2250 	 * hierarchy can change periods in a upper hierarchy.
2251 	 */
2252 	nd = rb_first_cached(&hists->entries);
2253 	while (nd) {
2254 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2255 
2256 		nd = rb_next(nd);
2257 		rb_erase_cached(&h->rb_node, &hists->entries);
2258 
2259 		resort_filtered_entry(&new_root, h);
2260 	}
2261 
2262 	hists->entries = new_root;
2263 }
2264 
2265 void hists__filter_by_thread(struct hists *hists)
2266 {
2267 	if (symbol_conf.report_hierarchy)
2268 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2269 					hists->thread_filter);
2270 	else
2271 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2272 				      hists__filter_entry_by_thread);
2273 }
2274 
2275 void hists__filter_by_dso(struct hists *hists)
2276 {
2277 	if (symbol_conf.report_hierarchy)
2278 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2279 					hists->dso_filter);
2280 	else
2281 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2282 				      hists__filter_entry_by_dso);
2283 }
2284 
2285 void hists__filter_by_symbol(struct hists *hists)
2286 {
2287 	if (symbol_conf.report_hierarchy)
2288 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2289 					hists->symbol_filter_str);
2290 	else
2291 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2292 				      hists__filter_entry_by_symbol);
2293 }
2294 
2295 void hists__filter_by_socket(struct hists *hists)
2296 {
2297 	if (symbol_conf.report_hierarchy)
2298 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2299 					&hists->socket_filter);
2300 	else
2301 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2302 				      hists__filter_entry_by_socket);
2303 }
2304 
2305 void events_stats__inc(struct events_stats *stats, u32 type)
2306 {
2307 	++stats->nr_events[0];
2308 	++stats->nr_events[type];
2309 }
2310 
2311 void hists__inc_nr_events(struct hists *hists, u32 type)
2312 {
2313 	events_stats__inc(&hists->stats, type);
2314 }
2315 
2316 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2317 {
2318 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2319 	if (!filtered)
2320 		hists->stats.nr_non_filtered_samples++;
2321 }
2322 
2323 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2324 						 struct hist_entry *pair)
2325 {
2326 	struct rb_root_cached *root;
2327 	struct rb_node **p;
2328 	struct rb_node *parent = NULL;
2329 	struct hist_entry *he;
2330 	int64_t cmp;
2331 	bool leftmost = true;
2332 
2333 	if (hists__has(hists, need_collapse))
2334 		root = &hists->entries_collapsed;
2335 	else
2336 		root = hists->entries_in;
2337 
2338 	p = &root->rb_root.rb_node;
2339 
2340 	while (*p != NULL) {
2341 		parent = *p;
2342 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2343 
2344 		cmp = hist_entry__collapse(he, pair);
2345 
2346 		if (!cmp)
2347 			goto out;
2348 
2349 		if (cmp < 0)
2350 			p = &(*p)->rb_left;
2351 		else {
2352 			p = &(*p)->rb_right;
2353 			leftmost = false;
2354 		}
2355 	}
2356 
2357 	he = hist_entry__new(pair, true);
2358 	if (he) {
2359 		memset(&he->stat, 0, sizeof(he->stat));
2360 		he->hists = hists;
2361 		if (symbol_conf.cumulate_callchain)
2362 			memset(he->stat_acc, 0, sizeof(he->stat));
2363 		rb_link_node(&he->rb_node_in, parent, p);
2364 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2365 		hists__inc_stats(hists, he);
2366 		he->dummy = true;
2367 	}
2368 out:
2369 	return he;
2370 }
2371 
2372 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2373 						    struct rb_root_cached *root,
2374 						    struct hist_entry *pair)
2375 {
2376 	struct rb_node **p;
2377 	struct rb_node *parent = NULL;
2378 	struct hist_entry *he;
2379 	struct perf_hpp_fmt *fmt;
2380 	bool leftmost = true;
2381 
2382 	p = &root->rb_root.rb_node;
2383 	while (*p != NULL) {
2384 		int64_t cmp = 0;
2385 
2386 		parent = *p;
2387 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2388 
2389 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2390 			cmp = fmt->collapse(fmt, he, pair);
2391 			if (cmp)
2392 				break;
2393 		}
2394 		if (!cmp)
2395 			goto out;
2396 
2397 		if (cmp < 0)
2398 			p = &parent->rb_left;
2399 		else {
2400 			p = &parent->rb_right;
2401 			leftmost = false;
2402 		}
2403 	}
2404 
2405 	he = hist_entry__new(pair, true);
2406 	if (he) {
2407 		rb_link_node(&he->rb_node_in, parent, p);
2408 		rb_insert_color_cached(&he->rb_node_in, root, leftmost);
2409 
2410 		he->dummy = true;
2411 		he->hists = hists;
2412 		memset(&he->stat, 0, sizeof(he->stat));
2413 		hists__inc_stats(hists, he);
2414 	}
2415 out:
2416 	return he;
2417 }
2418 
2419 static struct hist_entry *hists__find_entry(struct hists *hists,
2420 					    struct hist_entry *he)
2421 {
2422 	struct rb_node *n;
2423 
2424 	if (hists__has(hists, need_collapse))
2425 		n = hists->entries_collapsed.rb_root.rb_node;
2426 	else
2427 		n = hists->entries_in->rb_root.rb_node;
2428 
2429 	while (n) {
2430 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2431 		int64_t cmp = hist_entry__collapse(iter, he);
2432 
2433 		if (cmp < 0)
2434 			n = n->rb_left;
2435 		else if (cmp > 0)
2436 			n = n->rb_right;
2437 		else
2438 			return iter;
2439 	}
2440 
2441 	return NULL;
2442 }
2443 
2444 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root_cached *root,
2445 						      struct hist_entry *he)
2446 {
2447 	struct rb_node *n = root->rb_root.rb_node;
2448 
2449 	while (n) {
2450 		struct hist_entry *iter;
2451 		struct perf_hpp_fmt *fmt;
2452 		int64_t cmp = 0;
2453 
2454 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2455 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2456 			cmp = fmt->collapse(fmt, iter, he);
2457 			if (cmp)
2458 				break;
2459 		}
2460 
2461 		if (cmp < 0)
2462 			n = n->rb_left;
2463 		else if (cmp > 0)
2464 			n = n->rb_right;
2465 		else
2466 			return iter;
2467 	}
2468 
2469 	return NULL;
2470 }
2471 
2472 static void hists__match_hierarchy(struct rb_root_cached *leader_root,
2473 				   struct rb_root_cached *other_root)
2474 {
2475 	struct rb_node *nd;
2476 	struct hist_entry *pos, *pair;
2477 
2478 	for (nd = rb_first_cached(leader_root); nd; nd = rb_next(nd)) {
2479 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2480 		pair = hists__find_hierarchy_entry(other_root, pos);
2481 
2482 		if (pair) {
2483 			hist_entry__add_pair(pair, pos);
2484 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2485 		}
2486 	}
2487 }
2488 
2489 /*
2490  * Look for pairs to link to the leader buckets (hist_entries):
2491  */
2492 void hists__match(struct hists *leader, struct hists *other)
2493 {
2494 	struct rb_root_cached *root;
2495 	struct rb_node *nd;
2496 	struct hist_entry *pos, *pair;
2497 
2498 	if (symbol_conf.report_hierarchy) {
2499 		/* hierarchy report always collapses entries */
2500 		return hists__match_hierarchy(&leader->entries_collapsed,
2501 					      &other->entries_collapsed);
2502 	}
2503 
2504 	if (hists__has(leader, need_collapse))
2505 		root = &leader->entries_collapsed;
2506 	else
2507 		root = leader->entries_in;
2508 
2509 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2510 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2511 		pair = hists__find_entry(other, pos);
2512 
2513 		if (pair)
2514 			hist_entry__add_pair(pair, pos);
2515 	}
2516 }
2517 
2518 static int hists__link_hierarchy(struct hists *leader_hists,
2519 				 struct hist_entry *parent,
2520 				 struct rb_root_cached *leader_root,
2521 				 struct rb_root_cached *other_root)
2522 {
2523 	struct rb_node *nd;
2524 	struct hist_entry *pos, *leader;
2525 
2526 	for (nd = rb_first_cached(other_root); nd; nd = rb_next(nd)) {
2527 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2528 
2529 		if (hist_entry__has_pairs(pos)) {
2530 			bool found = false;
2531 
2532 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2533 				if (leader->hists == leader_hists) {
2534 					found = true;
2535 					break;
2536 				}
2537 			}
2538 			if (!found)
2539 				return -1;
2540 		} else {
2541 			leader = add_dummy_hierarchy_entry(leader_hists,
2542 							   leader_root, pos);
2543 			if (leader == NULL)
2544 				return -1;
2545 
2546 			/* do not point parent in the pos */
2547 			leader->parent_he = parent;
2548 
2549 			hist_entry__add_pair(pos, leader);
2550 		}
2551 
2552 		if (!pos->leaf) {
2553 			if (hists__link_hierarchy(leader_hists, leader,
2554 						  &leader->hroot_in,
2555 						  &pos->hroot_in) < 0)
2556 				return -1;
2557 		}
2558 	}
2559 	return 0;
2560 }
2561 
2562 /*
2563  * Look for entries in the other hists that are not present in the leader, if
2564  * we find them, just add a dummy entry on the leader hists, with period=0,
2565  * nr_events=0, to serve as the list header.
2566  */
2567 int hists__link(struct hists *leader, struct hists *other)
2568 {
2569 	struct rb_root_cached *root;
2570 	struct rb_node *nd;
2571 	struct hist_entry *pos, *pair;
2572 
2573 	if (symbol_conf.report_hierarchy) {
2574 		/* hierarchy report always collapses entries */
2575 		return hists__link_hierarchy(leader, NULL,
2576 					     &leader->entries_collapsed,
2577 					     &other->entries_collapsed);
2578 	}
2579 
2580 	if (hists__has(other, need_collapse))
2581 		root = &other->entries_collapsed;
2582 	else
2583 		root = other->entries_in;
2584 
2585 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2586 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2587 
2588 		if (!hist_entry__has_pairs(pos)) {
2589 			pair = hists__add_dummy_entry(leader, pos);
2590 			if (pair == NULL)
2591 				return -1;
2592 			hist_entry__add_pair(pos, pair);
2593 		}
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 int hists__unlink(struct hists *hists)
2600 {
2601 	struct rb_root_cached *root;
2602 	struct rb_node *nd;
2603 	struct hist_entry *pos;
2604 
2605 	if (hists__has(hists, need_collapse))
2606 		root = &hists->entries_collapsed;
2607 	else
2608 		root = hists->entries_in;
2609 
2610 	for (nd = rb_first_cached(root); nd; nd = rb_next(nd)) {
2611 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2612 		list_del_init(&pos->pairs.node);
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2619 			  struct perf_sample *sample, bool nonany_branch_mode,
2620 			  u64 *total_cycles)
2621 {
2622 	struct branch_info *bi;
2623 	struct branch_entry *entries = perf_sample__branch_entries(sample);
2624 
2625 	/* If we have branch cycles always annotate them. */
2626 	if (bs && bs->nr && entries[0].flags.cycles) {
2627 		int i;
2628 
2629 		bi = sample__resolve_bstack(sample, al);
2630 		if (bi) {
2631 			struct addr_map_symbol *prev = NULL;
2632 
2633 			/*
2634 			 * Ignore errors, still want to process the
2635 			 * other entries.
2636 			 *
2637 			 * For non standard branch modes always
2638 			 * force no IPC (prev == NULL)
2639 			 *
2640 			 * Note that perf stores branches reversed from
2641 			 * program order!
2642 			 */
2643 			for (i = bs->nr - 1; i >= 0; i--) {
2644 				addr_map_symbol__account_cycles(&bi[i].from,
2645 					nonany_branch_mode ? NULL : prev,
2646 					bi[i].flags.cycles);
2647 				prev = &bi[i].to;
2648 
2649 				if (total_cycles)
2650 					*total_cycles += bi[i].flags.cycles;
2651 			}
2652 			free(bi);
2653 		}
2654 	}
2655 }
2656 
2657 size_t perf_evlist__fprintf_nr_events(struct evlist *evlist, FILE *fp)
2658 {
2659 	struct evsel *pos;
2660 	size_t ret = 0;
2661 
2662 	evlist__for_each_entry(evlist, pos) {
2663 		ret += fprintf(fp, "%s stats:\n", evsel__name(pos));
2664 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2665 	}
2666 
2667 	return ret;
2668 }
2669 
2670 
2671 u64 hists__total_period(struct hists *hists)
2672 {
2673 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2674 		hists->stats.total_period;
2675 }
2676 
2677 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2678 {
2679 	char unit;
2680 	int printed;
2681 	const struct dso *dso = hists->dso_filter;
2682 	struct thread *thread = hists->thread_filter;
2683 	int socket_id = hists->socket_filter;
2684 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2685 	u64 nr_events = hists->stats.total_period;
2686 	struct evsel *evsel = hists_to_evsel(hists);
2687 	const char *ev_name = evsel__name(evsel);
2688 	char buf[512], sample_freq_str[64] = "";
2689 	size_t buflen = sizeof(buf);
2690 	char ref[30] = " show reference callgraph, ";
2691 	bool enable_ref = false;
2692 
2693 	if (symbol_conf.filter_relative) {
2694 		nr_samples = hists->stats.nr_non_filtered_samples;
2695 		nr_events = hists->stats.total_non_filtered_period;
2696 	}
2697 
2698 	if (evsel__is_group_event(evsel)) {
2699 		struct evsel *pos;
2700 
2701 		evsel__group_desc(evsel, buf, buflen);
2702 		ev_name = buf;
2703 
2704 		for_each_group_member(pos, evsel) {
2705 			struct hists *pos_hists = evsel__hists(pos);
2706 
2707 			if (symbol_conf.filter_relative) {
2708 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2709 				nr_events += pos_hists->stats.total_non_filtered_period;
2710 			} else {
2711 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2712 				nr_events += pos_hists->stats.total_period;
2713 			}
2714 		}
2715 	}
2716 
2717 	if (symbol_conf.show_ref_callgraph &&
2718 	    strstr(ev_name, "call-graph=no"))
2719 		enable_ref = true;
2720 
2721 	if (show_freq)
2722 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->core.attr.sample_freq);
2723 
2724 	nr_samples = convert_unit(nr_samples, &unit);
2725 	printed = scnprintf(bf, size,
2726 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2727 			   nr_samples, unit, evsel->core.nr_members > 1 ? "s" : "",
2728 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2729 
2730 
2731 	if (hists->uid_filter_str)
2732 		printed += snprintf(bf + printed, size - printed,
2733 				    ", UID: %s", hists->uid_filter_str);
2734 	if (thread) {
2735 		if (hists__has(hists, thread)) {
2736 			printed += scnprintf(bf + printed, size - printed,
2737 				    ", Thread: %s(%d)",
2738 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2739 				    thread->tid);
2740 		} else {
2741 			printed += scnprintf(bf + printed, size - printed,
2742 				    ", Thread: %s",
2743 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2744 		}
2745 	}
2746 	if (dso)
2747 		printed += scnprintf(bf + printed, size - printed,
2748 				    ", DSO: %s", dso->short_name);
2749 	if (socket_id > -1)
2750 		printed += scnprintf(bf + printed, size - printed,
2751 				    ", Processor Socket: %d", socket_id);
2752 
2753 	return printed;
2754 }
2755 
2756 int parse_filter_percentage(const struct option *opt __maybe_unused,
2757 			    const char *arg, int unset __maybe_unused)
2758 {
2759 	if (!strcmp(arg, "relative"))
2760 		symbol_conf.filter_relative = true;
2761 	else if (!strcmp(arg, "absolute"))
2762 		symbol_conf.filter_relative = false;
2763 	else {
2764 		pr_debug("Invalid percentage: %s\n", arg);
2765 		return -1;
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 int perf_hist_config(const char *var, const char *value)
2772 {
2773 	if (!strcmp(var, "hist.percentage"))
2774 		return parse_filter_percentage(NULL, value, 0);
2775 
2776 	return 0;
2777 }
2778 
2779 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2780 {
2781 	memset(hists, 0, sizeof(*hists));
2782 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT_CACHED;
2783 	hists->entries_in = &hists->entries_in_array[0];
2784 	hists->entries_collapsed = RB_ROOT_CACHED;
2785 	hists->entries = RB_ROOT_CACHED;
2786 	pthread_mutex_init(&hists->lock, NULL);
2787 	hists->socket_filter = -1;
2788 	hists->hpp_list = hpp_list;
2789 	INIT_LIST_HEAD(&hists->hpp_formats);
2790 	return 0;
2791 }
2792 
2793 static void hists__delete_remaining_entries(struct rb_root_cached *root)
2794 {
2795 	struct rb_node *node;
2796 	struct hist_entry *he;
2797 
2798 	while (!RB_EMPTY_ROOT(&root->rb_root)) {
2799 		node = rb_first_cached(root);
2800 		rb_erase_cached(node, root);
2801 
2802 		he = rb_entry(node, struct hist_entry, rb_node_in);
2803 		hist_entry__delete(he);
2804 	}
2805 }
2806 
2807 static void hists__delete_all_entries(struct hists *hists)
2808 {
2809 	hists__delete_entries(hists);
2810 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2811 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2812 	hists__delete_remaining_entries(&hists->entries_collapsed);
2813 }
2814 
2815 static void hists_evsel__exit(struct evsel *evsel)
2816 {
2817 	struct hists *hists = evsel__hists(evsel);
2818 	struct perf_hpp_fmt *fmt, *pos;
2819 	struct perf_hpp_list_node *node, *tmp;
2820 
2821 	hists__delete_all_entries(hists);
2822 
2823 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2824 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2825 			list_del_init(&fmt->list);
2826 			free(fmt);
2827 		}
2828 		list_del_init(&node->list);
2829 		free(node);
2830 	}
2831 }
2832 
2833 static int hists_evsel__init(struct evsel *evsel)
2834 {
2835 	struct hists *hists = evsel__hists(evsel);
2836 
2837 	__hists__init(hists, &perf_hpp_list);
2838 	return 0;
2839 }
2840 
2841 /*
2842  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2843  * stored in the rbtree...
2844  */
2845 
2846 int hists__init(void)
2847 {
2848 	int err = evsel__object_config(sizeof(struct hists_evsel),
2849 				       hists_evsel__init, hists_evsel__exit);
2850 	if (err)
2851 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2852 
2853 	return err;
2854 }
2855 
2856 void perf_hpp_list__init(struct perf_hpp_list *list)
2857 {
2858 	INIT_LIST_HEAD(&list->fields);
2859 	INIT_LIST_HEAD(&list->sorts);
2860 }
2861