xref: /openbmc/linux/tools/perf/util/hist.c (revision 110e6f26)
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11 
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 				       struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 					  struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 					  struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 					  struct hist_entry *he);
20 
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 	return hists->col_len[col];
24 }
25 
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 	hists->col_len[col] = len;
29 }
30 
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 	if (len > hists__col_len(hists, col)) {
34 		hists__set_col_len(hists, col, len);
35 		return true;
36 	}
37 	return false;
38 }
39 
40 void hists__reset_col_len(struct hists *hists)
41 {
42 	enum hist_column col;
43 
44 	for (col = 0; col < HISTC_NR_COLS; ++col)
45 		hists__set_col_len(hists, col, 0);
46 }
47 
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51 
52 	if (hists__col_len(hists, dso) < unresolved_col_width &&
53 	    !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 	    !symbol_conf.dso_list)
55 		hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57 
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 	const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 	int symlen;
62 	u16 len;
63 
64 	/*
65 	 * +4 accounts for '[x] ' priv level info
66 	 * +2 accounts for 0x prefix on raw addresses
67 	 * +3 accounts for ' y ' symtab origin info
68 	 */
69 	if (h->ms.sym) {
70 		symlen = h->ms.sym->namelen + 4;
71 		if (verbose)
72 			symlen += BITS_PER_LONG / 4 + 2 + 3;
73 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 	} else {
75 		symlen = unresolved_col_width + 4 + 2;
76 		hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 		hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 	}
79 
80 	len = thread__comm_len(h->thread);
81 	if (hists__new_col_len(hists, HISTC_COMM, len))
82 		hists__set_col_len(hists, HISTC_THREAD, len + 6);
83 
84 	if (h->ms.map) {
85 		len = dso__name_len(h->ms.map->dso);
86 		hists__new_col_len(hists, HISTC_DSO, len);
87 	}
88 
89 	if (h->parent)
90 		hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91 
92 	if (h->branch_info) {
93 		if (h->branch_info->from.sym) {
94 			symlen = (int)h->branch_info->from.sym->namelen + 4;
95 			if (verbose)
96 				symlen += BITS_PER_LONG / 4 + 2 + 3;
97 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98 
99 			symlen = dso__name_len(h->branch_info->from.map->dso);
100 			hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 		} else {
102 			symlen = unresolved_col_width + 4 + 2;
103 			hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 			hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 		}
106 
107 		if (h->branch_info->to.sym) {
108 			symlen = (int)h->branch_info->to.sym->namelen + 4;
109 			if (verbose)
110 				symlen += BITS_PER_LONG / 4 + 2 + 3;
111 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112 
113 			symlen = dso__name_len(h->branch_info->to.map->dso);
114 			hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 		} else {
116 			symlen = unresolved_col_width + 4 + 2;
117 			hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 			hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 		}
120 	}
121 
122 	if (h->mem_info) {
123 		if (h->mem_info->daddr.sym) {
124 			symlen = (int)h->mem_info->daddr.sym->namelen + 4
125 			       + unresolved_col_width + 2;
126 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
127 					   symlen);
128 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
129 					   symlen + 1);
130 		} else {
131 			symlen = unresolved_col_width + 4 + 2;
132 			hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
133 					   symlen);
134 			hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
135 					   symlen);
136 		}
137 
138 		if (h->mem_info->iaddr.sym) {
139 			symlen = (int)h->mem_info->iaddr.sym->namelen + 4
140 			       + unresolved_col_width + 2;
141 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
142 					   symlen);
143 		} else {
144 			symlen = unresolved_col_width + 4 + 2;
145 			hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
146 					   symlen);
147 		}
148 
149 		if (h->mem_info->daddr.map) {
150 			symlen = dso__name_len(h->mem_info->daddr.map->dso);
151 			hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
152 					   symlen);
153 		} else {
154 			symlen = unresolved_col_width + 4 + 2;
155 			hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
156 		}
157 	} else {
158 		symlen = unresolved_col_width + 4 + 2;
159 		hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
160 		hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
161 		hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
162 	}
163 
164 	hists__new_col_len(hists, HISTC_CPU, 3);
165 	hists__new_col_len(hists, HISTC_SOCKET, 6);
166 	hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
167 	hists__new_col_len(hists, HISTC_MEM_TLB, 22);
168 	hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
169 	hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
170 	hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
171 	hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
172 
173 	if (h->srcline)
174 		hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
175 
176 	if (h->srcfile)
177 		hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
178 
179 	if (h->transaction)
180 		hists__new_col_len(hists, HISTC_TRANSACTION,
181 				   hist_entry__transaction_len());
182 
183 	if (h->trace_output)
184 		hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
185 }
186 
187 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
188 {
189 	struct rb_node *next = rb_first(&hists->entries);
190 	struct hist_entry *n;
191 	int row = 0;
192 
193 	hists__reset_col_len(hists);
194 
195 	while (next && row++ < max_rows) {
196 		n = rb_entry(next, struct hist_entry, rb_node);
197 		if (!n->filtered)
198 			hists__calc_col_len(hists, n);
199 		next = rb_next(&n->rb_node);
200 	}
201 }
202 
203 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
204 					unsigned int cpumode, u64 period)
205 {
206 	switch (cpumode) {
207 	case PERF_RECORD_MISC_KERNEL:
208 		he_stat->period_sys += period;
209 		break;
210 	case PERF_RECORD_MISC_USER:
211 		he_stat->period_us += period;
212 		break;
213 	case PERF_RECORD_MISC_GUEST_KERNEL:
214 		he_stat->period_guest_sys += period;
215 		break;
216 	case PERF_RECORD_MISC_GUEST_USER:
217 		he_stat->period_guest_us += period;
218 		break;
219 	default:
220 		break;
221 	}
222 }
223 
224 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
225 				u64 weight)
226 {
227 
228 	he_stat->period		+= period;
229 	he_stat->weight		+= weight;
230 	he_stat->nr_events	+= 1;
231 }
232 
233 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
234 {
235 	dest->period		+= src->period;
236 	dest->period_sys	+= src->period_sys;
237 	dest->period_us		+= src->period_us;
238 	dest->period_guest_sys	+= src->period_guest_sys;
239 	dest->period_guest_us	+= src->period_guest_us;
240 	dest->nr_events		+= src->nr_events;
241 	dest->weight		+= src->weight;
242 }
243 
244 static void he_stat__decay(struct he_stat *he_stat)
245 {
246 	he_stat->period = (he_stat->period * 7) / 8;
247 	he_stat->nr_events = (he_stat->nr_events * 7) / 8;
248 	/* XXX need decay for weight too? */
249 }
250 
251 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
252 
253 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
254 {
255 	u64 prev_period = he->stat.period;
256 	u64 diff;
257 
258 	if (prev_period == 0)
259 		return true;
260 
261 	he_stat__decay(&he->stat);
262 	if (symbol_conf.cumulate_callchain)
263 		he_stat__decay(he->stat_acc);
264 	decay_callchain(he->callchain);
265 
266 	diff = prev_period - he->stat.period;
267 
268 	if (!he->depth) {
269 		hists->stats.total_period -= diff;
270 		if (!he->filtered)
271 			hists->stats.total_non_filtered_period -= diff;
272 	}
273 
274 	if (!he->leaf) {
275 		struct hist_entry *child;
276 		struct rb_node *node = rb_first(&he->hroot_out);
277 		while (node) {
278 			child = rb_entry(node, struct hist_entry, rb_node);
279 			node = rb_next(node);
280 
281 			if (hists__decay_entry(hists, child))
282 				hists__delete_entry(hists, child);
283 		}
284 	}
285 
286 	return he->stat.period == 0;
287 }
288 
289 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
290 {
291 	struct rb_root *root_in;
292 	struct rb_root *root_out;
293 
294 	if (he->parent_he) {
295 		root_in  = &he->parent_he->hroot_in;
296 		root_out = &he->parent_he->hroot_out;
297 	} else {
298 		if (sort__need_collapse)
299 			root_in = &hists->entries_collapsed;
300 		else
301 			root_in = hists->entries_in;
302 		root_out = &hists->entries;
303 	}
304 
305 	rb_erase(&he->rb_node_in, root_in);
306 	rb_erase(&he->rb_node, root_out);
307 
308 	--hists->nr_entries;
309 	if (!he->filtered)
310 		--hists->nr_non_filtered_entries;
311 
312 	hist_entry__delete(he);
313 }
314 
315 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
316 {
317 	struct rb_node *next = rb_first(&hists->entries);
318 	struct hist_entry *n;
319 
320 	while (next) {
321 		n = rb_entry(next, struct hist_entry, rb_node);
322 		next = rb_next(&n->rb_node);
323 		if (((zap_user && n->level == '.') ||
324 		     (zap_kernel && n->level != '.') ||
325 		     hists__decay_entry(hists, n))) {
326 			hists__delete_entry(hists, n);
327 		}
328 	}
329 }
330 
331 void hists__delete_entries(struct hists *hists)
332 {
333 	struct rb_node *next = rb_first(&hists->entries);
334 	struct hist_entry *n;
335 
336 	while (next) {
337 		n = rb_entry(next, struct hist_entry, rb_node);
338 		next = rb_next(&n->rb_node);
339 
340 		hists__delete_entry(hists, n);
341 	}
342 }
343 
344 /*
345  * histogram, sorted on item, collects periods
346  */
347 
348 static struct hist_entry *hist_entry__new(struct hist_entry *template,
349 					  bool sample_self)
350 {
351 	size_t callchain_size = 0;
352 	struct hist_entry *he;
353 
354 	if (symbol_conf.use_callchain)
355 		callchain_size = sizeof(struct callchain_root);
356 
357 	he = zalloc(sizeof(*he) + callchain_size);
358 
359 	if (he != NULL) {
360 		*he = *template;
361 
362 		if (symbol_conf.cumulate_callchain) {
363 			he->stat_acc = malloc(sizeof(he->stat));
364 			if (he->stat_acc == NULL) {
365 				free(he);
366 				return NULL;
367 			}
368 			memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369 			if (!sample_self)
370 				memset(&he->stat, 0, sizeof(he->stat));
371 		}
372 
373 		map__get(he->ms.map);
374 
375 		if (he->branch_info) {
376 			/*
377 			 * This branch info is (a part of) allocated from
378 			 * sample__resolve_bstack() and will be freed after
379 			 * adding new entries.  So we need to save a copy.
380 			 */
381 			he->branch_info = malloc(sizeof(*he->branch_info));
382 			if (he->branch_info == NULL) {
383 				map__zput(he->ms.map);
384 				free(he->stat_acc);
385 				free(he);
386 				return NULL;
387 			}
388 
389 			memcpy(he->branch_info, template->branch_info,
390 			       sizeof(*he->branch_info));
391 
392 			map__get(he->branch_info->from.map);
393 			map__get(he->branch_info->to.map);
394 		}
395 
396 		if (he->mem_info) {
397 			map__get(he->mem_info->iaddr.map);
398 			map__get(he->mem_info->daddr.map);
399 		}
400 
401 		if (symbol_conf.use_callchain)
402 			callchain_init(he->callchain);
403 
404 		if (he->raw_data) {
405 			he->raw_data = memdup(he->raw_data, he->raw_size);
406 
407 			if (he->raw_data == NULL) {
408 				map__put(he->ms.map);
409 				if (he->branch_info) {
410 					map__put(he->branch_info->from.map);
411 					map__put(he->branch_info->to.map);
412 					free(he->branch_info);
413 				}
414 				if (he->mem_info) {
415 					map__put(he->mem_info->iaddr.map);
416 					map__put(he->mem_info->daddr.map);
417 				}
418 				free(he->stat_acc);
419 				free(he);
420 				return NULL;
421 			}
422 		}
423 		INIT_LIST_HEAD(&he->pairs.node);
424 		thread__get(he->thread);
425 
426 		if (!symbol_conf.report_hierarchy)
427 			he->leaf = true;
428 	}
429 
430 	return he;
431 }
432 
433 static u8 symbol__parent_filter(const struct symbol *parent)
434 {
435 	if (symbol_conf.exclude_other && parent == NULL)
436 		return 1 << HIST_FILTER__PARENT;
437 	return 0;
438 }
439 
440 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
441 {
442 	if (!symbol_conf.use_callchain)
443 		return;
444 
445 	he->hists->callchain_period += period;
446 	if (!he->filtered)
447 		he->hists->callchain_non_filtered_period += period;
448 }
449 
450 static struct hist_entry *hists__findnew_entry(struct hists *hists,
451 					       struct hist_entry *entry,
452 					       struct addr_location *al,
453 					       bool sample_self)
454 {
455 	struct rb_node **p;
456 	struct rb_node *parent = NULL;
457 	struct hist_entry *he;
458 	int64_t cmp;
459 	u64 period = entry->stat.period;
460 	u64 weight = entry->stat.weight;
461 
462 	p = &hists->entries_in->rb_node;
463 
464 	while (*p != NULL) {
465 		parent = *p;
466 		he = rb_entry(parent, struct hist_entry, rb_node_in);
467 
468 		/*
469 		 * Make sure that it receives arguments in a same order as
470 		 * hist_entry__collapse() so that we can use an appropriate
471 		 * function when searching an entry regardless which sort
472 		 * keys were used.
473 		 */
474 		cmp = hist_entry__cmp(he, entry);
475 
476 		if (!cmp) {
477 			if (sample_self) {
478 				he_stat__add_period(&he->stat, period, weight);
479 				hist_entry__add_callchain_period(he, period);
480 			}
481 			if (symbol_conf.cumulate_callchain)
482 				he_stat__add_period(he->stat_acc, period, weight);
483 
484 			/*
485 			 * This mem info was allocated from sample__resolve_mem
486 			 * and will not be used anymore.
487 			 */
488 			zfree(&entry->mem_info);
489 
490 			/* If the map of an existing hist_entry has
491 			 * become out-of-date due to an exec() or
492 			 * similar, update it.  Otherwise we will
493 			 * mis-adjust symbol addresses when computing
494 			 * the history counter to increment.
495 			 */
496 			if (he->ms.map != entry->ms.map) {
497 				map__put(he->ms.map);
498 				he->ms.map = map__get(entry->ms.map);
499 			}
500 			goto out;
501 		}
502 
503 		if (cmp < 0)
504 			p = &(*p)->rb_left;
505 		else
506 			p = &(*p)->rb_right;
507 	}
508 
509 	he = hist_entry__new(entry, sample_self);
510 	if (!he)
511 		return NULL;
512 
513 	if (sample_self)
514 		hist_entry__add_callchain_period(he, period);
515 	hists->nr_entries++;
516 
517 	rb_link_node(&he->rb_node_in, parent, p);
518 	rb_insert_color(&he->rb_node_in, hists->entries_in);
519 out:
520 	if (sample_self)
521 		he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
522 	if (symbol_conf.cumulate_callchain)
523 		he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
524 	return he;
525 }
526 
527 struct hist_entry *__hists__add_entry(struct hists *hists,
528 				      struct addr_location *al,
529 				      struct symbol *sym_parent,
530 				      struct branch_info *bi,
531 				      struct mem_info *mi,
532 				      struct perf_sample *sample,
533 				      bool sample_self)
534 {
535 	struct hist_entry entry = {
536 		.thread	= al->thread,
537 		.comm = thread__comm(al->thread),
538 		.ms = {
539 			.map	= al->map,
540 			.sym	= al->sym,
541 		},
542 		.socket	 = al->socket,
543 		.cpu	 = al->cpu,
544 		.cpumode = al->cpumode,
545 		.ip	 = al->addr,
546 		.level	 = al->level,
547 		.stat = {
548 			.nr_events = 1,
549 			.period	= sample->period,
550 			.weight = sample->weight,
551 		},
552 		.parent = sym_parent,
553 		.filtered = symbol__parent_filter(sym_parent) | al->filtered,
554 		.hists	= hists,
555 		.branch_info = bi,
556 		.mem_info = mi,
557 		.transaction = sample->transaction,
558 		.raw_data = sample->raw_data,
559 		.raw_size = sample->raw_size,
560 	};
561 
562 	return hists__findnew_entry(hists, &entry, al, sample_self);
563 }
564 
565 static int
566 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
567 		    struct addr_location *al __maybe_unused)
568 {
569 	return 0;
570 }
571 
572 static int
573 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
574 			struct addr_location *al __maybe_unused)
575 {
576 	return 0;
577 }
578 
579 static int
580 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
581 {
582 	struct perf_sample *sample = iter->sample;
583 	struct mem_info *mi;
584 
585 	mi = sample__resolve_mem(sample, al);
586 	if (mi == NULL)
587 		return -ENOMEM;
588 
589 	iter->priv = mi;
590 	return 0;
591 }
592 
593 static int
594 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
595 {
596 	u64 cost;
597 	struct mem_info *mi = iter->priv;
598 	struct hists *hists = evsel__hists(iter->evsel);
599 	struct perf_sample *sample = iter->sample;
600 	struct hist_entry *he;
601 
602 	if (mi == NULL)
603 		return -EINVAL;
604 
605 	cost = sample->weight;
606 	if (!cost)
607 		cost = 1;
608 
609 	/*
610 	 * must pass period=weight in order to get the correct
611 	 * sorting from hists__collapse_resort() which is solely
612 	 * based on periods. We want sorting be done on nr_events * weight
613 	 * and this is indirectly achieved by passing period=weight here
614 	 * and the he_stat__add_period() function.
615 	 */
616 	sample->period = cost;
617 
618 	he = __hists__add_entry(hists, al, iter->parent, NULL, mi,
619 				sample, true);
620 	if (!he)
621 		return -ENOMEM;
622 
623 	iter->he = he;
624 	return 0;
625 }
626 
627 static int
628 iter_finish_mem_entry(struct hist_entry_iter *iter,
629 		      struct addr_location *al __maybe_unused)
630 {
631 	struct perf_evsel *evsel = iter->evsel;
632 	struct hists *hists = evsel__hists(evsel);
633 	struct hist_entry *he = iter->he;
634 	int err = -EINVAL;
635 
636 	if (he == NULL)
637 		goto out;
638 
639 	hists__inc_nr_samples(hists, he->filtered);
640 
641 	err = hist_entry__append_callchain(he, iter->sample);
642 
643 out:
644 	/*
645 	 * We don't need to free iter->priv (mem_info) here since the mem info
646 	 * was either already freed in hists__findnew_entry() or passed to a
647 	 * new hist entry by hist_entry__new().
648 	 */
649 	iter->priv = NULL;
650 
651 	iter->he = NULL;
652 	return err;
653 }
654 
655 static int
656 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
657 {
658 	struct branch_info *bi;
659 	struct perf_sample *sample = iter->sample;
660 
661 	bi = sample__resolve_bstack(sample, al);
662 	if (!bi)
663 		return -ENOMEM;
664 
665 	iter->curr = 0;
666 	iter->total = sample->branch_stack->nr;
667 
668 	iter->priv = bi;
669 	return 0;
670 }
671 
672 static int
673 iter_add_single_branch_entry(struct hist_entry_iter *iter,
674 			     struct addr_location *al __maybe_unused)
675 {
676 	/* to avoid calling callback function */
677 	iter->he = NULL;
678 
679 	return 0;
680 }
681 
682 static int
683 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
684 {
685 	struct branch_info *bi = iter->priv;
686 	int i = iter->curr;
687 
688 	if (bi == NULL)
689 		return 0;
690 
691 	if (iter->curr >= iter->total)
692 		return 0;
693 
694 	al->map = bi[i].to.map;
695 	al->sym = bi[i].to.sym;
696 	al->addr = bi[i].to.addr;
697 	return 1;
698 }
699 
700 static int
701 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
702 {
703 	struct branch_info *bi;
704 	struct perf_evsel *evsel = iter->evsel;
705 	struct hists *hists = evsel__hists(evsel);
706 	struct perf_sample *sample = iter->sample;
707 	struct hist_entry *he = NULL;
708 	int i = iter->curr;
709 	int err = 0;
710 
711 	bi = iter->priv;
712 
713 	if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
714 		goto out;
715 
716 	/*
717 	 * The report shows the percentage of total branches captured
718 	 * and not events sampled. Thus we use a pseudo period of 1.
719 	 */
720 	sample->period = 1;
721 	sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
722 
723 	he = __hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
724 				sample, true);
725 	if (he == NULL)
726 		return -ENOMEM;
727 
728 	hists__inc_nr_samples(hists, he->filtered);
729 
730 out:
731 	iter->he = he;
732 	iter->curr++;
733 	return err;
734 }
735 
736 static int
737 iter_finish_branch_entry(struct hist_entry_iter *iter,
738 			 struct addr_location *al __maybe_unused)
739 {
740 	zfree(&iter->priv);
741 	iter->he = NULL;
742 
743 	return iter->curr >= iter->total ? 0 : -1;
744 }
745 
746 static int
747 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
748 			  struct addr_location *al __maybe_unused)
749 {
750 	return 0;
751 }
752 
753 static int
754 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
755 {
756 	struct perf_evsel *evsel = iter->evsel;
757 	struct perf_sample *sample = iter->sample;
758 	struct hist_entry *he;
759 
760 	he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
761 				sample, true);
762 	if (he == NULL)
763 		return -ENOMEM;
764 
765 	iter->he = he;
766 	return 0;
767 }
768 
769 static int
770 iter_finish_normal_entry(struct hist_entry_iter *iter,
771 			 struct addr_location *al __maybe_unused)
772 {
773 	struct hist_entry *he = iter->he;
774 	struct perf_evsel *evsel = iter->evsel;
775 	struct perf_sample *sample = iter->sample;
776 
777 	if (he == NULL)
778 		return 0;
779 
780 	iter->he = NULL;
781 
782 	hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
783 
784 	return hist_entry__append_callchain(he, sample);
785 }
786 
787 static int
788 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
789 			      struct addr_location *al __maybe_unused)
790 {
791 	struct hist_entry **he_cache;
792 
793 	callchain_cursor_commit(&callchain_cursor);
794 
795 	/*
796 	 * This is for detecting cycles or recursions so that they're
797 	 * cumulated only one time to prevent entries more than 100%
798 	 * overhead.
799 	 */
800 	he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
801 	if (he_cache == NULL)
802 		return -ENOMEM;
803 
804 	iter->priv = he_cache;
805 	iter->curr = 0;
806 
807 	return 0;
808 }
809 
810 static int
811 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
812 				 struct addr_location *al)
813 {
814 	struct perf_evsel *evsel = iter->evsel;
815 	struct hists *hists = evsel__hists(evsel);
816 	struct perf_sample *sample = iter->sample;
817 	struct hist_entry **he_cache = iter->priv;
818 	struct hist_entry *he;
819 	int err = 0;
820 
821 	he = __hists__add_entry(hists, al, iter->parent, NULL, NULL,
822 				sample, true);
823 	if (he == NULL)
824 		return -ENOMEM;
825 
826 	iter->he = he;
827 	he_cache[iter->curr++] = he;
828 
829 	hist_entry__append_callchain(he, sample);
830 
831 	/*
832 	 * We need to re-initialize the cursor since callchain_append()
833 	 * advanced the cursor to the end.
834 	 */
835 	callchain_cursor_commit(&callchain_cursor);
836 
837 	hists__inc_nr_samples(hists, he->filtered);
838 
839 	return err;
840 }
841 
842 static int
843 iter_next_cumulative_entry(struct hist_entry_iter *iter,
844 			   struct addr_location *al)
845 {
846 	struct callchain_cursor_node *node;
847 
848 	node = callchain_cursor_current(&callchain_cursor);
849 	if (node == NULL)
850 		return 0;
851 
852 	return fill_callchain_info(al, node, iter->hide_unresolved);
853 }
854 
855 static int
856 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
857 			       struct addr_location *al)
858 {
859 	struct perf_evsel *evsel = iter->evsel;
860 	struct perf_sample *sample = iter->sample;
861 	struct hist_entry **he_cache = iter->priv;
862 	struct hist_entry *he;
863 	struct hist_entry he_tmp = {
864 		.hists = evsel__hists(evsel),
865 		.cpu = al->cpu,
866 		.thread = al->thread,
867 		.comm = thread__comm(al->thread),
868 		.ip = al->addr,
869 		.ms = {
870 			.map = al->map,
871 			.sym = al->sym,
872 		},
873 		.parent = iter->parent,
874 		.raw_data = sample->raw_data,
875 		.raw_size = sample->raw_size,
876 	};
877 	int i;
878 	struct callchain_cursor cursor;
879 
880 	callchain_cursor_snapshot(&cursor, &callchain_cursor);
881 
882 	callchain_cursor_advance(&callchain_cursor);
883 
884 	/*
885 	 * Check if there's duplicate entries in the callchain.
886 	 * It's possible that it has cycles or recursive calls.
887 	 */
888 	for (i = 0; i < iter->curr; i++) {
889 		if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
890 			/* to avoid calling callback function */
891 			iter->he = NULL;
892 			return 0;
893 		}
894 	}
895 
896 	he = __hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
897 				sample, false);
898 	if (he == NULL)
899 		return -ENOMEM;
900 
901 	iter->he = he;
902 	he_cache[iter->curr++] = he;
903 
904 	if (symbol_conf.use_callchain)
905 		callchain_append(he->callchain, &cursor, sample->period);
906 	return 0;
907 }
908 
909 static int
910 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
911 			     struct addr_location *al __maybe_unused)
912 {
913 	zfree(&iter->priv);
914 	iter->he = NULL;
915 
916 	return 0;
917 }
918 
919 const struct hist_iter_ops hist_iter_mem = {
920 	.prepare_entry 		= iter_prepare_mem_entry,
921 	.add_single_entry 	= iter_add_single_mem_entry,
922 	.next_entry 		= iter_next_nop_entry,
923 	.add_next_entry 	= iter_add_next_nop_entry,
924 	.finish_entry 		= iter_finish_mem_entry,
925 };
926 
927 const struct hist_iter_ops hist_iter_branch = {
928 	.prepare_entry 		= iter_prepare_branch_entry,
929 	.add_single_entry 	= iter_add_single_branch_entry,
930 	.next_entry 		= iter_next_branch_entry,
931 	.add_next_entry 	= iter_add_next_branch_entry,
932 	.finish_entry 		= iter_finish_branch_entry,
933 };
934 
935 const struct hist_iter_ops hist_iter_normal = {
936 	.prepare_entry 		= iter_prepare_normal_entry,
937 	.add_single_entry 	= iter_add_single_normal_entry,
938 	.next_entry 		= iter_next_nop_entry,
939 	.add_next_entry 	= iter_add_next_nop_entry,
940 	.finish_entry 		= iter_finish_normal_entry,
941 };
942 
943 const struct hist_iter_ops hist_iter_cumulative = {
944 	.prepare_entry 		= iter_prepare_cumulative_entry,
945 	.add_single_entry 	= iter_add_single_cumulative_entry,
946 	.next_entry 		= iter_next_cumulative_entry,
947 	.add_next_entry 	= iter_add_next_cumulative_entry,
948 	.finish_entry 		= iter_finish_cumulative_entry,
949 };
950 
951 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
952 			 int max_stack_depth, void *arg)
953 {
954 	int err, err2;
955 
956 	err = sample__resolve_callchain(iter->sample, &iter->parent,
957 					iter->evsel, al, max_stack_depth);
958 	if (err)
959 		return err;
960 
961 	iter->max_stack = max_stack_depth;
962 
963 	err = iter->ops->prepare_entry(iter, al);
964 	if (err)
965 		goto out;
966 
967 	err = iter->ops->add_single_entry(iter, al);
968 	if (err)
969 		goto out;
970 
971 	if (iter->he && iter->add_entry_cb) {
972 		err = iter->add_entry_cb(iter, al, true, arg);
973 		if (err)
974 			goto out;
975 	}
976 
977 	while (iter->ops->next_entry(iter, al)) {
978 		err = iter->ops->add_next_entry(iter, al);
979 		if (err)
980 			break;
981 
982 		if (iter->he && iter->add_entry_cb) {
983 			err = iter->add_entry_cb(iter, al, false, arg);
984 			if (err)
985 				goto out;
986 		}
987 	}
988 
989 out:
990 	err2 = iter->ops->finish_entry(iter, al);
991 	if (!err)
992 		err = err2;
993 
994 	return err;
995 }
996 
997 int64_t
998 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
999 {
1000 	struct hists *hists = left->hists;
1001 	struct perf_hpp_fmt *fmt;
1002 	int64_t cmp = 0;
1003 
1004 	hists__for_each_sort_list(hists, fmt) {
1005 		if (perf_hpp__is_dynamic_entry(fmt) &&
1006 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1007 			continue;
1008 
1009 		cmp = fmt->cmp(fmt, left, right);
1010 		if (cmp)
1011 			break;
1012 	}
1013 
1014 	return cmp;
1015 }
1016 
1017 int64_t
1018 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1019 {
1020 	struct hists *hists = left->hists;
1021 	struct perf_hpp_fmt *fmt;
1022 	int64_t cmp = 0;
1023 
1024 	hists__for_each_sort_list(hists, fmt) {
1025 		if (perf_hpp__is_dynamic_entry(fmt) &&
1026 		    !perf_hpp__defined_dynamic_entry(fmt, hists))
1027 			continue;
1028 
1029 		cmp = fmt->collapse(fmt, left, right);
1030 		if (cmp)
1031 			break;
1032 	}
1033 
1034 	return cmp;
1035 }
1036 
1037 void hist_entry__delete(struct hist_entry *he)
1038 {
1039 	thread__zput(he->thread);
1040 	map__zput(he->ms.map);
1041 
1042 	if (he->branch_info) {
1043 		map__zput(he->branch_info->from.map);
1044 		map__zput(he->branch_info->to.map);
1045 		zfree(&he->branch_info);
1046 	}
1047 
1048 	if (he->mem_info) {
1049 		map__zput(he->mem_info->iaddr.map);
1050 		map__zput(he->mem_info->daddr.map);
1051 		zfree(&he->mem_info);
1052 	}
1053 
1054 	zfree(&he->stat_acc);
1055 	free_srcline(he->srcline);
1056 	if (he->srcfile && he->srcfile[0])
1057 		free(he->srcfile);
1058 	free_callchain(he->callchain);
1059 	free(he->trace_output);
1060 	free(he->raw_data);
1061 	free(he);
1062 }
1063 
1064 /*
1065  * If this is not the last column, then we need to pad it according to the
1066  * pre-calculated max lenght for this column, otherwise don't bother adding
1067  * spaces because that would break viewing this with, for instance, 'less',
1068  * that would show tons of trailing spaces when a long C++ demangled method
1069  * names is sampled.
1070 */
1071 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1072 				   struct perf_hpp_fmt *fmt, int printed)
1073 {
1074 	if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1075 		const int width = fmt->width(fmt, hpp, hists_to_evsel(he->hists));
1076 		if (printed < width) {
1077 			advance_hpp(hpp, printed);
1078 			printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1079 		}
1080 	}
1081 
1082 	return printed;
1083 }
1084 
1085 /*
1086  * collapse the histogram
1087  */
1088 
1089 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1090 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1091 				       enum hist_filter type);
1092 
1093 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1094 
1095 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1096 {
1097 	return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1098 }
1099 
1100 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1101 						enum hist_filter type,
1102 						fmt_chk_fn check)
1103 {
1104 	struct perf_hpp_fmt *fmt;
1105 	bool type_match = false;
1106 	struct hist_entry *parent = he->parent_he;
1107 
1108 	switch (type) {
1109 	case HIST_FILTER__THREAD:
1110 		if (symbol_conf.comm_list == NULL &&
1111 		    symbol_conf.pid_list == NULL &&
1112 		    symbol_conf.tid_list == NULL)
1113 			return;
1114 		break;
1115 	case HIST_FILTER__DSO:
1116 		if (symbol_conf.dso_list == NULL)
1117 			return;
1118 		break;
1119 	case HIST_FILTER__SYMBOL:
1120 		if (symbol_conf.sym_list == NULL)
1121 			return;
1122 		break;
1123 	case HIST_FILTER__PARENT:
1124 	case HIST_FILTER__GUEST:
1125 	case HIST_FILTER__HOST:
1126 	case HIST_FILTER__SOCKET:
1127 	default:
1128 		return;
1129 	}
1130 
1131 	/* if it's filtered by own fmt, it has to have filter bits */
1132 	perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1133 		if (check(fmt)) {
1134 			type_match = true;
1135 			break;
1136 		}
1137 	}
1138 
1139 	if (type_match) {
1140 		/*
1141 		 * If the filter is for current level entry, propagate
1142 		 * filter marker to parents.  The marker bit was
1143 		 * already set by default so it only needs to clear
1144 		 * non-filtered entries.
1145 		 */
1146 		if (!(he->filtered & (1 << type))) {
1147 			while (parent) {
1148 				parent->filtered &= ~(1 << type);
1149 				parent = parent->parent_he;
1150 			}
1151 		}
1152 	} else {
1153 		/*
1154 		 * If current entry doesn't have matching formats, set
1155 		 * filter marker for upper level entries.  it will be
1156 		 * cleared if its lower level entries is not filtered.
1157 		 *
1158 		 * For lower-level entries, it inherits parent's
1159 		 * filter bit so that lower level entries of a
1160 		 * non-filtered entry won't set the filter marker.
1161 		 */
1162 		if (parent == NULL)
1163 			he->filtered |= (1 << type);
1164 		else
1165 			he->filtered |= (parent->filtered & (1 << type));
1166 	}
1167 }
1168 
1169 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1170 {
1171 	hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1172 					    check_thread_entry);
1173 
1174 	hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1175 					    perf_hpp__is_dso_entry);
1176 
1177 	hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1178 					    perf_hpp__is_sym_entry);
1179 
1180 	hists__apply_filters(he->hists, he);
1181 }
1182 
1183 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1184 						 struct rb_root *root,
1185 						 struct hist_entry *he,
1186 						 struct hist_entry *parent_he,
1187 						 struct perf_hpp_list *hpp_list)
1188 {
1189 	struct rb_node **p = &root->rb_node;
1190 	struct rb_node *parent = NULL;
1191 	struct hist_entry *iter, *new;
1192 	struct perf_hpp_fmt *fmt;
1193 	int64_t cmp;
1194 
1195 	while (*p != NULL) {
1196 		parent = *p;
1197 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1198 
1199 		cmp = 0;
1200 		perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1201 			cmp = fmt->collapse(fmt, iter, he);
1202 			if (cmp)
1203 				break;
1204 		}
1205 
1206 		if (!cmp) {
1207 			he_stat__add_stat(&iter->stat, &he->stat);
1208 			return iter;
1209 		}
1210 
1211 		if (cmp < 0)
1212 			p = &parent->rb_left;
1213 		else
1214 			p = &parent->rb_right;
1215 	}
1216 
1217 	new = hist_entry__new(he, true);
1218 	if (new == NULL)
1219 		return NULL;
1220 
1221 	hists->nr_entries++;
1222 
1223 	/* save related format list for output */
1224 	new->hpp_list = hpp_list;
1225 	new->parent_he = parent_he;
1226 
1227 	hist_entry__apply_hierarchy_filters(new);
1228 
1229 	/* some fields are now passed to 'new' */
1230 	perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1231 		if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1232 			he->trace_output = NULL;
1233 		else
1234 			new->trace_output = NULL;
1235 
1236 		if (perf_hpp__is_srcline_entry(fmt))
1237 			he->srcline = NULL;
1238 		else
1239 			new->srcline = NULL;
1240 
1241 		if (perf_hpp__is_srcfile_entry(fmt))
1242 			he->srcfile = NULL;
1243 		else
1244 			new->srcfile = NULL;
1245 	}
1246 
1247 	rb_link_node(&new->rb_node_in, parent, p);
1248 	rb_insert_color(&new->rb_node_in, root);
1249 	return new;
1250 }
1251 
1252 static int hists__hierarchy_insert_entry(struct hists *hists,
1253 					 struct rb_root *root,
1254 					 struct hist_entry *he)
1255 {
1256 	struct perf_hpp_list_node *node;
1257 	struct hist_entry *new_he = NULL;
1258 	struct hist_entry *parent = NULL;
1259 	int depth = 0;
1260 	int ret = 0;
1261 
1262 	list_for_each_entry(node, &hists->hpp_formats, list) {
1263 		/* skip period (overhead) and elided columns */
1264 		if (node->level == 0 || node->skip)
1265 			continue;
1266 
1267 		/* insert copy of 'he' for each fmt into the hierarchy */
1268 		new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1269 		if (new_he == NULL) {
1270 			ret = -1;
1271 			break;
1272 		}
1273 
1274 		root = &new_he->hroot_in;
1275 		new_he->depth = depth++;
1276 		parent = new_he;
1277 	}
1278 
1279 	if (new_he) {
1280 		new_he->leaf = true;
1281 
1282 		if (symbol_conf.use_callchain) {
1283 			callchain_cursor_reset(&callchain_cursor);
1284 			if (callchain_merge(&callchain_cursor,
1285 					    new_he->callchain,
1286 					    he->callchain) < 0)
1287 				ret = -1;
1288 		}
1289 	}
1290 
1291 	/* 'he' is no longer used */
1292 	hist_entry__delete(he);
1293 
1294 	/* return 0 (or -1) since it already applied filters */
1295 	return ret;
1296 }
1297 
1298 int hists__collapse_insert_entry(struct hists *hists, struct rb_root *root,
1299 				 struct hist_entry *he)
1300 {
1301 	struct rb_node **p = &root->rb_node;
1302 	struct rb_node *parent = NULL;
1303 	struct hist_entry *iter;
1304 	int64_t cmp;
1305 
1306 	if (symbol_conf.report_hierarchy)
1307 		return hists__hierarchy_insert_entry(hists, root, he);
1308 
1309 	while (*p != NULL) {
1310 		parent = *p;
1311 		iter = rb_entry(parent, struct hist_entry, rb_node_in);
1312 
1313 		cmp = hist_entry__collapse(iter, he);
1314 
1315 		if (!cmp) {
1316 			int ret = 0;
1317 
1318 			he_stat__add_stat(&iter->stat, &he->stat);
1319 			if (symbol_conf.cumulate_callchain)
1320 				he_stat__add_stat(iter->stat_acc, he->stat_acc);
1321 
1322 			if (symbol_conf.use_callchain) {
1323 				callchain_cursor_reset(&callchain_cursor);
1324 				if (callchain_merge(&callchain_cursor,
1325 						    iter->callchain,
1326 						    he->callchain) < 0)
1327 					ret = -1;
1328 			}
1329 			hist_entry__delete(he);
1330 			return ret;
1331 		}
1332 
1333 		if (cmp < 0)
1334 			p = &(*p)->rb_left;
1335 		else
1336 			p = &(*p)->rb_right;
1337 	}
1338 	hists->nr_entries++;
1339 
1340 	rb_link_node(&he->rb_node_in, parent, p);
1341 	rb_insert_color(&he->rb_node_in, root);
1342 	return 1;
1343 }
1344 
1345 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1346 {
1347 	struct rb_root *root;
1348 
1349 	pthread_mutex_lock(&hists->lock);
1350 
1351 	root = hists->entries_in;
1352 	if (++hists->entries_in > &hists->entries_in_array[1])
1353 		hists->entries_in = &hists->entries_in_array[0];
1354 
1355 	pthread_mutex_unlock(&hists->lock);
1356 
1357 	return root;
1358 }
1359 
1360 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1361 {
1362 	hists__filter_entry_by_dso(hists, he);
1363 	hists__filter_entry_by_thread(hists, he);
1364 	hists__filter_entry_by_symbol(hists, he);
1365 	hists__filter_entry_by_socket(hists, he);
1366 }
1367 
1368 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1369 {
1370 	struct rb_root *root;
1371 	struct rb_node *next;
1372 	struct hist_entry *n;
1373 	int ret;
1374 
1375 	if (!sort__need_collapse)
1376 		return 0;
1377 
1378 	hists->nr_entries = 0;
1379 
1380 	root = hists__get_rotate_entries_in(hists);
1381 
1382 	next = rb_first(root);
1383 
1384 	while (next) {
1385 		if (session_done())
1386 			break;
1387 		n = rb_entry(next, struct hist_entry, rb_node_in);
1388 		next = rb_next(&n->rb_node_in);
1389 
1390 		rb_erase(&n->rb_node_in, root);
1391 		ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1392 		if (ret < 0)
1393 			return -1;
1394 
1395 		if (ret) {
1396 			/*
1397 			 * If it wasn't combined with one of the entries already
1398 			 * collapsed, we need to apply the filters that may have
1399 			 * been set by, say, the hist_browser.
1400 			 */
1401 			hists__apply_filters(hists, n);
1402 		}
1403 		if (prog)
1404 			ui_progress__update(prog, 1);
1405 	}
1406 	return 0;
1407 }
1408 
1409 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1410 {
1411 	struct hists *hists = a->hists;
1412 	struct perf_hpp_fmt *fmt;
1413 	int64_t cmp = 0;
1414 
1415 	hists__for_each_sort_list(hists, fmt) {
1416 		if (perf_hpp__should_skip(fmt, a->hists))
1417 			continue;
1418 
1419 		cmp = fmt->sort(fmt, a, b);
1420 		if (cmp)
1421 			break;
1422 	}
1423 
1424 	return cmp;
1425 }
1426 
1427 static void hists__reset_filter_stats(struct hists *hists)
1428 {
1429 	hists->nr_non_filtered_entries = 0;
1430 	hists->stats.total_non_filtered_period = 0;
1431 }
1432 
1433 void hists__reset_stats(struct hists *hists)
1434 {
1435 	hists->nr_entries = 0;
1436 	hists->stats.total_period = 0;
1437 
1438 	hists__reset_filter_stats(hists);
1439 }
1440 
1441 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1442 {
1443 	hists->nr_non_filtered_entries++;
1444 	hists->stats.total_non_filtered_period += h->stat.period;
1445 }
1446 
1447 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1448 {
1449 	if (!h->filtered)
1450 		hists__inc_filter_stats(hists, h);
1451 
1452 	hists->nr_entries++;
1453 	hists->stats.total_period += h->stat.period;
1454 }
1455 
1456 static void hierarchy_recalc_total_periods(struct hists *hists)
1457 {
1458 	struct rb_node *node;
1459 	struct hist_entry *he;
1460 
1461 	node = rb_first(&hists->entries);
1462 
1463 	hists->stats.total_period = 0;
1464 	hists->stats.total_non_filtered_period = 0;
1465 
1466 	/*
1467 	 * recalculate total period using top-level entries only
1468 	 * since lower level entries only see non-filtered entries
1469 	 * but upper level entries have sum of both entries.
1470 	 */
1471 	while (node) {
1472 		he = rb_entry(node, struct hist_entry, rb_node);
1473 		node = rb_next(node);
1474 
1475 		hists->stats.total_period += he->stat.period;
1476 		if (!he->filtered)
1477 			hists->stats.total_non_filtered_period += he->stat.period;
1478 	}
1479 }
1480 
1481 static void hierarchy_insert_output_entry(struct rb_root *root,
1482 					  struct hist_entry *he)
1483 {
1484 	struct rb_node **p = &root->rb_node;
1485 	struct rb_node *parent = NULL;
1486 	struct hist_entry *iter;
1487 	struct perf_hpp_fmt *fmt;
1488 
1489 	while (*p != NULL) {
1490 		parent = *p;
1491 		iter = rb_entry(parent, struct hist_entry, rb_node);
1492 
1493 		if (hist_entry__sort(he, iter) > 0)
1494 			p = &parent->rb_left;
1495 		else
1496 			p = &parent->rb_right;
1497 	}
1498 
1499 	rb_link_node(&he->rb_node, parent, p);
1500 	rb_insert_color(&he->rb_node, root);
1501 
1502 	/* update column width of dynamic entry */
1503 	perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1504 		if (perf_hpp__is_dynamic_entry(fmt))
1505 			fmt->sort(fmt, he, NULL);
1506 	}
1507 }
1508 
1509 static void hists__hierarchy_output_resort(struct hists *hists,
1510 					   struct ui_progress *prog,
1511 					   struct rb_root *root_in,
1512 					   struct rb_root *root_out,
1513 					   u64 min_callchain_hits,
1514 					   bool use_callchain)
1515 {
1516 	struct rb_node *node;
1517 	struct hist_entry *he;
1518 
1519 	*root_out = RB_ROOT;
1520 	node = rb_first(root_in);
1521 
1522 	while (node) {
1523 		he = rb_entry(node, struct hist_entry, rb_node_in);
1524 		node = rb_next(node);
1525 
1526 		hierarchy_insert_output_entry(root_out, he);
1527 
1528 		if (prog)
1529 			ui_progress__update(prog, 1);
1530 
1531 		if (!he->leaf) {
1532 			hists__hierarchy_output_resort(hists, prog,
1533 						       &he->hroot_in,
1534 						       &he->hroot_out,
1535 						       min_callchain_hits,
1536 						       use_callchain);
1537 			hists->nr_entries++;
1538 			if (!he->filtered) {
1539 				hists->nr_non_filtered_entries++;
1540 				hists__calc_col_len(hists, he);
1541 			}
1542 
1543 			continue;
1544 		}
1545 
1546 		if (!use_callchain)
1547 			continue;
1548 
1549 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1550 			u64 total = he->stat.period;
1551 
1552 			if (symbol_conf.cumulate_callchain)
1553 				total = he->stat_acc->period;
1554 
1555 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1556 		}
1557 
1558 		callchain_param.sort(&he->sorted_chain, he->callchain,
1559 				     min_callchain_hits, &callchain_param);
1560 	}
1561 }
1562 
1563 static void __hists__insert_output_entry(struct rb_root *entries,
1564 					 struct hist_entry *he,
1565 					 u64 min_callchain_hits,
1566 					 bool use_callchain)
1567 {
1568 	struct rb_node **p = &entries->rb_node;
1569 	struct rb_node *parent = NULL;
1570 	struct hist_entry *iter;
1571 	struct perf_hpp_fmt *fmt;
1572 
1573 	if (use_callchain) {
1574 		if (callchain_param.mode == CHAIN_GRAPH_REL) {
1575 			u64 total = he->stat.period;
1576 
1577 			if (symbol_conf.cumulate_callchain)
1578 				total = he->stat_acc->period;
1579 
1580 			min_callchain_hits = total * (callchain_param.min_percent / 100);
1581 		}
1582 		callchain_param.sort(&he->sorted_chain, he->callchain,
1583 				      min_callchain_hits, &callchain_param);
1584 	}
1585 
1586 	while (*p != NULL) {
1587 		parent = *p;
1588 		iter = rb_entry(parent, struct hist_entry, rb_node);
1589 
1590 		if (hist_entry__sort(he, iter) > 0)
1591 			p = &(*p)->rb_left;
1592 		else
1593 			p = &(*p)->rb_right;
1594 	}
1595 
1596 	rb_link_node(&he->rb_node, parent, p);
1597 	rb_insert_color(&he->rb_node, entries);
1598 
1599 	perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1600 		if (perf_hpp__is_dynamic_entry(fmt) &&
1601 		    perf_hpp__defined_dynamic_entry(fmt, he->hists))
1602 			fmt->sort(fmt, he, NULL);  /* update column width */
1603 	}
1604 }
1605 
1606 static void output_resort(struct hists *hists, struct ui_progress *prog,
1607 			  bool use_callchain)
1608 {
1609 	struct rb_root *root;
1610 	struct rb_node *next;
1611 	struct hist_entry *n;
1612 	u64 callchain_total;
1613 	u64 min_callchain_hits;
1614 
1615 	callchain_total = hists->callchain_period;
1616 	if (symbol_conf.filter_relative)
1617 		callchain_total = hists->callchain_non_filtered_period;
1618 
1619 	min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1620 
1621 	hists__reset_stats(hists);
1622 	hists__reset_col_len(hists);
1623 
1624 	if (symbol_conf.report_hierarchy) {
1625 		hists__hierarchy_output_resort(hists, prog,
1626 					       &hists->entries_collapsed,
1627 					       &hists->entries,
1628 					       min_callchain_hits,
1629 					       use_callchain);
1630 		hierarchy_recalc_total_periods(hists);
1631 		return;
1632 	}
1633 
1634 	if (sort__need_collapse)
1635 		root = &hists->entries_collapsed;
1636 	else
1637 		root = hists->entries_in;
1638 
1639 	next = rb_first(root);
1640 	hists->entries = RB_ROOT;
1641 
1642 	while (next) {
1643 		n = rb_entry(next, struct hist_entry, rb_node_in);
1644 		next = rb_next(&n->rb_node_in);
1645 
1646 		__hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1647 		hists__inc_stats(hists, n);
1648 
1649 		if (!n->filtered)
1650 			hists__calc_col_len(hists, n);
1651 
1652 		if (prog)
1653 			ui_progress__update(prog, 1);
1654 	}
1655 }
1656 
1657 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1658 {
1659 	bool use_callchain;
1660 
1661 	if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1662 		use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1663 	else
1664 		use_callchain = symbol_conf.use_callchain;
1665 
1666 	output_resort(evsel__hists(evsel), prog, use_callchain);
1667 }
1668 
1669 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1670 {
1671 	output_resort(hists, prog, symbol_conf.use_callchain);
1672 }
1673 
1674 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1675 {
1676 	if (he->leaf || hmd == HMD_FORCE_SIBLING)
1677 		return false;
1678 
1679 	if (he->unfolded || hmd == HMD_FORCE_CHILD)
1680 		return true;
1681 
1682 	return false;
1683 }
1684 
1685 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1686 {
1687 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1688 
1689 	while (can_goto_child(he, HMD_NORMAL)) {
1690 		node = rb_last(&he->hroot_out);
1691 		he = rb_entry(node, struct hist_entry, rb_node);
1692 	}
1693 	return node;
1694 }
1695 
1696 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1697 {
1698 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1699 
1700 	if (can_goto_child(he, hmd))
1701 		node = rb_first(&he->hroot_out);
1702 	else
1703 		node = rb_next(node);
1704 
1705 	while (node == NULL) {
1706 		he = he->parent_he;
1707 		if (he == NULL)
1708 			break;
1709 
1710 		node = rb_next(&he->rb_node);
1711 	}
1712 	return node;
1713 }
1714 
1715 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1716 {
1717 	struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1718 
1719 	node = rb_prev(node);
1720 	if (node)
1721 		return rb_hierarchy_last(node);
1722 
1723 	he = he->parent_he;
1724 	if (he == NULL)
1725 		return NULL;
1726 
1727 	return &he->rb_node;
1728 }
1729 
1730 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1731 {
1732 	struct rb_node *node;
1733 	struct hist_entry *child;
1734 	float percent;
1735 
1736 	if (he->leaf)
1737 		return false;
1738 
1739 	node = rb_first(&he->hroot_out);
1740 	child = rb_entry(node, struct hist_entry, rb_node);
1741 
1742 	while (node && child->filtered) {
1743 		node = rb_next(node);
1744 		child = rb_entry(node, struct hist_entry, rb_node);
1745 	}
1746 
1747 	if (node)
1748 		percent = hist_entry__get_percent_limit(child);
1749 	else
1750 		percent = 0;
1751 
1752 	return node && percent >= limit;
1753 }
1754 
1755 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1756 				       enum hist_filter filter)
1757 {
1758 	h->filtered &= ~(1 << filter);
1759 
1760 	if (symbol_conf.report_hierarchy) {
1761 		struct hist_entry *parent = h->parent_he;
1762 
1763 		while (parent) {
1764 			he_stat__add_stat(&parent->stat, &h->stat);
1765 
1766 			parent->filtered &= ~(1 << filter);
1767 
1768 			if (parent->filtered)
1769 				goto next;
1770 
1771 			/* force fold unfiltered entry for simplicity */
1772 			parent->unfolded = false;
1773 			parent->has_no_entry = false;
1774 			parent->row_offset = 0;
1775 			parent->nr_rows = 0;
1776 next:
1777 			parent = parent->parent_he;
1778 		}
1779 	}
1780 
1781 	if (h->filtered)
1782 		return;
1783 
1784 	/* force fold unfiltered entry for simplicity */
1785 	h->unfolded = false;
1786 	h->has_no_entry = false;
1787 	h->row_offset = 0;
1788 	h->nr_rows = 0;
1789 
1790 	hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1791 
1792 	hists__inc_filter_stats(hists, h);
1793 	hists__calc_col_len(hists, h);
1794 }
1795 
1796 
1797 static bool hists__filter_entry_by_dso(struct hists *hists,
1798 				       struct hist_entry *he)
1799 {
1800 	if (hists->dso_filter != NULL &&
1801 	    (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1802 		he->filtered |= (1 << HIST_FILTER__DSO);
1803 		return true;
1804 	}
1805 
1806 	return false;
1807 }
1808 
1809 static bool hists__filter_entry_by_thread(struct hists *hists,
1810 					  struct hist_entry *he)
1811 {
1812 	if (hists->thread_filter != NULL &&
1813 	    he->thread != hists->thread_filter) {
1814 		he->filtered |= (1 << HIST_FILTER__THREAD);
1815 		return true;
1816 	}
1817 
1818 	return false;
1819 }
1820 
1821 static bool hists__filter_entry_by_symbol(struct hists *hists,
1822 					  struct hist_entry *he)
1823 {
1824 	if (hists->symbol_filter_str != NULL &&
1825 	    (!he->ms.sym || strstr(he->ms.sym->name,
1826 				   hists->symbol_filter_str) == NULL)) {
1827 		he->filtered |= (1 << HIST_FILTER__SYMBOL);
1828 		return true;
1829 	}
1830 
1831 	return false;
1832 }
1833 
1834 static bool hists__filter_entry_by_socket(struct hists *hists,
1835 					  struct hist_entry *he)
1836 {
1837 	if ((hists->socket_filter > -1) &&
1838 	    (he->socket != hists->socket_filter)) {
1839 		he->filtered |= (1 << HIST_FILTER__SOCKET);
1840 		return true;
1841 	}
1842 
1843 	return false;
1844 }
1845 
1846 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1847 
1848 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1849 {
1850 	struct rb_node *nd;
1851 
1852 	hists->stats.nr_non_filtered_samples = 0;
1853 
1854 	hists__reset_filter_stats(hists);
1855 	hists__reset_col_len(hists);
1856 
1857 	for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1858 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1859 
1860 		if (filter(hists, h))
1861 			continue;
1862 
1863 		hists__remove_entry_filter(hists, h, type);
1864 	}
1865 }
1866 
1867 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1868 {
1869 	struct rb_node **p = &root->rb_node;
1870 	struct rb_node *parent = NULL;
1871 	struct hist_entry *iter;
1872 	struct rb_root new_root = RB_ROOT;
1873 	struct rb_node *nd;
1874 
1875 	while (*p != NULL) {
1876 		parent = *p;
1877 		iter = rb_entry(parent, struct hist_entry, rb_node);
1878 
1879 		if (hist_entry__sort(he, iter) > 0)
1880 			p = &(*p)->rb_left;
1881 		else
1882 			p = &(*p)->rb_right;
1883 	}
1884 
1885 	rb_link_node(&he->rb_node, parent, p);
1886 	rb_insert_color(&he->rb_node, root);
1887 
1888 	if (he->leaf || he->filtered)
1889 		return;
1890 
1891 	nd = rb_first(&he->hroot_out);
1892 	while (nd) {
1893 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1894 
1895 		nd = rb_next(nd);
1896 		rb_erase(&h->rb_node, &he->hroot_out);
1897 
1898 		resort_filtered_entry(&new_root, h);
1899 	}
1900 
1901 	he->hroot_out = new_root;
1902 }
1903 
1904 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1905 {
1906 	struct rb_node *nd;
1907 	struct rb_root new_root = RB_ROOT;
1908 
1909 	hists->stats.nr_non_filtered_samples = 0;
1910 
1911 	hists__reset_filter_stats(hists);
1912 	hists__reset_col_len(hists);
1913 
1914 	nd = rb_first(&hists->entries);
1915 	while (nd) {
1916 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1917 		int ret;
1918 
1919 		ret = hist_entry__filter(h, type, arg);
1920 
1921 		/*
1922 		 * case 1. non-matching type
1923 		 * zero out the period, set filter marker and move to child
1924 		 */
1925 		if (ret < 0) {
1926 			memset(&h->stat, 0, sizeof(h->stat));
1927 			h->filtered |= (1 << type);
1928 
1929 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
1930 		}
1931 		/*
1932 		 * case 2. matched type (filter out)
1933 		 * set filter marker and move to next
1934 		 */
1935 		else if (ret == 1) {
1936 			h->filtered |= (1 << type);
1937 
1938 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1939 		}
1940 		/*
1941 		 * case 3. ok (not filtered)
1942 		 * add period to hists and parents, erase the filter marker
1943 		 * and move to next sibling
1944 		 */
1945 		else {
1946 			hists__remove_entry_filter(hists, h, type);
1947 
1948 			nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
1949 		}
1950 	}
1951 
1952 	hierarchy_recalc_total_periods(hists);
1953 
1954 	/*
1955 	 * resort output after applying a new filter since filter in a lower
1956 	 * hierarchy can change periods in a upper hierarchy.
1957 	 */
1958 	nd = rb_first(&hists->entries);
1959 	while (nd) {
1960 		struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1961 
1962 		nd = rb_next(nd);
1963 		rb_erase(&h->rb_node, &hists->entries);
1964 
1965 		resort_filtered_entry(&new_root, h);
1966 	}
1967 
1968 	hists->entries = new_root;
1969 }
1970 
1971 void hists__filter_by_thread(struct hists *hists)
1972 {
1973 	if (symbol_conf.report_hierarchy)
1974 		hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
1975 					hists->thread_filter);
1976 	else
1977 		hists__filter_by_type(hists, HIST_FILTER__THREAD,
1978 				      hists__filter_entry_by_thread);
1979 }
1980 
1981 void hists__filter_by_dso(struct hists *hists)
1982 {
1983 	if (symbol_conf.report_hierarchy)
1984 		hists__filter_hierarchy(hists, HIST_FILTER__DSO,
1985 					hists->dso_filter);
1986 	else
1987 		hists__filter_by_type(hists, HIST_FILTER__DSO,
1988 				      hists__filter_entry_by_dso);
1989 }
1990 
1991 void hists__filter_by_symbol(struct hists *hists)
1992 {
1993 	if (symbol_conf.report_hierarchy)
1994 		hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
1995 					hists->symbol_filter_str);
1996 	else
1997 		hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
1998 				      hists__filter_entry_by_symbol);
1999 }
2000 
2001 void hists__filter_by_socket(struct hists *hists)
2002 {
2003 	if (symbol_conf.report_hierarchy)
2004 		hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2005 					&hists->socket_filter);
2006 	else
2007 		hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2008 				      hists__filter_entry_by_socket);
2009 }
2010 
2011 void events_stats__inc(struct events_stats *stats, u32 type)
2012 {
2013 	++stats->nr_events[0];
2014 	++stats->nr_events[type];
2015 }
2016 
2017 void hists__inc_nr_events(struct hists *hists, u32 type)
2018 {
2019 	events_stats__inc(&hists->stats, type);
2020 }
2021 
2022 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2023 {
2024 	events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2025 	if (!filtered)
2026 		hists->stats.nr_non_filtered_samples++;
2027 }
2028 
2029 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2030 						 struct hist_entry *pair)
2031 {
2032 	struct rb_root *root;
2033 	struct rb_node **p;
2034 	struct rb_node *parent = NULL;
2035 	struct hist_entry *he;
2036 	int64_t cmp;
2037 
2038 	if (sort__need_collapse)
2039 		root = &hists->entries_collapsed;
2040 	else
2041 		root = hists->entries_in;
2042 
2043 	p = &root->rb_node;
2044 
2045 	while (*p != NULL) {
2046 		parent = *p;
2047 		he = rb_entry(parent, struct hist_entry, rb_node_in);
2048 
2049 		cmp = hist_entry__collapse(he, pair);
2050 
2051 		if (!cmp)
2052 			goto out;
2053 
2054 		if (cmp < 0)
2055 			p = &(*p)->rb_left;
2056 		else
2057 			p = &(*p)->rb_right;
2058 	}
2059 
2060 	he = hist_entry__new(pair, true);
2061 	if (he) {
2062 		memset(&he->stat, 0, sizeof(he->stat));
2063 		he->hists = hists;
2064 		rb_link_node(&he->rb_node_in, parent, p);
2065 		rb_insert_color(&he->rb_node_in, root);
2066 		hists__inc_stats(hists, he);
2067 		he->dummy = true;
2068 	}
2069 out:
2070 	return he;
2071 }
2072 
2073 static struct hist_entry *hists__find_entry(struct hists *hists,
2074 					    struct hist_entry *he)
2075 {
2076 	struct rb_node *n;
2077 
2078 	if (sort__need_collapse)
2079 		n = hists->entries_collapsed.rb_node;
2080 	else
2081 		n = hists->entries_in->rb_node;
2082 
2083 	while (n) {
2084 		struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2085 		int64_t cmp = hist_entry__collapse(iter, he);
2086 
2087 		if (cmp < 0)
2088 			n = n->rb_left;
2089 		else if (cmp > 0)
2090 			n = n->rb_right;
2091 		else
2092 			return iter;
2093 	}
2094 
2095 	return NULL;
2096 }
2097 
2098 /*
2099  * Look for pairs to link to the leader buckets (hist_entries):
2100  */
2101 void hists__match(struct hists *leader, struct hists *other)
2102 {
2103 	struct rb_root *root;
2104 	struct rb_node *nd;
2105 	struct hist_entry *pos, *pair;
2106 
2107 	if (sort__need_collapse)
2108 		root = &leader->entries_collapsed;
2109 	else
2110 		root = leader->entries_in;
2111 
2112 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2113 		pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2114 		pair = hists__find_entry(other, pos);
2115 
2116 		if (pair)
2117 			hist_entry__add_pair(pair, pos);
2118 	}
2119 }
2120 
2121 /*
2122  * Look for entries in the other hists that are not present in the leader, if
2123  * we find them, just add a dummy entry on the leader hists, with period=0,
2124  * nr_events=0, to serve as the list header.
2125  */
2126 int hists__link(struct hists *leader, struct hists *other)
2127 {
2128 	struct rb_root *root;
2129 	struct rb_node *nd;
2130 	struct hist_entry *pos, *pair;
2131 
2132 	if (sort__need_collapse)
2133 		root = &other->entries_collapsed;
2134 	else
2135 		root = other->entries_in;
2136 
2137 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2138 		pos = rb_entry(nd, struct hist_entry, rb_node_in);
2139 
2140 		if (!hist_entry__has_pairs(pos)) {
2141 			pair = hists__add_dummy_entry(leader, pos);
2142 			if (pair == NULL)
2143 				return -1;
2144 			hist_entry__add_pair(pos, pair);
2145 		}
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2152 			  struct perf_sample *sample, bool nonany_branch_mode)
2153 {
2154 	struct branch_info *bi;
2155 
2156 	/* If we have branch cycles always annotate them. */
2157 	if (bs && bs->nr && bs->entries[0].flags.cycles) {
2158 		int i;
2159 
2160 		bi = sample__resolve_bstack(sample, al);
2161 		if (bi) {
2162 			struct addr_map_symbol *prev = NULL;
2163 
2164 			/*
2165 			 * Ignore errors, still want to process the
2166 			 * other entries.
2167 			 *
2168 			 * For non standard branch modes always
2169 			 * force no IPC (prev == NULL)
2170 			 *
2171 			 * Note that perf stores branches reversed from
2172 			 * program order!
2173 			 */
2174 			for (i = bs->nr - 1; i >= 0; i--) {
2175 				addr_map_symbol__account_cycles(&bi[i].from,
2176 					nonany_branch_mode ? NULL : prev,
2177 					bi[i].flags.cycles);
2178 				prev = &bi[i].to;
2179 			}
2180 			free(bi);
2181 		}
2182 	}
2183 }
2184 
2185 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2186 {
2187 	struct perf_evsel *pos;
2188 	size_t ret = 0;
2189 
2190 	evlist__for_each(evlist, pos) {
2191 		ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2192 		ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 
2199 u64 hists__total_period(struct hists *hists)
2200 {
2201 	return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2202 		hists->stats.total_period;
2203 }
2204 
2205 int parse_filter_percentage(const struct option *opt __maybe_unused,
2206 			    const char *arg, int unset __maybe_unused)
2207 {
2208 	if (!strcmp(arg, "relative"))
2209 		symbol_conf.filter_relative = true;
2210 	else if (!strcmp(arg, "absolute"))
2211 		symbol_conf.filter_relative = false;
2212 	else
2213 		return -1;
2214 
2215 	return 0;
2216 }
2217 
2218 int perf_hist_config(const char *var, const char *value)
2219 {
2220 	if (!strcmp(var, "hist.percentage"))
2221 		return parse_filter_percentage(NULL, value, 0);
2222 
2223 	return 0;
2224 }
2225 
2226 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2227 {
2228 	memset(hists, 0, sizeof(*hists));
2229 	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2230 	hists->entries_in = &hists->entries_in_array[0];
2231 	hists->entries_collapsed = RB_ROOT;
2232 	hists->entries = RB_ROOT;
2233 	pthread_mutex_init(&hists->lock, NULL);
2234 	hists->socket_filter = -1;
2235 	hists->hpp_list = hpp_list;
2236 	INIT_LIST_HEAD(&hists->hpp_formats);
2237 	return 0;
2238 }
2239 
2240 static void hists__delete_remaining_entries(struct rb_root *root)
2241 {
2242 	struct rb_node *node;
2243 	struct hist_entry *he;
2244 
2245 	while (!RB_EMPTY_ROOT(root)) {
2246 		node = rb_first(root);
2247 		rb_erase(node, root);
2248 
2249 		he = rb_entry(node, struct hist_entry, rb_node_in);
2250 		hist_entry__delete(he);
2251 	}
2252 }
2253 
2254 static void hists__delete_all_entries(struct hists *hists)
2255 {
2256 	hists__delete_entries(hists);
2257 	hists__delete_remaining_entries(&hists->entries_in_array[0]);
2258 	hists__delete_remaining_entries(&hists->entries_in_array[1]);
2259 	hists__delete_remaining_entries(&hists->entries_collapsed);
2260 }
2261 
2262 static void hists_evsel__exit(struct perf_evsel *evsel)
2263 {
2264 	struct hists *hists = evsel__hists(evsel);
2265 	struct perf_hpp_fmt *fmt, *pos;
2266 	struct perf_hpp_list_node *node, *tmp;
2267 
2268 	hists__delete_all_entries(hists);
2269 
2270 	list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2271 		perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2272 			list_del(&fmt->list);
2273 			free(fmt);
2274 		}
2275 		list_del(&node->list);
2276 		free(node);
2277 	}
2278 }
2279 
2280 static int hists_evsel__init(struct perf_evsel *evsel)
2281 {
2282 	struct hists *hists = evsel__hists(evsel);
2283 
2284 	__hists__init(hists, &perf_hpp_list);
2285 	return 0;
2286 }
2287 
2288 /*
2289  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2290  * stored in the rbtree...
2291  */
2292 
2293 int hists__init(void)
2294 {
2295 	int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2296 					    hists_evsel__init,
2297 					    hists_evsel__exit);
2298 	if (err)
2299 		fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2300 
2301 	return err;
2302 }
2303 
2304 void perf_hpp_list__init(struct perf_hpp_list *list)
2305 {
2306 	INIT_LIST_HEAD(&list->fields);
2307 	INIT_LIST_HEAD(&list->sorts);
2308 }
2309