xref: /openbmc/linux/tools/perf/util/hist.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "units.h"
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "annotate.h"
13 #include "srcline.h"
14 #include "thread.h"
15 #include "ui/progress.h"
16 #include <errno.h>
17 #include <math.h>
18 #include <inttypes.h>
19 #include <sys/param.h>
20 
21 static bool hists__filter_entry_by_dso(struct hists *hists,
22 				       struct hist_entry *he);
23 static bool hists__filter_entry_by_thread(struct hists *hists,
24 					  struct hist_entry *he);
25 static bool hists__filter_entry_by_symbol(struct hists *hists,
26 					  struct hist_entry *he);
27 static bool hists__filter_entry_by_socket(struct hists *hists,
28 					  struct hist_entry *he);
29 
30 u16 hists__col_len(struct hists *hists, enum hist_column col)
31 {
32 	return hists->col_len[col];
33 }
34 
35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36 {
37 	hists->col_len[col] = len;
38 }
39 
40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42 	if (len > hists__col_len(hists, col)) {
43 		hists__set_col_len(hists, col, len);
44 		return true;
45 	}
46 	return false;
47 }
48 
49 void hists__reset_col_len(struct hists *hists)
50 {
51 	enum hist_column col;
52 
53 	for (col = 0; col < HISTC_NR_COLS; ++col)
54 		hists__set_col_len(hists, col, 0);
55 }
56 
57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58 {
59 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60 
61 	if (hists__col_len(hists, dso) < unresolved_col_width &&
62 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63 	    !symbol_conf.dso_list)
64 		hists__set_col_len(hists, dso, unresolved_col_width);
65 }
66 
67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68 {
69 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 	int symlen;
71 	u16 len;
72 
73 	/*
74 	 * +4 accounts for '[x] ' priv level info
75 	 * +2 accounts for 0x prefix on raw addresses
76 	 * +3 accounts for ' y ' symtab origin info
77 	 */
78 	if (h->ms.sym) {
79 		symlen = h->ms.sym->namelen + 4;
80 		if (verbose > 0)
81 			symlen += BITS_PER_LONG / 4 + 2 + 3;
82 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 	} else {
84 		symlen = unresolved_col_width + 4 + 2;
85 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
87 	}
88 
89 	len = thread__comm_len(h->thread);
90 	if (hists__new_col_len(hists, HISTC_COMM, len))
91 		hists__set_col_len(hists, HISTC_THREAD, len + 8);
92 
93 	if (h->ms.map) {
94 		len = dso__name_len(h->ms.map->dso);
95 		hists__new_col_len(hists, HISTC_DSO, len);
96 	}
97 
98 	if (h->parent)
99 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100 
101 	if (h->branch_info) {
102 		if (h->branch_info->from.sym) {
103 			symlen = (int)h->branch_info->from.sym->namelen + 4;
104 			if (verbose > 0)
105 				symlen += BITS_PER_LONG / 4 + 2 + 3;
106 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107 
108 			symlen = dso__name_len(h->branch_info->from.map->dso);
109 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110 		} else {
111 			symlen = unresolved_col_width + 4 + 2;
112 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114 		}
115 
116 		if (h->branch_info->to.sym) {
117 			symlen = (int)h->branch_info->to.sym->namelen + 4;
118 			if (verbose > 0)
119 				symlen += BITS_PER_LONG / 4 + 2 + 3;
120 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121 
122 			symlen = dso__name_len(h->branch_info->to.map->dso);
123 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124 		} else {
125 			symlen = unresolved_col_width + 4 + 2;
126 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128 		}
129 
130 		if (h->branch_info->srcline_from)
131 			hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132 					strlen(h->branch_info->srcline_from));
133 		if (h->branch_info->srcline_to)
134 			hists__new_col_len(hists, HISTC_SRCLINE_TO,
135 					strlen(h->branch_info->srcline_to));
136 	}
137 
138 	if (h->mem_info) {
139 		if (h->mem_info->daddr.sym) {
140 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
141 			       + unresolved_col_width + 2;
142 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143 					   symlen);
144 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145 					   symlen + 1);
146 		} else {
147 			symlen = unresolved_col_width + 4 + 2;
148 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149 					   symlen);
150 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151 					   symlen);
152 		}
153 
154 		if (h->mem_info->iaddr.sym) {
155 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156 			       + unresolved_col_width + 2;
157 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158 					   symlen);
159 		} else {
160 			symlen = unresolved_col_width + 4 + 2;
161 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162 					   symlen);
163 		}
164 
165 		if (h->mem_info->daddr.map) {
166 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
167 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168 					   symlen);
169 		} else {
170 			symlen = unresolved_col_width + 4 + 2;
171 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172 		}
173 
174 		hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175 				   unresolved_col_width + 4 + 2);
176 
177 	} else {
178 		symlen = unresolved_col_width + 4 + 2;
179 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 	}
183 
184 	hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185 	hists__new_col_len(hists, HISTC_CPU, 3);
186 	hists__new_col_len(hists, HISTC_SOCKET, 6);
187 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193 
194 	if (h->srcline) {
195 		len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196 		hists__new_col_len(hists, HISTC_SRCLINE, len);
197 	}
198 
199 	if (h->srcfile)
200 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201 
202 	if (h->transaction)
203 		hists__new_col_len(hists, HISTC_TRANSACTION,
204 				   hist_entry__transaction_len());
205 
206 	if (h->trace_output)
207 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208 }
209 
210 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211 {
212 	struct rb_node *next = rb_first(&hists->entries);
213 	struct hist_entry *n;
214 	int row = 0;
215 
216 	hists__reset_col_len(hists);
217 
218 	while (next && row++ < max_rows) {
219 		n = rb_entry(next, struct hist_entry, rb_node);
220 		if (!n->filtered)
221 			hists__calc_col_len(hists, n);
222 		next = rb_next(&n->rb_node);
223 	}
224 }
225 
226 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227 					unsigned int cpumode, u64 period)
228 {
229 	switch (cpumode) {
230 	case PERF_RECORD_MISC_KERNEL:
231 		he_stat->period_sys += period;
232 		break;
233 	case PERF_RECORD_MISC_USER:
234 		he_stat->period_us += period;
235 		break;
236 	case PERF_RECORD_MISC_GUEST_KERNEL:
237 		he_stat->period_guest_sys += period;
238 		break;
239 	case PERF_RECORD_MISC_GUEST_USER:
240 		he_stat->period_guest_us += period;
241 		break;
242 	default:
243 		break;
244 	}
245 }
246 
247 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248 				u64 weight)
249 {
250 
251 	he_stat->period		+= period;
252 	he_stat->weight		+= weight;
253 	he_stat->nr_events	+= 1;
254 }
255 
256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257 {
258 	dest->period		+= src->period;
259 	dest->period_sys	+= src->period_sys;
260 	dest->period_us		+= src->period_us;
261 	dest->period_guest_sys	+= src->period_guest_sys;
262 	dest->period_guest_us	+= src->period_guest_us;
263 	dest->nr_events		+= src->nr_events;
264 	dest->weight		+= src->weight;
265 }
266 
267 static void he_stat__decay(struct he_stat *he_stat)
268 {
269 	he_stat->period = (he_stat->period * 7) / 8;
270 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271 	/* XXX need decay for weight too? */
272 }
273 
274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275 
276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277 {
278 	u64 prev_period = he->stat.period;
279 	u64 diff;
280 
281 	if (prev_period == 0)
282 		return true;
283 
284 	he_stat__decay(&he->stat);
285 	if (symbol_conf.cumulate_callchain)
286 		he_stat__decay(he->stat_acc);
287 	decay_callchain(he->callchain);
288 
289 	diff = prev_period - he->stat.period;
290 
291 	if (!he->depth) {
292 		hists->stats.total_period -= diff;
293 		if (!he->filtered)
294 			hists->stats.total_non_filtered_period -= diff;
295 	}
296 
297 	if (!he->leaf) {
298 		struct hist_entry *child;
299 		struct rb_node *node = rb_first(&he->hroot_out);
300 		while (node) {
301 			child = rb_entry(node, struct hist_entry, rb_node);
302 			node = rb_next(node);
303 
304 			if (hists__decay_entry(hists, child))
305 				hists__delete_entry(hists, child);
306 		}
307 	}
308 
309 	return he->stat.period == 0;
310 }
311 
312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313 {
314 	struct rb_root *root_in;
315 	struct rb_root *root_out;
316 
317 	if (he->parent_he) {
318 		root_in  = &he->parent_he->hroot_in;
319 		root_out = &he->parent_he->hroot_out;
320 	} else {
321 		if (hists__has(hists, need_collapse))
322 			root_in = &hists->entries_collapsed;
323 		else
324 			root_in = hists->entries_in;
325 		root_out = &hists->entries;
326 	}
327 
328 	rb_erase(&he->rb_node_in, root_in);
329 	rb_erase(&he->rb_node, root_out);
330 
331 	--hists->nr_entries;
332 	if (!he->filtered)
333 		--hists->nr_non_filtered_entries;
334 
335 	hist_entry__delete(he);
336 }
337 
338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339 {
340 	struct rb_node *next = rb_first(&hists->entries);
341 	struct hist_entry *n;
342 
343 	while (next) {
344 		n = rb_entry(next, struct hist_entry, rb_node);
345 		next = rb_next(&n->rb_node);
346 		if (((zap_user && n->level == '.') ||
347 		     (zap_kernel && n->level != '.') ||
348 		     hists__decay_entry(hists, n))) {
349 			hists__delete_entry(hists, n);
350 		}
351 	}
352 }
353 
354 void hists__delete_entries(struct hists *hists)
355 {
356 	struct rb_node *next = rb_first(&hists->entries);
357 	struct hist_entry *n;
358 
359 	while (next) {
360 		n = rb_entry(next, struct hist_entry, rb_node);
361 		next = rb_next(&n->rb_node);
362 
363 		hists__delete_entry(hists, n);
364 	}
365 }
366 
367 /*
368  * histogram, sorted on item, collects periods
369  */
370 
371 static int hist_entry__init(struct hist_entry *he,
372 			    struct hist_entry *template,
373 			    bool sample_self)
374 {
375 	*he = *template;
376 
377 	if (symbol_conf.cumulate_callchain) {
378 		he->stat_acc = malloc(sizeof(he->stat));
379 		if (he->stat_acc == NULL)
380 			return -ENOMEM;
381 		memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
382 		if (!sample_self)
383 			memset(&he->stat, 0, sizeof(he->stat));
384 	}
385 
386 	map__get(he->ms.map);
387 
388 	if (he->branch_info) {
389 		/*
390 		 * This branch info is (a part of) allocated from
391 		 * sample__resolve_bstack() and will be freed after
392 		 * adding new entries.  So we need to save a copy.
393 		 */
394 		he->branch_info = malloc(sizeof(*he->branch_info));
395 		if (he->branch_info == NULL) {
396 			map__zput(he->ms.map);
397 			free(he->stat_acc);
398 			return -ENOMEM;
399 		}
400 
401 		memcpy(he->branch_info, template->branch_info,
402 		       sizeof(*he->branch_info));
403 
404 		map__get(he->branch_info->from.map);
405 		map__get(he->branch_info->to.map);
406 	}
407 
408 	if (he->mem_info) {
409 		map__get(he->mem_info->iaddr.map);
410 		map__get(he->mem_info->daddr.map);
411 	}
412 
413 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
414 		callchain_init(he->callchain);
415 
416 	if (he->raw_data) {
417 		he->raw_data = memdup(he->raw_data, he->raw_size);
418 
419 		if (he->raw_data == NULL) {
420 			map__put(he->ms.map);
421 			if (he->branch_info) {
422 				map__put(he->branch_info->from.map);
423 				map__put(he->branch_info->to.map);
424 				free(he->branch_info);
425 			}
426 			if (he->mem_info) {
427 				map__put(he->mem_info->iaddr.map);
428 				map__put(he->mem_info->daddr.map);
429 			}
430 			free(he->stat_acc);
431 			return -ENOMEM;
432 		}
433 	}
434 	INIT_LIST_HEAD(&he->pairs.node);
435 	thread__get(he->thread);
436 	he->hroot_in  = RB_ROOT;
437 	he->hroot_out = RB_ROOT;
438 
439 	if (!symbol_conf.report_hierarchy)
440 		he->leaf = true;
441 
442 	return 0;
443 }
444 
445 static void *hist_entry__zalloc(size_t size)
446 {
447 	return zalloc(size + sizeof(struct hist_entry));
448 }
449 
450 static void hist_entry__free(void *ptr)
451 {
452 	free(ptr);
453 }
454 
455 static struct hist_entry_ops default_ops = {
456 	.new	= hist_entry__zalloc,
457 	.free	= hist_entry__free,
458 };
459 
460 static struct hist_entry *hist_entry__new(struct hist_entry *template,
461 					  bool sample_self)
462 {
463 	struct hist_entry_ops *ops = template->ops;
464 	size_t callchain_size = 0;
465 	struct hist_entry *he;
466 	int err = 0;
467 
468 	if (!ops)
469 		ops = template->ops = &default_ops;
470 
471 	if (symbol_conf.use_callchain)
472 		callchain_size = sizeof(struct callchain_root);
473 
474 	he = ops->new(callchain_size);
475 	if (he) {
476 		err = hist_entry__init(he, template, sample_self);
477 		if (err) {
478 			ops->free(he);
479 			he = NULL;
480 		}
481 	}
482 
483 	return he;
484 }
485 
486 static u8 symbol__parent_filter(const struct symbol *parent)
487 {
488 	if (symbol_conf.exclude_other && parent == NULL)
489 		return 1 << HIST_FILTER__PARENT;
490 	return 0;
491 }
492 
493 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
494 {
495 	if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
496 		return;
497 
498 	he->hists->callchain_period += period;
499 	if (!he->filtered)
500 		he->hists->callchain_non_filtered_period += period;
501 }
502 
503 static struct hist_entry *hists__findnew_entry(struct hists *hists,
504 					       struct hist_entry *entry,
505 					       struct addr_location *al,
506 					       bool sample_self)
507 {
508 	struct rb_node **p;
509 	struct rb_node *parent = NULL;
510 	struct hist_entry *he;
511 	int64_t cmp;
512 	u64 period = entry->stat.period;
513 	u64 weight = entry->stat.weight;
514 
515 	p = &hists->entries_in->rb_node;
516 
517 	while (*p != NULL) {
518 		parent = *p;
519 		he = rb_entry(parent, struct hist_entry, rb_node_in);
520 
521 		/*
522 		 * Make sure that it receives arguments in a same order as
523 		 * hist_entry__collapse() so that we can use an appropriate
524 		 * function when searching an entry regardless which sort
525 		 * keys were used.
526 		 */
527 		cmp = hist_entry__cmp(he, entry);
528 
529 		if (!cmp) {
530 			if (sample_self) {
531 				he_stat__add_period(&he->stat, period, weight);
532 				hist_entry__add_callchain_period(he, period);
533 			}
534 			if (symbol_conf.cumulate_callchain)
535 				he_stat__add_period(he->stat_acc, period, weight);
536 
537 			/*
538 			 * This mem info was allocated from sample__resolve_mem
539 			 * and will not be used anymore.
540 			 */
541 			mem_info__zput(entry->mem_info);
542 
543 			/* If the map of an existing hist_entry has
544 			 * become out-of-date due to an exec() or
545 			 * similar, update it.  Otherwise we will
546 			 * mis-adjust symbol addresses when computing
547 			 * the history counter to increment.
548 			 */
549 			if (he->ms.map != entry->ms.map) {
550 				map__put(he->ms.map);
551 				he->ms.map = map__get(entry->ms.map);
552 			}
553 			goto out;
554 		}
555 
556 		if (cmp < 0)
557 			p = &(*p)->rb_left;
558 		else
559 			p = &(*p)->rb_right;
560 	}
561 
562 	he = hist_entry__new(entry, sample_self);
563 	if (!he)
564 		return NULL;
565 
566 	if (sample_self)
567 		hist_entry__add_callchain_period(he, period);
568 	hists->nr_entries++;
569 
570 	rb_link_node(&he->rb_node_in, parent, p);
571 	rb_insert_color(&he->rb_node_in, hists->entries_in);
572 out:
573 	if (sample_self)
574 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
575 	if (symbol_conf.cumulate_callchain)
576 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
577 	return he;
578 }
579 
580 static struct hist_entry*
581 __hists__add_entry(struct hists *hists,
582 		   struct addr_location *al,
583 		   struct symbol *sym_parent,
584 		   struct branch_info *bi,
585 		   struct mem_info *mi,
586 		   struct perf_sample *sample,
587 		   bool sample_self,
588 		   struct hist_entry_ops *ops)
589 {
590 	struct namespaces *ns = thread__namespaces(al->thread);
591 	struct hist_entry entry = {
592 		.thread	= al->thread,
593 		.comm = thread__comm(al->thread),
594 		.cgroup_id = {
595 			.dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
596 			.ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
597 		},
598 		.ms = {
599 			.map	= al->map,
600 			.sym	= al->sym,
601 		},
602 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
603 		.socket	 = al->socket,
604 		.cpu	 = al->cpu,
605 		.cpumode = al->cpumode,
606 		.ip	 = al->addr,
607 		.level	 = al->level,
608 		.stat = {
609 			.nr_events = 1,
610 			.period	= sample->period,
611 			.weight = sample->weight,
612 		},
613 		.parent = sym_parent,
614 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
615 		.hists	= hists,
616 		.branch_info = bi,
617 		.mem_info = mi,
618 		.transaction = sample->transaction,
619 		.raw_data = sample->raw_data,
620 		.raw_size = sample->raw_size,
621 		.ops = ops,
622 	};
623 
624 	return hists__findnew_entry(hists, &entry, al, sample_self);
625 }
626 
627 struct hist_entry *hists__add_entry(struct hists *hists,
628 				    struct addr_location *al,
629 				    struct symbol *sym_parent,
630 				    struct branch_info *bi,
631 				    struct mem_info *mi,
632 				    struct perf_sample *sample,
633 				    bool sample_self)
634 {
635 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
636 				  sample, sample_self, NULL);
637 }
638 
639 struct hist_entry *hists__add_entry_ops(struct hists *hists,
640 					struct hist_entry_ops *ops,
641 					struct addr_location *al,
642 					struct symbol *sym_parent,
643 					struct branch_info *bi,
644 					struct mem_info *mi,
645 					struct perf_sample *sample,
646 					bool sample_self)
647 {
648 	return __hists__add_entry(hists, al, sym_parent, bi, mi,
649 				  sample, sample_self, ops);
650 }
651 
652 static int
653 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
654 		    struct addr_location *al __maybe_unused)
655 {
656 	return 0;
657 }
658 
659 static int
660 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
661 			struct addr_location *al __maybe_unused)
662 {
663 	return 0;
664 }
665 
666 static int
667 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
668 {
669 	struct perf_sample *sample = iter->sample;
670 	struct mem_info *mi;
671 
672 	mi = sample__resolve_mem(sample, al);
673 	if (mi == NULL)
674 		return -ENOMEM;
675 
676 	iter->priv = mi;
677 	return 0;
678 }
679 
680 static int
681 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
682 {
683 	u64 cost;
684 	struct mem_info *mi = iter->priv;
685 	struct hists *hists = evsel__hists(iter->evsel);
686 	struct perf_sample *sample = iter->sample;
687 	struct hist_entry *he;
688 
689 	if (mi == NULL)
690 		return -EINVAL;
691 
692 	cost = sample->weight;
693 	if (!cost)
694 		cost = 1;
695 
696 	/*
697 	 * must pass period=weight in order to get the correct
698 	 * sorting from hists__collapse_resort() which is solely
699 	 * based on periods. We want sorting be done on nr_events * weight
700 	 * and this is indirectly achieved by passing period=weight here
701 	 * and the he_stat__add_period() function.
702 	 */
703 	sample->period = cost;
704 
705 	he = hists__add_entry(hists, al, iter->parent, NULL, mi,
706 			      sample, true);
707 	if (!he)
708 		return -ENOMEM;
709 
710 	iter->he = he;
711 	return 0;
712 }
713 
714 static int
715 iter_finish_mem_entry(struct hist_entry_iter *iter,
716 		      struct addr_location *al __maybe_unused)
717 {
718 	struct perf_evsel *evsel = iter->evsel;
719 	struct hists *hists = evsel__hists(evsel);
720 	struct hist_entry *he = iter->he;
721 	int err = -EINVAL;
722 
723 	if (he == NULL)
724 		goto out;
725 
726 	hists__inc_nr_samples(hists, he->filtered);
727 
728 	err = hist_entry__append_callchain(he, iter->sample);
729 
730 out:
731 	/*
732 	 * We don't need to free iter->priv (mem_info) here since the mem info
733 	 * was either already freed in hists__findnew_entry() or passed to a
734 	 * new hist entry by hist_entry__new().
735 	 */
736 	iter->priv = NULL;
737 
738 	iter->he = NULL;
739 	return err;
740 }
741 
742 static int
743 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
744 {
745 	struct branch_info *bi;
746 	struct perf_sample *sample = iter->sample;
747 
748 	bi = sample__resolve_bstack(sample, al);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	iter->curr = 0;
753 	iter->total = sample->branch_stack->nr;
754 
755 	iter->priv = bi;
756 	return 0;
757 }
758 
759 static int
760 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
761 			     struct addr_location *al __maybe_unused)
762 {
763 	return 0;
764 }
765 
766 static int
767 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
768 {
769 	struct branch_info *bi = iter->priv;
770 	int i = iter->curr;
771 
772 	if (bi == NULL)
773 		return 0;
774 
775 	if (iter->curr >= iter->total)
776 		return 0;
777 
778 	al->map = bi[i].to.map;
779 	al->sym = bi[i].to.sym;
780 	al->addr = bi[i].to.addr;
781 	return 1;
782 }
783 
784 static int
785 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
786 {
787 	struct branch_info *bi;
788 	struct perf_evsel *evsel = iter->evsel;
789 	struct hists *hists = evsel__hists(evsel);
790 	struct perf_sample *sample = iter->sample;
791 	struct hist_entry *he = NULL;
792 	int i = iter->curr;
793 	int err = 0;
794 
795 	bi = iter->priv;
796 
797 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
798 		goto out;
799 
800 	/*
801 	 * The report shows the percentage of total branches captured
802 	 * and not events sampled. Thus we use a pseudo period of 1.
803 	 */
804 	sample->period = 1;
805 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
806 
807 	he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
808 			      sample, true);
809 	if (he == NULL)
810 		return -ENOMEM;
811 
812 	hists__inc_nr_samples(hists, he->filtered);
813 
814 out:
815 	iter->he = he;
816 	iter->curr++;
817 	return err;
818 }
819 
820 static int
821 iter_finish_branch_entry(struct hist_entry_iter *iter,
822 			 struct addr_location *al __maybe_unused)
823 {
824 	zfree(&iter->priv);
825 	iter->he = NULL;
826 
827 	return iter->curr >= iter->total ? 0 : -1;
828 }
829 
830 static int
831 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
832 			  struct addr_location *al __maybe_unused)
833 {
834 	return 0;
835 }
836 
837 static int
838 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
839 {
840 	struct perf_evsel *evsel = iter->evsel;
841 	struct perf_sample *sample = iter->sample;
842 	struct hist_entry *he;
843 
844 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
845 			      sample, true);
846 	if (he == NULL)
847 		return -ENOMEM;
848 
849 	iter->he = he;
850 	return 0;
851 }
852 
853 static int
854 iter_finish_normal_entry(struct hist_entry_iter *iter,
855 			 struct addr_location *al __maybe_unused)
856 {
857 	struct hist_entry *he = iter->he;
858 	struct perf_evsel *evsel = iter->evsel;
859 	struct perf_sample *sample = iter->sample;
860 
861 	if (he == NULL)
862 		return 0;
863 
864 	iter->he = NULL;
865 
866 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
867 
868 	return hist_entry__append_callchain(he, sample);
869 }
870 
871 static int
872 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
873 			      struct addr_location *al __maybe_unused)
874 {
875 	struct hist_entry **he_cache;
876 
877 	callchain_cursor_commit(&callchain_cursor);
878 
879 	/*
880 	 * This is for detecting cycles or recursions so that they're
881 	 * cumulated only one time to prevent entries more than 100%
882 	 * overhead.
883 	 */
884 	he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
885 	if (he_cache == NULL)
886 		return -ENOMEM;
887 
888 	iter->priv = he_cache;
889 	iter->curr = 0;
890 
891 	return 0;
892 }
893 
894 static int
895 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
896 				 struct addr_location *al)
897 {
898 	struct perf_evsel *evsel = iter->evsel;
899 	struct hists *hists = evsel__hists(evsel);
900 	struct perf_sample *sample = iter->sample;
901 	struct hist_entry **he_cache = iter->priv;
902 	struct hist_entry *he;
903 	int err = 0;
904 
905 	he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
906 			      sample, true);
907 	if (he == NULL)
908 		return -ENOMEM;
909 
910 	iter->he = he;
911 	he_cache[iter->curr++] = he;
912 
913 	hist_entry__append_callchain(he, sample);
914 
915 	/*
916 	 * We need to re-initialize the cursor since callchain_append()
917 	 * advanced the cursor to the end.
918 	 */
919 	callchain_cursor_commit(&callchain_cursor);
920 
921 	hists__inc_nr_samples(hists, he->filtered);
922 
923 	return err;
924 }
925 
926 static int
927 iter_next_cumulative_entry(struct hist_entry_iter *iter,
928 			   struct addr_location *al)
929 {
930 	struct callchain_cursor_node *node;
931 
932 	node = callchain_cursor_current(&callchain_cursor);
933 	if (node == NULL)
934 		return 0;
935 
936 	return fill_callchain_info(al, node, iter->hide_unresolved);
937 }
938 
939 static int
940 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
941 			       struct addr_location *al)
942 {
943 	struct perf_evsel *evsel = iter->evsel;
944 	struct perf_sample *sample = iter->sample;
945 	struct hist_entry **he_cache = iter->priv;
946 	struct hist_entry *he;
947 	struct hist_entry he_tmp = {
948 		.hists = evsel__hists(evsel),
949 		.cpu = al->cpu,
950 		.thread = al->thread,
951 		.comm = thread__comm(al->thread),
952 		.ip = al->addr,
953 		.ms = {
954 			.map = al->map,
955 			.sym = al->sym,
956 		},
957 		.srcline = al->srcline ? strdup(al->srcline) : NULL,
958 		.parent = iter->parent,
959 		.raw_data = sample->raw_data,
960 		.raw_size = sample->raw_size,
961 	};
962 	int i;
963 	struct callchain_cursor cursor;
964 
965 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
966 
967 	callchain_cursor_advance(&callchain_cursor);
968 
969 	/*
970 	 * Check if there's duplicate entries in the callchain.
971 	 * It's possible that it has cycles or recursive calls.
972 	 */
973 	for (i = 0; i < iter->curr; i++) {
974 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
975 			/* to avoid calling callback function */
976 			iter->he = NULL;
977 			return 0;
978 		}
979 	}
980 
981 	he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
982 			      sample, false);
983 	if (he == NULL)
984 		return -ENOMEM;
985 
986 	iter->he = he;
987 	he_cache[iter->curr++] = he;
988 
989 	if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
990 		callchain_append(he->callchain, &cursor, sample->period);
991 	return 0;
992 }
993 
994 static int
995 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
996 			     struct addr_location *al __maybe_unused)
997 {
998 	zfree(&iter->priv);
999 	iter->he = NULL;
1000 
1001 	return 0;
1002 }
1003 
1004 const struct hist_iter_ops hist_iter_mem = {
1005 	.prepare_entry 		= iter_prepare_mem_entry,
1006 	.add_single_entry 	= iter_add_single_mem_entry,
1007 	.next_entry 		= iter_next_nop_entry,
1008 	.add_next_entry 	= iter_add_next_nop_entry,
1009 	.finish_entry 		= iter_finish_mem_entry,
1010 };
1011 
1012 const struct hist_iter_ops hist_iter_branch = {
1013 	.prepare_entry 		= iter_prepare_branch_entry,
1014 	.add_single_entry 	= iter_add_single_branch_entry,
1015 	.next_entry 		= iter_next_branch_entry,
1016 	.add_next_entry 	= iter_add_next_branch_entry,
1017 	.finish_entry 		= iter_finish_branch_entry,
1018 };
1019 
1020 const struct hist_iter_ops hist_iter_normal = {
1021 	.prepare_entry 		= iter_prepare_normal_entry,
1022 	.add_single_entry 	= iter_add_single_normal_entry,
1023 	.next_entry 		= iter_next_nop_entry,
1024 	.add_next_entry 	= iter_add_next_nop_entry,
1025 	.finish_entry 		= iter_finish_normal_entry,
1026 };
1027 
1028 const struct hist_iter_ops hist_iter_cumulative = {
1029 	.prepare_entry 		= iter_prepare_cumulative_entry,
1030 	.add_single_entry 	= iter_add_single_cumulative_entry,
1031 	.next_entry 		= iter_next_cumulative_entry,
1032 	.add_next_entry 	= iter_add_next_cumulative_entry,
1033 	.finish_entry 		= iter_finish_cumulative_entry,
1034 };
1035 
1036 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1037 			 int max_stack_depth, void *arg)
1038 {
1039 	int err, err2;
1040 	struct map *alm = NULL;
1041 
1042 	if (al)
1043 		alm = map__get(al->map);
1044 
1045 	err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1046 					iter->evsel, al, max_stack_depth);
1047 	if (err)
1048 		return err;
1049 
1050 	err = iter->ops->prepare_entry(iter, al);
1051 	if (err)
1052 		goto out;
1053 
1054 	err = iter->ops->add_single_entry(iter, al);
1055 	if (err)
1056 		goto out;
1057 
1058 	if (iter->he && iter->add_entry_cb) {
1059 		err = iter->add_entry_cb(iter, al, true, arg);
1060 		if (err)
1061 			goto out;
1062 	}
1063 
1064 	while (iter->ops->next_entry(iter, al)) {
1065 		err = iter->ops->add_next_entry(iter, al);
1066 		if (err)
1067 			break;
1068 
1069 		if (iter->he && iter->add_entry_cb) {
1070 			err = iter->add_entry_cb(iter, al, false, arg);
1071 			if (err)
1072 				goto out;
1073 		}
1074 	}
1075 
1076 out:
1077 	err2 = iter->ops->finish_entry(iter, al);
1078 	if (!err)
1079 		err = err2;
1080 
1081 	map__put(alm);
1082 
1083 	return err;
1084 }
1085 
1086 int64_t
1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1088 {
1089 	struct hists *hists = left->hists;
1090 	struct perf_hpp_fmt *fmt;
1091 	int64_t cmp = 0;
1092 
1093 	hists__for_each_sort_list(hists, fmt) {
1094 		if (perf_hpp__is_dynamic_entry(fmt) &&
1095 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1096 			continue;
1097 
1098 		cmp = fmt->cmp(fmt, left, right);
1099 		if (cmp)
1100 			break;
1101 	}
1102 
1103 	return cmp;
1104 }
1105 
1106 int64_t
1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1108 {
1109 	struct hists *hists = left->hists;
1110 	struct perf_hpp_fmt *fmt;
1111 	int64_t cmp = 0;
1112 
1113 	hists__for_each_sort_list(hists, fmt) {
1114 		if (perf_hpp__is_dynamic_entry(fmt) &&
1115 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1116 			continue;
1117 
1118 		cmp = fmt->collapse(fmt, left, right);
1119 		if (cmp)
1120 			break;
1121 	}
1122 
1123 	return cmp;
1124 }
1125 
1126 void hist_entry__delete(struct hist_entry *he)
1127 {
1128 	struct hist_entry_ops *ops = he->ops;
1129 
1130 	thread__zput(he->thread);
1131 	map__zput(he->ms.map);
1132 
1133 	if (he->branch_info) {
1134 		map__zput(he->branch_info->from.map);
1135 		map__zput(he->branch_info->to.map);
1136 		free_srcline(he->branch_info->srcline_from);
1137 		free_srcline(he->branch_info->srcline_to);
1138 		zfree(&he->branch_info);
1139 	}
1140 
1141 	if (he->mem_info) {
1142 		map__zput(he->mem_info->iaddr.map);
1143 		map__zput(he->mem_info->daddr.map);
1144 		mem_info__zput(he->mem_info);
1145 	}
1146 
1147 	zfree(&he->stat_acc);
1148 	free_srcline(he->srcline);
1149 	if (he->srcfile && he->srcfile[0])
1150 		free(he->srcfile);
1151 	free_callchain(he->callchain);
1152 	free(he->trace_output);
1153 	free(he->raw_data);
1154 	ops->free(he);
1155 }
1156 
1157 /*
1158  * If this is not the last column, then we need to pad it according to the
1159  * pre-calculated max lenght for this column, otherwise don't bother adding
1160  * spaces because that would break viewing this with, for instance, 'less',
1161  * that would show tons of trailing spaces when a long C++ demangled method
1162  * names is sampled.
1163 */
1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1165 				   struct perf_hpp_fmt *fmt, int printed)
1166 {
1167 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1168 		const int width = fmt->width(fmt, hpp, he->hists);
1169 		if (printed < width) {
1170 			advance_hpp(hpp, printed);
1171 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1172 		}
1173 	}
1174 
1175 	return printed;
1176 }
1177 
1178 /*
1179  * collapse the histogram
1180  */
1181 
1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1184 				       enum hist_filter type);
1185 
1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1187 
1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1189 {
1190 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1191 }
1192 
1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1194 						enum hist_filter type,
1195 						fmt_chk_fn check)
1196 {
1197 	struct perf_hpp_fmt *fmt;
1198 	bool type_match = false;
1199 	struct hist_entry *parent = he->parent_he;
1200 
1201 	switch (type) {
1202 	case HIST_FILTER__THREAD:
1203 		if (symbol_conf.comm_list == NULL &&
1204 		    symbol_conf.pid_list == NULL &&
1205 		    symbol_conf.tid_list == NULL)
1206 			return;
1207 		break;
1208 	case HIST_FILTER__DSO:
1209 		if (symbol_conf.dso_list == NULL)
1210 			return;
1211 		break;
1212 	case HIST_FILTER__SYMBOL:
1213 		if (symbol_conf.sym_list == NULL)
1214 			return;
1215 		break;
1216 	case HIST_FILTER__PARENT:
1217 	case HIST_FILTER__GUEST:
1218 	case HIST_FILTER__HOST:
1219 	case HIST_FILTER__SOCKET:
1220 	case HIST_FILTER__C2C:
1221 	default:
1222 		return;
1223 	}
1224 
1225 	/* if it's filtered by own fmt, it has to have filter bits */
1226 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1227 		if (check(fmt)) {
1228 			type_match = true;
1229 			break;
1230 		}
1231 	}
1232 
1233 	if (type_match) {
1234 		/*
1235 		 * If the filter is for current level entry, propagate
1236 		 * filter marker to parents.  The marker bit was
1237 		 * already set by default so it only needs to clear
1238 		 * non-filtered entries.
1239 		 */
1240 		if (!(he->filtered & (1 << type))) {
1241 			while (parent) {
1242 				parent->filtered &= ~(1 << type);
1243 				parent = parent->parent_he;
1244 			}
1245 		}
1246 	} else {
1247 		/*
1248 		 * If current entry doesn't have matching formats, set
1249 		 * filter marker for upper level entries.  it will be
1250 		 * cleared if its lower level entries is not filtered.
1251 		 *
1252 		 * For lower-level entries, it inherits parent's
1253 		 * filter bit so that lower level entries of a
1254 		 * non-filtered entry won't set the filter marker.
1255 		 */
1256 		if (parent == NULL)
1257 			he->filtered |= (1 << type);
1258 		else
1259 			he->filtered |= (parent->filtered & (1 << type));
1260 	}
1261 }
1262 
1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1264 {
1265 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1266 					    check_thread_entry);
1267 
1268 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1269 					    perf_hpp__is_dso_entry);
1270 
1271 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1272 					    perf_hpp__is_sym_entry);
1273 
1274 	hists__apply_filters(he->hists, he);
1275 }
1276 
1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1278 						 struct rb_root *root,
1279 						 struct hist_entry *he,
1280 						 struct hist_entry *parent_he,
1281 						 struct perf_hpp_list *hpp_list)
1282 {
1283 	struct rb_node **p = &root->rb_node;
1284 	struct rb_node *parent = NULL;
1285 	struct hist_entry *iter, *new;
1286 	struct perf_hpp_fmt *fmt;
1287 	int64_t cmp;
1288 
1289 	while (*p != NULL) {
1290 		parent = *p;
1291 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1292 
1293 		cmp = 0;
1294 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1295 			cmp = fmt->collapse(fmt, iter, he);
1296 			if (cmp)
1297 				break;
1298 		}
1299 
1300 		if (!cmp) {
1301 			he_stat__add_stat(&iter->stat, &he->stat);
1302 			return iter;
1303 		}
1304 
1305 		if (cmp < 0)
1306 			p = &parent->rb_left;
1307 		else
1308 			p = &parent->rb_right;
1309 	}
1310 
1311 	new = hist_entry__new(he, true);
1312 	if (new == NULL)
1313 		return NULL;
1314 
1315 	hists->nr_entries++;
1316 
1317 	/* save related format list for output */
1318 	new->hpp_list = hpp_list;
1319 	new->parent_he = parent_he;
1320 
1321 	hist_entry__apply_hierarchy_filters(new);
1322 
1323 	/* some fields are now passed to 'new' */
1324 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1325 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1326 			he->trace_output = NULL;
1327 		else
1328 			new->trace_output = NULL;
1329 
1330 		if (perf_hpp__is_srcline_entry(fmt))
1331 			he->srcline = NULL;
1332 		else
1333 			new->srcline = NULL;
1334 
1335 		if (perf_hpp__is_srcfile_entry(fmt))
1336 			he->srcfile = NULL;
1337 		else
1338 			new->srcfile = NULL;
1339 	}
1340 
1341 	rb_link_node(&new->rb_node_in, parent, p);
1342 	rb_insert_color(&new->rb_node_in, root);
1343 	return new;
1344 }
1345 
1346 static int hists__hierarchy_insert_entry(struct hists *hists,
1347 					 struct rb_root *root,
1348 					 struct hist_entry *he)
1349 {
1350 	struct perf_hpp_list_node *node;
1351 	struct hist_entry *new_he = NULL;
1352 	struct hist_entry *parent = NULL;
1353 	int depth = 0;
1354 	int ret = 0;
1355 
1356 	list_for_each_entry(node, &hists->hpp_formats, list) {
1357 		/* skip period (overhead) and elided columns */
1358 		if (node->level == 0 || node->skip)
1359 			continue;
1360 
1361 		/* insert copy of 'he' for each fmt into the hierarchy */
1362 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1363 		if (new_he == NULL) {
1364 			ret = -1;
1365 			break;
1366 		}
1367 
1368 		root = &new_he->hroot_in;
1369 		new_he->depth = depth++;
1370 		parent = new_he;
1371 	}
1372 
1373 	if (new_he) {
1374 		new_he->leaf = true;
1375 
1376 		if (hist_entry__has_callchains(new_he) &&
1377 		    symbol_conf.use_callchain) {
1378 			callchain_cursor_reset(&callchain_cursor);
1379 			if (callchain_merge(&callchain_cursor,
1380 					    new_he->callchain,
1381 					    he->callchain) < 0)
1382 				ret = -1;
1383 		}
1384 	}
1385 
1386 	/* 'he' is no longer used */
1387 	hist_entry__delete(he);
1388 
1389 	/* return 0 (or -1) since it already applied filters */
1390 	return ret;
1391 }
1392 
1393 static int hists__collapse_insert_entry(struct hists *hists,
1394 					struct rb_root *root,
1395 					struct hist_entry *he)
1396 {
1397 	struct rb_node **p = &root->rb_node;
1398 	struct rb_node *parent = NULL;
1399 	struct hist_entry *iter;
1400 	int64_t cmp;
1401 
1402 	if (symbol_conf.report_hierarchy)
1403 		return hists__hierarchy_insert_entry(hists, root, he);
1404 
1405 	while (*p != NULL) {
1406 		parent = *p;
1407 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1408 
1409 		cmp = hist_entry__collapse(iter, he);
1410 
1411 		if (!cmp) {
1412 			int ret = 0;
1413 
1414 			he_stat__add_stat(&iter->stat, &he->stat);
1415 			if (symbol_conf.cumulate_callchain)
1416 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1417 
1418 			if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1419 				callchain_cursor_reset(&callchain_cursor);
1420 				if (callchain_merge(&callchain_cursor,
1421 						    iter->callchain,
1422 						    he->callchain) < 0)
1423 					ret = -1;
1424 			}
1425 			hist_entry__delete(he);
1426 			return ret;
1427 		}
1428 
1429 		if (cmp < 0)
1430 			p = &(*p)->rb_left;
1431 		else
1432 			p = &(*p)->rb_right;
1433 	}
1434 	hists->nr_entries++;
1435 
1436 	rb_link_node(&he->rb_node_in, parent, p);
1437 	rb_insert_color(&he->rb_node_in, root);
1438 	return 1;
1439 }
1440 
1441 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1442 {
1443 	struct rb_root *root;
1444 
1445 	pthread_mutex_lock(&hists->lock);
1446 
1447 	root = hists->entries_in;
1448 	if (++hists->entries_in > &hists->entries_in_array[1])
1449 		hists->entries_in = &hists->entries_in_array[0];
1450 
1451 	pthread_mutex_unlock(&hists->lock);
1452 
1453 	return root;
1454 }
1455 
1456 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1457 {
1458 	hists__filter_entry_by_dso(hists, he);
1459 	hists__filter_entry_by_thread(hists, he);
1460 	hists__filter_entry_by_symbol(hists, he);
1461 	hists__filter_entry_by_socket(hists, he);
1462 }
1463 
1464 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1465 {
1466 	struct rb_root *root;
1467 	struct rb_node *next;
1468 	struct hist_entry *n;
1469 	int ret;
1470 
1471 	if (!hists__has(hists, need_collapse))
1472 		return 0;
1473 
1474 	hists->nr_entries = 0;
1475 
1476 	root = hists__get_rotate_entries_in(hists);
1477 
1478 	next = rb_first(root);
1479 
1480 	while (next) {
1481 		if (session_done())
1482 			break;
1483 		n = rb_entry(next, struct hist_entry, rb_node_in);
1484 		next = rb_next(&n->rb_node_in);
1485 
1486 		rb_erase(&n->rb_node_in, root);
1487 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1488 		if (ret < 0)
1489 			return -1;
1490 
1491 		if (ret) {
1492 			/*
1493 			 * If it wasn't combined with one of the entries already
1494 			 * collapsed, we need to apply the filters that may have
1495 			 * been set by, say, the hist_browser.
1496 			 */
1497 			hists__apply_filters(hists, n);
1498 		}
1499 		if (prog)
1500 			ui_progress__update(prog, 1);
1501 	}
1502 	return 0;
1503 }
1504 
1505 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1506 {
1507 	struct hists *hists = a->hists;
1508 	struct perf_hpp_fmt *fmt;
1509 	int64_t cmp = 0;
1510 
1511 	hists__for_each_sort_list(hists, fmt) {
1512 		if (perf_hpp__should_skip(fmt, a->hists))
1513 			continue;
1514 
1515 		cmp = fmt->sort(fmt, a, b);
1516 		if (cmp)
1517 			break;
1518 	}
1519 
1520 	return cmp;
1521 }
1522 
1523 static void hists__reset_filter_stats(struct hists *hists)
1524 {
1525 	hists->nr_non_filtered_entries = 0;
1526 	hists->stats.total_non_filtered_period = 0;
1527 }
1528 
1529 void hists__reset_stats(struct hists *hists)
1530 {
1531 	hists->nr_entries = 0;
1532 	hists->stats.total_period = 0;
1533 
1534 	hists__reset_filter_stats(hists);
1535 }
1536 
1537 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1538 {
1539 	hists->nr_non_filtered_entries++;
1540 	hists->stats.total_non_filtered_period += h->stat.period;
1541 }
1542 
1543 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1544 {
1545 	if (!h->filtered)
1546 		hists__inc_filter_stats(hists, h);
1547 
1548 	hists->nr_entries++;
1549 	hists->stats.total_period += h->stat.period;
1550 }
1551 
1552 static void hierarchy_recalc_total_periods(struct hists *hists)
1553 {
1554 	struct rb_node *node;
1555 	struct hist_entry *he;
1556 
1557 	node = rb_first(&hists->entries);
1558 
1559 	hists->stats.total_period = 0;
1560 	hists->stats.total_non_filtered_period = 0;
1561 
1562 	/*
1563 	 * recalculate total period using top-level entries only
1564 	 * since lower level entries only see non-filtered entries
1565 	 * but upper level entries have sum of both entries.
1566 	 */
1567 	while (node) {
1568 		he = rb_entry(node, struct hist_entry, rb_node);
1569 		node = rb_next(node);
1570 
1571 		hists->stats.total_period += he->stat.period;
1572 		if (!he->filtered)
1573 			hists->stats.total_non_filtered_period += he->stat.period;
1574 	}
1575 }
1576 
1577 static void hierarchy_insert_output_entry(struct rb_root *root,
1578 					  struct hist_entry *he)
1579 {
1580 	struct rb_node **p = &root->rb_node;
1581 	struct rb_node *parent = NULL;
1582 	struct hist_entry *iter;
1583 	struct perf_hpp_fmt *fmt;
1584 
1585 	while (*p != NULL) {
1586 		parent = *p;
1587 		iter = rb_entry(parent, struct hist_entry, rb_node);
1588 
1589 		if (hist_entry__sort(he, iter) > 0)
1590 			p = &parent->rb_left;
1591 		else
1592 			p = &parent->rb_right;
1593 	}
1594 
1595 	rb_link_node(&he->rb_node, parent, p);
1596 	rb_insert_color(&he->rb_node, root);
1597 
1598 	/* update column width of dynamic entry */
1599 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1600 		if (perf_hpp__is_dynamic_entry(fmt))
1601 			fmt->sort(fmt, he, NULL);
1602 	}
1603 }
1604 
1605 static void hists__hierarchy_output_resort(struct hists *hists,
1606 					   struct ui_progress *prog,
1607 					   struct rb_root *root_in,
1608 					   struct rb_root *root_out,
1609 					   u64 min_callchain_hits,
1610 					   bool use_callchain)
1611 {
1612 	struct rb_node *node;
1613 	struct hist_entry *he;
1614 
1615 	*root_out = RB_ROOT;
1616 	node = rb_first(root_in);
1617 
1618 	while (node) {
1619 		he = rb_entry(node, struct hist_entry, rb_node_in);
1620 		node = rb_next(node);
1621 
1622 		hierarchy_insert_output_entry(root_out, he);
1623 
1624 		if (prog)
1625 			ui_progress__update(prog, 1);
1626 
1627 		hists->nr_entries++;
1628 		if (!he->filtered) {
1629 			hists->nr_non_filtered_entries++;
1630 			hists__calc_col_len(hists, he);
1631 		}
1632 
1633 		if (!he->leaf) {
1634 			hists__hierarchy_output_resort(hists, prog,
1635 						       &he->hroot_in,
1636 						       &he->hroot_out,
1637 						       min_callchain_hits,
1638 						       use_callchain);
1639 			continue;
1640 		}
1641 
1642 		if (!use_callchain)
1643 			continue;
1644 
1645 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1646 			u64 total = he->stat.period;
1647 
1648 			if (symbol_conf.cumulate_callchain)
1649 				total = he->stat_acc->period;
1650 
1651 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1652 		}
1653 
1654 		callchain_param.sort(&he->sorted_chain, he->callchain,
1655 				     min_callchain_hits, &callchain_param);
1656 	}
1657 }
1658 
1659 static void __hists__insert_output_entry(struct rb_root *entries,
1660 					 struct hist_entry *he,
1661 					 u64 min_callchain_hits,
1662 					 bool use_callchain)
1663 {
1664 	struct rb_node **p = &entries->rb_node;
1665 	struct rb_node *parent = NULL;
1666 	struct hist_entry *iter;
1667 	struct perf_hpp_fmt *fmt;
1668 
1669 	if (use_callchain) {
1670 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1671 			u64 total = he->stat.period;
1672 
1673 			if (symbol_conf.cumulate_callchain)
1674 				total = he->stat_acc->period;
1675 
1676 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1677 		}
1678 		callchain_param.sort(&he->sorted_chain, he->callchain,
1679 				      min_callchain_hits, &callchain_param);
1680 	}
1681 
1682 	while (*p != NULL) {
1683 		parent = *p;
1684 		iter = rb_entry(parent, struct hist_entry, rb_node);
1685 
1686 		if (hist_entry__sort(he, iter) > 0)
1687 			p = &(*p)->rb_left;
1688 		else
1689 			p = &(*p)->rb_right;
1690 	}
1691 
1692 	rb_link_node(&he->rb_node, parent, p);
1693 	rb_insert_color(&he->rb_node, entries);
1694 
1695 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1696 		if (perf_hpp__is_dynamic_entry(fmt) &&
1697 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1698 			fmt->sort(fmt, he, NULL);  /* update column width */
1699 	}
1700 }
1701 
1702 static void output_resort(struct hists *hists, struct ui_progress *prog,
1703 			  bool use_callchain, hists__resort_cb_t cb)
1704 {
1705 	struct rb_root *root;
1706 	struct rb_node *next;
1707 	struct hist_entry *n;
1708 	u64 callchain_total;
1709 	u64 min_callchain_hits;
1710 
1711 	callchain_total = hists->callchain_period;
1712 	if (symbol_conf.filter_relative)
1713 		callchain_total = hists->callchain_non_filtered_period;
1714 
1715 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1716 
1717 	hists__reset_stats(hists);
1718 	hists__reset_col_len(hists);
1719 
1720 	if (symbol_conf.report_hierarchy) {
1721 		hists__hierarchy_output_resort(hists, prog,
1722 					       &hists->entries_collapsed,
1723 					       &hists->entries,
1724 					       min_callchain_hits,
1725 					       use_callchain);
1726 		hierarchy_recalc_total_periods(hists);
1727 		return;
1728 	}
1729 
1730 	if (hists__has(hists, need_collapse))
1731 		root = &hists->entries_collapsed;
1732 	else
1733 		root = hists->entries_in;
1734 
1735 	next = rb_first(root);
1736 	hists->entries = RB_ROOT;
1737 
1738 	while (next) {
1739 		n = rb_entry(next, struct hist_entry, rb_node_in);
1740 		next = rb_next(&n->rb_node_in);
1741 
1742 		if (cb && cb(n))
1743 			continue;
1744 
1745 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1746 		hists__inc_stats(hists, n);
1747 
1748 		if (!n->filtered)
1749 			hists__calc_col_len(hists, n);
1750 
1751 		if (prog)
1752 			ui_progress__update(prog, 1);
1753 	}
1754 }
1755 
1756 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1757 {
1758 	bool use_callchain;
1759 
1760 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1761 		use_callchain = evsel__has_callchain(evsel);
1762 	else
1763 		use_callchain = symbol_conf.use_callchain;
1764 
1765 	use_callchain |= symbol_conf.show_branchflag_count;
1766 
1767 	output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1768 }
1769 
1770 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1771 {
1772 	output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1773 }
1774 
1775 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1776 			     hists__resort_cb_t cb)
1777 {
1778 	output_resort(hists, prog, symbol_conf.use_callchain, cb);
1779 }
1780 
1781 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1782 {
1783 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1784 		return false;
1785 
1786 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1787 		return true;
1788 
1789 	return false;
1790 }
1791 
1792 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1793 {
1794 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1795 
1796 	while (can_goto_child(he, HMD_NORMAL)) {
1797 		node = rb_last(&he->hroot_out);
1798 		he = rb_entry(node, struct hist_entry, rb_node);
1799 	}
1800 	return node;
1801 }
1802 
1803 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1804 {
1805 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1806 
1807 	if (can_goto_child(he, hmd))
1808 		node = rb_first(&he->hroot_out);
1809 	else
1810 		node = rb_next(node);
1811 
1812 	while (node == NULL) {
1813 		he = he->parent_he;
1814 		if (he == NULL)
1815 			break;
1816 
1817 		node = rb_next(&he->rb_node);
1818 	}
1819 	return node;
1820 }
1821 
1822 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1823 {
1824 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1825 
1826 	node = rb_prev(node);
1827 	if (node)
1828 		return rb_hierarchy_last(node);
1829 
1830 	he = he->parent_he;
1831 	if (he == NULL)
1832 		return NULL;
1833 
1834 	return &he->rb_node;
1835 }
1836 
1837 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1838 {
1839 	struct rb_node *node;
1840 	struct hist_entry *child;
1841 	float percent;
1842 
1843 	if (he->leaf)
1844 		return false;
1845 
1846 	node = rb_first(&he->hroot_out);
1847 	child = rb_entry(node, struct hist_entry, rb_node);
1848 
1849 	while (node && child->filtered) {
1850 		node = rb_next(node);
1851 		child = rb_entry(node, struct hist_entry, rb_node);
1852 	}
1853 
1854 	if (node)
1855 		percent = hist_entry__get_percent_limit(child);
1856 	else
1857 		percent = 0;
1858 
1859 	return node && percent >= limit;
1860 }
1861 
1862 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1863 				       enum hist_filter filter)
1864 {
1865 	h->filtered &= ~(1 << filter);
1866 
1867 	if (symbol_conf.report_hierarchy) {
1868 		struct hist_entry *parent = h->parent_he;
1869 
1870 		while (parent) {
1871 			he_stat__add_stat(&parent->stat, &h->stat);
1872 
1873 			parent->filtered &= ~(1 << filter);
1874 
1875 			if (parent->filtered)
1876 				goto next;
1877 
1878 			/* force fold unfiltered entry for simplicity */
1879 			parent->unfolded = false;
1880 			parent->has_no_entry = false;
1881 			parent->row_offset = 0;
1882 			parent->nr_rows = 0;
1883 next:
1884 			parent = parent->parent_he;
1885 		}
1886 	}
1887 
1888 	if (h->filtered)
1889 		return;
1890 
1891 	/* force fold unfiltered entry for simplicity */
1892 	h->unfolded = false;
1893 	h->has_no_entry = false;
1894 	h->row_offset = 0;
1895 	h->nr_rows = 0;
1896 
1897 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1898 
1899 	hists__inc_filter_stats(hists, h);
1900 	hists__calc_col_len(hists, h);
1901 }
1902 
1903 
1904 static bool hists__filter_entry_by_dso(struct hists *hists,
1905 				       struct hist_entry *he)
1906 {
1907 	if (hists->dso_filter != NULL &&
1908 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1909 		he->filtered |= (1 << HIST_FILTER__DSO);
1910 		return true;
1911 	}
1912 
1913 	return false;
1914 }
1915 
1916 static bool hists__filter_entry_by_thread(struct hists *hists,
1917 					  struct hist_entry *he)
1918 {
1919 	if (hists->thread_filter != NULL &&
1920 	    he->thread != hists->thread_filter) {
1921 		he->filtered |= (1 << HIST_FILTER__THREAD);
1922 		return true;
1923 	}
1924 
1925 	return false;
1926 }
1927 
1928 static bool hists__filter_entry_by_symbol(struct hists *hists,
1929 					  struct hist_entry *he)
1930 {
1931 	if (hists->symbol_filter_str != NULL &&
1932 	    (!he->ms.sym || strstr(he->ms.sym->name,
1933 				   hists->symbol_filter_str) == NULL)) {
1934 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1935 		return true;
1936 	}
1937 
1938 	return false;
1939 }
1940 
1941 static bool hists__filter_entry_by_socket(struct hists *hists,
1942 					  struct hist_entry *he)
1943 {
1944 	if ((hists->socket_filter > -1) &&
1945 	    (he->socket != hists->socket_filter)) {
1946 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1947 		return true;
1948 	}
1949 
1950 	return false;
1951 }
1952 
1953 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1954 
1955 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1956 {
1957 	struct rb_node *nd;
1958 
1959 	hists->stats.nr_non_filtered_samples = 0;
1960 
1961 	hists__reset_filter_stats(hists);
1962 	hists__reset_col_len(hists);
1963 
1964 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1965 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1966 
1967 		if (filter(hists, h))
1968 			continue;
1969 
1970 		hists__remove_entry_filter(hists, h, type);
1971 	}
1972 }
1973 
1974 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1975 {
1976 	struct rb_node **p = &root->rb_node;
1977 	struct rb_node *parent = NULL;
1978 	struct hist_entry *iter;
1979 	struct rb_root new_root = RB_ROOT;
1980 	struct rb_node *nd;
1981 
1982 	while (*p != NULL) {
1983 		parent = *p;
1984 		iter = rb_entry(parent, struct hist_entry, rb_node);
1985 
1986 		if (hist_entry__sort(he, iter) > 0)
1987 			p = &(*p)->rb_left;
1988 		else
1989 			p = &(*p)->rb_right;
1990 	}
1991 
1992 	rb_link_node(&he->rb_node, parent, p);
1993 	rb_insert_color(&he->rb_node, root);
1994 
1995 	if (he->leaf || he->filtered)
1996 		return;
1997 
1998 	nd = rb_first(&he->hroot_out);
1999 	while (nd) {
2000 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2001 
2002 		nd = rb_next(nd);
2003 		rb_erase(&h->rb_node, &he->hroot_out);
2004 
2005 		resort_filtered_entry(&new_root, h);
2006 	}
2007 
2008 	he->hroot_out = new_root;
2009 }
2010 
2011 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2012 {
2013 	struct rb_node *nd;
2014 	struct rb_root new_root = RB_ROOT;
2015 
2016 	hists->stats.nr_non_filtered_samples = 0;
2017 
2018 	hists__reset_filter_stats(hists);
2019 	hists__reset_col_len(hists);
2020 
2021 	nd = rb_first(&hists->entries);
2022 	while (nd) {
2023 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2024 		int ret;
2025 
2026 		ret = hist_entry__filter(h, type, arg);
2027 
2028 		/*
2029 		 * case 1. non-matching type
2030 		 * zero out the period, set filter marker and move to child
2031 		 */
2032 		if (ret < 0) {
2033 			memset(&h->stat, 0, sizeof(h->stat));
2034 			h->filtered |= (1 << type);
2035 
2036 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2037 		}
2038 		/*
2039 		 * case 2. matched type (filter out)
2040 		 * set filter marker and move to next
2041 		 */
2042 		else if (ret == 1) {
2043 			h->filtered |= (1 << type);
2044 
2045 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2046 		}
2047 		/*
2048 		 * case 3. ok (not filtered)
2049 		 * add period to hists and parents, erase the filter marker
2050 		 * and move to next sibling
2051 		 */
2052 		else {
2053 			hists__remove_entry_filter(hists, h, type);
2054 
2055 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2056 		}
2057 	}
2058 
2059 	hierarchy_recalc_total_periods(hists);
2060 
2061 	/*
2062 	 * resort output after applying a new filter since filter in a lower
2063 	 * hierarchy can change periods in a upper hierarchy.
2064 	 */
2065 	nd = rb_first(&hists->entries);
2066 	while (nd) {
2067 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2068 
2069 		nd = rb_next(nd);
2070 		rb_erase(&h->rb_node, &hists->entries);
2071 
2072 		resort_filtered_entry(&new_root, h);
2073 	}
2074 
2075 	hists->entries = new_root;
2076 }
2077 
2078 void hists__filter_by_thread(struct hists *hists)
2079 {
2080 	if (symbol_conf.report_hierarchy)
2081 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2082 					hists->thread_filter);
2083 	else
2084 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
2085 				      hists__filter_entry_by_thread);
2086 }
2087 
2088 void hists__filter_by_dso(struct hists *hists)
2089 {
2090 	if (symbol_conf.report_hierarchy)
2091 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2092 					hists->dso_filter);
2093 	else
2094 		hists__filter_by_type(hists, HIST_FILTER__DSO,
2095 				      hists__filter_entry_by_dso);
2096 }
2097 
2098 void hists__filter_by_symbol(struct hists *hists)
2099 {
2100 	if (symbol_conf.report_hierarchy)
2101 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2102 					hists->symbol_filter_str);
2103 	else
2104 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2105 				      hists__filter_entry_by_symbol);
2106 }
2107 
2108 void hists__filter_by_socket(struct hists *hists)
2109 {
2110 	if (symbol_conf.report_hierarchy)
2111 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2112 					&hists->socket_filter);
2113 	else
2114 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2115 				      hists__filter_entry_by_socket);
2116 }
2117 
2118 void events_stats__inc(struct events_stats *stats, u32 type)
2119 {
2120 	++stats->nr_events[0];
2121 	++stats->nr_events[type];
2122 }
2123 
2124 void hists__inc_nr_events(struct hists *hists, u32 type)
2125 {
2126 	events_stats__inc(&hists->stats, type);
2127 }
2128 
2129 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2130 {
2131 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2132 	if (!filtered)
2133 		hists->stats.nr_non_filtered_samples++;
2134 }
2135 
2136 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2137 						 struct hist_entry *pair)
2138 {
2139 	struct rb_root *root;
2140 	struct rb_node **p;
2141 	struct rb_node *parent = NULL;
2142 	struct hist_entry *he;
2143 	int64_t cmp;
2144 
2145 	if (hists__has(hists, need_collapse))
2146 		root = &hists->entries_collapsed;
2147 	else
2148 		root = hists->entries_in;
2149 
2150 	p = &root->rb_node;
2151 
2152 	while (*p != NULL) {
2153 		parent = *p;
2154 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2155 
2156 		cmp = hist_entry__collapse(he, pair);
2157 
2158 		if (!cmp)
2159 			goto out;
2160 
2161 		if (cmp < 0)
2162 			p = &(*p)->rb_left;
2163 		else
2164 			p = &(*p)->rb_right;
2165 	}
2166 
2167 	he = hist_entry__new(pair, true);
2168 	if (he) {
2169 		memset(&he->stat, 0, sizeof(he->stat));
2170 		he->hists = hists;
2171 		if (symbol_conf.cumulate_callchain)
2172 			memset(he->stat_acc, 0, sizeof(he->stat));
2173 		rb_link_node(&he->rb_node_in, parent, p);
2174 		rb_insert_color(&he->rb_node_in, root);
2175 		hists__inc_stats(hists, he);
2176 		he->dummy = true;
2177 	}
2178 out:
2179 	return he;
2180 }
2181 
2182 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2183 						    struct rb_root *root,
2184 						    struct hist_entry *pair)
2185 {
2186 	struct rb_node **p;
2187 	struct rb_node *parent = NULL;
2188 	struct hist_entry *he;
2189 	struct perf_hpp_fmt *fmt;
2190 
2191 	p = &root->rb_node;
2192 	while (*p != NULL) {
2193 		int64_t cmp = 0;
2194 
2195 		parent = *p;
2196 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2197 
2198 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2199 			cmp = fmt->collapse(fmt, he, pair);
2200 			if (cmp)
2201 				break;
2202 		}
2203 		if (!cmp)
2204 			goto out;
2205 
2206 		if (cmp < 0)
2207 			p = &parent->rb_left;
2208 		else
2209 			p = &parent->rb_right;
2210 	}
2211 
2212 	he = hist_entry__new(pair, true);
2213 	if (he) {
2214 		rb_link_node(&he->rb_node_in, parent, p);
2215 		rb_insert_color(&he->rb_node_in, root);
2216 
2217 		he->dummy = true;
2218 		he->hists = hists;
2219 		memset(&he->stat, 0, sizeof(he->stat));
2220 		hists__inc_stats(hists, he);
2221 	}
2222 out:
2223 	return he;
2224 }
2225 
2226 static struct hist_entry *hists__find_entry(struct hists *hists,
2227 					    struct hist_entry *he)
2228 {
2229 	struct rb_node *n;
2230 
2231 	if (hists__has(hists, need_collapse))
2232 		n = hists->entries_collapsed.rb_node;
2233 	else
2234 		n = hists->entries_in->rb_node;
2235 
2236 	while (n) {
2237 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2238 		int64_t cmp = hist_entry__collapse(iter, he);
2239 
2240 		if (cmp < 0)
2241 			n = n->rb_left;
2242 		else if (cmp > 0)
2243 			n = n->rb_right;
2244 		else
2245 			return iter;
2246 	}
2247 
2248 	return NULL;
2249 }
2250 
2251 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2252 						      struct hist_entry *he)
2253 {
2254 	struct rb_node *n = root->rb_node;
2255 
2256 	while (n) {
2257 		struct hist_entry *iter;
2258 		struct perf_hpp_fmt *fmt;
2259 		int64_t cmp = 0;
2260 
2261 		iter = rb_entry(n, struct hist_entry, rb_node_in);
2262 		perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2263 			cmp = fmt->collapse(fmt, iter, he);
2264 			if (cmp)
2265 				break;
2266 		}
2267 
2268 		if (cmp < 0)
2269 			n = n->rb_left;
2270 		else if (cmp > 0)
2271 			n = n->rb_right;
2272 		else
2273 			return iter;
2274 	}
2275 
2276 	return NULL;
2277 }
2278 
2279 static void hists__match_hierarchy(struct rb_root *leader_root,
2280 				   struct rb_root *other_root)
2281 {
2282 	struct rb_node *nd;
2283 	struct hist_entry *pos, *pair;
2284 
2285 	for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2286 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2287 		pair = hists__find_hierarchy_entry(other_root, pos);
2288 
2289 		if (pair) {
2290 			hist_entry__add_pair(pair, pos);
2291 			hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2292 		}
2293 	}
2294 }
2295 
2296 /*
2297  * Look for pairs to link to the leader buckets (hist_entries):
2298  */
2299 void hists__match(struct hists *leader, struct hists *other)
2300 {
2301 	struct rb_root *root;
2302 	struct rb_node *nd;
2303 	struct hist_entry *pos, *pair;
2304 
2305 	if (symbol_conf.report_hierarchy) {
2306 		/* hierarchy report always collapses entries */
2307 		return hists__match_hierarchy(&leader->entries_collapsed,
2308 					      &other->entries_collapsed);
2309 	}
2310 
2311 	if (hists__has(leader, need_collapse))
2312 		root = &leader->entries_collapsed;
2313 	else
2314 		root = leader->entries_in;
2315 
2316 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2317 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2318 		pair = hists__find_entry(other, pos);
2319 
2320 		if (pair)
2321 			hist_entry__add_pair(pair, pos);
2322 	}
2323 }
2324 
2325 static int hists__link_hierarchy(struct hists *leader_hists,
2326 				 struct hist_entry *parent,
2327 				 struct rb_root *leader_root,
2328 				 struct rb_root *other_root)
2329 {
2330 	struct rb_node *nd;
2331 	struct hist_entry *pos, *leader;
2332 
2333 	for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2334 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2335 
2336 		if (hist_entry__has_pairs(pos)) {
2337 			bool found = false;
2338 
2339 			list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2340 				if (leader->hists == leader_hists) {
2341 					found = true;
2342 					break;
2343 				}
2344 			}
2345 			if (!found)
2346 				return -1;
2347 		} else {
2348 			leader = add_dummy_hierarchy_entry(leader_hists,
2349 							   leader_root, pos);
2350 			if (leader == NULL)
2351 				return -1;
2352 
2353 			/* do not point parent in the pos */
2354 			leader->parent_he = parent;
2355 
2356 			hist_entry__add_pair(pos, leader);
2357 		}
2358 
2359 		if (!pos->leaf) {
2360 			if (hists__link_hierarchy(leader_hists, leader,
2361 						  &leader->hroot_in,
2362 						  &pos->hroot_in) < 0)
2363 				return -1;
2364 		}
2365 	}
2366 	return 0;
2367 }
2368 
2369 /*
2370  * Look for entries in the other hists that are not present in the leader, if
2371  * we find them, just add a dummy entry on the leader hists, with period=0,
2372  * nr_events=0, to serve as the list header.
2373  */
2374 int hists__link(struct hists *leader, struct hists *other)
2375 {
2376 	struct rb_root *root;
2377 	struct rb_node *nd;
2378 	struct hist_entry *pos, *pair;
2379 
2380 	if (symbol_conf.report_hierarchy) {
2381 		/* hierarchy report always collapses entries */
2382 		return hists__link_hierarchy(leader, NULL,
2383 					     &leader->entries_collapsed,
2384 					     &other->entries_collapsed);
2385 	}
2386 
2387 	if (hists__has(other, need_collapse))
2388 		root = &other->entries_collapsed;
2389 	else
2390 		root = other->entries_in;
2391 
2392 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2393 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2394 
2395 		if (!hist_entry__has_pairs(pos)) {
2396 			pair = hists__add_dummy_entry(leader, pos);
2397 			if (pair == NULL)
2398 				return -1;
2399 			hist_entry__add_pair(pos, pair);
2400 		}
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2407 			  struct perf_sample *sample, bool nonany_branch_mode)
2408 {
2409 	struct branch_info *bi;
2410 
2411 	/* If we have branch cycles always annotate them. */
2412 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2413 		int i;
2414 
2415 		bi = sample__resolve_bstack(sample, al);
2416 		if (bi) {
2417 			struct addr_map_symbol *prev = NULL;
2418 
2419 			/*
2420 			 * Ignore errors, still want to process the
2421 			 * other entries.
2422 			 *
2423 			 * For non standard branch modes always
2424 			 * force no IPC (prev == NULL)
2425 			 *
2426 			 * Note that perf stores branches reversed from
2427 			 * program order!
2428 			 */
2429 			for (i = bs->nr - 1; i >= 0; i--) {
2430 				addr_map_symbol__account_cycles(&bi[i].from,
2431 					nonany_branch_mode ? NULL : prev,
2432 					bi[i].flags.cycles);
2433 				prev = &bi[i].to;
2434 			}
2435 			free(bi);
2436 		}
2437 	}
2438 }
2439 
2440 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2441 {
2442 	struct perf_evsel *pos;
2443 	size_t ret = 0;
2444 
2445 	evlist__for_each_entry(evlist, pos) {
2446 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2447 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2448 	}
2449 
2450 	return ret;
2451 }
2452 
2453 
2454 u64 hists__total_period(struct hists *hists)
2455 {
2456 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2457 		hists->stats.total_period;
2458 }
2459 
2460 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2461 {
2462 	char unit;
2463 	int printed;
2464 	const struct dso *dso = hists->dso_filter;
2465 	const struct thread *thread = hists->thread_filter;
2466 	int socket_id = hists->socket_filter;
2467 	unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2468 	u64 nr_events = hists->stats.total_period;
2469 	struct perf_evsel *evsel = hists_to_evsel(hists);
2470 	const char *ev_name = perf_evsel__name(evsel);
2471 	char buf[512], sample_freq_str[64] = "";
2472 	size_t buflen = sizeof(buf);
2473 	char ref[30] = " show reference callgraph, ";
2474 	bool enable_ref = false;
2475 
2476 	if (symbol_conf.filter_relative) {
2477 		nr_samples = hists->stats.nr_non_filtered_samples;
2478 		nr_events = hists->stats.total_non_filtered_period;
2479 	}
2480 
2481 	if (perf_evsel__is_group_event(evsel)) {
2482 		struct perf_evsel *pos;
2483 
2484 		perf_evsel__group_desc(evsel, buf, buflen);
2485 		ev_name = buf;
2486 
2487 		for_each_group_member(pos, evsel) {
2488 			struct hists *pos_hists = evsel__hists(pos);
2489 
2490 			if (symbol_conf.filter_relative) {
2491 				nr_samples += pos_hists->stats.nr_non_filtered_samples;
2492 				nr_events += pos_hists->stats.total_non_filtered_period;
2493 			} else {
2494 				nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2495 				nr_events += pos_hists->stats.total_period;
2496 			}
2497 		}
2498 	}
2499 
2500 	if (symbol_conf.show_ref_callgraph &&
2501 	    strstr(ev_name, "call-graph=no"))
2502 		enable_ref = true;
2503 
2504 	if (show_freq)
2505 		scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2506 
2507 	nr_samples = convert_unit(nr_samples, &unit);
2508 	printed = scnprintf(bf, size,
2509 			   "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2510 			   nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2511 			   ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2512 
2513 
2514 	if (hists->uid_filter_str)
2515 		printed += snprintf(bf + printed, size - printed,
2516 				    ", UID: %s", hists->uid_filter_str);
2517 	if (thread) {
2518 		if (hists__has(hists, thread)) {
2519 			printed += scnprintf(bf + printed, size - printed,
2520 				    ", Thread: %s(%d)",
2521 				     (thread->comm_set ? thread__comm_str(thread) : ""),
2522 				    thread->tid);
2523 		} else {
2524 			printed += scnprintf(bf + printed, size - printed,
2525 				    ", Thread: %s",
2526 				     (thread->comm_set ? thread__comm_str(thread) : ""));
2527 		}
2528 	}
2529 	if (dso)
2530 		printed += scnprintf(bf + printed, size - printed,
2531 				    ", DSO: %s", dso->short_name);
2532 	if (socket_id > -1)
2533 		printed += scnprintf(bf + printed, size - printed,
2534 				    ", Processor Socket: %d", socket_id);
2535 
2536 	return printed;
2537 }
2538 
2539 int parse_filter_percentage(const struct option *opt __maybe_unused,
2540 			    const char *arg, int unset __maybe_unused)
2541 {
2542 	if (!strcmp(arg, "relative"))
2543 		symbol_conf.filter_relative = true;
2544 	else if (!strcmp(arg, "absolute"))
2545 		symbol_conf.filter_relative = false;
2546 	else {
2547 		pr_debug("Invalid percentage: %s\n", arg);
2548 		return -1;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 int perf_hist_config(const char *var, const char *value)
2555 {
2556 	if (!strcmp(var, "hist.percentage"))
2557 		return parse_filter_percentage(NULL, value, 0);
2558 
2559 	return 0;
2560 }
2561 
2562 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2563 {
2564 	memset(hists, 0, sizeof(*hists));
2565 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2566 	hists->entries_in = &hists->entries_in_array[0];
2567 	hists->entries_collapsed = RB_ROOT;
2568 	hists->entries = RB_ROOT;
2569 	pthread_mutex_init(&hists->lock, NULL);
2570 	hists->socket_filter = -1;
2571 	hists->hpp_list = hpp_list;
2572 	INIT_LIST_HEAD(&hists->hpp_formats);
2573 	return 0;
2574 }
2575 
2576 static void hists__delete_remaining_entries(struct rb_root *root)
2577 {
2578 	struct rb_node *node;
2579 	struct hist_entry *he;
2580 
2581 	while (!RB_EMPTY_ROOT(root)) {
2582 		node = rb_first(root);
2583 		rb_erase(node, root);
2584 
2585 		he = rb_entry(node, struct hist_entry, rb_node_in);
2586 		hist_entry__delete(he);
2587 	}
2588 }
2589 
2590 static void hists__delete_all_entries(struct hists *hists)
2591 {
2592 	hists__delete_entries(hists);
2593 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2594 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2595 	hists__delete_remaining_entries(&hists->entries_collapsed);
2596 }
2597 
2598 static void hists_evsel__exit(struct perf_evsel *evsel)
2599 {
2600 	struct hists *hists = evsel__hists(evsel);
2601 	struct perf_hpp_fmt *fmt, *pos;
2602 	struct perf_hpp_list_node *node, *tmp;
2603 
2604 	hists__delete_all_entries(hists);
2605 
2606 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2607 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2608 			list_del(&fmt->list);
2609 			free(fmt);
2610 		}
2611 		list_del(&node->list);
2612 		free(node);
2613 	}
2614 }
2615 
2616 static int hists_evsel__init(struct perf_evsel *evsel)
2617 {
2618 	struct hists *hists = evsel__hists(evsel);
2619 
2620 	__hists__init(hists, &perf_hpp_list);
2621 	return 0;
2622 }
2623 
2624 /*
2625  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2626  * stored in the rbtree...
2627  */
2628 
2629 int hists__init(void)
2630 {
2631 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2632 					    hists_evsel__init,
2633 					    hists_evsel__exit);
2634 	if (err)
2635 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2636 
2637 	return err;
2638 }
2639 
2640 void perf_hpp_list__init(struct perf_hpp_list *list)
2641 {
2642 	INIT_LIST_HEAD(&list->fields);
2643 	INIT_LIST_HEAD(&list->sorts);
2644 }
2645