xref: /openbmc/linux/tools/perf/util/header.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "header.h"
29 #include "memswap.h"
30 #include "trace-event.h"
31 #include "session.h"
32 #include "symbol.h"
33 #include "debug.h"
34 #include "cpumap.h"
35 #include "pmu.h"
36 #include "vdso.h"
37 #include "strbuf.h"
38 #include "build-id.h"
39 #include "data.h"
40 #include <api/fs/fs.h>
41 #include "asm/bug.h"
42 #include "tool.h"
43 #include "time-utils.h"
44 #include "units.h"
45 #include "util.h"
46 #include "cputopo.h"
47 #include "bpf-event.h"
48 
49 #include <linux/ctype.h>
50 
51 /*
52  * magic2 = "PERFILE2"
53  * must be a numerical value to let the endianness
54  * determine the memory layout. That way we are able
55  * to detect endianness when reading the perf.data file
56  * back.
57  *
58  * we check for legacy (PERFFILE) format.
59  */
60 static const char *__perf_magic1 = "PERFFILE";
61 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
62 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
63 
64 #define PERF_MAGIC	__perf_magic2
65 
66 const char perf_version_string[] = PERF_VERSION;
67 
68 struct perf_file_attr {
69 	struct perf_event_attr	attr;
70 	struct perf_file_section	ids;
71 };
72 
73 struct feat_fd {
74 	struct perf_header	*ph;
75 	int			fd;
76 	void			*buf;	/* Either buf != NULL or fd >= 0 */
77 	ssize_t			offset;
78 	size_t			size;
79 	struct evsel	*events;
80 };
81 
82 void perf_header__set_feat(struct perf_header *header, int feat)
83 {
84 	set_bit(feat, header->adds_features);
85 }
86 
87 void perf_header__clear_feat(struct perf_header *header, int feat)
88 {
89 	clear_bit(feat, header->adds_features);
90 }
91 
92 bool perf_header__has_feat(const struct perf_header *header, int feat)
93 {
94 	return test_bit(feat, header->adds_features);
95 }
96 
97 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
98 {
99 	ssize_t ret = writen(ff->fd, buf, size);
100 
101 	if (ret != (ssize_t)size)
102 		return ret < 0 ? (int)ret : -1;
103 	return 0;
104 }
105 
106 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
107 {
108 	/* struct perf_event_header::size is u16 */
109 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
110 	size_t new_size = ff->size;
111 	void *addr;
112 
113 	if (size + ff->offset > max_size)
114 		return -E2BIG;
115 
116 	while (size > (new_size - ff->offset))
117 		new_size <<= 1;
118 	new_size = min(max_size, new_size);
119 
120 	if (ff->size < new_size) {
121 		addr = realloc(ff->buf, new_size);
122 		if (!addr)
123 			return -ENOMEM;
124 		ff->buf = addr;
125 		ff->size = new_size;
126 	}
127 
128 	memcpy(ff->buf + ff->offset, buf, size);
129 	ff->offset += size;
130 
131 	return 0;
132 }
133 
134 /* Return: 0 if succeded, -ERR if failed. */
135 int do_write(struct feat_fd *ff, const void *buf, size_t size)
136 {
137 	if (!ff->buf)
138 		return __do_write_fd(ff, buf, size);
139 	return __do_write_buf(ff, buf, size);
140 }
141 
142 /* Return: 0 if succeded, -ERR if failed. */
143 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
144 {
145 	u64 *p = (u64 *) set;
146 	int i, ret;
147 
148 	ret = do_write(ff, &size, sizeof(size));
149 	if (ret < 0)
150 		return ret;
151 
152 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
153 		ret = do_write(ff, p + i, sizeof(*p));
154 		if (ret < 0)
155 			return ret;
156 	}
157 
158 	return 0;
159 }
160 
161 /* Return: 0 if succeded, -ERR if failed. */
162 int write_padded(struct feat_fd *ff, const void *bf,
163 		 size_t count, size_t count_aligned)
164 {
165 	static const char zero_buf[NAME_ALIGN];
166 	int err = do_write(ff, bf, count);
167 
168 	if (!err)
169 		err = do_write(ff, zero_buf, count_aligned - count);
170 
171 	return err;
172 }
173 
174 #define string_size(str)						\
175 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
176 
177 /* Return: 0 if succeded, -ERR if failed. */
178 static int do_write_string(struct feat_fd *ff, const char *str)
179 {
180 	u32 len, olen;
181 	int ret;
182 
183 	olen = strlen(str) + 1;
184 	len = PERF_ALIGN(olen, NAME_ALIGN);
185 
186 	/* write len, incl. \0 */
187 	ret = do_write(ff, &len, sizeof(len));
188 	if (ret < 0)
189 		return ret;
190 
191 	return write_padded(ff, str, olen, len);
192 }
193 
194 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
195 {
196 	ssize_t ret = readn(ff->fd, addr, size);
197 
198 	if (ret != size)
199 		return ret < 0 ? (int)ret : -1;
200 	return 0;
201 }
202 
203 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
204 {
205 	if (size > (ssize_t)ff->size - ff->offset)
206 		return -1;
207 
208 	memcpy(addr, ff->buf + ff->offset, size);
209 	ff->offset += size;
210 
211 	return 0;
212 
213 }
214 
215 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
216 {
217 	if (!ff->buf)
218 		return __do_read_fd(ff, addr, size);
219 	return __do_read_buf(ff, addr, size);
220 }
221 
222 static int do_read_u32(struct feat_fd *ff, u32 *addr)
223 {
224 	int ret;
225 
226 	ret = __do_read(ff, addr, sizeof(*addr));
227 	if (ret)
228 		return ret;
229 
230 	if (ff->ph->needs_swap)
231 		*addr = bswap_32(*addr);
232 	return 0;
233 }
234 
235 static int do_read_u64(struct feat_fd *ff, u64 *addr)
236 {
237 	int ret;
238 
239 	ret = __do_read(ff, addr, sizeof(*addr));
240 	if (ret)
241 		return ret;
242 
243 	if (ff->ph->needs_swap)
244 		*addr = bswap_64(*addr);
245 	return 0;
246 }
247 
248 static char *do_read_string(struct feat_fd *ff)
249 {
250 	u32 len;
251 	char *buf;
252 
253 	if (do_read_u32(ff, &len))
254 		return NULL;
255 
256 	buf = malloc(len);
257 	if (!buf)
258 		return NULL;
259 
260 	if (!__do_read(ff, buf, len)) {
261 		/*
262 		 * strings are padded by zeroes
263 		 * thus the actual strlen of buf
264 		 * may be less than len
265 		 */
266 		return buf;
267 	}
268 
269 	free(buf);
270 	return NULL;
271 }
272 
273 /* Return: 0 if succeded, -ERR if failed. */
274 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
275 {
276 	unsigned long *set;
277 	u64 size, *p;
278 	int i, ret;
279 
280 	ret = do_read_u64(ff, &size);
281 	if (ret)
282 		return ret;
283 
284 	set = bitmap_alloc(size);
285 	if (!set)
286 		return -ENOMEM;
287 
288 	p = (u64 *) set;
289 
290 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
291 		ret = do_read_u64(ff, p + i);
292 		if (ret < 0) {
293 			free(set);
294 			return ret;
295 		}
296 	}
297 
298 	*pset  = set;
299 	*psize = size;
300 	return 0;
301 }
302 
303 static int write_tracing_data(struct feat_fd *ff,
304 			      struct evlist *evlist)
305 {
306 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
307 		return -1;
308 
309 	return read_tracing_data(ff->fd, &evlist->core.entries);
310 }
311 
312 static int write_build_id(struct feat_fd *ff,
313 			  struct evlist *evlist __maybe_unused)
314 {
315 	struct perf_session *session;
316 	int err;
317 
318 	session = container_of(ff->ph, struct perf_session, header);
319 
320 	if (!perf_session__read_build_ids(session, true))
321 		return -1;
322 
323 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
324 		return -1;
325 
326 	err = perf_session__write_buildid_table(session, ff);
327 	if (err < 0) {
328 		pr_debug("failed to write buildid table\n");
329 		return err;
330 	}
331 	perf_session__cache_build_ids(session);
332 
333 	return 0;
334 }
335 
336 static int write_hostname(struct feat_fd *ff,
337 			  struct evlist *evlist __maybe_unused)
338 {
339 	struct utsname uts;
340 	int ret;
341 
342 	ret = uname(&uts);
343 	if (ret < 0)
344 		return -1;
345 
346 	return do_write_string(ff, uts.nodename);
347 }
348 
349 static int write_osrelease(struct feat_fd *ff,
350 			   struct evlist *evlist __maybe_unused)
351 {
352 	struct utsname uts;
353 	int ret;
354 
355 	ret = uname(&uts);
356 	if (ret < 0)
357 		return -1;
358 
359 	return do_write_string(ff, uts.release);
360 }
361 
362 static int write_arch(struct feat_fd *ff,
363 		      struct evlist *evlist __maybe_unused)
364 {
365 	struct utsname uts;
366 	int ret;
367 
368 	ret = uname(&uts);
369 	if (ret < 0)
370 		return -1;
371 
372 	return do_write_string(ff, uts.machine);
373 }
374 
375 static int write_version(struct feat_fd *ff,
376 			 struct evlist *evlist __maybe_unused)
377 {
378 	return do_write_string(ff, perf_version_string);
379 }
380 
381 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
382 {
383 	FILE *file;
384 	char *buf = NULL;
385 	char *s, *p;
386 	const char *search = cpuinfo_proc;
387 	size_t len = 0;
388 	int ret = -1;
389 
390 	if (!search)
391 		return -1;
392 
393 	file = fopen("/proc/cpuinfo", "r");
394 	if (!file)
395 		return -1;
396 
397 	while (getline(&buf, &len, file) > 0) {
398 		ret = strncmp(buf, search, strlen(search));
399 		if (!ret)
400 			break;
401 	}
402 
403 	if (ret) {
404 		ret = -1;
405 		goto done;
406 	}
407 
408 	s = buf;
409 
410 	p = strchr(buf, ':');
411 	if (p && *(p+1) == ' ' && *(p+2))
412 		s = p + 2;
413 	p = strchr(s, '\n');
414 	if (p)
415 		*p = '\0';
416 
417 	/* squash extra space characters (branding string) */
418 	p = s;
419 	while (*p) {
420 		if (isspace(*p)) {
421 			char *r = p + 1;
422 			char *q = skip_spaces(r);
423 			*p = ' ';
424 			if (q != (p+1))
425 				while ((*r++ = *q++));
426 		}
427 		p++;
428 	}
429 	ret = do_write_string(ff, s);
430 done:
431 	free(buf);
432 	fclose(file);
433 	return ret;
434 }
435 
436 static int write_cpudesc(struct feat_fd *ff,
437 		       struct evlist *evlist __maybe_unused)
438 {
439 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
440 #define CPUINFO_PROC	{ "cpu", }
441 #elif defined(__s390__)
442 #define CPUINFO_PROC	{ "vendor_id", }
443 #elif defined(__sh__)
444 #define CPUINFO_PROC	{ "cpu type", }
445 #elif defined(__alpha__) || defined(__mips__)
446 #define CPUINFO_PROC	{ "cpu model", }
447 #elif defined(__arm__)
448 #define CPUINFO_PROC	{ "model name", "Processor", }
449 #elif defined(__arc__)
450 #define CPUINFO_PROC	{ "Processor", }
451 #elif defined(__xtensa__)
452 #define CPUINFO_PROC	{ "core ID", }
453 #else
454 #define CPUINFO_PROC	{ "model name", }
455 #endif
456 	const char *cpuinfo_procs[] = CPUINFO_PROC;
457 #undef CPUINFO_PROC
458 	unsigned int i;
459 
460 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
461 		int ret;
462 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
463 		if (ret >= 0)
464 			return ret;
465 	}
466 	return -1;
467 }
468 
469 
470 static int write_nrcpus(struct feat_fd *ff,
471 			struct evlist *evlist __maybe_unused)
472 {
473 	long nr;
474 	u32 nrc, nra;
475 	int ret;
476 
477 	nrc = cpu__max_present_cpu();
478 
479 	nr = sysconf(_SC_NPROCESSORS_ONLN);
480 	if (nr < 0)
481 		return -1;
482 
483 	nra = (u32)(nr & UINT_MAX);
484 
485 	ret = do_write(ff, &nrc, sizeof(nrc));
486 	if (ret < 0)
487 		return ret;
488 
489 	return do_write(ff, &nra, sizeof(nra));
490 }
491 
492 static int write_event_desc(struct feat_fd *ff,
493 			    struct evlist *evlist)
494 {
495 	struct evsel *evsel;
496 	u32 nre, nri, sz;
497 	int ret;
498 
499 	nre = evlist->core.nr_entries;
500 
501 	/*
502 	 * write number of events
503 	 */
504 	ret = do_write(ff, &nre, sizeof(nre));
505 	if (ret < 0)
506 		return ret;
507 
508 	/*
509 	 * size of perf_event_attr struct
510 	 */
511 	sz = (u32)sizeof(evsel->core.attr);
512 	ret = do_write(ff, &sz, sizeof(sz));
513 	if (ret < 0)
514 		return ret;
515 
516 	evlist__for_each_entry(evlist, evsel) {
517 		ret = do_write(ff, &evsel->core.attr, sz);
518 		if (ret < 0)
519 			return ret;
520 		/*
521 		 * write number of unique id per event
522 		 * there is one id per instance of an event
523 		 *
524 		 * copy into an nri to be independent of the
525 		 * type of ids,
526 		 */
527 		nri = evsel->ids;
528 		ret = do_write(ff, &nri, sizeof(nri));
529 		if (ret < 0)
530 			return ret;
531 
532 		/*
533 		 * write event string as passed on cmdline
534 		 */
535 		ret = do_write_string(ff, perf_evsel__name(evsel));
536 		if (ret < 0)
537 			return ret;
538 		/*
539 		 * write unique ids for this event
540 		 */
541 		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
542 		if (ret < 0)
543 			return ret;
544 	}
545 	return 0;
546 }
547 
548 static int write_cmdline(struct feat_fd *ff,
549 			 struct evlist *evlist __maybe_unused)
550 {
551 	char pbuf[MAXPATHLEN], *buf;
552 	int i, ret, n;
553 
554 	/* actual path to perf binary */
555 	buf = perf_exe(pbuf, MAXPATHLEN);
556 
557 	/* account for binary path */
558 	n = perf_env.nr_cmdline + 1;
559 
560 	ret = do_write(ff, &n, sizeof(n));
561 	if (ret < 0)
562 		return ret;
563 
564 	ret = do_write_string(ff, buf);
565 	if (ret < 0)
566 		return ret;
567 
568 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
569 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
570 		if (ret < 0)
571 			return ret;
572 	}
573 	return 0;
574 }
575 
576 
577 static int write_cpu_topology(struct feat_fd *ff,
578 			      struct evlist *evlist __maybe_unused)
579 {
580 	struct cpu_topology *tp;
581 	u32 i;
582 	int ret, j;
583 
584 	tp = cpu_topology__new();
585 	if (!tp)
586 		return -1;
587 
588 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
589 	if (ret < 0)
590 		goto done;
591 
592 	for (i = 0; i < tp->core_sib; i++) {
593 		ret = do_write_string(ff, tp->core_siblings[i]);
594 		if (ret < 0)
595 			goto done;
596 	}
597 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
598 	if (ret < 0)
599 		goto done;
600 
601 	for (i = 0; i < tp->thread_sib; i++) {
602 		ret = do_write_string(ff, tp->thread_siblings[i]);
603 		if (ret < 0)
604 			break;
605 	}
606 
607 	ret = perf_env__read_cpu_topology_map(&perf_env);
608 	if (ret < 0)
609 		goto done;
610 
611 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
612 		ret = do_write(ff, &perf_env.cpu[j].core_id,
613 			       sizeof(perf_env.cpu[j].core_id));
614 		if (ret < 0)
615 			return ret;
616 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
617 			       sizeof(perf_env.cpu[j].socket_id));
618 		if (ret < 0)
619 			return ret;
620 	}
621 
622 	if (!tp->die_sib)
623 		goto done;
624 
625 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
626 	if (ret < 0)
627 		goto done;
628 
629 	for (i = 0; i < tp->die_sib; i++) {
630 		ret = do_write_string(ff, tp->die_siblings[i]);
631 		if (ret < 0)
632 			goto done;
633 	}
634 
635 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
636 		ret = do_write(ff, &perf_env.cpu[j].die_id,
637 			       sizeof(perf_env.cpu[j].die_id));
638 		if (ret < 0)
639 			return ret;
640 	}
641 
642 done:
643 	cpu_topology__delete(tp);
644 	return ret;
645 }
646 
647 
648 
649 static int write_total_mem(struct feat_fd *ff,
650 			   struct evlist *evlist __maybe_unused)
651 {
652 	char *buf = NULL;
653 	FILE *fp;
654 	size_t len = 0;
655 	int ret = -1, n;
656 	uint64_t mem;
657 
658 	fp = fopen("/proc/meminfo", "r");
659 	if (!fp)
660 		return -1;
661 
662 	while (getline(&buf, &len, fp) > 0) {
663 		ret = strncmp(buf, "MemTotal:", 9);
664 		if (!ret)
665 			break;
666 	}
667 	if (!ret) {
668 		n = sscanf(buf, "%*s %"PRIu64, &mem);
669 		if (n == 1)
670 			ret = do_write(ff, &mem, sizeof(mem));
671 	} else
672 		ret = -1;
673 	free(buf);
674 	fclose(fp);
675 	return ret;
676 }
677 
678 static int write_numa_topology(struct feat_fd *ff,
679 			       struct evlist *evlist __maybe_unused)
680 {
681 	struct numa_topology *tp;
682 	int ret = -1;
683 	u32 i;
684 
685 	tp = numa_topology__new();
686 	if (!tp)
687 		return -ENOMEM;
688 
689 	ret = do_write(ff, &tp->nr, sizeof(u32));
690 	if (ret < 0)
691 		goto err;
692 
693 	for (i = 0; i < tp->nr; i++) {
694 		struct numa_topology_node *n = &tp->nodes[i];
695 
696 		ret = do_write(ff, &n->node, sizeof(u32));
697 		if (ret < 0)
698 			goto err;
699 
700 		ret = do_write(ff, &n->mem_total, sizeof(u64));
701 		if (ret)
702 			goto err;
703 
704 		ret = do_write(ff, &n->mem_free, sizeof(u64));
705 		if (ret)
706 			goto err;
707 
708 		ret = do_write_string(ff, n->cpus);
709 		if (ret < 0)
710 			goto err;
711 	}
712 
713 	ret = 0;
714 
715 err:
716 	numa_topology__delete(tp);
717 	return ret;
718 }
719 
720 /*
721  * File format:
722  *
723  * struct pmu_mappings {
724  *	u32	pmu_num;
725  *	struct pmu_map {
726  *		u32	type;
727  *		char	name[];
728  *	}[pmu_num];
729  * };
730  */
731 
732 static int write_pmu_mappings(struct feat_fd *ff,
733 			      struct evlist *evlist __maybe_unused)
734 {
735 	struct perf_pmu *pmu = NULL;
736 	u32 pmu_num = 0;
737 	int ret;
738 
739 	/*
740 	 * Do a first pass to count number of pmu to avoid lseek so this
741 	 * works in pipe mode as well.
742 	 */
743 	while ((pmu = perf_pmu__scan(pmu))) {
744 		if (!pmu->name)
745 			continue;
746 		pmu_num++;
747 	}
748 
749 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
750 	if (ret < 0)
751 		return ret;
752 
753 	while ((pmu = perf_pmu__scan(pmu))) {
754 		if (!pmu->name)
755 			continue;
756 
757 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
758 		if (ret < 0)
759 			return ret;
760 
761 		ret = do_write_string(ff, pmu->name);
762 		if (ret < 0)
763 			return ret;
764 	}
765 
766 	return 0;
767 }
768 
769 /*
770  * File format:
771  *
772  * struct group_descs {
773  *	u32	nr_groups;
774  *	struct group_desc {
775  *		char	name[];
776  *		u32	leader_idx;
777  *		u32	nr_members;
778  *	}[nr_groups];
779  * };
780  */
781 static int write_group_desc(struct feat_fd *ff,
782 			    struct evlist *evlist)
783 {
784 	u32 nr_groups = evlist->nr_groups;
785 	struct evsel *evsel;
786 	int ret;
787 
788 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
789 	if (ret < 0)
790 		return ret;
791 
792 	evlist__for_each_entry(evlist, evsel) {
793 		if (perf_evsel__is_group_leader(evsel) &&
794 		    evsel->core.nr_members > 1) {
795 			const char *name = evsel->group_name ?: "{anon_group}";
796 			u32 leader_idx = evsel->idx;
797 			u32 nr_members = evsel->core.nr_members;
798 
799 			ret = do_write_string(ff, name);
800 			if (ret < 0)
801 				return ret;
802 
803 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
804 			if (ret < 0)
805 				return ret;
806 
807 			ret = do_write(ff, &nr_members, sizeof(nr_members));
808 			if (ret < 0)
809 				return ret;
810 		}
811 	}
812 	return 0;
813 }
814 
815 /*
816  * Return the CPU id as a raw string.
817  *
818  * Each architecture should provide a more precise id string that
819  * can be use to match the architecture's "mapfile".
820  */
821 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
822 {
823 	return NULL;
824 }
825 
826 /* Return zero when the cpuid from the mapfile.csv matches the
827  * cpuid string generated on this platform.
828  * Otherwise return non-zero.
829  */
830 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
831 {
832 	regex_t re;
833 	regmatch_t pmatch[1];
834 	int match;
835 
836 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
837 		/* Warn unable to generate match particular string. */
838 		pr_info("Invalid regular expression %s\n", mapcpuid);
839 		return 1;
840 	}
841 
842 	match = !regexec(&re, cpuid, 1, pmatch, 0);
843 	regfree(&re);
844 	if (match) {
845 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
846 
847 		/* Verify the entire string matched. */
848 		if (match_len == strlen(cpuid))
849 			return 0;
850 	}
851 	return 1;
852 }
853 
854 /*
855  * default get_cpuid(): nothing gets recorded
856  * actual implementation must be in arch/$(SRCARCH)/util/header.c
857  */
858 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
859 {
860 	return -1;
861 }
862 
863 static int write_cpuid(struct feat_fd *ff,
864 		       struct evlist *evlist __maybe_unused)
865 {
866 	char buffer[64];
867 	int ret;
868 
869 	ret = get_cpuid(buffer, sizeof(buffer));
870 	if (ret)
871 		return -1;
872 
873 	return do_write_string(ff, buffer);
874 }
875 
876 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
877 			      struct evlist *evlist __maybe_unused)
878 {
879 	return 0;
880 }
881 
882 static int write_auxtrace(struct feat_fd *ff,
883 			  struct evlist *evlist __maybe_unused)
884 {
885 	struct perf_session *session;
886 	int err;
887 
888 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
889 		return -1;
890 
891 	session = container_of(ff->ph, struct perf_session, header);
892 
893 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
894 	if (err < 0)
895 		pr_err("Failed to write auxtrace index\n");
896 	return err;
897 }
898 
899 static int write_clockid(struct feat_fd *ff,
900 			 struct evlist *evlist __maybe_unused)
901 {
902 	return do_write(ff, &ff->ph->env.clockid_res_ns,
903 			sizeof(ff->ph->env.clockid_res_ns));
904 }
905 
906 static int write_dir_format(struct feat_fd *ff,
907 			    struct evlist *evlist __maybe_unused)
908 {
909 	struct perf_session *session;
910 	struct perf_data *data;
911 
912 	session = container_of(ff->ph, struct perf_session, header);
913 	data = session->data;
914 
915 	if (WARN_ON(!perf_data__is_dir(data)))
916 		return -1;
917 
918 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
919 }
920 
921 #ifdef HAVE_LIBBPF_SUPPORT
922 static int write_bpf_prog_info(struct feat_fd *ff,
923 			       struct evlist *evlist __maybe_unused)
924 {
925 	struct perf_env *env = &ff->ph->env;
926 	struct rb_root *root;
927 	struct rb_node *next;
928 	int ret;
929 
930 	down_read(&env->bpf_progs.lock);
931 
932 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
933 		       sizeof(env->bpf_progs.infos_cnt));
934 	if (ret < 0)
935 		goto out;
936 
937 	root = &env->bpf_progs.infos;
938 	next = rb_first(root);
939 	while (next) {
940 		struct bpf_prog_info_node *node;
941 		size_t len;
942 
943 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
944 		next = rb_next(&node->rb_node);
945 		len = sizeof(struct bpf_prog_info_linear) +
946 			node->info_linear->data_len;
947 
948 		/* before writing to file, translate address to offset */
949 		bpf_program__bpil_addr_to_offs(node->info_linear);
950 		ret = do_write(ff, node->info_linear, len);
951 		/*
952 		 * translate back to address even when do_write() fails,
953 		 * so that this function never changes the data.
954 		 */
955 		bpf_program__bpil_offs_to_addr(node->info_linear);
956 		if (ret < 0)
957 			goto out;
958 	}
959 out:
960 	up_read(&env->bpf_progs.lock);
961 	return ret;
962 }
963 #else // HAVE_LIBBPF_SUPPORT
964 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
965 			       struct evlist *evlist __maybe_unused)
966 {
967 	return 0;
968 }
969 #endif // HAVE_LIBBPF_SUPPORT
970 
971 static int write_bpf_btf(struct feat_fd *ff,
972 			 struct evlist *evlist __maybe_unused)
973 {
974 	struct perf_env *env = &ff->ph->env;
975 	struct rb_root *root;
976 	struct rb_node *next;
977 	int ret;
978 
979 	down_read(&env->bpf_progs.lock);
980 
981 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
982 		       sizeof(env->bpf_progs.btfs_cnt));
983 
984 	if (ret < 0)
985 		goto out;
986 
987 	root = &env->bpf_progs.btfs;
988 	next = rb_first(root);
989 	while (next) {
990 		struct btf_node *node;
991 
992 		node = rb_entry(next, struct btf_node, rb_node);
993 		next = rb_next(&node->rb_node);
994 		ret = do_write(ff, &node->id,
995 			       sizeof(u32) * 2 + node->data_size);
996 		if (ret < 0)
997 			goto out;
998 	}
999 out:
1000 	up_read(&env->bpf_progs.lock);
1001 	return ret;
1002 }
1003 
1004 static int cpu_cache_level__sort(const void *a, const void *b)
1005 {
1006 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1007 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1008 
1009 	return cache_a->level - cache_b->level;
1010 }
1011 
1012 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1013 {
1014 	if (a->level != b->level)
1015 		return false;
1016 
1017 	if (a->line_size != b->line_size)
1018 		return false;
1019 
1020 	if (a->sets != b->sets)
1021 		return false;
1022 
1023 	if (a->ways != b->ways)
1024 		return false;
1025 
1026 	if (strcmp(a->type, b->type))
1027 		return false;
1028 
1029 	if (strcmp(a->size, b->size))
1030 		return false;
1031 
1032 	if (strcmp(a->map, b->map))
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1039 {
1040 	char path[PATH_MAX], file[PATH_MAX];
1041 	struct stat st;
1042 	size_t len;
1043 
1044 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1045 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1046 
1047 	if (stat(file, &st))
1048 		return 1;
1049 
1050 	scnprintf(file, PATH_MAX, "%s/level", path);
1051 	if (sysfs__read_int(file, (int *) &cache->level))
1052 		return -1;
1053 
1054 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1055 	if (sysfs__read_int(file, (int *) &cache->line_size))
1056 		return -1;
1057 
1058 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1059 	if (sysfs__read_int(file, (int *) &cache->sets))
1060 		return -1;
1061 
1062 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1063 	if (sysfs__read_int(file, (int *) &cache->ways))
1064 		return -1;
1065 
1066 	scnprintf(file, PATH_MAX, "%s/type", path);
1067 	if (sysfs__read_str(file, &cache->type, &len))
1068 		return -1;
1069 
1070 	cache->type[len] = 0;
1071 	cache->type = strim(cache->type);
1072 
1073 	scnprintf(file, PATH_MAX, "%s/size", path);
1074 	if (sysfs__read_str(file, &cache->size, &len)) {
1075 		zfree(&cache->type);
1076 		return -1;
1077 	}
1078 
1079 	cache->size[len] = 0;
1080 	cache->size = strim(cache->size);
1081 
1082 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1083 	if (sysfs__read_str(file, &cache->map, &len)) {
1084 		zfree(&cache->map);
1085 		zfree(&cache->type);
1086 		return -1;
1087 	}
1088 
1089 	cache->map[len] = 0;
1090 	cache->map = strim(cache->map);
1091 	return 0;
1092 }
1093 
1094 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1095 {
1096 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1097 }
1098 
1099 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1100 {
1101 	u32 i, cnt = 0;
1102 	long ncpus;
1103 	u32 nr, cpu;
1104 	u16 level;
1105 
1106 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1107 	if (ncpus < 0)
1108 		return -1;
1109 
1110 	nr = (u32)(ncpus & UINT_MAX);
1111 
1112 	for (cpu = 0; cpu < nr; cpu++) {
1113 		for (level = 0; level < 10; level++) {
1114 			struct cpu_cache_level c;
1115 			int err;
1116 
1117 			err = cpu_cache_level__read(&c, cpu, level);
1118 			if (err < 0)
1119 				return err;
1120 
1121 			if (err == 1)
1122 				break;
1123 
1124 			for (i = 0; i < cnt; i++) {
1125 				if (cpu_cache_level__cmp(&c, &caches[i]))
1126 					break;
1127 			}
1128 
1129 			if (i == cnt)
1130 				caches[cnt++] = c;
1131 			else
1132 				cpu_cache_level__free(&c);
1133 
1134 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1135 				goto out;
1136 		}
1137 	}
1138  out:
1139 	*cntp = cnt;
1140 	return 0;
1141 }
1142 
1143 #define MAX_CACHE_LVL 4
1144 
1145 static int write_cache(struct feat_fd *ff,
1146 		       struct evlist *evlist __maybe_unused)
1147 {
1148 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1149 	struct cpu_cache_level caches[max_caches];
1150 	u32 cnt = 0, i, version = 1;
1151 	int ret;
1152 
1153 	ret = build_caches(caches, max_caches, &cnt);
1154 	if (ret)
1155 		goto out;
1156 
1157 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1158 
1159 	ret = do_write(ff, &version, sizeof(u32));
1160 	if (ret < 0)
1161 		goto out;
1162 
1163 	ret = do_write(ff, &cnt, sizeof(u32));
1164 	if (ret < 0)
1165 		goto out;
1166 
1167 	for (i = 0; i < cnt; i++) {
1168 		struct cpu_cache_level *c = &caches[i];
1169 
1170 		#define _W(v)					\
1171 			ret = do_write(ff, &c->v, sizeof(u32));	\
1172 			if (ret < 0)				\
1173 				goto out;
1174 
1175 		_W(level)
1176 		_W(line_size)
1177 		_W(sets)
1178 		_W(ways)
1179 		#undef _W
1180 
1181 		#define _W(v)						\
1182 			ret = do_write_string(ff, (const char *) c->v);	\
1183 			if (ret < 0)					\
1184 				goto out;
1185 
1186 		_W(type)
1187 		_W(size)
1188 		_W(map)
1189 		#undef _W
1190 	}
1191 
1192 out:
1193 	for (i = 0; i < cnt; i++)
1194 		cpu_cache_level__free(&caches[i]);
1195 	return ret;
1196 }
1197 
1198 static int write_stat(struct feat_fd *ff __maybe_unused,
1199 		      struct evlist *evlist __maybe_unused)
1200 {
1201 	return 0;
1202 }
1203 
1204 static int write_sample_time(struct feat_fd *ff,
1205 			     struct evlist *evlist)
1206 {
1207 	int ret;
1208 
1209 	ret = do_write(ff, &evlist->first_sample_time,
1210 		       sizeof(evlist->first_sample_time));
1211 	if (ret < 0)
1212 		return ret;
1213 
1214 	return do_write(ff, &evlist->last_sample_time,
1215 			sizeof(evlist->last_sample_time));
1216 }
1217 
1218 
1219 static int memory_node__read(struct memory_node *n, unsigned long idx)
1220 {
1221 	unsigned int phys, size = 0;
1222 	char path[PATH_MAX];
1223 	struct dirent *ent;
1224 	DIR *dir;
1225 
1226 #define for_each_memory(mem, dir)					\
1227 	while ((ent = readdir(dir)))					\
1228 		if (strcmp(ent->d_name, ".") &&				\
1229 		    strcmp(ent->d_name, "..") &&			\
1230 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1231 
1232 	scnprintf(path, PATH_MAX,
1233 		  "%s/devices/system/node/node%lu",
1234 		  sysfs__mountpoint(), idx);
1235 
1236 	dir = opendir(path);
1237 	if (!dir) {
1238 		pr_warning("failed: cant' open memory sysfs data\n");
1239 		return -1;
1240 	}
1241 
1242 	for_each_memory(phys, dir) {
1243 		size = max(phys, size);
1244 	}
1245 
1246 	size++;
1247 
1248 	n->set = bitmap_alloc(size);
1249 	if (!n->set) {
1250 		closedir(dir);
1251 		return -ENOMEM;
1252 	}
1253 
1254 	n->node = idx;
1255 	n->size = size;
1256 
1257 	rewinddir(dir);
1258 
1259 	for_each_memory(phys, dir) {
1260 		set_bit(phys, n->set);
1261 	}
1262 
1263 	closedir(dir);
1264 	return 0;
1265 }
1266 
1267 static int memory_node__sort(const void *a, const void *b)
1268 {
1269 	const struct memory_node *na = a;
1270 	const struct memory_node *nb = b;
1271 
1272 	return na->node - nb->node;
1273 }
1274 
1275 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1276 {
1277 	char path[PATH_MAX];
1278 	struct dirent *ent;
1279 	DIR *dir;
1280 	u64 cnt = 0;
1281 	int ret = 0;
1282 
1283 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1284 		  sysfs__mountpoint());
1285 
1286 	dir = opendir(path);
1287 	if (!dir) {
1288 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1289 			  __func__, path);
1290 		return -1;
1291 	}
1292 
1293 	while (!ret && (ent = readdir(dir))) {
1294 		unsigned int idx;
1295 		int r;
1296 
1297 		if (!strcmp(ent->d_name, ".") ||
1298 		    !strcmp(ent->d_name, ".."))
1299 			continue;
1300 
1301 		r = sscanf(ent->d_name, "node%u", &idx);
1302 		if (r != 1)
1303 			continue;
1304 
1305 		if (WARN_ONCE(cnt >= size,
1306 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1307 			return -1;
1308 
1309 		ret = memory_node__read(&nodes[cnt++], idx);
1310 	}
1311 
1312 	*cntp = cnt;
1313 	closedir(dir);
1314 
1315 	if (!ret)
1316 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1317 
1318 	return ret;
1319 }
1320 
1321 #define MAX_MEMORY_NODES 2000
1322 
1323 /*
1324  * The MEM_TOPOLOGY holds physical memory map for every
1325  * node in system. The format of data is as follows:
1326  *
1327  *  0 - version          | for future changes
1328  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1329  * 16 - count            | number of nodes
1330  *
1331  * For each node we store map of physical indexes for
1332  * each node:
1333  *
1334  * 32 - node id          | node index
1335  * 40 - size             | size of bitmap
1336  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1337  */
1338 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1339 			      struct evlist *evlist __maybe_unused)
1340 {
1341 	static struct memory_node nodes[MAX_MEMORY_NODES];
1342 	u64 bsize, version = 1, i, nr;
1343 	int ret;
1344 
1345 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1346 			      (unsigned long long *) &bsize);
1347 	if (ret)
1348 		return ret;
1349 
1350 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1351 	if (ret)
1352 		return ret;
1353 
1354 	ret = do_write(ff, &version, sizeof(version));
1355 	if (ret < 0)
1356 		goto out;
1357 
1358 	ret = do_write(ff, &bsize, sizeof(bsize));
1359 	if (ret < 0)
1360 		goto out;
1361 
1362 	ret = do_write(ff, &nr, sizeof(nr));
1363 	if (ret < 0)
1364 		goto out;
1365 
1366 	for (i = 0; i < nr; i++) {
1367 		struct memory_node *n = &nodes[i];
1368 
1369 		#define _W(v)						\
1370 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1371 			if (ret < 0)					\
1372 				goto out;
1373 
1374 		_W(node)
1375 		_W(size)
1376 
1377 		#undef _W
1378 
1379 		ret = do_write_bitmap(ff, n->set, n->size);
1380 		if (ret < 0)
1381 			goto out;
1382 	}
1383 
1384 out:
1385 	return ret;
1386 }
1387 
1388 static int write_compressed(struct feat_fd *ff __maybe_unused,
1389 			    struct evlist *evlist __maybe_unused)
1390 {
1391 	int ret;
1392 
1393 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1394 	if (ret)
1395 		return ret;
1396 
1397 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1398 	if (ret)
1399 		return ret;
1400 
1401 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1402 	if (ret)
1403 		return ret;
1404 
1405 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1406 	if (ret)
1407 		return ret;
1408 
1409 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1410 }
1411 
1412 static void print_hostname(struct feat_fd *ff, FILE *fp)
1413 {
1414 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1415 }
1416 
1417 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1418 {
1419 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1420 }
1421 
1422 static void print_arch(struct feat_fd *ff, FILE *fp)
1423 {
1424 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1425 }
1426 
1427 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1428 {
1429 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1430 }
1431 
1432 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1433 {
1434 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1435 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1436 }
1437 
1438 static void print_version(struct feat_fd *ff, FILE *fp)
1439 {
1440 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1441 }
1442 
1443 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1444 {
1445 	int nr, i;
1446 
1447 	nr = ff->ph->env.nr_cmdline;
1448 
1449 	fprintf(fp, "# cmdline : ");
1450 
1451 	for (i = 0; i < nr; i++) {
1452 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1453 		if (!argv_i) {
1454 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1455 		} else {
1456 			char *mem = argv_i;
1457 			do {
1458 				char *quote = strchr(argv_i, '\'');
1459 				if (!quote)
1460 					break;
1461 				*quote++ = '\0';
1462 				fprintf(fp, "%s\\\'", argv_i);
1463 				argv_i = quote;
1464 			} while (1);
1465 			fprintf(fp, "%s ", argv_i);
1466 			free(mem);
1467 		}
1468 	}
1469 	fputc('\n', fp);
1470 }
1471 
1472 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1473 {
1474 	struct perf_header *ph = ff->ph;
1475 	int cpu_nr = ph->env.nr_cpus_avail;
1476 	int nr, i;
1477 	char *str;
1478 
1479 	nr = ph->env.nr_sibling_cores;
1480 	str = ph->env.sibling_cores;
1481 
1482 	for (i = 0; i < nr; i++) {
1483 		fprintf(fp, "# sibling sockets : %s\n", str);
1484 		str += strlen(str) + 1;
1485 	}
1486 
1487 	if (ph->env.nr_sibling_dies) {
1488 		nr = ph->env.nr_sibling_dies;
1489 		str = ph->env.sibling_dies;
1490 
1491 		for (i = 0; i < nr; i++) {
1492 			fprintf(fp, "# sibling dies    : %s\n", str);
1493 			str += strlen(str) + 1;
1494 		}
1495 	}
1496 
1497 	nr = ph->env.nr_sibling_threads;
1498 	str = ph->env.sibling_threads;
1499 
1500 	for (i = 0; i < nr; i++) {
1501 		fprintf(fp, "# sibling threads : %s\n", str);
1502 		str += strlen(str) + 1;
1503 	}
1504 
1505 	if (ph->env.nr_sibling_dies) {
1506 		if (ph->env.cpu != NULL) {
1507 			for (i = 0; i < cpu_nr; i++)
1508 				fprintf(fp, "# CPU %d: Core ID %d, "
1509 					    "Die ID %d, Socket ID %d\n",
1510 					    i, ph->env.cpu[i].core_id,
1511 					    ph->env.cpu[i].die_id,
1512 					    ph->env.cpu[i].socket_id);
1513 		} else
1514 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1515 				    "information is not available\n");
1516 	} else {
1517 		if (ph->env.cpu != NULL) {
1518 			for (i = 0; i < cpu_nr; i++)
1519 				fprintf(fp, "# CPU %d: Core ID %d, "
1520 					    "Socket ID %d\n",
1521 					    i, ph->env.cpu[i].core_id,
1522 					    ph->env.cpu[i].socket_id);
1523 		} else
1524 			fprintf(fp, "# Core ID and Socket ID "
1525 				    "information is not available\n");
1526 	}
1527 }
1528 
1529 static void print_clockid(struct feat_fd *ff, FILE *fp)
1530 {
1531 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1532 		ff->ph->env.clockid_res_ns * 1000);
1533 }
1534 
1535 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1536 {
1537 	struct perf_session *session;
1538 	struct perf_data *data;
1539 
1540 	session = container_of(ff->ph, struct perf_session, header);
1541 	data = session->data;
1542 
1543 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1544 }
1545 
1546 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1547 {
1548 	struct perf_env *env = &ff->ph->env;
1549 	struct rb_root *root;
1550 	struct rb_node *next;
1551 
1552 	down_read(&env->bpf_progs.lock);
1553 
1554 	root = &env->bpf_progs.infos;
1555 	next = rb_first(root);
1556 
1557 	while (next) {
1558 		struct bpf_prog_info_node *node;
1559 
1560 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1561 		next = rb_next(&node->rb_node);
1562 
1563 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1564 					       env, fp);
1565 	}
1566 
1567 	up_read(&env->bpf_progs.lock);
1568 }
1569 
1570 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1571 {
1572 	struct perf_env *env = &ff->ph->env;
1573 	struct rb_root *root;
1574 	struct rb_node *next;
1575 
1576 	down_read(&env->bpf_progs.lock);
1577 
1578 	root = &env->bpf_progs.btfs;
1579 	next = rb_first(root);
1580 
1581 	while (next) {
1582 		struct btf_node *node;
1583 
1584 		node = rb_entry(next, struct btf_node, rb_node);
1585 		next = rb_next(&node->rb_node);
1586 		fprintf(fp, "# btf info of id %u\n", node->id);
1587 	}
1588 
1589 	up_read(&env->bpf_progs.lock);
1590 }
1591 
1592 static void free_event_desc(struct evsel *events)
1593 {
1594 	struct evsel *evsel;
1595 
1596 	if (!events)
1597 		return;
1598 
1599 	for (evsel = events; evsel->core.attr.size; evsel++) {
1600 		zfree(&evsel->name);
1601 		zfree(&evsel->id);
1602 	}
1603 
1604 	free(events);
1605 }
1606 
1607 static struct evsel *read_event_desc(struct feat_fd *ff)
1608 {
1609 	struct evsel *evsel, *events = NULL;
1610 	u64 *id;
1611 	void *buf = NULL;
1612 	u32 nre, sz, nr, i, j;
1613 	size_t msz;
1614 
1615 	/* number of events */
1616 	if (do_read_u32(ff, &nre))
1617 		goto error;
1618 
1619 	if (do_read_u32(ff, &sz))
1620 		goto error;
1621 
1622 	/* buffer to hold on file attr struct */
1623 	buf = malloc(sz);
1624 	if (!buf)
1625 		goto error;
1626 
1627 	/* the last event terminates with evsel->core.attr.size == 0: */
1628 	events = calloc(nre + 1, sizeof(*events));
1629 	if (!events)
1630 		goto error;
1631 
1632 	msz = sizeof(evsel->core.attr);
1633 	if (sz < msz)
1634 		msz = sz;
1635 
1636 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1637 		evsel->idx = i;
1638 
1639 		/*
1640 		 * must read entire on-file attr struct to
1641 		 * sync up with layout.
1642 		 */
1643 		if (__do_read(ff, buf, sz))
1644 			goto error;
1645 
1646 		if (ff->ph->needs_swap)
1647 			perf_event__attr_swap(buf);
1648 
1649 		memcpy(&evsel->core.attr, buf, msz);
1650 
1651 		if (do_read_u32(ff, &nr))
1652 			goto error;
1653 
1654 		if (ff->ph->needs_swap)
1655 			evsel->needs_swap = true;
1656 
1657 		evsel->name = do_read_string(ff);
1658 		if (!evsel->name)
1659 			goto error;
1660 
1661 		if (!nr)
1662 			continue;
1663 
1664 		id = calloc(nr, sizeof(*id));
1665 		if (!id)
1666 			goto error;
1667 		evsel->ids = nr;
1668 		evsel->id = id;
1669 
1670 		for (j = 0 ; j < nr; j++) {
1671 			if (do_read_u64(ff, id))
1672 				goto error;
1673 			id++;
1674 		}
1675 	}
1676 out:
1677 	free(buf);
1678 	return events;
1679 error:
1680 	free_event_desc(events);
1681 	events = NULL;
1682 	goto out;
1683 }
1684 
1685 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1686 				void *priv __maybe_unused)
1687 {
1688 	return fprintf(fp, ", %s = %s", name, val);
1689 }
1690 
1691 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1692 {
1693 	struct evsel *evsel, *events;
1694 	u32 j;
1695 	u64 *id;
1696 
1697 	if (ff->events)
1698 		events = ff->events;
1699 	else
1700 		events = read_event_desc(ff);
1701 
1702 	if (!events) {
1703 		fprintf(fp, "# event desc: not available or unable to read\n");
1704 		return;
1705 	}
1706 
1707 	for (evsel = events; evsel->core.attr.size; evsel++) {
1708 		fprintf(fp, "# event : name = %s, ", evsel->name);
1709 
1710 		if (evsel->ids) {
1711 			fprintf(fp, ", id = {");
1712 			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1713 				if (j)
1714 					fputc(',', fp);
1715 				fprintf(fp, " %"PRIu64, *id);
1716 			}
1717 			fprintf(fp, " }");
1718 		}
1719 
1720 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1721 
1722 		fputc('\n', fp);
1723 	}
1724 
1725 	free_event_desc(events);
1726 	ff->events = NULL;
1727 }
1728 
1729 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1730 {
1731 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1732 }
1733 
1734 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1735 {
1736 	int i;
1737 	struct numa_node *n;
1738 
1739 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1740 		n = &ff->ph->env.numa_nodes[i];
1741 
1742 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1743 			    " free = %"PRIu64" kB\n",
1744 			n->node, n->mem_total, n->mem_free);
1745 
1746 		fprintf(fp, "# node%u cpu list : ", n->node);
1747 		cpu_map__fprintf(n->map, fp);
1748 	}
1749 }
1750 
1751 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1752 {
1753 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1754 }
1755 
1756 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1757 {
1758 	fprintf(fp, "# contains samples with branch stack\n");
1759 }
1760 
1761 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1762 {
1763 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1764 }
1765 
1766 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1767 {
1768 	fprintf(fp, "# contains stat data\n");
1769 }
1770 
1771 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1772 {
1773 	int i;
1774 
1775 	fprintf(fp, "# CPU cache info:\n");
1776 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1777 		fprintf(fp, "#  ");
1778 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1779 	}
1780 }
1781 
1782 static void print_compressed(struct feat_fd *ff, FILE *fp)
1783 {
1784 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1785 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1786 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1787 }
1788 
1789 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1790 {
1791 	const char *delimiter = "# pmu mappings: ";
1792 	char *str, *tmp;
1793 	u32 pmu_num;
1794 	u32 type;
1795 
1796 	pmu_num = ff->ph->env.nr_pmu_mappings;
1797 	if (!pmu_num) {
1798 		fprintf(fp, "# pmu mappings: not available\n");
1799 		return;
1800 	}
1801 
1802 	str = ff->ph->env.pmu_mappings;
1803 
1804 	while (pmu_num) {
1805 		type = strtoul(str, &tmp, 0);
1806 		if (*tmp != ':')
1807 			goto error;
1808 
1809 		str = tmp + 1;
1810 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1811 
1812 		delimiter = ", ";
1813 		str += strlen(str) + 1;
1814 		pmu_num--;
1815 	}
1816 
1817 	fprintf(fp, "\n");
1818 
1819 	if (!pmu_num)
1820 		return;
1821 error:
1822 	fprintf(fp, "# pmu mappings: unable to read\n");
1823 }
1824 
1825 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1826 {
1827 	struct perf_session *session;
1828 	struct evsel *evsel;
1829 	u32 nr = 0;
1830 
1831 	session = container_of(ff->ph, struct perf_session, header);
1832 
1833 	evlist__for_each_entry(session->evlist, evsel) {
1834 		if (perf_evsel__is_group_leader(evsel) &&
1835 		    evsel->core.nr_members > 1) {
1836 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1837 				perf_evsel__name(evsel));
1838 
1839 			nr = evsel->core.nr_members - 1;
1840 		} else if (nr) {
1841 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1842 
1843 			if (--nr == 0)
1844 				fprintf(fp, "}\n");
1845 		}
1846 	}
1847 }
1848 
1849 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1850 {
1851 	struct perf_session *session;
1852 	char time_buf[32];
1853 	double d;
1854 
1855 	session = container_of(ff->ph, struct perf_session, header);
1856 
1857 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1858 				  time_buf, sizeof(time_buf));
1859 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1860 
1861 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1862 				  time_buf, sizeof(time_buf));
1863 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1864 
1865 	d = (double)(session->evlist->last_sample_time -
1866 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1867 
1868 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1869 }
1870 
1871 static void memory_node__fprintf(struct memory_node *n,
1872 				 unsigned long long bsize, FILE *fp)
1873 {
1874 	char buf_map[100], buf_size[50];
1875 	unsigned long long size;
1876 
1877 	size = bsize * bitmap_weight(n->set, n->size);
1878 	unit_number__scnprintf(buf_size, 50, size);
1879 
1880 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1881 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1882 }
1883 
1884 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1885 {
1886 	struct memory_node *nodes;
1887 	int i, nr;
1888 
1889 	nodes = ff->ph->env.memory_nodes;
1890 	nr    = ff->ph->env.nr_memory_nodes;
1891 
1892 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1893 		nr, ff->ph->env.memory_bsize);
1894 
1895 	for (i = 0; i < nr; i++) {
1896 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1897 	}
1898 }
1899 
1900 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1901 				    char *filename,
1902 				    struct perf_session *session)
1903 {
1904 	int err = -1;
1905 	struct machine *machine;
1906 	u16 cpumode;
1907 	struct dso *dso;
1908 	enum dso_kernel_type dso_type;
1909 
1910 	machine = perf_session__findnew_machine(session, bev->pid);
1911 	if (!machine)
1912 		goto out;
1913 
1914 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1915 
1916 	switch (cpumode) {
1917 	case PERF_RECORD_MISC_KERNEL:
1918 		dso_type = DSO_TYPE_KERNEL;
1919 		break;
1920 	case PERF_RECORD_MISC_GUEST_KERNEL:
1921 		dso_type = DSO_TYPE_GUEST_KERNEL;
1922 		break;
1923 	case PERF_RECORD_MISC_USER:
1924 	case PERF_RECORD_MISC_GUEST_USER:
1925 		dso_type = DSO_TYPE_USER;
1926 		break;
1927 	default:
1928 		goto out;
1929 	}
1930 
1931 	dso = machine__findnew_dso(machine, filename);
1932 	if (dso != NULL) {
1933 		char sbuild_id[SBUILD_ID_SIZE];
1934 
1935 		dso__set_build_id(dso, &bev->build_id);
1936 
1937 		if (dso_type != DSO_TYPE_USER) {
1938 			struct kmod_path m = { .name = NULL, };
1939 
1940 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1941 				dso__set_module_info(dso, &m, machine);
1942 			else
1943 				dso->kernel = dso_type;
1944 
1945 			free(m.name);
1946 		}
1947 
1948 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1949 				  sbuild_id);
1950 		pr_debug("build id event received for %s: %s\n",
1951 			 dso->long_name, sbuild_id);
1952 		dso__put(dso);
1953 	}
1954 
1955 	err = 0;
1956 out:
1957 	return err;
1958 }
1959 
1960 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1961 						 int input, u64 offset, u64 size)
1962 {
1963 	struct perf_session *session = container_of(header, struct perf_session, header);
1964 	struct {
1965 		struct perf_event_header   header;
1966 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1967 		char			   filename[0];
1968 	} old_bev;
1969 	struct perf_record_header_build_id bev;
1970 	char filename[PATH_MAX];
1971 	u64 limit = offset + size;
1972 
1973 	while (offset < limit) {
1974 		ssize_t len;
1975 
1976 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1977 			return -1;
1978 
1979 		if (header->needs_swap)
1980 			perf_event_header__bswap(&old_bev.header);
1981 
1982 		len = old_bev.header.size - sizeof(old_bev);
1983 		if (readn(input, filename, len) != len)
1984 			return -1;
1985 
1986 		bev.header = old_bev.header;
1987 
1988 		/*
1989 		 * As the pid is the missing value, we need to fill
1990 		 * it properly. The header.misc value give us nice hint.
1991 		 */
1992 		bev.pid	= HOST_KERNEL_ID;
1993 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1994 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1995 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1996 
1997 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1998 		__event_process_build_id(&bev, filename, session);
1999 
2000 		offset += bev.header.size;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static int perf_header__read_build_ids(struct perf_header *header,
2007 				       int input, u64 offset, u64 size)
2008 {
2009 	struct perf_session *session = container_of(header, struct perf_session, header);
2010 	struct perf_record_header_build_id bev;
2011 	char filename[PATH_MAX];
2012 	u64 limit = offset + size, orig_offset = offset;
2013 	int err = -1;
2014 
2015 	while (offset < limit) {
2016 		ssize_t len;
2017 
2018 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2019 			goto out;
2020 
2021 		if (header->needs_swap)
2022 			perf_event_header__bswap(&bev.header);
2023 
2024 		len = bev.header.size - sizeof(bev);
2025 		if (readn(input, filename, len) != len)
2026 			goto out;
2027 		/*
2028 		 * The a1645ce1 changeset:
2029 		 *
2030 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2031 		 *
2032 		 * Added a field to struct perf_record_header_build_id that broke the file
2033 		 * format.
2034 		 *
2035 		 * Since the kernel build-id is the first entry, process the
2036 		 * table using the old format if the well known
2037 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2038 		 * first 4 characters chopped off (where the pid_t sits).
2039 		 */
2040 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2041 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2042 				return -1;
2043 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2044 		}
2045 
2046 		__event_process_build_id(&bev, filename, session);
2047 
2048 		offset += bev.header.size;
2049 	}
2050 	err = 0;
2051 out:
2052 	return err;
2053 }
2054 
2055 /* Macro for features that simply need to read and store a string. */
2056 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2057 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2058 {\
2059 	ff->ph->env.__feat_env = do_read_string(ff); \
2060 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2061 }
2062 
2063 FEAT_PROCESS_STR_FUN(hostname, hostname);
2064 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2065 FEAT_PROCESS_STR_FUN(version, version);
2066 FEAT_PROCESS_STR_FUN(arch, arch);
2067 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2068 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2069 
2070 static int process_tracing_data(struct feat_fd *ff, void *data)
2071 {
2072 	ssize_t ret = trace_report(ff->fd, data, false);
2073 
2074 	return ret < 0 ? -1 : 0;
2075 }
2076 
2077 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2078 {
2079 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2080 		pr_debug("Failed to read buildids, continuing...\n");
2081 	return 0;
2082 }
2083 
2084 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2085 {
2086 	int ret;
2087 	u32 nr_cpus_avail, nr_cpus_online;
2088 
2089 	ret = do_read_u32(ff, &nr_cpus_avail);
2090 	if (ret)
2091 		return ret;
2092 
2093 	ret = do_read_u32(ff, &nr_cpus_online);
2094 	if (ret)
2095 		return ret;
2096 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2097 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2098 	return 0;
2099 }
2100 
2101 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2102 {
2103 	u64 total_mem;
2104 	int ret;
2105 
2106 	ret = do_read_u64(ff, &total_mem);
2107 	if (ret)
2108 		return -1;
2109 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2110 	return 0;
2111 }
2112 
2113 static struct evsel *
2114 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2115 {
2116 	struct evsel *evsel;
2117 
2118 	evlist__for_each_entry(evlist, evsel) {
2119 		if (evsel->idx == idx)
2120 			return evsel;
2121 	}
2122 
2123 	return NULL;
2124 }
2125 
2126 static void
2127 perf_evlist__set_event_name(struct evlist *evlist,
2128 			    struct evsel *event)
2129 {
2130 	struct evsel *evsel;
2131 
2132 	if (!event->name)
2133 		return;
2134 
2135 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2136 	if (!evsel)
2137 		return;
2138 
2139 	if (evsel->name)
2140 		return;
2141 
2142 	evsel->name = strdup(event->name);
2143 }
2144 
2145 static int
2146 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2147 {
2148 	struct perf_session *session;
2149 	struct evsel *evsel, *events = read_event_desc(ff);
2150 
2151 	if (!events)
2152 		return 0;
2153 
2154 	session = container_of(ff->ph, struct perf_session, header);
2155 
2156 	if (session->data->is_pipe) {
2157 		/* Save events for reading later by print_event_desc,
2158 		 * since they can't be read again in pipe mode. */
2159 		ff->events = events;
2160 	}
2161 
2162 	for (evsel = events; evsel->core.attr.size; evsel++)
2163 		perf_evlist__set_event_name(session->evlist, evsel);
2164 
2165 	if (!session->data->is_pipe)
2166 		free_event_desc(events);
2167 
2168 	return 0;
2169 }
2170 
2171 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2172 {
2173 	char *str, *cmdline = NULL, **argv = NULL;
2174 	u32 nr, i, len = 0;
2175 
2176 	if (do_read_u32(ff, &nr))
2177 		return -1;
2178 
2179 	ff->ph->env.nr_cmdline = nr;
2180 
2181 	cmdline = zalloc(ff->size + nr + 1);
2182 	if (!cmdline)
2183 		return -1;
2184 
2185 	argv = zalloc(sizeof(char *) * (nr + 1));
2186 	if (!argv)
2187 		goto error;
2188 
2189 	for (i = 0; i < nr; i++) {
2190 		str = do_read_string(ff);
2191 		if (!str)
2192 			goto error;
2193 
2194 		argv[i] = cmdline + len;
2195 		memcpy(argv[i], str, strlen(str) + 1);
2196 		len += strlen(str) + 1;
2197 		free(str);
2198 	}
2199 	ff->ph->env.cmdline = cmdline;
2200 	ff->ph->env.cmdline_argv = (const char **) argv;
2201 	return 0;
2202 
2203 error:
2204 	free(argv);
2205 	free(cmdline);
2206 	return -1;
2207 }
2208 
2209 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2210 {
2211 	u32 nr, i;
2212 	char *str;
2213 	struct strbuf sb;
2214 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2215 	u64 size = 0;
2216 	struct perf_header *ph = ff->ph;
2217 	bool do_core_id_test = true;
2218 
2219 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2220 	if (!ph->env.cpu)
2221 		return -1;
2222 
2223 	if (do_read_u32(ff, &nr))
2224 		goto free_cpu;
2225 
2226 	ph->env.nr_sibling_cores = nr;
2227 	size += sizeof(u32);
2228 	if (strbuf_init(&sb, 128) < 0)
2229 		goto free_cpu;
2230 
2231 	for (i = 0; i < nr; i++) {
2232 		str = do_read_string(ff);
2233 		if (!str)
2234 			goto error;
2235 
2236 		/* include a NULL character at the end */
2237 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2238 			goto error;
2239 		size += string_size(str);
2240 		free(str);
2241 	}
2242 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2243 
2244 	if (do_read_u32(ff, &nr))
2245 		return -1;
2246 
2247 	ph->env.nr_sibling_threads = nr;
2248 	size += sizeof(u32);
2249 
2250 	for (i = 0; i < nr; i++) {
2251 		str = do_read_string(ff);
2252 		if (!str)
2253 			goto error;
2254 
2255 		/* include a NULL character at the end */
2256 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2257 			goto error;
2258 		size += string_size(str);
2259 		free(str);
2260 	}
2261 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2262 
2263 	/*
2264 	 * The header may be from old perf,
2265 	 * which doesn't include core id and socket id information.
2266 	 */
2267 	if (ff->size <= size) {
2268 		zfree(&ph->env.cpu);
2269 		return 0;
2270 	}
2271 
2272 	/* On s390 the socket_id number is not related to the numbers of cpus.
2273 	 * The socket_id number might be higher than the numbers of cpus.
2274 	 * This depends on the configuration.
2275 	 * AArch64 is the same.
2276 	 */
2277 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2278 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2279 		do_core_id_test = false;
2280 
2281 	for (i = 0; i < (u32)cpu_nr; i++) {
2282 		if (do_read_u32(ff, &nr))
2283 			goto free_cpu;
2284 
2285 		ph->env.cpu[i].core_id = nr;
2286 		size += sizeof(u32);
2287 
2288 		if (do_read_u32(ff, &nr))
2289 			goto free_cpu;
2290 
2291 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2292 			pr_debug("socket_id number is too big."
2293 				 "You may need to upgrade the perf tool.\n");
2294 			goto free_cpu;
2295 		}
2296 
2297 		ph->env.cpu[i].socket_id = nr;
2298 		size += sizeof(u32);
2299 	}
2300 
2301 	/*
2302 	 * The header may be from old perf,
2303 	 * which doesn't include die information.
2304 	 */
2305 	if (ff->size <= size)
2306 		return 0;
2307 
2308 	if (do_read_u32(ff, &nr))
2309 		return -1;
2310 
2311 	ph->env.nr_sibling_dies = nr;
2312 	size += sizeof(u32);
2313 
2314 	for (i = 0; i < nr; i++) {
2315 		str = do_read_string(ff);
2316 		if (!str)
2317 			goto error;
2318 
2319 		/* include a NULL character at the end */
2320 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2321 			goto error;
2322 		size += string_size(str);
2323 		free(str);
2324 	}
2325 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2326 
2327 	for (i = 0; i < (u32)cpu_nr; i++) {
2328 		if (do_read_u32(ff, &nr))
2329 			goto free_cpu;
2330 
2331 		ph->env.cpu[i].die_id = nr;
2332 	}
2333 
2334 	return 0;
2335 
2336 error:
2337 	strbuf_release(&sb);
2338 free_cpu:
2339 	zfree(&ph->env.cpu);
2340 	return -1;
2341 }
2342 
2343 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2344 {
2345 	struct numa_node *nodes, *n;
2346 	u32 nr, i;
2347 	char *str;
2348 
2349 	/* nr nodes */
2350 	if (do_read_u32(ff, &nr))
2351 		return -1;
2352 
2353 	nodes = zalloc(sizeof(*nodes) * nr);
2354 	if (!nodes)
2355 		return -ENOMEM;
2356 
2357 	for (i = 0; i < nr; i++) {
2358 		n = &nodes[i];
2359 
2360 		/* node number */
2361 		if (do_read_u32(ff, &n->node))
2362 			goto error;
2363 
2364 		if (do_read_u64(ff, &n->mem_total))
2365 			goto error;
2366 
2367 		if (do_read_u64(ff, &n->mem_free))
2368 			goto error;
2369 
2370 		str = do_read_string(ff);
2371 		if (!str)
2372 			goto error;
2373 
2374 		n->map = perf_cpu_map__new(str);
2375 		if (!n->map)
2376 			goto error;
2377 
2378 		free(str);
2379 	}
2380 	ff->ph->env.nr_numa_nodes = nr;
2381 	ff->ph->env.numa_nodes = nodes;
2382 	return 0;
2383 
2384 error:
2385 	free(nodes);
2386 	return -1;
2387 }
2388 
2389 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2390 {
2391 	char *name;
2392 	u32 pmu_num;
2393 	u32 type;
2394 	struct strbuf sb;
2395 
2396 	if (do_read_u32(ff, &pmu_num))
2397 		return -1;
2398 
2399 	if (!pmu_num) {
2400 		pr_debug("pmu mappings not available\n");
2401 		return 0;
2402 	}
2403 
2404 	ff->ph->env.nr_pmu_mappings = pmu_num;
2405 	if (strbuf_init(&sb, 128) < 0)
2406 		return -1;
2407 
2408 	while (pmu_num) {
2409 		if (do_read_u32(ff, &type))
2410 			goto error;
2411 
2412 		name = do_read_string(ff);
2413 		if (!name)
2414 			goto error;
2415 
2416 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2417 			goto error;
2418 		/* include a NULL character at the end */
2419 		if (strbuf_add(&sb, "", 1) < 0)
2420 			goto error;
2421 
2422 		if (!strcmp(name, "msr"))
2423 			ff->ph->env.msr_pmu_type = type;
2424 
2425 		free(name);
2426 		pmu_num--;
2427 	}
2428 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2429 	return 0;
2430 
2431 error:
2432 	strbuf_release(&sb);
2433 	return -1;
2434 }
2435 
2436 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2437 {
2438 	size_t ret = -1;
2439 	u32 i, nr, nr_groups;
2440 	struct perf_session *session;
2441 	struct evsel *evsel, *leader = NULL;
2442 	struct group_desc {
2443 		char *name;
2444 		u32 leader_idx;
2445 		u32 nr_members;
2446 	} *desc;
2447 
2448 	if (do_read_u32(ff, &nr_groups))
2449 		return -1;
2450 
2451 	ff->ph->env.nr_groups = nr_groups;
2452 	if (!nr_groups) {
2453 		pr_debug("group desc not available\n");
2454 		return 0;
2455 	}
2456 
2457 	desc = calloc(nr_groups, sizeof(*desc));
2458 	if (!desc)
2459 		return -1;
2460 
2461 	for (i = 0; i < nr_groups; i++) {
2462 		desc[i].name = do_read_string(ff);
2463 		if (!desc[i].name)
2464 			goto out_free;
2465 
2466 		if (do_read_u32(ff, &desc[i].leader_idx))
2467 			goto out_free;
2468 
2469 		if (do_read_u32(ff, &desc[i].nr_members))
2470 			goto out_free;
2471 	}
2472 
2473 	/*
2474 	 * Rebuild group relationship based on the group_desc
2475 	 */
2476 	session = container_of(ff->ph, struct perf_session, header);
2477 	session->evlist->nr_groups = nr_groups;
2478 
2479 	i = nr = 0;
2480 	evlist__for_each_entry(session->evlist, evsel) {
2481 		if (evsel->idx == (int) desc[i].leader_idx) {
2482 			evsel->leader = evsel;
2483 			/* {anon_group} is a dummy name */
2484 			if (strcmp(desc[i].name, "{anon_group}")) {
2485 				evsel->group_name = desc[i].name;
2486 				desc[i].name = NULL;
2487 			}
2488 			evsel->core.nr_members = desc[i].nr_members;
2489 
2490 			if (i >= nr_groups || nr > 0) {
2491 				pr_debug("invalid group desc\n");
2492 				goto out_free;
2493 			}
2494 
2495 			leader = evsel;
2496 			nr = evsel->core.nr_members - 1;
2497 			i++;
2498 		} else if (nr) {
2499 			/* This is a group member */
2500 			evsel->leader = leader;
2501 
2502 			nr--;
2503 		}
2504 	}
2505 
2506 	if (i != nr_groups || nr != 0) {
2507 		pr_debug("invalid group desc\n");
2508 		goto out_free;
2509 	}
2510 
2511 	ret = 0;
2512 out_free:
2513 	for (i = 0; i < nr_groups; i++)
2514 		zfree(&desc[i].name);
2515 	free(desc);
2516 
2517 	return ret;
2518 }
2519 
2520 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2521 {
2522 	struct perf_session *session;
2523 	int err;
2524 
2525 	session = container_of(ff->ph, struct perf_session, header);
2526 
2527 	err = auxtrace_index__process(ff->fd, ff->size, session,
2528 				      ff->ph->needs_swap);
2529 	if (err < 0)
2530 		pr_err("Failed to process auxtrace index\n");
2531 	return err;
2532 }
2533 
2534 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2535 {
2536 	struct cpu_cache_level *caches;
2537 	u32 cnt, i, version;
2538 
2539 	if (do_read_u32(ff, &version))
2540 		return -1;
2541 
2542 	if (version != 1)
2543 		return -1;
2544 
2545 	if (do_read_u32(ff, &cnt))
2546 		return -1;
2547 
2548 	caches = zalloc(sizeof(*caches) * cnt);
2549 	if (!caches)
2550 		return -1;
2551 
2552 	for (i = 0; i < cnt; i++) {
2553 		struct cpu_cache_level c;
2554 
2555 		#define _R(v)						\
2556 			if (do_read_u32(ff, &c.v))\
2557 				goto out_free_caches;			\
2558 
2559 		_R(level)
2560 		_R(line_size)
2561 		_R(sets)
2562 		_R(ways)
2563 		#undef _R
2564 
2565 		#define _R(v)					\
2566 			c.v = do_read_string(ff);		\
2567 			if (!c.v)				\
2568 				goto out_free_caches;
2569 
2570 		_R(type)
2571 		_R(size)
2572 		_R(map)
2573 		#undef _R
2574 
2575 		caches[i] = c;
2576 	}
2577 
2578 	ff->ph->env.caches = caches;
2579 	ff->ph->env.caches_cnt = cnt;
2580 	return 0;
2581 out_free_caches:
2582 	free(caches);
2583 	return -1;
2584 }
2585 
2586 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2587 {
2588 	struct perf_session *session;
2589 	u64 first_sample_time, last_sample_time;
2590 	int ret;
2591 
2592 	session = container_of(ff->ph, struct perf_session, header);
2593 
2594 	ret = do_read_u64(ff, &first_sample_time);
2595 	if (ret)
2596 		return -1;
2597 
2598 	ret = do_read_u64(ff, &last_sample_time);
2599 	if (ret)
2600 		return -1;
2601 
2602 	session->evlist->first_sample_time = first_sample_time;
2603 	session->evlist->last_sample_time = last_sample_time;
2604 	return 0;
2605 }
2606 
2607 static int process_mem_topology(struct feat_fd *ff,
2608 				void *data __maybe_unused)
2609 {
2610 	struct memory_node *nodes;
2611 	u64 version, i, nr, bsize;
2612 	int ret = -1;
2613 
2614 	if (do_read_u64(ff, &version))
2615 		return -1;
2616 
2617 	if (version != 1)
2618 		return -1;
2619 
2620 	if (do_read_u64(ff, &bsize))
2621 		return -1;
2622 
2623 	if (do_read_u64(ff, &nr))
2624 		return -1;
2625 
2626 	nodes = zalloc(sizeof(*nodes) * nr);
2627 	if (!nodes)
2628 		return -1;
2629 
2630 	for (i = 0; i < nr; i++) {
2631 		struct memory_node n;
2632 
2633 		#define _R(v)				\
2634 			if (do_read_u64(ff, &n.v))	\
2635 				goto out;		\
2636 
2637 		_R(node)
2638 		_R(size)
2639 
2640 		#undef _R
2641 
2642 		if (do_read_bitmap(ff, &n.set, &n.size))
2643 			goto out;
2644 
2645 		nodes[i] = n;
2646 	}
2647 
2648 	ff->ph->env.memory_bsize    = bsize;
2649 	ff->ph->env.memory_nodes    = nodes;
2650 	ff->ph->env.nr_memory_nodes = nr;
2651 	ret = 0;
2652 
2653 out:
2654 	if (ret)
2655 		free(nodes);
2656 	return ret;
2657 }
2658 
2659 static int process_clockid(struct feat_fd *ff,
2660 			   void *data __maybe_unused)
2661 {
2662 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2663 		return -1;
2664 
2665 	return 0;
2666 }
2667 
2668 static int process_dir_format(struct feat_fd *ff,
2669 			      void *_data __maybe_unused)
2670 {
2671 	struct perf_session *session;
2672 	struct perf_data *data;
2673 
2674 	session = container_of(ff->ph, struct perf_session, header);
2675 	data = session->data;
2676 
2677 	if (WARN_ON(!perf_data__is_dir(data)))
2678 		return -1;
2679 
2680 	return do_read_u64(ff, &data->dir.version);
2681 }
2682 
2683 #ifdef HAVE_LIBBPF_SUPPORT
2684 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2685 {
2686 	struct bpf_prog_info_linear *info_linear;
2687 	struct bpf_prog_info_node *info_node;
2688 	struct perf_env *env = &ff->ph->env;
2689 	u32 count, i;
2690 	int err = -1;
2691 
2692 	if (ff->ph->needs_swap) {
2693 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2694 		return 0;
2695 	}
2696 
2697 	if (do_read_u32(ff, &count))
2698 		return -1;
2699 
2700 	down_write(&env->bpf_progs.lock);
2701 
2702 	for (i = 0; i < count; ++i) {
2703 		u32 info_len, data_len;
2704 
2705 		info_linear = NULL;
2706 		info_node = NULL;
2707 		if (do_read_u32(ff, &info_len))
2708 			goto out;
2709 		if (do_read_u32(ff, &data_len))
2710 			goto out;
2711 
2712 		if (info_len > sizeof(struct bpf_prog_info)) {
2713 			pr_warning("detected invalid bpf_prog_info\n");
2714 			goto out;
2715 		}
2716 
2717 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2718 				     data_len);
2719 		if (!info_linear)
2720 			goto out;
2721 		info_linear->info_len = sizeof(struct bpf_prog_info);
2722 		info_linear->data_len = data_len;
2723 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2724 			goto out;
2725 		if (__do_read(ff, &info_linear->info, info_len))
2726 			goto out;
2727 		if (info_len < sizeof(struct bpf_prog_info))
2728 			memset(((void *)(&info_linear->info)) + info_len, 0,
2729 			       sizeof(struct bpf_prog_info) - info_len);
2730 
2731 		if (__do_read(ff, info_linear->data, data_len))
2732 			goto out;
2733 
2734 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2735 		if (!info_node)
2736 			goto out;
2737 
2738 		/* after reading from file, translate offset to address */
2739 		bpf_program__bpil_offs_to_addr(info_linear);
2740 		info_node->info_linear = info_linear;
2741 		perf_env__insert_bpf_prog_info(env, info_node);
2742 	}
2743 
2744 	up_write(&env->bpf_progs.lock);
2745 	return 0;
2746 out:
2747 	free(info_linear);
2748 	free(info_node);
2749 	up_write(&env->bpf_progs.lock);
2750 	return err;
2751 }
2752 #else // HAVE_LIBBPF_SUPPORT
2753 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2754 {
2755 	return 0;
2756 }
2757 #endif // HAVE_LIBBPF_SUPPORT
2758 
2759 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2760 {
2761 	struct perf_env *env = &ff->ph->env;
2762 	struct btf_node *node = NULL;
2763 	u32 count, i;
2764 	int err = -1;
2765 
2766 	if (ff->ph->needs_swap) {
2767 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2768 		return 0;
2769 	}
2770 
2771 	if (do_read_u32(ff, &count))
2772 		return -1;
2773 
2774 	down_write(&env->bpf_progs.lock);
2775 
2776 	for (i = 0; i < count; ++i) {
2777 		u32 id, data_size;
2778 
2779 		if (do_read_u32(ff, &id))
2780 			goto out;
2781 		if (do_read_u32(ff, &data_size))
2782 			goto out;
2783 
2784 		node = malloc(sizeof(struct btf_node) + data_size);
2785 		if (!node)
2786 			goto out;
2787 
2788 		node->id = id;
2789 		node->data_size = data_size;
2790 
2791 		if (__do_read(ff, node->data, data_size))
2792 			goto out;
2793 
2794 		perf_env__insert_btf(env, node);
2795 		node = NULL;
2796 	}
2797 
2798 	err = 0;
2799 out:
2800 	up_write(&env->bpf_progs.lock);
2801 	free(node);
2802 	return err;
2803 }
2804 
2805 static int process_compressed(struct feat_fd *ff,
2806 			      void *data __maybe_unused)
2807 {
2808 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2809 		return -1;
2810 
2811 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2812 		return -1;
2813 
2814 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2815 		return -1;
2816 
2817 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2818 		return -1;
2819 
2820 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2821 		return -1;
2822 
2823 	return 0;
2824 }
2825 
2826 struct feature_ops {
2827 	int (*write)(struct feat_fd *ff, struct evlist *evlist);
2828 	void (*print)(struct feat_fd *ff, FILE *fp);
2829 	int (*process)(struct feat_fd *ff, void *data);
2830 	const char *name;
2831 	bool full_only;
2832 	bool synthesize;
2833 };
2834 
2835 #define FEAT_OPR(n, func, __full_only) \
2836 	[HEADER_##n] = {					\
2837 		.name	    = __stringify(n),			\
2838 		.write	    = write_##func,			\
2839 		.print	    = print_##func,			\
2840 		.full_only  = __full_only,			\
2841 		.process    = process_##func,			\
2842 		.synthesize = true				\
2843 	}
2844 
2845 #define FEAT_OPN(n, func, __full_only) \
2846 	[HEADER_##n] = {					\
2847 		.name	    = __stringify(n),			\
2848 		.write	    = write_##func,			\
2849 		.print	    = print_##func,			\
2850 		.full_only  = __full_only,			\
2851 		.process    = process_##func			\
2852 	}
2853 
2854 /* feature_ops not implemented: */
2855 #define print_tracing_data	NULL
2856 #define print_build_id		NULL
2857 
2858 #define process_branch_stack	NULL
2859 #define process_stat		NULL
2860 
2861 
2862 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2863 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2864 	FEAT_OPN(BUILD_ID,	build_id,	false),
2865 	FEAT_OPR(HOSTNAME,	hostname,	false),
2866 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2867 	FEAT_OPR(VERSION,	version,	false),
2868 	FEAT_OPR(ARCH,		arch,		false),
2869 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2870 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2871 	FEAT_OPR(CPUID,		cpuid,		false),
2872 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2873 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2874 	FEAT_OPR(CMDLINE,	cmdline,	false),
2875 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2876 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2877 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2878 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2879 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2880 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2881 	FEAT_OPN(STAT,		stat,		false),
2882 	FEAT_OPN(CACHE,		cache,		true),
2883 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2884 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2885 	FEAT_OPR(CLOCKID,	clockid,	false),
2886 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2887 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2888 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2889 	FEAT_OPR(COMPRESSED,	compressed,	false),
2890 };
2891 
2892 struct header_print_data {
2893 	FILE *fp;
2894 	bool full; /* extended list of headers */
2895 };
2896 
2897 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2898 					   struct perf_header *ph,
2899 					   int feat, int fd, void *data)
2900 {
2901 	struct header_print_data *hd = data;
2902 	struct feat_fd ff;
2903 
2904 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2905 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2906 				"%d, continuing...\n", section->offset, feat);
2907 		return 0;
2908 	}
2909 	if (feat >= HEADER_LAST_FEATURE) {
2910 		pr_warning("unknown feature %d\n", feat);
2911 		return 0;
2912 	}
2913 	if (!feat_ops[feat].print)
2914 		return 0;
2915 
2916 	ff = (struct  feat_fd) {
2917 		.fd = fd,
2918 		.ph = ph,
2919 	};
2920 
2921 	if (!feat_ops[feat].full_only || hd->full)
2922 		feat_ops[feat].print(&ff, hd->fp);
2923 	else
2924 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2925 			feat_ops[feat].name);
2926 
2927 	return 0;
2928 }
2929 
2930 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2931 {
2932 	struct header_print_data hd;
2933 	struct perf_header *header = &session->header;
2934 	int fd = perf_data__fd(session->data);
2935 	struct stat st;
2936 	time_t stctime;
2937 	int ret, bit;
2938 
2939 	hd.fp = fp;
2940 	hd.full = full;
2941 
2942 	ret = fstat(fd, &st);
2943 	if (ret == -1)
2944 		return -1;
2945 
2946 	stctime = st.st_ctime;
2947 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2948 
2949 	fprintf(fp, "# header version : %u\n", header->version);
2950 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2951 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2952 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2953 
2954 	perf_header__process_sections(header, fd, &hd,
2955 				      perf_file_section__fprintf_info);
2956 
2957 	if (session->data->is_pipe)
2958 		return 0;
2959 
2960 	fprintf(fp, "# missing features: ");
2961 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2962 		if (bit)
2963 			fprintf(fp, "%s ", feat_ops[bit].name);
2964 	}
2965 
2966 	fprintf(fp, "\n");
2967 	return 0;
2968 }
2969 
2970 static int do_write_feat(struct feat_fd *ff, int type,
2971 			 struct perf_file_section **p,
2972 			 struct evlist *evlist)
2973 {
2974 	int err;
2975 	int ret = 0;
2976 
2977 	if (perf_header__has_feat(ff->ph, type)) {
2978 		if (!feat_ops[type].write)
2979 			return -1;
2980 
2981 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2982 			return -1;
2983 
2984 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2985 
2986 		err = feat_ops[type].write(ff, evlist);
2987 		if (err < 0) {
2988 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2989 
2990 			/* undo anything written */
2991 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2992 
2993 			return -1;
2994 		}
2995 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2996 		(*p)++;
2997 	}
2998 	return ret;
2999 }
3000 
3001 static int perf_header__adds_write(struct perf_header *header,
3002 				   struct evlist *evlist, int fd)
3003 {
3004 	int nr_sections;
3005 	struct feat_fd ff;
3006 	struct perf_file_section *feat_sec, *p;
3007 	int sec_size;
3008 	u64 sec_start;
3009 	int feat;
3010 	int err;
3011 
3012 	ff = (struct feat_fd){
3013 		.fd  = fd,
3014 		.ph = header,
3015 	};
3016 
3017 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3018 	if (!nr_sections)
3019 		return 0;
3020 
3021 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3022 	if (feat_sec == NULL)
3023 		return -ENOMEM;
3024 
3025 	sec_size = sizeof(*feat_sec) * nr_sections;
3026 
3027 	sec_start = header->feat_offset;
3028 	lseek(fd, sec_start + sec_size, SEEK_SET);
3029 
3030 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3031 		if (do_write_feat(&ff, feat, &p, evlist))
3032 			perf_header__clear_feat(header, feat);
3033 	}
3034 
3035 	lseek(fd, sec_start, SEEK_SET);
3036 	/*
3037 	 * may write more than needed due to dropped feature, but
3038 	 * this is okay, reader will skip the missing entries
3039 	 */
3040 	err = do_write(&ff, feat_sec, sec_size);
3041 	if (err < 0)
3042 		pr_debug("failed to write feature section\n");
3043 	free(feat_sec);
3044 	return err;
3045 }
3046 
3047 int perf_header__write_pipe(int fd)
3048 {
3049 	struct perf_pipe_file_header f_header;
3050 	struct feat_fd ff;
3051 	int err;
3052 
3053 	ff = (struct feat_fd){ .fd = fd };
3054 
3055 	f_header = (struct perf_pipe_file_header){
3056 		.magic	   = PERF_MAGIC,
3057 		.size	   = sizeof(f_header),
3058 	};
3059 
3060 	err = do_write(&ff, &f_header, sizeof(f_header));
3061 	if (err < 0) {
3062 		pr_debug("failed to write perf pipe header\n");
3063 		return err;
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 int perf_session__write_header(struct perf_session *session,
3070 			       struct evlist *evlist,
3071 			       int fd, bool at_exit)
3072 {
3073 	struct perf_file_header f_header;
3074 	struct perf_file_attr   f_attr;
3075 	struct perf_header *header = &session->header;
3076 	struct evsel *evsel;
3077 	struct feat_fd ff;
3078 	u64 attr_offset;
3079 	int err;
3080 
3081 	ff = (struct feat_fd){ .fd = fd};
3082 	lseek(fd, sizeof(f_header), SEEK_SET);
3083 
3084 	evlist__for_each_entry(session->evlist, evsel) {
3085 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3086 		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3087 		if (err < 0) {
3088 			pr_debug("failed to write perf header\n");
3089 			return err;
3090 		}
3091 	}
3092 
3093 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3094 
3095 	evlist__for_each_entry(evlist, evsel) {
3096 		f_attr = (struct perf_file_attr){
3097 			.attr = evsel->core.attr,
3098 			.ids  = {
3099 				.offset = evsel->id_offset,
3100 				.size   = evsel->ids * sizeof(u64),
3101 			}
3102 		};
3103 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3104 		if (err < 0) {
3105 			pr_debug("failed to write perf header attribute\n");
3106 			return err;
3107 		}
3108 	}
3109 
3110 	if (!header->data_offset)
3111 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3112 	header->feat_offset = header->data_offset + header->data_size;
3113 
3114 	if (at_exit) {
3115 		err = perf_header__adds_write(header, evlist, fd);
3116 		if (err < 0)
3117 			return err;
3118 	}
3119 
3120 	f_header = (struct perf_file_header){
3121 		.magic	   = PERF_MAGIC,
3122 		.size	   = sizeof(f_header),
3123 		.attr_size = sizeof(f_attr),
3124 		.attrs = {
3125 			.offset = attr_offset,
3126 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3127 		},
3128 		.data = {
3129 			.offset = header->data_offset,
3130 			.size	= header->data_size,
3131 		},
3132 		/* event_types is ignored, store zeros */
3133 	};
3134 
3135 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3136 
3137 	lseek(fd, 0, SEEK_SET);
3138 	err = do_write(&ff, &f_header, sizeof(f_header));
3139 	if (err < 0) {
3140 		pr_debug("failed to write perf header\n");
3141 		return err;
3142 	}
3143 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3144 
3145 	return 0;
3146 }
3147 
3148 static int perf_header__getbuffer64(struct perf_header *header,
3149 				    int fd, void *buf, size_t size)
3150 {
3151 	if (readn(fd, buf, size) <= 0)
3152 		return -1;
3153 
3154 	if (header->needs_swap)
3155 		mem_bswap_64(buf, size);
3156 
3157 	return 0;
3158 }
3159 
3160 int perf_header__process_sections(struct perf_header *header, int fd,
3161 				  void *data,
3162 				  int (*process)(struct perf_file_section *section,
3163 						 struct perf_header *ph,
3164 						 int feat, int fd, void *data))
3165 {
3166 	struct perf_file_section *feat_sec, *sec;
3167 	int nr_sections;
3168 	int sec_size;
3169 	int feat;
3170 	int err;
3171 
3172 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3173 	if (!nr_sections)
3174 		return 0;
3175 
3176 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3177 	if (!feat_sec)
3178 		return -1;
3179 
3180 	sec_size = sizeof(*feat_sec) * nr_sections;
3181 
3182 	lseek(fd, header->feat_offset, SEEK_SET);
3183 
3184 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3185 	if (err < 0)
3186 		goto out_free;
3187 
3188 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3189 		err = process(sec++, header, feat, fd, data);
3190 		if (err < 0)
3191 			goto out_free;
3192 	}
3193 	err = 0;
3194 out_free:
3195 	free(feat_sec);
3196 	return err;
3197 }
3198 
3199 static const int attr_file_abi_sizes[] = {
3200 	[0] = PERF_ATTR_SIZE_VER0,
3201 	[1] = PERF_ATTR_SIZE_VER1,
3202 	[2] = PERF_ATTR_SIZE_VER2,
3203 	[3] = PERF_ATTR_SIZE_VER3,
3204 	[4] = PERF_ATTR_SIZE_VER4,
3205 	0,
3206 };
3207 
3208 /*
3209  * In the legacy file format, the magic number is not used to encode endianness.
3210  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3211  * on ABI revisions, we need to try all combinations for all endianness to
3212  * detect the endianness.
3213  */
3214 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3215 {
3216 	uint64_t ref_size, attr_size;
3217 	int i;
3218 
3219 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3220 		ref_size = attr_file_abi_sizes[i]
3221 			 + sizeof(struct perf_file_section);
3222 		if (hdr_sz != ref_size) {
3223 			attr_size = bswap_64(hdr_sz);
3224 			if (attr_size != ref_size)
3225 				continue;
3226 
3227 			ph->needs_swap = true;
3228 		}
3229 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3230 			 i,
3231 			 ph->needs_swap);
3232 		return 0;
3233 	}
3234 	/* could not determine endianness */
3235 	return -1;
3236 }
3237 
3238 #define PERF_PIPE_HDR_VER0	16
3239 
3240 static const size_t attr_pipe_abi_sizes[] = {
3241 	[0] = PERF_PIPE_HDR_VER0,
3242 	0,
3243 };
3244 
3245 /*
3246  * In the legacy pipe format, there is an implicit assumption that endiannesss
3247  * between host recording the samples, and host parsing the samples is the
3248  * same. This is not always the case given that the pipe output may always be
3249  * redirected into a file and analyzed on a different machine with possibly a
3250  * different endianness and perf_event ABI revsions in the perf tool itself.
3251  */
3252 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3253 {
3254 	u64 attr_size;
3255 	int i;
3256 
3257 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3258 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3259 			attr_size = bswap_64(hdr_sz);
3260 			if (attr_size != hdr_sz)
3261 				continue;
3262 
3263 			ph->needs_swap = true;
3264 		}
3265 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3266 		return 0;
3267 	}
3268 	return -1;
3269 }
3270 
3271 bool is_perf_magic(u64 magic)
3272 {
3273 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3274 		|| magic == __perf_magic2
3275 		|| magic == __perf_magic2_sw)
3276 		return true;
3277 
3278 	return false;
3279 }
3280 
3281 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3282 			      bool is_pipe, struct perf_header *ph)
3283 {
3284 	int ret;
3285 
3286 	/* check for legacy format */
3287 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3288 	if (ret == 0) {
3289 		ph->version = PERF_HEADER_VERSION_1;
3290 		pr_debug("legacy perf.data format\n");
3291 		if (is_pipe)
3292 			return try_all_pipe_abis(hdr_sz, ph);
3293 
3294 		return try_all_file_abis(hdr_sz, ph);
3295 	}
3296 	/*
3297 	 * the new magic number serves two purposes:
3298 	 * - unique number to identify actual perf.data files
3299 	 * - encode endianness of file
3300 	 */
3301 	ph->version = PERF_HEADER_VERSION_2;
3302 
3303 	/* check magic number with one endianness */
3304 	if (magic == __perf_magic2)
3305 		return 0;
3306 
3307 	/* check magic number with opposite endianness */
3308 	if (magic != __perf_magic2_sw)
3309 		return -1;
3310 
3311 	ph->needs_swap = true;
3312 
3313 	return 0;
3314 }
3315 
3316 int perf_file_header__read(struct perf_file_header *header,
3317 			   struct perf_header *ph, int fd)
3318 {
3319 	ssize_t ret;
3320 
3321 	lseek(fd, 0, SEEK_SET);
3322 
3323 	ret = readn(fd, header, sizeof(*header));
3324 	if (ret <= 0)
3325 		return -1;
3326 
3327 	if (check_magic_endian(header->magic,
3328 			       header->attr_size, false, ph) < 0) {
3329 		pr_debug("magic/endian check failed\n");
3330 		return -1;
3331 	}
3332 
3333 	if (ph->needs_swap) {
3334 		mem_bswap_64(header, offsetof(struct perf_file_header,
3335 			     adds_features));
3336 	}
3337 
3338 	if (header->size != sizeof(*header)) {
3339 		/* Support the previous format */
3340 		if (header->size == offsetof(typeof(*header), adds_features))
3341 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3342 		else
3343 			return -1;
3344 	} else if (ph->needs_swap) {
3345 		/*
3346 		 * feature bitmap is declared as an array of unsigned longs --
3347 		 * not good since its size can differ between the host that
3348 		 * generated the data file and the host analyzing the file.
3349 		 *
3350 		 * We need to handle endianness, but we don't know the size of
3351 		 * the unsigned long where the file was generated. Take a best
3352 		 * guess at determining it: try 64-bit swap first (ie., file
3353 		 * created on a 64-bit host), and check if the hostname feature
3354 		 * bit is set (this feature bit is forced on as of fbe96f2).
3355 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3356 		 * swap. If the hostname bit is still not set (e.g., older data
3357 		 * file), punt and fallback to the original behavior --
3358 		 * clearing all feature bits and setting buildid.
3359 		 */
3360 		mem_bswap_64(&header->adds_features,
3361 			    BITS_TO_U64(HEADER_FEAT_BITS));
3362 
3363 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3364 			/* unswap as u64 */
3365 			mem_bswap_64(&header->adds_features,
3366 				    BITS_TO_U64(HEADER_FEAT_BITS));
3367 
3368 			/* unswap as u32 */
3369 			mem_bswap_32(&header->adds_features,
3370 				    BITS_TO_U32(HEADER_FEAT_BITS));
3371 		}
3372 
3373 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3374 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3375 			set_bit(HEADER_BUILD_ID, header->adds_features);
3376 		}
3377 	}
3378 
3379 	memcpy(&ph->adds_features, &header->adds_features,
3380 	       sizeof(ph->adds_features));
3381 
3382 	ph->data_offset  = header->data.offset;
3383 	ph->data_size	 = header->data.size;
3384 	ph->feat_offset  = header->data.offset + header->data.size;
3385 	return 0;
3386 }
3387 
3388 static int perf_file_section__process(struct perf_file_section *section,
3389 				      struct perf_header *ph,
3390 				      int feat, int fd, void *data)
3391 {
3392 	struct feat_fd fdd = {
3393 		.fd	= fd,
3394 		.ph	= ph,
3395 		.size	= section->size,
3396 		.offset	= section->offset,
3397 	};
3398 
3399 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3400 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3401 			  "%d, continuing...\n", section->offset, feat);
3402 		return 0;
3403 	}
3404 
3405 	if (feat >= HEADER_LAST_FEATURE) {
3406 		pr_debug("unknown feature %d, continuing...\n", feat);
3407 		return 0;
3408 	}
3409 
3410 	if (!feat_ops[feat].process)
3411 		return 0;
3412 
3413 	return feat_ops[feat].process(&fdd, data);
3414 }
3415 
3416 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3417 				       struct perf_header *ph, int fd,
3418 				       bool repipe)
3419 {
3420 	struct feat_fd ff = {
3421 		.fd = STDOUT_FILENO,
3422 		.ph = ph,
3423 	};
3424 	ssize_t ret;
3425 
3426 	ret = readn(fd, header, sizeof(*header));
3427 	if (ret <= 0)
3428 		return -1;
3429 
3430 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3431 		pr_debug("endian/magic failed\n");
3432 		return -1;
3433 	}
3434 
3435 	if (ph->needs_swap)
3436 		header->size = bswap_64(header->size);
3437 
3438 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3439 		return -1;
3440 
3441 	return 0;
3442 }
3443 
3444 static int perf_header__read_pipe(struct perf_session *session)
3445 {
3446 	struct perf_header *header = &session->header;
3447 	struct perf_pipe_file_header f_header;
3448 
3449 	if (perf_file_header__read_pipe(&f_header, header,
3450 					perf_data__fd(session->data),
3451 					session->repipe) < 0) {
3452 		pr_debug("incompatible file format\n");
3453 		return -EINVAL;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 static int read_attr(int fd, struct perf_header *ph,
3460 		     struct perf_file_attr *f_attr)
3461 {
3462 	struct perf_event_attr *attr = &f_attr->attr;
3463 	size_t sz, left;
3464 	size_t our_sz = sizeof(f_attr->attr);
3465 	ssize_t ret;
3466 
3467 	memset(f_attr, 0, sizeof(*f_attr));
3468 
3469 	/* read minimal guaranteed structure */
3470 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3471 	if (ret <= 0) {
3472 		pr_debug("cannot read %d bytes of header attr\n",
3473 			 PERF_ATTR_SIZE_VER0);
3474 		return -1;
3475 	}
3476 
3477 	/* on file perf_event_attr size */
3478 	sz = attr->size;
3479 
3480 	if (ph->needs_swap)
3481 		sz = bswap_32(sz);
3482 
3483 	if (sz == 0) {
3484 		/* assume ABI0 */
3485 		sz =  PERF_ATTR_SIZE_VER0;
3486 	} else if (sz > our_sz) {
3487 		pr_debug("file uses a more recent and unsupported ABI"
3488 			 " (%zu bytes extra)\n", sz - our_sz);
3489 		return -1;
3490 	}
3491 	/* what we have not yet read and that we know about */
3492 	left = sz - PERF_ATTR_SIZE_VER0;
3493 	if (left) {
3494 		void *ptr = attr;
3495 		ptr += PERF_ATTR_SIZE_VER0;
3496 
3497 		ret = readn(fd, ptr, left);
3498 	}
3499 	/* read perf_file_section, ids are read in caller */
3500 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3501 
3502 	return ret <= 0 ? -1 : 0;
3503 }
3504 
3505 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3506 						struct tep_handle *pevent)
3507 {
3508 	struct tep_event *event;
3509 	char bf[128];
3510 
3511 	/* already prepared */
3512 	if (evsel->tp_format)
3513 		return 0;
3514 
3515 	if (pevent == NULL) {
3516 		pr_debug("broken or missing trace data\n");
3517 		return -1;
3518 	}
3519 
3520 	event = tep_find_event(pevent, evsel->core.attr.config);
3521 	if (event == NULL) {
3522 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3523 		return -1;
3524 	}
3525 
3526 	if (!evsel->name) {
3527 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3528 		evsel->name = strdup(bf);
3529 		if (evsel->name == NULL)
3530 			return -1;
3531 	}
3532 
3533 	evsel->tp_format = event;
3534 	return 0;
3535 }
3536 
3537 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3538 						  struct tep_handle *pevent)
3539 {
3540 	struct evsel *pos;
3541 
3542 	evlist__for_each_entry(evlist, pos) {
3543 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3544 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3545 			return -1;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 int perf_session__read_header(struct perf_session *session)
3552 {
3553 	struct perf_data *data = session->data;
3554 	struct perf_header *header = &session->header;
3555 	struct perf_file_header	f_header;
3556 	struct perf_file_attr	f_attr;
3557 	u64			f_id;
3558 	int nr_attrs, nr_ids, i, j;
3559 	int fd = perf_data__fd(data);
3560 
3561 	session->evlist = evlist__new();
3562 	if (session->evlist == NULL)
3563 		return -ENOMEM;
3564 
3565 	session->evlist->env = &header->env;
3566 	session->machines.host.env = &header->env;
3567 	if (perf_data__is_pipe(data))
3568 		return perf_header__read_pipe(session);
3569 
3570 	if (perf_file_header__read(&f_header, header, fd) < 0)
3571 		return -EINVAL;
3572 
3573 	/*
3574 	 * Sanity check that perf.data was written cleanly; data size is
3575 	 * initialized to 0 and updated only if the on_exit function is run.
3576 	 * If data size is still 0 then the file contains only partial
3577 	 * information.  Just warn user and process it as much as it can.
3578 	 */
3579 	if (f_header.data.size == 0) {
3580 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3581 			   "Was the 'perf record' command properly terminated?\n",
3582 			   data->file.path);
3583 	}
3584 
3585 	if (f_header.attr_size == 0) {
3586 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3587 		       "Was the 'perf record' command properly terminated?\n",
3588 		       data->file.path);
3589 		return -EINVAL;
3590 	}
3591 
3592 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3593 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3594 
3595 	for (i = 0; i < nr_attrs; i++) {
3596 		struct evsel *evsel;
3597 		off_t tmp;
3598 
3599 		if (read_attr(fd, header, &f_attr) < 0)
3600 			goto out_errno;
3601 
3602 		if (header->needs_swap) {
3603 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3604 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3605 			perf_event__attr_swap(&f_attr.attr);
3606 		}
3607 
3608 		tmp = lseek(fd, 0, SEEK_CUR);
3609 		evsel = evsel__new(&f_attr.attr);
3610 
3611 		if (evsel == NULL)
3612 			goto out_delete_evlist;
3613 
3614 		evsel->needs_swap = header->needs_swap;
3615 		/*
3616 		 * Do it before so that if perf_evsel__alloc_id fails, this
3617 		 * entry gets purged too at evlist__delete().
3618 		 */
3619 		evlist__add(session->evlist, evsel);
3620 
3621 		nr_ids = f_attr.ids.size / sizeof(u64);
3622 		/*
3623 		 * We don't have the cpu and thread maps on the header, so
3624 		 * for allocating the perf_sample_id table we fake 1 cpu and
3625 		 * hattr->ids threads.
3626 		 */
3627 		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3628 			goto out_delete_evlist;
3629 
3630 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3631 
3632 		for (j = 0; j < nr_ids; j++) {
3633 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3634 				goto out_errno;
3635 
3636 			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3637 		}
3638 
3639 		lseek(fd, tmp, SEEK_SET);
3640 	}
3641 
3642 	perf_header__process_sections(header, fd, &session->tevent,
3643 				      perf_file_section__process);
3644 
3645 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3646 						   session->tevent.pevent))
3647 		goto out_delete_evlist;
3648 
3649 	return 0;
3650 out_errno:
3651 	return -errno;
3652 
3653 out_delete_evlist:
3654 	evlist__delete(session->evlist);
3655 	session->evlist = NULL;
3656 	return -ENOMEM;
3657 }
3658 
3659 int perf_event__synthesize_attr(struct perf_tool *tool,
3660 				struct perf_event_attr *attr, u32 ids, u64 *id,
3661 				perf_event__handler_t process)
3662 {
3663 	union perf_event *ev;
3664 	size_t size;
3665 	int err;
3666 
3667 	size = sizeof(struct perf_event_attr);
3668 	size = PERF_ALIGN(size, sizeof(u64));
3669 	size += sizeof(struct perf_event_header);
3670 	size += ids * sizeof(u64);
3671 
3672 	ev = zalloc(size);
3673 
3674 	if (ev == NULL)
3675 		return -ENOMEM;
3676 
3677 	ev->attr.attr = *attr;
3678 	memcpy(ev->attr.id, id, ids * sizeof(u64));
3679 
3680 	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3681 	ev->attr.header.size = (u16)size;
3682 
3683 	if (ev->attr.header.size == size)
3684 		err = process(tool, ev, NULL, NULL);
3685 	else
3686 		err = -E2BIG;
3687 
3688 	free(ev);
3689 
3690 	return err;
3691 }
3692 
3693 int perf_event__synthesize_features(struct perf_tool *tool,
3694 				    struct perf_session *session,
3695 				    struct evlist *evlist,
3696 				    perf_event__handler_t process)
3697 {
3698 	struct perf_header *header = &session->header;
3699 	struct feat_fd ff;
3700 	struct perf_record_header_feature *fe;
3701 	size_t sz, sz_hdr;
3702 	int feat, ret;
3703 
3704 	sz_hdr = sizeof(fe->header);
3705 	sz = sizeof(union perf_event);
3706 	/* get a nice alignment */
3707 	sz = PERF_ALIGN(sz, page_size);
3708 
3709 	memset(&ff, 0, sizeof(ff));
3710 
3711 	ff.buf = malloc(sz);
3712 	if (!ff.buf)
3713 		return -ENOMEM;
3714 
3715 	ff.size = sz - sz_hdr;
3716 	ff.ph = &session->header;
3717 
3718 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3719 		if (!feat_ops[feat].synthesize) {
3720 			pr_debug("No record header feature for header :%d\n", feat);
3721 			continue;
3722 		}
3723 
3724 		ff.offset = sizeof(*fe);
3725 
3726 		ret = feat_ops[feat].write(&ff, evlist);
3727 		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3728 			pr_debug("Error writing feature\n");
3729 			continue;
3730 		}
3731 		/* ff.buf may have changed due to realloc in do_write() */
3732 		fe = ff.buf;
3733 		memset(fe, 0, sizeof(*fe));
3734 
3735 		fe->feat_id = feat;
3736 		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3737 		fe->header.size = ff.offset;
3738 
3739 		ret = process(tool, ff.buf, NULL, NULL);
3740 		if (ret) {
3741 			free(ff.buf);
3742 			return ret;
3743 		}
3744 	}
3745 
3746 	/* Send HEADER_LAST_FEATURE mark. */
3747 	fe = ff.buf;
3748 	fe->feat_id     = HEADER_LAST_FEATURE;
3749 	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3750 	fe->header.size = sizeof(*fe);
3751 
3752 	ret = process(tool, ff.buf, NULL, NULL);
3753 
3754 	free(ff.buf);
3755 	return ret;
3756 }
3757 
3758 int perf_event__process_feature(struct perf_session *session,
3759 				union perf_event *event)
3760 {
3761 	struct perf_tool *tool = session->tool;
3762 	struct feat_fd ff = { .fd = 0 };
3763 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3764 	int type = fe->header.type;
3765 	u64 feat = fe->feat_id;
3766 
3767 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3768 		pr_warning("invalid record type %d in pipe-mode\n", type);
3769 		return 0;
3770 	}
3771 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3772 		pr_warning("invalid record type %d in pipe-mode\n", type);
3773 		return -1;
3774 	}
3775 
3776 	if (!feat_ops[feat].process)
3777 		return 0;
3778 
3779 	ff.buf  = (void *)fe->data;
3780 	ff.size = event->header.size - sizeof(*fe);
3781 	ff.ph = &session->header;
3782 
3783 	if (feat_ops[feat].process(&ff, NULL))
3784 		return -1;
3785 
3786 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3787 		return 0;
3788 
3789 	if (!feat_ops[feat].full_only ||
3790 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3791 		feat_ops[feat].print(&ff, stdout);
3792 	} else {
3793 		fprintf(stdout, "# %s info available, use -I to display\n",
3794 			feat_ops[feat].name);
3795 	}
3796 
3797 	return 0;
3798 }
3799 
3800 static struct perf_record_event_update *
3801 event_update_event__new(size_t size, u64 type, u64 id)
3802 {
3803 	struct perf_record_event_update *ev;
3804 
3805 	size += sizeof(*ev);
3806 	size  = PERF_ALIGN(size, sizeof(u64));
3807 
3808 	ev = zalloc(size);
3809 	if (ev) {
3810 		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3811 		ev->header.size = (u16)size;
3812 		ev->type = type;
3813 		ev->id = id;
3814 	}
3815 	return ev;
3816 }
3817 
3818 int
3819 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3820 					 struct evsel *evsel,
3821 					 perf_event__handler_t process)
3822 {
3823 	struct perf_record_event_update *ev;
3824 	size_t size = strlen(evsel->unit);
3825 	int err;
3826 
3827 	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3828 	if (ev == NULL)
3829 		return -ENOMEM;
3830 
3831 	strlcpy(ev->data, evsel->unit, size + 1);
3832 	err = process(tool, (union perf_event *)ev, NULL, NULL);
3833 	free(ev);
3834 	return err;
3835 }
3836 
3837 int
3838 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3839 					  struct evsel *evsel,
3840 					  perf_event__handler_t process)
3841 {
3842 	struct perf_record_event_update *ev;
3843 	struct perf_record_event_update_scale *ev_data;
3844 	int err;
3845 
3846 	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3847 	if (ev == NULL)
3848 		return -ENOMEM;
3849 
3850 	ev_data = (struct perf_record_event_update_scale *)ev->data;
3851 	ev_data->scale = evsel->scale;
3852 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3853 	free(ev);
3854 	return err;
3855 }
3856 
3857 int
3858 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3859 					 struct evsel *evsel,
3860 					 perf_event__handler_t process)
3861 {
3862 	struct perf_record_event_update *ev;
3863 	size_t len = strlen(evsel->name);
3864 	int err;
3865 
3866 	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3867 	if (ev == NULL)
3868 		return -ENOMEM;
3869 
3870 	strlcpy(ev->data, evsel->name, len + 1);
3871 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3872 	free(ev);
3873 	return err;
3874 }
3875 
3876 int
3877 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3878 					struct evsel *evsel,
3879 					perf_event__handler_t process)
3880 {
3881 	size_t size = sizeof(struct perf_record_event_update);
3882 	struct perf_record_event_update *ev;
3883 	int max, err;
3884 	u16 type;
3885 
3886 	if (!evsel->core.own_cpus)
3887 		return 0;
3888 
3889 	ev = cpu_map_data__alloc(evsel->core.own_cpus, &size, &type, &max);
3890 	if (!ev)
3891 		return -ENOMEM;
3892 
3893 	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3894 	ev->header.size = (u16)size;
3895 	ev->type = PERF_EVENT_UPDATE__CPUS;
3896 	ev->id   = evsel->id[0];
3897 
3898 	cpu_map_data__synthesize((struct perf_record_cpu_map_data *)ev->data,
3899 				 evsel->core.own_cpus,
3900 				 type, max);
3901 
3902 	err = process(tool, (union perf_event*) ev, NULL, NULL);
3903 	free(ev);
3904 	return err;
3905 }
3906 
3907 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3908 {
3909 	struct perf_record_event_update *ev = &event->event_update;
3910 	struct perf_record_event_update_scale *ev_scale;
3911 	struct perf_record_event_update_cpus *ev_cpus;
3912 	struct perf_cpu_map *map;
3913 	size_t ret;
3914 
3915 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3916 
3917 	switch (ev->type) {
3918 	case PERF_EVENT_UPDATE__SCALE:
3919 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3920 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3921 		break;
3922 	case PERF_EVENT_UPDATE__UNIT:
3923 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3924 		break;
3925 	case PERF_EVENT_UPDATE__NAME:
3926 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3927 		break;
3928 	case PERF_EVENT_UPDATE__CPUS:
3929 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3930 		ret += fprintf(fp, "... ");
3931 
3932 		map = cpu_map__new_data(&ev_cpus->cpus);
3933 		if (map)
3934 			ret += cpu_map__fprintf(map, fp);
3935 		else
3936 			ret += fprintf(fp, "failed to get cpus\n");
3937 		break;
3938 	default:
3939 		ret += fprintf(fp, "... unknown type\n");
3940 		break;
3941 	}
3942 
3943 	return ret;
3944 }
3945 
3946 int perf_event__synthesize_attrs(struct perf_tool *tool,
3947 				 struct evlist *evlist,
3948 				 perf_event__handler_t process)
3949 {
3950 	struct evsel *evsel;
3951 	int err = 0;
3952 
3953 	evlist__for_each_entry(evlist, evsel) {
3954 		err = perf_event__synthesize_attr(tool, &evsel->core.attr, evsel->ids,
3955 						  evsel->id, process);
3956 		if (err) {
3957 			pr_debug("failed to create perf header attribute\n");
3958 			return err;
3959 		}
3960 	}
3961 
3962 	return err;
3963 }
3964 
3965 static bool has_unit(struct evsel *counter)
3966 {
3967 	return counter->unit && *counter->unit;
3968 }
3969 
3970 static bool has_scale(struct evsel *counter)
3971 {
3972 	return counter->scale != 1;
3973 }
3974 
3975 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3976 				      struct evlist *evsel_list,
3977 				      perf_event__handler_t process,
3978 				      bool is_pipe)
3979 {
3980 	struct evsel *counter;
3981 	int err;
3982 
3983 	/*
3984 	 * Synthesize other events stuff not carried within
3985 	 * attr event - unit, scale, name
3986 	 */
3987 	evlist__for_each_entry(evsel_list, counter) {
3988 		if (!counter->supported)
3989 			continue;
3990 
3991 		/*
3992 		 * Synthesize unit and scale only if it's defined.
3993 		 */
3994 		if (has_unit(counter)) {
3995 			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3996 			if (err < 0) {
3997 				pr_err("Couldn't synthesize evsel unit.\n");
3998 				return err;
3999 			}
4000 		}
4001 
4002 		if (has_scale(counter)) {
4003 			err = perf_event__synthesize_event_update_scale(tool, counter, process);
4004 			if (err < 0) {
4005 				pr_err("Couldn't synthesize evsel counter.\n");
4006 				return err;
4007 			}
4008 		}
4009 
4010 		if (counter->core.own_cpus) {
4011 			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
4012 			if (err < 0) {
4013 				pr_err("Couldn't synthesize evsel cpus.\n");
4014 				return err;
4015 			}
4016 		}
4017 
4018 		/*
4019 		 * Name is needed only for pipe output,
4020 		 * perf.data carries event names.
4021 		 */
4022 		if (is_pipe) {
4023 			err = perf_event__synthesize_event_update_name(tool, counter, process);
4024 			if (err < 0) {
4025 				pr_err("Couldn't synthesize evsel name.\n");
4026 				return err;
4027 			}
4028 		}
4029 	}
4030 	return 0;
4031 }
4032 
4033 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4034 			     union perf_event *event,
4035 			     struct evlist **pevlist)
4036 {
4037 	u32 i, ids, n_ids;
4038 	struct evsel *evsel;
4039 	struct evlist *evlist = *pevlist;
4040 
4041 	if (evlist == NULL) {
4042 		*pevlist = evlist = evlist__new();
4043 		if (evlist == NULL)
4044 			return -ENOMEM;
4045 	}
4046 
4047 	evsel = evsel__new(&event->attr.attr);
4048 	if (evsel == NULL)
4049 		return -ENOMEM;
4050 
4051 	evlist__add(evlist, evsel);
4052 
4053 	ids = event->header.size;
4054 	ids -= (void *)&event->attr.id - (void *)event;
4055 	n_ids = ids / sizeof(u64);
4056 	/*
4057 	 * We don't have the cpu and thread maps on the header, so
4058 	 * for allocating the perf_sample_id table we fake 1 cpu and
4059 	 * hattr->ids threads.
4060 	 */
4061 	if (perf_evsel__alloc_id(evsel, 1, n_ids))
4062 		return -ENOMEM;
4063 
4064 	for (i = 0; i < n_ids; i++) {
4065 		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4066 	}
4067 
4068 	return 0;
4069 }
4070 
4071 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4072 				     union perf_event *event,
4073 				     struct evlist **pevlist)
4074 {
4075 	struct perf_record_event_update *ev = &event->event_update;
4076 	struct perf_record_event_update_scale *ev_scale;
4077 	struct perf_record_event_update_cpus *ev_cpus;
4078 	struct evlist *evlist;
4079 	struct evsel *evsel;
4080 	struct perf_cpu_map *map;
4081 
4082 	if (!pevlist || *pevlist == NULL)
4083 		return -EINVAL;
4084 
4085 	evlist = *pevlist;
4086 
4087 	evsel = perf_evlist__id2evsel(evlist, ev->id);
4088 	if (evsel == NULL)
4089 		return -EINVAL;
4090 
4091 	switch (ev->type) {
4092 	case PERF_EVENT_UPDATE__UNIT:
4093 		evsel->unit = strdup(ev->data);
4094 		break;
4095 	case PERF_EVENT_UPDATE__NAME:
4096 		evsel->name = strdup(ev->data);
4097 		break;
4098 	case PERF_EVENT_UPDATE__SCALE:
4099 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4100 		evsel->scale = ev_scale->scale;
4101 		break;
4102 	case PERF_EVENT_UPDATE__CPUS:
4103 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4104 
4105 		map = cpu_map__new_data(&ev_cpus->cpus);
4106 		if (map)
4107 			evsel->core.own_cpus = map;
4108 		else
4109 			pr_err("failed to get event_update cpus\n");
4110 	default:
4111 		break;
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4118 					struct evlist *evlist,
4119 					perf_event__handler_t process)
4120 {
4121 	union perf_event ev;
4122 	struct tracing_data *tdata;
4123 	ssize_t size = 0, aligned_size = 0, padding;
4124 	struct feat_fd ff;
4125 	int err __maybe_unused = 0;
4126 
4127 	/*
4128 	 * We are going to store the size of the data followed
4129 	 * by the data contents. Since the fd descriptor is a pipe,
4130 	 * we cannot seek back to store the size of the data once
4131 	 * we know it. Instead we:
4132 	 *
4133 	 * - write the tracing data to the temp file
4134 	 * - get/write the data size to pipe
4135 	 * - write the tracing data from the temp file
4136 	 *   to the pipe
4137 	 */
4138 	tdata = tracing_data_get(&evlist->core.entries, fd, true);
4139 	if (!tdata)
4140 		return -1;
4141 
4142 	memset(&ev, 0, sizeof(ev));
4143 
4144 	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4145 	size = tdata->size;
4146 	aligned_size = PERF_ALIGN(size, sizeof(u64));
4147 	padding = aligned_size - size;
4148 	ev.tracing_data.header.size = sizeof(ev.tracing_data);
4149 	ev.tracing_data.size = aligned_size;
4150 
4151 	process(tool, &ev, NULL, NULL);
4152 
4153 	/*
4154 	 * The put function will copy all the tracing data
4155 	 * stored in temp file to the pipe.
4156 	 */
4157 	tracing_data_put(tdata);
4158 
4159 	ff = (struct feat_fd){ .fd = fd };
4160 	if (write_padded(&ff, NULL, 0, padding))
4161 		return -1;
4162 
4163 	return aligned_size;
4164 }
4165 
4166 int perf_event__process_tracing_data(struct perf_session *session,
4167 				     union perf_event *event)
4168 {
4169 	ssize_t size_read, padding, size = event->tracing_data.size;
4170 	int fd = perf_data__fd(session->data);
4171 	off_t offset = lseek(fd, 0, SEEK_CUR);
4172 	char buf[BUFSIZ];
4173 
4174 	/* setup for reading amidst mmap */
4175 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4176 	      SEEK_SET);
4177 
4178 	size_read = trace_report(fd, &session->tevent,
4179 				 session->repipe);
4180 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4181 
4182 	if (readn(fd, buf, padding) < 0) {
4183 		pr_err("%s: reading input file", __func__);
4184 		return -1;
4185 	}
4186 	if (session->repipe) {
4187 		int retw = write(STDOUT_FILENO, buf, padding);
4188 		if (retw <= 0 || retw != padding) {
4189 			pr_err("%s: repiping tracing data padding", __func__);
4190 			return -1;
4191 		}
4192 	}
4193 
4194 	if (size_read + padding != size) {
4195 		pr_err("%s: tracing data size mismatch", __func__);
4196 		return -1;
4197 	}
4198 
4199 	perf_evlist__prepare_tracepoint_events(session->evlist,
4200 					       session->tevent.pevent);
4201 
4202 	return size_read + padding;
4203 }
4204 
4205 int perf_event__synthesize_build_id(struct perf_tool *tool,
4206 				    struct dso *pos, u16 misc,
4207 				    perf_event__handler_t process,
4208 				    struct machine *machine)
4209 {
4210 	union perf_event ev;
4211 	size_t len;
4212 	int err = 0;
4213 
4214 	if (!pos->hit)
4215 		return err;
4216 
4217 	memset(&ev, 0, sizeof(ev));
4218 
4219 	len = pos->long_name_len + 1;
4220 	len = PERF_ALIGN(len, NAME_ALIGN);
4221 	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4222 	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4223 	ev.build_id.header.misc = misc;
4224 	ev.build_id.pid = machine->pid;
4225 	ev.build_id.header.size = sizeof(ev.build_id) + len;
4226 	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4227 
4228 	err = process(tool, &ev, NULL, machine);
4229 
4230 	return err;
4231 }
4232 
4233 int perf_event__process_build_id(struct perf_session *session,
4234 				 union perf_event *event)
4235 {
4236 	__event_process_build_id(&event->build_id,
4237 				 event->build_id.filename,
4238 				 session);
4239 	return 0;
4240 }
4241