xref: /openbmc/linux/tools/perf/util/header.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52 
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65 
66 #define PERF_MAGIC	__perf_magic2
67 
68 const char perf_version_string[] = PERF_VERSION;
69 
70 struct perf_file_attr {
71 	struct perf_event_attr	attr;
72 	struct perf_file_section	ids;
73 };
74 
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 	set_bit(feat, header->adds_features);
78 }
79 
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 	clear_bit(feat, header->adds_features);
83 }
84 
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 	return test_bit(feat, header->adds_features);
88 }
89 
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 	ssize_t ret = writen(ff->fd, buf, size);
93 
94 	if (ret != (ssize_t)size)
95 		return ret < 0 ? (int)ret : -1;
96 	return 0;
97 }
98 
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101 	/* struct perf_event_header::size is u16 */
102 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 	size_t new_size = ff->size;
104 	void *addr;
105 
106 	if (size + ff->offset > max_size)
107 		return -E2BIG;
108 
109 	while (size > (new_size - ff->offset))
110 		new_size <<= 1;
111 	new_size = min(max_size, new_size);
112 
113 	if (ff->size < new_size) {
114 		addr = realloc(ff->buf, new_size);
115 		if (!addr)
116 			return -ENOMEM;
117 		ff->buf = addr;
118 		ff->size = new_size;
119 	}
120 
121 	memcpy(ff->buf + ff->offset, buf, size);
122 	ff->offset += size;
123 
124 	return 0;
125 }
126 
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 	if (!ff->buf)
131 		return __do_write_fd(ff, buf, size);
132 	return __do_write_buf(ff, buf, size);
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 	u64 *p = (u64 *) set;
139 	int i, ret;
140 
141 	ret = do_write(ff, &size, sizeof(size));
142 	if (ret < 0)
143 		return ret;
144 
145 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 		ret = do_write(ff, p + i, sizeof(*p));
147 		if (ret < 0)
148 			return ret;
149 	}
150 
151 	return 0;
152 }
153 
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156 		 size_t count, size_t count_aligned)
157 {
158 	static const char zero_buf[NAME_ALIGN];
159 	int err = do_write(ff, bf, count);
160 
161 	if (!err)
162 		err = do_write(ff, zero_buf, count_aligned - count);
163 
164 	return err;
165 }
166 
167 #define string_size(str)						\
168 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169 
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 	u32 len, olen;
174 	int ret;
175 
176 	olen = strlen(str) + 1;
177 	len = PERF_ALIGN(olen, NAME_ALIGN);
178 
179 	/* write len, incl. \0 */
180 	ret = do_write(ff, &len, sizeof(len));
181 	if (ret < 0)
182 		return ret;
183 
184 	return write_padded(ff, str, olen, len);
185 }
186 
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 	ssize_t ret = readn(ff->fd, addr, size);
190 
191 	if (ret != size)
192 		return ret < 0 ? (int)ret : -1;
193 	return 0;
194 }
195 
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 	if (size > (ssize_t)ff->size - ff->offset)
199 		return -1;
200 
201 	memcpy(addr, ff->buf + ff->offset, size);
202 	ff->offset += size;
203 
204 	return 0;
205 
206 }
207 
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (!ff->buf)
211 		return __do_read_fd(ff, addr, size);
212 	return __do_read_buf(ff, addr, size);
213 }
214 
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 	int ret;
218 
219 	ret = __do_read(ff, addr, sizeof(*addr));
220 	if (ret)
221 		return ret;
222 
223 	if (ff->ph->needs_swap)
224 		*addr = bswap_32(*addr);
225 	return 0;
226 }
227 
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 	int ret;
231 
232 	ret = __do_read(ff, addr, sizeof(*addr));
233 	if (ret)
234 		return ret;
235 
236 	if (ff->ph->needs_swap)
237 		*addr = bswap_64(*addr);
238 	return 0;
239 }
240 
241 static char *do_read_string(struct feat_fd *ff)
242 {
243 	u32 len;
244 	char *buf;
245 
246 	if (do_read_u32(ff, &len))
247 		return NULL;
248 
249 	buf = malloc(len);
250 	if (!buf)
251 		return NULL;
252 
253 	if (!__do_read(ff, buf, len)) {
254 		/*
255 		 * strings are padded by zeroes
256 		 * thus the actual strlen of buf
257 		 * may be less than len
258 		 */
259 		return buf;
260 	}
261 
262 	free(buf);
263 	return NULL;
264 }
265 
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 	unsigned long *set;
270 	u64 size, *p;
271 	int i, ret;
272 
273 	ret = do_read_u64(ff, &size);
274 	if (ret)
275 		return ret;
276 
277 	set = bitmap_alloc(size);
278 	if (!set)
279 		return -ENOMEM;
280 
281 	p = (u64 *) set;
282 
283 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 		ret = do_read_u64(ff, p + i);
285 		if (ret < 0) {
286 			free(set);
287 			return ret;
288 		}
289 	}
290 
291 	*pset  = set;
292 	*psize = size;
293 	return 0;
294 }
295 
296 static int write_tracing_data(struct feat_fd *ff,
297 			      struct evlist *evlist)
298 {
299 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 		return -1;
301 
302 	return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304 
305 static int write_build_id(struct feat_fd *ff,
306 			  struct evlist *evlist __maybe_unused)
307 {
308 	struct perf_session *session;
309 	int err;
310 
311 	session = container_of(ff->ph, struct perf_session, header);
312 
313 	if (!perf_session__read_build_ids(session, true))
314 		return -1;
315 
316 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 		return -1;
318 
319 	err = perf_session__write_buildid_table(session, ff);
320 	if (err < 0) {
321 		pr_debug("failed to write buildid table\n");
322 		return err;
323 	}
324 	perf_session__cache_build_ids(session);
325 
326 	return 0;
327 }
328 
329 static int write_hostname(struct feat_fd *ff,
330 			  struct evlist *evlist __maybe_unused)
331 {
332 	struct utsname uts;
333 	int ret;
334 
335 	ret = uname(&uts);
336 	if (ret < 0)
337 		return -1;
338 
339 	return do_write_string(ff, uts.nodename);
340 }
341 
342 static int write_osrelease(struct feat_fd *ff,
343 			   struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.release);
353 }
354 
355 static int write_arch(struct feat_fd *ff,
356 		      struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.machine);
366 }
367 
368 static int write_version(struct feat_fd *ff,
369 			 struct evlist *evlist __maybe_unused)
370 {
371 	return do_write_string(ff, perf_version_string);
372 }
373 
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 	FILE *file;
377 	char *buf = NULL;
378 	char *s, *p;
379 	const char *search = cpuinfo_proc;
380 	size_t len = 0;
381 	int ret = -1;
382 
383 	if (!search)
384 		return -1;
385 
386 	file = fopen("/proc/cpuinfo", "r");
387 	if (!file)
388 		return -1;
389 
390 	while (getline(&buf, &len, file) > 0) {
391 		ret = strncmp(buf, search, strlen(search));
392 		if (!ret)
393 			break;
394 	}
395 
396 	if (ret) {
397 		ret = -1;
398 		goto done;
399 	}
400 
401 	s = buf;
402 
403 	p = strchr(buf, ':');
404 	if (p && *(p+1) == ' ' && *(p+2))
405 		s = p + 2;
406 	p = strchr(s, '\n');
407 	if (p)
408 		*p = '\0';
409 
410 	/* squash extra space characters (branding string) */
411 	p = s;
412 	while (*p) {
413 		if (isspace(*p)) {
414 			char *r = p + 1;
415 			char *q = skip_spaces(r);
416 			*p = ' ';
417 			if (q != (p+1))
418 				while ((*r++ = *q++));
419 		}
420 		p++;
421 	}
422 	ret = do_write_string(ff, s);
423 done:
424 	free(buf);
425 	fclose(file);
426 	return ret;
427 }
428 
429 static int write_cpudesc(struct feat_fd *ff,
430 		       struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC	{ "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC	{ "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC	{ "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC	{ "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC	{ "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC	{ "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC	{ "core ID", }
446 #else
447 #define CPUINFO_PROC	{ "model name", }
448 #endif
449 	const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 	unsigned int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 		int ret;
455 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 		if (ret >= 0)
457 			return ret;
458 	}
459 	return -1;
460 }
461 
462 
463 static int write_nrcpus(struct feat_fd *ff,
464 			struct evlist *evlist __maybe_unused)
465 {
466 	long nr;
467 	u32 nrc, nra;
468 	int ret;
469 
470 	nrc = cpu__max_present_cpu();
471 
472 	nr = sysconf(_SC_NPROCESSORS_ONLN);
473 	if (nr < 0)
474 		return -1;
475 
476 	nra = (u32)(nr & UINT_MAX);
477 
478 	ret = do_write(ff, &nrc, sizeof(nrc));
479 	if (ret < 0)
480 		return ret;
481 
482 	return do_write(ff, &nra, sizeof(nra));
483 }
484 
485 static int write_event_desc(struct feat_fd *ff,
486 			    struct evlist *evlist)
487 {
488 	struct evsel *evsel;
489 	u32 nre, nri, sz;
490 	int ret;
491 
492 	nre = evlist->core.nr_entries;
493 
494 	/*
495 	 * write number of events
496 	 */
497 	ret = do_write(ff, &nre, sizeof(nre));
498 	if (ret < 0)
499 		return ret;
500 
501 	/*
502 	 * size of perf_event_attr struct
503 	 */
504 	sz = (u32)sizeof(evsel->core.attr);
505 	ret = do_write(ff, &sz, sizeof(sz));
506 	if (ret < 0)
507 		return ret;
508 
509 	evlist__for_each_entry(evlist, evsel) {
510 		ret = do_write(ff, &evsel->core.attr, sz);
511 		if (ret < 0)
512 			return ret;
513 		/*
514 		 * write number of unique id per event
515 		 * there is one id per instance of an event
516 		 *
517 		 * copy into an nri to be independent of the
518 		 * type of ids,
519 		 */
520 		nri = evsel->core.ids;
521 		ret = do_write(ff, &nri, sizeof(nri));
522 		if (ret < 0)
523 			return ret;
524 
525 		/*
526 		 * write event string as passed on cmdline
527 		 */
528 		ret = do_write_string(ff, perf_evsel__name(evsel));
529 		if (ret < 0)
530 			return ret;
531 		/*
532 		 * write unique ids for this event
533 		 */
534 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 		if (ret < 0)
536 			return ret;
537 	}
538 	return 0;
539 }
540 
541 static int write_cmdline(struct feat_fd *ff,
542 			 struct evlist *evlist __maybe_unused)
543 {
544 	char pbuf[MAXPATHLEN], *buf;
545 	int i, ret, n;
546 
547 	/* actual path to perf binary */
548 	buf = perf_exe(pbuf, MAXPATHLEN);
549 
550 	/* account for binary path */
551 	n = perf_env.nr_cmdline + 1;
552 
553 	ret = do_write(ff, &n, sizeof(n));
554 	if (ret < 0)
555 		return ret;
556 
557 	ret = do_write_string(ff, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 		if (ret < 0)
564 			return ret;
565 	}
566 	return 0;
567 }
568 
569 
570 static int write_cpu_topology(struct feat_fd *ff,
571 			      struct evlist *evlist __maybe_unused)
572 {
573 	struct cpu_topology *tp;
574 	u32 i;
575 	int ret, j;
576 
577 	tp = cpu_topology__new();
578 	if (!tp)
579 		return -1;
580 
581 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 	if (ret < 0)
583 		goto done;
584 
585 	for (i = 0; i < tp->core_sib; i++) {
586 		ret = do_write_string(ff, tp->core_siblings[i]);
587 		if (ret < 0)
588 			goto done;
589 	}
590 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 	if (ret < 0)
592 		goto done;
593 
594 	for (i = 0; i < tp->thread_sib; i++) {
595 		ret = do_write_string(ff, tp->thread_siblings[i]);
596 		if (ret < 0)
597 			break;
598 	}
599 
600 	ret = perf_env__read_cpu_topology_map(&perf_env);
601 	if (ret < 0)
602 		goto done;
603 
604 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 		ret = do_write(ff, &perf_env.cpu[j].core_id,
606 			       sizeof(perf_env.cpu[j].core_id));
607 		if (ret < 0)
608 			return ret;
609 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 			       sizeof(perf_env.cpu[j].socket_id));
611 		if (ret < 0)
612 			return ret;
613 	}
614 
615 	if (!tp->die_sib)
616 		goto done;
617 
618 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 	if (ret < 0)
620 		goto done;
621 
622 	for (i = 0; i < tp->die_sib; i++) {
623 		ret = do_write_string(ff, tp->die_siblings[i]);
624 		if (ret < 0)
625 			goto done;
626 	}
627 
628 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 		ret = do_write(ff, &perf_env.cpu[j].die_id,
630 			       sizeof(perf_env.cpu[j].die_id));
631 		if (ret < 0)
632 			return ret;
633 	}
634 
635 done:
636 	cpu_topology__delete(tp);
637 	return ret;
638 }
639 
640 
641 
642 static int write_total_mem(struct feat_fd *ff,
643 			   struct evlist *evlist __maybe_unused)
644 {
645 	char *buf = NULL;
646 	FILE *fp;
647 	size_t len = 0;
648 	int ret = -1, n;
649 	uint64_t mem;
650 
651 	fp = fopen("/proc/meminfo", "r");
652 	if (!fp)
653 		return -1;
654 
655 	while (getline(&buf, &len, fp) > 0) {
656 		ret = strncmp(buf, "MemTotal:", 9);
657 		if (!ret)
658 			break;
659 	}
660 	if (!ret) {
661 		n = sscanf(buf, "%*s %"PRIu64, &mem);
662 		if (n == 1)
663 			ret = do_write(ff, &mem, sizeof(mem));
664 	} else
665 		ret = -1;
666 	free(buf);
667 	fclose(fp);
668 	return ret;
669 }
670 
671 static int write_numa_topology(struct feat_fd *ff,
672 			       struct evlist *evlist __maybe_unused)
673 {
674 	struct numa_topology *tp;
675 	int ret = -1;
676 	u32 i;
677 
678 	tp = numa_topology__new();
679 	if (!tp)
680 		return -ENOMEM;
681 
682 	ret = do_write(ff, &tp->nr, sizeof(u32));
683 	if (ret < 0)
684 		goto err;
685 
686 	for (i = 0; i < tp->nr; i++) {
687 		struct numa_topology_node *n = &tp->nodes[i];
688 
689 		ret = do_write(ff, &n->node, sizeof(u32));
690 		if (ret < 0)
691 			goto err;
692 
693 		ret = do_write(ff, &n->mem_total, sizeof(u64));
694 		if (ret)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_free, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write_string(ff, n->cpus);
702 		if (ret < 0)
703 			goto err;
704 	}
705 
706 	ret = 0;
707 
708 err:
709 	numa_topology__delete(tp);
710 	return ret;
711 }
712 
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *	u32	pmu_num;
718  *	struct pmu_map {
719  *		u32	type;
720  *		char	name[];
721  *	}[pmu_num];
722  * };
723  */
724 
725 static int write_pmu_mappings(struct feat_fd *ff,
726 			      struct evlist *evlist __maybe_unused)
727 {
728 	struct perf_pmu *pmu = NULL;
729 	u32 pmu_num = 0;
730 	int ret;
731 
732 	/*
733 	 * Do a first pass to count number of pmu to avoid lseek so this
734 	 * works in pipe mode as well.
735 	 */
736 	while ((pmu = perf_pmu__scan(pmu))) {
737 		if (!pmu->name)
738 			continue;
739 		pmu_num++;
740 	}
741 
742 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 	if (ret < 0)
744 		return ret;
745 
746 	while ((pmu = perf_pmu__scan(pmu))) {
747 		if (!pmu->name)
748 			continue;
749 
750 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 		if (ret < 0)
752 			return ret;
753 
754 		ret = do_write_string(ff, pmu->name);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *	u32	nr_groups;
767  *	struct group_desc {
768  *		char	name[];
769  *		u32	leader_idx;
770  *		u32	nr_members;
771  *	}[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775 			    struct evlist *evlist)
776 {
777 	u32 nr_groups = evlist->nr_groups;
778 	struct evsel *evsel;
779 	int ret;
780 
781 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 	if (ret < 0)
783 		return ret;
784 
785 	evlist__for_each_entry(evlist, evsel) {
786 		if (perf_evsel__is_group_leader(evsel) &&
787 		    evsel->core.nr_members > 1) {
788 			const char *name = evsel->group_name ?: "{anon_group}";
789 			u32 leader_idx = evsel->idx;
790 			u32 nr_members = evsel->core.nr_members;
791 
792 			ret = do_write_string(ff, name);
793 			if (ret < 0)
794 				return ret;
795 
796 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 			if (ret < 0)
802 				return ret;
803 		}
804 	}
805 	return 0;
806 }
807 
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 	return NULL;
817 }
818 
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 	regex_t re;
826 	regmatch_t pmatch[1];
827 	int match;
828 
829 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 		/* Warn unable to generate match particular string. */
831 		pr_info("Invalid regular expression %s\n", mapcpuid);
832 		return 1;
833 	}
834 
835 	match = !regexec(&re, cpuid, 1, pmatch, 0);
836 	regfree(&re);
837 	if (match) {
838 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839 
840 		/* Verify the entire string matched. */
841 		if (match_len == strlen(cpuid))
842 			return 0;
843 	}
844 	return 1;
845 }
846 
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 	return ENOSYS; /* Not implemented */
854 }
855 
856 static int write_cpuid(struct feat_fd *ff,
857 		       struct evlist *evlist __maybe_unused)
858 {
859 	char buffer[64];
860 	int ret;
861 
862 	ret = get_cpuid(buffer, sizeof(buffer));
863 	if (ret)
864 		return -1;
865 
866 	return do_write_string(ff, buffer);
867 }
868 
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 			      struct evlist *evlist __maybe_unused)
871 {
872 	return 0;
873 }
874 
875 static int write_auxtrace(struct feat_fd *ff,
876 			  struct evlist *evlist __maybe_unused)
877 {
878 	struct perf_session *session;
879 	int err;
880 
881 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 		return -1;
883 
884 	session = container_of(ff->ph, struct perf_session, header);
885 
886 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 	if (err < 0)
888 		pr_err("Failed to write auxtrace index\n");
889 	return err;
890 }
891 
892 static int write_clockid(struct feat_fd *ff,
893 			 struct evlist *evlist __maybe_unused)
894 {
895 	return do_write(ff, &ff->ph->env.clockid_res_ns,
896 			sizeof(ff->ph->env.clockid_res_ns));
897 }
898 
899 static int write_dir_format(struct feat_fd *ff,
900 			    struct evlist *evlist __maybe_unused)
901 {
902 	struct perf_session *session;
903 	struct perf_data *data;
904 
905 	session = container_of(ff->ph, struct perf_session, header);
906 	data = session->data;
907 
908 	if (WARN_ON(!perf_data__is_dir(data)))
909 		return -1;
910 
911 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913 
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916 			       struct evlist *evlist __maybe_unused)
917 {
918 	struct perf_env *env = &ff->ph->env;
919 	struct rb_root *root;
920 	struct rb_node *next;
921 	int ret;
922 
923 	down_read(&env->bpf_progs.lock);
924 
925 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 		       sizeof(env->bpf_progs.infos_cnt));
927 	if (ret < 0)
928 		goto out;
929 
930 	root = &env->bpf_progs.infos;
931 	next = rb_first(root);
932 	while (next) {
933 		struct bpf_prog_info_node *node;
934 		size_t len;
935 
936 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 		next = rb_next(&node->rb_node);
938 		len = sizeof(struct bpf_prog_info_linear) +
939 			node->info_linear->data_len;
940 
941 		/* before writing to file, translate address to offset */
942 		bpf_program__bpil_addr_to_offs(node->info_linear);
943 		ret = do_write(ff, node->info_linear, len);
944 		/*
945 		 * translate back to address even when do_write() fails,
946 		 * so that this function never changes the data.
947 		 */
948 		bpf_program__bpil_offs_to_addr(node->info_linear);
949 		if (ret < 0)
950 			goto out;
951 	}
952 out:
953 	up_read(&env->bpf_progs.lock);
954 	return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 			       struct evlist *evlist __maybe_unused)
959 {
960 	return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963 
964 static int write_bpf_btf(struct feat_fd *ff,
965 			 struct evlist *evlist __maybe_unused)
966 {
967 	struct perf_env *env = &ff->ph->env;
968 	struct rb_root *root;
969 	struct rb_node *next;
970 	int ret;
971 
972 	down_read(&env->bpf_progs.lock);
973 
974 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 		       sizeof(env->bpf_progs.btfs_cnt));
976 
977 	if (ret < 0)
978 		goto out;
979 
980 	root = &env->bpf_progs.btfs;
981 	next = rb_first(root);
982 	while (next) {
983 		struct btf_node *node;
984 
985 		node = rb_entry(next, struct btf_node, rb_node);
986 		next = rb_next(&node->rb_node);
987 		ret = do_write(ff, &node->id,
988 			       sizeof(u32) * 2 + node->data_size);
989 		if (ret < 0)
990 			goto out;
991 	}
992 out:
993 	up_read(&env->bpf_progs.lock);
994 	return ret;
995 }
996 
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001 
1002 	return cache_a->level - cache_b->level;
1003 }
1004 
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007 	if (a->level != b->level)
1008 		return false;
1009 
1010 	if (a->line_size != b->line_size)
1011 		return false;
1012 
1013 	if (a->sets != b->sets)
1014 		return false;
1015 
1016 	if (a->ways != b->ways)
1017 		return false;
1018 
1019 	if (strcmp(a->type, b->type))
1020 		return false;
1021 
1022 	if (strcmp(a->size, b->size))
1023 		return false;
1024 
1025 	if (strcmp(a->map, b->map))
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033 	char path[PATH_MAX], file[PATH_MAX];
1034 	struct stat st;
1035 	size_t len;
1036 
1037 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039 
1040 	if (stat(file, &st))
1041 		return 1;
1042 
1043 	scnprintf(file, PATH_MAX, "%s/level", path);
1044 	if (sysfs__read_int(file, (int *) &cache->level))
1045 		return -1;
1046 
1047 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 	if (sysfs__read_int(file, (int *) &cache->line_size))
1049 		return -1;
1050 
1051 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 	if (sysfs__read_int(file, (int *) &cache->sets))
1053 		return -1;
1054 
1055 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 	if (sysfs__read_int(file, (int *) &cache->ways))
1057 		return -1;
1058 
1059 	scnprintf(file, PATH_MAX, "%s/type", path);
1060 	if (sysfs__read_str(file, &cache->type, &len))
1061 		return -1;
1062 
1063 	cache->type[len] = 0;
1064 	cache->type = strim(cache->type);
1065 
1066 	scnprintf(file, PATH_MAX, "%s/size", path);
1067 	if (sysfs__read_str(file, &cache->size, &len)) {
1068 		zfree(&cache->type);
1069 		return -1;
1070 	}
1071 
1072 	cache->size[len] = 0;
1073 	cache->size = strim(cache->size);
1074 
1075 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 	if (sysfs__read_str(file, &cache->map, &len)) {
1077 		zfree(&cache->size);
1078 		zfree(&cache->type);
1079 		return -1;
1080 	}
1081 
1082 	cache->map[len] = 0;
1083 	cache->map = strim(cache->map);
1084 	return 0;
1085 }
1086 
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091 
1092 #define MAX_CACHE_LVL 4
1093 
1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1095 {
1096 	u32 i, cnt = 0;
1097 	u32 nr, cpu;
1098 	u16 level;
1099 
1100 	nr = cpu__max_cpu();
1101 
1102 	for (cpu = 0; cpu < nr; cpu++) {
1103 		for (level = 0; level < MAX_CACHE_LVL; level++) {
1104 			struct cpu_cache_level c;
1105 			int err;
1106 
1107 			err = cpu_cache_level__read(&c, cpu, level);
1108 			if (err < 0)
1109 				return err;
1110 
1111 			if (err == 1)
1112 				break;
1113 
1114 			for (i = 0; i < cnt; i++) {
1115 				if (cpu_cache_level__cmp(&c, &caches[i]))
1116 					break;
1117 			}
1118 
1119 			if (i == cnt)
1120 				caches[cnt++] = c;
1121 			else
1122 				cpu_cache_level__free(&c);
1123 		}
1124 	}
1125 	*cntp = cnt;
1126 	return 0;
1127 }
1128 
1129 static int write_cache(struct feat_fd *ff,
1130 		       struct evlist *evlist __maybe_unused)
1131 {
1132 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133 	struct cpu_cache_level caches[max_caches];
1134 	u32 cnt = 0, i, version = 1;
1135 	int ret;
1136 
1137 	ret = build_caches(caches, &cnt);
1138 	if (ret)
1139 		goto out;
1140 
1141 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1142 
1143 	ret = do_write(ff, &version, sizeof(u32));
1144 	if (ret < 0)
1145 		goto out;
1146 
1147 	ret = do_write(ff, &cnt, sizeof(u32));
1148 	if (ret < 0)
1149 		goto out;
1150 
1151 	for (i = 0; i < cnt; i++) {
1152 		struct cpu_cache_level *c = &caches[i];
1153 
1154 		#define _W(v)					\
1155 			ret = do_write(ff, &c->v, sizeof(u32));	\
1156 			if (ret < 0)				\
1157 				goto out;
1158 
1159 		_W(level)
1160 		_W(line_size)
1161 		_W(sets)
1162 		_W(ways)
1163 		#undef _W
1164 
1165 		#define _W(v)						\
1166 			ret = do_write_string(ff, (const char *) c->v);	\
1167 			if (ret < 0)					\
1168 				goto out;
1169 
1170 		_W(type)
1171 		_W(size)
1172 		_W(map)
1173 		#undef _W
1174 	}
1175 
1176 out:
1177 	for (i = 0; i < cnt; i++)
1178 		cpu_cache_level__free(&caches[i]);
1179 	return ret;
1180 }
1181 
1182 static int write_stat(struct feat_fd *ff __maybe_unused,
1183 		      struct evlist *evlist __maybe_unused)
1184 {
1185 	return 0;
1186 }
1187 
1188 static int write_sample_time(struct feat_fd *ff,
1189 			     struct evlist *evlist)
1190 {
1191 	int ret;
1192 
1193 	ret = do_write(ff, &evlist->first_sample_time,
1194 		       sizeof(evlist->first_sample_time));
1195 	if (ret < 0)
1196 		return ret;
1197 
1198 	return do_write(ff, &evlist->last_sample_time,
1199 			sizeof(evlist->last_sample_time));
1200 }
1201 
1202 
1203 static int memory_node__read(struct memory_node *n, unsigned long idx)
1204 {
1205 	unsigned int phys, size = 0;
1206 	char path[PATH_MAX];
1207 	struct dirent *ent;
1208 	DIR *dir;
1209 
1210 #define for_each_memory(mem, dir)					\
1211 	while ((ent = readdir(dir)))					\
1212 		if (strcmp(ent->d_name, ".") &&				\
1213 		    strcmp(ent->d_name, "..") &&			\
1214 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1215 
1216 	scnprintf(path, PATH_MAX,
1217 		  "%s/devices/system/node/node%lu",
1218 		  sysfs__mountpoint(), idx);
1219 
1220 	dir = opendir(path);
1221 	if (!dir) {
1222 		pr_warning("failed: cant' open memory sysfs data\n");
1223 		return -1;
1224 	}
1225 
1226 	for_each_memory(phys, dir) {
1227 		size = max(phys, size);
1228 	}
1229 
1230 	size++;
1231 
1232 	n->set = bitmap_alloc(size);
1233 	if (!n->set) {
1234 		closedir(dir);
1235 		return -ENOMEM;
1236 	}
1237 
1238 	n->node = idx;
1239 	n->size = size;
1240 
1241 	rewinddir(dir);
1242 
1243 	for_each_memory(phys, dir) {
1244 		set_bit(phys, n->set);
1245 	}
1246 
1247 	closedir(dir);
1248 	return 0;
1249 }
1250 
1251 static int memory_node__sort(const void *a, const void *b)
1252 {
1253 	const struct memory_node *na = a;
1254 	const struct memory_node *nb = b;
1255 
1256 	return na->node - nb->node;
1257 }
1258 
1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1260 {
1261 	char path[PATH_MAX];
1262 	struct dirent *ent;
1263 	DIR *dir;
1264 	u64 cnt = 0;
1265 	int ret = 0;
1266 
1267 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268 		  sysfs__mountpoint());
1269 
1270 	dir = opendir(path);
1271 	if (!dir) {
1272 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273 			  __func__, path);
1274 		return -1;
1275 	}
1276 
1277 	while (!ret && (ent = readdir(dir))) {
1278 		unsigned int idx;
1279 		int r;
1280 
1281 		if (!strcmp(ent->d_name, ".") ||
1282 		    !strcmp(ent->d_name, ".."))
1283 			continue;
1284 
1285 		r = sscanf(ent->d_name, "node%u", &idx);
1286 		if (r != 1)
1287 			continue;
1288 
1289 		if (WARN_ONCE(cnt >= size,
1290 			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291 			closedir(dir);
1292 			return -1;
1293 		}
1294 
1295 		ret = memory_node__read(&nodes[cnt++], idx);
1296 	}
1297 
1298 	*cntp = cnt;
1299 	closedir(dir);
1300 
1301 	if (!ret)
1302 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1303 
1304 	return ret;
1305 }
1306 
1307 #define MAX_MEMORY_NODES 2000
1308 
1309 /*
1310  * The MEM_TOPOLOGY holds physical memory map for every
1311  * node in system. The format of data is as follows:
1312  *
1313  *  0 - version          | for future changes
1314  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315  * 16 - count            | number of nodes
1316  *
1317  * For each node we store map of physical indexes for
1318  * each node:
1319  *
1320  * 32 - node id          | node index
1321  * 40 - size             | size of bitmap
1322  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1323  */
1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325 			      struct evlist *evlist __maybe_unused)
1326 {
1327 	static struct memory_node nodes[MAX_MEMORY_NODES];
1328 	u64 bsize, version = 1, i, nr;
1329 	int ret;
1330 
1331 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332 			      (unsigned long long *) &bsize);
1333 	if (ret)
1334 		return ret;
1335 
1336 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337 	if (ret)
1338 		return ret;
1339 
1340 	ret = do_write(ff, &version, sizeof(version));
1341 	if (ret < 0)
1342 		goto out;
1343 
1344 	ret = do_write(ff, &bsize, sizeof(bsize));
1345 	if (ret < 0)
1346 		goto out;
1347 
1348 	ret = do_write(ff, &nr, sizeof(nr));
1349 	if (ret < 0)
1350 		goto out;
1351 
1352 	for (i = 0; i < nr; i++) {
1353 		struct memory_node *n = &nodes[i];
1354 
1355 		#define _W(v)						\
1356 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1357 			if (ret < 0)					\
1358 				goto out;
1359 
1360 		_W(node)
1361 		_W(size)
1362 
1363 		#undef _W
1364 
1365 		ret = do_write_bitmap(ff, n->set, n->size);
1366 		if (ret < 0)
1367 			goto out;
1368 	}
1369 
1370 out:
1371 	return ret;
1372 }
1373 
1374 static int write_compressed(struct feat_fd *ff __maybe_unused,
1375 			    struct evlist *evlist __maybe_unused)
1376 {
1377 	int ret;
1378 
1379 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380 	if (ret)
1381 		return ret;
1382 
1383 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384 	if (ret)
1385 		return ret;
1386 
1387 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388 	if (ret)
1389 		return ret;
1390 
1391 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392 	if (ret)
1393 		return ret;
1394 
1395 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1396 }
1397 
1398 static void print_hostname(struct feat_fd *ff, FILE *fp)
1399 {
1400 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1401 }
1402 
1403 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1404 {
1405 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1406 }
1407 
1408 static void print_arch(struct feat_fd *ff, FILE *fp)
1409 {
1410 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1411 }
1412 
1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1414 {
1415 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1416 }
1417 
1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1419 {
1420 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1421 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1422 }
1423 
1424 static void print_version(struct feat_fd *ff, FILE *fp)
1425 {
1426 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1427 }
1428 
1429 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1430 {
1431 	int nr, i;
1432 
1433 	nr = ff->ph->env.nr_cmdline;
1434 
1435 	fprintf(fp, "# cmdline : ");
1436 
1437 	for (i = 0; i < nr; i++) {
1438 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1439 		if (!argv_i) {
1440 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1441 		} else {
1442 			char *mem = argv_i;
1443 			do {
1444 				char *quote = strchr(argv_i, '\'');
1445 				if (!quote)
1446 					break;
1447 				*quote++ = '\0';
1448 				fprintf(fp, "%s\\\'", argv_i);
1449 				argv_i = quote;
1450 			} while (1);
1451 			fprintf(fp, "%s ", argv_i);
1452 			free(mem);
1453 		}
1454 	}
1455 	fputc('\n', fp);
1456 }
1457 
1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1459 {
1460 	struct perf_header *ph = ff->ph;
1461 	int cpu_nr = ph->env.nr_cpus_avail;
1462 	int nr, i;
1463 	char *str;
1464 
1465 	nr = ph->env.nr_sibling_cores;
1466 	str = ph->env.sibling_cores;
1467 
1468 	for (i = 0; i < nr; i++) {
1469 		fprintf(fp, "# sibling sockets : %s\n", str);
1470 		str += strlen(str) + 1;
1471 	}
1472 
1473 	if (ph->env.nr_sibling_dies) {
1474 		nr = ph->env.nr_sibling_dies;
1475 		str = ph->env.sibling_dies;
1476 
1477 		for (i = 0; i < nr; i++) {
1478 			fprintf(fp, "# sibling dies    : %s\n", str);
1479 			str += strlen(str) + 1;
1480 		}
1481 	}
1482 
1483 	nr = ph->env.nr_sibling_threads;
1484 	str = ph->env.sibling_threads;
1485 
1486 	for (i = 0; i < nr; i++) {
1487 		fprintf(fp, "# sibling threads : %s\n", str);
1488 		str += strlen(str) + 1;
1489 	}
1490 
1491 	if (ph->env.nr_sibling_dies) {
1492 		if (ph->env.cpu != NULL) {
1493 			for (i = 0; i < cpu_nr; i++)
1494 				fprintf(fp, "# CPU %d: Core ID %d, "
1495 					    "Die ID %d, Socket ID %d\n",
1496 					    i, ph->env.cpu[i].core_id,
1497 					    ph->env.cpu[i].die_id,
1498 					    ph->env.cpu[i].socket_id);
1499 		} else
1500 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1501 				    "information is not available\n");
1502 	} else {
1503 		if (ph->env.cpu != NULL) {
1504 			for (i = 0; i < cpu_nr; i++)
1505 				fprintf(fp, "# CPU %d: Core ID %d, "
1506 					    "Socket ID %d\n",
1507 					    i, ph->env.cpu[i].core_id,
1508 					    ph->env.cpu[i].socket_id);
1509 		} else
1510 			fprintf(fp, "# Core ID and Socket ID "
1511 				    "information is not available\n");
1512 	}
1513 }
1514 
1515 static void print_clockid(struct feat_fd *ff, FILE *fp)
1516 {
1517 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1518 		ff->ph->env.clockid_res_ns * 1000);
1519 }
1520 
1521 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1522 {
1523 	struct perf_session *session;
1524 	struct perf_data *data;
1525 
1526 	session = container_of(ff->ph, struct perf_session, header);
1527 	data = session->data;
1528 
1529 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1530 }
1531 
1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1533 {
1534 	struct perf_env *env = &ff->ph->env;
1535 	struct rb_root *root;
1536 	struct rb_node *next;
1537 
1538 	down_read(&env->bpf_progs.lock);
1539 
1540 	root = &env->bpf_progs.infos;
1541 	next = rb_first(root);
1542 
1543 	while (next) {
1544 		struct bpf_prog_info_node *node;
1545 
1546 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1547 		next = rb_next(&node->rb_node);
1548 
1549 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1550 					       env, fp);
1551 	}
1552 
1553 	up_read(&env->bpf_progs.lock);
1554 }
1555 
1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1557 {
1558 	struct perf_env *env = &ff->ph->env;
1559 	struct rb_root *root;
1560 	struct rb_node *next;
1561 
1562 	down_read(&env->bpf_progs.lock);
1563 
1564 	root = &env->bpf_progs.btfs;
1565 	next = rb_first(root);
1566 
1567 	while (next) {
1568 		struct btf_node *node;
1569 
1570 		node = rb_entry(next, struct btf_node, rb_node);
1571 		next = rb_next(&node->rb_node);
1572 		fprintf(fp, "# btf info of id %u\n", node->id);
1573 	}
1574 
1575 	up_read(&env->bpf_progs.lock);
1576 }
1577 
1578 static void free_event_desc(struct evsel *events)
1579 {
1580 	struct evsel *evsel;
1581 
1582 	if (!events)
1583 		return;
1584 
1585 	for (evsel = events; evsel->core.attr.size; evsel++) {
1586 		zfree(&evsel->name);
1587 		zfree(&evsel->core.id);
1588 	}
1589 
1590 	free(events);
1591 }
1592 
1593 static struct evsel *read_event_desc(struct feat_fd *ff)
1594 {
1595 	struct evsel *evsel, *events = NULL;
1596 	u64 *id;
1597 	void *buf = NULL;
1598 	u32 nre, sz, nr, i, j;
1599 	size_t msz;
1600 
1601 	/* number of events */
1602 	if (do_read_u32(ff, &nre))
1603 		goto error;
1604 
1605 	if (do_read_u32(ff, &sz))
1606 		goto error;
1607 
1608 	/* buffer to hold on file attr struct */
1609 	buf = malloc(sz);
1610 	if (!buf)
1611 		goto error;
1612 
1613 	/* the last event terminates with evsel->core.attr.size == 0: */
1614 	events = calloc(nre + 1, sizeof(*events));
1615 	if (!events)
1616 		goto error;
1617 
1618 	msz = sizeof(evsel->core.attr);
1619 	if (sz < msz)
1620 		msz = sz;
1621 
1622 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1623 		evsel->idx = i;
1624 
1625 		/*
1626 		 * must read entire on-file attr struct to
1627 		 * sync up with layout.
1628 		 */
1629 		if (__do_read(ff, buf, sz))
1630 			goto error;
1631 
1632 		if (ff->ph->needs_swap)
1633 			perf_event__attr_swap(buf);
1634 
1635 		memcpy(&evsel->core.attr, buf, msz);
1636 
1637 		if (do_read_u32(ff, &nr))
1638 			goto error;
1639 
1640 		if (ff->ph->needs_swap)
1641 			evsel->needs_swap = true;
1642 
1643 		evsel->name = do_read_string(ff);
1644 		if (!evsel->name)
1645 			goto error;
1646 
1647 		if (!nr)
1648 			continue;
1649 
1650 		id = calloc(nr, sizeof(*id));
1651 		if (!id)
1652 			goto error;
1653 		evsel->core.ids = nr;
1654 		evsel->core.id = id;
1655 
1656 		for (j = 0 ; j < nr; j++) {
1657 			if (do_read_u64(ff, id))
1658 				goto error;
1659 			id++;
1660 		}
1661 	}
1662 out:
1663 	free(buf);
1664 	return events;
1665 error:
1666 	free_event_desc(events);
1667 	events = NULL;
1668 	goto out;
1669 }
1670 
1671 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1672 				void *priv __maybe_unused)
1673 {
1674 	return fprintf(fp, ", %s = %s", name, val);
1675 }
1676 
1677 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1678 {
1679 	struct evsel *evsel, *events;
1680 	u32 j;
1681 	u64 *id;
1682 
1683 	if (ff->events)
1684 		events = ff->events;
1685 	else
1686 		events = read_event_desc(ff);
1687 
1688 	if (!events) {
1689 		fprintf(fp, "# event desc: not available or unable to read\n");
1690 		return;
1691 	}
1692 
1693 	for (evsel = events; evsel->core.attr.size; evsel++) {
1694 		fprintf(fp, "# event : name = %s, ", evsel->name);
1695 
1696 		if (evsel->core.ids) {
1697 			fprintf(fp, ", id = {");
1698 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1699 				if (j)
1700 					fputc(',', fp);
1701 				fprintf(fp, " %"PRIu64, *id);
1702 			}
1703 			fprintf(fp, " }");
1704 		}
1705 
1706 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1707 
1708 		fputc('\n', fp);
1709 	}
1710 
1711 	free_event_desc(events);
1712 	ff->events = NULL;
1713 }
1714 
1715 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1716 {
1717 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1718 }
1719 
1720 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1721 {
1722 	int i;
1723 	struct numa_node *n;
1724 
1725 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1726 		n = &ff->ph->env.numa_nodes[i];
1727 
1728 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1729 			    " free = %"PRIu64" kB\n",
1730 			n->node, n->mem_total, n->mem_free);
1731 
1732 		fprintf(fp, "# node%u cpu list : ", n->node);
1733 		cpu_map__fprintf(n->map, fp);
1734 	}
1735 }
1736 
1737 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1738 {
1739 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1740 }
1741 
1742 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1743 {
1744 	fprintf(fp, "# contains samples with branch stack\n");
1745 }
1746 
1747 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1748 {
1749 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1750 }
1751 
1752 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1753 {
1754 	fprintf(fp, "# contains stat data\n");
1755 }
1756 
1757 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1758 {
1759 	int i;
1760 
1761 	fprintf(fp, "# CPU cache info:\n");
1762 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1763 		fprintf(fp, "#  ");
1764 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1765 	}
1766 }
1767 
1768 static void print_compressed(struct feat_fd *ff, FILE *fp)
1769 {
1770 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1771 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1772 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1773 }
1774 
1775 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1776 {
1777 	const char *delimiter = "# pmu mappings: ";
1778 	char *str, *tmp;
1779 	u32 pmu_num;
1780 	u32 type;
1781 
1782 	pmu_num = ff->ph->env.nr_pmu_mappings;
1783 	if (!pmu_num) {
1784 		fprintf(fp, "# pmu mappings: not available\n");
1785 		return;
1786 	}
1787 
1788 	str = ff->ph->env.pmu_mappings;
1789 
1790 	while (pmu_num) {
1791 		type = strtoul(str, &tmp, 0);
1792 		if (*tmp != ':')
1793 			goto error;
1794 
1795 		str = tmp + 1;
1796 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1797 
1798 		delimiter = ", ";
1799 		str += strlen(str) + 1;
1800 		pmu_num--;
1801 	}
1802 
1803 	fprintf(fp, "\n");
1804 
1805 	if (!pmu_num)
1806 		return;
1807 error:
1808 	fprintf(fp, "# pmu mappings: unable to read\n");
1809 }
1810 
1811 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1812 {
1813 	struct perf_session *session;
1814 	struct evsel *evsel;
1815 	u32 nr = 0;
1816 
1817 	session = container_of(ff->ph, struct perf_session, header);
1818 
1819 	evlist__for_each_entry(session->evlist, evsel) {
1820 		if (perf_evsel__is_group_leader(evsel) &&
1821 		    evsel->core.nr_members > 1) {
1822 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1823 				perf_evsel__name(evsel));
1824 
1825 			nr = evsel->core.nr_members - 1;
1826 		} else if (nr) {
1827 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1828 
1829 			if (--nr == 0)
1830 				fprintf(fp, "}\n");
1831 		}
1832 	}
1833 }
1834 
1835 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1836 {
1837 	struct perf_session *session;
1838 	char time_buf[32];
1839 	double d;
1840 
1841 	session = container_of(ff->ph, struct perf_session, header);
1842 
1843 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1844 				  time_buf, sizeof(time_buf));
1845 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1846 
1847 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1848 				  time_buf, sizeof(time_buf));
1849 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1850 
1851 	d = (double)(session->evlist->last_sample_time -
1852 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1853 
1854 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1855 }
1856 
1857 static void memory_node__fprintf(struct memory_node *n,
1858 				 unsigned long long bsize, FILE *fp)
1859 {
1860 	char buf_map[100], buf_size[50];
1861 	unsigned long long size;
1862 
1863 	size = bsize * bitmap_weight(n->set, n->size);
1864 	unit_number__scnprintf(buf_size, 50, size);
1865 
1866 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1867 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1868 }
1869 
1870 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1871 {
1872 	struct memory_node *nodes;
1873 	int i, nr;
1874 
1875 	nodes = ff->ph->env.memory_nodes;
1876 	nr    = ff->ph->env.nr_memory_nodes;
1877 
1878 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1879 		nr, ff->ph->env.memory_bsize);
1880 
1881 	for (i = 0; i < nr; i++) {
1882 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1883 	}
1884 }
1885 
1886 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1887 				    char *filename,
1888 				    struct perf_session *session)
1889 {
1890 	int err = -1;
1891 	struct machine *machine;
1892 	u16 cpumode;
1893 	struct dso *dso;
1894 	enum dso_kernel_type dso_type;
1895 
1896 	machine = perf_session__findnew_machine(session, bev->pid);
1897 	if (!machine)
1898 		goto out;
1899 
1900 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1901 
1902 	switch (cpumode) {
1903 	case PERF_RECORD_MISC_KERNEL:
1904 		dso_type = DSO_TYPE_KERNEL;
1905 		break;
1906 	case PERF_RECORD_MISC_GUEST_KERNEL:
1907 		dso_type = DSO_TYPE_GUEST_KERNEL;
1908 		break;
1909 	case PERF_RECORD_MISC_USER:
1910 	case PERF_RECORD_MISC_GUEST_USER:
1911 		dso_type = DSO_TYPE_USER;
1912 		break;
1913 	default:
1914 		goto out;
1915 	}
1916 
1917 	dso = machine__findnew_dso(machine, filename);
1918 	if (dso != NULL) {
1919 		char sbuild_id[SBUILD_ID_SIZE];
1920 
1921 		dso__set_build_id(dso, &bev->build_id);
1922 
1923 		if (dso_type != DSO_TYPE_USER) {
1924 			struct kmod_path m = { .name = NULL, };
1925 
1926 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1927 				dso__set_module_info(dso, &m, machine);
1928 			else
1929 				dso->kernel = dso_type;
1930 
1931 			free(m.name);
1932 		}
1933 
1934 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1935 				  sbuild_id);
1936 		pr_debug("build id event received for %s: %s\n",
1937 			 dso->long_name, sbuild_id);
1938 		dso__put(dso);
1939 	}
1940 
1941 	err = 0;
1942 out:
1943 	return err;
1944 }
1945 
1946 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1947 						 int input, u64 offset, u64 size)
1948 {
1949 	struct perf_session *session = container_of(header, struct perf_session, header);
1950 	struct {
1951 		struct perf_event_header   header;
1952 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1953 		char			   filename[0];
1954 	} old_bev;
1955 	struct perf_record_header_build_id bev;
1956 	char filename[PATH_MAX];
1957 	u64 limit = offset + size;
1958 
1959 	while (offset < limit) {
1960 		ssize_t len;
1961 
1962 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1963 			return -1;
1964 
1965 		if (header->needs_swap)
1966 			perf_event_header__bswap(&old_bev.header);
1967 
1968 		len = old_bev.header.size - sizeof(old_bev);
1969 		if (readn(input, filename, len) != len)
1970 			return -1;
1971 
1972 		bev.header = old_bev.header;
1973 
1974 		/*
1975 		 * As the pid is the missing value, we need to fill
1976 		 * it properly. The header.misc value give us nice hint.
1977 		 */
1978 		bev.pid	= HOST_KERNEL_ID;
1979 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1980 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1981 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1982 
1983 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1984 		__event_process_build_id(&bev, filename, session);
1985 
1986 		offset += bev.header.size;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static int perf_header__read_build_ids(struct perf_header *header,
1993 				       int input, u64 offset, u64 size)
1994 {
1995 	struct perf_session *session = container_of(header, struct perf_session, header);
1996 	struct perf_record_header_build_id bev;
1997 	char filename[PATH_MAX];
1998 	u64 limit = offset + size, orig_offset = offset;
1999 	int err = -1;
2000 
2001 	while (offset < limit) {
2002 		ssize_t len;
2003 
2004 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2005 			goto out;
2006 
2007 		if (header->needs_swap)
2008 			perf_event_header__bswap(&bev.header);
2009 
2010 		len = bev.header.size - sizeof(bev);
2011 		if (readn(input, filename, len) != len)
2012 			goto out;
2013 		/*
2014 		 * The a1645ce1 changeset:
2015 		 *
2016 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2017 		 *
2018 		 * Added a field to struct perf_record_header_build_id that broke the file
2019 		 * format.
2020 		 *
2021 		 * Since the kernel build-id is the first entry, process the
2022 		 * table using the old format if the well known
2023 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2024 		 * first 4 characters chopped off (where the pid_t sits).
2025 		 */
2026 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2027 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2028 				return -1;
2029 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2030 		}
2031 
2032 		__event_process_build_id(&bev, filename, session);
2033 
2034 		offset += bev.header.size;
2035 	}
2036 	err = 0;
2037 out:
2038 	return err;
2039 }
2040 
2041 /* Macro for features that simply need to read and store a string. */
2042 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2043 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2044 {\
2045 	ff->ph->env.__feat_env = do_read_string(ff); \
2046 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2047 }
2048 
2049 FEAT_PROCESS_STR_FUN(hostname, hostname);
2050 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2051 FEAT_PROCESS_STR_FUN(version, version);
2052 FEAT_PROCESS_STR_FUN(arch, arch);
2053 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2054 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2055 
2056 static int process_tracing_data(struct feat_fd *ff, void *data)
2057 {
2058 	ssize_t ret = trace_report(ff->fd, data, false);
2059 
2060 	return ret < 0 ? -1 : 0;
2061 }
2062 
2063 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2064 {
2065 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2066 		pr_debug("Failed to read buildids, continuing...\n");
2067 	return 0;
2068 }
2069 
2070 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2071 {
2072 	int ret;
2073 	u32 nr_cpus_avail, nr_cpus_online;
2074 
2075 	ret = do_read_u32(ff, &nr_cpus_avail);
2076 	if (ret)
2077 		return ret;
2078 
2079 	ret = do_read_u32(ff, &nr_cpus_online);
2080 	if (ret)
2081 		return ret;
2082 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2083 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2084 	return 0;
2085 }
2086 
2087 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2088 {
2089 	u64 total_mem;
2090 	int ret;
2091 
2092 	ret = do_read_u64(ff, &total_mem);
2093 	if (ret)
2094 		return -1;
2095 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2096 	return 0;
2097 }
2098 
2099 static struct evsel *
2100 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2101 {
2102 	struct evsel *evsel;
2103 
2104 	evlist__for_each_entry(evlist, evsel) {
2105 		if (evsel->idx == idx)
2106 			return evsel;
2107 	}
2108 
2109 	return NULL;
2110 }
2111 
2112 static void
2113 perf_evlist__set_event_name(struct evlist *evlist,
2114 			    struct evsel *event)
2115 {
2116 	struct evsel *evsel;
2117 
2118 	if (!event->name)
2119 		return;
2120 
2121 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2122 	if (!evsel)
2123 		return;
2124 
2125 	if (evsel->name)
2126 		return;
2127 
2128 	evsel->name = strdup(event->name);
2129 }
2130 
2131 static int
2132 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2133 {
2134 	struct perf_session *session;
2135 	struct evsel *evsel, *events = read_event_desc(ff);
2136 
2137 	if (!events)
2138 		return 0;
2139 
2140 	session = container_of(ff->ph, struct perf_session, header);
2141 
2142 	if (session->data->is_pipe) {
2143 		/* Save events for reading later by print_event_desc,
2144 		 * since they can't be read again in pipe mode. */
2145 		ff->events = events;
2146 	}
2147 
2148 	for (evsel = events; evsel->core.attr.size; evsel++)
2149 		perf_evlist__set_event_name(session->evlist, evsel);
2150 
2151 	if (!session->data->is_pipe)
2152 		free_event_desc(events);
2153 
2154 	return 0;
2155 }
2156 
2157 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2158 {
2159 	char *str, *cmdline = NULL, **argv = NULL;
2160 	u32 nr, i, len = 0;
2161 
2162 	if (do_read_u32(ff, &nr))
2163 		return -1;
2164 
2165 	ff->ph->env.nr_cmdline = nr;
2166 
2167 	cmdline = zalloc(ff->size + nr + 1);
2168 	if (!cmdline)
2169 		return -1;
2170 
2171 	argv = zalloc(sizeof(char *) * (nr + 1));
2172 	if (!argv)
2173 		goto error;
2174 
2175 	for (i = 0; i < nr; i++) {
2176 		str = do_read_string(ff);
2177 		if (!str)
2178 			goto error;
2179 
2180 		argv[i] = cmdline + len;
2181 		memcpy(argv[i], str, strlen(str) + 1);
2182 		len += strlen(str) + 1;
2183 		free(str);
2184 	}
2185 	ff->ph->env.cmdline = cmdline;
2186 	ff->ph->env.cmdline_argv = (const char **) argv;
2187 	return 0;
2188 
2189 error:
2190 	free(argv);
2191 	free(cmdline);
2192 	return -1;
2193 }
2194 
2195 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2196 {
2197 	u32 nr, i;
2198 	char *str;
2199 	struct strbuf sb;
2200 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2201 	u64 size = 0;
2202 	struct perf_header *ph = ff->ph;
2203 	bool do_core_id_test = true;
2204 
2205 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2206 	if (!ph->env.cpu)
2207 		return -1;
2208 
2209 	if (do_read_u32(ff, &nr))
2210 		goto free_cpu;
2211 
2212 	ph->env.nr_sibling_cores = nr;
2213 	size += sizeof(u32);
2214 	if (strbuf_init(&sb, 128) < 0)
2215 		goto free_cpu;
2216 
2217 	for (i = 0; i < nr; i++) {
2218 		str = do_read_string(ff);
2219 		if (!str)
2220 			goto error;
2221 
2222 		/* include a NULL character at the end */
2223 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2224 			goto error;
2225 		size += string_size(str);
2226 		free(str);
2227 	}
2228 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2229 
2230 	if (do_read_u32(ff, &nr))
2231 		return -1;
2232 
2233 	ph->env.nr_sibling_threads = nr;
2234 	size += sizeof(u32);
2235 
2236 	for (i = 0; i < nr; i++) {
2237 		str = do_read_string(ff);
2238 		if (!str)
2239 			goto error;
2240 
2241 		/* include a NULL character at the end */
2242 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2243 			goto error;
2244 		size += string_size(str);
2245 		free(str);
2246 	}
2247 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2248 
2249 	/*
2250 	 * The header may be from old perf,
2251 	 * which doesn't include core id and socket id information.
2252 	 */
2253 	if (ff->size <= size) {
2254 		zfree(&ph->env.cpu);
2255 		return 0;
2256 	}
2257 
2258 	/* On s390 the socket_id number is not related to the numbers of cpus.
2259 	 * The socket_id number might be higher than the numbers of cpus.
2260 	 * This depends on the configuration.
2261 	 * AArch64 is the same.
2262 	 */
2263 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2264 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2265 		do_core_id_test = false;
2266 
2267 	for (i = 0; i < (u32)cpu_nr; i++) {
2268 		if (do_read_u32(ff, &nr))
2269 			goto free_cpu;
2270 
2271 		ph->env.cpu[i].core_id = nr;
2272 		size += sizeof(u32);
2273 
2274 		if (do_read_u32(ff, &nr))
2275 			goto free_cpu;
2276 
2277 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2278 			pr_debug("socket_id number is too big."
2279 				 "You may need to upgrade the perf tool.\n");
2280 			goto free_cpu;
2281 		}
2282 
2283 		ph->env.cpu[i].socket_id = nr;
2284 		size += sizeof(u32);
2285 	}
2286 
2287 	/*
2288 	 * The header may be from old perf,
2289 	 * which doesn't include die information.
2290 	 */
2291 	if (ff->size <= size)
2292 		return 0;
2293 
2294 	if (do_read_u32(ff, &nr))
2295 		return -1;
2296 
2297 	ph->env.nr_sibling_dies = nr;
2298 	size += sizeof(u32);
2299 
2300 	for (i = 0; i < nr; i++) {
2301 		str = do_read_string(ff);
2302 		if (!str)
2303 			goto error;
2304 
2305 		/* include a NULL character at the end */
2306 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2307 			goto error;
2308 		size += string_size(str);
2309 		free(str);
2310 	}
2311 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2312 
2313 	for (i = 0; i < (u32)cpu_nr; i++) {
2314 		if (do_read_u32(ff, &nr))
2315 			goto free_cpu;
2316 
2317 		ph->env.cpu[i].die_id = nr;
2318 	}
2319 
2320 	return 0;
2321 
2322 error:
2323 	strbuf_release(&sb);
2324 free_cpu:
2325 	zfree(&ph->env.cpu);
2326 	return -1;
2327 }
2328 
2329 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2330 {
2331 	struct numa_node *nodes, *n;
2332 	u32 nr, i;
2333 	char *str;
2334 
2335 	/* nr nodes */
2336 	if (do_read_u32(ff, &nr))
2337 		return -1;
2338 
2339 	nodes = zalloc(sizeof(*nodes) * nr);
2340 	if (!nodes)
2341 		return -ENOMEM;
2342 
2343 	for (i = 0; i < nr; i++) {
2344 		n = &nodes[i];
2345 
2346 		/* node number */
2347 		if (do_read_u32(ff, &n->node))
2348 			goto error;
2349 
2350 		if (do_read_u64(ff, &n->mem_total))
2351 			goto error;
2352 
2353 		if (do_read_u64(ff, &n->mem_free))
2354 			goto error;
2355 
2356 		str = do_read_string(ff);
2357 		if (!str)
2358 			goto error;
2359 
2360 		n->map = perf_cpu_map__new(str);
2361 		if (!n->map)
2362 			goto error;
2363 
2364 		free(str);
2365 	}
2366 	ff->ph->env.nr_numa_nodes = nr;
2367 	ff->ph->env.numa_nodes = nodes;
2368 	return 0;
2369 
2370 error:
2371 	free(nodes);
2372 	return -1;
2373 }
2374 
2375 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2376 {
2377 	char *name;
2378 	u32 pmu_num;
2379 	u32 type;
2380 	struct strbuf sb;
2381 
2382 	if (do_read_u32(ff, &pmu_num))
2383 		return -1;
2384 
2385 	if (!pmu_num) {
2386 		pr_debug("pmu mappings not available\n");
2387 		return 0;
2388 	}
2389 
2390 	ff->ph->env.nr_pmu_mappings = pmu_num;
2391 	if (strbuf_init(&sb, 128) < 0)
2392 		return -1;
2393 
2394 	while (pmu_num) {
2395 		if (do_read_u32(ff, &type))
2396 			goto error;
2397 
2398 		name = do_read_string(ff);
2399 		if (!name)
2400 			goto error;
2401 
2402 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2403 			goto error;
2404 		/* include a NULL character at the end */
2405 		if (strbuf_add(&sb, "", 1) < 0)
2406 			goto error;
2407 
2408 		if (!strcmp(name, "msr"))
2409 			ff->ph->env.msr_pmu_type = type;
2410 
2411 		free(name);
2412 		pmu_num--;
2413 	}
2414 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2415 	return 0;
2416 
2417 error:
2418 	strbuf_release(&sb);
2419 	return -1;
2420 }
2421 
2422 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2423 {
2424 	size_t ret = -1;
2425 	u32 i, nr, nr_groups;
2426 	struct perf_session *session;
2427 	struct evsel *evsel, *leader = NULL;
2428 	struct group_desc {
2429 		char *name;
2430 		u32 leader_idx;
2431 		u32 nr_members;
2432 	} *desc;
2433 
2434 	if (do_read_u32(ff, &nr_groups))
2435 		return -1;
2436 
2437 	ff->ph->env.nr_groups = nr_groups;
2438 	if (!nr_groups) {
2439 		pr_debug("group desc not available\n");
2440 		return 0;
2441 	}
2442 
2443 	desc = calloc(nr_groups, sizeof(*desc));
2444 	if (!desc)
2445 		return -1;
2446 
2447 	for (i = 0; i < nr_groups; i++) {
2448 		desc[i].name = do_read_string(ff);
2449 		if (!desc[i].name)
2450 			goto out_free;
2451 
2452 		if (do_read_u32(ff, &desc[i].leader_idx))
2453 			goto out_free;
2454 
2455 		if (do_read_u32(ff, &desc[i].nr_members))
2456 			goto out_free;
2457 	}
2458 
2459 	/*
2460 	 * Rebuild group relationship based on the group_desc
2461 	 */
2462 	session = container_of(ff->ph, struct perf_session, header);
2463 	session->evlist->nr_groups = nr_groups;
2464 
2465 	i = nr = 0;
2466 	evlist__for_each_entry(session->evlist, evsel) {
2467 		if (evsel->idx == (int) desc[i].leader_idx) {
2468 			evsel->leader = evsel;
2469 			/* {anon_group} is a dummy name */
2470 			if (strcmp(desc[i].name, "{anon_group}")) {
2471 				evsel->group_name = desc[i].name;
2472 				desc[i].name = NULL;
2473 			}
2474 			evsel->core.nr_members = desc[i].nr_members;
2475 
2476 			if (i >= nr_groups || nr > 0) {
2477 				pr_debug("invalid group desc\n");
2478 				goto out_free;
2479 			}
2480 
2481 			leader = evsel;
2482 			nr = evsel->core.nr_members - 1;
2483 			i++;
2484 		} else if (nr) {
2485 			/* This is a group member */
2486 			evsel->leader = leader;
2487 
2488 			nr--;
2489 		}
2490 	}
2491 
2492 	if (i != nr_groups || nr != 0) {
2493 		pr_debug("invalid group desc\n");
2494 		goto out_free;
2495 	}
2496 
2497 	ret = 0;
2498 out_free:
2499 	for (i = 0; i < nr_groups; i++)
2500 		zfree(&desc[i].name);
2501 	free(desc);
2502 
2503 	return ret;
2504 }
2505 
2506 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2507 {
2508 	struct perf_session *session;
2509 	int err;
2510 
2511 	session = container_of(ff->ph, struct perf_session, header);
2512 
2513 	err = auxtrace_index__process(ff->fd, ff->size, session,
2514 				      ff->ph->needs_swap);
2515 	if (err < 0)
2516 		pr_err("Failed to process auxtrace index\n");
2517 	return err;
2518 }
2519 
2520 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2521 {
2522 	struct cpu_cache_level *caches;
2523 	u32 cnt, i, version;
2524 
2525 	if (do_read_u32(ff, &version))
2526 		return -1;
2527 
2528 	if (version != 1)
2529 		return -1;
2530 
2531 	if (do_read_u32(ff, &cnt))
2532 		return -1;
2533 
2534 	caches = zalloc(sizeof(*caches) * cnt);
2535 	if (!caches)
2536 		return -1;
2537 
2538 	for (i = 0; i < cnt; i++) {
2539 		struct cpu_cache_level c;
2540 
2541 		#define _R(v)						\
2542 			if (do_read_u32(ff, &c.v))\
2543 				goto out_free_caches;			\
2544 
2545 		_R(level)
2546 		_R(line_size)
2547 		_R(sets)
2548 		_R(ways)
2549 		#undef _R
2550 
2551 		#define _R(v)					\
2552 			c.v = do_read_string(ff);		\
2553 			if (!c.v)				\
2554 				goto out_free_caches;
2555 
2556 		_R(type)
2557 		_R(size)
2558 		_R(map)
2559 		#undef _R
2560 
2561 		caches[i] = c;
2562 	}
2563 
2564 	ff->ph->env.caches = caches;
2565 	ff->ph->env.caches_cnt = cnt;
2566 	return 0;
2567 out_free_caches:
2568 	free(caches);
2569 	return -1;
2570 }
2571 
2572 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2573 {
2574 	struct perf_session *session;
2575 	u64 first_sample_time, last_sample_time;
2576 	int ret;
2577 
2578 	session = container_of(ff->ph, struct perf_session, header);
2579 
2580 	ret = do_read_u64(ff, &first_sample_time);
2581 	if (ret)
2582 		return -1;
2583 
2584 	ret = do_read_u64(ff, &last_sample_time);
2585 	if (ret)
2586 		return -1;
2587 
2588 	session->evlist->first_sample_time = first_sample_time;
2589 	session->evlist->last_sample_time = last_sample_time;
2590 	return 0;
2591 }
2592 
2593 static int process_mem_topology(struct feat_fd *ff,
2594 				void *data __maybe_unused)
2595 {
2596 	struct memory_node *nodes;
2597 	u64 version, i, nr, bsize;
2598 	int ret = -1;
2599 
2600 	if (do_read_u64(ff, &version))
2601 		return -1;
2602 
2603 	if (version != 1)
2604 		return -1;
2605 
2606 	if (do_read_u64(ff, &bsize))
2607 		return -1;
2608 
2609 	if (do_read_u64(ff, &nr))
2610 		return -1;
2611 
2612 	nodes = zalloc(sizeof(*nodes) * nr);
2613 	if (!nodes)
2614 		return -1;
2615 
2616 	for (i = 0; i < nr; i++) {
2617 		struct memory_node n;
2618 
2619 		#define _R(v)				\
2620 			if (do_read_u64(ff, &n.v))	\
2621 				goto out;		\
2622 
2623 		_R(node)
2624 		_R(size)
2625 
2626 		#undef _R
2627 
2628 		if (do_read_bitmap(ff, &n.set, &n.size))
2629 			goto out;
2630 
2631 		nodes[i] = n;
2632 	}
2633 
2634 	ff->ph->env.memory_bsize    = bsize;
2635 	ff->ph->env.memory_nodes    = nodes;
2636 	ff->ph->env.nr_memory_nodes = nr;
2637 	ret = 0;
2638 
2639 out:
2640 	if (ret)
2641 		free(nodes);
2642 	return ret;
2643 }
2644 
2645 static int process_clockid(struct feat_fd *ff,
2646 			   void *data __maybe_unused)
2647 {
2648 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2649 		return -1;
2650 
2651 	return 0;
2652 }
2653 
2654 static int process_dir_format(struct feat_fd *ff,
2655 			      void *_data __maybe_unused)
2656 {
2657 	struct perf_session *session;
2658 	struct perf_data *data;
2659 
2660 	session = container_of(ff->ph, struct perf_session, header);
2661 	data = session->data;
2662 
2663 	if (WARN_ON(!perf_data__is_dir(data)))
2664 		return -1;
2665 
2666 	return do_read_u64(ff, &data->dir.version);
2667 }
2668 
2669 #ifdef HAVE_LIBBPF_SUPPORT
2670 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2671 {
2672 	struct bpf_prog_info_linear *info_linear;
2673 	struct bpf_prog_info_node *info_node;
2674 	struct perf_env *env = &ff->ph->env;
2675 	u32 count, i;
2676 	int err = -1;
2677 
2678 	if (ff->ph->needs_swap) {
2679 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2680 		return 0;
2681 	}
2682 
2683 	if (do_read_u32(ff, &count))
2684 		return -1;
2685 
2686 	down_write(&env->bpf_progs.lock);
2687 
2688 	for (i = 0; i < count; ++i) {
2689 		u32 info_len, data_len;
2690 
2691 		info_linear = NULL;
2692 		info_node = NULL;
2693 		if (do_read_u32(ff, &info_len))
2694 			goto out;
2695 		if (do_read_u32(ff, &data_len))
2696 			goto out;
2697 
2698 		if (info_len > sizeof(struct bpf_prog_info)) {
2699 			pr_warning("detected invalid bpf_prog_info\n");
2700 			goto out;
2701 		}
2702 
2703 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2704 				     data_len);
2705 		if (!info_linear)
2706 			goto out;
2707 		info_linear->info_len = sizeof(struct bpf_prog_info);
2708 		info_linear->data_len = data_len;
2709 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2710 			goto out;
2711 		if (__do_read(ff, &info_linear->info, info_len))
2712 			goto out;
2713 		if (info_len < sizeof(struct bpf_prog_info))
2714 			memset(((void *)(&info_linear->info)) + info_len, 0,
2715 			       sizeof(struct bpf_prog_info) - info_len);
2716 
2717 		if (__do_read(ff, info_linear->data, data_len))
2718 			goto out;
2719 
2720 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2721 		if (!info_node)
2722 			goto out;
2723 
2724 		/* after reading from file, translate offset to address */
2725 		bpf_program__bpil_offs_to_addr(info_linear);
2726 		info_node->info_linear = info_linear;
2727 		perf_env__insert_bpf_prog_info(env, info_node);
2728 	}
2729 
2730 	up_write(&env->bpf_progs.lock);
2731 	return 0;
2732 out:
2733 	free(info_linear);
2734 	free(info_node);
2735 	up_write(&env->bpf_progs.lock);
2736 	return err;
2737 }
2738 #else // HAVE_LIBBPF_SUPPORT
2739 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2740 {
2741 	return 0;
2742 }
2743 #endif // HAVE_LIBBPF_SUPPORT
2744 
2745 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2746 {
2747 	struct perf_env *env = &ff->ph->env;
2748 	struct btf_node *node = NULL;
2749 	u32 count, i;
2750 	int err = -1;
2751 
2752 	if (ff->ph->needs_swap) {
2753 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2754 		return 0;
2755 	}
2756 
2757 	if (do_read_u32(ff, &count))
2758 		return -1;
2759 
2760 	down_write(&env->bpf_progs.lock);
2761 
2762 	for (i = 0; i < count; ++i) {
2763 		u32 id, data_size;
2764 
2765 		if (do_read_u32(ff, &id))
2766 			goto out;
2767 		if (do_read_u32(ff, &data_size))
2768 			goto out;
2769 
2770 		node = malloc(sizeof(struct btf_node) + data_size);
2771 		if (!node)
2772 			goto out;
2773 
2774 		node->id = id;
2775 		node->data_size = data_size;
2776 
2777 		if (__do_read(ff, node->data, data_size))
2778 			goto out;
2779 
2780 		perf_env__insert_btf(env, node);
2781 		node = NULL;
2782 	}
2783 
2784 	err = 0;
2785 out:
2786 	up_write(&env->bpf_progs.lock);
2787 	free(node);
2788 	return err;
2789 }
2790 
2791 static int process_compressed(struct feat_fd *ff,
2792 			      void *data __maybe_unused)
2793 {
2794 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2795 		return -1;
2796 
2797 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2798 		return -1;
2799 
2800 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2801 		return -1;
2802 
2803 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2804 		return -1;
2805 
2806 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2807 		return -1;
2808 
2809 	return 0;
2810 }
2811 
2812 #define FEAT_OPR(n, func, __full_only) \
2813 	[HEADER_##n] = {					\
2814 		.name	    = __stringify(n),			\
2815 		.write	    = write_##func,			\
2816 		.print	    = print_##func,			\
2817 		.full_only  = __full_only,			\
2818 		.process    = process_##func,			\
2819 		.synthesize = true				\
2820 	}
2821 
2822 #define FEAT_OPN(n, func, __full_only) \
2823 	[HEADER_##n] = {					\
2824 		.name	    = __stringify(n),			\
2825 		.write	    = write_##func,			\
2826 		.print	    = print_##func,			\
2827 		.full_only  = __full_only,			\
2828 		.process    = process_##func			\
2829 	}
2830 
2831 /* feature_ops not implemented: */
2832 #define print_tracing_data	NULL
2833 #define print_build_id		NULL
2834 
2835 #define process_branch_stack	NULL
2836 #define process_stat		NULL
2837 
2838 // Only used in util/synthetic-events.c
2839 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2840 
2841 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2842 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2843 	FEAT_OPN(BUILD_ID,	build_id,	false),
2844 	FEAT_OPR(HOSTNAME,	hostname,	false),
2845 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2846 	FEAT_OPR(VERSION,	version,	false),
2847 	FEAT_OPR(ARCH,		arch,		false),
2848 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2849 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2850 	FEAT_OPR(CPUID,		cpuid,		false),
2851 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2852 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2853 	FEAT_OPR(CMDLINE,	cmdline,	false),
2854 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2855 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2856 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2857 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2858 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2859 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2860 	FEAT_OPN(STAT,		stat,		false),
2861 	FEAT_OPN(CACHE,		cache,		true),
2862 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2863 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2864 	FEAT_OPR(CLOCKID,	clockid,	false),
2865 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2866 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2867 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2868 	FEAT_OPR(COMPRESSED,	compressed,	false),
2869 };
2870 
2871 struct header_print_data {
2872 	FILE *fp;
2873 	bool full; /* extended list of headers */
2874 };
2875 
2876 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2877 					   struct perf_header *ph,
2878 					   int feat, int fd, void *data)
2879 {
2880 	struct header_print_data *hd = data;
2881 	struct feat_fd ff;
2882 
2883 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2884 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2885 				"%d, continuing...\n", section->offset, feat);
2886 		return 0;
2887 	}
2888 	if (feat >= HEADER_LAST_FEATURE) {
2889 		pr_warning("unknown feature %d\n", feat);
2890 		return 0;
2891 	}
2892 	if (!feat_ops[feat].print)
2893 		return 0;
2894 
2895 	ff = (struct  feat_fd) {
2896 		.fd = fd,
2897 		.ph = ph,
2898 	};
2899 
2900 	if (!feat_ops[feat].full_only || hd->full)
2901 		feat_ops[feat].print(&ff, hd->fp);
2902 	else
2903 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2904 			feat_ops[feat].name);
2905 
2906 	return 0;
2907 }
2908 
2909 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2910 {
2911 	struct header_print_data hd;
2912 	struct perf_header *header = &session->header;
2913 	int fd = perf_data__fd(session->data);
2914 	struct stat st;
2915 	time_t stctime;
2916 	int ret, bit;
2917 
2918 	hd.fp = fp;
2919 	hd.full = full;
2920 
2921 	ret = fstat(fd, &st);
2922 	if (ret == -1)
2923 		return -1;
2924 
2925 	stctime = st.st_mtime;
2926 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2927 
2928 	fprintf(fp, "# header version : %u\n", header->version);
2929 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2930 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2931 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2932 
2933 	perf_header__process_sections(header, fd, &hd,
2934 				      perf_file_section__fprintf_info);
2935 
2936 	if (session->data->is_pipe)
2937 		return 0;
2938 
2939 	fprintf(fp, "# missing features: ");
2940 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2941 		if (bit)
2942 			fprintf(fp, "%s ", feat_ops[bit].name);
2943 	}
2944 
2945 	fprintf(fp, "\n");
2946 	return 0;
2947 }
2948 
2949 static int do_write_feat(struct feat_fd *ff, int type,
2950 			 struct perf_file_section **p,
2951 			 struct evlist *evlist)
2952 {
2953 	int err;
2954 	int ret = 0;
2955 
2956 	if (perf_header__has_feat(ff->ph, type)) {
2957 		if (!feat_ops[type].write)
2958 			return -1;
2959 
2960 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2961 			return -1;
2962 
2963 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2964 
2965 		err = feat_ops[type].write(ff, evlist);
2966 		if (err < 0) {
2967 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2968 
2969 			/* undo anything written */
2970 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2971 
2972 			return -1;
2973 		}
2974 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2975 		(*p)++;
2976 	}
2977 	return ret;
2978 }
2979 
2980 static int perf_header__adds_write(struct perf_header *header,
2981 				   struct evlist *evlist, int fd)
2982 {
2983 	int nr_sections;
2984 	struct feat_fd ff;
2985 	struct perf_file_section *feat_sec, *p;
2986 	int sec_size;
2987 	u64 sec_start;
2988 	int feat;
2989 	int err;
2990 
2991 	ff = (struct feat_fd){
2992 		.fd  = fd,
2993 		.ph = header,
2994 	};
2995 
2996 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2997 	if (!nr_sections)
2998 		return 0;
2999 
3000 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3001 	if (feat_sec == NULL)
3002 		return -ENOMEM;
3003 
3004 	sec_size = sizeof(*feat_sec) * nr_sections;
3005 
3006 	sec_start = header->feat_offset;
3007 	lseek(fd, sec_start + sec_size, SEEK_SET);
3008 
3009 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3010 		if (do_write_feat(&ff, feat, &p, evlist))
3011 			perf_header__clear_feat(header, feat);
3012 	}
3013 
3014 	lseek(fd, sec_start, SEEK_SET);
3015 	/*
3016 	 * may write more than needed due to dropped feature, but
3017 	 * this is okay, reader will skip the missing entries
3018 	 */
3019 	err = do_write(&ff, feat_sec, sec_size);
3020 	if (err < 0)
3021 		pr_debug("failed to write feature section\n");
3022 	free(feat_sec);
3023 	return err;
3024 }
3025 
3026 int perf_header__write_pipe(int fd)
3027 {
3028 	struct perf_pipe_file_header f_header;
3029 	struct feat_fd ff;
3030 	int err;
3031 
3032 	ff = (struct feat_fd){ .fd = fd };
3033 
3034 	f_header = (struct perf_pipe_file_header){
3035 		.magic	   = PERF_MAGIC,
3036 		.size	   = sizeof(f_header),
3037 	};
3038 
3039 	err = do_write(&ff, &f_header, sizeof(f_header));
3040 	if (err < 0) {
3041 		pr_debug("failed to write perf pipe header\n");
3042 		return err;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 int perf_session__write_header(struct perf_session *session,
3049 			       struct evlist *evlist,
3050 			       int fd, bool at_exit)
3051 {
3052 	struct perf_file_header f_header;
3053 	struct perf_file_attr   f_attr;
3054 	struct perf_header *header = &session->header;
3055 	struct evsel *evsel;
3056 	struct feat_fd ff;
3057 	u64 attr_offset;
3058 	int err;
3059 
3060 	ff = (struct feat_fd){ .fd = fd};
3061 	lseek(fd, sizeof(f_header), SEEK_SET);
3062 
3063 	evlist__for_each_entry(session->evlist, evsel) {
3064 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3065 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3066 		if (err < 0) {
3067 			pr_debug("failed to write perf header\n");
3068 			return err;
3069 		}
3070 	}
3071 
3072 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3073 
3074 	evlist__for_each_entry(evlist, evsel) {
3075 		f_attr = (struct perf_file_attr){
3076 			.attr = evsel->core.attr,
3077 			.ids  = {
3078 				.offset = evsel->id_offset,
3079 				.size   = evsel->core.ids * sizeof(u64),
3080 			}
3081 		};
3082 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3083 		if (err < 0) {
3084 			pr_debug("failed to write perf header attribute\n");
3085 			return err;
3086 		}
3087 	}
3088 
3089 	if (!header->data_offset)
3090 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3091 	header->feat_offset = header->data_offset + header->data_size;
3092 
3093 	if (at_exit) {
3094 		err = perf_header__adds_write(header, evlist, fd);
3095 		if (err < 0)
3096 			return err;
3097 	}
3098 
3099 	f_header = (struct perf_file_header){
3100 		.magic	   = PERF_MAGIC,
3101 		.size	   = sizeof(f_header),
3102 		.attr_size = sizeof(f_attr),
3103 		.attrs = {
3104 			.offset = attr_offset,
3105 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3106 		},
3107 		.data = {
3108 			.offset = header->data_offset,
3109 			.size	= header->data_size,
3110 		},
3111 		/* event_types is ignored, store zeros */
3112 	};
3113 
3114 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3115 
3116 	lseek(fd, 0, SEEK_SET);
3117 	err = do_write(&ff, &f_header, sizeof(f_header));
3118 	if (err < 0) {
3119 		pr_debug("failed to write perf header\n");
3120 		return err;
3121 	}
3122 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3123 
3124 	return 0;
3125 }
3126 
3127 static int perf_header__getbuffer64(struct perf_header *header,
3128 				    int fd, void *buf, size_t size)
3129 {
3130 	if (readn(fd, buf, size) <= 0)
3131 		return -1;
3132 
3133 	if (header->needs_swap)
3134 		mem_bswap_64(buf, size);
3135 
3136 	return 0;
3137 }
3138 
3139 int perf_header__process_sections(struct perf_header *header, int fd,
3140 				  void *data,
3141 				  int (*process)(struct perf_file_section *section,
3142 						 struct perf_header *ph,
3143 						 int feat, int fd, void *data))
3144 {
3145 	struct perf_file_section *feat_sec, *sec;
3146 	int nr_sections;
3147 	int sec_size;
3148 	int feat;
3149 	int err;
3150 
3151 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3152 	if (!nr_sections)
3153 		return 0;
3154 
3155 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3156 	if (!feat_sec)
3157 		return -1;
3158 
3159 	sec_size = sizeof(*feat_sec) * nr_sections;
3160 
3161 	lseek(fd, header->feat_offset, SEEK_SET);
3162 
3163 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3164 	if (err < 0)
3165 		goto out_free;
3166 
3167 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3168 		err = process(sec++, header, feat, fd, data);
3169 		if (err < 0)
3170 			goto out_free;
3171 	}
3172 	err = 0;
3173 out_free:
3174 	free(feat_sec);
3175 	return err;
3176 }
3177 
3178 static const int attr_file_abi_sizes[] = {
3179 	[0] = PERF_ATTR_SIZE_VER0,
3180 	[1] = PERF_ATTR_SIZE_VER1,
3181 	[2] = PERF_ATTR_SIZE_VER2,
3182 	[3] = PERF_ATTR_SIZE_VER3,
3183 	[4] = PERF_ATTR_SIZE_VER4,
3184 	0,
3185 };
3186 
3187 /*
3188  * In the legacy file format, the magic number is not used to encode endianness.
3189  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3190  * on ABI revisions, we need to try all combinations for all endianness to
3191  * detect the endianness.
3192  */
3193 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3194 {
3195 	uint64_t ref_size, attr_size;
3196 	int i;
3197 
3198 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3199 		ref_size = attr_file_abi_sizes[i]
3200 			 + sizeof(struct perf_file_section);
3201 		if (hdr_sz != ref_size) {
3202 			attr_size = bswap_64(hdr_sz);
3203 			if (attr_size != ref_size)
3204 				continue;
3205 
3206 			ph->needs_swap = true;
3207 		}
3208 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3209 			 i,
3210 			 ph->needs_swap);
3211 		return 0;
3212 	}
3213 	/* could not determine endianness */
3214 	return -1;
3215 }
3216 
3217 #define PERF_PIPE_HDR_VER0	16
3218 
3219 static const size_t attr_pipe_abi_sizes[] = {
3220 	[0] = PERF_PIPE_HDR_VER0,
3221 	0,
3222 };
3223 
3224 /*
3225  * In the legacy pipe format, there is an implicit assumption that endiannesss
3226  * between host recording the samples, and host parsing the samples is the
3227  * same. This is not always the case given that the pipe output may always be
3228  * redirected into a file and analyzed on a different machine with possibly a
3229  * different endianness and perf_event ABI revsions in the perf tool itself.
3230  */
3231 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3232 {
3233 	u64 attr_size;
3234 	int i;
3235 
3236 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3237 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3238 			attr_size = bswap_64(hdr_sz);
3239 			if (attr_size != hdr_sz)
3240 				continue;
3241 
3242 			ph->needs_swap = true;
3243 		}
3244 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3245 		return 0;
3246 	}
3247 	return -1;
3248 }
3249 
3250 bool is_perf_magic(u64 magic)
3251 {
3252 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3253 		|| magic == __perf_magic2
3254 		|| magic == __perf_magic2_sw)
3255 		return true;
3256 
3257 	return false;
3258 }
3259 
3260 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3261 			      bool is_pipe, struct perf_header *ph)
3262 {
3263 	int ret;
3264 
3265 	/* check for legacy format */
3266 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3267 	if (ret == 0) {
3268 		ph->version = PERF_HEADER_VERSION_1;
3269 		pr_debug("legacy perf.data format\n");
3270 		if (is_pipe)
3271 			return try_all_pipe_abis(hdr_sz, ph);
3272 
3273 		return try_all_file_abis(hdr_sz, ph);
3274 	}
3275 	/*
3276 	 * the new magic number serves two purposes:
3277 	 * - unique number to identify actual perf.data files
3278 	 * - encode endianness of file
3279 	 */
3280 	ph->version = PERF_HEADER_VERSION_2;
3281 
3282 	/* check magic number with one endianness */
3283 	if (magic == __perf_magic2)
3284 		return 0;
3285 
3286 	/* check magic number with opposite endianness */
3287 	if (magic != __perf_magic2_sw)
3288 		return -1;
3289 
3290 	ph->needs_swap = true;
3291 
3292 	return 0;
3293 }
3294 
3295 int perf_file_header__read(struct perf_file_header *header,
3296 			   struct perf_header *ph, int fd)
3297 {
3298 	ssize_t ret;
3299 
3300 	lseek(fd, 0, SEEK_SET);
3301 
3302 	ret = readn(fd, header, sizeof(*header));
3303 	if (ret <= 0)
3304 		return -1;
3305 
3306 	if (check_magic_endian(header->magic,
3307 			       header->attr_size, false, ph) < 0) {
3308 		pr_debug("magic/endian check failed\n");
3309 		return -1;
3310 	}
3311 
3312 	if (ph->needs_swap) {
3313 		mem_bswap_64(header, offsetof(struct perf_file_header,
3314 			     adds_features));
3315 	}
3316 
3317 	if (header->size != sizeof(*header)) {
3318 		/* Support the previous format */
3319 		if (header->size == offsetof(typeof(*header), adds_features))
3320 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3321 		else
3322 			return -1;
3323 	} else if (ph->needs_swap) {
3324 		/*
3325 		 * feature bitmap is declared as an array of unsigned longs --
3326 		 * not good since its size can differ between the host that
3327 		 * generated the data file and the host analyzing the file.
3328 		 *
3329 		 * We need to handle endianness, but we don't know the size of
3330 		 * the unsigned long where the file was generated. Take a best
3331 		 * guess at determining it: try 64-bit swap first (ie., file
3332 		 * created on a 64-bit host), and check if the hostname feature
3333 		 * bit is set (this feature bit is forced on as of fbe96f2).
3334 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3335 		 * swap. If the hostname bit is still not set (e.g., older data
3336 		 * file), punt and fallback to the original behavior --
3337 		 * clearing all feature bits and setting buildid.
3338 		 */
3339 		mem_bswap_64(&header->adds_features,
3340 			    BITS_TO_U64(HEADER_FEAT_BITS));
3341 
3342 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3343 			/* unswap as u64 */
3344 			mem_bswap_64(&header->adds_features,
3345 				    BITS_TO_U64(HEADER_FEAT_BITS));
3346 
3347 			/* unswap as u32 */
3348 			mem_bswap_32(&header->adds_features,
3349 				    BITS_TO_U32(HEADER_FEAT_BITS));
3350 		}
3351 
3352 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3353 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3354 			set_bit(HEADER_BUILD_ID, header->adds_features);
3355 		}
3356 	}
3357 
3358 	memcpy(&ph->adds_features, &header->adds_features,
3359 	       sizeof(ph->adds_features));
3360 
3361 	ph->data_offset  = header->data.offset;
3362 	ph->data_size	 = header->data.size;
3363 	ph->feat_offset  = header->data.offset + header->data.size;
3364 	return 0;
3365 }
3366 
3367 static int perf_file_section__process(struct perf_file_section *section,
3368 				      struct perf_header *ph,
3369 				      int feat, int fd, void *data)
3370 {
3371 	struct feat_fd fdd = {
3372 		.fd	= fd,
3373 		.ph	= ph,
3374 		.size	= section->size,
3375 		.offset	= section->offset,
3376 	};
3377 
3378 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3379 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3380 			  "%d, continuing...\n", section->offset, feat);
3381 		return 0;
3382 	}
3383 
3384 	if (feat >= HEADER_LAST_FEATURE) {
3385 		pr_debug("unknown feature %d, continuing...\n", feat);
3386 		return 0;
3387 	}
3388 
3389 	if (!feat_ops[feat].process)
3390 		return 0;
3391 
3392 	return feat_ops[feat].process(&fdd, data);
3393 }
3394 
3395 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3396 				       struct perf_header *ph, int fd,
3397 				       bool repipe)
3398 {
3399 	struct feat_fd ff = {
3400 		.fd = STDOUT_FILENO,
3401 		.ph = ph,
3402 	};
3403 	ssize_t ret;
3404 
3405 	ret = readn(fd, header, sizeof(*header));
3406 	if (ret <= 0)
3407 		return -1;
3408 
3409 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3410 		pr_debug("endian/magic failed\n");
3411 		return -1;
3412 	}
3413 
3414 	if (ph->needs_swap)
3415 		header->size = bswap_64(header->size);
3416 
3417 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3418 		return -1;
3419 
3420 	return 0;
3421 }
3422 
3423 static int perf_header__read_pipe(struct perf_session *session)
3424 {
3425 	struct perf_header *header = &session->header;
3426 	struct perf_pipe_file_header f_header;
3427 
3428 	if (perf_file_header__read_pipe(&f_header, header,
3429 					perf_data__fd(session->data),
3430 					session->repipe) < 0) {
3431 		pr_debug("incompatible file format\n");
3432 		return -EINVAL;
3433 	}
3434 
3435 	return 0;
3436 }
3437 
3438 static int read_attr(int fd, struct perf_header *ph,
3439 		     struct perf_file_attr *f_attr)
3440 {
3441 	struct perf_event_attr *attr = &f_attr->attr;
3442 	size_t sz, left;
3443 	size_t our_sz = sizeof(f_attr->attr);
3444 	ssize_t ret;
3445 
3446 	memset(f_attr, 0, sizeof(*f_attr));
3447 
3448 	/* read minimal guaranteed structure */
3449 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3450 	if (ret <= 0) {
3451 		pr_debug("cannot read %d bytes of header attr\n",
3452 			 PERF_ATTR_SIZE_VER0);
3453 		return -1;
3454 	}
3455 
3456 	/* on file perf_event_attr size */
3457 	sz = attr->size;
3458 
3459 	if (ph->needs_swap)
3460 		sz = bswap_32(sz);
3461 
3462 	if (sz == 0) {
3463 		/* assume ABI0 */
3464 		sz =  PERF_ATTR_SIZE_VER0;
3465 	} else if (sz > our_sz) {
3466 		pr_debug("file uses a more recent and unsupported ABI"
3467 			 " (%zu bytes extra)\n", sz - our_sz);
3468 		return -1;
3469 	}
3470 	/* what we have not yet read and that we know about */
3471 	left = sz - PERF_ATTR_SIZE_VER0;
3472 	if (left) {
3473 		void *ptr = attr;
3474 		ptr += PERF_ATTR_SIZE_VER0;
3475 
3476 		ret = readn(fd, ptr, left);
3477 	}
3478 	/* read perf_file_section, ids are read in caller */
3479 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3480 
3481 	return ret <= 0 ? -1 : 0;
3482 }
3483 
3484 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3485 						struct tep_handle *pevent)
3486 {
3487 	struct tep_event *event;
3488 	char bf[128];
3489 
3490 	/* already prepared */
3491 	if (evsel->tp_format)
3492 		return 0;
3493 
3494 	if (pevent == NULL) {
3495 		pr_debug("broken or missing trace data\n");
3496 		return -1;
3497 	}
3498 
3499 	event = tep_find_event(pevent, evsel->core.attr.config);
3500 	if (event == NULL) {
3501 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3502 		return -1;
3503 	}
3504 
3505 	if (!evsel->name) {
3506 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3507 		evsel->name = strdup(bf);
3508 		if (evsel->name == NULL)
3509 			return -1;
3510 	}
3511 
3512 	evsel->tp_format = event;
3513 	return 0;
3514 }
3515 
3516 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3517 						  struct tep_handle *pevent)
3518 {
3519 	struct evsel *pos;
3520 
3521 	evlist__for_each_entry(evlist, pos) {
3522 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3523 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3524 			return -1;
3525 	}
3526 
3527 	return 0;
3528 }
3529 
3530 int perf_session__read_header(struct perf_session *session)
3531 {
3532 	struct perf_data *data = session->data;
3533 	struct perf_header *header = &session->header;
3534 	struct perf_file_header	f_header;
3535 	struct perf_file_attr	f_attr;
3536 	u64			f_id;
3537 	int nr_attrs, nr_ids, i, j;
3538 	int fd = perf_data__fd(data);
3539 
3540 	session->evlist = evlist__new();
3541 	if (session->evlist == NULL)
3542 		return -ENOMEM;
3543 
3544 	session->evlist->env = &header->env;
3545 	session->machines.host.env = &header->env;
3546 	if (perf_data__is_pipe(data))
3547 		return perf_header__read_pipe(session);
3548 
3549 	if (perf_file_header__read(&f_header, header, fd) < 0)
3550 		return -EINVAL;
3551 
3552 	/*
3553 	 * Sanity check that perf.data was written cleanly; data size is
3554 	 * initialized to 0 and updated only if the on_exit function is run.
3555 	 * If data size is still 0 then the file contains only partial
3556 	 * information.  Just warn user and process it as much as it can.
3557 	 */
3558 	if (f_header.data.size == 0) {
3559 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3560 			   "Was the 'perf record' command properly terminated?\n",
3561 			   data->file.path);
3562 	}
3563 
3564 	if (f_header.attr_size == 0) {
3565 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3566 		       "Was the 'perf record' command properly terminated?\n",
3567 		       data->file.path);
3568 		return -EINVAL;
3569 	}
3570 
3571 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3572 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3573 
3574 	for (i = 0; i < nr_attrs; i++) {
3575 		struct evsel *evsel;
3576 		off_t tmp;
3577 
3578 		if (read_attr(fd, header, &f_attr) < 0)
3579 			goto out_errno;
3580 
3581 		if (header->needs_swap) {
3582 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3583 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3584 			perf_event__attr_swap(&f_attr.attr);
3585 		}
3586 
3587 		tmp = lseek(fd, 0, SEEK_CUR);
3588 		evsel = evsel__new(&f_attr.attr);
3589 
3590 		if (evsel == NULL)
3591 			goto out_delete_evlist;
3592 
3593 		evsel->needs_swap = header->needs_swap;
3594 		/*
3595 		 * Do it before so that if perf_evsel__alloc_id fails, this
3596 		 * entry gets purged too at evlist__delete().
3597 		 */
3598 		evlist__add(session->evlist, evsel);
3599 
3600 		nr_ids = f_attr.ids.size / sizeof(u64);
3601 		/*
3602 		 * We don't have the cpu and thread maps on the header, so
3603 		 * for allocating the perf_sample_id table we fake 1 cpu and
3604 		 * hattr->ids threads.
3605 		 */
3606 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3607 			goto out_delete_evlist;
3608 
3609 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3610 
3611 		for (j = 0; j < nr_ids; j++) {
3612 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3613 				goto out_errno;
3614 
3615 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3616 		}
3617 
3618 		lseek(fd, tmp, SEEK_SET);
3619 	}
3620 
3621 	perf_header__process_sections(header, fd, &session->tevent,
3622 				      perf_file_section__process);
3623 
3624 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3625 						   session->tevent.pevent))
3626 		goto out_delete_evlist;
3627 
3628 	return 0;
3629 out_errno:
3630 	return -errno;
3631 
3632 out_delete_evlist:
3633 	evlist__delete(session->evlist);
3634 	session->evlist = NULL;
3635 	return -ENOMEM;
3636 }
3637 
3638 int perf_event__process_feature(struct perf_session *session,
3639 				union perf_event *event)
3640 {
3641 	struct perf_tool *tool = session->tool;
3642 	struct feat_fd ff = { .fd = 0 };
3643 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3644 	int type = fe->header.type;
3645 	u64 feat = fe->feat_id;
3646 
3647 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3648 		pr_warning("invalid record type %d in pipe-mode\n", type);
3649 		return 0;
3650 	}
3651 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3652 		pr_warning("invalid record type %d in pipe-mode\n", type);
3653 		return -1;
3654 	}
3655 
3656 	if (!feat_ops[feat].process)
3657 		return 0;
3658 
3659 	ff.buf  = (void *)fe->data;
3660 	ff.size = event->header.size - sizeof(*fe);
3661 	ff.ph = &session->header;
3662 
3663 	if (feat_ops[feat].process(&ff, NULL))
3664 		return -1;
3665 
3666 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3667 		return 0;
3668 
3669 	if (!feat_ops[feat].full_only ||
3670 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3671 		feat_ops[feat].print(&ff, stdout);
3672 	} else {
3673 		fprintf(stdout, "# %s info available, use -I to display\n",
3674 			feat_ops[feat].name);
3675 	}
3676 
3677 	return 0;
3678 }
3679 
3680 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3681 {
3682 	struct perf_record_event_update *ev = &event->event_update;
3683 	struct perf_record_event_update_scale *ev_scale;
3684 	struct perf_record_event_update_cpus *ev_cpus;
3685 	struct perf_cpu_map *map;
3686 	size_t ret;
3687 
3688 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3689 
3690 	switch (ev->type) {
3691 	case PERF_EVENT_UPDATE__SCALE:
3692 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3693 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3694 		break;
3695 	case PERF_EVENT_UPDATE__UNIT:
3696 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3697 		break;
3698 	case PERF_EVENT_UPDATE__NAME:
3699 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3700 		break;
3701 	case PERF_EVENT_UPDATE__CPUS:
3702 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3703 		ret += fprintf(fp, "... ");
3704 
3705 		map = cpu_map__new_data(&ev_cpus->cpus);
3706 		if (map)
3707 			ret += cpu_map__fprintf(map, fp);
3708 		else
3709 			ret += fprintf(fp, "failed to get cpus\n");
3710 		break;
3711 	default:
3712 		ret += fprintf(fp, "... unknown type\n");
3713 		break;
3714 	}
3715 
3716 	return ret;
3717 }
3718 
3719 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3720 			     union perf_event *event,
3721 			     struct evlist **pevlist)
3722 {
3723 	u32 i, ids, n_ids;
3724 	struct evsel *evsel;
3725 	struct evlist *evlist = *pevlist;
3726 
3727 	if (evlist == NULL) {
3728 		*pevlist = evlist = evlist__new();
3729 		if (evlist == NULL)
3730 			return -ENOMEM;
3731 	}
3732 
3733 	evsel = evsel__new(&event->attr.attr);
3734 	if (evsel == NULL)
3735 		return -ENOMEM;
3736 
3737 	evlist__add(evlist, evsel);
3738 
3739 	ids = event->header.size;
3740 	ids -= (void *)&event->attr.id - (void *)event;
3741 	n_ids = ids / sizeof(u64);
3742 	/*
3743 	 * We don't have the cpu and thread maps on the header, so
3744 	 * for allocating the perf_sample_id table we fake 1 cpu and
3745 	 * hattr->ids threads.
3746 	 */
3747 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3748 		return -ENOMEM;
3749 
3750 	for (i = 0; i < n_ids; i++) {
3751 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3758 				     union perf_event *event,
3759 				     struct evlist **pevlist)
3760 {
3761 	struct perf_record_event_update *ev = &event->event_update;
3762 	struct perf_record_event_update_scale *ev_scale;
3763 	struct perf_record_event_update_cpus *ev_cpus;
3764 	struct evlist *evlist;
3765 	struct evsel *evsel;
3766 	struct perf_cpu_map *map;
3767 
3768 	if (!pevlist || *pevlist == NULL)
3769 		return -EINVAL;
3770 
3771 	evlist = *pevlist;
3772 
3773 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3774 	if (evsel == NULL)
3775 		return -EINVAL;
3776 
3777 	switch (ev->type) {
3778 	case PERF_EVENT_UPDATE__UNIT:
3779 		evsel->unit = strdup(ev->data);
3780 		break;
3781 	case PERF_EVENT_UPDATE__NAME:
3782 		evsel->name = strdup(ev->data);
3783 		break;
3784 	case PERF_EVENT_UPDATE__SCALE:
3785 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3786 		evsel->scale = ev_scale->scale;
3787 		break;
3788 	case PERF_EVENT_UPDATE__CPUS:
3789 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3790 
3791 		map = cpu_map__new_data(&ev_cpus->cpus);
3792 		if (map)
3793 			evsel->core.own_cpus = map;
3794 		else
3795 			pr_err("failed to get event_update cpus\n");
3796 	default:
3797 		break;
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 int perf_event__process_tracing_data(struct perf_session *session,
3804 				     union perf_event *event)
3805 {
3806 	ssize_t size_read, padding, size = event->tracing_data.size;
3807 	int fd = perf_data__fd(session->data);
3808 	off_t offset = lseek(fd, 0, SEEK_CUR);
3809 	char buf[BUFSIZ];
3810 
3811 	/* setup for reading amidst mmap */
3812 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3813 	      SEEK_SET);
3814 
3815 	size_read = trace_report(fd, &session->tevent,
3816 				 session->repipe);
3817 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3818 
3819 	if (readn(fd, buf, padding) < 0) {
3820 		pr_err("%s: reading input file", __func__);
3821 		return -1;
3822 	}
3823 	if (session->repipe) {
3824 		int retw = write(STDOUT_FILENO, buf, padding);
3825 		if (retw <= 0 || retw != padding) {
3826 			pr_err("%s: repiping tracing data padding", __func__);
3827 			return -1;
3828 		}
3829 	}
3830 
3831 	if (size_read + padding != size) {
3832 		pr_err("%s: tracing data size mismatch", __func__);
3833 		return -1;
3834 	}
3835 
3836 	perf_evlist__prepare_tracepoint_events(session->evlist,
3837 					       session->tevent.pevent);
3838 
3839 	return size_read + padding;
3840 }
3841 
3842 int perf_event__process_build_id(struct perf_session *session,
3843 				 union perf_event *event)
3844 {
3845 	__event_process_build_id(&event->build_id,
3846 				 event->build_id.filename,
3847 				 session);
3848 	return 0;
3849 }
3850