xref: /openbmc/linux/tools/perf/util/header.c (revision fca3aa16)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42 
43 #include "sane_ctype.h"
44 
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57 
58 #define PERF_MAGIC	__perf_magic2
59 
60 const char perf_version_string[] = PERF_VERSION;
61 
62 struct perf_file_attr {
63 	struct perf_event_attr	attr;
64 	struct perf_file_section	ids;
65 };
66 
67 struct feat_fd {
68 	struct perf_header	*ph;
69 	int			fd;
70 	void			*buf;	/* Either buf != NULL or fd >= 0 */
71 	ssize_t			offset;
72 	size_t			size;
73 	struct perf_evsel	*events;
74 };
75 
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78 	set_bit(feat, header->adds_features);
79 }
80 
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83 	clear_bit(feat, header->adds_features);
84 }
85 
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88 	return test_bit(feat, header->adds_features);
89 }
90 
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93 	ssize_t ret = writen(ff->fd, buf, size);
94 
95 	if (ret != (ssize_t)size)
96 		return ret < 0 ? (int)ret : -1;
97 	return 0;
98 }
99 
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102 	/* struct perf_event_header::size is u16 */
103 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104 	size_t new_size = ff->size;
105 	void *addr;
106 
107 	if (size + ff->offset > max_size)
108 		return -E2BIG;
109 
110 	while (size > (new_size - ff->offset))
111 		new_size <<= 1;
112 	new_size = min(max_size, new_size);
113 
114 	if (ff->size < new_size) {
115 		addr = realloc(ff->buf, new_size);
116 		if (!addr)
117 			return -ENOMEM;
118 		ff->buf = addr;
119 		ff->size = new_size;
120 	}
121 
122 	memcpy(ff->buf + ff->offset, buf, size);
123 	ff->offset += size;
124 
125 	return 0;
126 }
127 
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131 	if (!ff->buf)
132 		return __do_write_fd(ff, buf, size);
133 	return __do_write_buf(ff, buf, size);
134 }
135 
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139 	u64 *p = (u64 *) set;
140 	int i, ret;
141 
142 	ret = do_write(ff, &size, sizeof(size));
143 	if (ret < 0)
144 		return ret;
145 
146 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147 		ret = do_write(ff, p + i, sizeof(*p));
148 		if (ret < 0)
149 			return ret;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157 		 size_t count, size_t count_aligned)
158 {
159 	static const char zero_buf[NAME_ALIGN];
160 	int err = do_write(ff, bf, count);
161 
162 	if (!err)
163 		err = do_write(ff, zero_buf, count_aligned - count);
164 
165 	return err;
166 }
167 
168 #define string_size(str)						\
169 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170 
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174 	u32 len, olen;
175 	int ret;
176 
177 	olen = strlen(str) + 1;
178 	len = PERF_ALIGN(olen, NAME_ALIGN);
179 
180 	/* write len, incl. \0 */
181 	ret = do_write(ff, &len, sizeof(len));
182 	if (ret < 0)
183 		return ret;
184 
185 	return write_padded(ff, str, olen, len);
186 }
187 
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190 	ssize_t ret = readn(ff->fd, addr, size);
191 
192 	if (ret != size)
193 		return ret < 0 ? (int)ret : -1;
194 	return 0;
195 }
196 
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199 	if (size > (ssize_t)ff->size - ff->offset)
200 		return -1;
201 
202 	memcpy(addr, ff->buf + ff->offset, size);
203 	ff->offset += size;
204 
205 	return 0;
206 
207 }
208 
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211 	if (!ff->buf)
212 		return __do_read_fd(ff, addr, size);
213 	return __do_read_buf(ff, addr, size);
214 }
215 
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218 	int ret;
219 
220 	ret = __do_read(ff, addr, sizeof(*addr));
221 	if (ret)
222 		return ret;
223 
224 	if (ff->ph->needs_swap)
225 		*addr = bswap_32(*addr);
226 	return 0;
227 }
228 
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231 	int ret;
232 
233 	ret = __do_read(ff, addr, sizeof(*addr));
234 	if (ret)
235 		return ret;
236 
237 	if (ff->ph->needs_swap)
238 		*addr = bswap_64(*addr);
239 	return 0;
240 }
241 
242 static char *do_read_string(struct feat_fd *ff)
243 {
244 	u32 len;
245 	char *buf;
246 
247 	if (do_read_u32(ff, &len))
248 		return NULL;
249 
250 	buf = malloc(len);
251 	if (!buf)
252 		return NULL;
253 
254 	if (!__do_read(ff, buf, len)) {
255 		/*
256 		 * strings are padded by zeroes
257 		 * thus the actual strlen of buf
258 		 * may be less than len
259 		 */
260 		return buf;
261 	}
262 
263 	free(buf);
264 	return NULL;
265 }
266 
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270 	unsigned long *set;
271 	u64 size, *p;
272 	int i, ret;
273 
274 	ret = do_read_u64(ff, &size);
275 	if (ret)
276 		return ret;
277 
278 	set = bitmap_alloc(size);
279 	if (!set)
280 		return -ENOMEM;
281 
282 	bitmap_zero(set, size);
283 
284 	p = (u64 *) set;
285 
286 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
287 		ret = do_read_u64(ff, p + i);
288 		if (ret < 0) {
289 			free(set);
290 			return ret;
291 		}
292 	}
293 
294 	*pset  = set;
295 	*psize = size;
296 	return 0;
297 }
298 
299 static int write_tracing_data(struct feat_fd *ff,
300 			      struct perf_evlist *evlist)
301 {
302 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
303 		return -1;
304 
305 	return read_tracing_data(ff->fd, &evlist->entries);
306 }
307 
308 static int write_build_id(struct feat_fd *ff,
309 			  struct perf_evlist *evlist __maybe_unused)
310 {
311 	struct perf_session *session;
312 	int err;
313 
314 	session = container_of(ff->ph, struct perf_session, header);
315 
316 	if (!perf_session__read_build_ids(session, true))
317 		return -1;
318 
319 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
320 		return -1;
321 
322 	err = perf_session__write_buildid_table(session, ff);
323 	if (err < 0) {
324 		pr_debug("failed to write buildid table\n");
325 		return err;
326 	}
327 	perf_session__cache_build_ids(session);
328 
329 	return 0;
330 }
331 
332 static int write_hostname(struct feat_fd *ff,
333 			  struct perf_evlist *evlist __maybe_unused)
334 {
335 	struct utsname uts;
336 	int ret;
337 
338 	ret = uname(&uts);
339 	if (ret < 0)
340 		return -1;
341 
342 	return do_write_string(ff, uts.nodename);
343 }
344 
345 static int write_osrelease(struct feat_fd *ff,
346 			   struct perf_evlist *evlist __maybe_unused)
347 {
348 	struct utsname uts;
349 	int ret;
350 
351 	ret = uname(&uts);
352 	if (ret < 0)
353 		return -1;
354 
355 	return do_write_string(ff, uts.release);
356 }
357 
358 static int write_arch(struct feat_fd *ff,
359 		      struct perf_evlist *evlist __maybe_unused)
360 {
361 	struct utsname uts;
362 	int ret;
363 
364 	ret = uname(&uts);
365 	if (ret < 0)
366 		return -1;
367 
368 	return do_write_string(ff, uts.machine);
369 }
370 
371 static int write_version(struct feat_fd *ff,
372 			 struct perf_evlist *evlist __maybe_unused)
373 {
374 	return do_write_string(ff, perf_version_string);
375 }
376 
377 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
378 {
379 	FILE *file;
380 	char *buf = NULL;
381 	char *s, *p;
382 	const char *search = cpuinfo_proc;
383 	size_t len = 0;
384 	int ret = -1;
385 
386 	if (!search)
387 		return -1;
388 
389 	file = fopen("/proc/cpuinfo", "r");
390 	if (!file)
391 		return -1;
392 
393 	while (getline(&buf, &len, file) > 0) {
394 		ret = strncmp(buf, search, strlen(search));
395 		if (!ret)
396 			break;
397 	}
398 
399 	if (ret) {
400 		ret = -1;
401 		goto done;
402 	}
403 
404 	s = buf;
405 
406 	p = strchr(buf, ':');
407 	if (p && *(p+1) == ' ' && *(p+2))
408 		s = p + 2;
409 	p = strchr(s, '\n');
410 	if (p)
411 		*p = '\0';
412 
413 	/* squash extra space characters (branding string) */
414 	p = s;
415 	while (*p) {
416 		if (isspace(*p)) {
417 			char *r = p + 1;
418 			char *q = r;
419 			*p = ' ';
420 			while (*q && isspace(*q))
421 				q++;
422 			if (q != (p+1))
423 				while ((*r++ = *q++));
424 		}
425 		p++;
426 	}
427 	ret = do_write_string(ff, s);
428 done:
429 	free(buf);
430 	fclose(file);
431 	return ret;
432 }
433 
434 static int write_cpudesc(struct feat_fd *ff,
435 		       struct perf_evlist *evlist __maybe_unused)
436 {
437 	const char *cpuinfo_procs[] = CPUINFO_PROC;
438 	unsigned int i;
439 
440 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
441 		int ret;
442 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
443 		if (ret >= 0)
444 			return ret;
445 	}
446 	return -1;
447 }
448 
449 
450 static int write_nrcpus(struct feat_fd *ff,
451 			struct perf_evlist *evlist __maybe_unused)
452 {
453 	long nr;
454 	u32 nrc, nra;
455 	int ret;
456 
457 	nrc = cpu__max_present_cpu();
458 
459 	nr = sysconf(_SC_NPROCESSORS_ONLN);
460 	if (nr < 0)
461 		return -1;
462 
463 	nra = (u32)(nr & UINT_MAX);
464 
465 	ret = do_write(ff, &nrc, sizeof(nrc));
466 	if (ret < 0)
467 		return ret;
468 
469 	return do_write(ff, &nra, sizeof(nra));
470 }
471 
472 static int write_event_desc(struct feat_fd *ff,
473 			    struct perf_evlist *evlist)
474 {
475 	struct perf_evsel *evsel;
476 	u32 nre, nri, sz;
477 	int ret;
478 
479 	nre = evlist->nr_entries;
480 
481 	/*
482 	 * write number of events
483 	 */
484 	ret = do_write(ff, &nre, sizeof(nre));
485 	if (ret < 0)
486 		return ret;
487 
488 	/*
489 	 * size of perf_event_attr struct
490 	 */
491 	sz = (u32)sizeof(evsel->attr);
492 	ret = do_write(ff, &sz, sizeof(sz));
493 	if (ret < 0)
494 		return ret;
495 
496 	evlist__for_each_entry(evlist, evsel) {
497 		ret = do_write(ff, &evsel->attr, sz);
498 		if (ret < 0)
499 			return ret;
500 		/*
501 		 * write number of unique id per event
502 		 * there is one id per instance of an event
503 		 *
504 		 * copy into an nri to be independent of the
505 		 * type of ids,
506 		 */
507 		nri = evsel->ids;
508 		ret = do_write(ff, &nri, sizeof(nri));
509 		if (ret < 0)
510 			return ret;
511 
512 		/*
513 		 * write event string as passed on cmdline
514 		 */
515 		ret = do_write_string(ff, perf_evsel__name(evsel));
516 		if (ret < 0)
517 			return ret;
518 		/*
519 		 * write unique ids for this event
520 		 */
521 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
522 		if (ret < 0)
523 			return ret;
524 	}
525 	return 0;
526 }
527 
528 static int write_cmdline(struct feat_fd *ff,
529 			 struct perf_evlist *evlist __maybe_unused)
530 {
531 	char buf[MAXPATHLEN];
532 	u32 n;
533 	int i, ret;
534 
535 	/* actual path to perf binary */
536 	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
537 	if (ret <= 0)
538 		return -1;
539 
540 	/* readlink() does not add null termination */
541 	buf[ret] = '\0';
542 
543 	/* account for binary path */
544 	n = perf_env.nr_cmdline + 1;
545 
546 	ret = do_write(ff, &n, sizeof(n));
547 	if (ret < 0)
548 		return ret;
549 
550 	ret = do_write_string(ff, buf);
551 	if (ret < 0)
552 		return ret;
553 
554 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
555 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
556 		if (ret < 0)
557 			return ret;
558 	}
559 	return 0;
560 }
561 
562 #define CORE_SIB_FMT \
563 	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
564 #define THRD_SIB_FMT \
565 	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
566 
567 struct cpu_topo {
568 	u32 cpu_nr;
569 	u32 core_sib;
570 	u32 thread_sib;
571 	char **core_siblings;
572 	char **thread_siblings;
573 };
574 
575 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
576 {
577 	FILE *fp;
578 	char filename[MAXPATHLEN];
579 	char *buf = NULL, *p;
580 	size_t len = 0;
581 	ssize_t sret;
582 	u32 i = 0;
583 	int ret = -1;
584 
585 	sprintf(filename, CORE_SIB_FMT, cpu);
586 	fp = fopen(filename, "r");
587 	if (!fp)
588 		goto try_threads;
589 
590 	sret = getline(&buf, &len, fp);
591 	fclose(fp);
592 	if (sret <= 0)
593 		goto try_threads;
594 
595 	p = strchr(buf, '\n');
596 	if (p)
597 		*p = '\0';
598 
599 	for (i = 0; i < tp->core_sib; i++) {
600 		if (!strcmp(buf, tp->core_siblings[i]))
601 			break;
602 	}
603 	if (i == tp->core_sib) {
604 		tp->core_siblings[i] = buf;
605 		tp->core_sib++;
606 		buf = NULL;
607 		len = 0;
608 	}
609 	ret = 0;
610 
611 try_threads:
612 	sprintf(filename, THRD_SIB_FMT, cpu);
613 	fp = fopen(filename, "r");
614 	if (!fp)
615 		goto done;
616 
617 	if (getline(&buf, &len, fp) <= 0)
618 		goto done;
619 
620 	p = strchr(buf, '\n');
621 	if (p)
622 		*p = '\0';
623 
624 	for (i = 0; i < tp->thread_sib; i++) {
625 		if (!strcmp(buf, tp->thread_siblings[i]))
626 			break;
627 	}
628 	if (i == tp->thread_sib) {
629 		tp->thread_siblings[i] = buf;
630 		tp->thread_sib++;
631 		buf = NULL;
632 	}
633 	ret = 0;
634 done:
635 	if(fp)
636 		fclose(fp);
637 	free(buf);
638 	return ret;
639 }
640 
641 static void free_cpu_topo(struct cpu_topo *tp)
642 {
643 	u32 i;
644 
645 	if (!tp)
646 		return;
647 
648 	for (i = 0 ; i < tp->core_sib; i++)
649 		zfree(&tp->core_siblings[i]);
650 
651 	for (i = 0 ; i < tp->thread_sib; i++)
652 		zfree(&tp->thread_siblings[i]);
653 
654 	free(tp);
655 }
656 
657 static struct cpu_topo *build_cpu_topology(void)
658 {
659 	struct cpu_topo *tp = NULL;
660 	void *addr;
661 	u32 nr, i;
662 	size_t sz;
663 	long ncpus;
664 	int ret = -1;
665 	struct cpu_map *map;
666 
667 	ncpus = cpu__max_present_cpu();
668 
669 	/* build online CPU map */
670 	map = cpu_map__new(NULL);
671 	if (map == NULL) {
672 		pr_debug("failed to get system cpumap\n");
673 		return NULL;
674 	}
675 
676 	nr = (u32)(ncpus & UINT_MAX);
677 
678 	sz = nr * sizeof(char *);
679 	addr = calloc(1, sizeof(*tp) + 2 * sz);
680 	if (!addr)
681 		goto out_free;
682 
683 	tp = addr;
684 	tp->cpu_nr = nr;
685 	addr += sizeof(*tp);
686 	tp->core_siblings = addr;
687 	addr += sz;
688 	tp->thread_siblings = addr;
689 
690 	for (i = 0; i < nr; i++) {
691 		if (!cpu_map__has(map, i))
692 			continue;
693 
694 		ret = build_cpu_topo(tp, i);
695 		if (ret < 0)
696 			break;
697 	}
698 
699 out_free:
700 	cpu_map__put(map);
701 	if (ret) {
702 		free_cpu_topo(tp);
703 		tp = NULL;
704 	}
705 	return tp;
706 }
707 
708 static int write_cpu_topology(struct feat_fd *ff,
709 			      struct perf_evlist *evlist __maybe_unused)
710 {
711 	struct cpu_topo *tp;
712 	u32 i;
713 	int ret, j;
714 
715 	tp = build_cpu_topology();
716 	if (!tp)
717 		return -1;
718 
719 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
720 	if (ret < 0)
721 		goto done;
722 
723 	for (i = 0; i < tp->core_sib; i++) {
724 		ret = do_write_string(ff, tp->core_siblings[i]);
725 		if (ret < 0)
726 			goto done;
727 	}
728 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
729 	if (ret < 0)
730 		goto done;
731 
732 	for (i = 0; i < tp->thread_sib; i++) {
733 		ret = do_write_string(ff, tp->thread_siblings[i]);
734 		if (ret < 0)
735 			break;
736 	}
737 
738 	ret = perf_env__read_cpu_topology_map(&perf_env);
739 	if (ret < 0)
740 		goto done;
741 
742 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
743 		ret = do_write(ff, &perf_env.cpu[j].core_id,
744 			       sizeof(perf_env.cpu[j].core_id));
745 		if (ret < 0)
746 			return ret;
747 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
748 			       sizeof(perf_env.cpu[j].socket_id));
749 		if (ret < 0)
750 			return ret;
751 	}
752 done:
753 	free_cpu_topo(tp);
754 	return ret;
755 }
756 
757 
758 
759 static int write_total_mem(struct feat_fd *ff,
760 			   struct perf_evlist *evlist __maybe_unused)
761 {
762 	char *buf = NULL;
763 	FILE *fp;
764 	size_t len = 0;
765 	int ret = -1, n;
766 	uint64_t mem;
767 
768 	fp = fopen("/proc/meminfo", "r");
769 	if (!fp)
770 		return -1;
771 
772 	while (getline(&buf, &len, fp) > 0) {
773 		ret = strncmp(buf, "MemTotal:", 9);
774 		if (!ret)
775 			break;
776 	}
777 	if (!ret) {
778 		n = sscanf(buf, "%*s %"PRIu64, &mem);
779 		if (n == 1)
780 			ret = do_write(ff, &mem, sizeof(mem));
781 	} else
782 		ret = -1;
783 	free(buf);
784 	fclose(fp);
785 	return ret;
786 }
787 
788 static int write_topo_node(struct feat_fd *ff, int node)
789 {
790 	char str[MAXPATHLEN];
791 	char field[32];
792 	char *buf = NULL, *p;
793 	size_t len = 0;
794 	FILE *fp;
795 	u64 mem_total, mem_free, mem;
796 	int ret = -1;
797 
798 	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
799 	fp = fopen(str, "r");
800 	if (!fp)
801 		return -1;
802 
803 	while (getline(&buf, &len, fp) > 0) {
804 		/* skip over invalid lines */
805 		if (!strchr(buf, ':'))
806 			continue;
807 		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
808 			goto done;
809 		if (!strcmp(field, "MemTotal:"))
810 			mem_total = mem;
811 		if (!strcmp(field, "MemFree:"))
812 			mem_free = mem;
813 	}
814 
815 	fclose(fp);
816 	fp = NULL;
817 
818 	ret = do_write(ff, &mem_total, sizeof(u64));
819 	if (ret)
820 		goto done;
821 
822 	ret = do_write(ff, &mem_free, sizeof(u64));
823 	if (ret)
824 		goto done;
825 
826 	ret = -1;
827 	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
828 
829 	fp = fopen(str, "r");
830 	if (!fp)
831 		goto done;
832 
833 	if (getline(&buf, &len, fp) <= 0)
834 		goto done;
835 
836 	p = strchr(buf, '\n');
837 	if (p)
838 		*p = '\0';
839 
840 	ret = do_write_string(ff, buf);
841 done:
842 	free(buf);
843 	if (fp)
844 		fclose(fp);
845 	return ret;
846 }
847 
848 static int write_numa_topology(struct feat_fd *ff,
849 			       struct perf_evlist *evlist __maybe_unused)
850 {
851 	char *buf = NULL;
852 	size_t len = 0;
853 	FILE *fp;
854 	struct cpu_map *node_map = NULL;
855 	char *c;
856 	u32 nr, i, j;
857 	int ret = -1;
858 
859 	fp = fopen("/sys/devices/system/node/online", "r");
860 	if (!fp)
861 		return -1;
862 
863 	if (getline(&buf, &len, fp) <= 0)
864 		goto done;
865 
866 	c = strchr(buf, '\n');
867 	if (c)
868 		*c = '\0';
869 
870 	node_map = cpu_map__new(buf);
871 	if (!node_map)
872 		goto done;
873 
874 	nr = (u32)node_map->nr;
875 
876 	ret = do_write(ff, &nr, sizeof(nr));
877 	if (ret < 0)
878 		goto done;
879 
880 	for (i = 0; i < nr; i++) {
881 		j = (u32)node_map->map[i];
882 		ret = do_write(ff, &j, sizeof(j));
883 		if (ret < 0)
884 			break;
885 
886 		ret = write_topo_node(ff, i);
887 		if (ret < 0)
888 			break;
889 	}
890 done:
891 	free(buf);
892 	fclose(fp);
893 	cpu_map__put(node_map);
894 	return ret;
895 }
896 
897 /*
898  * File format:
899  *
900  * struct pmu_mappings {
901  *	u32	pmu_num;
902  *	struct pmu_map {
903  *		u32	type;
904  *		char	name[];
905  *	}[pmu_num];
906  * };
907  */
908 
909 static int write_pmu_mappings(struct feat_fd *ff,
910 			      struct perf_evlist *evlist __maybe_unused)
911 {
912 	struct perf_pmu *pmu = NULL;
913 	u32 pmu_num = 0;
914 	int ret;
915 
916 	/*
917 	 * Do a first pass to count number of pmu to avoid lseek so this
918 	 * works in pipe mode as well.
919 	 */
920 	while ((pmu = perf_pmu__scan(pmu))) {
921 		if (!pmu->name)
922 			continue;
923 		pmu_num++;
924 	}
925 
926 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
927 	if (ret < 0)
928 		return ret;
929 
930 	while ((pmu = perf_pmu__scan(pmu))) {
931 		if (!pmu->name)
932 			continue;
933 
934 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
935 		if (ret < 0)
936 			return ret;
937 
938 		ret = do_write_string(ff, pmu->name);
939 		if (ret < 0)
940 			return ret;
941 	}
942 
943 	return 0;
944 }
945 
946 /*
947  * File format:
948  *
949  * struct group_descs {
950  *	u32	nr_groups;
951  *	struct group_desc {
952  *		char	name[];
953  *		u32	leader_idx;
954  *		u32	nr_members;
955  *	}[nr_groups];
956  * };
957  */
958 static int write_group_desc(struct feat_fd *ff,
959 			    struct perf_evlist *evlist)
960 {
961 	u32 nr_groups = evlist->nr_groups;
962 	struct perf_evsel *evsel;
963 	int ret;
964 
965 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
966 	if (ret < 0)
967 		return ret;
968 
969 	evlist__for_each_entry(evlist, evsel) {
970 		if (perf_evsel__is_group_leader(evsel) &&
971 		    evsel->nr_members > 1) {
972 			const char *name = evsel->group_name ?: "{anon_group}";
973 			u32 leader_idx = evsel->idx;
974 			u32 nr_members = evsel->nr_members;
975 
976 			ret = do_write_string(ff, name);
977 			if (ret < 0)
978 				return ret;
979 
980 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
981 			if (ret < 0)
982 				return ret;
983 
984 			ret = do_write(ff, &nr_members, sizeof(nr_members));
985 			if (ret < 0)
986 				return ret;
987 		}
988 	}
989 	return 0;
990 }
991 
992 /*
993  * default get_cpuid(): nothing gets recorded
994  * actual implementation must be in arch/$(SRCARCH)/util/header.c
995  */
996 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
997 {
998 	return -1;
999 }
1000 
1001 static int write_cpuid(struct feat_fd *ff,
1002 		       struct perf_evlist *evlist __maybe_unused)
1003 {
1004 	char buffer[64];
1005 	int ret;
1006 
1007 	ret = get_cpuid(buffer, sizeof(buffer));
1008 	if (!ret)
1009 		goto write_it;
1010 
1011 	return -1;
1012 write_it:
1013 	return do_write_string(ff, buffer);
1014 }
1015 
1016 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1017 			      struct perf_evlist *evlist __maybe_unused)
1018 {
1019 	return 0;
1020 }
1021 
1022 static int write_auxtrace(struct feat_fd *ff,
1023 			  struct perf_evlist *evlist __maybe_unused)
1024 {
1025 	struct perf_session *session;
1026 	int err;
1027 
1028 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1029 		return -1;
1030 
1031 	session = container_of(ff->ph, struct perf_session, header);
1032 
1033 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1034 	if (err < 0)
1035 		pr_err("Failed to write auxtrace index\n");
1036 	return err;
1037 }
1038 
1039 static int cpu_cache_level__sort(const void *a, const void *b)
1040 {
1041 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1042 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1043 
1044 	return cache_a->level - cache_b->level;
1045 }
1046 
1047 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1048 {
1049 	if (a->level != b->level)
1050 		return false;
1051 
1052 	if (a->line_size != b->line_size)
1053 		return false;
1054 
1055 	if (a->sets != b->sets)
1056 		return false;
1057 
1058 	if (a->ways != b->ways)
1059 		return false;
1060 
1061 	if (strcmp(a->type, b->type))
1062 		return false;
1063 
1064 	if (strcmp(a->size, b->size))
1065 		return false;
1066 
1067 	if (strcmp(a->map, b->map))
1068 		return false;
1069 
1070 	return true;
1071 }
1072 
1073 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1074 {
1075 	char path[PATH_MAX], file[PATH_MAX];
1076 	struct stat st;
1077 	size_t len;
1078 
1079 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1080 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1081 
1082 	if (stat(file, &st))
1083 		return 1;
1084 
1085 	scnprintf(file, PATH_MAX, "%s/level", path);
1086 	if (sysfs__read_int(file, (int *) &cache->level))
1087 		return -1;
1088 
1089 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1090 	if (sysfs__read_int(file, (int *) &cache->line_size))
1091 		return -1;
1092 
1093 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1094 	if (sysfs__read_int(file, (int *) &cache->sets))
1095 		return -1;
1096 
1097 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1098 	if (sysfs__read_int(file, (int *) &cache->ways))
1099 		return -1;
1100 
1101 	scnprintf(file, PATH_MAX, "%s/type", path);
1102 	if (sysfs__read_str(file, &cache->type, &len))
1103 		return -1;
1104 
1105 	cache->type[len] = 0;
1106 	cache->type = rtrim(cache->type);
1107 
1108 	scnprintf(file, PATH_MAX, "%s/size", path);
1109 	if (sysfs__read_str(file, &cache->size, &len)) {
1110 		free(cache->type);
1111 		return -1;
1112 	}
1113 
1114 	cache->size[len] = 0;
1115 	cache->size = rtrim(cache->size);
1116 
1117 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1118 	if (sysfs__read_str(file, &cache->map, &len)) {
1119 		free(cache->map);
1120 		free(cache->type);
1121 		return -1;
1122 	}
1123 
1124 	cache->map[len] = 0;
1125 	cache->map = rtrim(cache->map);
1126 	return 0;
1127 }
1128 
1129 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1130 {
1131 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1132 }
1133 
1134 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1135 {
1136 	u32 i, cnt = 0;
1137 	long ncpus;
1138 	u32 nr, cpu;
1139 	u16 level;
1140 
1141 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1142 	if (ncpus < 0)
1143 		return -1;
1144 
1145 	nr = (u32)(ncpus & UINT_MAX);
1146 
1147 	for (cpu = 0; cpu < nr; cpu++) {
1148 		for (level = 0; level < 10; level++) {
1149 			struct cpu_cache_level c;
1150 			int err;
1151 
1152 			err = cpu_cache_level__read(&c, cpu, level);
1153 			if (err < 0)
1154 				return err;
1155 
1156 			if (err == 1)
1157 				break;
1158 
1159 			for (i = 0; i < cnt; i++) {
1160 				if (cpu_cache_level__cmp(&c, &caches[i]))
1161 					break;
1162 			}
1163 
1164 			if (i == cnt)
1165 				caches[cnt++] = c;
1166 			else
1167 				cpu_cache_level__free(&c);
1168 
1169 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1170 				goto out;
1171 		}
1172 	}
1173  out:
1174 	*cntp = cnt;
1175 	return 0;
1176 }
1177 
1178 #define MAX_CACHES 2000
1179 
1180 static int write_cache(struct feat_fd *ff,
1181 		       struct perf_evlist *evlist __maybe_unused)
1182 {
1183 	struct cpu_cache_level caches[MAX_CACHES];
1184 	u32 cnt = 0, i, version = 1;
1185 	int ret;
1186 
1187 	ret = build_caches(caches, MAX_CACHES, &cnt);
1188 	if (ret)
1189 		goto out;
1190 
1191 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1192 
1193 	ret = do_write(ff, &version, sizeof(u32));
1194 	if (ret < 0)
1195 		goto out;
1196 
1197 	ret = do_write(ff, &cnt, sizeof(u32));
1198 	if (ret < 0)
1199 		goto out;
1200 
1201 	for (i = 0; i < cnt; i++) {
1202 		struct cpu_cache_level *c = &caches[i];
1203 
1204 		#define _W(v)					\
1205 			ret = do_write(ff, &c->v, sizeof(u32));	\
1206 			if (ret < 0)				\
1207 				goto out;
1208 
1209 		_W(level)
1210 		_W(line_size)
1211 		_W(sets)
1212 		_W(ways)
1213 		#undef _W
1214 
1215 		#define _W(v)						\
1216 			ret = do_write_string(ff, (const char *) c->v);	\
1217 			if (ret < 0)					\
1218 				goto out;
1219 
1220 		_W(type)
1221 		_W(size)
1222 		_W(map)
1223 		#undef _W
1224 	}
1225 
1226 out:
1227 	for (i = 0; i < cnt; i++)
1228 		cpu_cache_level__free(&caches[i]);
1229 	return ret;
1230 }
1231 
1232 static int write_stat(struct feat_fd *ff __maybe_unused,
1233 		      struct perf_evlist *evlist __maybe_unused)
1234 {
1235 	return 0;
1236 }
1237 
1238 static int write_sample_time(struct feat_fd *ff,
1239 			     struct perf_evlist *evlist)
1240 {
1241 	int ret;
1242 
1243 	ret = do_write(ff, &evlist->first_sample_time,
1244 		       sizeof(evlist->first_sample_time));
1245 	if (ret < 0)
1246 		return ret;
1247 
1248 	return do_write(ff, &evlist->last_sample_time,
1249 			sizeof(evlist->last_sample_time));
1250 }
1251 
1252 
1253 static int memory_node__read(struct memory_node *n, unsigned long idx)
1254 {
1255 	unsigned int phys, size = 0;
1256 	char path[PATH_MAX];
1257 	struct dirent *ent;
1258 	DIR *dir;
1259 
1260 #define for_each_memory(mem, dir)					\
1261 	while ((ent = readdir(dir)))					\
1262 		if (strcmp(ent->d_name, ".") &&				\
1263 		    strcmp(ent->d_name, "..") &&			\
1264 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1265 
1266 	scnprintf(path, PATH_MAX,
1267 		  "%s/devices/system/node/node%lu",
1268 		  sysfs__mountpoint(), idx);
1269 
1270 	dir = opendir(path);
1271 	if (!dir) {
1272 		pr_warning("failed: cant' open memory sysfs data\n");
1273 		return -1;
1274 	}
1275 
1276 	for_each_memory(phys, dir) {
1277 		size = max(phys, size);
1278 	}
1279 
1280 	size++;
1281 
1282 	n->set = bitmap_alloc(size);
1283 	if (!n->set) {
1284 		closedir(dir);
1285 		return -ENOMEM;
1286 	}
1287 
1288 	bitmap_zero(n->set, size);
1289 	n->node = idx;
1290 	n->size = size;
1291 
1292 	rewinddir(dir);
1293 
1294 	for_each_memory(phys, dir) {
1295 		set_bit(phys, n->set);
1296 	}
1297 
1298 	closedir(dir);
1299 	return 0;
1300 }
1301 
1302 static int memory_node__sort(const void *a, const void *b)
1303 {
1304 	const struct memory_node *na = a;
1305 	const struct memory_node *nb = b;
1306 
1307 	return na->node - nb->node;
1308 }
1309 
1310 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1311 {
1312 	char path[PATH_MAX];
1313 	struct dirent *ent;
1314 	DIR *dir;
1315 	u64 cnt = 0;
1316 	int ret = 0;
1317 
1318 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1319 		  sysfs__mountpoint());
1320 
1321 	dir = opendir(path);
1322 	if (!dir) {
1323 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1324 			  __func__, path);
1325 		return -1;
1326 	}
1327 
1328 	while (!ret && (ent = readdir(dir))) {
1329 		unsigned int idx;
1330 		int r;
1331 
1332 		if (!strcmp(ent->d_name, ".") ||
1333 		    !strcmp(ent->d_name, ".."))
1334 			continue;
1335 
1336 		r = sscanf(ent->d_name, "node%u", &idx);
1337 		if (r != 1)
1338 			continue;
1339 
1340 		if (WARN_ONCE(cnt >= size,
1341 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1342 			return -1;
1343 
1344 		ret = memory_node__read(&nodes[cnt++], idx);
1345 	}
1346 
1347 	*cntp = cnt;
1348 	closedir(dir);
1349 
1350 	if (!ret)
1351 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1352 
1353 	return ret;
1354 }
1355 
1356 #define MAX_MEMORY_NODES 2000
1357 
1358 /*
1359  * The MEM_TOPOLOGY holds physical memory map for every
1360  * node in system. The format of data is as follows:
1361  *
1362  *  0 - version          | for future changes
1363  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1364  * 16 - count            | number of nodes
1365  *
1366  * For each node we store map of physical indexes for
1367  * each node:
1368  *
1369  * 32 - node id          | node index
1370  * 40 - size             | size of bitmap
1371  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1372  */
1373 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1374 			      struct perf_evlist *evlist __maybe_unused)
1375 {
1376 	static struct memory_node nodes[MAX_MEMORY_NODES];
1377 	u64 bsize, version = 1, i, nr;
1378 	int ret;
1379 
1380 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1381 			      (unsigned long long *) &bsize);
1382 	if (ret)
1383 		return ret;
1384 
1385 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1386 	if (ret)
1387 		return ret;
1388 
1389 	ret = do_write(ff, &version, sizeof(version));
1390 	if (ret < 0)
1391 		goto out;
1392 
1393 	ret = do_write(ff, &bsize, sizeof(bsize));
1394 	if (ret < 0)
1395 		goto out;
1396 
1397 	ret = do_write(ff, &nr, sizeof(nr));
1398 	if (ret < 0)
1399 		goto out;
1400 
1401 	for (i = 0; i < nr; i++) {
1402 		struct memory_node *n = &nodes[i];
1403 
1404 		#define _W(v)						\
1405 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1406 			if (ret < 0)					\
1407 				goto out;
1408 
1409 		_W(node)
1410 		_W(size)
1411 
1412 		#undef _W
1413 
1414 		ret = do_write_bitmap(ff, n->set, n->size);
1415 		if (ret < 0)
1416 			goto out;
1417 	}
1418 
1419 out:
1420 	return ret;
1421 }
1422 
1423 static void print_hostname(struct feat_fd *ff, FILE *fp)
1424 {
1425 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1426 }
1427 
1428 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1429 {
1430 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1431 }
1432 
1433 static void print_arch(struct feat_fd *ff, FILE *fp)
1434 {
1435 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1436 }
1437 
1438 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1439 {
1440 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1441 }
1442 
1443 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1444 {
1445 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1446 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1447 }
1448 
1449 static void print_version(struct feat_fd *ff, FILE *fp)
1450 {
1451 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1452 }
1453 
1454 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1455 {
1456 	int nr, i;
1457 
1458 	nr = ff->ph->env.nr_cmdline;
1459 
1460 	fprintf(fp, "# cmdline : ");
1461 
1462 	for (i = 0; i < nr; i++)
1463 		fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1464 	fputc('\n', fp);
1465 }
1466 
1467 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468 {
1469 	struct perf_header *ph = ff->ph;
1470 	int cpu_nr = ph->env.nr_cpus_avail;
1471 	int nr, i;
1472 	char *str;
1473 
1474 	nr = ph->env.nr_sibling_cores;
1475 	str = ph->env.sibling_cores;
1476 
1477 	for (i = 0; i < nr; i++) {
1478 		fprintf(fp, "# sibling cores   : %s\n", str);
1479 		str += strlen(str) + 1;
1480 	}
1481 
1482 	nr = ph->env.nr_sibling_threads;
1483 	str = ph->env.sibling_threads;
1484 
1485 	for (i = 0; i < nr; i++) {
1486 		fprintf(fp, "# sibling threads : %s\n", str);
1487 		str += strlen(str) + 1;
1488 	}
1489 
1490 	if (ph->env.cpu != NULL) {
1491 		for (i = 0; i < cpu_nr; i++)
1492 			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1493 				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1494 	} else
1495 		fprintf(fp, "# Core ID and Socket ID information is not available\n");
1496 }
1497 
1498 static void free_event_desc(struct perf_evsel *events)
1499 {
1500 	struct perf_evsel *evsel;
1501 
1502 	if (!events)
1503 		return;
1504 
1505 	for (evsel = events; evsel->attr.size; evsel++) {
1506 		zfree(&evsel->name);
1507 		zfree(&evsel->id);
1508 	}
1509 
1510 	free(events);
1511 }
1512 
1513 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1514 {
1515 	struct perf_evsel *evsel, *events = NULL;
1516 	u64 *id;
1517 	void *buf = NULL;
1518 	u32 nre, sz, nr, i, j;
1519 	size_t msz;
1520 
1521 	/* number of events */
1522 	if (do_read_u32(ff, &nre))
1523 		goto error;
1524 
1525 	if (do_read_u32(ff, &sz))
1526 		goto error;
1527 
1528 	/* buffer to hold on file attr struct */
1529 	buf = malloc(sz);
1530 	if (!buf)
1531 		goto error;
1532 
1533 	/* the last event terminates with evsel->attr.size == 0: */
1534 	events = calloc(nre + 1, sizeof(*events));
1535 	if (!events)
1536 		goto error;
1537 
1538 	msz = sizeof(evsel->attr);
1539 	if (sz < msz)
1540 		msz = sz;
1541 
1542 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1543 		evsel->idx = i;
1544 
1545 		/*
1546 		 * must read entire on-file attr struct to
1547 		 * sync up with layout.
1548 		 */
1549 		if (__do_read(ff, buf, sz))
1550 			goto error;
1551 
1552 		if (ff->ph->needs_swap)
1553 			perf_event__attr_swap(buf);
1554 
1555 		memcpy(&evsel->attr, buf, msz);
1556 
1557 		if (do_read_u32(ff, &nr))
1558 			goto error;
1559 
1560 		if (ff->ph->needs_swap)
1561 			evsel->needs_swap = true;
1562 
1563 		evsel->name = do_read_string(ff);
1564 		if (!evsel->name)
1565 			goto error;
1566 
1567 		if (!nr)
1568 			continue;
1569 
1570 		id = calloc(nr, sizeof(*id));
1571 		if (!id)
1572 			goto error;
1573 		evsel->ids = nr;
1574 		evsel->id = id;
1575 
1576 		for (j = 0 ; j < nr; j++) {
1577 			if (do_read_u64(ff, id))
1578 				goto error;
1579 			id++;
1580 		}
1581 	}
1582 out:
1583 	free(buf);
1584 	return events;
1585 error:
1586 	free_event_desc(events);
1587 	events = NULL;
1588 	goto out;
1589 }
1590 
1591 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1592 				void *priv __maybe_unused)
1593 {
1594 	return fprintf(fp, ", %s = %s", name, val);
1595 }
1596 
1597 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1598 {
1599 	struct perf_evsel *evsel, *events;
1600 	u32 j;
1601 	u64 *id;
1602 
1603 	if (ff->events)
1604 		events = ff->events;
1605 	else
1606 		events = read_event_desc(ff);
1607 
1608 	if (!events) {
1609 		fprintf(fp, "# event desc: not available or unable to read\n");
1610 		return;
1611 	}
1612 
1613 	for (evsel = events; evsel->attr.size; evsel++) {
1614 		fprintf(fp, "# event : name = %s, ", evsel->name);
1615 
1616 		if (evsel->ids) {
1617 			fprintf(fp, ", id = {");
1618 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1619 				if (j)
1620 					fputc(',', fp);
1621 				fprintf(fp, " %"PRIu64, *id);
1622 			}
1623 			fprintf(fp, " }");
1624 		}
1625 
1626 		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1627 
1628 		fputc('\n', fp);
1629 	}
1630 
1631 	free_event_desc(events);
1632 	ff->events = NULL;
1633 }
1634 
1635 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1636 {
1637 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1638 }
1639 
1640 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1641 {
1642 	int i;
1643 	struct numa_node *n;
1644 
1645 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1646 		n = &ff->ph->env.numa_nodes[i];
1647 
1648 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1649 			    " free = %"PRIu64" kB\n",
1650 			n->node, n->mem_total, n->mem_free);
1651 
1652 		fprintf(fp, "# node%u cpu list : ", n->node);
1653 		cpu_map__fprintf(n->map, fp);
1654 	}
1655 }
1656 
1657 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1658 {
1659 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1660 }
1661 
1662 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1663 {
1664 	fprintf(fp, "# contains samples with branch stack\n");
1665 }
1666 
1667 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1668 {
1669 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1670 }
1671 
1672 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1673 {
1674 	fprintf(fp, "# contains stat data\n");
1675 }
1676 
1677 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1678 {
1679 	int i;
1680 
1681 	fprintf(fp, "# CPU cache info:\n");
1682 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1683 		fprintf(fp, "#  ");
1684 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1685 	}
1686 }
1687 
1688 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1689 {
1690 	const char *delimiter = "# pmu mappings: ";
1691 	char *str, *tmp;
1692 	u32 pmu_num;
1693 	u32 type;
1694 
1695 	pmu_num = ff->ph->env.nr_pmu_mappings;
1696 	if (!pmu_num) {
1697 		fprintf(fp, "# pmu mappings: not available\n");
1698 		return;
1699 	}
1700 
1701 	str = ff->ph->env.pmu_mappings;
1702 
1703 	while (pmu_num) {
1704 		type = strtoul(str, &tmp, 0);
1705 		if (*tmp != ':')
1706 			goto error;
1707 
1708 		str = tmp + 1;
1709 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1710 
1711 		delimiter = ", ";
1712 		str += strlen(str) + 1;
1713 		pmu_num--;
1714 	}
1715 
1716 	fprintf(fp, "\n");
1717 
1718 	if (!pmu_num)
1719 		return;
1720 error:
1721 	fprintf(fp, "# pmu mappings: unable to read\n");
1722 }
1723 
1724 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1725 {
1726 	struct perf_session *session;
1727 	struct perf_evsel *evsel;
1728 	u32 nr = 0;
1729 
1730 	session = container_of(ff->ph, struct perf_session, header);
1731 
1732 	evlist__for_each_entry(session->evlist, evsel) {
1733 		if (perf_evsel__is_group_leader(evsel) &&
1734 		    evsel->nr_members > 1) {
1735 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1736 				perf_evsel__name(evsel));
1737 
1738 			nr = evsel->nr_members - 1;
1739 		} else if (nr) {
1740 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1741 
1742 			if (--nr == 0)
1743 				fprintf(fp, "}\n");
1744 		}
1745 	}
1746 }
1747 
1748 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1749 {
1750 	struct perf_session *session;
1751 	char time_buf[32];
1752 	double d;
1753 
1754 	session = container_of(ff->ph, struct perf_session, header);
1755 
1756 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1757 				  time_buf, sizeof(time_buf));
1758 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1759 
1760 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1761 				  time_buf, sizeof(time_buf));
1762 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1763 
1764 	d = (double)(session->evlist->last_sample_time -
1765 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1766 
1767 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1768 }
1769 
1770 static void memory_node__fprintf(struct memory_node *n,
1771 				 unsigned long long bsize, FILE *fp)
1772 {
1773 	char buf_map[100], buf_size[50];
1774 	unsigned long long size;
1775 
1776 	size = bsize * bitmap_weight(n->set, n->size);
1777 	unit_number__scnprintf(buf_size, 50, size);
1778 
1779 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1780 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1781 }
1782 
1783 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1784 {
1785 	struct memory_node *nodes;
1786 	int i, nr;
1787 
1788 	nodes = ff->ph->env.memory_nodes;
1789 	nr    = ff->ph->env.nr_memory_nodes;
1790 
1791 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1792 		nr, ff->ph->env.memory_bsize);
1793 
1794 	for (i = 0; i < nr; i++) {
1795 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1796 	}
1797 }
1798 
1799 static int __event_process_build_id(struct build_id_event *bev,
1800 				    char *filename,
1801 				    struct perf_session *session)
1802 {
1803 	int err = -1;
1804 	struct machine *machine;
1805 	u16 cpumode;
1806 	struct dso *dso;
1807 	enum dso_kernel_type dso_type;
1808 
1809 	machine = perf_session__findnew_machine(session, bev->pid);
1810 	if (!machine)
1811 		goto out;
1812 
1813 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1814 
1815 	switch (cpumode) {
1816 	case PERF_RECORD_MISC_KERNEL:
1817 		dso_type = DSO_TYPE_KERNEL;
1818 		break;
1819 	case PERF_RECORD_MISC_GUEST_KERNEL:
1820 		dso_type = DSO_TYPE_GUEST_KERNEL;
1821 		break;
1822 	case PERF_RECORD_MISC_USER:
1823 	case PERF_RECORD_MISC_GUEST_USER:
1824 		dso_type = DSO_TYPE_USER;
1825 		break;
1826 	default:
1827 		goto out;
1828 	}
1829 
1830 	dso = machine__findnew_dso(machine, filename);
1831 	if (dso != NULL) {
1832 		char sbuild_id[SBUILD_ID_SIZE];
1833 
1834 		dso__set_build_id(dso, &bev->build_id);
1835 
1836 		if (dso_type != DSO_TYPE_USER) {
1837 			struct kmod_path m = { .name = NULL, };
1838 
1839 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1840 				dso__set_module_info(dso, &m, machine);
1841 			else
1842 				dso->kernel = dso_type;
1843 
1844 			free(m.name);
1845 		}
1846 
1847 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1848 				  sbuild_id);
1849 		pr_debug("build id event received for %s: %s\n",
1850 			 dso->long_name, sbuild_id);
1851 		dso__put(dso);
1852 	}
1853 
1854 	err = 0;
1855 out:
1856 	return err;
1857 }
1858 
1859 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1860 						 int input, u64 offset, u64 size)
1861 {
1862 	struct perf_session *session = container_of(header, struct perf_session, header);
1863 	struct {
1864 		struct perf_event_header   header;
1865 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1866 		char			   filename[0];
1867 	} old_bev;
1868 	struct build_id_event bev;
1869 	char filename[PATH_MAX];
1870 	u64 limit = offset + size;
1871 
1872 	while (offset < limit) {
1873 		ssize_t len;
1874 
1875 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1876 			return -1;
1877 
1878 		if (header->needs_swap)
1879 			perf_event_header__bswap(&old_bev.header);
1880 
1881 		len = old_bev.header.size - sizeof(old_bev);
1882 		if (readn(input, filename, len) != len)
1883 			return -1;
1884 
1885 		bev.header = old_bev.header;
1886 
1887 		/*
1888 		 * As the pid is the missing value, we need to fill
1889 		 * it properly. The header.misc value give us nice hint.
1890 		 */
1891 		bev.pid	= HOST_KERNEL_ID;
1892 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1893 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1894 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1895 
1896 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1897 		__event_process_build_id(&bev, filename, session);
1898 
1899 		offset += bev.header.size;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static int perf_header__read_build_ids(struct perf_header *header,
1906 				       int input, u64 offset, u64 size)
1907 {
1908 	struct perf_session *session = container_of(header, struct perf_session, header);
1909 	struct build_id_event bev;
1910 	char filename[PATH_MAX];
1911 	u64 limit = offset + size, orig_offset = offset;
1912 	int err = -1;
1913 
1914 	while (offset < limit) {
1915 		ssize_t len;
1916 
1917 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1918 			goto out;
1919 
1920 		if (header->needs_swap)
1921 			perf_event_header__bswap(&bev.header);
1922 
1923 		len = bev.header.size - sizeof(bev);
1924 		if (readn(input, filename, len) != len)
1925 			goto out;
1926 		/*
1927 		 * The a1645ce1 changeset:
1928 		 *
1929 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1930 		 *
1931 		 * Added a field to struct build_id_event that broke the file
1932 		 * format.
1933 		 *
1934 		 * Since the kernel build-id is the first entry, process the
1935 		 * table using the old format if the well known
1936 		 * '[kernel.kallsyms]' string for the kernel build-id has the
1937 		 * first 4 characters chopped off (where the pid_t sits).
1938 		 */
1939 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1940 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1941 				return -1;
1942 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1943 		}
1944 
1945 		__event_process_build_id(&bev, filename, session);
1946 
1947 		offset += bev.header.size;
1948 	}
1949 	err = 0;
1950 out:
1951 	return err;
1952 }
1953 
1954 /* Macro for features that simply need to read and store a string. */
1955 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1956 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1957 {\
1958 	ff->ph->env.__feat_env = do_read_string(ff); \
1959 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1960 }
1961 
1962 FEAT_PROCESS_STR_FUN(hostname, hostname);
1963 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1964 FEAT_PROCESS_STR_FUN(version, version);
1965 FEAT_PROCESS_STR_FUN(arch, arch);
1966 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1967 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1968 
1969 static int process_tracing_data(struct feat_fd *ff, void *data)
1970 {
1971 	ssize_t ret = trace_report(ff->fd, data, false);
1972 
1973 	return ret < 0 ? -1 : 0;
1974 }
1975 
1976 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1977 {
1978 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1979 		pr_debug("Failed to read buildids, continuing...\n");
1980 	return 0;
1981 }
1982 
1983 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1984 {
1985 	int ret;
1986 	u32 nr_cpus_avail, nr_cpus_online;
1987 
1988 	ret = do_read_u32(ff, &nr_cpus_avail);
1989 	if (ret)
1990 		return ret;
1991 
1992 	ret = do_read_u32(ff, &nr_cpus_online);
1993 	if (ret)
1994 		return ret;
1995 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1996 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1997 	return 0;
1998 }
1999 
2000 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2001 {
2002 	u64 total_mem;
2003 	int ret;
2004 
2005 	ret = do_read_u64(ff, &total_mem);
2006 	if (ret)
2007 		return -1;
2008 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2009 	return 0;
2010 }
2011 
2012 static struct perf_evsel *
2013 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2014 {
2015 	struct perf_evsel *evsel;
2016 
2017 	evlist__for_each_entry(evlist, evsel) {
2018 		if (evsel->idx == idx)
2019 			return evsel;
2020 	}
2021 
2022 	return NULL;
2023 }
2024 
2025 static void
2026 perf_evlist__set_event_name(struct perf_evlist *evlist,
2027 			    struct perf_evsel *event)
2028 {
2029 	struct perf_evsel *evsel;
2030 
2031 	if (!event->name)
2032 		return;
2033 
2034 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2035 	if (!evsel)
2036 		return;
2037 
2038 	if (evsel->name)
2039 		return;
2040 
2041 	evsel->name = strdup(event->name);
2042 }
2043 
2044 static int
2045 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2046 {
2047 	struct perf_session *session;
2048 	struct perf_evsel *evsel, *events = read_event_desc(ff);
2049 
2050 	if (!events)
2051 		return 0;
2052 
2053 	session = container_of(ff->ph, struct perf_session, header);
2054 
2055 	if (session->data->is_pipe) {
2056 		/* Save events for reading later by print_event_desc,
2057 		 * since they can't be read again in pipe mode. */
2058 		ff->events = events;
2059 	}
2060 
2061 	for (evsel = events; evsel->attr.size; evsel++)
2062 		perf_evlist__set_event_name(session->evlist, evsel);
2063 
2064 	if (!session->data->is_pipe)
2065 		free_event_desc(events);
2066 
2067 	return 0;
2068 }
2069 
2070 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2071 {
2072 	char *str, *cmdline = NULL, **argv = NULL;
2073 	u32 nr, i, len = 0;
2074 
2075 	if (do_read_u32(ff, &nr))
2076 		return -1;
2077 
2078 	ff->ph->env.nr_cmdline = nr;
2079 
2080 	cmdline = zalloc(ff->size + nr + 1);
2081 	if (!cmdline)
2082 		return -1;
2083 
2084 	argv = zalloc(sizeof(char *) * (nr + 1));
2085 	if (!argv)
2086 		goto error;
2087 
2088 	for (i = 0; i < nr; i++) {
2089 		str = do_read_string(ff);
2090 		if (!str)
2091 			goto error;
2092 
2093 		argv[i] = cmdline + len;
2094 		memcpy(argv[i], str, strlen(str) + 1);
2095 		len += strlen(str) + 1;
2096 		free(str);
2097 	}
2098 	ff->ph->env.cmdline = cmdline;
2099 	ff->ph->env.cmdline_argv = (const char **) argv;
2100 	return 0;
2101 
2102 error:
2103 	free(argv);
2104 	free(cmdline);
2105 	return -1;
2106 }
2107 
2108 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2109 {
2110 	u32 nr, i;
2111 	char *str;
2112 	struct strbuf sb;
2113 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2114 	u64 size = 0;
2115 	struct perf_header *ph = ff->ph;
2116 
2117 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2118 	if (!ph->env.cpu)
2119 		return -1;
2120 
2121 	if (do_read_u32(ff, &nr))
2122 		goto free_cpu;
2123 
2124 	ph->env.nr_sibling_cores = nr;
2125 	size += sizeof(u32);
2126 	if (strbuf_init(&sb, 128) < 0)
2127 		goto free_cpu;
2128 
2129 	for (i = 0; i < nr; i++) {
2130 		str = do_read_string(ff);
2131 		if (!str)
2132 			goto error;
2133 
2134 		/* include a NULL character at the end */
2135 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2136 			goto error;
2137 		size += string_size(str);
2138 		free(str);
2139 	}
2140 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2141 
2142 	if (do_read_u32(ff, &nr))
2143 		return -1;
2144 
2145 	ph->env.nr_sibling_threads = nr;
2146 	size += sizeof(u32);
2147 
2148 	for (i = 0; i < nr; i++) {
2149 		str = do_read_string(ff);
2150 		if (!str)
2151 			goto error;
2152 
2153 		/* include a NULL character at the end */
2154 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2155 			goto error;
2156 		size += string_size(str);
2157 		free(str);
2158 	}
2159 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2160 
2161 	/*
2162 	 * The header may be from old perf,
2163 	 * which doesn't include core id and socket id information.
2164 	 */
2165 	if (ff->size <= size) {
2166 		zfree(&ph->env.cpu);
2167 		return 0;
2168 	}
2169 
2170 	for (i = 0; i < (u32)cpu_nr; i++) {
2171 		if (do_read_u32(ff, &nr))
2172 			goto free_cpu;
2173 
2174 		ph->env.cpu[i].core_id = nr;
2175 
2176 		if (do_read_u32(ff, &nr))
2177 			goto free_cpu;
2178 
2179 		if (nr != (u32)-1 && nr > (u32)cpu_nr) {
2180 			pr_debug("socket_id number is too big."
2181 				 "You may need to upgrade the perf tool.\n");
2182 			goto free_cpu;
2183 		}
2184 
2185 		ph->env.cpu[i].socket_id = nr;
2186 	}
2187 
2188 	return 0;
2189 
2190 error:
2191 	strbuf_release(&sb);
2192 free_cpu:
2193 	zfree(&ph->env.cpu);
2194 	return -1;
2195 }
2196 
2197 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2198 {
2199 	struct numa_node *nodes, *n;
2200 	u32 nr, i;
2201 	char *str;
2202 
2203 	/* nr nodes */
2204 	if (do_read_u32(ff, &nr))
2205 		return -1;
2206 
2207 	nodes = zalloc(sizeof(*nodes) * nr);
2208 	if (!nodes)
2209 		return -ENOMEM;
2210 
2211 	for (i = 0; i < nr; i++) {
2212 		n = &nodes[i];
2213 
2214 		/* node number */
2215 		if (do_read_u32(ff, &n->node))
2216 			goto error;
2217 
2218 		if (do_read_u64(ff, &n->mem_total))
2219 			goto error;
2220 
2221 		if (do_read_u64(ff, &n->mem_free))
2222 			goto error;
2223 
2224 		str = do_read_string(ff);
2225 		if (!str)
2226 			goto error;
2227 
2228 		n->map = cpu_map__new(str);
2229 		if (!n->map)
2230 			goto error;
2231 
2232 		free(str);
2233 	}
2234 	ff->ph->env.nr_numa_nodes = nr;
2235 	ff->ph->env.numa_nodes = nodes;
2236 	return 0;
2237 
2238 error:
2239 	free(nodes);
2240 	return -1;
2241 }
2242 
2243 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2244 {
2245 	char *name;
2246 	u32 pmu_num;
2247 	u32 type;
2248 	struct strbuf sb;
2249 
2250 	if (do_read_u32(ff, &pmu_num))
2251 		return -1;
2252 
2253 	if (!pmu_num) {
2254 		pr_debug("pmu mappings not available\n");
2255 		return 0;
2256 	}
2257 
2258 	ff->ph->env.nr_pmu_mappings = pmu_num;
2259 	if (strbuf_init(&sb, 128) < 0)
2260 		return -1;
2261 
2262 	while (pmu_num) {
2263 		if (do_read_u32(ff, &type))
2264 			goto error;
2265 
2266 		name = do_read_string(ff);
2267 		if (!name)
2268 			goto error;
2269 
2270 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2271 			goto error;
2272 		/* include a NULL character at the end */
2273 		if (strbuf_add(&sb, "", 1) < 0)
2274 			goto error;
2275 
2276 		if (!strcmp(name, "msr"))
2277 			ff->ph->env.msr_pmu_type = type;
2278 
2279 		free(name);
2280 		pmu_num--;
2281 	}
2282 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2283 	return 0;
2284 
2285 error:
2286 	strbuf_release(&sb);
2287 	return -1;
2288 }
2289 
2290 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2291 {
2292 	size_t ret = -1;
2293 	u32 i, nr, nr_groups;
2294 	struct perf_session *session;
2295 	struct perf_evsel *evsel, *leader = NULL;
2296 	struct group_desc {
2297 		char *name;
2298 		u32 leader_idx;
2299 		u32 nr_members;
2300 	} *desc;
2301 
2302 	if (do_read_u32(ff, &nr_groups))
2303 		return -1;
2304 
2305 	ff->ph->env.nr_groups = nr_groups;
2306 	if (!nr_groups) {
2307 		pr_debug("group desc not available\n");
2308 		return 0;
2309 	}
2310 
2311 	desc = calloc(nr_groups, sizeof(*desc));
2312 	if (!desc)
2313 		return -1;
2314 
2315 	for (i = 0; i < nr_groups; i++) {
2316 		desc[i].name = do_read_string(ff);
2317 		if (!desc[i].name)
2318 			goto out_free;
2319 
2320 		if (do_read_u32(ff, &desc[i].leader_idx))
2321 			goto out_free;
2322 
2323 		if (do_read_u32(ff, &desc[i].nr_members))
2324 			goto out_free;
2325 	}
2326 
2327 	/*
2328 	 * Rebuild group relationship based on the group_desc
2329 	 */
2330 	session = container_of(ff->ph, struct perf_session, header);
2331 	session->evlist->nr_groups = nr_groups;
2332 
2333 	i = nr = 0;
2334 	evlist__for_each_entry(session->evlist, evsel) {
2335 		if (evsel->idx == (int) desc[i].leader_idx) {
2336 			evsel->leader = evsel;
2337 			/* {anon_group} is a dummy name */
2338 			if (strcmp(desc[i].name, "{anon_group}")) {
2339 				evsel->group_name = desc[i].name;
2340 				desc[i].name = NULL;
2341 			}
2342 			evsel->nr_members = desc[i].nr_members;
2343 
2344 			if (i >= nr_groups || nr > 0) {
2345 				pr_debug("invalid group desc\n");
2346 				goto out_free;
2347 			}
2348 
2349 			leader = evsel;
2350 			nr = evsel->nr_members - 1;
2351 			i++;
2352 		} else if (nr) {
2353 			/* This is a group member */
2354 			evsel->leader = leader;
2355 
2356 			nr--;
2357 		}
2358 	}
2359 
2360 	if (i != nr_groups || nr != 0) {
2361 		pr_debug("invalid group desc\n");
2362 		goto out_free;
2363 	}
2364 
2365 	ret = 0;
2366 out_free:
2367 	for (i = 0; i < nr_groups; i++)
2368 		zfree(&desc[i].name);
2369 	free(desc);
2370 
2371 	return ret;
2372 }
2373 
2374 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2375 {
2376 	struct perf_session *session;
2377 	int err;
2378 
2379 	session = container_of(ff->ph, struct perf_session, header);
2380 
2381 	err = auxtrace_index__process(ff->fd, ff->size, session,
2382 				      ff->ph->needs_swap);
2383 	if (err < 0)
2384 		pr_err("Failed to process auxtrace index\n");
2385 	return err;
2386 }
2387 
2388 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2389 {
2390 	struct cpu_cache_level *caches;
2391 	u32 cnt, i, version;
2392 
2393 	if (do_read_u32(ff, &version))
2394 		return -1;
2395 
2396 	if (version != 1)
2397 		return -1;
2398 
2399 	if (do_read_u32(ff, &cnt))
2400 		return -1;
2401 
2402 	caches = zalloc(sizeof(*caches) * cnt);
2403 	if (!caches)
2404 		return -1;
2405 
2406 	for (i = 0; i < cnt; i++) {
2407 		struct cpu_cache_level c;
2408 
2409 		#define _R(v)						\
2410 			if (do_read_u32(ff, &c.v))\
2411 				goto out_free_caches;			\
2412 
2413 		_R(level)
2414 		_R(line_size)
2415 		_R(sets)
2416 		_R(ways)
2417 		#undef _R
2418 
2419 		#define _R(v)					\
2420 			c.v = do_read_string(ff);		\
2421 			if (!c.v)				\
2422 				goto out_free_caches;
2423 
2424 		_R(type)
2425 		_R(size)
2426 		_R(map)
2427 		#undef _R
2428 
2429 		caches[i] = c;
2430 	}
2431 
2432 	ff->ph->env.caches = caches;
2433 	ff->ph->env.caches_cnt = cnt;
2434 	return 0;
2435 out_free_caches:
2436 	free(caches);
2437 	return -1;
2438 }
2439 
2440 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2441 {
2442 	struct perf_session *session;
2443 	u64 first_sample_time, last_sample_time;
2444 	int ret;
2445 
2446 	session = container_of(ff->ph, struct perf_session, header);
2447 
2448 	ret = do_read_u64(ff, &first_sample_time);
2449 	if (ret)
2450 		return -1;
2451 
2452 	ret = do_read_u64(ff, &last_sample_time);
2453 	if (ret)
2454 		return -1;
2455 
2456 	session->evlist->first_sample_time = first_sample_time;
2457 	session->evlist->last_sample_time = last_sample_time;
2458 	return 0;
2459 }
2460 
2461 static int process_mem_topology(struct feat_fd *ff,
2462 				void *data __maybe_unused)
2463 {
2464 	struct memory_node *nodes;
2465 	u64 version, i, nr, bsize;
2466 	int ret = -1;
2467 
2468 	if (do_read_u64(ff, &version))
2469 		return -1;
2470 
2471 	if (version != 1)
2472 		return -1;
2473 
2474 	if (do_read_u64(ff, &bsize))
2475 		return -1;
2476 
2477 	if (do_read_u64(ff, &nr))
2478 		return -1;
2479 
2480 	nodes = zalloc(sizeof(*nodes) * nr);
2481 	if (!nodes)
2482 		return -1;
2483 
2484 	for (i = 0; i < nr; i++) {
2485 		struct memory_node n;
2486 
2487 		#define _R(v)				\
2488 			if (do_read_u64(ff, &n.v))	\
2489 				goto out;		\
2490 
2491 		_R(node)
2492 		_R(size)
2493 
2494 		#undef _R
2495 
2496 		if (do_read_bitmap(ff, &n.set, &n.size))
2497 			goto out;
2498 
2499 		nodes[i] = n;
2500 	}
2501 
2502 	ff->ph->env.memory_bsize    = bsize;
2503 	ff->ph->env.memory_nodes    = nodes;
2504 	ff->ph->env.nr_memory_nodes = nr;
2505 	ret = 0;
2506 
2507 out:
2508 	if (ret)
2509 		free(nodes);
2510 	return ret;
2511 }
2512 
2513 struct feature_ops {
2514 	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2515 	void (*print)(struct feat_fd *ff, FILE *fp);
2516 	int (*process)(struct feat_fd *ff, void *data);
2517 	const char *name;
2518 	bool full_only;
2519 	bool synthesize;
2520 };
2521 
2522 #define FEAT_OPR(n, func, __full_only) \
2523 	[HEADER_##n] = {					\
2524 		.name	    = __stringify(n),			\
2525 		.write	    = write_##func,			\
2526 		.print	    = print_##func,			\
2527 		.full_only  = __full_only,			\
2528 		.process    = process_##func,			\
2529 		.synthesize = true				\
2530 	}
2531 
2532 #define FEAT_OPN(n, func, __full_only) \
2533 	[HEADER_##n] = {					\
2534 		.name	    = __stringify(n),			\
2535 		.write	    = write_##func,			\
2536 		.print	    = print_##func,			\
2537 		.full_only  = __full_only,			\
2538 		.process    = process_##func			\
2539 	}
2540 
2541 /* feature_ops not implemented: */
2542 #define print_tracing_data	NULL
2543 #define print_build_id		NULL
2544 
2545 #define process_branch_stack	NULL
2546 #define process_stat		NULL
2547 
2548 
2549 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2550 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2551 	FEAT_OPN(BUILD_ID,	build_id,	false),
2552 	FEAT_OPR(HOSTNAME,	hostname,	false),
2553 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2554 	FEAT_OPR(VERSION,	version,	false),
2555 	FEAT_OPR(ARCH,		arch,		false),
2556 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2557 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2558 	FEAT_OPR(CPUID,		cpuid,		false),
2559 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2560 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2561 	FEAT_OPR(CMDLINE,	cmdline,	false),
2562 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2563 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2564 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2565 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2566 	FEAT_OPN(GROUP_DESC,	group_desc,	false),
2567 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2568 	FEAT_OPN(STAT,		stat,		false),
2569 	FEAT_OPN(CACHE,		cache,		true),
2570 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2571 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2572 };
2573 
2574 struct header_print_data {
2575 	FILE *fp;
2576 	bool full; /* extended list of headers */
2577 };
2578 
2579 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2580 					   struct perf_header *ph,
2581 					   int feat, int fd, void *data)
2582 {
2583 	struct header_print_data *hd = data;
2584 	struct feat_fd ff;
2585 
2586 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2587 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2588 				"%d, continuing...\n", section->offset, feat);
2589 		return 0;
2590 	}
2591 	if (feat >= HEADER_LAST_FEATURE) {
2592 		pr_warning("unknown feature %d\n", feat);
2593 		return 0;
2594 	}
2595 	if (!feat_ops[feat].print)
2596 		return 0;
2597 
2598 	ff = (struct  feat_fd) {
2599 		.fd = fd,
2600 		.ph = ph,
2601 	};
2602 
2603 	if (!feat_ops[feat].full_only || hd->full)
2604 		feat_ops[feat].print(&ff, hd->fp);
2605 	else
2606 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2607 			feat_ops[feat].name);
2608 
2609 	return 0;
2610 }
2611 
2612 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2613 {
2614 	struct header_print_data hd;
2615 	struct perf_header *header = &session->header;
2616 	int fd = perf_data__fd(session->data);
2617 	struct stat st;
2618 	int ret, bit;
2619 
2620 	hd.fp = fp;
2621 	hd.full = full;
2622 
2623 	ret = fstat(fd, &st);
2624 	if (ret == -1)
2625 		return -1;
2626 
2627 	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2628 
2629 	fprintf(fp, "# header version : %u\n", header->version);
2630 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2631 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2632 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2633 
2634 	perf_header__process_sections(header, fd, &hd,
2635 				      perf_file_section__fprintf_info);
2636 
2637 	if (session->data->is_pipe)
2638 		return 0;
2639 
2640 	fprintf(fp, "# missing features: ");
2641 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2642 		if (bit)
2643 			fprintf(fp, "%s ", feat_ops[bit].name);
2644 	}
2645 
2646 	fprintf(fp, "\n");
2647 	return 0;
2648 }
2649 
2650 static int do_write_feat(struct feat_fd *ff, int type,
2651 			 struct perf_file_section **p,
2652 			 struct perf_evlist *evlist)
2653 {
2654 	int err;
2655 	int ret = 0;
2656 
2657 	if (perf_header__has_feat(ff->ph, type)) {
2658 		if (!feat_ops[type].write)
2659 			return -1;
2660 
2661 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2662 			return -1;
2663 
2664 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2665 
2666 		err = feat_ops[type].write(ff, evlist);
2667 		if (err < 0) {
2668 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2669 
2670 			/* undo anything written */
2671 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2672 
2673 			return -1;
2674 		}
2675 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2676 		(*p)++;
2677 	}
2678 	return ret;
2679 }
2680 
2681 static int perf_header__adds_write(struct perf_header *header,
2682 				   struct perf_evlist *evlist, int fd)
2683 {
2684 	int nr_sections;
2685 	struct feat_fd ff;
2686 	struct perf_file_section *feat_sec, *p;
2687 	int sec_size;
2688 	u64 sec_start;
2689 	int feat;
2690 	int err;
2691 
2692 	ff = (struct feat_fd){
2693 		.fd  = fd,
2694 		.ph = header,
2695 	};
2696 
2697 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2698 	if (!nr_sections)
2699 		return 0;
2700 
2701 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2702 	if (feat_sec == NULL)
2703 		return -ENOMEM;
2704 
2705 	sec_size = sizeof(*feat_sec) * nr_sections;
2706 
2707 	sec_start = header->feat_offset;
2708 	lseek(fd, sec_start + sec_size, SEEK_SET);
2709 
2710 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2711 		if (do_write_feat(&ff, feat, &p, evlist))
2712 			perf_header__clear_feat(header, feat);
2713 	}
2714 
2715 	lseek(fd, sec_start, SEEK_SET);
2716 	/*
2717 	 * may write more than needed due to dropped feature, but
2718 	 * this is okay, reader will skip the mising entries
2719 	 */
2720 	err = do_write(&ff, feat_sec, sec_size);
2721 	if (err < 0)
2722 		pr_debug("failed to write feature section\n");
2723 	free(feat_sec);
2724 	return err;
2725 }
2726 
2727 int perf_header__write_pipe(int fd)
2728 {
2729 	struct perf_pipe_file_header f_header;
2730 	struct feat_fd ff;
2731 	int err;
2732 
2733 	ff = (struct feat_fd){ .fd = fd };
2734 
2735 	f_header = (struct perf_pipe_file_header){
2736 		.magic	   = PERF_MAGIC,
2737 		.size	   = sizeof(f_header),
2738 	};
2739 
2740 	err = do_write(&ff, &f_header, sizeof(f_header));
2741 	if (err < 0) {
2742 		pr_debug("failed to write perf pipe header\n");
2743 		return err;
2744 	}
2745 
2746 	return 0;
2747 }
2748 
2749 int perf_session__write_header(struct perf_session *session,
2750 			       struct perf_evlist *evlist,
2751 			       int fd, bool at_exit)
2752 {
2753 	struct perf_file_header f_header;
2754 	struct perf_file_attr   f_attr;
2755 	struct perf_header *header = &session->header;
2756 	struct perf_evsel *evsel;
2757 	struct feat_fd ff;
2758 	u64 attr_offset;
2759 	int err;
2760 
2761 	ff = (struct feat_fd){ .fd = fd};
2762 	lseek(fd, sizeof(f_header), SEEK_SET);
2763 
2764 	evlist__for_each_entry(session->evlist, evsel) {
2765 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2766 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2767 		if (err < 0) {
2768 			pr_debug("failed to write perf header\n");
2769 			return err;
2770 		}
2771 	}
2772 
2773 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2774 
2775 	evlist__for_each_entry(evlist, evsel) {
2776 		f_attr = (struct perf_file_attr){
2777 			.attr = evsel->attr,
2778 			.ids  = {
2779 				.offset = evsel->id_offset,
2780 				.size   = evsel->ids * sizeof(u64),
2781 			}
2782 		};
2783 		err = do_write(&ff, &f_attr, sizeof(f_attr));
2784 		if (err < 0) {
2785 			pr_debug("failed to write perf header attribute\n");
2786 			return err;
2787 		}
2788 	}
2789 
2790 	if (!header->data_offset)
2791 		header->data_offset = lseek(fd, 0, SEEK_CUR);
2792 	header->feat_offset = header->data_offset + header->data_size;
2793 
2794 	if (at_exit) {
2795 		err = perf_header__adds_write(header, evlist, fd);
2796 		if (err < 0)
2797 			return err;
2798 	}
2799 
2800 	f_header = (struct perf_file_header){
2801 		.magic	   = PERF_MAGIC,
2802 		.size	   = sizeof(f_header),
2803 		.attr_size = sizeof(f_attr),
2804 		.attrs = {
2805 			.offset = attr_offset,
2806 			.size   = evlist->nr_entries * sizeof(f_attr),
2807 		},
2808 		.data = {
2809 			.offset = header->data_offset,
2810 			.size	= header->data_size,
2811 		},
2812 		/* event_types is ignored, store zeros */
2813 	};
2814 
2815 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2816 
2817 	lseek(fd, 0, SEEK_SET);
2818 	err = do_write(&ff, &f_header, sizeof(f_header));
2819 	if (err < 0) {
2820 		pr_debug("failed to write perf header\n");
2821 		return err;
2822 	}
2823 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2824 
2825 	return 0;
2826 }
2827 
2828 static int perf_header__getbuffer64(struct perf_header *header,
2829 				    int fd, void *buf, size_t size)
2830 {
2831 	if (readn(fd, buf, size) <= 0)
2832 		return -1;
2833 
2834 	if (header->needs_swap)
2835 		mem_bswap_64(buf, size);
2836 
2837 	return 0;
2838 }
2839 
2840 int perf_header__process_sections(struct perf_header *header, int fd,
2841 				  void *data,
2842 				  int (*process)(struct perf_file_section *section,
2843 						 struct perf_header *ph,
2844 						 int feat, int fd, void *data))
2845 {
2846 	struct perf_file_section *feat_sec, *sec;
2847 	int nr_sections;
2848 	int sec_size;
2849 	int feat;
2850 	int err;
2851 
2852 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2853 	if (!nr_sections)
2854 		return 0;
2855 
2856 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2857 	if (!feat_sec)
2858 		return -1;
2859 
2860 	sec_size = sizeof(*feat_sec) * nr_sections;
2861 
2862 	lseek(fd, header->feat_offset, SEEK_SET);
2863 
2864 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2865 	if (err < 0)
2866 		goto out_free;
2867 
2868 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2869 		err = process(sec++, header, feat, fd, data);
2870 		if (err < 0)
2871 			goto out_free;
2872 	}
2873 	err = 0;
2874 out_free:
2875 	free(feat_sec);
2876 	return err;
2877 }
2878 
2879 static const int attr_file_abi_sizes[] = {
2880 	[0] = PERF_ATTR_SIZE_VER0,
2881 	[1] = PERF_ATTR_SIZE_VER1,
2882 	[2] = PERF_ATTR_SIZE_VER2,
2883 	[3] = PERF_ATTR_SIZE_VER3,
2884 	[4] = PERF_ATTR_SIZE_VER4,
2885 	0,
2886 };
2887 
2888 /*
2889  * In the legacy file format, the magic number is not used to encode endianness.
2890  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2891  * on ABI revisions, we need to try all combinations for all endianness to
2892  * detect the endianness.
2893  */
2894 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2895 {
2896 	uint64_t ref_size, attr_size;
2897 	int i;
2898 
2899 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2900 		ref_size = attr_file_abi_sizes[i]
2901 			 + sizeof(struct perf_file_section);
2902 		if (hdr_sz != ref_size) {
2903 			attr_size = bswap_64(hdr_sz);
2904 			if (attr_size != ref_size)
2905 				continue;
2906 
2907 			ph->needs_swap = true;
2908 		}
2909 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2910 			 i,
2911 			 ph->needs_swap);
2912 		return 0;
2913 	}
2914 	/* could not determine endianness */
2915 	return -1;
2916 }
2917 
2918 #define PERF_PIPE_HDR_VER0	16
2919 
2920 static const size_t attr_pipe_abi_sizes[] = {
2921 	[0] = PERF_PIPE_HDR_VER0,
2922 	0,
2923 };
2924 
2925 /*
2926  * In the legacy pipe format, there is an implicit assumption that endiannesss
2927  * between host recording the samples, and host parsing the samples is the
2928  * same. This is not always the case given that the pipe output may always be
2929  * redirected into a file and analyzed on a different machine with possibly a
2930  * different endianness and perf_event ABI revsions in the perf tool itself.
2931  */
2932 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2933 {
2934 	u64 attr_size;
2935 	int i;
2936 
2937 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2938 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2939 			attr_size = bswap_64(hdr_sz);
2940 			if (attr_size != hdr_sz)
2941 				continue;
2942 
2943 			ph->needs_swap = true;
2944 		}
2945 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2946 		return 0;
2947 	}
2948 	return -1;
2949 }
2950 
2951 bool is_perf_magic(u64 magic)
2952 {
2953 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2954 		|| magic == __perf_magic2
2955 		|| magic == __perf_magic2_sw)
2956 		return true;
2957 
2958 	return false;
2959 }
2960 
2961 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2962 			      bool is_pipe, struct perf_header *ph)
2963 {
2964 	int ret;
2965 
2966 	/* check for legacy format */
2967 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2968 	if (ret == 0) {
2969 		ph->version = PERF_HEADER_VERSION_1;
2970 		pr_debug("legacy perf.data format\n");
2971 		if (is_pipe)
2972 			return try_all_pipe_abis(hdr_sz, ph);
2973 
2974 		return try_all_file_abis(hdr_sz, ph);
2975 	}
2976 	/*
2977 	 * the new magic number serves two purposes:
2978 	 * - unique number to identify actual perf.data files
2979 	 * - encode endianness of file
2980 	 */
2981 	ph->version = PERF_HEADER_VERSION_2;
2982 
2983 	/* check magic number with one endianness */
2984 	if (magic == __perf_magic2)
2985 		return 0;
2986 
2987 	/* check magic number with opposite endianness */
2988 	if (magic != __perf_magic2_sw)
2989 		return -1;
2990 
2991 	ph->needs_swap = true;
2992 
2993 	return 0;
2994 }
2995 
2996 int perf_file_header__read(struct perf_file_header *header,
2997 			   struct perf_header *ph, int fd)
2998 {
2999 	ssize_t ret;
3000 
3001 	lseek(fd, 0, SEEK_SET);
3002 
3003 	ret = readn(fd, header, sizeof(*header));
3004 	if (ret <= 0)
3005 		return -1;
3006 
3007 	if (check_magic_endian(header->magic,
3008 			       header->attr_size, false, ph) < 0) {
3009 		pr_debug("magic/endian check failed\n");
3010 		return -1;
3011 	}
3012 
3013 	if (ph->needs_swap) {
3014 		mem_bswap_64(header, offsetof(struct perf_file_header,
3015 			     adds_features));
3016 	}
3017 
3018 	if (header->size != sizeof(*header)) {
3019 		/* Support the previous format */
3020 		if (header->size == offsetof(typeof(*header), adds_features))
3021 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3022 		else
3023 			return -1;
3024 	} else if (ph->needs_swap) {
3025 		/*
3026 		 * feature bitmap is declared as an array of unsigned longs --
3027 		 * not good since its size can differ between the host that
3028 		 * generated the data file and the host analyzing the file.
3029 		 *
3030 		 * We need to handle endianness, but we don't know the size of
3031 		 * the unsigned long where the file was generated. Take a best
3032 		 * guess at determining it: try 64-bit swap first (ie., file
3033 		 * created on a 64-bit host), and check if the hostname feature
3034 		 * bit is set (this feature bit is forced on as of fbe96f2).
3035 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3036 		 * swap. If the hostname bit is still not set (e.g., older data
3037 		 * file), punt and fallback to the original behavior --
3038 		 * clearing all feature bits and setting buildid.
3039 		 */
3040 		mem_bswap_64(&header->adds_features,
3041 			    BITS_TO_U64(HEADER_FEAT_BITS));
3042 
3043 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3044 			/* unswap as u64 */
3045 			mem_bswap_64(&header->adds_features,
3046 				    BITS_TO_U64(HEADER_FEAT_BITS));
3047 
3048 			/* unswap as u32 */
3049 			mem_bswap_32(&header->adds_features,
3050 				    BITS_TO_U32(HEADER_FEAT_BITS));
3051 		}
3052 
3053 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3054 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3055 			set_bit(HEADER_BUILD_ID, header->adds_features);
3056 		}
3057 	}
3058 
3059 	memcpy(&ph->adds_features, &header->adds_features,
3060 	       sizeof(ph->adds_features));
3061 
3062 	ph->data_offset  = header->data.offset;
3063 	ph->data_size	 = header->data.size;
3064 	ph->feat_offset  = header->data.offset + header->data.size;
3065 	return 0;
3066 }
3067 
3068 static int perf_file_section__process(struct perf_file_section *section,
3069 				      struct perf_header *ph,
3070 				      int feat, int fd, void *data)
3071 {
3072 	struct feat_fd fdd = {
3073 		.fd	= fd,
3074 		.ph	= ph,
3075 		.size	= section->size,
3076 		.offset	= section->offset,
3077 	};
3078 
3079 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3080 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3081 			  "%d, continuing...\n", section->offset, feat);
3082 		return 0;
3083 	}
3084 
3085 	if (feat >= HEADER_LAST_FEATURE) {
3086 		pr_debug("unknown feature %d, continuing...\n", feat);
3087 		return 0;
3088 	}
3089 
3090 	if (!feat_ops[feat].process)
3091 		return 0;
3092 
3093 	return feat_ops[feat].process(&fdd, data);
3094 }
3095 
3096 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3097 				       struct perf_header *ph, int fd,
3098 				       bool repipe)
3099 {
3100 	struct feat_fd ff = {
3101 		.fd = STDOUT_FILENO,
3102 		.ph = ph,
3103 	};
3104 	ssize_t ret;
3105 
3106 	ret = readn(fd, header, sizeof(*header));
3107 	if (ret <= 0)
3108 		return -1;
3109 
3110 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3111 		pr_debug("endian/magic failed\n");
3112 		return -1;
3113 	}
3114 
3115 	if (ph->needs_swap)
3116 		header->size = bswap_64(header->size);
3117 
3118 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3119 		return -1;
3120 
3121 	return 0;
3122 }
3123 
3124 static int perf_header__read_pipe(struct perf_session *session)
3125 {
3126 	struct perf_header *header = &session->header;
3127 	struct perf_pipe_file_header f_header;
3128 
3129 	if (perf_file_header__read_pipe(&f_header, header,
3130 					perf_data__fd(session->data),
3131 					session->repipe) < 0) {
3132 		pr_debug("incompatible file format\n");
3133 		return -EINVAL;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
3139 static int read_attr(int fd, struct perf_header *ph,
3140 		     struct perf_file_attr *f_attr)
3141 {
3142 	struct perf_event_attr *attr = &f_attr->attr;
3143 	size_t sz, left;
3144 	size_t our_sz = sizeof(f_attr->attr);
3145 	ssize_t ret;
3146 
3147 	memset(f_attr, 0, sizeof(*f_attr));
3148 
3149 	/* read minimal guaranteed structure */
3150 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3151 	if (ret <= 0) {
3152 		pr_debug("cannot read %d bytes of header attr\n",
3153 			 PERF_ATTR_SIZE_VER0);
3154 		return -1;
3155 	}
3156 
3157 	/* on file perf_event_attr size */
3158 	sz = attr->size;
3159 
3160 	if (ph->needs_swap)
3161 		sz = bswap_32(sz);
3162 
3163 	if (sz == 0) {
3164 		/* assume ABI0 */
3165 		sz =  PERF_ATTR_SIZE_VER0;
3166 	} else if (sz > our_sz) {
3167 		pr_debug("file uses a more recent and unsupported ABI"
3168 			 " (%zu bytes extra)\n", sz - our_sz);
3169 		return -1;
3170 	}
3171 	/* what we have not yet read and that we know about */
3172 	left = sz - PERF_ATTR_SIZE_VER0;
3173 	if (left) {
3174 		void *ptr = attr;
3175 		ptr += PERF_ATTR_SIZE_VER0;
3176 
3177 		ret = readn(fd, ptr, left);
3178 	}
3179 	/* read perf_file_section, ids are read in caller */
3180 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3181 
3182 	return ret <= 0 ? -1 : 0;
3183 }
3184 
3185 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3186 						struct pevent *pevent)
3187 {
3188 	struct event_format *event;
3189 	char bf[128];
3190 
3191 	/* already prepared */
3192 	if (evsel->tp_format)
3193 		return 0;
3194 
3195 	if (pevent == NULL) {
3196 		pr_debug("broken or missing trace data\n");
3197 		return -1;
3198 	}
3199 
3200 	event = pevent_find_event(pevent, evsel->attr.config);
3201 	if (event == NULL) {
3202 		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3203 		return -1;
3204 	}
3205 
3206 	if (!evsel->name) {
3207 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3208 		evsel->name = strdup(bf);
3209 		if (evsel->name == NULL)
3210 			return -1;
3211 	}
3212 
3213 	evsel->tp_format = event;
3214 	return 0;
3215 }
3216 
3217 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3218 						  struct pevent *pevent)
3219 {
3220 	struct perf_evsel *pos;
3221 
3222 	evlist__for_each_entry(evlist, pos) {
3223 		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3224 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3225 			return -1;
3226 	}
3227 
3228 	return 0;
3229 }
3230 
3231 int perf_session__read_header(struct perf_session *session)
3232 {
3233 	struct perf_data *data = session->data;
3234 	struct perf_header *header = &session->header;
3235 	struct perf_file_header	f_header;
3236 	struct perf_file_attr	f_attr;
3237 	u64			f_id;
3238 	int nr_attrs, nr_ids, i, j;
3239 	int fd = perf_data__fd(data);
3240 
3241 	session->evlist = perf_evlist__new();
3242 	if (session->evlist == NULL)
3243 		return -ENOMEM;
3244 
3245 	session->evlist->env = &header->env;
3246 	session->machines.host.env = &header->env;
3247 	if (perf_data__is_pipe(data))
3248 		return perf_header__read_pipe(session);
3249 
3250 	if (perf_file_header__read(&f_header, header, fd) < 0)
3251 		return -EINVAL;
3252 
3253 	/*
3254 	 * Sanity check that perf.data was written cleanly; data size is
3255 	 * initialized to 0 and updated only if the on_exit function is run.
3256 	 * If data size is still 0 then the file contains only partial
3257 	 * information.  Just warn user and process it as much as it can.
3258 	 */
3259 	if (f_header.data.size == 0) {
3260 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3261 			   "Was the 'perf record' command properly terminated?\n",
3262 			   data->file.path);
3263 	}
3264 
3265 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3266 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3267 
3268 	for (i = 0; i < nr_attrs; i++) {
3269 		struct perf_evsel *evsel;
3270 		off_t tmp;
3271 
3272 		if (read_attr(fd, header, &f_attr) < 0)
3273 			goto out_errno;
3274 
3275 		if (header->needs_swap) {
3276 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3277 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3278 			perf_event__attr_swap(&f_attr.attr);
3279 		}
3280 
3281 		tmp = lseek(fd, 0, SEEK_CUR);
3282 		evsel = perf_evsel__new(&f_attr.attr);
3283 
3284 		if (evsel == NULL)
3285 			goto out_delete_evlist;
3286 
3287 		evsel->needs_swap = header->needs_swap;
3288 		/*
3289 		 * Do it before so that if perf_evsel__alloc_id fails, this
3290 		 * entry gets purged too at perf_evlist__delete().
3291 		 */
3292 		perf_evlist__add(session->evlist, evsel);
3293 
3294 		nr_ids = f_attr.ids.size / sizeof(u64);
3295 		/*
3296 		 * We don't have the cpu and thread maps on the header, so
3297 		 * for allocating the perf_sample_id table we fake 1 cpu and
3298 		 * hattr->ids threads.
3299 		 */
3300 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3301 			goto out_delete_evlist;
3302 
3303 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3304 
3305 		for (j = 0; j < nr_ids; j++) {
3306 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3307 				goto out_errno;
3308 
3309 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3310 		}
3311 
3312 		lseek(fd, tmp, SEEK_SET);
3313 	}
3314 
3315 	symbol_conf.nr_events = nr_attrs;
3316 
3317 	perf_header__process_sections(header, fd, &session->tevent,
3318 				      perf_file_section__process);
3319 
3320 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3321 						   session->tevent.pevent))
3322 		goto out_delete_evlist;
3323 
3324 	return 0;
3325 out_errno:
3326 	return -errno;
3327 
3328 out_delete_evlist:
3329 	perf_evlist__delete(session->evlist);
3330 	session->evlist = NULL;
3331 	return -ENOMEM;
3332 }
3333 
3334 int perf_event__synthesize_attr(struct perf_tool *tool,
3335 				struct perf_event_attr *attr, u32 ids, u64 *id,
3336 				perf_event__handler_t process)
3337 {
3338 	union perf_event *ev;
3339 	size_t size;
3340 	int err;
3341 
3342 	size = sizeof(struct perf_event_attr);
3343 	size = PERF_ALIGN(size, sizeof(u64));
3344 	size += sizeof(struct perf_event_header);
3345 	size += ids * sizeof(u64);
3346 
3347 	ev = malloc(size);
3348 
3349 	if (ev == NULL)
3350 		return -ENOMEM;
3351 
3352 	ev->attr.attr = *attr;
3353 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3354 
3355 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3356 	ev->attr.header.size = (u16)size;
3357 
3358 	if (ev->attr.header.size == size)
3359 		err = process(tool, ev, NULL, NULL);
3360 	else
3361 		err = -E2BIG;
3362 
3363 	free(ev);
3364 
3365 	return err;
3366 }
3367 
3368 int perf_event__synthesize_features(struct perf_tool *tool,
3369 				    struct perf_session *session,
3370 				    struct perf_evlist *evlist,
3371 				    perf_event__handler_t process)
3372 {
3373 	struct perf_header *header = &session->header;
3374 	struct feat_fd ff;
3375 	struct feature_event *fe;
3376 	size_t sz, sz_hdr;
3377 	int feat, ret;
3378 
3379 	sz_hdr = sizeof(fe->header);
3380 	sz = sizeof(union perf_event);
3381 	/* get a nice alignment */
3382 	sz = PERF_ALIGN(sz, page_size);
3383 
3384 	memset(&ff, 0, sizeof(ff));
3385 
3386 	ff.buf = malloc(sz);
3387 	if (!ff.buf)
3388 		return -ENOMEM;
3389 
3390 	ff.size = sz - sz_hdr;
3391 
3392 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3393 		if (!feat_ops[feat].synthesize) {
3394 			pr_debug("No record header feature for header :%d\n", feat);
3395 			continue;
3396 		}
3397 
3398 		ff.offset = sizeof(*fe);
3399 
3400 		ret = feat_ops[feat].write(&ff, evlist);
3401 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3402 			pr_debug("Error writing feature\n");
3403 			continue;
3404 		}
3405 		/* ff.buf may have changed due to realloc in do_write() */
3406 		fe = ff.buf;
3407 		memset(fe, 0, sizeof(*fe));
3408 
3409 		fe->feat_id = feat;
3410 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3411 		fe->header.size = ff.offset;
3412 
3413 		ret = process(tool, ff.buf, NULL, NULL);
3414 		if (ret) {
3415 			free(ff.buf);
3416 			return ret;
3417 		}
3418 	}
3419 
3420 	/* Send HEADER_LAST_FEATURE mark. */
3421 	fe = ff.buf;
3422 	fe->feat_id     = HEADER_LAST_FEATURE;
3423 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3424 	fe->header.size = sizeof(*fe);
3425 
3426 	ret = process(tool, ff.buf, NULL, NULL);
3427 
3428 	free(ff.buf);
3429 	return ret;
3430 }
3431 
3432 int perf_event__process_feature(struct perf_tool *tool,
3433 				union perf_event *event,
3434 				struct perf_session *session __maybe_unused)
3435 {
3436 	struct feat_fd ff = { .fd = 0 };
3437 	struct feature_event *fe = (struct feature_event *)event;
3438 	int type = fe->header.type;
3439 	u64 feat = fe->feat_id;
3440 
3441 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3442 		pr_warning("invalid record type %d in pipe-mode\n", type);
3443 		return 0;
3444 	}
3445 	if (feat == HEADER_RESERVED || feat > HEADER_LAST_FEATURE) {
3446 		pr_warning("invalid record type %d in pipe-mode\n", type);
3447 		return -1;
3448 	}
3449 
3450 	if (!feat_ops[feat].process)
3451 		return 0;
3452 
3453 	ff.buf  = (void *)fe->data;
3454 	ff.size = event->header.size - sizeof(event->header);
3455 	ff.ph = &session->header;
3456 
3457 	if (feat_ops[feat].process(&ff, NULL))
3458 		return -1;
3459 
3460 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3461 		return 0;
3462 
3463 	if (!feat_ops[feat].full_only ||
3464 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3465 		feat_ops[feat].print(&ff, stdout);
3466 	} else {
3467 		fprintf(stdout, "# %s info available, use -I to display\n",
3468 			feat_ops[feat].name);
3469 	}
3470 
3471 	return 0;
3472 }
3473 
3474 static struct event_update_event *
3475 event_update_event__new(size_t size, u64 type, u64 id)
3476 {
3477 	struct event_update_event *ev;
3478 
3479 	size += sizeof(*ev);
3480 	size  = PERF_ALIGN(size, sizeof(u64));
3481 
3482 	ev = zalloc(size);
3483 	if (ev) {
3484 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3485 		ev->header.size = (u16)size;
3486 		ev->type = type;
3487 		ev->id = id;
3488 	}
3489 	return ev;
3490 }
3491 
3492 int
3493 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3494 					 struct perf_evsel *evsel,
3495 					 perf_event__handler_t process)
3496 {
3497 	struct event_update_event *ev;
3498 	size_t size = strlen(evsel->unit);
3499 	int err;
3500 
3501 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3502 	if (ev == NULL)
3503 		return -ENOMEM;
3504 
3505 	strncpy(ev->data, evsel->unit, size);
3506 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3507 	free(ev);
3508 	return err;
3509 }
3510 
3511 int
3512 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3513 					  struct perf_evsel *evsel,
3514 					  perf_event__handler_t process)
3515 {
3516 	struct event_update_event *ev;
3517 	struct event_update_event_scale *ev_data;
3518 	int err;
3519 
3520 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3521 	if (ev == NULL)
3522 		return -ENOMEM;
3523 
3524 	ev_data = (struct event_update_event_scale *) ev->data;
3525 	ev_data->scale = evsel->scale;
3526 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3527 	free(ev);
3528 	return err;
3529 }
3530 
3531 int
3532 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3533 					 struct perf_evsel *evsel,
3534 					 perf_event__handler_t process)
3535 {
3536 	struct event_update_event *ev;
3537 	size_t len = strlen(evsel->name);
3538 	int err;
3539 
3540 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3541 	if (ev == NULL)
3542 		return -ENOMEM;
3543 
3544 	strncpy(ev->data, evsel->name, len);
3545 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3546 	free(ev);
3547 	return err;
3548 }
3549 
3550 int
3551 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3552 					struct perf_evsel *evsel,
3553 					perf_event__handler_t process)
3554 {
3555 	size_t size = sizeof(struct event_update_event);
3556 	struct event_update_event *ev;
3557 	int max, err;
3558 	u16 type;
3559 
3560 	if (!evsel->own_cpus)
3561 		return 0;
3562 
3563 	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3564 	if (!ev)
3565 		return -ENOMEM;
3566 
3567 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3568 	ev->header.size = (u16)size;
3569 	ev->type = PERF_EVENT_UPDATE__CPUS;
3570 	ev->id   = evsel->id[0];
3571 
3572 	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3573 				 evsel->own_cpus,
3574 				 type, max);
3575 
3576 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3577 	free(ev);
3578 	return err;
3579 }
3580 
3581 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3582 {
3583 	struct event_update_event *ev = &event->event_update;
3584 	struct event_update_event_scale *ev_scale;
3585 	struct event_update_event_cpus *ev_cpus;
3586 	struct cpu_map *map;
3587 	size_t ret;
3588 
3589 	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3590 
3591 	switch (ev->type) {
3592 	case PERF_EVENT_UPDATE__SCALE:
3593 		ev_scale = (struct event_update_event_scale *) ev->data;
3594 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3595 		break;
3596 	case PERF_EVENT_UPDATE__UNIT:
3597 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3598 		break;
3599 	case PERF_EVENT_UPDATE__NAME:
3600 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3601 		break;
3602 	case PERF_EVENT_UPDATE__CPUS:
3603 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3604 		ret += fprintf(fp, "... ");
3605 
3606 		map = cpu_map__new_data(&ev_cpus->cpus);
3607 		if (map)
3608 			ret += cpu_map__fprintf(map, fp);
3609 		else
3610 			ret += fprintf(fp, "failed to get cpus\n");
3611 		break;
3612 	default:
3613 		ret += fprintf(fp, "... unknown type\n");
3614 		break;
3615 	}
3616 
3617 	return ret;
3618 }
3619 
3620 int perf_event__synthesize_attrs(struct perf_tool *tool,
3621 				   struct perf_session *session,
3622 				   perf_event__handler_t process)
3623 {
3624 	struct perf_evsel *evsel;
3625 	int err = 0;
3626 
3627 	evlist__for_each_entry(session->evlist, evsel) {
3628 		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3629 						  evsel->id, process);
3630 		if (err) {
3631 			pr_debug("failed to create perf header attribute\n");
3632 			return err;
3633 		}
3634 	}
3635 
3636 	return err;
3637 }
3638 
3639 static bool has_unit(struct perf_evsel *counter)
3640 {
3641 	return counter->unit && *counter->unit;
3642 }
3643 
3644 static bool has_scale(struct perf_evsel *counter)
3645 {
3646 	return counter->scale != 1;
3647 }
3648 
3649 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3650 				      struct perf_evlist *evsel_list,
3651 				      perf_event__handler_t process,
3652 				      bool is_pipe)
3653 {
3654 	struct perf_evsel *counter;
3655 	int err;
3656 
3657 	/*
3658 	 * Synthesize other events stuff not carried within
3659 	 * attr event - unit, scale, name
3660 	 */
3661 	evlist__for_each_entry(evsel_list, counter) {
3662 		if (!counter->supported)
3663 			continue;
3664 
3665 		/*
3666 		 * Synthesize unit and scale only if it's defined.
3667 		 */
3668 		if (has_unit(counter)) {
3669 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3670 			if (err < 0) {
3671 				pr_err("Couldn't synthesize evsel unit.\n");
3672 				return err;
3673 			}
3674 		}
3675 
3676 		if (has_scale(counter)) {
3677 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3678 			if (err < 0) {
3679 				pr_err("Couldn't synthesize evsel counter.\n");
3680 				return err;
3681 			}
3682 		}
3683 
3684 		if (counter->own_cpus) {
3685 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3686 			if (err < 0) {
3687 				pr_err("Couldn't synthesize evsel cpus.\n");
3688 				return err;
3689 			}
3690 		}
3691 
3692 		/*
3693 		 * Name is needed only for pipe output,
3694 		 * perf.data carries event names.
3695 		 */
3696 		if (is_pipe) {
3697 			err = perf_event__synthesize_event_update_name(tool, counter, process);
3698 			if (err < 0) {
3699 				pr_err("Couldn't synthesize evsel name.\n");
3700 				return err;
3701 			}
3702 		}
3703 	}
3704 	return 0;
3705 }
3706 
3707 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3708 			     union perf_event *event,
3709 			     struct perf_evlist **pevlist)
3710 {
3711 	u32 i, ids, n_ids;
3712 	struct perf_evsel *evsel;
3713 	struct perf_evlist *evlist = *pevlist;
3714 
3715 	if (evlist == NULL) {
3716 		*pevlist = evlist = perf_evlist__new();
3717 		if (evlist == NULL)
3718 			return -ENOMEM;
3719 	}
3720 
3721 	evsel = perf_evsel__new(&event->attr.attr);
3722 	if (evsel == NULL)
3723 		return -ENOMEM;
3724 
3725 	perf_evlist__add(evlist, evsel);
3726 
3727 	ids = event->header.size;
3728 	ids -= (void *)&event->attr.id - (void *)event;
3729 	n_ids = ids / sizeof(u64);
3730 	/*
3731 	 * We don't have the cpu and thread maps on the header, so
3732 	 * for allocating the perf_sample_id table we fake 1 cpu and
3733 	 * hattr->ids threads.
3734 	 */
3735 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3736 		return -ENOMEM;
3737 
3738 	for (i = 0; i < n_ids; i++) {
3739 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3740 	}
3741 
3742 	symbol_conf.nr_events = evlist->nr_entries;
3743 
3744 	return 0;
3745 }
3746 
3747 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3748 				     union perf_event *event,
3749 				     struct perf_evlist **pevlist)
3750 {
3751 	struct event_update_event *ev = &event->event_update;
3752 	struct event_update_event_scale *ev_scale;
3753 	struct event_update_event_cpus *ev_cpus;
3754 	struct perf_evlist *evlist;
3755 	struct perf_evsel *evsel;
3756 	struct cpu_map *map;
3757 
3758 	if (!pevlist || *pevlist == NULL)
3759 		return -EINVAL;
3760 
3761 	evlist = *pevlist;
3762 
3763 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3764 	if (evsel == NULL)
3765 		return -EINVAL;
3766 
3767 	switch (ev->type) {
3768 	case PERF_EVENT_UPDATE__UNIT:
3769 		evsel->unit = strdup(ev->data);
3770 		break;
3771 	case PERF_EVENT_UPDATE__NAME:
3772 		evsel->name = strdup(ev->data);
3773 		break;
3774 	case PERF_EVENT_UPDATE__SCALE:
3775 		ev_scale = (struct event_update_event_scale *) ev->data;
3776 		evsel->scale = ev_scale->scale;
3777 		break;
3778 	case PERF_EVENT_UPDATE__CPUS:
3779 		ev_cpus = (struct event_update_event_cpus *) ev->data;
3780 
3781 		map = cpu_map__new_data(&ev_cpus->cpus);
3782 		if (map)
3783 			evsel->own_cpus = map;
3784 		else
3785 			pr_err("failed to get event_update cpus\n");
3786 	default:
3787 		break;
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3794 					struct perf_evlist *evlist,
3795 					perf_event__handler_t process)
3796 {
3797 	union perf_event ev;
3798 	struct tracing_data *tdata;
3799 	ssize_t size = 0, aligned_size = 0, padding;
3800 	struct feat_fd ff;
3801 	int err __maybe_unused = 0;
3802 
3803 	/*
3804 	 * We are going to store the size of the data followed
3805 	 * by the data contents. Since the fd descriptor is a pipe,
3806 	 * we cannot seek back to store the size of the data once
3807 	 * we know it. Instead we:
3808 	 *
3809 	 * - write the tracing data to the temp file
3810 	 * - get/write the data size to pipe
3811 	 * - write the tracing data from the temp file
3812 	 *   to the pipe
3813 	 */
3814 	tdata = tracing_data_get(&evlist->entries, fd, true);
3815 	if (!tdata)
3816 		return -1;
3817 
3818 	memset(&ev, 0, sizeof(ev));
3819 
3820 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3821 	size = tdata->size;
3822 	aligned_size = PERF_ALIGN(size, sizeof(u64));
3823 	padding = aligned_size - size;
3824 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3825 	ev.tracing_data.size = aligned_size;
3826 
3827 	process(tool, &ev, NULL, NULL);
3828 
3829 	/*
3830 	 * The put function will copy all the tracing data
3831 	 * stored in temp file to the pipe.
3832 	 */
3833 	tracing_data_put(tdata);
3834 
3835 	ff = (struct feat_fd){ .fd = fd };
3836 	if (write_padded(&ff, NULL, 0, padding))
3837 		return -1;
3838 
3839 	return aligned_size;
3840 }
3841 
3842 int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3843 				     union perf_event *event,
3844 				     struct perf_session *session)
3845 {
3846 	ssize_t size_read, padding, size = event->tracing_data.size;
3847 	int fd = perf_data__fd(session->data);
3848 	off_t offset = lseek(fd, 0, SEEK_CUR);
3849 	char buf[BUFSIZ];
3850 
3851 	/* setup for reading amidst mmap */
3852 	lseek(fd, offset + sizeof(struct tracing_data_event),
3853 	      SEEK_SET);
3854 
3855 	size_read = trace_report(fd, &session->tevent,
3856 				 session->repipe);
3857 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3858 
3859 	if (readn(fd, buf, padding) < 0) {
3860 		pr_err("%s: reading input file", __func__);
3861 		return -1;
3862 	}
3863 	if (session->repipe) {
3864 		int retw = write(STDOUT_FILENO, buf, padding);
3865 		if (retw <= 0 || retw != padding) {
3866 			pr_err("%s: repiping tracing data padding", __func__);
3867 			return -1;
3868 		}
3869 	}
3870 
3871 	if (size_read + padding != size) {
3872 		pr_err("%s: tracing data size mismatch", __func__);
3873 		return -1;
3874 	}
3875 
3876 	perf_evlist__prepare_tracepoint_events(session->evlist,
3877 					       session->tevent.pevent);
3878 
3879 	return size_read + padding;
3880 }
3881 
3882 int perf_event__synthesize_build_id(struct perf_tool *tool,
3883 				    struct dso *pos, u16 misc,
3884 				    perf_event__handler_t process,
3885 				    struct machine *machine)
3886 {
3887 	union perf_event ev;
3888 	size_t len;
3889 	int err = 0;
3890 
3891 	if (!pos->hit)
3892 		return err;
3893 
3894 	memset(&ev, 0, sizeof(ev));
3895 
3896 	len = pos->long_name_len + 1;
3897 	len = PERF_ALIGN(len, NAME_ALIGN);
3898 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3899 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3900 	ev.build_id.header.misc = misc;
3901 	ev.build_id.pid = machine->pid;
3902 	ev.build_id.header.size = sizeof(ev.build_id) + len;
3903 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3904 
3905 	err = process(tool, &ev, NULL, machine);
3906 
3907 	return err;
3908 }
3909 
3910 int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3911 				 union perf_event *event,
3912 				 struct perf_session *session)
3913 {
3914 	__event_process_build_id(&event->build_id,
3915 				 event->build_id.filename,
3916 				 session);
3917 	return 0;
3918 }
3919