xref: /openbmc/linux/tools/perf/util/hist.c (revision 6852aa02)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17 
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19 				       struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21 					  struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23 					  struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25 					  struct hist_entry *he);
26 
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29 	return hists->col_len[col];
30 }
31 
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34 	hists->col_len[col] = len;
35 }
36 
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39 	if (len > hists__col_len(hists, col)) {
40 		hists__set_col_len(hists, col, len);
41 		return true;
42 	}
43 	return false;
44 }
45 
46 void hists__reset_col_len(struct hists *hists)
47 {
48 	enum hist_column col;
49 
50 	for (col = 0; col < HISTC_NR_COLS; ++col)
51 		hists__set_col_len(hists, col, 0);
52 }
53 
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57 
58 	if (hists__col_len(hists, dso) < unresolved_col_width &&
59 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60 	    !symbol_conf.dso_list)
61 		hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63 
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67 	int symlen;
68 	u16 len;
69 
70 	/*
71 	 * +4 accounts for '[x] ' priv level info
72 	 * +2 accounts for 0x prefix on raw addresses
73 	 * +3 accounts for ' y ' symtab origin info
74 	 */
75 	if (h->ms.sym) {
76 		symlen = h->ms.sym->namelen + 4;
77 		if (verbose > 0)
78 			symlen += BITS_PER_LONG / 4 + 2 + 3;
79 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80 	} else {
81 		symlen = unresolved_col_width + 4 + 2;
82 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
84 	}
85 
86 	len = thread__comm_len(h->thread);
87 	if (hists__new_col_len(hists, HISTC_COMM, len))
88 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
89 
90 	if (h->ms.map) {
91 		len = dso__name_len(h->ms.map->dso);
92 		hists__new_col_len(hists, HISTC_DSO, len);
93 	}
94 
95 	if (h->parent)
96 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97 
98 	if (h->branch_info) {
99 		if (h->branch_info->from.sym) {
100 			symlen = (int)h->branch_info->from.sym->namelen + 4;
101 			if (verbose > 0)
102 				symlen += BITS_PER_LONG / 4 + 2 + 3;
103 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 
105 			symlen = dso__name_len(h->branch_info->from.map->dso);
106 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107 		} else {
108 			symlen = unresolved_col_width + 4 + 2;
109 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111 		}
112 
113 		if (h->branch_info->to.sym) {
114 			symlen = (int)h->branch_info->to.sym->namelen + 4;
115 			if (verbose > 0)
116 				symlen += BITS_PER_LONG / 4 + 2 + 3;
117 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 
119 			symlen = dso__name_len(h->branch_info->to.map->dso);
120 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121 		} else {
122 			symlen = unresolved_col_width + 4 + 2;
123 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125 		}
126 
127 		if (h->branch_info->srcline_from)
128 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129 					strlen(h->branch_info->srcline_from));
130 		if (h->branch_info->srcline_to)
131 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
132 					strlen(h->branch_info->srcline_to));
133 	}
134 
135 	if (h->mem_info) {
136 		if (h->mem_info->daddr.sym) {
137 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
138 			       + unresolved_col_width + 2;
139 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 					   symlen);
141 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 					   symlen + 1);
143 		} else {
144 			symlen = unresolved_col_width + 4 + 2;
145 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146 					   symlen);
147 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148 					   symlen);
149 		}
150 
151 		if (h->mem_info->iaddr.sym) {
152 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153 			       + unresolved_col_width + 2;
154 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155 					   symlen);
156 		} else {
157 			symlen = unresolved_col_width + 4 + 2;
158 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159 					   symlen);
160 		}
161 
162 		if (h->mem_info->daddr.map) {
163 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
164 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165 					   symlen);
166 		} else {
167 			symlen = unresolved_col_width + 4 + 2;
168 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 		}
170 	} else {
171 		symlen = unresolved_col_width + 4 + 2;
172 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
173 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
174 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
175 	}
176 
177 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
178 	hists__new_col_len(hists, HISTC_CPU, 3);
179 	hists__new_col_len(hists, HISTC_SOCKET, 6);
180 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
181 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
182 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
183 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
184 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
185 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
186 
187 	if (h->srcline) {
188 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
189 		hists__new_col_len(hists, HISTC_SRCLINE, len);
190 	}
191 
192 	if (h->srcfile)
193 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
194 
195 	if (h->transaction)
196 		hists__new_col_len(hists, HISTC_TRANSACTION,
197 				   hist_entry__transaction_len());
198 
199 	if (h->trace_output)
200 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
201 }
202 
203 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
204 {
205 	struct rb_node *next = rb_first(&hists->entries);
206 	struct hist_entry *n;
207 	int row = 0;
208 
209 	hists__reset_col_len(hists);
210 
211 	while (next && row++ < max_rows) {
212 		n = rb_entry(next, struct hist_entry, rb_node);
213 		if (!n->filtered)
214 			hists__calc_col_len(hists, n);
215 		next = rb_next(&n->rb_node);
216 	}
217 }
218 
219 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
220 					unsigned int cpumode, u64 period)
221 {
222 	switch (cpumode) {
223 	case PERF_RECORD_MISC_KERNEL:
224 		he_stat->period_sys += period;
225 		break;
226 	case PERF_RECORD_MISC_USER:
227 		he_stat->period_us += period;
228 		break;
229 	case PERF_RECORD_MISC_GUEST_KERNEL:
230 		he_stat->period_guest_sys += period;
231 		break;
232 	case PERF_RECORD_MISC_GUEST_USER:
233 		he_stat->period_guest_us += period;
234 		break;
235 	default:
236 		break;
237 	}
238 }
239 
240 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
241 				u64 weight)
242 {
243 
244 	he_stat->period		+= period;
245 	he_stat->weight		+= weight;
246 	he_stat->nr_events	+= 1;
247 }
248 
249 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
250 {
251 	dest->period		+= src->period;
252 	dest->period_sys	+= src->period_sys;
253 	dest->period_us		+= src->period_us;
254 	dest->period_guest_sys	+= src->period_guest_sys;
255 	dest->period_guest_us	+= src->period_guest_us;
256 	dest->nr_events		+= src->nr_events;
257 	dest->weight		+= src->weight;
258 }
259 
260 static void he_stat__decay(struct he_stat *he_stat)
261 {
262 	he_stat->period = (he_stat->period * 7) / 8;
263 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
264 	/* XXX need decay for weight too? */
265 }
266 
267 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
268 
269 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
270 {
271 	u64 prev_period = he->stat.period;
272 	u64 diff;
273 
274 	if (prev_period == 0)
275 		return true;
276 
277 	he_stat__decay(&he->stat);
278 	if (symbol_conf.cumulate_callchain)
279 		he_stat__decay(he->stat_acc);
280 	decay_callchain(he->callchain);
281 
282 	diff = prev_period - he->stat.period;
283 
284 	if (!he->depth) {
285 		hists->stats.total_period -= diff;
286 		if (!he->filtered)
287 			hists->stats.total_non_filtered_period -= diff;
288 	}
289 
290 	if (!he->leaf) {
291 		struct hist_entry *child;
292 		struct rb_node *node = rb_first(&he->hroot_out);
293 		while (node) {
294 			child = rb_entry(node, struct hist_entry, rb_node);
295 			node = rb_next(node);
296 
297 			if (hists__decay_entry(hists, child))
298 				hists__delete_entry(hists, child);
299 		}
300 	}
301 
302 	return he->stat.period == 0;
303 }
304 
305 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
306 {
307 	struct rb_root *root_in;
308 	struct rb_root *root_out;
309 
310 	if (he->parent_he) {
311 		root_in  = &he->parent_he->hroot_in;
312 		root_out = &he->parent_he->hroot_out;
313 	} else {
314 		if (hists__has(hists, need_collapse))
315 			root_in = &hists->entries_collapsed;
316 		else
317 			root_in = hists->entries_in;
318 		root_out = &hists->entries;
319 	}
320 
321 	rb_erase(&he->rb_node_in, root_in);
322 	rb_erase(&he->rb_node, root_out);
323 
324 	--hists->nr_entries;
325 	if (!he->filtered)
326 		--hists->nr_non_filtered_entries;
327 
328 	hist_entry__delete(he);
329 }
330 
331 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
332 {
333 	struct rb_node *next = rb_first(&hists->entries);
334 	struct hist_entry *n;
335 
336 	while (next) {
337 		n = rb_entry(next, struct hist_entry, rb_node);
338 		next = rb_next(&n->rb_node);
339 		if (((zap_user && n->level == '.') ||
340 		     (zap_kernel && n->level != '.') ||
341 		     hists__decay_entry(hists, n))) {
342 			hists__delete_entry(hists, n);
343 		}
344 	}
345 }
346 
347 void hists__delete_entries(struct hists *hists)
348 {
349 	struct rb_node *next = rb_first(&hists->entries);
350 	struct hist_entry *n;
351 
352 	while (next) {
353 		n = rb_entry(next, struct hist_entry, rb_node);
354 		next = rb_next(&n->rb_node);
355 
356 		hists__delete_entry(hists, n);
357 	}
358 }
359 
360 /*
361  * histogram, sorted on item, collects periods
362  */
363 
364 static int hist_entry__init(struct hist_entry *he,
365 			    struct hist_entry *template,
366 			    bool sample_self)
367 {
368 	*he = *template;
369 
370 	if (symbol_conf.cumulate_callchain) {
371 		he->stat_acc = malloc(sizeof(he->stat));
372 		if (he->stat_acc == NULL)
373 			return -ENOMEM;
374 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
375 		if (!sample_self)
376 			memset(&he->stat, 0, sizeof(he->stat));
377 	}
378 
379 	map__get(he->ms.map);
380 
381 	if (he->branch_info) {
382 		/*
383 		 * This branch info is (a part of) allocated from
384 		 * sample__resolve_bstack() and will be freed after
385 		 * adding new entries.  So we need to save a copy.
386 		 */
387 		he->branch_info = malloc(sizeof(*he->branch_info));
388 		if (he->branch_info == NULL) {
389 			map__zput(he->ms.map);
390 			free(he->stat_acc);
391 			return -ENOMEM;
392 		}
393 
394 		memcpy(he->branch_info, template->branch_info,
395 		       sizeof(*he->branch_info));
396 
397 		map__get(he->branch_info->from.map);
398 		map__get(he->branch_info->to.map);
399 	}
400 
401 	if (he->mem_info) {
402 		map__get(he->mem_info->iaddr.map);
403 		map__get(he->mem_info->daddr.map);
404 	}
405 
406 	if (symbol_conf.use_callchain)
407 		callchain_init(he->callchain);
408 
409 	if (he->raw_data) {
410 		he->raw_data = memdup(he->raw_data, he->raw_size);
411 
412 		if (he->raw_data == NULL) {
413 			map__put(he->ms.map);
414 			if (he->branch_info) {
415 				map__put(he->branch_info->from.map);
416 				map__put(he->branch_info->to.map);
417 				free(he->branch_info);
418 			}
419 			if (he->mem_info) {
420 				map__put(he->mem_info->iaddr.map);
421 				map__put(he->mem_info->daddr.map);
422 			}
423 			free(he->stat_acc);
424 			return -ENOMEM;
425 		}
426 	}
427 	INIT_LIST_HEAD(&he->pairs.node);
428 	thread__get(he->thread);
429 	he->hroot_in  = RB_ROOT;
430 	he->hroot_out = RB_ROOT;
431 
432 	if (!symbol_conf.report_hierarchy)
433 		he->leaf = true;
434 
435 	return 0;
436 }
437 
438 static void *hist_entry__zalloc(size_t size)
439 {
440 	return zalloc(size + sizeof(struct hist_entry));
441 }
442 
443 static void hist_entry__free(void *ptr)
444 {
445 	free(ptr);
446 }
447 
448 static struct hist_entry_ops default_ops = {
449 	.new	= hist_entry__zalloc,
450 	.free	= hist_entry__free,
451 };
452 
453 static struct hist_entry *hist_entry__new(struct hist_entry *template,
454 					  bool sample_self)
455 {
456 	struct hist_entry_ops *ops = template->ops;
457 	size_t callchain_size = 0;
458 	struct hist_entry *he;
459 	int err = 0;
460 
461 	if (!ops)
462 		ops = template->ops = &default_ops;
463 
464 	if (symbol_conf.use_callchain)
465 		callchain_size = sizeof(struct callchain_root);
466 
467 	he = ops->new(callchain_size);
468 	if (he) {
469 		err = hist_entry__init(he, template, sample_self);
470 		if (err) {
471 			ops->free(he);
472 			he = NULL;
473 		}
474 	}
475 
476 	return he;
477 }
478 
479 static u8 symbol__parent_filter(const struct symbol *parent)
480 {
481 	if (symbol_conf.exclude_other && parent == NULL)
482 		return 1 << HIST_FILTER__PARENT;
483 	return 0;
484 }
485 
486 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
487 {
488 	if (!symbol_conf.use_callchain)
489 		return;
490 
491 	he->hists->callchain_period += period;
492 	if (!he->filtered)
493 		he->hists->callchain_non_filtered_period += period;
494 }
495 
496 static struct hist_entry *hists__findnew_entry(struct hists *hists,
497 					       struct hist_entry *entry,
498 					       struct addr_location *al,
499 					       bool sample_self)
500 {
501 	struct rb_node **p;
502 	struct rb_node *parent = NULL;
503 	struct hist_entry *he;
504 	int64_t cmp;
505 	u64 period = entry->stat.period;
506 	u64 weight = entry->stat.weight;
507 
508 	p = &hists->entries_in->rb_node;
509 
510 	while (*p != NULL) {
511 		parent = *p;
512 		he = rb_entry(parent, struct hist_entry, rb_node_in);
513 
514 		/*
515 		 * Make sure that it receives arguments in a same order as
516 		 * hist_entry__collapse() so that we can use an appropriate
517 		 * function when searching an entry regardless which sort
518 		 * keys were used.
519 		 */
520 		cmp = hist_entry__cmp(he, entry);
521 
522 		if (!cmp) {
523 			if (sample_self) {
524 				he_stat__add_period(&he->stat, period, weight);
525 				hist_entry__add_callchain_period(he, period);
526 			}
527 			if (symbol_conf.cumulate_callchain)
528 				he_stat__add_period(he->stat_acc, period, weight);
529 
530 			/*
531 			 * This mem info was allocated from sample__resolve_mem
532 			 * and will not be used anymore.
533 			 */
534 			zfree(&entry->mem_info);
535 
536 			/* If the map of an existing hist_entry has
537 			 * become out-of-date due to an exec() or
538 			 * similar, update it.  Otherwise we will
539 			 * mis-adjust symbol addresses when computing
540 			 * the history counter to increment.
541 			 */
542 			if (he->ms.map != entry->ms.map) {
543 				map__put(he->ms.map);
544 				he->ms.map = map__get(entry->ms.map);
545 			}
546 			goto out;
547 		}
548 
549 		if (cmp < 0)
550 			p = &(*p)->rb_left;
551 		else
552 			p = &(*p)->rb_right;
553 	}
554 
555 	he = hist_entry__new(entry, sample_self);
556 	if (!he)
557 		return NULL;
558 
559 	if (sample_self)
560 		hist_entry__add_callchain_period(he, period);
561 	hists->nr_entries++;
562 
563 	rb_link_node(&he->rb_node_in, parent, p);
564 	rb_insert_color(&he->rb_node_in, hists->entries_in);
565 out:
566 	if (sample_self)
567 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
568 	if (symbol_conf.cumulate_callchain)
569 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
570 	return he;
571 }
572 
573 static struct hist_entry*
574 __hists__add_entry(struct hists *hists,
575 		   struct addr_location *al,
576 		   struct symbol *sym_parent,
577 		   struct branch_info *bi,
578 		   struct mem_info *mi,
579 		   struct perf_sample *sample,
580 		   bool sample_self,
581 		   struct hist_entry_ops *ops)
582 {
583 	struct namespaces *ns = thread__namespaces(al->thread);
584 	struct hist_entry entry = {
585 		.thread	= al->thread,
586 		.comm = thread__comm(al->thread),
587 		.cgroup_id = {
588 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
589 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
590 		},
591 		.ms = {
592 			.map	= al->map,
593 			.sym	= al->sym,
594 		},
595 		.socket	 = al->socket,
596 		.cpu	 = al->cpu,
597 		.cpumode = al->cpumode,
598 		.ip	 = al->addr,
599 		.level	 = al->level,
600 		.stat = {
601 			.nr_events = 1,
602 			.period	= sample->period,
603 			.weight = sample->weight,
604 		},
605 		.parent = sym_parent,
606 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
607 		.hists	= hists,
608 		.branch_info = bi,
609 		.mem_info = mi,
610 		.transaction = sample->transaction,
611 		.raw_data = sample->raw_data,
612 		.raw_size = sample->raw_size,
613 		.ops = ops,
614 	};
615 
616 	return hists__findnew_entry(hists, &entry, al, sample_self);
617 }
618 
619 struct hist_entry *hists__add_entry(struct hists *hists,
620 				    struct addr_location *al,
621 				    struct symbol *sym_parent,
622 				    struct branch_info *bi,
623 				    struct mem_info *mi,
624 				    struct perf_sample *sample,
625 				    bool sample_self)
626 {
627 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
628 				  sample, sample_self, NULL);
629 }
630 
631 struct hist_entry *hists__add_entry_ops(struct hists *hists,
632 					struct hist_entry_ops *ops,
633 					struct addr_location *al,
634 					struct symbol *sym_parent,
635 					struct branch_info *bi,
636 					struct mem_info *mi,
637 					struct perf_sample *sample,
638 					bool sample_self)
639 {
640 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
641 				  sample, sample_self, ops);
642 }
643 
644 static int
645 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
646 		    struct addr_location *al __maybe_unused)
647 {
648 	return 0;
649 }
650 
651 static int
652 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
653 			struct addr_location *al __maybe_unused)
654 {
655 	return 0;
656 }
657 
658 static int
659 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
660 {
661 	struct perf_sample *sample = iter->sample;
662 	struct mem_info *mi;
663 
664 	mi = sample__resolve_mem(sample, al);
665 	if (mi == NULL)
666 		return -ENOMEM;
667 
668 	iter->priv = mi;
669 	return 0;
670 }
671 
672 static int
673 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
674 {
675 	u64 cost;
676 	struct mem_info *mi = iter->priv;
677 	struct hists *hists = evsel__hists(iter->evsel);
678 	struct perf_sample *sample = iter->sample;
679 	struct hist_entry *he;
680 
681 	if (mi == NULL)
682 		return -EINVAL;
683 
684 	cost = sample->weight;
685 	if (!cost)
686 		cost = 1;
687 
688 	/*
689 	 * must pass period=weight in order to get the correct
690 	 * sorting from hists__collapse_resort() which is solely
691 	 * based on periods. We want sorting be done on nr_events * weight
692 	 * and this is indirectly achieved by passing period=weight here
693 	 * and the he_stat__add_period() function.
694 	 */
695 	sample->period = cost;
696 
697 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
698 			      sample, true);
699 	if (!he)
700 		return -ENOMEM;
701 
702 	iter->he = he;
703 	return 0;
704 }
705 
706 static int
707 iter_finish_mem_entry(struct hist_entry_iter *iter,
708 		      struct addr_location *al __maybe_unused)
709 {
710 	struct perf_evsel *evsel = iter->evsel;
711 	struct hists *hists = evsel__hists(evsel);
712 	struct hist_entry *he = iter->he;
713 	int err = -EINVAL;
714 
715 	if (he == NULL)
716 		goto out;
717 
718 	hists__inc_nr_samples(hists, he->filtered);
719 
720 	err = hist_entry__append_callchain(he, iter->sample);
721 
722 out:
723 	/*
724 	 * We don't need to free iter->priv (mem_info) here since the mem info
725 	 * was either already freed in hists__findnew_entry() or passed to a
726 	 * new hist entry by hist_entry__new().
727 	 */
728 	iter->priv = NULL;
729 
730 	iter->he = NULL;
731 	return err;
732 }
733 
734 static int
735 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
736 {
737 	struct branch_info *bi;
738 	struct perf_sample *sample = iter->sample;
739 
740 	bi = sample__resolve_bstack(sample, al);
741 	if (!bi)
742 		return -ENOMEM;
743 
744 	iter->curr = 0;
745 	iter->total = sample->branch_stack->nr;
746 
747 	iter->priv = bi;
748 	return 0;
749 }
750 
751 static int
752 iter_add_single_branch_entry(struct hist_entry_iter *iter,
753 			     struct addr_location *al __maybe_unused)
754 {
755 	/* to avoid calling callback function */
756 	iter->he = NULL;
757 
758 	return 0;
759 }
760 
761 static int
762 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
763 {
764 	struct branch_info *bi = iter->priv;
765 	int i = iter->curr;
766 
767 	if (bi == NULL)
768 		return 0;
769 
770 	if (iter->curr >= iter->total)
771 		return 0;
772 
773 	al->map = bi[i].to.map;
774 	al->sym = bi[i].to.sym;
775 	al->addr = bi[i].to.addr;
776 	return 1;
777 }
778 
779 static int
780 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
781 {
782 	struct branch_info *bi;
783 	struct perf_evsel *evsel = iter->evsel;
784 	struct hists *hists = evsel__hists(evsel);
785 	struct perf_sample *sample = iter->sample;
786 	struct hist_entry *he = NULL;
787 	int i = iter->curr;
788 	int err = 0;
789 
790 	bi = iter->priv;
791 
792 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
793 		goto out;
794 
795 	/*
796 	 * The report shows the percentage of total branches captured
797 	 * and not events sampled. Thus we use a pseudo period of 1.
798 	 */
799 	sample->period = 1;
800 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
801 
802 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
803 			      sample, true);
804 	if (he == NULL)
805 		return -ENOMEM;
806 
807 	hists__inc_nr_samples(hists, he->filtered);
808 
809 out:
810 	iter->he = he;
811 	iter->curr++;
812 	return err;
813 }
814 
815 static int
816 iter_finish_branch_entry(struct hist_entry_iter *iter,
817 			 struct addr_location *al __maybe_unused)
818 {
819 	zfree(&iter->priv);
820 	iter->he = NULL;
821 
822 	return iter->curr >= iter->total ? 0 : -1;
823 }
824 
825 static int
826 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
827 			  struct addr_location *al __maybe_unused)
828 {
829 	return 0;
830 }
831 
832 static int
833 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
834 {
835 	struct perf_evsel *evsel = iter->evsel;
836 	struct perf_sample *sample = iter->sample;
837 	struct hist_entry *he;
838 
839 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
840 			      sample, true);
841 	if (he == NULL)
842 		return -ENOMEM;
843 
844 	iter->he = he;
845 	return 0;
846 }
847 
848 static int
849 iter_finish_normal_entry(struct hist_entry_iter *iter,
850 			 struct addr_location *al __maybe_unused)
851 {
852 	struct hist_entry *he = iter->he;
853 	struct perf_evsel *evsel = iter->evsel;
854 	struct perf_sample *sample = iter->sample;
855 
856 	if (he == NULL)
857 		return 0;
858 
859 	iter->he = NULL;
860 
861 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
862 
863 	return hist_entry__append_callchain(he, sample);
864 }
865 
866 static int
867 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
868 			      struct addr_location *al __maybe_unused)
869 {
870 	struct hist_entry **he_cache;
871 
872 	callchain_cursor_commit(&callchain_cursor);
873 
874 	/*
875 	 * This is for detecting cycles or recursions so that they're
876 	 * cumulated only one time to prevent entries more than 100%
877 	 * overhead.
878 	 */
879 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
880 	if (he_cache == NULL)
881 		return -ENOMEM;
882 
883 	iter->priv = he_cache;
884 	iter->curr = 0;
885 
886 	return 0;
887 }
888 
889 static int
890 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
891 				 struct addr_location *al)
892 {
893 	struct perf_evsel *evsel = iter->evsel;
894 	struct hists *hists = evsel__hists(evsel);
895 	struct perf_sample *sample = iter->sample;
896 	struct hist_entry **he_cache = iter->priv;
897 	struct hist_entry *he;
898 	int err = 0;
899 
900 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
901 			      sample, true);
902 	if (he == NULL)
903 		return -ENOMEM;
904 
905 	iter->he = he;
906 	he_cache[iter->curr++] = he;
907 
908 	hist_entry__append_callchain(he, sample);
909 
910 	/*
911 	 * We need to re-initialize the cursor since callchain_append()
912 	 * advanced the cursor to the end.
913 	 */
914 	callchain_cursor_commit(&callchain_cursor);
915 
916 	hists__inc_nr_samples(hists, he->filtered);
917 
918 	return err;
919 }
920 
921 static int
922 iter_next_cumulative_entry(struct hist_entry_iter *iter,
923 			   struct addr_location *al)
924 {
925 	struct callchain_cursor_node *node;
926 
927 	node = callchain_cursor_current(&callchain_cursor);
928 	if (node == NULL)
929 		return 0;
930 
931 	return fill_callchain_info(al, node, iter->hide_unresolved);
932 }
933 
934 static int
935 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
936 			       struct addr_location *al)
937 {
938 	struct perf_evsel *evsel = iter->evsel;
939 	struct perf_sample *sample = iter->sample;
940 	struct hist_entry **he_cache = iter->priv;
941 	struct hist_entry *he;
942 	struct hist_entry he_tmp = {
943 		.hists = evsel__hists(evsel),
944 		.cpu = al->cpu,
945 		.thread = al->thread,
946 		.comm = thread__comm(al->thread),
947 		.ip = al->addr,
948 		.ms = {
949 			.map = al->map,
950 			.sym = al->sym,
951 		},
952 		.parent = iter->parent,
953 		.raw_data = sample->raw_data,
954 		.raw_size = sample->raw_size,
955 	};
956 	int i;
957 	struct callchain_cursor cursor;
958 
959 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
960 
961 	callchain_cursor_advance(&callchain_cursor);
962 
963 	/*
964 	 * Check if there's duplicate entries in the callchain.
965 	 * It's possible that it has cycles or recursive calls.
966 	 */
967 	for (i = 0; i < iter->curr; i++) {
968 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
969 			/* to avoid calling callback function */
970 			iter->he = NULL;
971 			return 0;
972 		}
973 	}
974 
975 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
976 			      sample, false);
977 	if (he == NULL)
978 		return -ENOMEM;
979 
980 	iter->he = he;
981 	he_cache[iter->curr++] = he;
982 
983 	if (symbol_conf.use_callchain)
984 		callchain_append(he->callchain, &cursor, sample->period);
985 	return 0;
986 }
987 
988 static int
989 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
990 			     struct addr_location *al __maybe_unused)
991 {
992 	zfree(&iter->priv);
993 	iter->he = NULL;
994 
995 	return 0;
996 }
997 
998 const struct hist_iter_ops hist_iter_mem = {
999 	.prepare_entry 		= iter_prepare_mem_entry,
1000 	.add_single_entry 	= iter_add_single_mem_entry,
1001 	.next_entry 		= iter_next_nop_entry,
1002 	.add_next_entry 	= iter_add_next_nop_entry,
1003 	.finish_entry 		= iter_finish_mem_entry,
1004 };
1005 
1006 const struct hist_iter_ops hist_iter_branch = {
1007 	.prepare_entry 		= iter_prepare_branch_entry,
1008 	.add_single_entry 	= iter_add_single_branch_entry,
1009 	.next_entry 		= iter_next_branch_entry,
1010 	.add_next_entry 	= iter_add_next_branch_entry,
1011 	.finish_entry 		= iter_finish_branch_entry,
1012 };
1013 
1014 const struct hist_iter_ops hist_iter_normal = {
1015 	.prepare_entry 		= iter_prepare_normal_entry,
1016 	.add_single_entry 	= iter_add_single_normal_entry,
1017 	.next_entry 		= iter_next_nop_entry,
1018 	.add_next_entry 	= iter_add_next_nop_entry,
1019 	.finish_entry 		= iter_finish_normal_entry,
1020 };
1021 
1022 const struct hist_iter_ops hist_iter_cumulative = {
1023 	.prepare_entry 		= iter_prepare_cumulative_entry,
1024 	.add_single_entry 	= iter_add_single_cumulative_entry,
1025 	.next_entry 		= iter_next_cumulative_entry,
1026 	.add_next_entry 	= iter_add_next_cumulative_entry,
1027 	.finish_entry 		= iter_finish_cumulative_entry,
1028 };
1029 
1030 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1031 			 int max_stack_depth, void *arg)
1032 {
1033 	int err, err2;
1034 	struct map *alm = NULL;
1035 
1036 	if (al && al->map)
1037 		alm = map__get(al->map);
1038 
1039 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1040 					iter->evsel, al, max_stack_depth);
1041 	if (err)
1042 		return err;
1043 
1044 	iter->max_stack = max_stack_depth;
1045 
1046 	err = iter->ops->prepare_entry(iter, al);
1047 	if (err)
1048 		goto out;
1049 
1050 	err = iter->ops->add_single_entry(iter, al);
1051 	if (err)
1052 		goto out;
1053 
1054 	if (iter->he && iter->add_entry_cb) {
1055 		err = iter->add_entry_cb(iter, al, true, arg);
1056 		if (err)
1057 			goto out;
1058 	}
1059 
1060 	while (iter->ops->next_entry(iter, al)) {
1061 		err = iter->ops->add_next_entry(iter, al);
1062 		if (err)
1063 			break;
1064 
1065 		if (iter->he && iter->add_entry_cb) {
1066 			err = iter->add_entry_cb(iter, al, false, arg);
1067 			if (err)
1068 				goto out;
1069 		}
1070 	}
1071 
1072 out:
1073 	err2 = iter->ops->finish_entry(iter, al);
1074 	if (!err)
1075 		err = err2;
1076 
1077 	map__put(alm);
1078 
1079 	return err;
1080 }
1081 
1082 int64_t
1083 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1084 {
1085 	struct hists *hists = left->hists;
1086 	struct perf_hpp_fmt *fmt;
1087 	int64_t cmp = 0;
1088 
1089 	hists__for_each_sort_list(hists, fmt) {
1090 		if (perf_hpp__is_dynamic_entry(fmt) &&
1091 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1092 			continue;
1093 
1094 		cmp = fmt->cmp(fmt, left, right);
1095 		if (cmp)
1096 			break;
1097 	}
1098 
1099 	return cmp;
1100 }
1101 
1102 int64_t
1103 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1104 {
1105 	struct hists *hists = left->hists;
1106 	struct perf_hpp_fmt *fmt;
1107 	int64_t cmp = 0;
1108 
1109 	hists__for_each_sort_list(hists, fmt) {
1110 		if (perf_hpp__is_dynamic_entry(fmt) &&
1111 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1112 			continue;
1113 
1114 		cmp = fmt->collapse(fmt, left, right);
1115 		if (cmp)
1116 			break;
1117 	}
1118 
1119 	return cmp;
1120 }
1121 
1122 void hist_entry__delete(struct hist_entry *he)
1123 {
1124 	struct hist_entry_ops *ops = he->ops;
1125 
1126 	thread__zput(he->thread);
1127 	map__zput(he->ms.map);
1128 
1129 	if (he->branch_info) {
1130 		map__zput(he->branch_info->from.map);
1131 		map__zput(he->branch_info->to.map);
1132 		free_srcline(he->branch_info->srcline_from);
1133 		free_srcline(he->branch_info->srcline_to);
1134 		zfree(&he->branch_info);
1135 	}
1136 
1137 	if (he->mem_info) {
1138 		map__zput(he->mem_info->iaddr.map);
1139 		map__zput(he->mem_info->daddr.map);
1140 		zfree(&he->mem_info);
1141 	}
1142 
1143 	if (he->inline_node) {
1144 		inline_node__delete(he->inline_node);
1145 		he->inline_node = NULL;
1146 	}
1147 
1148 	zfree(&he->stat_acc);
1149 	free_srcline(he->srcline);
1150 	if (he->srcfile && he->srcfile[0])
1151 		free(he->srcfile);
1152 	free_callchain(he->callchain);
1153 	free(he->trace_output);
1154 	free(he->raw_data);
1155 	ops->free(he);
1156 }
1157 
1158 /*
1159  * If this is not the last column, then we need to pad it according to the
1160  * pre-calculated max lenght for this column, otherwise don't bother adding
1161  * spaces because that would break viewing this with, for instance, 'less',
1162  * that would show tons of trailing spaces when a long C++ demangled method
1163  * names is sampled.
1164 */
1165 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1166 				   struct perf_hpp_fmt *fmt, int printed)
1167 {
1168 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1169 		const int width = fmt->width(fmt, hpp, he->hists);
1170 		if (printed < width) {
1171 			advance_hpp(hpp, printed);
1172 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1173 		}
1174 	}
1175 
1176 	return printed;
1177 }
1178 
1179 /*
1180  * collapse the histogram
1181  */
1182 
1183 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1184 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1185 				       enum hist_filter type);
1186 
1187 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1188 
1189 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1190 {
1191 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1192 }
1193 
1194 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1195 						enum hist_filter type,
1196 						fmt_chk_fn check)
1197 {
1198 	struct perf_hpp_fmt *fmt;
1199 	bool type_match = false;
1200 	struct hist_entry *parent = he->parent_he;
1201 
1202 	switch (type) {
1203 	case HIST_FILTER__THREAD:
1204 		if (symbol_conf.comm_list == NULL &&
1205 		    symbol_conf.pid_list == NULL &&
1206 		    symbol_conf.tid_list == NULL)
1207 			return;
1208 		break;
1209 	case HIST_FILTER__DSO:
1210 		if (symbol_conf.dso_list == NULL)
1211 			return;
1212 		break;
1213 	case HIST_FILTER__SYMBOL:
1214 		if (symbol_conf.sym_list == NULL)
1215 			return;
1216 		break;
1217 	case HIST_FILTER__PARENT:
1218 	case HIST_FILTER__GUEST:
1219 	case HIST_FILTER__HOST:
1220 	case HIST_FILTER__SOCKET:
1221 	case HIST_FILTER__C2C:
1222 	default:
1223 		return;
1224 	}
1225 
1226 	/* if it's filtered by own fmt, it has to have filter bits */
1227 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1228 		if (check(fmt)) {
1229 			type_match = true;
1230 			break;
1231 		}
1232 	}
1233 
1234 	if (type_match) {
1235 		/*
1236 		 * If the filter is for current level entry, propagate
1237 		 * filter marker to parents.  The marker bit was
1238 		 * already set by default so it only needs to clear
1239 		 * non-filtered entries.
1240 		 */
1241 		if (!(he->filtered & (1 << type))) {
1242 			while (parent) {
1243 				parent->filtered &= ~(1 << type);
1244 				parent = parent->parent_he;
1245 			}
1246 		}
1247 	} else {
1248 		/*
1249 		 * If current entry doesn't have matching formats, set
1250 		 * filter marker for upper level entries.  it will be
1251 		 * cleared if its lower level entries is not filtered.
1252 		 *
1253 		 * For lower-level entries, it inherits parent's
1254 		 * filter bit so that lower level entries of a
1255 		 * non-filtered entry won't set the filter marker.
1256 		 */
1257 		if (parent == NULL)
1258 			he->filtered |= (1 << type);
1259 		else
1260 			he->filtered |= (parent->filtered & (1 << type));
1261 	}
1262 }
1263 
1264 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1265 {
1266 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1267 					    check_thread_entry);
1268 
1269 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1270 					    perf_hpp__is_dso_entry);
1271 
1272 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1273 					    perf_hpp__is_sym_entry);
1274 
1275 	hists__apply_filters(he->hists, he);
1276 }
1277 
1278 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1279 						 struct rb_root *root,
1280 						 struct hist_entry *he,
1281 						 struct hist_entry *parent_he,
1282 						 struct perf_hpp_list *hpp_list)
1283 {
1284 	struct rb_node **p = &root->rb_node;
1285 	struct rb_node *parent = NULL;
1286 	struct hist_entry *iter, *new;
1287 	struct perf_hpp_fmt *fmt;
1288 	int64_t cmp;
1289 
1290 	while (*p != NULL) {
1291 		parent = *p;
1292 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1293 
1294 		cmp = 0;
1295 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1296 			cmp = fmt->collapse(fmt, iter, he);
1297 			if (cmp)
1298 				break;
1299 		}
1300 
1301 		if (!cmp) {
1302 			he_stat__add_stat(&iter->stat, &he->stat);
1303 			return iter;
1304 		}
1305 
1306 		if (cmp < 0)
1307 			p = &parent->rb_left;
1308 		else
1309 			p = &parent->rb_right;
1310 	}
1311 
1312 	new = hist_entry__new(he, true);
1313 	if (new == NULL)
1314 		return NULL;
1315 
1316 	hists->nr_entries++;
1317 
1318 	/* save related format list for output */
1319 	new->hpp_list = hpp_list;
1320 	new->parent_he = parent_he;
1321 
1322 	hist_entry__apply_hierarchy_filters(new);
1323 
1324 	/* some fields are now passed to 'new' */
1325 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1326 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1327 			he->trace_output = NULL;
1328 		else
1329 			new->trace_output = NULL;
1330 
1331 		if (perf_hpp__is_srcline_entry(fmt))
1332 			he->srcline = NULL;
1333 		else
1334 			new->srcline = NULL;
1335 
1336 		if (perf_hpp__is_srcfile_entry(fmt))
1337 			he->srcfile = NULL;
1338 		else
1339 			new->srcfile = NULL;
1340 	}
1341 
1342 	rb_link_node(&new->rb_node_in, parent, p);
1343 	rb_insert_color(&new->rb_node_in, root);
1344 	return new;
1345 }
1346 
1347 static int hists__hierarchy_insert_entry(struct hists *hists,
1348 					 struct rb_root *root,
1349 					 struct hist_entry *he)
1350 {
1351 	struct perf_hpp_list_node *node;
1352 	struct hist_entry *new_he = NULL;
1353 	struct hist_entry *parent = NULL;
1354 	int depth = 0;
1355 	int ret = 0;
1356 
1357 	list_for_each_entry(node, &hists->hpp_formats, list) {
1358 		/* skip period (overhead) and elided columns */
1359 		if (node->level == 0 || node->skip)
1360 			continue;
1361 
1362 		/* insert copy of 'he' for each fmt into the hierarchy */
1363 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1364 		if (new_he == NULL) {
1365 			ret = -1;
1366 			break;
1367 		}
1368 
1369 		root = &new_he->hroot_in;
1370 		new_he->depth = depth++;
1371 		parent = new_he;
1372 	}
1373 
1374 	if (new_he) {
1375 		new_he->leaf = true;
1376 
1377 		if (symbol_conf.use_callchain) {
1378 			callchain_cursor_reset(&callchain_cursor);
1379 			if (callchain_merge(&callchain_cursor,
1380 					    new_he->callchain,
1381 					    he->callchain) < 0)
1382 				ret = -1;
1383 		}
1384 	}
1385 
1386 	/* 'he' is no longer used */
1387 	hist_entry__delete(he);
1388 
1389 	/* return 0 (or -1) since it already applied filters */
1390 	return ret;
1391 }
1392 
1393 static int hists__collapse_insert_entry(struct hists *hists,
1394 					struct rb_root *root,
1395 					struct hist_entry *he)
1396 {
1397 	struct rb_node **p = &root->rb_node;
1398 	struct rb_node *parent = NULL;
1399 	struct hist_entry *iter;
1400 	int64_t cmp;
1401 
1402 	if (symbol_conf.report_hierarchy)
1403 		return hists__hierarchy_insert_entry(hists, root, he);
1404 
1405 	while (*p != NULL) {
1406 		parent = *p;
1407 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1408 
1409 		cmp = hist_entry__collapse(iter, he);
1410 
1411 		if (!cmp) {
1412 			int ret = 0;
1413 
1414 			he_stat__add_stat(&iter->stat, &he->stat);
1415 			if (symbol_conf.cumulate_callchain)
1416 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1417 
1418 			if (symbol_conf.use_callchain) {
1419 				callchain_cursor_reset(&callchain_cursor);
1420 				if (callchain_merge(&callchain_cursor,
1421 						    iter->callchain,
1422 						    he->callchain) < 0)
1423 					ret = -1;
1424 			}
1425 			hist_entry__delete(he);
1426 			return ret;
1427 		}
1428 
1429 		if (cmp < 0)
1430 			p = &(*p)->rb_left;
1431 		else
1432 			p = &(*p)->rb_right;
1433 	}
1434 	hists->nr_entries++;
1435 
1436 	rb_link_node(&he->rb_node_in, parent, p);
1437 	rb_insert_color(&he->rb_node_in, root);
1438 	return 1;
1439 }
1440 
1441 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1442 {
1443 	struct rb_root *root;
1444 
1445 	pthread_mutex_lock(&hists->lock);
1446 
1447 	root = hists->entries_in;
1448 	if (++hists->entries_in > &hists->entries_in_array[1])
1449 		hists->entries_in = &hists->entries_in_array[0];
1450 
1451 	pthread_mutex_unlock(&hists->lock);
1452 
1453 	return root;
1454 }
1455 
1456 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1457 {
1458 	hists__filter_entry_by_dso(hists, he);
1459 	hists__filter_entry_by_thread(hists, he);
1460 	hists__filter_entry_by_symbol(hists, he);
1461 	hists__filter_entry_by_socket(hists, he);
1462 }
1463 
1464 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1465 {
1466 	struct rb_root *root;
1467 	struct rb_node *next;
1468 	struct hist_entry *n;
1469 	int ret;
1470 
1471 	if (!hists__has(hists, need_collapse))
1472 		return 0;
1473 
1474 	hists->nr_entries = 0;
1475 
1476 	root = hists__get_rotate_entries_in(hists);
1477 
1478 	next = rb_first(root);
1479 
1480 	while (next) {
1481 		if (session_done())
1482 			break;
1483 		n = rb_entry(next, struct hist_entry, rb_node_in);
1484 		next = rb_next(&n->rb_node_in);
1485 
1486 		rb_erase(&n->rb_node_in, root);
1487 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1488 		if (ret < 0)
1489 			return -1;
1490 
1491 		if (ret) {
1492 			/*
1493 			 * If it wasn't combined with one of the entries already
1494 			 * collapsed, we need to apply the filters that may have
1495 			 * been set by, say, the hist_browser.
1496 			 */
1497 			hists__apply_filters(hists, n);
1498 		}
1499 		if (prog)
1500 			ui_progress__update(prog, 1);
1501 	}
1502 	return 0;
1503 }
1504 
1505 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1506 {
1507 	struct hists *hists = a->hists;
1508 	struct perf_hpp_fmt *fmt;
1509 	int64_t cmp = 0;
1510 
1511 	hists__for_each_sort_list(hists, fmt) {
1512 		if (perf_hpp__should_skip(fmt, a->hists))
1513 			continue;
1514 
1515 		cmp = fmt->sort(fmt, a, b);
1516 		if (cmp)
1517 			break;
1518 	}
1519 
1520 	return cmp;
1521 }
1522 
1523 static void hists__reset_filter_stats(struct hists *hists)
1524 {
1525 	hists->nr_non_filtered_entries = 0;
1526 	hists->stats.total_non_filtered_period = 0;
1527 }
1528 
1529 void hists__reset_stats(struct hists *hists)
1530 {
1531 	hists->nr_entries = 0;
1532 	hists->stats.total_period = 0;
1533 
1534 	hists__reset_filter_stats(hists);
1535 }
1536 
1537 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1538 {
1539 	hists->nr_non_filtered_entries++;
1540 	hists->stats.total_non_filtered_period += h->stat.period;
1541 }
1542 
1543 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1544 {
1545 	if (!h->filtered)
1546 		hists__inc_filter_stats(hists, h);
1547 
1548 	hists->nr_entries++;
1549 	hists->stats.total_period += h->stat.period;
1550 }
1551 
1552 static void hierarchy_recalc_total_periods(struct hists *hists)
1553 {
1554 	struct rb_node *node;
1555 	struct hist_entry *he;
1556 
1557 	node = rb_first(&hists->entries);
1558 
1559 	hists->stats.total_period = 0;
1560 	hists->stats.total_non_filtered_period = 0;
1561 
1562 	/*
1563 	 * recalculate total period using top-level entries only
1564 	 * since lower level entries only see non-filtered entries
1565 	 * but upper level entries have sum of both entries.
1566 	 */
1567 	while (node) {
1568 		he = rb_entry(node, struct hist_entry, rb_node);
1569 		node = rb_next(node);
1570 
1571 		hists->stats.total_period += he->stat.period;
1572 		if (!he->filtered)
1573 			hists->stats.total_non_filtered_period += he->stat.period;
1574 	}
1575 }
1576 
1577 static void hierarchy_insert_output_entry(struct rb_root *root,
1578 					  struct hist_entry *he)
1579 {
1580 	struct rb_node **p = &root->rb_node;
1581 	struct rb_node *parent = NULL;
1582 	struct hist_entry *iter;
1583 	struct perf_hpp_fmt *fmt;
1584 
1585 	while (*p != NULL) {
1586 		parent = *p;
1587 		iter = rb_entry(parent, struct hist_entry, rb_node);
1588 
1589 		if (hist_entry__sort(he, iter) > 0)
1590 			p = &parent->rb_left;
1591 		else
1592 			p = &parent->rb_right;
1593 	}
1594 
1595 	rb_link_node(&he->rb_node, parent, p);
1596 	rb_insert_color(&he->rb_node, root);
1597 
1598 	/* update column width of dynamic entry */
1599 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1600 		if (perf_hpp__is_dynamic_entry(fmt))
1601 			fmt->sort(fmt, he, NULL);
1602 	}
1603 }
1604 
1605 static void hists__hierarchy_output_resort(struct hists *hists,
1606 					   struct ui_progress *prog,
1607 					   struct rb_root *root_in,
1608 					   struct rb_root *root_out,
1609 					   u64 min_callchain_hits,
1610 					   bool use_callchain)
1611 {
1612 	struct rb_node *node;
1613 	struct hist_entry *he;
1614 
1615 	*root_out = RB_ROOT;
1616 	node = rb_first(root_in);
1617 
1618 	while (node) {
1619 		he = rb_entry(node, struct hist_entry, rb_node_in);
1620 		node = rb_next(node);
1621 
1622 		hierarchy_insert_output_entry(root_out, he);
1623 
1624 		if (prog)
1625 			ui_progress__update(prog, 1);
1626 
1627 		hists->nr_entries++;
1628 		if (!he->filtered) {
1629 			hists->nr_non_filtered_entries++;
1630 			hists__calc_col_len(hists, he);
1631 		}
1632 
1633 		if (!he->leaf) {
1634 			hists__hierarchy_output_resort(hists, prog,
1635 						       &he->hroot_in,
1636 						       &he->hroot_out,
1637 						       min_callchain_hits,
1638 						       use_callchain);
1639 			continue;
1640 		}
1641 
1642 		if (!use_callchain)
1643 			continue;
1644 
1645 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1646 			u64 total = he->stat.period;
1647 
1648 			if (symbol_conf.cumulate_callchain)
1649 				total = he->stat_acc->period;
1650 
1651 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1652 		}
1653 
1654 		callchain_param.sort(&he->sorted_chain, he->callchain,
1655 				     min_callchain_hits, &callchain_param);
1656 	}
1657 }
1658 
1659 static void __hists__insert_output_entry(struct rb_root *entries,
1660 					 struct hist_entry *he,
1661 					 u64 min_callchain_hits,
1662 					 bool use_callchain)
1663 {
1664 	struct rb_node **p = &entries->rb_node;
1665 	struct rb_node *parent = NULL;
1666 	struct hist_entry *iter;
1667 	struct perf_hpp_fmt *fmt;
1668 
1669 	if (use_callchain) {
1670 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1671 			u64 total = he->stat.period;
1672 
1673 			if (symbol_conf.cumulate_callchain)
1674 				total = he->stat_acc->period;
1675 
1676 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1677 		}
1678 		callchain_param.sort(&he->sorted_chain, he->callchain,
1679 				      min_callchain_hits, &callchain_param);
1680 	}
1681 
1682 	while (*p != NULL) {
1683 		parent = *p;
1684 		iter = rb_entry(parent, struct hist_entry, rb_node);
1685 
1686 		if (hist_entry__sort(he, iter) > 0)
1687 			p = &(*p)->rb_left;
1688 		else
1689 			p = &(*p)->rb_right;
1690 	}
1691 
1692 	rb_link_node(&he->rb_node, parent, p);
1693 	rb_insert_color(&he->rb_node, entries);
1694 
1695 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1696 		if (perf_hpp__is_dynamic_entry(fmt) &&
1697 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1698 			fmt->sort(fmt, he, NULL);  /* update column width */
1699 	}
1700 }
1701 
1702 static void output_resort(struct hists *hists, struct ui_progress *prog,
1703 			  bool use_callchain, hists__resort_cb_t cb)
1704 {
1705 	struct rb_root *root;
1706 	struct rb_node *next;
1707 	struct hist_entry *n;
1708 	u64 callchain_total;
1709 	u64 min_callchain_hits;
1710 
1711 	callchain_total = hists->callchain_period;
1712 	if (symbol_conf.filter_relative)
1713 		callchain_total = hists->callchain_non_filtered_period;
1714 
1715 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1716 
1717 	hists__reset_stats(hists);
1718 	hists__reset_col_len(hists);
1719 
1720 	if (symbol_conf.report_hierarchy) {
1721 		hists__hierarchy_output_resort(hists, prog,
1722 					       &hists->entries_collapsed,
1723 					       &hists->entries,
1724 					       min_callchain_hits,
1725 					       use_callchain);
1726 		hierarchy_recalc_total_periods(hists);
1727 		return;
1728 	}
1729 
1730 	if (hists__has(hists, need_collapse))
1731 		root = &hists->entries_collapsed;
1732 	else
1733 		root = hists->entries_in;
1734 
1735 	next = rb_first(root);
1736 	hists->entries = RB_ROOT;
1737 
1738 	while (next) {
1739 		n = rb_entry(next, struct hist_entry, rb_node_in);
1740 		next = rb_next(&n->rb_node_in);
1741 
1742 		if (cb && cb(n))
1743 			continue;
1744 
1745 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1746 		hists__inc_stats(hists, n);
1747 
1748 		if (!n->filtered)
1749 			hists__calc_col_len(hists, n);
1750 
1751 		if (prog)
1752 			ui_progress__update(prog, 1);
1753 	}
1754 }
1755 
1756 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1757 {
1758 	bool use_callchain;
1759 
1760 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1761 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1762 	else
1763 		use_callchain = symbol_conf.use_callchain;
1764 
1765 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1766 }
1767 
1768 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1769 {
1770 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1771 }
1772 
1773 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1774 			     hists__resort_cb_t cb)
1775 {
1776 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1777 }
1778 
1779 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1780 {
1781 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1782 		return false;
1783 
1784 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1785 		return true;
1786 
1787 	return false;
1788 }
1789 
1790 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1791 {
1792 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1793 
1794 	while (can_goto_child(he, HMD_NORMAL)) {
1795 		node = rb_last(&he->hroot_out);
1796 		he = rb_entry(node, struct hist_entry, rb_node);
1797 	}
1798 	return node;
1799 }
1800 
1801 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1802 {
1803 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1804 
1805 	if (can_goto_child(he, hmd))
1806 		node = rb_first(&he->hroot_out);
1807 	else
1808 		node = rb_next(node);
1809 
1810 	while (node == NULL) {
1811 		he = he->parent_he;
1812 		if (he == NULL)
1813 			break;
1814 
1815 		node = rb_next(&he->rb_node);
1816 	}
1817 	return node;
1818 }
1819 
1820 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1821 {
1822 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1823 
1824 	node = rb_prev(node);
1825 	if (node)
1826 		return rb_hierarchy_last(node);
1827 
1828 	he = he->parent_he;
1829 	if (he == NULL)
1830 		return NULL;
1831 
1832 	return &he->rb_node;
1833 }
1834 
1835 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1836 {
1837 	struct rb_node *node;
1838 	struct hist_entry *child;
1839 	float percent;
1840 
1841 	if (he->leaf)
1842 		return false;
1843 
1844 	node = rb_first(&he->hroot_out);
1845 	child = rb_entry(node, struct hist_entry, rb_node);
1846 
1847 	while (node && child->filtered) {
1848 		node = rb_next(node);
1849 		child = rb_entry(node, struct hist_entry, rb_node);
1850 	}
1851 
1852 	if (node)
1853 		percent = hist_entry__get_percent_limit(child);
1854 	else
1855 		percent = 0;
1856 
1857 	return node && percent >= limit;
1858 }
1859 
1860 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1861 				       enum hist_filter filter)
1862 {
1863 	h->filtered &= ~(1 << filter);
1864 
1865 	if (symbol_conf.report_hierarchy) {
1866 		struct hist_entry *parent = h->parent_he;
1867 
1868 		while (parent) {
1869 			he_stat__add_stat(&parent->stat, &h->stat);
1870 
1871 			parent->filtered &= ~(1 << filter);
1872 
1873 			if (parent->filtered)
1874 				goto next;
1875 
1876 			/* force fold unfiltered entry for simplicity */
1877 			parent->unfolded = false;
1878 			parent->has_no_entry = false;
1879 			parent->row_offset = 0;
1880 			parent->nr_rows = 0;
1881 next:
1882 			parent = parent->parent_he;
1883 		}
1884 	}
1885 
1886 	if (h->filtered)
1887 		return;
1888 
1889 	/* force fold unfiltered entry for simplicity */
1890 	h->unfolded = false;
1891 	h->has_no_entry = false;
1892 	h->row_offset = 0;
1893 	h->nr_rows = 0;
1894 
1895 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1896 
1897 	hists__inc_filter_stats(hists, h);
1898 	hists__calc_col_len(hists, h);
1899 }
1900 
1901 
1902 static bool hists__filter_entry_by_dso(struct hists *hists,
1903 				       struct hist_entry *he)
1904 {
1905 	if (hists->dso_filter != NULL &&
1906 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1907 		he->filtered |= (1 << HIST_FILTER__DSO);
1908 		return true;
1909 	}
1910 
1911 	return false;
1912 }
1913 
1914 static bool hists__filter_entry_by_thread(struct hists *hists,
1915 					  struct hist_entry *he)
1916 {
1917 	if (hists->thread_filter != NULL &&
1918 	    he->thread != hists->thread_filter) {
1919 		he->filtered |= (1 << HIST_FILTER__THREAD);
1920 		return true;
1921 	}
1922 
1923 	return false;
1924 }
1925 
1926 static bool hists__filter_entry_by_symbol(struct hists *hists,
1927 					  struct hist_entry *he)
1928 {
1929 	if (hists->symbol_filter_str != NULL &&
1930 	    (!he->ms.sym || strstr(he->ms.sym->name,
1931 				   hists->symbol_filter_str) == NULL)) {
1932 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1933 		return true;
1934 	}
1935 
1936 	return false;
1937 }
1938 
1939 static bool hists__filter_entry_by_socket(struct hists *hists,
1940 					  struct hist_entry *he)
1941 {
1942 	if ((hists->socket_filter > -1) &&
1943 	    (he->socket != hists->socket_filter)) {
1944 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1945 		return true;
1946 	}
1947 
1948 	return false;
1949 }
1950 
1951 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1952 
1953 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1954 {
1955 	struct rb_node *nd;
1956 
1957 	hists->stats.nr_non_filtered_samples = 0;
1958 
1959 	hists__reset_filter_stats(hists);
1960 	hists__reset_col_len(hists);
1961 
1962 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1963 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1964 
1965 		if (filter(hists, h))
1966 			continue;
1967 
1968 		hists__remove_entry_filter(hists, h, type);
1969 	}
1970 }
1971 
1972 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1973 {
1974 	struct rb_node **p = &root->rb_node;
1975 	struct rb_node *parent = NULL;
1976 	struct hist_entry *iter;
1977 	struct rb_root new_root = RB_ROOT;
1978 	struct rb_node *nd;
1979 
1980 	while (*p != NULL) {
1981 		parent = *p;
1982 		iter = rb_entry(parent, struct hist_entry, rb_node);
1983 
1984 		if (hist_entry__sort(he, iter) > 0)
1985 			p = &(*p)->rb_left;
1986 		else
1987 			p = &(*p)->rb_right;
1988 	}
1989 
1990 	rb_link_node(&he->rb_node, parent, p);
1991 	rb_insert_color(&he->rb_node, root);
1992 
1993 	if (he->leaf || he->filtered)
1994 		return;
1995 
1996 	nd = rb_first(&he->hroot_out);
1997 	while (nd) {
1998 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1999 
2000 		nd = rb_next(nd);
2001 		rb_erase(&h->rb_node, &he->hroot_out);
2002 
2003 		resort_filtered_entry(&new_root, h);
2004 	}
2005 
2006 	he->hroot_out = new_root;
2007 }
2008 
2009 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2010 {
2011 	struct rb_node *nd;
2012 	struct rb_root new_root = RB_ROOT;
2013 
2014 	hists->stats.nr_non_filtered_samples = 0;
2015 
2016 	hists__reset_filter_stats(hists);
2017 	hists__reset_col_len(hists);
2018 
2019 	nd = rb_first(&hists->entries);
2020 	while (nd) {
2021 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2022 		int ret;
2023 
2024 		ret = hist_entry__filter(h, type, arg);
2025 
2026 		/*
2027 		 * case 1. non-matching type
2028 		 * zero out the period, set filter marker and move to child
2029 		 */
2030 		if (ret < 0) {
2031 			memset(&h->stat, 0, sizeof(h->stat));
2032 			h->filtered |= (1 << type);
2033 
2034 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2035 		}
2036 		/*
2037 		 * case 2. matched type (filter out)
2038 		 * set filter marker and move to next
2039 		 */
2040 		else if (ret == 1) {
2041 			h->filtered |= (1 << type);
2042 
2043 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2044 		}
2045 		/*
2046 		 * case 3. ok (not filtered)
2047 		 * add period to hists and parents, erase the filter marker
2048 		 * and move to next sibling
2049 		 */
2050 		else {
2051 			hists__remove_entry_filter(hists, h, type);
2052 
2053 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2054 		}
2055 	}
2056 
2057 	hierarchy_recalc_total_periods(hists);
2058 
2059 	/*
2060 	 * resort output after applying a new filter since filter in a lower
2061 	 * hierarchy can change periods in a upper hierarchy.
2062 	 */
2063 	nd = rb_first(&hists->entries);
2064 	while (nd) {
2065 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2066 
2067 		nd = rb_next(nd);
2068 		rb_erase(&h->rb_node, &hists->entries);
2069 
2070 		resort_filtered_entry(&new_root, h);
2071 	}
2072 
2073 	hists->entries = new_root;
2074 }
2075 
2076 void hists__filter_by_thread(struct hists *hists)
2077 {
2078 	if (symbol_conf.report_hierarchy)
2079 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2080 					hists->thread_filter);
2081 	else
2082 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2083 				      hists__filter_entry_by_thread);
2084 }
2085 
2086 void hists__filter_by_dso(struct hists *hists)
2087 {
2088 	if (symbol_conf.report_hierarchy)
2089 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2090 					hists->dso_filter);
2091 	else
2092 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2093 				      hists__filter_entry_by_dso);
2094 }
2095 
2096 void hists__filter_by_symbol(struct hists *hists)
2097 {
2098 	if (symbol_conf.report_hierarchy)
2099 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2100 					hists->symbol_filter_str);
2101 	else
2102 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2103 				      hists__filter_entry_by_symbol);
2104 }
2105 
2106 void hists__filter_by_socket(struct hists *hists)
2107 {
2108 	if (symbol_conf.report_hierarchy)
2109 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2110 					&hists->socket_filter);
2111 	else
2112 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2113 				      hists__filter_entry_by_socket);
2114 }
2115 
2116 void events_stats__inc(struct events_stats *stats, u32 type)
2117 {
2118 	++stats->nr_events[0];
2119 	++stats->nr_events[type];
2120 }
2121 
2122 void hists__inc_nr_events(struct hists *hists, u32 type)
2123 {
2124 	events_stats__inc(&hists->stats, type);
2125 }
2126 
2127 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2128 {
2129 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2130 	if (!filtered)
2131 		hists->stats.nr_non_filtered_samples++;
2132 }
2133 
2134 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2135 						 struct hist_entry *pair)
2136 {
2137 	struct rb_root *root;
2138 	struct rb_node **p;
2139 	struct rb_node *parent = NULL;
2140 	struct hist_entry *he;
2141 	int64_t cmp;
2142 
2143 	if (hists__has(hists, need_collapse))
2144 		root = &hists->entries_collapsed;
2145 	else
2146 		root = hists->entries_in;
2147 
2148 	p = &root->rb_node;
2149 
2150 	while (*p != NULL) {
2151 		parent = *p;
2152 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2153 
2154 		cmp = hist_entry__collapse(he, pair);
2155 
2156 		if (!cmp)
2157 			goto out;
2158 
2159 		if (cmp < 0)
2160 			p = &(*p)->rb_left;
2161 		else
2162 			p = &(*p)->rb_right;
2163 	}
2164 
2165 	he = hist_entry__new(pair, true);
2166 	if (he) {
2167 		memset(&he->stat, 0, sizeof(he->stat));
2168 		he->hists = hists;
2169 		if (symbol_conf.cumulate_callchain)
2170 			memset(he->stat_acc, 0, sizeof(he->stat));
2171 		rb_link_node(&he->rb_node_in, parent, p);
2172 		rb_insert_color(&he->rb_node_in, root);
2173 		hists__inc_stats(hists, he);
2174 		he->dummy = true;
2175 	}
2176 out:
2177 	return he;
2178 }
2179 
2180 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2181 						    struct rb_root *root,
2182 						    struct hist_entry *pair)
2183 {
2184 	struct rb_node **p;
2185 	struct rb_node *parent = NULL;
2186 	struct hist_entry *he;
2187 	struct perf_hpp_fmt *fmt;
2188 
2189 	p = &root->rb_node;
2190 	while (*p != NULL) {
2191 		int64_t cmp = 0;
2192 
2193 		parent = *p;
2194 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2195 
2196 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2197 			cmp = fmt->collapse(fmt, he, pair);
2198 			if (cmp)
2199 				break;
2200 		}
2201 		if (!cmp)
2202 			goto out;
2203 
2204 		if (cmp < 0)
2205 			p = &parent->rb_left;
2206 		else
2207 			p = &parent->rb_right;
2208 	}
2209 
2210 	he = hist_entry__new(pair, true);
2211 	if (he) {
2212 		rb_link_node(&he->rb_node_in, parent, p);
2213 		rb_insert_color(&he->rb_node_in, root);
2214 
2215 		he->dummy = true;
2216 		he->hists = hists;
2217 		memset(&he->stat, 0, sizeof(he->stat));
2218 		hists__inc_stats(hists, he);
2219 	}
2220 out:
2221 	return he;
2222 }
2223 
2224 static struct hist_entry *hists__find_entry(struct hists *hists,
2225 					    struct hist_entry *he)
2226 {
2227 	struct rb_node *n;
2228 
2229 	if (hists__has(hists, need_collapse))
2230 		n = hists->entries_collapsed.rb_node;
2231 	else
2232 		n = hists->entries_in->rb_node;
2233 
2234 	while (n) {
2235 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2236 		int64_t cmp = hist_entry__collapse(iter, he);
2237 
2238 		if (cmp < 0)
2239 			n = n->rb_left;
2240 		else if (cmp > 0)
2241 			n = n->rb_right;
2242 		else
2243 			return iter;
2244 	}
2245 
2246 	return NULL;
2247 }
2248 
2249 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2250 						      struct hist_entry *he)
2251 {
2252 	struct rb_node *n = root->rb_node;
2253 
2254 	while (n) {
2255 		struct hist_entry *iter;
2256 		struct perf_hpp_fmt *fmt;
2257 		int64_t cmp = 0;
2258 
2259 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2260 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2261 			cmp = fmt->collapse(fmt, iter, he);
2262 			if (cmp)
2263 				break;
2264 		}
2265 
2266 		if (cmp < 0)
2267 			n = n->rb_left;
2268 		else if (cmp > 0)
2269 			n = n->rb_right;
2270 		else
2271 			return iter;
2272 	}
2273 
2274 	return NULL;
2275 }
2276 
2277 static void hists__match_hierarchy(struct rb_root *leader_root,
2278 				   struct rb_root *other_root)
2279 {
2280 	struct rb_node *nd;
2281 	struct hist_entry *pos, *pair;
2282 
2283 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2284 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2285 		pair = hists__find_hierarchy_entry(other_root, pos);
2286 
2287 		if (pair) {
2288 			hist_entry__add_pair(pair, pos);
2289 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2290 		}
2291 	}
2292 }
2293 
2294 /*
2295  * Look for pairs to link to the leader buckets (hist_entries):
2296  */
2297 void hists__match(struct hists *leader, struct hists *other)
2298 {
2299 	struct rb_root *root;
2300 	struct rb_node *nd;
2301 	struct hist_entry *pos, *pair;
2302 
2303 	if (symbol_conf.report_hierarchy) {
2304 		/* hierarchy report always collapses entries */
2305 		return hists__match_hierarchy(&leader->entries_collapsed,
2306 					      &other->entries_collapsed);
2307 	}
2308 
2309 	if (hists__has(leader, need_collapse))
2310 		root = &leader->entries_collapsed;
2311 	else
2312 		root = leader->entries_in;
2313 
2314 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2315 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2316 		pair = hists__find_entry(other, pos);
2317 
2318 		if (pair)
2319 			hist_entry__add_pair(pair, pos);
2320 	}
2321 }
2322 
2323 static int hists__link_hierarchy(struct hists *leader_hists,
2324 				 struct hist_entry *parent,
2325 				 struct rb_root *leader_root,
2326 				 struct rb_root *other_root)
2327 {
2328 	struct rb_node *nd;
2329 	struct hist_entry *pos, *leader;
2330 
2331 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2332 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2333 
2334 		if (hist_entry__has_pairs(pos)) {
2335 			bool found = false;
2336 
2337 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2338 				if (leader->hists == leader_hists) {
2339 					found = true;
2340 					break;
2341 				}
2342 			}
2343 			if (!found)
2344 				return -1;
2345 		} else {
2346 			leader = add_dummy_hierarchy_entry(leader_hists,
2347 							   leader_root, pos);
2348 			if (leader == NULL)
2349 				return -1;
2350 
2351 			/* do not point parent in the pos */
2352 			leader->parent_he = parent;
2353 
2354 			hist_entry__add_pair(pos, leader);
2355 		}
2356 
2357 		if (!pos->leaf) {
2358 			if (hists__link_hierarchy(leader_hists, leader,
2359 						  &leader->hroot_in,
2360 						  &pos->hroot_in) < 0)
2361 				return -1;
2362 		}
2363 	}
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Look for entries in the other hists that are not present in the leader, if
2369  * we find them, just add a dummy entry on the leader hists, with period=0,
2370  * nr_events=0, to serve as the list header.
2371  */
2372 int hists__link(struct hists *leader, struct hists *other)
2373 {
2374 	struct rb_root *root;
2375 	struct rb_node *nd;
2376 	struct hist_entry *pos, *pair;
2377 
2378 	if (symbol_conf.report_hierarchy) {
2379 		/* hierarchy report always collapses entries */
2380 		return hists__link_hierarchy(leader, NULL,
2381 					     &leader->entries_collapsed,
2382 					     &other->entries_collapsed);
2383 	}
2384 
2385 	if (hists__has(other, need_collapse))
2386 		root = &other->entries_collapsed;
2387 	else
2388 		root = other->entries_in;
2389 
2390 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2391 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2392 
2393 		if (!hist_entry__has_pairs(pos)) {
2394 			pair = hists__add_dummy_entry(leader, pos);
2395 			if (pair == NULL)
2396 				return -1;
2397 			hist_entry__add_pair(pos, pair);
2398 		}
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2405 			  struct perf_sample *sample, bool nonany_branch_mode)
2406 {
2407 	struct branch_info *bi;
2408 
2409 	/* If we have branch cycles always annotate them. */
2410 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2411 		int i;
2412 
2413 		bi = sample__resolve_bstack(sample, al);
2414 		if (bi) {
2415 			struct addr_map_symbol *prev = NULL;
2416 
2417 			/*
2418 			 * Ignore errors, still want to process the
2419 			 * other entries.
2420 			 *
2421 			 * For non standard branch modes always
2422 			 * force no IPC (prev == NULL)
2423 			 *
2424 			 * Note that perf stores branches reversed from
2425 			 * program order!
2426 			 */
2427 			for (i = bs->nr - 1; i >= 0; i--) {
2428 				addr_map_symbol__account_cycles(&bi[i].from,
2429 					nonany_branch_mode ? NULL : prev,
2430 					bi[i].flags.cycles);
2431 				prev = &bi[i].to;
2432 			}
2433 			free(bi);
2434 		}
2435 	}
2436 }
2437 
2438 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2439 {
2440 	struct perf_evsel *pos;
2441 	size_t ret = 0;
2442 
2443 	evlist__for_each_entry(evlist, pos) {
2444 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2445 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2446 	}
2447 
2448 	return ret;
2449 }
2450 
2451 
2452 u64 hists__total_period(struct hists *hists)
2453 {
2454 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2455 		hists->stats.total_period;
2456 }
2457 
2458 int parse_filter_percentage(const struct option *opt __maybe_unused,
2459 			    const char *arg, int unset __maybe_unused)
2460 {
2461 	if (!strcmp(arg, "relative"))
2462 		symbol_conf.filter_relative = true;
2463 	else if (!strcmp(arg, "absolute"))
2464 		symbol_conf.filter_relative = false;
2465 	else {
2466 		pr_debug("Invalid percentage: %s\n", arg);
2467 		return -1;
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 int perf_hist_config(const char *var, const char *value)
2474 {
2475 	if (!strcmp(var, "hist.percentage"))
2476 		return parse_filter_percentage(NULL, value, 0);
2477 
2478 	return 0;
2479 }
2480 
2481 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2482 {
2483 	memset(hists, 0, sizeof(*hists));
2484 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2485 	hists->entries_in = &hists->entries_in_array[0];
2486 	hists->entries_collapsed = RB_ROOT;
2487 	hists->entries = RB_ROOT;
2488 	pthread_mutex_init(&hists->lock, NULL);
2489 	hists->socket_filter = -1;
2490 	hists->hpp_list = hpp_list;
2491 	INIT_LIST_HEAD(&hists->hpp_formats);
2492 	return 0;
2493 }
2494 
2495 static void hists__delete_remaining_entries(struct rb_root *root)
2496 {
2497 	struct rb_node *node;
2498 	struct hist_entry *he;
2499 
2500 	while (!RB_EMPTY_ROOT(root)) {
2501 		node = rb_first(root);
2502 		rb_erase(node, root);
2503 
2504 		he = rb_entry(node, struct hist_entry, rb_node_in);
2505 		hist_entry__delete(he);
2506 	}
2507 }
2508 
2509 static void hists__delete_all_entries(struct hists *hists)
2510 {
2511 	hists__delete_entries(hists);
2512 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2513 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2514 	hists__delete_remaining_entries(&hists->entries_collapsed);
2515 }
2516 
2517 static void hists_evsel__exit(struct perf_evsel *evsel)
2518 {
2519 	struct hists *hists = evsel__hists(evsel);
2520 	struct perf_hpp_fmt *fmt, *pos;
2521 	struct perf_hpp_list_node *node, *tmp;
2522 
2523 	hists__delete_all_entries(hists);
2524 
2525 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2526 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2527 			list_del(&fmt->list);
2528 			free(fmt);
2529 		}
2530 		list_del(&node->list);
2531 		free(node);
2532 	}
2533 }
2534 
2535 static int hists_evsel__init(struct perf_evsel *evsel)
2536 {
2537 	struct hists *hists = evsel__hists(evsel);
2538 
2539 	__hists__init(hists, &perf_hpp_list);
2540 	return 0;
2541 }
2542 
2543 /*
2544  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2545  * stored in the rbtree...
2546  */
2547 
2548 int hists__init(void)
2549 {
2550 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2551 					    hists_evsel__init,
2552 					    hists_evsel__exit);
2553 	if (err)
2554 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2555 
2556 	return err;
2557 }
2558 
2559 void perf_hpp_list__init(struct perf_hpp_list *list)
2560 {
2561 	INIT_LIST_HEAD(&list->fields);
2562 	INIT_LIST_HEAD(&list->sorts);
2563 }
2564