1 #include "util.h" 2 #include "build-id.h" 3 #include "hist.h" 4 #include "session.h" 5 #include "sort.h" 6 #include "evlist.h" 7 #include "evsel.h" 8 #include "annotate.h" 9 #include "ui/progress.h" 10 #include <math.h> 11 12 static bool hists__filter_entry_by_dso(struct hists *hists, 13 struct hist_entry *he); 14 static bool hists__filter_entry_by_thread(struct hists *hists, 15 struct hist_entry *he); 16 static bool hists__filter_entry_by_symbol(struct hists *hists, 17 struct hist_entry *he); 18 static bool hists__filter_entry_by_socket(struct hists *hists, 19 struct hist_entry *he); 20 21 u16 hists__col_len(struct hists *hists, enum hist_column col) 22 { 23 return hists->col_len[col]; 24 } 25 26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len) 27 { 28 hists->col_len[col] = len; 29 } 30 31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len) 32 { 33 if (len > hists__col_len(hists, col)) { 34 hists__set_col_len(hists, col, len); 35 return true; 36 } 37 return false; 38 } 39 40 void hists__reset_col_len(struct hists *hists) 41 { 42 enum hist_column col; 43 44 for (col = 0; col < HISTC_NR_COLS; ++col) 45 hists__set_col_len(hists, col, 0); 46 } 47 48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso) 49 { 50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 51 52 if (hists__col_len(hists, dso) < unresolved_col_width && 53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep && 54 !symbol_conf.dso_list) 55 hists__set_col_len(hists, dso, unresolved_col_width); 56 } 57 58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h) 59 { 60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4; 61 int symlen; 62 u16 len; 63 64 /* 65 * +4 accounts for '[x] ' priv level info 66 * +2 accounts for 0x prefix on raw addresses 67 * +3 accounts for ' y ' symtab origin info 68 */ 69 if (h->ms.sym) { 70 symlen = h->ms.sym->namelen + 4; 71 if (verbose) 72 symlen += BITS_PER_LONG / 4 + 2 + 3; 73 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 74 } else { 75 symlen = unresolved_col_width + 4 + 2; 76 hists__new_col_len(hists, HISTC_SYMBOL, symlen); 77 hists__set_unres_dso_col_len(hists, HISTC_DSO); 78 } 79 80 len = thread__comm_len(h->thread); 81 if (hists__new_col_len(hists, HISTC_COMM, len)) 82 hists__set_col_len(hists, HISTC_THREAD, len + 6); 83 84 if (h->ms.map) { 85 len = dso__name_len(h->ms.map->dso); 86 hists__new_col_len(hists, HISTC_DSO, len); 87 } 88 89 if (h->parent) 90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen); 91 92 if (h->branch_info) { 93 if (h->branch_info->from.sym) { 94 symlen = (int)h->branch_info->from.sym->namelen + 4; 95 if (verbose) 96 symlen += BITS_PER_LONG / 4 + 2 + 3; 97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 98 99 symlen = dso__name_len(h->branch_info->from.map->dso); 100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen); 101 } else { 102 symlen = unresolved_col_width + 4 + 2; 103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen); 104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM); 105 } 106 107 if (h->branch_info->to.sym) { 108 symlen = (int)h->branch_info->to.sym->namelen + 4; 109 if (verbose) 110 symlen += BITS_PER_LONG / 4 + 2 + 3; 111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 112 113 symlen = dso__name_len(h->branch_info->to.map->dso); 114 hists__new_col_len(hists, HISTC_DSO_TO, symlen); 115 } else { 116 symlen = unresolved_col_width + 4 + 2; 117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen); 118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO); 119 } 120 121 if (h->branch_info->srcline_from) 122 hists__new_col_len(hists, HISTC_SRCLINE_FROM, 123 strlen(h->branch_info->srcline_from)); 124 if (h->branch_info->srcline_to) 125 hists__new_col_len(hists, HISTC_SRCLINE_TO, 126 strlen(h->branch_info->srcline_to)); 127 } 128 129 if (h->mem_info) { 130 if (h->mem_info->daddr.sym) { 131 symlen = (int)h->mem_info->daddr.sym->namelen + 4 132 + unresolved_col_width + 2; 133 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 134 symlen); 135 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 136 symlen + 1); 137 } else { 138 symlen = unresolved_col_width + 4 + 2; 139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, 140 symlen); 141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE, 142 symlen); 143 } 144 145 if (h->mem_info->iaddr.sym) { 146 symlen = (int)h->mem_info->iaddr.sym->namelen + 4 147 + unresolved_col_width + 2; 148 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 149 symlen); 150 } else { 151 symlen = unresolved_col_width + 4 + 2; 152 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, 153 symlen); 154 } 155 156 if (h->mem_info->daddr.map) { 157 symlen = dso__name_len(h->mem_info->daddr.map->dso); 158 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO, 159 symlen); 160 } else { 161 symlen = unresolved_col_width + 4 + 2; 162 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 163 } 164 } else { 165 symlen = unresolved_col_width + 4 + 2; 166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen); 167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen); 168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO); 169 } 170 171 hists__new_col_len(hists, HISTC_CPU, 3); 172 hists__new_col_len(hists, HISTC_SOCKET, 6); 173 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6); 174 hists__new_col_len(hists, HISTC_MEM_TLB, 22); 175 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12); 176 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3); 177 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12); 178 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12); 179 180 if (h->srcline) 181 hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline)); 182 183 if (h->srcfile) 184 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile)); 185 186 if (h->transaction) 187 hists__new_col_len(hists, HISTC_TRANSACTION, 188 hist_entry__transaction_len()); 189 190 if (h->trace_output) 191 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output)); 192 } 193 194 void hists__output_recalc_col_len(struct hists *hists, int max_rows) 195 { 196 struct rb_node *next = rb_first(&hists->entries); 197 struct hist_entry *n; 198 int row = 0; 199 200 hists__reset_col_len(hists); 201 202 while (next && row++ < max_rows) { 203 n = rb_entry(next, struct hist_entry, rb_node); 204 if (!n->filtered) 205 hists__calc_col_len(hists, n); 206 next = rb_next(&n->rb_node); 207 } 208 } 209 210 static void he_stat__add_cpumode_period(struct he_stat *he_stat, 211 unsigned int cpumode, u64 period) 212 { 213 switch (cpumode) { 214 case PERF_RECORD_MISC_KERNEL: 215 he_stat->period_sys += period; 216 break; 217 case PERF_RECORD_MISC_USER: 218 he_stat->period_us += period; 219 break; 220 case PERF_RECORD_MISC_GUEST_KERNEL: 221 he_stat->period_guest_sys += period; 222 break; 223 case PERF_RECORD_MISC_GUEST_USER: 224 he_stat->period_guest_us += period; 225 break; 226 default: 227 break; 228 } 229 } 230 231 static void he_stat__add_period(struct he_stat *he_stat, u64 period, 232 u64 weight) 233 { 234 235 he_stat->period += period; 236 he_stat->weight += weight; 237 he_stat->nr_events += 1; 238 } 239 240 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src) 241 { 242 dest->period += src->period; 243 dest->period_sys += src->period_sys; 244 dest->period_us += src->period_us; 245 dest->period_guest_sys += src->period_guest_sys; 246 dest->period_guest_us += src->period_guest_us; 247 dest->nr_events += src->nr_events; 248 dest->weight += src->weight; 249 } 250 251 static void he_stat__decay(struct he_stat *he_stat) 252 { 253 he_stat->period = (he_stat->period * 7) / 8; 254 he_stat->nr_events = (he_stat->nr_events * 7) / 8; 255 /* XXX need decay for weight too? */ 256 } 257 258 static void hists__delete_entry(struct hists *hists, struct hist_entry *he); 259 260 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he) 261 { 262 u64 prev_period = he->stat.period; 263 u64 diff; 264 265 if (prev_period == 0) 266 return true; 267 268 he_stat__decay(&he->stat); 269 if (symbol_conf.cumulate_callchain) 270 he_stat__decay(he->stat_acc); 271 decay_callchain(he->callchain); 272 273 diff = prev_period - he->stat.period; 274 275 if (!he->depth) { 276 hists->stats.total_period -= diff; 277 if (!he->filtered) 278 hists->stats.total_non_filtered_period -= diff; 279 } 280 281 if (!he->leaf) { 282 struct hist_entry *child; 283 struct rb_node *node = rb_first(&he->hroot_out); 284 while (node) { 285 child = rb_entry(node, struct hist_entry, rb_node); 286 node = rb_next(node); 287 288 if (hists__decay_entry(hists, child)) 289 hists__delete_entry(hists, child); 290 } 291 } 292 293 return he->stat.period == 0; 294 } 295 296 static void hists__delete_entry(struct hists *hists, struct hist_entry *he) 297 { 298 struct rb_root *root_in; 299 struct rb_root *root_out; 300 301 if (he->parent_he) { 302 root_in = &he->parent_he->hroot_in; 303 root_out = &he->parent_he->hroot_out; 304 } else { 305 if (hists__has(hists, need_collapse)) 306 root_in = &hists->entries_collapsed; 307 else 308 root_in = hists->entries_in; 309 root_out = &hists->entries; 310 } 311 312 rb_erase(&he->rb_node_in, root_in); 313 rb_erase(&he->rb_node, root_out); 314 315 --hists->nr_entries; 316 if (!he->filtered) 317 --hists->nr_non_filtered_entries; 318 319 hist_entry__delete(he); 320 } 321 322 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel) 323 { 324 struct rb_node *next = rb_first(&hists->entries); 325 struct hist_entry *n; 326 327 while (next) { 328 n = rb_entry(next, struct hist_entry, rb_node); 329 next = rb_next(&n->rb_node); 330 if (((zap_user && n->level == '.') || 331 (zap_kernel && n->level != '.') || 332 hists__decay_entry(hists, n))) { 333 hists__delete_entry(hists, n); 334 } 335 } 336 } 337 338 void hists__delete_entries(struct hists *hists) 339 { 340 struct rb_node *next = rb_first(&hists->entries); 341 struct hist_entry *n; 342 343 while (next) { 344 n = rb_entry(next, struct hist_entry, rb_node); 345 next = rb_next(&n->rb_node); 346 347 hists__delete_entry(hists, n); 348 } 349 } 350 351 /* 352 * histogram, sorted on item, collects periods 353 */ 354 355 static struct hist_entry *hist_entry__new(struct hist_entry *template, 356 bool sample_self) 357 { 358 size_t callchain_size = 0; 359 struct hist_entry *he; 360 361 if (symbol_conf.use_callchain) 362 callchain_size = sizeof(struct callchain_root); 363 364 he = zalloc(sizeof(*he) + callchain_size); 365 366 if (he != NULL) { 367 *he = *template; 368 369 if (symbol_conf.cumulate_callchain) { 370 he->stat_acc = malloc(sizeof(he->stat)); 371 if (he->stat_acc == NULL) { 372 free(he); 373 return NULL; 374 } 375 memcpy(he->stat_acc, &he->stat, sizeof(he->stat)); 376 if (!sample_self) 377 memset(&he->stat, 0, sizeof(he->stat)); 378 } 379 380 map__get(he->ms.map); 381 382 if (he->branch_info) { 383 /* 384 * This branch info is (a part of) allocated from 385 * sample__resolve_bstack() and will be freed after 386 * adding new entries. So we need to save a copy. 387 */ 388 he->branch_info = malloc(sizeof(*he->branch_info)); 389 if (he->branch_info == NULL) { 390 map__zput(he->ms.map); 391 free(he->stat_acc); 392 free(he); 393 return NULL; 394 } 395 396 memcpy(he->branch_info, template->branch_info, 397 sizeof(*he->branch_info)); 398 399 map__get(he->branch_info->from.map); 400 map__get(he->branch_info->to.map); 401 } 402 403 if (he->mem_info) { 404 map__get(he->mem_info->iaddr.map); 405 map__get(he->mem_info->daddr.map); 406 } 407 408 if (symbol_conf.use_callchain) 409 callchain_init(he->callchain); 410 411 if (he->raw_data) { 412 he->raw_data = memdup(he->raw_data, he->raw_size); 413 414 if (he->raw_data == NULL) { 415 map__put(he->ms.map); 416 if (he->branch_info) { 417 map__put(he->branch_info->from.map); 418 map__put(he->branch_info->to.map); 419 free(he->branch_info); 420 } 421 if (he->mem_info) { 422 map__put(he->mem_info->iaddr.map); 423 map__put(he->mem_info->daddr.map); 424 } 425 free(he->stat_acc); 426 free(he); 427 return NULL; 428 } 429 } 430 INIT_LIST_HEAD(&he->pairs.node); 431 thread__get(he->thread); 432 433 if (!symbol_conf.report_hierarchy) 434 he->leaf = true; 435 } 436 437 return he; 438 } 439 440 static u8 symbol__parent_filter(const struct symbol *parent) 441 { 442 if (symbol_conf.exclude_other && parent == NULL) 443 return 1 << HIST_FILTER__PARENT; 444 return 0; 445 } 446 447 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period) 448 { 449 if (!symbol_conf.use_callchain) 450 return; 451 452 he->hists->callchain_period += period; 453 if (!he->filtered) 454 he->hists->callchain_non_filtered_period += period; 455 } 456 457 static struct hist_entry *hists__findnew_entry(struct hists *hists, 458 struct hist_entry *entry, 459 struct addr_location *al, 460 bool sample_self) 461 { 462 struct rb_node **p; 463 struct rb_node *parent = NULL; 464 struct hist_entry *he; 465 int64_t cmp; 466 u64 period = entry->stat.period; 467 u64 weight = entry->stat.weight; 468 469 p = &hists->entries_in->rb_node; 470 471 while (*p != NULL) { 472 parent = *p; 473 he = rb_entry(parent, struct hist_entry, rb_node_in); 474 475 /* 476 * Make sure that it receives arguments in a same order as 477 * hist_entry__collapse() so that we can use an appropriate 478 * function when searching an entry regardless which sort 479 * keys were used. 480 */ 481 cmp = hist_entry__cmp(he, entry); 482 483 if (!cmp) { 484 if (sample_self) { 485 he_stat__add_period(&he->stat, period, weight); 486 hist_entry__add_callchain_period(he, period); 487 } 488 if (symbol_conf.cumulate_callchain) 489 he_stat__add_period(he->stat_acc, period, weight); 490 491 /* 492 * This mem info was allocated from sample__resolve_mem 493 * and will not be used anymore. 494 */ 495 zfree(&entry->mem_info); 496 497 /* If the map of an existing hist_entry has 498 * become out-of-date due to an exec() or 499 * similar, update it. Otherwise we will 500 * mis-adjust symbol addresses when computing 501 * the history counter to increment. 502 */ 503 if (he->ms.map != entry->ms.map) { 504 map__put(he->ms.map); 505 he->ms.map = map__get(entry->ms.map); 506 } 507 goto out; 508 } 509 510 if (cmp < 0) 511 p = &(*p)->rb_left; 512 else 513 p = &(*p)->rb_right; 514 } 515 516 he = hist_entry__new(entry, sample_self); 517 if (!he) 518 return NULL; 519 520 if (sample_self) 521 hist_entry__add_callchain_period(he, period); 522 hists->nr_entries++; 523 524 rb_link_node(&he->rb_node_in, parent, p); 525 rb_insert_color(&he->rb_node_in, hists->entries_in); 526 out: 527 if (sample_self) 528 he_stat__add_cpumode_period(&he->stat, al->cpumode, period); 529 if (symbol_conf.cumulate_callchain) 530 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period); 531 return he; 532 } 533 534 struct hist_entry *__hists__add_entry(struct hists *hists, 535 struct addr_location *al, 536 struct symbol *sym_parent, 537 struct branch_info *bi, 538 struct mem_info *mi, 539 struct perf_sample *sample, 540 bool sample_self) 541 { 542 struct hist_entry entry = { 543 .thread = al->thread, 544 .comm = thread__comm(al->thread), 545 .ms = { 546 .map = al->map, 547 .sym = al->sym, 548 }, 549 .socket = al->socket, 550 .cpu = al->cpu, 551 .cpumode = al->cpumode, 552 .ip = al->addr, 553 .level = al->level, 554 .stat = { 555 .nr_events = 1, 556 .period = sample->period, 557 .weight = sample->weight, 558 }, 559 .parent = sym_parent, 560 .filtered = symbol__parent_filter(sym_parent) | al->filtered, 561 .hists = hists, 562 .branch_info = bi, 563 .mem_info = mi, 564 .transaction = sample->transaction, 565 .raw_data = sample->raw_data, 566 .raw_size = sample->raw_size, 567 }; 568 569 return hists__findnew_entry(hists, &entry, al, sample_self); 570 } 571 572 static int 573 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 574 struct addr_location *al __maybe_unused) 575 { 576 return 0; 577 } 578 579 static int 580 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused, 581 struct addr_location *al __maybe_unused) 582 { 583 return 0; 584 } 585 586 static int 587 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 588 { 589 struct perf_sample *sample = iter->sample; 590 struct mem_info *mi; 591 592 mi = sample__resolve_mem(sample, al); 593 if (mi == NULL) 594 return -ENOMEM; 595 596 iter->priv = mi; 597 return 0; 598 } 599 600 static int 601 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al) 602 { 603 u64 cost; 604 struct mem_info *mi = iter->priv; 605 struct hists *hists = evsel__hists(iter->evsel); 606 struct perf_sample *sample = iter->sample; 607 struct hist_entry *he; 608 609 if (mi == NULL) 610 return -EINVAL; 611 612 cost = sample->weight; 613 if (!cost) 614 cost = 1; 615 616 /* 617 * must pass period=weight in order to get the correct 618 * sorting from hists__collapse_resort() which is solely 619 * based on periods. We want sorting be done on nr_events * weight 620 * and this is indirectly achieved by passing period=weight here 621 * and the he_stat__add_period() function. 622 */ 623 sample->period = cost; 624 625 he = __hists__add_entry(hists, al, iter->parent, NULL, mi, 626 sample, true); 627 if (!he) 628 return -ENOMEM; 629 630 iter->he = he; 631 return 0; 632 } 633 634 static int 635 iter_finish_mem_entry(struct hist_entry_iter *iter, 636 struct addr_location *al __maybe_unused) 637 { 638 struct perf_evsel *evsel = iter->evsel; 639 struct hists *hists = evsel__hists(evsel); 640 struct hist_entry *he = iter->he; 641 int err = -EINVAL; 642 643 if (he == NULL) 644 goto out; 645 646 hists__inc_nr_samples(hists, he->filtered); 647 648 err = hist_entry__append_callchain(he, iter->sample); 649 650 out: 651 /* 652 * We don't need to free iter->priv (mem_info) here since the mem info 653 * was either already freed in hists__findnew_entry() or passed to a 654 * new hist entry by hist_entry__new(). 655 */ 656 iter->priv = NULL; 657 658 iter->he = NULL; 659 return err; 660 } 661 662 static int 663 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 664 { 665 struct branch_info *bi; 666 struct perf_sample *sample = iter->sample; 667 668 bi = sample__resolve_bstack(sample, al); 669 if (!bi) 670 return -ENOMEM; 671 672 iter->curr = 0; 673 iter->total = sample->branch_stack->nr; 674 675 iter->priv = bi; 676 return 0; 677 } 678 679 static int 680 iter_add_single_branch_entry(struct hist_entry_iter *iter, 681 struct addr_location *al __maybe_unused) 682 { 683 /* to avoid calling callback function */ 684 iter->he = NULL; 685 686 return 0; 687 } 688 689 static int 690 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 691 { 692 struct branch_info *bi = iter->priv; 693 int i = iter->curr; 694 695 if (bi == NULL) 696 return 0; 697 698 if (iter->curr >= iter->total) 699 return 0; 700 701 al->map = bi[i].to.map; 702 al->sym = bi[i].to.sym; 703 al->addr = bi[i].to.addr; 704 return 1; 705 } 706 707 static int 708 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al) 709 { 710 struct branch_info *bi; 711 struct perf_evsel *evsel = iter->evsel; 712 struct hists *hists = evsel__hists(evsel); 713 struct perf_sample *sample = iter->sample; 714 struct hist_entry *he = NULL; 715 int i = iter->curr; 716 int err = 0; 717 718 bi = iter->priv; 719 720 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym)) 721 goto out; 722 723 /* 724 * The report shows the percentage of total branches captured 725 * and not events sampled. Thus we use a pseudo period of 1. 726 */ 727 sample->period = 1; 728 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1; 729 730 he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL, 731 sample, true); 732 if (he == NULL) 733 return -ENOMEM; 734 735 hists__inc_nr_samples(hists, he->filtered); 736 737 out: 738 iter->he = he; 739 iter->curr++; 740 return err; 741 } 742 743 static int 744 iter_finish_branch_entry(struct hist_entry_iter *iter, 745 struct addr_location *al __maybe_unused) 746 { 747 zfree(&iter->priv); 748 iter->he = NULL; 749 750 return iter->curr >= iter->total ? 0 : -1; 751 } 752 753 static int 754 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused, 755 struct addr_location *al __maybe_unused) 756 { 757 return 0; 758 } 759 760 static int 761 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al) 762 { 763 struct perf_evsel *evsel = iter->evsel; 764 struct perf_sample *sample = iter->sample; 765 struct hist_entry *he; 766 767 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 768 sample, true); 769 if (he == NULL) 770 return -ENOMEM; 771 772 iter->he = he; 773 return 0; 774 } 775 776 static int 777 iter_finish_normal_entry(struct hist_entry_iter *iter, 778 struct addr_location *al __maybe_unused) 779 { 780 struct hist_entry *he = iter->he; 781 struct perf_evsel *evsel = iter->evsel; 782 struct perf_sample *sample = iter->sample; 783 784 if (he == NULL) 785 return 0; 786 787 iter->he = NULL; 788 789 hists__inc_nr_samples(evsel__hists(evsel), he->filtered); 790 791 return hist_entry__append_callchain(he, sample); 792 } 793 794 static int 795 iter_prepare_cumulative_entry(struct hist_entry_iter *iter, 796 struct addr_location *al __maybe_unused) 797 { 798 struct hist_entry **he_cache; 799 800 callchain_cursor_commit(&callchain_cursor); 801 802 /* 803 * This is for detecting cycles or recursions so that they're 804 * cumulated only one time to prevent entries more than 100% 805 * overhead. 806 */ 807 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1)); 808 if (he_cache == NULL) 809 return -ENOMEM; 810 811 iter->priv = he_cache; 812 iter->curr = 0; 813 814 return 0; 815 } 816 817 static int 818 iter_add_single_cumulative_entry(struct hist_entry_iter *iter, 819 struct addr_location *al) 820 { 821 struct perf_evsel *evsel = iter->evsel; 822 struct hists *hists = evsel__hists(evsel); 823 struct perf_sample *sample = iter->sample; 824 struct hist_entry **he_cache = iter->priv; 825 struct hist_entry *he; 826 int err = 0; 827 828 he = __hists__add_entry(hists, al, iter->parent, NULL, NULL, 829 sample, true); 830 if (he == NULL) 831 return -ENOMEM; 832 833 iter->he = he; 834 he_cache[iter->curr++] = he; 835 836 hist_entry__append_callchain(he, sample); 837 838 /* 839 * We need to re-initialize the cursor since callchain_append() 840 * advanced the cursor to the end. 841 */ 842 callchain_cursor_commit(&callchain_cursor); 843 844 hists__inc_nr_samples(hists, he->filtered); 845 846 return err; 847 } 848 849 static int 850 iter_next_cumulative_entry(struct hist_entry_iter *iter, 851 struct addr_location *al) 852 { 853 struct callchain_cursor_node *node; 854 855 node = callchain_cursor_current(&callchain_cursor); 856 if (node == NULL) 857 return 0; 858 859 return fill_callchain_info(al, node, iter->hide_unresolved); 860 } 861 862 static int 863 iter_add_next_cumulative_entry(struct hist_entry_iter *iter, 864 struct addr_location *al) 865 { 866 struct perf_evsel *evsel = iter->evsel; 867 struct perf_sample *sample = iter->sample; 868 struct hist_entry **he_cache = iter->priv; 869 struct hist_entry *he; 870 struct hist_entry he_tmp = { 871 .hists = evsel__hists(evsel), 872 .cpu = al->cpu, 873 .thread = al->thread, 874 .comm = thread__comm(al->thread), 875 .ip = al->addr, 876 .ms = { 877 .map = al->map, 878 .sym = al->sym, 879 }, 880 .parent = iter->parent, 881 .raw_data = sample->raw_data, 882 .raw_size = sample->raw_size, 883 }; 884 int i; 885 struct callchain_cursor cursor; 886 887 callchain_cursor_snapshot(&cursor, &callchain_cursor); 888 889 callchain_cursor_advance(&callchain_cursor); 890 891 /* 892 * Check if there's duplicate entries in the callchain. 893 * It's possible that it has cycles or recursive calls. 894 */ 895 for (i = 0; i < iter->curr; i++) { 896 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) { 897 /* to avoid calling callback function */ 898 iter->he = NULL; 899 return 0; 900 } 901 } 902 903 he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL, 904 sample, false); 905 if (he == NULL) 906 return -ENOMEM; 907 908 iter->he = he; 909 he_cache[iter->curr++] = he; 910 911 if (symbol_conf.use_callchain) 912 callchain_append(he->callchain, &cursor, sample->period); 913 return 0; 914 } 915 916 static int 917 iter_finish_cumulative_entry(struct hist_entry_iter *iter, 918 struct addr_location *al __maybe_unused) 919 { 920 zfree(&iter->priv); 921 iter->he = NULL; 922 923 return 0; 924 } 925 926 const struct hist_iter_ops hist_iter_mem = { 927 .prepare_entry = iter_prepare_mem_entry, 928 .add_single_entry = iter_add_single_mem_entry, 929 .next_entry = iter_next_nop_entry, 930 .add_next_entry = iter_add_next_nop_entry, 931 .finish_entry = iter_finish_mem_entry, 932 }; 933 934 const struct hist_iter_ops hist_iter_branch = { 935 .prepare_entry = iter_prepare_branch_entry, 936 .add_single_entry = iter_add_single_branch_entry, 937 .next_entry = iter_next_branch_entry, 938 .add_next_entry = iter_add_next_branch_entry, 939 .finish_entry = iter_finish_branch_entry, 940 }; 941 942 const struct hist_iter_ops hist_iter_normal = { 943 .prepare_entry = iter_prepare_normal_entry, 944 .add_single_entry = iter_add_single_normal_entry, 945 .next_entry = iter_next_nop_entry, 946 .add_next_entry = iter_add_next_nop_entry, 947 .finish_entry = iter_finish_normal_entry, 948 }; 949 950 const struct hist_iter_ops hist_iter_cumulative = { 951 .prepare_entry = iter_prepare_cumulative_entry, 952 .add_single_entry = iter_add_single_cumulative_entry, 953 .next_entry = iter_next_cumulative_entry, 954 .add_next_entry = iter_add_next_cumulative_entry, 955 .finish_entry = iter_finish_cumulative_entry, 956 }; 957 958 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al, 959 int max_stack_depth, void *arg) 960 { 961 int err, err2; 962 963 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent, 964 iter->evsel, al, max_stack_depth); 965 if (err) 966 return err; 967 968 iter->max_stack = max_stack_depth; 969 970 err = iter->ops->prepare_entry(iter, al); 971 if (err) 972 goto out; 973 974 err = iter->ops->add_single_entry(iter, al); 975 if (err) 976 goto out; 977 978 if (iter->he && iter->add_entry_cb) { 979 err = iter->add_entry_cb(iter, al, true, arg); 980 if (err) 981 goto out; 982 } 983 984 while (iter->ops->next_entry(iter, al)) { 985 err = iter->ops->add_next_entry(iter, al); 986 if (err) 987 break; 988 989 if (iter->he && iter->add_entry_cb) { 990 err = iter->add_entry_cb(iter, al, false, arg); 991 if (err) 992 goto out; 993 } 994 } 995 996 out: 997 err2 = iter->ops->finish_entry(iter, al); 998 if (!err) 999 err = err2; 1000 1001 return err; 1002 } 1003 1004 int64_t 1005 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) 1006 { 1007 struct hists *hists = left->hists; 1008 struct perf_hpp_fmt *fmt; 1009 int64_t cmp = 0; 1010 1011 hists__for_each_sort_list(hists, fmt) { 1012 if (perf_hpp__is_dynamic_entry(fmt) && 1013 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1014 continue; 1015 1016 cmp = fmt->cmp(fmt, left, right); 1017 if (cmp) 1018 break; 1019 } 1020 1021 return cmp; 1022 } 1023 1024 int64_t 1025 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) 1026 { 1027 struct hists *hists = left->hists; 1028 struct perf_hpp_fmt *fmt; 1029 int64_t cmp = 0; 1030 1031 hists__for_each_sort_list(hists, fmt) { 1032 if (perf_hpp__is_dynamic_entry(fmt) && 1033 !perf_hpp__defined_dynamic_entry(fmt, hists)) 1034 continue; 1035 1036 cmp = fmt->collapse(fmt, left, right); 1037 if (cmp) 1038 break; 1039 } 1040 1041 return cmp; 1042 } 1043 1044 void hist_entry__delete(struct hist_entry *he) 1045 { 1046 thread__zput(he->thread); 1047 map__zput(he->ms.map); 1048 1049 if (he->branch_info) { 1050 map__zput(he->branch_info->from.map); 1051 map__zput(he->branch_info->to.map); 1052 free_srcline(he->branch_info->srcline_from); 1053 free_srcline(he->branch_info->srcline_to); 1054 zfree(&he->branch_info); 1055 } 1056 1057 if (he->mem_info) { 1058 map__zput(he->mem_info->iaddr.map); 1059 map__zput(he->mem_info->daddr.map); 1060 zfree(&he->mem_info); 1061 } 1062 1063 zfree(&he->stat_acc); 1064 free_srcline(he->srcline); 1065 if (he->srcfile && he->srcfile[0]) 1066 free(he->srcfile); 1067 free_callchain(he->callchain); 1068 free(he->trace_output); 1069 free(he->raw_data); 1070 free(he); 1071 } 1072 1073 /* 1074 * If this is not the last column, then we need to pad it according to the 1075 * pre-calculated max lenght for this column, otherwise don't bother adding 1076 * spaces because that would break viewing this with, for instance, 'less', 1077 * that would show tons of trailing spaces when a long C++ demangled method 1078 * names is sampled. 1079 */ 1080 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp, 1081 struct perf_hpp_fmt *fmt, int printed) 1082 { 1083 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) { 1084 const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists)); 1085 if (printed < width) { 1086 advance_hpp(hpp, printed); 1087 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " "); 1088 } 1089 } 1090 1091 return printed; 1092 } 1093 1094 /* 1095 * collapse the histogram 1096 */ 1097 1098 static void hists__apply_filters(struct hists *hists, struct hist_entry *he); 1099 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he, 1100 enum hist_filter type); 1101 1102 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt); 1103 1104 static bool check_thread_entry(struct perf_hpp_fmt *fmt) 1105 { 1106 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt); 1107 } 1108 1109 static void hist_entry__check_and_remove_filter(struct hist_entry *he, 1110 enum hist_filter type, 1111 fmt_chk_fn check) 1112 { 1113 struct perf_hpp_fmt *fmt; 1114 bool type_match = false; 1115 struct hist_entry *parent = he->parent_he; 1116 1117 switch (type) { 1118 case HIST_FILTER__THREAD: 1119 if (symbol_conf.comm_list == NULL && 1120 symbol_conf.pid_list == NULL && 1121 symbol_conf.tid_list == NULL) 1122 return; 1123 break; 1124 case HIST_FILTER__DSO: 1125 if (symbol_conf.dso_list == NULL) 1126 return; 1127 break; 1128 case HIST_FILTER__SYMBOL: 1129 if (symbol_conf.sym_list == NULL) 1130 return; 1131 break; 1132 case HIST_FILTER__PARENT: 1133 case HIST_FILTER__GUEST: 1134 case HIST_FILTER__HOST: 1135 case HIST_FILTER__SOCKET: 1136 default: 1137 return; 1138 } 1139 1140 /* if it's filtered by own fmt, it has to have filter bits */ 1141 perf_hpp_list__for_each_format(he->hpp_list, fmt) { 1142 if (check(fmt)) { 1143 type_match = true; 1144 break; 1145 } 1146 } 1147 1148 if (type_match) { 1149 /* 1150 * If the filter is for current level entry, propagate 1151 * filter marker to parents. The marker bit was 1152 * already set by default so it only needs to clear 1153 * non-filtered entries. 1154 */ 1155 if (!(he->filtered & (1 << type))) { 1156 while (parent) { 1157 parent->filtered &= ~(1 << type); 1158 parent = parent->parent_he; 1159 } 1160 } 1161 } else { 1162 /* 1163 * If current entry doesn't have matching formats, set 1164 * filter marker for upper level entries. it will be 1165 * cleared if its lower level entries is not filtered. 1166 * 1167 * For lower-level entries, it inherits parent's 1168 * filter bit so that lower level entries of a 1169 * non-filtered entry won't set the filter marker. 1170 */ 1171 if (parent == NULL) 1172 he->filtered |= (1 << type); 1173 else 1174 he->filtered |= (parent->filtered & (1 << type)); 1175 } 1176 } 1177 1178 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he) 1179 { 1180 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD, 1181 check_thread_entry); 1182 1183 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO, 1184 perf_hpp__is_dso_entry); 1185 1186 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL, 1187 perf_hpp__is_sym_entry); 1188 1189 hists__apply_filters(he->hists, he); 1190 } 1191 1192 static struct hist_entry *hierarchy_insert_entry(struct hists *hists, 1193 struct rb_root *root, 1194 struct hist_entry *he, 1195 struct hist_entry *parent_he, 1196 struct perf_hpp_list *hpp_list) 1197 { 1198 struct rb_node **p = &root->rb_node; 1199 struct rb_node *parent = NULL; 1200 struct hist_entry *iter, *new; 1201 struct perf_hpp_fmt *fmt; 1202 int64_t cmp; 1203 1204 while (*p != NULL) { 1205 parent = *p; 1206 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1207 1208 cmp = 0; 1209 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1210 cmp = fmt->collapse(fmt, iter, he); 1211 if (cmp) 1212 break; 1213 } 1214 1215 if (!cmp) { 1216 he_stat__add_stat(&iter->stat, &he->stat); 1217 return iter; 1218 } 1219 1220 if (cmp < 0) 1221 p = &parent->rb_left; 1222 else 1223 p = &parent->rb_right; 1224 } 1225 1226 new = hist_entry__new(he, true); 1227 if (new == NULL) 1228 return NULL; 1229 1230 hists->nr_entries++; 1231 1232 /* save related format list for output */ 1233 new->hpp_list = hpp_list; 1234 new->parent_he = parent_he; 1235 1236 hist_entry__apply_hierarchy_filters(new); 1237 1238 /* some fields are now passed to 'new' */ 1239 perf_hpp_list__for_each_sort_list(hpp_list, fmt) { 1240 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt)) 1241 he->trace_output = NULL; 1242 else 1243 new->trace_output = NULL; 1244 1245 if (perf_hpp__is_srcline_entry(fmt)) 1246 he->srcline = NULL; 1247 else 1248 new->srcline = NULL; 1249 1250 if (perf_hpp__is_srcfile_entry(fmt)) 1251 he->srcfile = NULL; 1252 else 1253 new->srcfile = NULL; 1254 } 1255 1256 rb_link_node(&new->rb_node_in, parent, p); 1257 rb_insert_color(&new->rb_node_in, root); 1258 return new; 1259 } 1260 1261 static int hists__hierarchy_insert_entry(struct hists *hists, 1262 struct rb_root *root, 1263 struct hist_entry *he) 1264 { 1265 struct perf_hpp_list_node *node; 1266 struct hist_entry *new_he = NULL; 1267 struct hist_entry *parent = NULL; 1268 int depth = 0; 1269 int ret = 0; 1270 1271 list_for_each_entry(node, &hists->hpp_formats, list) { 1272 /* skip period (overhead) and elided columns */ 1273 if (node->level == 0 || node->skip) 1274 continue; 1275 1276 /* insert copy of 'he' for each fmt into the hierarchy */ 1277 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp); 1278 if (new_he == NULL) { 1279 ret = -1; 1280 break; 1281 } 1282 1283 root = &new_he->hroot_in; 1284 new_he->depth = depth++; 1285 parent = new_he; 1286 } 1287 1288 if (new_he) { 1289 new_he->leaf = true; 1290 1291 if (symbol_conf.use_callchain) { 1292 callchain_cursor_reset(&callchain_cursor); 1293 if (callchain_merge(&callchain_cursor, 1294 new_he->callchain, 1295 he->callchain) < 0) 1296 ret = -1; 1297 } 1298 } 1299 1300 /* 'he' is no longer used */ 1301 hist_entry__delete(he); 1302 1303 /* return 0 (or -1) since it already applied filters */ 1304 return ret; 1305 } 1306 1307 static int hists__collapse_insert_entry(struct hists *hists, 1308 struct rb_root *root, 1309 struct hist_entry *he) 1310 { 1311 struct rb_node **p = &root->rb_node; 1312 struct rb_node *parent = NULL; 1313 struct hist_entry *iter; 1314 int64_t cmp; 1315 1316 if (symbol_conf.report_hierarchy) 1317 return hists__hierarchy_insert_entry(hists, root, he); 1318 1319 while (*p != NULL) { 1320 parent = *p; 1321 iter = rb_entry(parent, struct hist_entry, rb_node_in); 1322 1323 cmp = hist_entry__collapse(iter, he); 1324 1325 if (!cmp) { 1326 int ret = 0; 1327 1328 he_stat__add_stat(&iter->stat, &he->stat); 1329 if (symbol_conf.cumulate_callchain) 1330 he_stat__add_stat(iter->stat_acc, he->stat_acc); 1331 1332 if (symbol_conf.use_callchain) { 1333 callchain_cursor_reset(&callchain_cursor); 1334 if (callchain_merge(&callchain_cursor, 1335 iter->callchain, 1336 he->callchain) < 0) 1337 ret = -1; 1338 } 1339 hist_entry__delete(he); 1340 return ret; 1341 } 1342 1343 if (cmp < 0) 1344 p = &(*p)->rb_left; 1345 else 1346 p = &(*p)->rb_right; 1347 } 1348 hists->nr_entries++; 1349 1350 rb_link_node(&he->rb_node_in, parent, p); 1351 rb_insert_color(&he->rb_node_in, root); 1352 return 1; 1353 } 1354 1355 struct rb_root *hists__get_rotate_entries_in(struct hists *hists) 1356 { 1357 struct rb_root *root; 1358 1359 pthread_mutex_lock(&hists->lock); 1360 1361 root = hists->entries_in; 1362 if (++hists->entries_in > &hists->entries_in_array[1]) 1363 hists->entries_in = &hists->entries_in_array[0]; 1364 1365 pthread_mutex_unlock(&hists->lock); 1366 1367 return root; 1368 } 1369 1370 static void hists__apply_filters(struct hists *hists, struct hist_entry *he) 1371 { 1372 hists__filter_entry_by_dso(hists, he); 1373 hists__filter_entry_by_thread(hists, he); 1374 hists__filter_entry_by_symbol(hists, he); 1375 hists__filter_entry_by_socket(hists, he); 1376 } 1377 1378 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog) 1379 { 1380 struct rb_root *root; 1381 struct rb_node *next; 1382 struct hist_entry *n; 1383 int ret; 1384 1385 if (!hists__has(hists, need_collapse)) 1386 return 0; 1387 1388 hists->nr_entries = 0; 1389 1390 root = hists__get_rotate_entries_in(hists); 1391 1392 next = rb_first(root); 1393 1394 while (next) { 1395 if (session_done()) 1396 break; 1397 n = rb_entry(next, struct hist_entry, rb_node_in); 1398 next = rb_next(&n->rb_node_in); 1399 1400 rb_erase(&n->rb_node_in, root); 1401 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n); 1402 if (ret < 0) 1403 return -1; 1404 1405 if (ret) { 1406 /* 1407 * If it wasn't combined with one of the entries already 1408 * collapsed, we need to apply the filters that may have 1409 * been set by, say, the hist_browser. 1410 */ 1411 hists__apply_filters(hists, n); 1412 } 1413 if (prog) 1414 ui_progress__update(prog, 1); 1415 } 1416 return 0; 1417 } 1418 1419 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b) 1420 { 1421 struct hists *hists = a->hists; 1422 struct perf_hpp_fmt *fmt; 1423 int64_t cmp = 0; 1424 1425 hists__for_each_sort_list(hists, fmt) { 1426 if (perf_hpp__should_skip(fmt, a->hists)) 1427 continue; 1428 1429 cmp = fmt->sort(fmt, a, b); 1430 if (cmp) 1431 break; 1432 } 1433 1434 return cmp; 1435 } 1436 1437 static void hists__reset_filter_stats(struct hists *hists) 1438 { 1439 hists->nr_non_filtered_entries = 0; 1440 hists->stats.total_non_filtered_period = 0; 1441 } 1442 1443 void hists__reset_stats(struct hists *hists) 1444 { 1445 hists->nr_entries = 0; 1446 hists->stats.total_period = 0; 1447 1448 hists__reset_filter_stats(hists); 1449 } 1450 1451 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h) 1452 { 1453 hists->nr_non_filtered_entries++; 1454 hists->stats.total_non_filtered_period += h->stat.period; 1455 } 1456 1457 void hists__inc_stats(struct hists *hists, struct hist_entry *h) 1458 { 1459 if (!h->filtered) 1460 hists__inc_filter_stats(hists, h); 1461 1462 hists->nr_entries++; 1463 hists->stats.total_period += h->stat.period; 1464 } 1465 1466 static void hierarchy_recalc_total_periods(struct hists *hists) 1467 { 1468 struct rb_node *node; 1469 struct hist_entry *he; 1470 1471 node = rb_first(&hists->entries); 1472 1473 hists->stats.total_period = 0; 1474 hists->stats.total_non_filtered_period = 0; 1475 1476 /* 1477 * recalculate total period using top-level entries only 1478 * since lower level entries only see non-filtered entries 1479 * but upper level entries have sum of both entries. 1480 */ 1481 while (node) { 1482 he = rb_entry(node, struct hist_entry, rb_node); 1483 node = rb_next(node); 1484 1485 hists->stats.total_period += he->stat.period; 1486 if (!he->filtered) 1487 hists->stats.total_non_filtered_period += he->stat.period; 1488 } 1489 } 1490 1491 static void hierarchy_insert_output_entry(struct rb_root *root, 1492 struct hist_entry *he) 1493 { 1494 struct rb_node **p = &root->rb_node; 1495 struct rb_node *parent = NULL; 1496 struct hist_entry *iter; 1497 struct perf_hpp_fmt *fmt; 1498 1499 while (*p != NULL) { 1500 parent = *p; 1501 iter = rb_entry(parent, struct hist_entry, rb_node); 1502 1503 if (hist_entry__sort(he, iter) > 0) 1504 p = &parent->rb_left; 1505 else 1506 p = &parent->rb_right; 1507 } 1508 1509 rb_link_node(&he->rb_node, parent, p); 1510 rb_insert_color(&he->rb_node, root); 1511 1512 /* update column width of dynamic entry */ 1513 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) { 1514 if (perf_hpp__is_dynamic_entry(fmt)) 1515 fmt->sort(fmt, he, NULL); 1516 } 1517 } 1518 1519 static void hists__hierarchy_output_resort(struct hists *hists, 1520 struct ui_progress *prog, 1521 struct rb_root *root_in, 1522 struct rb_root *root_out, 1523 u64 min_callchain_hits, 1524 bool use_callchain) 1525 { 1526 struct rb_node *node; 1527 struct hist_entry *he; 1528 1529 *root_out = RB_ROOT; 1530 node = rb_first(root_in); 1531 1532 while (node) { 1533 he = rb_entry(node, struct hist_entry, rb_node_in); 1534 node = rb_next(node); 1535 1536 hierarchy_insert_output_entry(root_out, he); 1537 1538 if (prog) 1539 ui_progress__update(prog, 1); 1540 1541 if (!he->leaf) { 1542 hists__hierarchy_output_resort(hists, prog, 1543 &he->hroot_in, 1544 &he->hroot_out, 1545 min_callchain_hits, 1546 use_callchain); 1547 hists->nr_entries++; 1548 if (!he->filtered) { 1549 hists->nr_non_filtered_entries++; 1550 hists__calc_col_len(hists, he); 1551 } 1552 1553 continue; 1554 } 1555 1556 if (!use_callchain) 1557 continue; 1558 1559 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1560 u64 total = he->stat.period; 1561 1562 if (symbol_conf.cumulate_callchain) 1563 total = he->stat_acc->period; 1564 1565 min_callchain_hits = total * (callchain_param.min_percent / 100); 1566 } 1567 1568 callchain_param.sort(&he->sorted_chain, he->callchain, 1569 min_callchain_hits, &callchain_param); 1570 } 1571 } 1572 1573 static void __hists__insert_output_entry(struct rb_root *entries, 1574 struct hist_entry *he, 1575 u64 min_callchain_hits, 1576 bool use_callchain) 1577 { 1578 struct rb_node **p = &entries->rb_node; 1579 struct rb_node *parent = NULL; 1580 struct hist_entry *iter; 1581 struct perf_hpp_fmt *fmt; 1582 1583 if (use_callchain) { 1584 if (callchain_param.mode == CHAIN_GRAPH_REL) { 1585 u64 total = he->stat.period; 1586 1587 if (symbol_conf.cumulate_callchain) 1588 total = he->stat_acc->period; 1589 1590 min_callchain_hits = total * (callchain_param.min_percent / 100); 1591 } 1592 callchain_param.sort(&he->sorted_chain, he->callchain, 1593 min_callchain_hits, &callchain_param); 1594 } 1595 1596 while (*p != NULL) { 1597 parent = *p; 1598 iter = rb_entry(parent, struct hist_entry, rb_node); 1599 1600 if (hist_entry__sort(he, iter) > 0) 1601 p = &(*p)->rb_left; 1602 else 1603 p = &(*p)->rb_right; 1604 } 1605 1606 rb_link_node(&he->rb_node, parent, p); 1607 rb_insert_color(&he->rb_node, entries); 1608 1609 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) { 1610 if (perf_hpp__is_dynamic_entry(fmt) && 1611 perf_hpp__defined_dynamic_entry(fmt, he->hists)) 1612 fmt->sort(fmt, he, NULL); /* update column width */ 1613 } 1614 } 1615 1616 static void output_resort(struct hists *hists, struct ui_progress *prog, 1617 bool use_callchain) 1618 { 1619 struct rb_root *root; 1620 struct rb_node *next; 1621 struct hist_entry *n; 1622 u64 callchain_total; 1623 u64 min_callchain_hits; 1624 1625 callchain_total = hists->callchain_period; 1626 if (symbol_conf.filter_relative) 1627 callchain_total = hists->callchain_non_filtered_period; 1628 1629 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100); 1630 1631 hists__reset_stats(hists); 1632 hists__reset_col_len(hists); 1633 1634 if (symbol_conf.report_hierarchy) { 1635 hists__hierarchy_output_resort(hists, prog, 1636 &hists->entries_collapsed, 1637 &hists->entries, 1638 min_callchain_hits, 1639 use_callchain); 1640 hierarchy_recalc_total_periods(hists); 1641 return; 1642 } 1643 1644 if (hists__has(hists, need_collapse)) 1645 root = &hists->entries_collapsed; 1646 else 1647 root = hists->entries_in; 1648 1649 next = rb_first(root); 1650 hists->entries = RB_ROOT; 1651 1652 while (next) { 1653 n = rb_entry(next, struct hist_entry, rb_node_in); 1654 next = rb_next(&n->rb_node_in); 1655 1656 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain); 1657 hists__inc_stats(hists, n); 1658 1659 if (!n->filtered) 1660 hists__calc_col_len(hists, n); 1661 1662 if (prog) 1663 ui_progress__update(prog, 1); 1664 } 1665 } 1666 1667 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog) 1668 { 1669 bool use_callchain; 1670 1671 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph) 1672 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN; 1673 else 1674 use_callchain = symbol_conf.use_callchain; 1675 1676 output_resort(evsel__hists(evsel), prog, use_callchain); 1677 } 1678 1679 void hists__output_resort(struct hists *hists, struct ui_progress *prog) 1680 { 1681 output_resort(hists, prog, symbol_conf.use_callchain); 1682 } 1683 1684 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd) 1685 { 1686 if (he->leaf || hmd == HMD_FORCE_SIBLING) 1687 return false; 1688 1689 if (he->unfolded || hmd == HMD_FORCE_CHILD) 1690 return true; 1691 1692 return false; 1693 } 1694 1695 struct rb_node *rb_hierarchy_last(struct rb_node *node) 1696 { 1697 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1698 1699 while (can_goto_child(he, HMD_NORMAL)) { 1700 node = rb_last(&he->hroot_out); 1701 he = rb_entry(node, struct hist_entry, rb_node); 1702 } 1703 return node; 1704 } 1705 1706 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd) 1707 { 1708 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1709 1710 if (can_goto_child(he, hmd)) 1711 node = rb_first(&he->hroot_out); 1712 else 1713 node = rb_next(node); 1714 1715 while (node == NULL) { 1716 he = he->parent_he; 1717 if (he == NULL) 1718 break; 1719 1720 node = rb_next(&he->rb_node); 1721 } 1722 return node; 1723 } 1724 1725 struct rb_node *rb_hierarchy_prev(struct rb_node *node) 1726 { 1727 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node); 1728 1729 node = rb_prev(node); 1730 if (node) 1731 return rb_hierarchy_last(node); 1732 1733 he = he->parent_he; 1734 if (he == NULL) 1735 return NULL; 1736 1737 return &he->rb_node; 1738 } 1739 1740 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit) 1741 { 1742 struct rb_node *node; 1743 struct hist_entry *child; 1744 float percent; 1745 1746 if (he->leaf) 1747 return false; 1748 1749 node = rb_first(&he->hroot_out); 1750 child = rb_entry(node, struct hist_entry, rb_node); 1751 1752 while (node && child->filtered) { 1753 node = rb_next(node); 1754 child = rb_entry(node, struct hist_entry, rb_node); 1755 } 1756 1757 if (node) 1758 percent = hist_entry__get_percent_limit(child); 1759 else 1760 percent = 0; 1761 1762 return node && percent >= limit; 1763 } 1764 1765 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h, 1766 enum hist_filter filter) 1767 { 1768 h->filtered &= ~(1 << filter); 1769 1770 if (symbol_conf.report_hierarchy) { 1771 struct hist_entry *parent = h->parent_he; 1772 1773 while (parent) { 1774 he_stat__add_stat(&parent->stat, &h->stat); 1775 1776 parent->filtered &= ~(1 << filter); 1777 1778 if (parent->filtered) 1779 goto next; 1780 1781 /* force fold unfiltered entry for simplicity */ 1782 parent->unfolded = false; 1783 parent->has_no_entry = false; 1784 parent->row_offset = 0; 1785 parent->nr_rows = 0; 1786 next: 1787 parent = parent->parent_he; 1788 } 1789 } 1790 1791 if (h->filtered) 1792 return; 1793 1794 /* force fold unfiltered entry for simplicity */ 1795 h->unfolded = false; 1796 h->has_no_entry = false; 1797 h->row_offset = 0; 1798 h->nr_rows = 0; 1799 1800 hists->stats.nr_non_filtered_samples += h->stat.nr_events; 1801 1802 hists__inc_filter_stats(hists, h); 1803 hists__calc_col_len(hists, h); 1804 } 1805 1806 1807 static bool hists__filter_entry_by_dso(struct hists *hists, 1808 struct hist_entry *he) 1809 { 1810 if (hists->dso_filter != NULL && 1811 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) { 1812 he->filtered |= (1 << HIST_FILTER__DSO); 1813 return true; 1814 } 1815 1816 return false; 1817 } 1818 1819 static bool hists__filter_entry_by_thread(struct hists *hists, 1820 struct hist_entry *he) 1821 { 1822 if (hists->thread_filter != NULL && 1823 he->thread != hists->thread_filter) { 1824 he->filtered |= (1 << HIST_FILTER__THREAD); 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 static bool hists__filter_entry_by_symbol(struct hists *hists, 1832 struct hist_entry *he) 1833 { 1834 if (hists->symbol_filter_str != NULL && 1835 (!he->ms.sym || strstr(he->ms.sym->name, 1836 hists->symbol_filter_str) == NULL)) { 1837 he->filtered |= (1 << HIST_FILTER__SYMBOL); 1838 return true; 1839 } 1840 1841 return false; 1842 } 1843 1844 static bool hists__filter_entry_by_socket(struct hists *hists, 1845 struct hist_entry *he) 1846 { 1847 if ((hists->socket_filter > -1) && 1848 (he->socket != hists->socket_filter)) { 1849 he->filtered |= (1 << HIST_FILTER__SOCKET); 1850 return true; 1851 } 1852 1853 return false; 1854 } 1855 1856 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he); 1857 1858 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter) 1859 { 1860 struct rb_node *nd; 1861 1862 hists->stats.nr_non_filtered_samples = 0; 1863 1864 hists__reset_filter_stats(hists); 1865 hists__reset_col_len(hists); 1866 1867 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) { 1868 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1869 1870 if (filter(hists, h)) 1871 continue; 1872 1873 hists__remove_entry_filter(hists, h, type); 1874 } 1875 } 1876 1877 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he) 1878 { 1879 struct rb_node **p = &root->rb_node; 1880 struct rb_node *parent = NULL; 1881 struct hist_entry *iter; 1882 struct rb_root new_root = RB_ROOT; 1883 struct rb_node *nd; 1884 1885 while (*p != NULL) { 1886 parent = *p; 1887 iter = rb_entry(parent, struct hist_entry, rb_node); 1888 1889 if (hist_entry__sort(he, iter) > 0) 1890 p = &(*p)->rb_left; 1891 else 1892 p = &(*p)->rb_right; 1893 } 1894 1895 rb_link_node(&he->rb_node, parent, p); 1896 rb_insert_color(&he->rb_node, root); 1897 1898 if (he->leaf || he->filtered) 1899 return; 1900 1901 nd = rb_first(&he->hroot_out); 1902 while (nd) { 1903 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1904 1905 nd = rb_next(nd); 1906 rb_erase(&h->rb_node, &he->hroot_out); 1907 1908 resort_filtered_entry(&new_root, h); 1909 } 1910 1911 he->hroot_out = new_root; 1912 } 1913 1914 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg) 1915 { 1916 struct rb_node *nd; 1917 struct rb_root new_root = RB_ROOT; 1918 1919 hists->stats.nr_non_filtered_samples = 0; 1920 1921 hists__reset_filter_stats(hists); 1922 hists__reset_col_len(hists); 1923 1924 nd = rb_first(&hists->entries); 1925 while (nd) { 1926 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1927 int ret; 1928 1929 ret = hist_entry__filter(h, type, arg); 1930 1931 /* 1932 * case 1. non-matching type 1933 * zero out the period, set filter marker and move to child 1934 */ 1935 if (ret < 0) { 1936 memset(&h->stat, 0, sizeof(h->stat)); 1937 h->filtered |= (1 << type); 1938 1939 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD); 1940 } 1941 /* 1942 * case 2. matched type (filter out) 1943 * set filter marker and move to next 1944 */ 1945 else if (ret == 1) { 1946 h->filtered |= (1 << type); 1947 1948 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 1949 } 1950 /* 1951 * case 3. ok (not filtered) 1952 * add period to hists and parents, erase the filter marker 1953 * and move to next sibling 1954 */ 1955 else { 1956 hists__remove_entry_filter(hists, h, type); 1957 1958 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING); 1959 } 1960 } 1961 1962 hierarchy_recalc_total_periods(hists); 1963 1964 /* 1965 * resort output after applying a new filter since filter in a lower 1966 * hierarchy can change periods in a upper hierarchy. 1967 */ 1968 nd = rb_first(&hists->entries); 1969 while (nd) { 1970 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node); 1971 1972 nd = rb_next(nd); 1973 rb_erase(&h->rb_node, &hists->entries); 1974 1975 resort_filtered_entry(&new_root, h); 1976 } 1977 1978 hists->entries = new_root; 1979 } 1980 1981 void hists__filter_by_thread(struct hists *hists) 1982 { 1983 if (symbol_conf.report_hierarchy) 1984 hists__filter_hierarchy(hists, HIST_FILTER__THREAD, 1985 hists->thread_filter); 1986 else 1987 hists__filter_by_type(hists, HIST_FILTER__THREAD, 1988 hists__filter_entry_by_thread); 1989 } 1990 1991 void hists__filter_by_dso(struct hists *hists) 1992 { 1993 if (symbol_conf.report_hierarchy) 1994 hists__filter_hierarchy(hists, HIST_FILTER__DSO, 1995 hists->dso_filter); 1996 else 1997 hists__filter_by_type(hists, HIST_FILTER__DSO, 1998 hists__filter_entry_by_dso); 1999 } 2000 2001 void hists__filter_by_symbol(struct hists *hists) 2002 { 2003 if (symbol_conf.report_hierarchy) 2004 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL, 2005 hists->symbol_filter_str); 2006 else 2007 hists__filter_by_type(hists, HIST_FILTER__SYMBOL, 2008 hists__filter_entry_by_symbol); 2009 } 2010 2011 void hists__filter_by_socket(struct hists *hists) 2012 { 2013 if (symbol_conf.report_hierarchy) 2014 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET, 2015 &hists->socket_filter); 2016 else 2017 hists__filter_by_type(hists, HIST_FILTER__SOCKET, 2018 hists__filter_entry_by_socket); 2019 } 2020 2021 void events_stats__inc(struct events_stats *stats, u32 type) 2022 { 2023 ++stats->nr_events[0]; 2024 ++stats->nr_events[type]; 2025 } 2026 2027 void hists__inc_nr_events(struct hists *hists, u32 type) 2028 { 2029 events_stats__inc(&hists->stats, type); 2030 } 2031 2032 void hists__inc_nr_samples(struct hists *hists, bool filtered) 2033 { 2034 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE); 2035 if (!filtered) 2036 hists->stats.nr_non_filtered_samples++; 2037 } 2038 2039 static struct hist_entry *hists__add_dummy_entry(struct hists *hists, 2040 struct hist_entry *pair) 2041 { 2042 struct rb_root *root; 2043 struct rb_node **p; 2044 struct rb_node *parent = NULL; 2045 struct hist_entry *he; 2046 int64_t cmp; 2047 2048 if (hists__has(hists, need_collapse)) 2049 root = &hists->entries_collapsed; 2050 else 2051 root = hists->entries_in; 2052 2053 p = &root->rb_node; 2054 2055 while (*p != NULL) { 2056 parent = *p; 2057 he = rb_entry(parent, struct hist_entry, rb_node_in); 2058 2059 cmp = hist_entry__collapse(he, pair); 2060 2061 if (!cmp) 2062 goto out; 2063 2064 if (cmp < 0) 2065 p = &(*p)->rb_left; 2066 else 2067 p = &(*p)->rb_right; 2068 } 2069 2070 he = hist_entry__new(pair, true); 2071 if (he) { 2072 memset(&he->stat, 0, sizeof(he->stat)); 2073 he->hists = hists; 2074 if (symbol_conf.cumulate_callchain) 2075 memset(he->stat_acc, 0, sizeof(he->stat)); 2076 rb_link_node(&he->rb_node_in, parent, p); 2077 rb_insert_color(&he->rb_node_in, root); 2078 hists__inc_stats(hists, he); 2079 he->dummy = true; 2080 } 2081 out: 2082 return he; 2083 } 2084 2085 static struct hist_entry *hists__find_entry(struct hists *hists, 2086 struct hist_entry *he) 2087 { 2088 struct rb_node *n; 2089 2090 if (hists__has(hists, need_collapse)) 2091 n = hists->entries_collapsed.rb_node; 2092 else 2093 n = hists->entries_in->rb_node; 2094 2095 while (n) { 2096 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in); 2097 int64_t cmp = hist_entry__collapse(iter, he); 2098 2099 if (cmp < 0) 2100 n = n->rb_left; 2101 else if (cmp > 0) 2102 n = n->rb_right; 2103 else 2104 return iter; 2105 } 2106 2107 return NULL; 2108 } 2109 2110 /* 2111 * Look for pairs to link to the leader buckets (hist_entries): 2112 */ 2113 void hists__match(struct hists *leader, struct hists *other) 2114 { 2115 struct rb_root *root; 2116 struct rb_node *nd; 2117 struct hist_entry *pos, *pair; 2118 2119 if (hists__has(leader, need_collapse)) 2120 root = &leader->entries_collapsed; 2121 else 2122 root = leader->entries_in; 2123 2124 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2125 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2126 pair = hists__find_entry(other, pos); 2127 2128 if (pair) 2129 hist_entry__add_pair(pair, pos); 2130 } 2131 } 2132 2133 /* 2134 * Look for entries in the other hists that are not present in the leader, if 2135 * we find them, just add a dummy entry on the leader hists, with period=0, 2136 * nr_events=0, to serve as the list header. 2137 */ 2138 int hists__link(struct hists *leader, struct hists *other) 2139 { 2140 struct rb_root *root; 2141 struct rb_node *nd; 2142 struct hist_entry *pos, *pair; 2143 2144 if (hists__has(other, need_collapse)) 2145 root = &other->entries_collapsed; 2146 else 2147 root = other->entries_in; 2148 2149 for (nd = rb_first(root); nd; nd = rb_next(nd)) { 2150 pos = rb_entry(nd, struct hist_entry, rb_node_in); 2151 2152 if (!hist_entry__has_pairs(pos)) { 2153 pair = hists__add_dummy_entry(leader, pos); 2154 if (pair == NULL) 2155 return -1; 2156 hist_entry__add_pair(pos, pair); 2157 } 2158 } 2159 2160 return 0; 2161 } 2162 2163 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al, 2164 struct perf_sample *sample, bool nonany_branch_mode) 2165 { 2166 struct branch_info *bi; 2167 2168 /* If we have branch cycles always annotate them. */ 2169 if (bs && bs->nr && bs->entries[0].flags.cycles) { 2170 int i; 2171 2172 bi = sample__resolve_bstack(sample, al); 2173 if (bi) { 2174 struct addr_map_symbol *prev = NULL; 2175 2176 /* 2177 * Ignore errors, still want to process the 2178 * other entries. 2179 * 2180 * For non standard branch modes always 2181 * force no IPC (prev == NULL) 2182 * 2183 * Note that perf stores branches reversed from 2184 * program order! 2185 */ 2186 for (i = bs->nr - 1; i >= 0; i--) { 2187 addr_map_symbol__account_cycles(&bi[i].from, 2188 nonany_branch_mode ? NULL : prev, 2189 bi[i].flags.cycles); 2190 prev = &bi[i].to; 2191 } 2192 free(bi); 2193 } 2194 } 2195 } 2196 2197 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp) 2198 { 2199 struct perf_evsel *pos; 2200 size_t ret = 0; 2201 2202 evlist__for_each(evlist, pos) { 2203 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos)); 2204 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp); 2205 } 2206 2207 return ret; 2208 } 2209 2210 2211 u64 hists__total_period(struct hists *hists) 2212 { 2213 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period : 2214 hists->stats.total_period; 2215 } 2216 2217 int parse_filter_percentage(const struct option *opt __maybe_unused, 2218 const char *arg, int unset __maybe_unused) 2219 { 2220 if (!strcmp(arg, "relative")) 2221 symbol_conf.filter_relative = true; 2222 else if (!strcmp(arg, "absolute")) 2223 symbol_conf.filter_relative = false; 2224 else 2225 return -1; 2226 2227 return 0; 2228 } 2229 2230 int perf_hist_config(const char *var, const char *value) 2231 { 2232 if (!strcmp(var, "hist.percentage")) 2233 return parse_filter_percentage(NULL, value, 0); 2234 2235 return 0; 2236 } 2237 2238 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list) 2239 { 2240 memset(hists, 0, sizeof(*hists)); 2241 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT; 2242 hists->entries_in = &hists->entries_in_array[0]; 2243 hists->entries_collapsed = RB_ROOT; 2244 hists->entries = RB_ROOT; 2245 pthread_mutex_init(&hists->lock, NULL); 2246 hists->socket_filter = -1; 2247 hists->hpp_list = hpp_list; 2248 INIT_LIST_HEAD(&hists->hpp_formats); 2249 return 0; 2250 } 2251 2252 static void hists__delete_remaining_entries(struct rb_root *root) 2253 { 2254 struct rb_node *node; 2255 struct hist_entry *he; 2256 2257 while (!RB_EMPTY_ROOT(root)) { 2258 node = rb_first(root); 2259 rb_erase(node, root); 2260 2261 he = rb_entry(node, struct hist_entry, rb_node_in); 2262 hist_entry__delete(he); 2263 } 2264 } 2265 2266 static void hists__delete_all_entries(struct hists *hists) 2267 { 2268 hists__delete_entries(hists); 2269 hists__delete_remaining_entries(&hists->entries_in_array[0]); 2270 hists__delete_remaining_entries(&hists->entries_in_array[1]); 2271 hists__delete_remaining_entries(&hists->entries_collapsed); 2272 } 2273 2274 static void hists_evsel__exit(struct perf_evsel *evsel) 2275 { 2276 struct hists *hists = evsel__hists(evsel); 2277 struct perf_hpp_fmt *fmt, *pos; 2278 struct perf_hpp_list_node *node, *tmp; 2279 2280 hists__delete_all_entries(hists); 2281 2282 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) { 2283 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) { 2284 list_del(&fmt->list); 2285 free(fmt); 2286 } 2287 list_del(&node->list); 2288 free(node); 2289 } 2290 } 2291 2292 static int hists_evsel__init(struct perf_evsel *evsel) 2293 { 2294 struct hists *hists = evsel__hists(evsel); 2295 2296 __hists__init(hists, &perf_hpp_list); 2297 return 0; 2298 } 2299 2300 /* 2301 * XXX We probably need a hists_evsel__exit() to free the hist_entries 2302 * stored in the rbtree... 2303 */ 2304 2305 int hists__init(void) 2306 { 2307 int err = perf_evsel__object_config(sizeof(struct hists_evsel), 2308 hists_evsel__init, 2309 hists_evsel__exit); 2310 if (err) 2311 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr); 2312 2313 return err; 2314 } 2315 2316 void perf_hpp_list__init(struct perf_hpp_list *list) 2317 { 2318 INIT_LIST_HEAD(&list->fields); 2319 INIT_LIST_HEAD(&list->sorts); 2320 } 2321