xref: /openbmc/linux/tools/perf/util/header.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24 
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52 
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65 
66 #define PERF_MAGIC	__perf_magic2
67 
68 const char perf_version_string[] = PERF_VERSION;
69 
70 struct perf_file_attr {
71 	struct perf_event_attr	attr;
72 	struct perf_file_section	ids;
73 };
74 
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77 	set_bit(feat, header->adds_features);
78 }
79 
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82 	clear_bit(feat, header->adds_features);
83 }
84 
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87 	return test_bit(feat, header->adds_features);
88 }
89 
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92 	ssize_t ret = writen(ff->fd, buf, size);
93 
94 	if (ret != (ssize_t)size)
95 		return ret < 0 ? (int)ret : -1;
96 	return 0;
97 }
98 
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101 	/* struct perf_event_header::size is u16 */
102 	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 	size_t new_size = ff->size;
104 	void *addr;
105 
106 	if (size + ff->offset > max_size)
107 		return -E2BIG;
108 
109 	while (size > (new_size - ff->offset))
110 		new_size <<= 1;
111 	new_size = min(max_size, new_size);
112 
113 	if (ff->size < new_size) {
114 		addr = realloc(ff->buf, new_size);
115 		if (!addr)
116 			return -ENOMEM;
117 		ff->buf = addr;
118 		ff->size = new_size;
119 	}
120 
121 	memcpy(ff->buf + ff->offset, buf, size);
122 	ff->offset += size;
123 
124 	return 0;
125 }
126 
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130 	if (!ff->buf)
131 		return __do_write_fd(ff, buf, size);
132 	return __do_write_buf(ff, buf, size);
133 }
134 
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138 	u64 *p = (u64 *) set;
139 	int i, ret;
140 
141 	ret = do_write(ff, &size, sizeof(size));
142 	if (ret < 0)
143 		return ret;
144 
145 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 		ret = do_write(ff, p + i, sizeof(*p));
147 		if (ret < 0)
148 			return ret;
149 	}
150 
151 	return 0;
152 }
153 
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156 		 size_t count, size_t count_aligned)
157 {
158 	static const char zero_buf[NAME_ALIGN];
159 	int err = do_write(ff, bf, count);
160 
161 	if (!err)
162 		err = do_write(ff, zero_buf, count_aligned - count);
163 
164 	return err;
165 }
166 
167 #define string_size(str)						\
168 	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169 
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173 	u32 len, olen;
174 	int ret;
175 
176 	olen = strlen(str) + 1;
177 	len = PERF_ALIGN(olen, NAME_ALIGN);
178 
179 	/* write len, incl. \0 */
180 	ret = do_write(ff, &len, sizeof(len));
181 	if (ret < 0)
182 		return ret;
183 
184 	return write_padded(ff, str, olen, len);
185 }
186 
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189 	ssize_t ret = readn(ff->fd, addr, size);
190 
191 	if (ret != size)
192 		return ret < 0 ? (int)ret : -1;
193 	return 0;
194 }
195 
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198 	if (size > (ssize_t)ff->size - ff->offset)
199 		return -1;
200 
201 	memcpy(addr, ff->buf + ff->offset, size);
202 	ff->offset += size;
203 
204 	return 0;
205 
206 }
207 
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 	if (!ff->buf)
211 		return __do_read_fd(ff, addr, size);
212 	return __do_read_buf(ff, addr, size);
213 }
214 
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217 	int ret;
218 
219 	ret = __do_read(ff, addr, sizeof(*addr));
220 	if (ret)
221 		return ret;
222 
223 	if (ff->ph->needs_swap)
224 		*addr = bswap_32(*addr);
225 	return 0;
226 }
227 
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230 	int ret;
231 
232 	ret = __do_read(ff, addr, sizeof(*addr));
233 	if (ret)
234 		return ret;
235 
236 	if (ff->ph->needs_swap)
237 		*addr = bswap_64(*addr);
238 	return 0;
239 }
240 
241 static char *do_read_string(struct feat_fd *ff)
242 {
243 	u32 len;
244 	char *buf;
245 
246 	if (do_read_u32(ff, &len))
247 		return NULL;
248 
249 	buf = malloc(len);
250 	if (!buf)
251 		return NULL;
252 
253 	if (!__do_read(ff, buf, len)) {
254 		/*
255 		 * strings are padded by zeroes
256 		 * thus the actual strlen of buf
257 		 * may be less than len
258 		 */
259 		return buf;
260 	}
261 
262 	free(buf);
263 	return NULL;
264 }
265 
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269 	unsigned long *set;
270 	u64 size, *p;
271 	int i, ret;
272 
273 	ret = do_read_u64(ff, &size);
274 	if (ret)
275 		return ret;
276 
277 	set = bitmap_alloc(size);
278 	if (!set)
279 		return -ENOMEM;
280 
281 	p = (u64 *) set;
282 
283 	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 		ret = do_read_u64(ff, p + i);
285 		if (ret < 0) {
286 			free(set);
287 			return ret;
288 		}
289 	}
290 
291 	*pset  = set;
292 	*psize = size;
293 	return 0;
294 }
295 
296 static int write_tracing_data(struct feat_fd *ff,
297 			      struct evlist *evlist)
298 {
299 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 		return -1;
301 
302 	return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304 
305 static int write_build_id(struct feat_fd *ff,
306 			  struct evlist *evlist __maybe_unused)
307 {
308 	struct perf_session *session;
309 	int err;
310 
311 	session = container_of(ff->ph, struct perf_session, header);
312 
313 	if (!perf_session__read_build_ids(session, true))
314 		return -1;
315 
316 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 		return -1;
318 
319 	err = perf_session__write_buildid_table(session, ff);
320 	if (err < 0) {
321 		pr_debug("failed to write buildid table\n");
322 		return err;
323 	}
324 	perf_session__cache_build_ids(session);
325 
326 	return 0;
327 }
328 
329 static int write_hostname(struct feat_fd *ff,
330 			  struct evlist *evlist __maybe_unused)
331 {
332 	struct utsname uts;
333 	int ret;
334 
335 	ret = uname(&uts);
336 	if (ret < 0)
337 		return -1;
338 
339 	return do_write_string(ff, uts.nodename);
340 }
341 
342 static int write_osrelease(struct feat_fd *ff,
343 			   struct evlist *evlist __maybe_unused)
344 {
345 	struct utsname uts;
346 	int ret;
347 
348 	ret = uname(&uts);
349 	if (ret < 0)
350 		return -1;
351 
352 	return do_write_string(ff, uts.release);
353 }
354 
355 static int write_arch(struct feat_fd *ff,
356 		      struct evlist *evlist __maybe_unused)
357 {
358 	struct utsname uts;
359 	int ret;
360 
361 	ret = uname(&uts);
362 	if (ret < 0)
363 		return -1;
364 
365 	return do_write_string(ff, uts.machine);
366 }
367 
368 static int write_version(struct feat_fd *ff,
369 			 struct evlist *evlist __maybe_unused)
370 {
371 	return do_write_string(ff, perf_version_string);
372 }
373 
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376 	FILE *file;
377 	char *buf = NULL;
378 	char *s, *p;
379 	const char *search = cpuinfo_proc;
380 	size_t len = 0;
381 	int ret = -1;
382 
383 	if (!search)
384 		return -1;
385 
386 	file = fopen("/proc/cpuinfo", "r");
387 	if (!file)
388 		return -1;
389 
390 	while (getline(&buf, &len, file) > 0) {
391 		ret = strncmp(buf, search, strlen(search));
392 		if (!ret)
393 			break;
394 	}
395 
396 	if (ret) {
397 		ret = -1;
398 		goto done;
399 	}
400 
401 	s = buf;
402 
403 	p = strchr(buf, ':');
404 	if (p && *(p+1) == ' ' && *(p+2))
405 		s = p + 2;
406 	p = strchr(s, '\n');
407 	if (p)
408 		*p = '\0';
409 
410 	/* squash extra space characters (branding string) */
411 	p = s;
412 	while (*p) {
413 		if (isspace(*p)) {
414 			char *r = p + 1;
415 			char *q = skip_spaces(r);
416 			*p = ' ';
417 			if (q != (p+1))
418 				while ((*r++ = *q++));
419 		}
420 		p++;
421 	}
422 	ret = do_write_string(ff, s);
423 done:
424 	free(buf);
425 	fclose(file);
426 	return ret;
427 }
428 
429 static int write_cpudesc(struct feat_fd *ff,
430 		       struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC	{ "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC	{ "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC	{ "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC	{ "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC	{ "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC	{ "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC	{ "core ID", }
446 #else
447 #define CPUINFO_PROC	{ "model name", }
448 #endif
449 	const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451 	unsigned int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 		int ret;
455 		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 		if (ret >= 0)
457 			return ret;
458 	}
459 	return -1;
460 }
461 
462 
463 static int write_nrcpus(struct feat_fd *ff,
464 			struct evlist *evlist __maybe_unused)
465 {
466 	long nr;
467 	u32 nrc, nra;
468 	int ret;
469 
470 	nrc = cpu__max_present_cpu();
471 
472 	nr = sysconf(_SC_NPROCESSORS_ONLN);
473 	if (nr < 0)
474 		return -1;
475 
476 	nra = (u32)(nr & UINT_MAX);
477 
478 	ret = do_write(ff, &nrc, sizeof(nrc));
479 	if (ret < 0)
480 		return ret;
481 
482 	return do_write(ff, &nra, sizeof(nra));
483 }
484 
485 static int write_event_desc(struct feat_fd *ff,
486 			    struct evlist *evlist)
487 {
488 	struct evsel *evsel;
489 	u32 nre, nri, sz;
490 	int ret;
491 
492 	nre = evlist->core.nr_entries;
493 
494 	/*
495 	 * write number of events
496 	 */
497 	ret = do_write(ff, &nre, sizeof(nre));
498 	if (ret < 0)
499 		return ret;
500 
501 	/*
502 	 * size of perf_event_attr struct
503 	 */
504 	sz = (u32)sizeof(evsel->core.attr);
505 	ret = do_write(ff, &sz, sizeof(sz));
506 	if (ret < 0)
507 		return ret;
508 
509 	evlist__for_each_entry(evlist, evsel) {
510 		ret = do_write(ff, &evsel->core.attr, sz);
511 		if (ret < 0)
512 			return ret;
513 		/*
514 		 * write number of unique id per event
515 		 * there is one id per instance of an event
516 		 *
517 		 * copy into an nri to be independent of the
518 		 * type of ids,
519 		 */
520 		nri = evsel->core.ids;
521 		ret = do_write(ff, &nri, sizeof(nri));
522 		if (ret < 0)
523 			return ret;
524 
525 		/*
526 		 * write event string as passed on cmdline
527 		 */
528 		ret = do_write_string(ff, perf_evsel__name(evsel));
529 		if (ret < 0)
530 			return ret;
531 		/*
532 		 * write unique ids for this event
533 		 */
534 		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 		if (ret < 0)
536 			return ret;
537 	}
538 	return 0;
539 }
540 
541 static int write_cmdline(struct feat_fd *ff,
542 			 struct evlist *evlist __maybe_unused)
543 {
544 	char pbuf[MAXPATHLEN], *buf;
545 	int i, ret, n;
546 
547 	/* actual path to perf binary */
548 	buf = perf_exe(pbuf, MAXPATHLEN);
549 
550 	/* account for binary path */
551 	n = perf_env.nr_cmdline + 1;
552 
553 	ret = do_write(ff, &n, sizeof(n));
554 	if (ret < 0)
555 		return ret;
556 
557 	ret = do_write_string(ff, buf);
558 	if (ret < 0)
559 		return ret;
560 
561 	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 		if (ret < 0)
564 			return ret;
565 	}
566 	return 0;
567 }
568 
569 
570 static int write_cpu_topology(struct feat_fd *ff,
571 			      struct evlist *evlist __maybe_unused)
572 {
573 	struct cpu_topology *tp;
574 	u32 i;
575 	int ret, j;
576 
577 	tp = cpu_topology__new();
578 	if (!tp)
579 		return -1;
580 
581 	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 	if (ret < 0)
583 		goto done;
584 
585 	for (i = 0; i < tp->core_sib; i++) {
586 		ret = do_write_string(ff, tp->core_siblings[i]);
587 		if (ret < 0)
588 			goto done;
589 	}
590 	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 	if (ret < 0)
592 		goto done;
593 
594 	for (i = 0; i < tp->thread_sib; i++) {
595 		ret = do_write_string(ff, tp->thread_siblings[i]);
596 		if (ret < 0)
597 			break;
598 	}
599 
600 	ret = perf_env__read_cpu_topology_map(&perf_env);
601 	if (ret < 0)
602 		goto done;
603 
604 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 		ret = do_write(ff, &perf_env.cpu[j].core_id,
606 			       sizeof(perf_env.cpu[j].core_id));
607 		if (ret < 0)
608 			return ret;
609 		ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 			       sizeof(perf_env.cpu[j].socket_id));
611 		if (ret < 0)
612 			return ret;
613 	}
614 
615 	if (!tp->die_sib)
616 		goto done;
617 
618 	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 	if (ret < 0)
620 		goto done;
621 
622 	for (i = 0; i < tp->die_sib; i++) {
623 		ret = do_write_string(ff, tp->die_siblings[i]);
624 		if (ret < 0)
625 			goto done;
626 	}
627 
628 	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 		ret = do_write(ff, &perf_env.cpu[j].die_id,
630 			       sizeof(perf_env.cpu[j].die_id));
631 		if (ret < 0)
632 			return ret;
633 	}
634 
635 done:
636 	cpu_topology__delete(tp);
637 	return ret;
638 }
639 
640 
641 
642 static int write_total_mem(struct feat_fd *ff,
643 			   struct evlist *evlist __maybe_unused)
644 {
645 	char *buf = NULL;
646 	FILE *fp;
647 	size_t len = 0;
648 	int ret = -1, n;
649 	uint64_t mem;
650 
651 	fp = fopen("/proc/meminfo", "r");
652 	if (!fp)
653 		return -1;
654 
655 	while (getline(&buf, &len, fp) > 0) {
656 		ret = strncmp(buf, "MemTotal:", 9);
657 		if (!ret)
658 			break;
659 	}
660 	if (!ret) {
661 		n = sscanf(buf, "%*s %"PRIu64, &mem);
662 		if (n == 1)
663 			ret = do_write(ff, &mem, sizeof(mem));
664 	} else
665 		ret = -1;
666 	free(buf);
667 	fclose(fp);
668 	return ret;
669 }
670 
671 static int write_numa_topology(struct feat_fd *ff,
672 			       struct evlist *evlist __maybe_unused)
673 {
674 	struct numa_topology *tp;
675 	int ret = -1;
676 	u32 i;
677 
678 	tp = numa_topology__new();
679 	if (!tp)
680 		return -ENOMEM;
681 
682 	ret = do_write(ff, &tp->nr, sizeof(u32));
683 	if (ret < 0)
684 		goto err;
685 
686 	for (i = 0; i < tp->nr; i++) {
687 		struct numa_topology_node *n = &tp->nodes[i];
688 
689 		ret = do_write(ff, &n->node, sizeof(u32));
690 		if (ret < 0)
691 			goto err;
692 
693 		ret = do_write(ff, &n->mem_total, sizeof(u64));
694 		if (ret)
695 			goto err;
696 
697 		ret = do_write(ff, &n->mem_free, sizeof(u64));
698 		if (ret)
699 			goto err;
700 
701 		ret = do_write_string(ff, n->cpus);
702 		if (ret < 0)
703 			goto err;
704 	}
705 
706 	ret = 0;
707 
708 err:
709 	numa_topology__delete(tp);
710 	return ret;
711 }
712 
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *	u32	pmu_num;
718  *	struct pmu_map {
719  *		u32	type;
720  *		char	name[];
721  *	}[pmu_num];
722  * };
723  */
724 
725 static int write_pmu_mappings(struct feat_fd *ff,
726 			      struct evlist *evlist __maybe_unused)
727 {
728 	struct perf_pmu *pmu = NULL;
729 	u32 pmu_num = 0;
730 	int ret;
731 
732 	/*
733 	 * Do a first pass to count number of pmu to avoid lseek so this
734 	 * works in pipe mode as well.
735 	 */
736 	while ((pmu = perf_pmu__scan(pmu))) {
737 		if (!pmu->name)
738 			continue;
739 		pmu_num++;
740 	}
741 
742 	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 	if (ret < 0)
744 		return ret;
745 
746 	while ((pmu = perf_pmu__scan(pmu))) {
747 		if (!pmu->name)
748 			continue;
749 
750 		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 		if (ret < 0)
752 			return ret;
753 
754 		ret = do_write_string(ff, pmu->name);
755 		if (ret < 0)
756 			return ret;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *	u32	nr_groups;
767  *	struct group_desc {
768  *		char	name[];
769  *		u32	leader_idx;
770  *		u32	nr_members;
771  *	}[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775 			    struct evlist *evlist)
776 {
777 	u32 nr_groups = evlist->nr_groups;
778 	struct evsel *evsel;
779 	int ret;
780 
781 	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 	if (ret < 0)
783 		return ret;
784 
785 	evlist__for_each_entry(evlist, evsel) {
786 		if (perf_evsel__is_group_leader(evsel) &&
787 		    evsel->core.nr_members > 1) {
788 			const char *name = evsel->group_name ?: "{anon_group}";
789 			u32 leader_idx = evsel->idx;
790 			u32 nr_members = evsel->core.nr_members;
791 
792 			ret = do_write_string(ff, name);
793 			if (ret < 0)
794 				return ret;
795 
796 			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 			if (ret < 0)
798 				return ret;
799 
800 			ret = do_write(ff, &nr_members, sizeof(nr_members));
801 			if (ret < 0)
802 				return ret;
803 		}
804 	}
805 	return 0;
806 }
807 
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816 	return NULL;
817 }
818 
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825 	regex_t re;
826 	regmatch_t pmatch[1];
827 	int match;
828 
829 	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 		/* Warn unable to generate match particular string. */
831 		pr_info("Invalid regular expression %s\n", mapcpuid);
832 		return 1;
833 	}
834 
835 	match = !regexec(&re, cpuid, 1, pmatch, 0);
836 	regfree(&re);
837 	if (match) {
838 		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839 
840 		/* Verify the entire string matched. */
841 		if (match_len == strlen(cpuid))
842 			return 0;
843 	}
844 	return 1;
845 }
846 
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853 	return -1;
854 }
855 
856 static int write_cpuid(struct feat_fd *ff,
857 		       struct evlist *evlist __maybe_unused)
858 {
859 	char buffer[64];
860 	int ret;
861 
862 	ret = get_cpuid(buffer, sizeof(buffer));
863 	if (ret)
864 		return -1;
865 
866 	return do_write_string(ff, buffer);
867 }
868 
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 			      struct evlist *evlist __maybe_unused)
871 {
872 	return 0;
873 }
874 
875 static int write_auxtrace(struct feat_fd *ff,
876 			  struct evlist *evlist __maybe_unused)
877 {
878 	struct perf_session *session;
879 	int err;
880 
881 	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 		return -1;
883 
884 	session = container_of(ff->ph, struct perf_session, header);
885 
886 	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 	if (err < 0)
888 		pr_err("Failed to write auxtrace index\n");
889 	return err;
890 }
891 
892 static int write_clockid(struct feat_fd *ff,
893 			 struct evlist *evlist __maybe_unused)
894 {
895 	return do_write(ff, &ff->ph->env.clockid_res_ns,
896 			sizeof(ff->ph->env.clockid_res_ns));
897 }
898 
899 static int write_dir_format(struct feat_fd *ff,
900 			    struct evlist *evlist __maybe_unused)
901 {
902 	struct perf_session *session;
903 	struct perf_data *data;
904 
905 	session = container_of(ff->ph, struct perf_session, header);
906 	data = session->data;
907 
908 	if (WARN_ON(!perf_data__is_dir(data)))
909 		return -1;
910 
911 	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913 
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916 			       struct evlist *evlist __maybe_unused)
917 {
918 	struct perf_env *env = &ff->ph->env;
919 	struct rb_root *root;
920 	struct rb_node *next;
921 	int ret;
922 
923 	down_read(&env->bpf_progs.lock);
924 
925 	ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 		       sizeof(env->bpf_progs.infos_cnt));
927 	if (ret < 0)
928 		goto out;
929 
930 	root = &env->bpf_progs.infos;
931 	next = rb_first(root);
932 	while (next) {
933 		struct bpf_prog_info_node *node;
934 		size_t len;
935 
936 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 		next = rb_next(&node->rb_node);
938 		len = sizeof(struct bpf_prog_info_linear) +
939 			node->info_linear->data_len;
940 
941 		/* before writing to file, translate address to offset */
942 		bpf_program__bpil_addr_to_offs(node->info_linear);
943 		ret = do_write(ff, node->info_linear, len);
944 		/*
945 		 * translate back to address even when do_write() fails,
946 		 * so that this function never changes the data.
947 		 */
948 		bpf_program__bpil_offs_to_addr(node->info_linear);
949 		if (ret < 0)
950 			goto out;
951 	}
952 out:
953 	up_read(&env->bpf_progs.lock);
954 	return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 			       struct evlist *evlist __maybe_unused)
959 {
960 	return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963 
964 static int write_bpf_btf(struct feat_fd *ff,
965 			 struct evlist *evlist __maybe_unused)
966 {
967 	struct perf_env *env = &ff->ph->env;
968 	struct rb_root *root;
969 	struct rb_node *next;
970 	int ret;
971 
972 	down_read(&env->bpf_progs.lock);
973 
974 	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 		       sizeof(env->bpf_progs.btfs_cnt));
976 
977 	if (ret < 0)
978 		goto out;
979 
980 	root = &env->bpf_progs.btfs;
981 	next = rb_first(root);
982 	while (next) {
983 		struct btf_node *node;
984 
985 		node = rb_entry(next, struct btf_node, rb_node);
986 		next = rb_next(&node->rb_node);
987 		ret = do_write(ff, &node->id,
988 			       sizeof(u32) * 2 + node->data_size);
989 		if (ret < 0)
990 			goto out;
991 	}
992 out:
993 	up_read(&env->bpf_progs.lock);
994 	return ret;
995 }
996 
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999 	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001 
1002 	return cache_a->level - cache_b->level;
1003 }
1004 
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007 	if (a->level != b->level)
1008 		return false;
1009 
1010 	if (a->line_size != b->line_size)
1011 		return false;
1012 
1013 	if (a->sets != b->sets)
1014 		return false;
1015 
1016 	if (a->ways != b->ways)
1017 		return false;
1018 
1019 	if (strcmp(a->type, b->type))
1020 		return false;
1021 
1022 	if (strcmp(a->size, b->size))
1023 		return false;
1024 
1025 	if (strcmp(a->map, b->map))
1026 		return false;
1027 
1028 	return true;
1029 }
1030 
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033 	char path[PATH_MAX], file[PATH_MAX];
1034 	struct stat st;
1035 	size_t len;
1036 
1037 	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039 
1040 	if (stat(file, &st))
1041 		return 1;
1042 
1043 	scnprintf(file, PATH_MAX, "%s/level", path);
1044 	if (sysfs__read_int(file, (int *) &cache->level))
1045 		return -1;
1046 
1047 	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 	if (sysfs__read_int(file, (int *) &cache->line_size))
1049 		return -1;
1050 
1051 	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 	if (sysfs__read_int(file, (int *) &cache->sets))
1053 		return -1;
1054 
1055 	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 	if (sysfs__read_int(file, (int *) &cache->ways))
1057 		return -1;
1058 
1059 	scnprintf(file, PATH_MAX, "%s/type", path);
1060 	if (sysfs__read_str(file, &cache->type, &len))
1061 		return -1;
1062 
1063 	cache->type[len] = 0;
1064 	cache->type = strim(cache->type);
1065 
1066 	scnprintf(file, PATH_MAX, "%s/size", path);
1067 	if (sysfs__read_str(file, &cache->size, &len)) {
1068 		zfree(&cache->type);
1069 		return -1;
1070 	}
1071 
1072 	cache->size[len] = 0;
1073 	cache->size = strim(cache->size);
1074 
1075 	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 	if (sysfs__read_str(file, &cache->map, &len)) {
1077 		zfree(&cache->size);
1078 		zfree(&cache->type);
1079 		return -1;
1080 	}
1081 
1082 	cache->map[len] = 0;
1083 	cache->map = strim(cache->map);
1084 	return 0;
1085 }
1086 
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089 	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091 
1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093 {
1094 	u32 i, cnt = 0;
1095 	long ncpus;
1096 	u32 nr, cpu;
1097 	u16 level;
1098 
1099 	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 	if (ncpus < 0)
1101 		return -1;
1102 
1103 	nr = (u32)(ncpus & UINT_MAX);
1104 
1105 	for (cpu = 0; cpu < nr; cpu++) {
1106 		for (level = 0; level < 10; level++) {
1107 			struct cpu_cache_level c;
1108 			int err;
1109 
1110 			err = cpu_cache_level__read(&c, cpu, level);
1111 			if (err < 0)
1112 				return err;
1113 
1114 			if (err == 1)
1115 				break;
1116 
1117 			for (i = 0; i < cnt; i++) {
1118 				if (cpu_cache_level__cmp(&c, &caches[i]))
1119 					break;
1120 			}
1121 
1122 			if (i == cnt)
1123 				caches[cnt++] = c;
1124 			else
1125 				cpu_cache_level__free(&c);
1126 
1127 			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 				goto out;
1129 		}
1130 	}
1131  out:
1132 	*cntp = cnt;
1133 	return 0;
1134 }
1135 
1136 #define MAX_CACHE_LVL 4
1137 
1138 static int write_cache(struct feat_fd *ff,
1139 		       struct evlist *evlist __maybe_unused)
1140 {
1141 	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 	struct cpu_cache_level caches[max_caches];
1143 	u32 cnt = 0, i, version = 1;
1144 	int ret;
1145 
1146 	ret = build_caches(caches, max_caches, &cnt);
1147 	if (ret)
1148 		goto out;
1149 
1150 	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151 
1152 	ret = do_write(ff, &version, sizeof(u32));
1153 	if (ret < 0)
1154 		goto out;
1155 
1156 	ret = do_write(ff, &cnt, sizeof(u32));
1157 	if (ret < 0)
1158 		goto out;
1159 
1160 	for (i = 0; i < cnt; i++) {
1161 		struct cpu_cache_level *c = &caches[i];
1162 
1163 		#define _W(v)					\
1164 			ret = do_write(ff, &c->v, sizeof(u32));	\
1165 			if (ret < 0)				\
1166 				goto out;
1167 
1168 		_W(level)
1169 		_W(line_size)
1170 		_W(sets)
1171 		_W(ways)
1172 		#undef _W
1173 
1174 		#define _W(v)						\
1175 			ret = do_write_string(ff, (const char *) c->v);	\
1176 			if (ret < 0)					\
1177 				goto out;
1178 
1179 		_W(type)
1180 		_W(size)
1181 		_W(map)
1182 		#undef _W
1183 	}
1184 
1185 out:
1186 	for (i = 0; i < cnt; i++)
1187 		cpu_cache_level__free(&caches[i]);
1188 	return ret;
1189 }
1190 
1191 static int write_stat(struct feat_fd *ff __maybe_unused,
1192 		      struct evlist *evlist __maybe_unused)
1193 {
1194 	return 0;
1195 }
1196 
1197 static int write_sample_time(struct feat_fd *ff,
1198 			     struct evlist *evlist)
1199 {
1200 	int ret;
1201 
1202 	ret = do_write(ff, &evlist->first_sample_time,
1203 		       sizeof(evlist->first_sample_time));
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	return do_write(ff, &evlist->last_sample_time,
1208 			sizeof(evlist->last_sample_time));
1209 }
1210 
1211 
1212 static int memory_node__read(struct memory_node *n, unsigned long idx)
1213 {
1214 	unsigned int phys, size = 0;
1215 	char path[PATH_MAX];
1216 	struct dirent *ent;
1217 	DIR *dir;
1218 
1219 #define for_each_memory(mem, dir)					\
1220 	while ((ent = readdir(dir)))					\
1221 		if (strcmp(ent->d_name, ".") &&				\
1222 		    strcmp(ent->d_name, "..") &&			\
1223 		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1224 
1225 	scnprintf(path, PATH_MAX,
1226 		  "%s/devices/system/node/node%lu",
1227 		  sysfs__mountpoint(), idx);
1228 
1229 	dir = opendir(path);
1230 	if (!dir) {
1231 		pr_warning("failed: cant' open memory sysfs data\n");
1232 		return -1;
1233 	}
1234 
1235 	for_each_memory(phys, dir) {
1236 		size = max(phys, size);
1237 	}
1238 
1239 	size++;
1240 
1241 	n->set = bitmap_alloc(size);
1242 	if (!n->set) {
1243 		closedir(dir);
1244 		return -ENOMEM;
1245 	}
1246 
1247 	n->node = idx;
1248 	n->size = size;
1249 
1250 	rewinddir(dir);
1251 
1252 	for_each_memory(phys, dir) {
1253 		set_bit(phys, n->set);
1254 	}
1255 
1256 	closedir(dir);
1257 	return 0;
1258 }
1259 
1260 static int memory_node__sort(const void *a, const void *b)
1261 {
1262 	const struct memory_node *na = a;
1263 	const struct memory_node *nb = b;
1264 
1265 	return na->node - nb->node;
1266 }
1267 
1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269 {
1270 	char path[PATH_MAX];
1271 	struct dirent *ent;
1272 	DIR *dir;
1273 	u64 cnt = 0;
1274 	int ret = 0;
1275 
1276 	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 		  sysfs__mountpoint());
1278 
1279 	dir = opendir(path);
1280 	if (!dir) {
1281 		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 			  __func__, path);
1283 		return -1;
1284 	}
1285 
1286 	while (!ret && (ent = readdir(dir))) {
1287 		unsigned int idx;
1288 		int r;
1289 
1290 		if (!strcmp(ent->d_name, ".") ||
1291 		    !strcmp(ent->d_name, ".."))
1292 			continue;
1293 
1294 		r = sscanf(ent->d_name, "node%u", &idx);
1295 		if (r != 1)
1296 			continue;
1297 
1298 		if (WARN_ONCE(cnt >= size,
1299 			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1300 			return -1;
1301 
1302 		ret = memory_node__read(&nodes[cnt++], idx);
1303 	}
1304 
1305 	*cntp = cnt;
1306 	closedir(dir);
1307 
1308 	if (!ret)
1309 		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1310 
1311 	return ret;
1312 }
1313 
1314 #define MAX_MEMORY_NODES 2000
1315 
1316 /*
1317  * The MEM_TOPOLOGY holds physical memory map for every
1318  * node in system. The format of data is as follows:
1319  *
1320  *  0 - version          | for future changes
1321  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1322  * 16 - count            | number of nodes
1323  *
1324  * For each node we store map of physical indexes for
1325  * each node:
1326  *
1327  * 32 - node id          | node index
1328  * 40 - size             | size of bitmap
1329  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1330  */
1331 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1332 			      struct evlist *evlist __maybe_unused)
1333 {
1334 	static struct memory_node nodes[MAX_MEMORY_NODES];
1335 	u64 bsize, version = 1, i, nr;
1336 	int ret;
1337 
1338 	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1339 			      (unsigned long long *) &bsize);
1340 	if (ret)
1341 		return ret;
1342 
1343 	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1344 	if (ret)
1345 		return ret;
1346 
1347 	ret = do_write(ff, &version, sizeof(version));
1348 	if (ret < 0)
1349 		goto out;
1350 
1351 	ret = do_write(ff, &bsize, sizeof(bsize));
1352 	if (ret < 0)
1353 		goto out;
1354 
1355 	ret = do_write(ff, &nr, sizeof(nr));
1356 	if (ret < 0)
1357 		goto out;
1358 
1359 	for (i = 0; i < nr; i++) {
1360 		struct memory_node *n = &nodes[i];
1361 
1362 		#define _W(v)						\
1363 			ret = do_write(ff, &n->v, sizeof(n->v));	\
1364 			if (ret < 0)					\
1365 				goto out;
1366 
1367 		_W(node)
1368 		_W(size)
1369 
1370 		#undef _W
1371 
1372 		ret = do_write_bitmap(ff, n->set, n->size);
1373 		if (ret < 0)
1374 			goto out;
1375 	}
1376 
1377 out:
1378 	return ret;
1379 }
1380 
1381 static int write_compressed(struct feat_fd *ff __maybe_unused,
1382 			    struct evlist *evlist __maybe_unused)
1383 {
1384 	int ret;
1385 
1386 	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1391 	if (ret)
1392 		return ret;
1393 
1394 	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1395 	if (ret)
1396 		return ret;
1397 
1398 	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1399 	if (ret)
1400 		return ret;
1401 
1402 	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1403 }
1404 
1405 static void print_hostname(struct feat_fd *ff, FILE *fp)
1406 {
1407 	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1408 }
1409 
1410 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1411 {
1412 	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1413 }
1414 
1415 static void print_arch(struct feat_fd *ff, FILE *fp)
1416 {
1417 	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1418 }
1419 
1420 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1421 {
1422 	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1423 }
1424 
1425 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1426 {
1427 	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1428 	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1429 }
1430 
1431 static void print_version(struct feat_fd *ff, FILE *fp)
1432 {
1433 	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1434 }
1435 
1436 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1437 {
1438 	int nr, i;
1439 
1440 	nr = ff->ph->env.nr_cmdline;
1441 
1442 	fprintf(fp, "# cmdline : ");
1443 
1444 	for (i = 0; i < nr; i++) {
1445 		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1446 		if (!argv_i) {
1447 			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1448 		} else {
1449 			char *mem = argv_i;
1450 			do {
1451 				char *quote = strchr(argv_i, '\'');
1452 				if (!quote)
1453 					break;
1454 				*quote++ = '\0';
1455 				fprintf(fp, "%s\\\'", argv_i);
1456 				argv_i = quote;
1457 			} while (1);
1458 			fprintf(fp, "%s ", argv_i);
1459 			free(mem);
1460 		}
1461 	}
1462 	fputc('\n', fp);
1463 }
1464 
1465 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1466 {
1467 	struct perf_header *ph = ff->ph;
1468 	int cpu_nr = ph->env.nr_cpus_avail;
1469 	int nr, i;
1470 	char *str;
1471 
1472 	nr = ph->env.nr_sibling_cores;
1473 	str = ph->env.sibling_cores;
1474 
1475 	for (i = 0; i < nr; i++) {
1476 		fprintf(fp, "# sibling sockets : %s\n", str);
1477 		str += strlen(str) + 1;
1478 	}
1479 
1480 	if (ph->env.nr_sibling_dies) {
1481 		nr = ph->env.nr_sibling_dies;
1482 		str = ph->env.sibling_dies;
1483 
1484 		for (i = 0; i < nr; i++) {
1485 			fprintf(fp, "# sibling dies    : %s\n", str);
1486 			str += strlen(str) + 1;
1487 		}
1488 	}
1489 
1490 	nr = ph->env.nr_sibling_threads;
1491 	str = ph->env.sibling_threads;
1492 
1493 	for (i = 0; i < nr; i++) {
1494 		fprintf(fp, "# sibling threads : %s\n", str);
1495 		str += strlen(str) + 1;
1496 	}
1497 
1498 	if (ph->env.nr_sibling_dies) {
1499 		if (ph->env.cpu != NULL) {
1500 			for (i = 0; i < cpu_nr; i++)
1501 				fprintf(fp, "# CPU %d: Core ID %d, "
1502 					    "Die ID %d, Socket ID %d\n",
1503 					    i, ph->env.cpu[i].core_id,
1504 					    ph->env.cpu[i].die_id,
1505 					    ph->env.cpu[i].socket_id);
1506 		} else
1507 			fprintf(fp, "# Core ID, Die ID and Socket ID "
1508 				    "information is not available\n");
1509 	} else {
1510 		if (ph->env.cpu != NULL) {
1511 			for (i = 0; i < cpu_nr; i++)
1512 				fprintf(fp, "# CPU %d: Core ID %d, "
1513 					    "Socket ID %d\n",
1514 					    i, ph->env.cpu[i].core_id,
1515 					    ph->env.cpu[i].socket_id);
1516 		} else
1517 			fprintf(fp, "# Core ID and Socket ID "
1518 				    "information is not available\n");
1519 	}
1520 }
1521 
1522 static void print_clockid(struct feat_fd *ff, FILE *fp)
1523 {
1524 	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1525 		ff->ph->env.clockid_res_ns * 1000);
1526 }
1527 
1528 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1529 {
1530 	struct perf_session *session;
1531 	struct perf_data *data;
1532 
1533 	session = container_of(ff->ph, struct perf_session, header);
1534 	data = session->data;
1535 
1536 	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1537 }
1538 
1539 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1540 {
1541 	struct perf_env *env = &ff->ph->env;
1542 	struct rb_root *root;
1543 	struct rb_node *next;
1544 
1545 	down_read(&env->bpf_progs.lock);
1546 
1547 	root = &env->bpf_progs.infos;
1548 	next = rb_first(root);
1549 
1550 	while (next) {
1551 		struct bpf_prog_info_node *node;
1552 
1553 		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1554 		next = rb_next(&node->rb_node);
1555 
1556 		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1557 					       env, fp);
1558 	}
1559 
1560 	up_read(&env->bpf_progs.lock);
1561 }
1562 
1563 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1564 {
1565 	struct perf_env *env = &ff->ph->env;
1566 	struct rb_root *root;
1567 	struct rb_node *next;
1568 
1569 	down_read(&env->bpf_progs.lock);
1570 
1571 	root = &env->bpf_progs.btfs;
1572 	next = rb_first(root);
1573 
1574 	while (next) {
1575 		struct btf_node *node;
1576 
1577 		node = rb_entry(next, struct btf_node, rb_node);
1578 		next = rb_next(&node->rb_node);
1579 		fprintf(fp, "# btf info of id %u\n", node->id);
1580 	}
1581 
1582 	up_read(&env->bpf_progs.lock);
1583 }
1584 
1585 static void free_event_desc(struct evsel *events)
1586 {
1587 	struct evsel *evsel;
1588 
1589 	if (!events)
1590 		return;
1591 
1592 	for (evsel = events; evsel->core.attr.size; evsel++) {
1593 		zfree(&evsel->name);
1594 		zfree(&evsel->core.id);
1595 	}
1596 
1597 	free(events);
1598 }
1599 
1600 static struct evsel *read_event_desc(struct feat_fd *ff)
1601 {
1602 	struct evsel *evsel, *events = NULL;
1603 	u64 *id;
1604 	void *buf = NULL;
1605 	u32 nre, sz, nr, i, j;
1606 	size_t msz;
1607 
1608 	/* number of events */
1609 	if (do_read_u32(ff, &nre))
1610 		goto error;
1611 
1612 	if (do_read_u32(ff, &sz))
1613 		goto error;
1614 
1615 	/* buffer to hold on file attr struct */
1616 	buf = malloc(sz);
1617 	if (!buf)
1618 		goto error;
1619 
1620 	/* the last event terminates with evsel->core.attr.size == 0: */
1621 	events = calloc(nre + 1, sizeof(*events));
1622 	if (!events)
1623 		goto error;
1624 
1625 	msz = sizeof(evsel->core.attr);
1626 	if (sz < msz)
1627 		msz = sz;
1628 
1629 	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1630 		evsel->idx = i;
1631 
1632 		/*
1633 		 * must read entire on-file attr struct to
1634 		 * sync up with layout.
1635 		 */
1636 		if (__do_read(ff, buf, sz))
1637 			goto error;
1638 
1639 		if (ff->ph->needs_swap)
1640 			perf_event__attr_swap(buf);
1641 
1642 		memcpy(&evsel->core.attr, buf, msz);
1643 
1644 		if (do_read_u32(ff, &nr))
1645 			goto error;
1646 
1647 		if (ff->ph->needs_swap)
1648 			evsel->needs_swap = true;
1649 
1650 		evsel->name = do_read_string(ff);
1651 		if (!evsel->name)
1652 			goto error;
1653 
1654 		if (!nr)
1655 			continue;
1656 
1657 		id = calloc(nr, sizeof(*id));
1658 		if (!id)
1659 			goto error;
1660 		evsel->core.ids = nr;
1661 		evsel->core.id = id;
1662 
1663 		for (j = 0 ; j < nr; j++) {
1664 			if (do_read_u64(ff, id))
1665 				goto error;
1666 			id++;
1667 		}
1668 	}
1669 out:
1670 	free(buf);
1671 	return events;
1672 error:
1673 	free_event_desc(events);
1674 	events = NULL;
1675 	goto out;
1676 }
1677 
1678 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1679 				void *priv __maybe_unused)
1680 {
1681 	return fprintf(fp, ", %s = %s", name, val);
1682 }
1683 
1684 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1685 {
1686 	struct evsel *evsel, *events;
1687 	u32 j;
1688 	u64 *id;
1689 
1690 	if (ff->events)
1691 		events = ff->events;
1692 	else
1693 		events = read_event_desc(ff);
1694 
1695 	if (!events) {
1696 		fprintf(fp, "# event desc: not available or unable to read\n");
1697 		return;
1698 	}
1699 
1700 	for (evsel = events; evsel->core.attr.size; evsel++) {
1701 		fprintf(fp, "# event : name = %s, ", evsel->name);
1702 
1703 		if (evsel->core.ids) {
1704 			fprintf(fp, ", id = {");
1705 			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1706 				if (j)
1707 					fputc(',', fp);
1708 				fprintf(fp, " %"PRIu64, *id);
1709 			}
1710 			fprintf(fp, " }");
1711 		}
1712 
1713 		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1714 
1715 		fputc('\n', fp);
1716 	}
1717 
1718 	free_event_desc(events);
1719 	ff->events = NULL;
1720 }
1721 
1722 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1723 {
1724 	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1725 }
1726 
1727 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1728 {
1729 	int i;
1730 	struct numa_node *n;
1731 
1732 	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1733 		n = &ff->ph->env.numa_nodes[i];
1734 
1735 		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1736 			    " free = %"PRIu64" kB\n",
1737 			n->node, n->mem_total, n->mem_free);
1738 
1739 		fprintf(fp, "# node%u cpu list : ", n->node);
1740 		cpu_map__fprintf(n->map, fp);
1741 	}
1742 }
1743 
1744 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1745 {
1746 	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1747 }
1748 
1749 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1750 {
1751 	fprintf(fp, "# contains samples with branch stack\n");
1752 }
1753 
1754 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1755 {
1756 	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1757 }
1758 
1759 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1760 {
1761 	fprintf(fp, "# contains stat data\n");
1762 }
1763 
1764 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1765 {
1766 	int i;
1767 
1768 	fprintf(fp, "# CPU cache info:\n");
1769 	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1770 		fprintf(fp, "#  ");
1771 		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1772 	}
1773 }
1774 
1775 static void print_compressed(struct feat_fd *ff, FILE *fp)
1776 {
1777 	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1778 		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1779 		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1780 }
1781 
1782 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1783 {
1784 	const char *delimiter = "# pmu mappings: ";
1785 	char *str, *tmp;
1786 	u32 pmu_num;
1787 	u32 type;
1788 
1789 	pmu_num = ff->ph->env.nr_pmu_mappings;
1790 	if (!pmu_num) {
1791 		fprintf(fp, "# pmu mappings: not available\n");
1792 		return;
1793 	}
1794 
1795 	str = ff->ph->env.pmu_mappings;
1796 
1797 	while (pmu_num) {
1798 		type = strtoul(str, &tmp, 0);
1799 		if (*tmp != ':')
1800 			goto error;
1801 
1802 		str = tmp + 1;
1803 		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1804 
1805 		delimiter = ", ";
1806 		str += strlen(str) + 1;
1807 		pmu_num--;
1808 	}
1809 
1810 	fprintf(fp, "\n");
1811 
1812 	if (!pmu_num)
1813 		return;
1814 error:
1815 	fprintf(fp, "# pmu mappings: unable to read\n");
1816 }
1817 
1818 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1819 {
1820 	struct perf_session *session;
1821 	struct evsel *evsel;
1822 	u32 nr = 0;
1823 
1824 	session = container_of(ff->ph, struct perf_session, header);
1825 
1826 	evlist__for_each_entry(session->evlist, evsel) {
1827 		if (perf_evsel__is_group_leader(evsel) &&
1828 		    evsel->core.nr_members > 1) {
1829 			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1830 				perf_evsel__name(evsel));
1831 
1832 			nr = evsel->core.nr_members - 1;
1833 		} else if (nr) {
1834 			fprintf(fp, ",%s", perf_evsel__name(evsel));
1835 
1836 			if (--nr == 0)
1837 				fprintf(fp, "}\n");
1838 		}
1839 	}
1840 }
1841 
1842 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1843 {
1844 	struct perf_session *session;
1845 	char time_buf[32];
1846 	double d;
1847 
1848 	session = container_of(ff->ph, struct perf_session, header);
1849 
1850 	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1851 				  time_buf, sizeof(time_buf));
1852 	fprintf(fp, "# time of first sample : %s\n", time_buf);
1853 
1854 	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1855 				  time_buf, sizeof(time_buf));
1856 	fprintf(fp, "# time of last sample : %s\n", time_buf);
1857 
1858 	d = (double)(session->evlist->last_sample_time -
1859 		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1860 
1861 	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1862 }
1863 
1864 static void memory_node__fprintf(struct memory_node *n,
1865 				 unsigned long long bsize, FILE *fp)
1866 {
1867 	char buf_map[100], buf_size[50];
1868 	unsigned long long size;
1869 
1870 	size = bsize * bitmap_weight(n->set, n->size);
1871 	unit_number__scnprintf(buf_size, 50, size);
1872 
1873 	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1874 	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1875 }
1876 
1877 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1878 {
1879 	struct memory_node *nodes;
1880 	int i, nr;
1881 
1882 	nodes = ff->ph->env.memory_nodes;
1883 	nr    = ff->ph->env.nr_memory_nodes;
1884 
1885 	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1886 		nr, ff->ph->env.memory_bsize);
1887 
1888 	for (i = 0; i < nr; i++) {
1889 		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1890 	}
1891 }
1892 
1893 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1894 				    char *filename,
1895 				    struct perf_session *session)
1896 {
1897 	int err = -1;
1898 	struct machine *machine;
1899 	u16 cpumode;
1900 	struct dso *dso;
1901 	enum dso_kernel_type dso_type;
1902 
1903 	machine = perf_session__findnew_machine(session, bev->pid);
1904 	if (!machine)
1905 		goto out;
1906 
1907 	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1908 
1909 	switch (cpumode) {
1910 	case PERF_RECORD_MISC_KERNEL:
1911 		dso_type = DSO_TYPE_KERNEL;
1912 		break;
1913 	case PERF_RECORD_MISC_GUEST_KERNEL:
1914 		dso_type = DSO_TYPE_GUEST_KERNEL;
1915 		break;
1916 	case PERF_RECORD_MISC_USER:
1917 	case PERF_RECORD_MISC_GUEST_USER:
1918 		dso_type = DSO_TYPE_USER;
1919 		break;
1920 	default:
1921 		goto out;
1922 	}
1923 
1924 	dso = machine__findnew_dso(machine, filename);
1925 	if (dso != NULL) {
1926 		char sbuild_id[SBUILD_ID_SIZE];
1927 
1928 		dso__set_build_id(dso, &bev->build_id);
1929 
1930 		if (dso_type != DSO_TYPE_USER) {
1931 			struct kmod_path m = { .name = NULL, };
1932 
1933 			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1934 				dso__set_module_info(dso, &m, machine);
1935 			else
1936 				dso->kernel = dso_type;
1937 
1938 			free(m.name);
1939 		}
1940 
1941 		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1942 				  sbuild_id);
1943 		pr_debug("build id event received for %s: %s\n",
1944 			 dso->long_name, sbuild_id);
1945 		dso__put(dso);
1946 	}
1947 
1948 	err = 0;
1949 out:
1950 	return err;
1951 }
1952 
1953 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1954 						 int input, u64 offset, u64 size)
1955 {
1956 	struct perf_session *session = container_of(header, struct perf_session, header);
1957 	struct {
1958 		struct perf_event_header   header;
1959 		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1960 		char			   filename[0];
1961 	} old_bev;
1962 	struct perf_record_header_build_id bev;
1963 	char filename[PATH_MAX];
1964 	u64 limit = offset + size;
1965 
1966 	while (offset < limit) {
1967 		ssize_t len;
1968 
1969 		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1970 			return -1;
1971 
1972 		if (header->needs_swap)
1973 			perf_event_header__bswap(&old_bev.header);
1974 
1975 		len = old_bev.header.size - sizeof(old_bev);
1976 		if (readn(input, filename, len) != len)
1977 			return -1;
1978 
1979 		bev.header = old_bev.header;
1980 
1981 		/*
1982 		 * As the pid is the missing value, we need to fill
1983 		 * it properly. The header.misc value give us nice hint.
1984 		 */
1985 		bev.pid	= HOST_KERNEL_ID;
1986 		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1987 		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1988 			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1989 
1990 		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1991 		__event_process_build_id(&bev, filename, session);
1992 
1993 		offset += bev.header.size;
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static int perf_header__read_build_ids(struct perf_header *header,
2000 				       int input, u64 offset, u64 size)
2001 {
2002 	struct perf_session *session = container_of(header, struct perf_session, header);
2003 	struct perf_record_header_build_id bev;
2004 	char filename[PATH_MAX];
2005 	u64 limit = offset + size, orig_offset = offset;
2006 	int err = -1;
2007 
2008 	while (offset < limit) {
2009 		ssize_t len;
2010 
2011 		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2012 			goto out;
2013 
2014 		if (header->needs_swap)
2015 			perf_event_header__bswap(&bev.header);
2016 
2017 		len = bev.header.size - sizeof(bev);
2018 		if (readn(input, filename, len) != len)
2019 			goto out;
2020 		/*
2021 		 * The a1645ce1 changeset:
2022 		 *
2023 		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2024 		 *
2025 		 * Added a field to struct perf_record_header_build_id that broke the file
2026 		 * format.
2027 		 *
2028 		 * Since the kernel build-id is the first entry, process the
2029 		 * table using the old format if the well known
2030 		 * '[kernel.kallsyms]' string for the kernel build-id has the
2031 		 * first 4 characters chopped off (where the pid_t sits).
2032 		 */
2033 		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2034 			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2035 				return -1;
2036 			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2037 		}
2038 
2039 		__event_process_build_id(&bev, filename, session);
2040 
2041 		offset += bev.header.size;
2042 	}
2043 	err = 0;
2044 out:
2045 	return err;
2046 }
2047 
2048 /* Macro for features that simply need to read and store a string. */
2049 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2050 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2051 {\
2052 	ff->ph->env.__feat_env = do_read_string(ff); \
2053 	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2054 }
2055 
2056 FEAT_PROCESS_STR_FUN(hostname, hostname);
2057 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2058 FEAT_PROCESS_STR_FUN(version, version);
2059 FEAT_PROCESS_STR_FUN(arch, arch);
2060 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2061 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2062 
2063 static int process_tracing_data(struct feat_fd *ff, void *data)
2064 {
2065 	ssize_t ret = trace_report(ff->fd, data, false);
2066 
2067 	return ret < 0 ? -1 : 0;
2068 }
2069 
2070 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2071 {
2072 	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2073 		pr_debug("Failed to read buildids, continuing...\n");
2074 	return 0;
2075 }
2076 
2077 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2078 {
2079 	int ret;
2080 	u32 nr_cpus_avail, nr_cpus_online;
2081 
2082 	ret = do_read_u32(ff, &nr_cpus_avail);
2083 	if (ret)
2084 		return ret;
2085 
2086 	ret = do_read_u32(ff, &nr_cpus_online);
2087 	if (ret)
2088 		return ret;
2089 	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2090 	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2091 	return 0;
2092 }
2093 
2094 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2095 {
2096 	u64 total_mem;
2097 	int ret;
2098 
2099 	ret = do_read_u64(ff, &total_mem);
2100 	if (ret)
2101 		return -1;
2102 	ff->ph->env.total_mem = (unsigned long long)total_mem;
2103 	return 0;
2104 }
2105 
2106 static struct evsel *
2107 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2108 {
2109 	struct evsel *evsel;
2110 
2111 	evlist__for_each_entry(evlist, evsel) {
2112 		if (evsel->idx == idx)
2113 			return evsel;
2114 	}
2115 
2116 	return NULL;
2117 }
2118 
2119 static void
2120 perf_evlist__set_event_name(struct evlist *evlist,
2121 			    struct evsel *event)
2122 {
2123 	struct evsel *evsel;
2124 
2125 	if (!event->name)
2126 		return;
2127 
2128 	evsel = perf_evlist__find_by_index(evlist, event->idx);
2129 	if (!evsel)
2130 		return;
2131 
2132 	if (evsel->name)
2133 		return;
2134 
2135 	evsel->name = strdup(event->name);
2136 }
2137 
2138 static int
2139 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2140 {
2141 	struct perf_session *session;
2142 	struct evsel *evsel, *events = read_event_desc(ff);
2143 
2144 	if (!events)
2145 		return 0;
2146 
2147 	session = container_of(ff->ph, struct perf_session, header);
2148 
2149 	if (session->data->is_pipe) {
2150 		/* Save events for reading later by print_event_desc,
2151 		 * since they can't be read again in pipe mode. */
2152 		ff->events = events;
2153 	}
2154 
2155 	for (evsel = events; evsel->core.attr.size; evsel++)
2156 		perf_evlist__set_event_name(session->evlist, evsel);
2157 
2158 	if (!session->data->is_pipe)
2159 		free_event_desc(events);
2160 
2161 	return 0;
2162 }
2163 
2164 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2165 {
2166 	char *str, *cmdline = NULL, **argv = NULL;
2167 	u32 nr, i, len = 0;
2168 
2169 	if (do_read_u32(ff, &nr))
2170 		return -1;
2171 
2172 	ff->ph->env.nr_cmdline = nr;
2173 
2174 	cmdline = zalloc(ff->size + nr + 1);
2175 	if (!cmdline)
2176 		return -1;
2177 
2178 	argv = zalloc(sizeof(char *) * (nr + 1));
2179 	if (!argv)
2180 		goto error;
2181 
2182 	for (i = 0; i < nr; i++) {
2183 		str = do_read_string(ff);
2184 		if (!str)
2185 			goto error;
2186 
2187 		argv[i] = cmdline + len;
2188 		memcpy(argv[i], str, strlen(str) + 1);
2189 		len += strlen(str) + 1;
2190 		free(str);
2191 	}
2192 	ff->ph->env.cmdline = cmdline;
2193 	ff->ph->env.cmdline_argv = (const char **) argv;
2194 	return 0;
2195 
2196 error:
2197 	free(argv);
2198 	free(cmdline);
2199 	return -1;
2200 }
2201 
2202 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2203 {
2204 	u32 nr, i;
2205 	char *str;
2206 	struct strbuf sb;
2207 	int cpu_nr = ff->ph->env.nr_cpus_avail;
2208 	u64 size = 0;
2209 	struct perf_header *ph = ff->ph;
2210 	bool do_core_id_test = true;
2211 
2212 	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2213 	if (!ph->env.cpu)
2214 		return -1;
2215 
2216 	if (do_read_u32(ff, &nr))
2217 		goto free_cpu;
2218 
2219 	ph->env.nr_sibling_cores = nr;
2220 	size += sizeof(u32);
2221 	if (strbuf_init(&sb, 128) < 0)
2222 		goto free_cpu;
2223 
2224 	for (i = 0; i < nr; i++) {
2225 		str = do_read_string(ff);
2226 		if (!str)
2227 			goto error;
2228 
2229 		/* include a NULL character at the end */
2230 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2231 			goto error;
2232 		size += string_size(str);
2233 		free(str);
2234 	}
2235 	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2236 
2237 	if (do_read_u32(ff, &nr))
2238 		return -1;
2239 
2240 	ph->env.nr_sibling_threads = nr;
2241 	size += sizeof(u32);
2242 
2243 	for (i = 0; i < nr; i++) {
2244 		str = do_read_string(ff);
2245 		if (!str)
2246 			goto error;
2247 
2248 		/* include a NULL character at the end */
2249 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2250 			goto error;
2251 		size += string_size(str);
2252 		free(str);
2253 	}
2254 	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2255 
2256 	/*
2257 	 * The header may be from old perf,
2258 	 * which doesn't include core id and socket id information.
2259 	 */
2260 	if (ff->size <= size) {
2261 		zfree(&ph->env.cpu);
2262 		return 0;
2263 	}
2264 
2265 	/* On s390 the socket_id number is not related to the numbers of cpus.
2266 	 * The socket_id number might be higher than the numbers of cpus.
2267 	 * This depends on the configuration.
2268 	 * AArch64 is the same.
2269 	 */
2270 	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2271 			  || !strncmp(ph->env.arch, "aarch64", 7)))
2272 		do_core_id_test = false;
2273 
2274 	for (i = 0; i < (u32)cpu_nr; i++) {
2275 		if (do_read_u32(ff, &nr))
2276 			goto free_cpu;
2277 
2278 		ph->env.cpu[i].core_id = nr;
2279 		size += sizeof(u32);
2280 
2281 		if (do_read_u32(ff, &nr))
2282 			goto free_cpu;
2283 
2284 		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2285 			pr_debug("socket_id number is too big."
2286 				 "You may need to upgrade the perf tool.\n");
2287 			goto free_cpu;
2288 		}
2289 
2290 		ph->env.cpu[i].socket_id = nr;
2291 		size += sizeof(u32);
2292 	}
2293 
2294 	/*
2295 	 * The header may be from old perf,
2296 	 * which doesn't include die information.
2297 	 */
2298 	if (ff->size <= size)
2299 		return 0;
2300 
2301 	if (do_read_u32(ff, &nr))
2302 		return -1;
2303 
2304 	ph->env.nr_sibling_dies = nr;
2305 	size += sizeof(u32);
2306 
2307 	for (i = 0; i < nr; i++) {
2308 		str = do_read_string(ff);
2309 		if (!str)
2310 			goto error;
2311 
2312 		/* include a NULL character at the end */
2313 		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2314 			goto error;
2315 		size += string_size(str);
2316 		free(str);
2317 	}
2318 	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2319 
2320 	for (i = 0; i < (u32)cpu_nr; i++) {
2321 		if (do_read_u32(ff, &nr))
2322 			goto free_cpu;
2323 
2324 		ph->env.cpu[i].die_id = nr;
2325 	}
2326 
2327 	return 0;
2328 
2329 error:
2330 	strbuf_release(&sb);
2331 free_cpu:
2332 	zfree(&ph->env.cpu);
2333 	return -1;
2334 }
2335 
2336 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2337 {
2338 	struct numa_node *nodes, *n;
2339 	u32 nr, i;
2340 	char *str;
2341 
2342 	/* nr nodes */
2343 	if (do_read_u32(ff, &nr))
2344 		return -1;
2345 
2346 	nodes = zalloc(sizeof(*nodes) * nr);
2347 	if (!nodes)
2348 		return -ENOMEM;
2349 
2350 	for (i = 0; i < nr; i++) {
2351 		n = &nodes[i];
2352 
2353 		/* node number */
2354 		if (do_read_u32(ff, &n->node))
2355 			goto error;
2356 
2357 		if (do_read_u64(ff, &n->mem_total))
2358 			goto error;
2359 
2360 		if (do_read_u64(ff, &n->mem_free))
2361 			goto error;
2362 
2363 		str = do_read_string(ff);
2364 		if (!str)
2365 			goto error;
2366 
2367 		n->map = perf_cpu_map__new(str);
2368 		if (!n->map)
2369 			goto error;
2370 
2371 		free(str);
2372 	}
2373 	ff->ph->env.nr_numa_nodes = nr;
2374 	ff->ph->env.numa_nodes = nodes;
2375 	return 0;
2376 
2377 error:
2378 	free(nodes);
2379 	return -1;
2380 }
2381 
2382 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2383 {
2384 	char *name;
2385 	u32 pmu_num;
2386 	u32 type;
2387 	struct strbuf sb;
2388 
2389 	if (do_read_u32(ff, &pmu_num))
2390 		return -1;
2391 
2392 	if (!pmu_num) {
2393 		pr_debug("pmu mappings not available\n");
2394 		return 0;
2395 	}
2396 
2397 	ff->ph->env.nr_pmu_mappings = pmu_num;
2398 	if (strbuf_init(&sb, 128) < 0)
2399 		return -1;
2400 
2401 	while (pmu_num) {
2402 		if (do_read_u32(ff, &type))
2403 			goto error;
2404 
2405 		name = do_read_string(ff);
2406 		if (!name)
2407 			goto error;
2408 
2409 		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2410 			goto error;
2411 		/* include a NULL character at the end */
2412 		if (strbuf_add(&sb, "", 1) < 0)
2413 			goto error;
2414 
2415 		if (!strcmp(name, "msr"))
2416 			ff->ph->env.msr_pmu_type = type;
2417 
2418 		free(name);
2419 		pmu_num--;
2420 	}
2421 	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2422 	return 0;
2423 
2424 error:
2425 	strbuf_release(&sb);
2426 	return -1;
2427 }
2428 
2429 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2430 {
2431 	size_t ret = -1;
2432 	u32 i, nr, nr_groups;
2433 	struct perf_session *session;
2434 	struct evsel *evsel, *leader = NULL;
2435 	struct group_desc {
2436 		char *name;
2437 		u32 leader_idx;
2438 		u32 nr_members;
2439 	} *desc;
2440 
2441 	if (do_read_u32(ff, &nr_groups))
2442 		return -1;
2443 
2444 	ff->ph->env.nr_groups = nr_groups;
2445 	if (!nr_groups) {
2446 		pr_debug("group desc not available\n");
2447 		return 0;
2448 	}
2449 
2450 	desc = calloc(nr_groups, sizeof(*desc));
2451 	if (!desc)
2452 		return -1;
2453 
2454 	for (i = 0; i < nr_groups; i++) {
2455 		desc[i].name = do_read_string(ff);
2456 		if (!desc[i].name)
2457 			goto out_free;
2458 
2459 		if (do_read_u32(ff, &desc[i].leader_idx))
2460 			goto out_free;
2461 
2462 		if (do_read_u32(ff, &desc[i].nr_members))
2463 			goto out_free;
2464 	}
2465 
2466 	/*
2467 	 * Rebuild group relationship based on the group_desc
2468 	 */
2469 	session = container_of(ff->ph, struct perf_session, header);
2470 	session->evlist->nr_groups = nr_groups;
2471 
2472 	i = nr = 0;
2473 	evlist__for_each_entry(session->evlist, evsel) {
2474 		if (evsel->idx == (int) desc[i].leader_idx) {
2475 			evsel->leader = evsel;
2476 			/* {anon_group} is a dummy name */
2477 			if (strcmp(desc[i].name, "{anon_group}")) {
2478 				evsel->group_name = desc[i].name;
2479 				desc[i].name = NULL;
2480 			}
2481 			evsel->core.nr_members = desc[i].nr_members;
2482 
2483 			if (i >= nr_groups || nr > 0) {
2484 				pr_debug("invalid group desc\n");
2485 				goto out_free;
2486 			}
2487 
2488 			leader = evsel;
2489 			nr = evsel->core.nr_members - 1;
2490 			i++;
2491 		} else if (nr) {
2492 			/* This is a group member */
2493 			evsel->leader = leader;
2494 
2495 			nr--;
2496 		}
2497 	}
2498 
2499 	if (i != nr_groups || nr != 0) {
2500 		pr_debug("invalid group desc\n");
2501 		goto out_free;
2502 	}
2503 
2504 	ret = 0;
2505 out_free:
2506 	for (i = 0; i < nr_groups; i++)
2507 		zfree(&desc[i].name);
2508 	free(desc);
2509 
2510 	return ret;
2511 }
2512 
2513 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2514 {
2515 	struct perf_session *session;
2516 	int err;
2517 
2518 	session = container_of(ff->ph, struct perf_session, header);
2519 
2520 	err = auxtrace_index__process(ff->fd, ff->size, session,
2521 				      ff->ph->needs_swap);
2522 	if (err < 0)
2523 		pr_err("Failed to process auxtrace index\n");
2524 	return err;
2525 }
2526 
2527 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2528 {
2529 	struct cpu_cache_level *caches;
2530 	u32 cnt, i, version;
2531 
2532 	if (do_read_u32(ff, &version))
2533 		return -1;
2534 
2535 	if (version != 1)
2536 		return -1;
2537 
2538 	if (do_read_u32(ff, &cnt))
2539 		return -1;
2540 
2541 	caches = zalloc(sizeof(*caches) * cnt);
2542 	if (!caches)
2543 		return -1;
2544 
2545 	for (i = 0; i < cnt; i++) {
2546 		struct cpu_cache_level c;
2547 
2548 		#define _R(v)						\
2549 			if (do_read_u32(ff, &c.v))\
2550 				goto out_free_caches;			\
2551 
2552 		_R(level)
2553 		_R(line_size)
2554 		_R(sets)
2555 		_R(ways)
2556 		#undef _R
2557 
2558 		#define _R(v)					\
2559 			c.v = do_read_string(ff);		\
2560 			if (!c.v)				\
2561 				goto out_free_caches;
2562 
2563 		_R(type)
2564 		_R(size)
2565 		_R(map)
2566 		#undef _R
2567 
2568 		caches[i] = c;
2569 	}
2570 
2571 	ff->ph->env.caches = caches;
2572 	ff->ph->env.caches_cnt = cnt;
2573 	return 0;
2574 out_free_caches:
2575 	free(caches);
2576 	return -1;
2577 }
2578 
2579 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2580 {
2581 	struct perf_session *session;
2582 	u64 first_sample_time, last_sample_time;
2583 	int ret;
2584 
2585 	session = container_of(ff->ph, struct perf_session, header);
2586 
2587 	ret = do_read_u64(ff, &first_sample_time);
2588 	if (ret)
2589 		return -1;
2590 
2591 	ret = do_read_u64(ff, &last_sample_time);
2592 	if (ret)
2593 		return -1;
2594 
2595 	session->evlist->first_sample_time = first_sample_time;
2596 	session->evlist->last_sample_time = last_sample_time;
2597 	return 0;
2598 }
2599 
2600 static int process_mem_topology(struct feat_fd *ff,
2601 				void *data __maybe_unused)
2602 {
2603 	struct memory_node *nodes;
2604 	u64 version, i, nr, bsize;
2605 	int ret = -1;
2606 
2607 	if (do_read_u64(ff, &version))
2608 		return -1;
2609 
2610 	if (version != 1)
2611 		return -1;
2612 
2613 	if (do_read_u64(ff, &bsize))
2614 		return -1;
2615 
2616 	if (do_read_u64(ff, &nr))
2617 		return -1;
2618 
2619 	nodes = zalloc(sizeof(*nodes) * nr);
2620 	if (!nodes)
2621 		return -1;
2622 
2623 	for (i = 0; i < nr; i++) {
2624 		struct memory_node n;
2625 
2626 		#define _R(v)				\
2627 			if (do_read_u64(ff, &n.v))	\
2628 				goto out;		\
2629 
2630 		_R(node)
2631 		_R(size)
2632 
2633 		#undef _R
2634 
2635 		if (do_read_bitmap(ff, &n.set, &n.size))
2636 			goto out;
2637 
2638 		nodes[i] = n;
2639 	}
2640 
2641 	ff->ph->env.memory_bsize    = bsize;
2642 	ff->ph->env.memory_nodes    = nodes;
2643 	ff->ph->env.nr_memory_nodes = nr;
2644 	ret = 0;
2645 
2646 out:
2647 	if (ret)
2648 		free(nodes);
2649 	return ret;
2650 }
2651 
2652 static int process_clockid(struct feat_fd *ff,
2653 			   void *data __maybe_unused)
2654 {
2655 	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2656 		return -1;
2657 
2658 	return 0;
2659 }
2660 
2661 static int process_dir_format(struct feat_fd *ff,
2662 			      void *_data __maybe_unused)
2663 {
2664 	struct perf_session *session;
2665 	struct perf_data *data;
2666 
2667 	session = container_of(ff->ph, struct perf_session, header);
2668 	data = session->data;
2669 
2670 	if (WARN_ON(!perf_data__is_dir(data)))
2671 		return -1;
2672 
2673 	return do_read_u64(ff, &data->dir.version);
2674 }
2675 
2676 #ifdef HAVE_LIBBPF_SUPPORT
2677 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2678 {
2679 	struct bpf_prog_info_linear *info_linear;
2680 	struct bpf_prog_info_node *info_node;
2681 	struct perf_env *env = &ff->ph->env;
2682 	u32 count, i;
2683 	int err = -1;
2684 
2685 	if (ff->ph->needs_swap) {
2686 		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2687 		return 0;
2688 	}
2689 
2690 	if (do_read_u32(ff, &count))
2691 		return -1;
2692 
2693 	down_write(&env->bpf_progs.lock);
2694 
2695 	for (i = 0; i < count; ++i) {
2696 		u32 info_len, data_len;
2697 
2698 		info_linear = NULL;
2699 		info_node = NULL;
2700 		if (do_read_u32(ff, &info_len))
2701 			goto out;
2702 		if (do_read_u32(ff, &data_len))
2703 			goto out;
2704 
2705 		if (info_len > sizeof(struct bpf_prog_info)) {
2706 			pr_warning("detected invalid bpf_prog_info\n");
2707 			goto out;
2708 		}
2709 
2710 		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2711 				     data_len);
2712 		if (!info_linear)
2713 			goto out;
2714 		info_linear->info_len = sizeof(struct bpf_prog_info);
2715 		info_linear->data_len = data_len;
2716 		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2717 			goto out;
2718 		if (__do_read(ff, &info_linear->info, info_len))
2719 			goto out;
2720 		if (info_len < sizeof(struct bpf_prog_info))
2721 			memset(((void *)(&info_linear->info)) + info_len, 0,
2722 			       sizeof(struct bpf_prog_info) - info_len);
2723 
2724 		if (__do_read(ff, info_linear->data, data_len))
2725 			goto out;
2726 
2727 		info_node = malloc(sizeof(struct bpf_prog_info_node));
2728 		if (!info_node)
2729 			goto out;
2730 
2731 		/* after reading from file, translate offset to address */
2732 		bpf_program__bpil_offs_to_addr(info_linear);
2733 		info_node->info_linear = info_linear;
2734 		perf_env__insert_bpf_prog_info(env, info_node);
2735 	}
2736 
2737 	up_write(&env->bpf_progs.lock);
2738 	return 0;
2739 out:
2740 	free(info_linear);
2741 	free(info_node);
2742 	up_write(&env->bpf_progs.lock);
2743 	return err;
2744 }
2745 #else // HAVE_LIBBPF_SUPPORT
2746 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2747 {
2748 	return 0;
2749 }
2750 #endif // HAVE_LIBBPF_SUPPORT
2751 
2752 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2753 {
2754 	struct perf_env *env = &ff->ph->env;
2755 	struct btf_node *node = NULL;
2756 	u32 count, i;
2757 	int err = -1;
2758 
2759 	if (ff->ph->needs_swap) {
2760 		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2761 		return 0;
2762 	}
2763 
2764 	if (do_read_u32(ff, &count))
2765 		return -1;
2766 
2767 	down_write(&env->bpf_progs.lock);
2768 
2769 	for (i = 0; i < count; ++i) {
2770 		u32 id, data_size;
2771 
2772 		if (do_read_u32(ff, &id))
2773 			goto out;
2774 		if (do_read_u32(ff, &data_size))
2775 			goto out;
2776 
2777 		node = malloc(sizeof(struct btf_node) + data_size);
2778 		if (!node)
2779 			goto out;
2780 
2781 		node->id = id;
2782 		node->data_size = data_size;
2783 
2784 		if (__do_read(ff, node->data, data_size))
2785 			goto out;
2786 
2787 		perf_env__insert_btf(env, node);
2788 		node = NULL;
2789 	}
2790 
2791 	err = 0;
2792 out:
2793 	up_write(&env->bpf_progs.lock);
2794 	free(node);
2795 	return err;
2796 }
2797 
2798 static int process_compressed(struct feat_fd *ff,
2799 			      void *data __maybe_unused)
2800 {
2801 	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2802 		return -1;
2803 
2804 	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2805 		return -1;
2806 
2807 	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2808 		return -1;
2809 
2810 	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2811 		return -1;
2812 
2813 	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2814 		return -1;
2815 
2816 	return 0;
2817 }
2818 
2819 #define FEAT_OPR(n, func, __full_only) \
2820 	[HEADER_##n] = {					\
2821 		.name	    = __stringify(n),			\
2822 		.write	    = write_##func,			\
2823 		.print	    = print_##func,			\
2824 		.full_only  = __full_only,			\
2825 		.process    = process_##func,			\
2826 		.synthesize = true				\
2827 	}
2828 
2829 #define FEAT_OPN(n, func, __full_only) \
2830 	[HEADER_##n] = {					\
2831 		.name	    = __stringify(n),			\
2832 		.write	    = write_##func,			\
2833 		.print	    = print_##func,			\
2834 		.full_only  = __full_only,			\
2835 		.process    = process_##func			\
2836 	}
2837 
2838 /* feature_ops not implemented: */
2839 #define print_tracing_data	NULL
2840 #define print_build_id		NULL
2841 
2842 #define process_branch_stack	NULL
2843 #define process_stat		NULL
2844 
2845 // Only used in util/synthetic-events.c
2846 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2847 
2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2849 	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2850 	FEAT_OPN(BUILD_ID,	build_id,	false),
2851 	FEAT_OPR(HOSTNAME,	hostname,	false),
2852 	FEAT_OPR(OSRELEASE,	osrelease,	false),
2853 	FEAT_OPR(VERSION,	version,	false),
2854 	FEAT_OPR(ARCH,		arch,		false),
2855 	FEAT_OPR(NRCPUS,	nrcpus,		false),
2856 	FEAT_OPR(CPUDESC,	cpudesc,	false),
2857 	FEAT_OPR(CPUID,		cpuid,		false),
2858 	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2859 	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2860 	FEAT_OPR(CMDLINE,	cmdline,	false),
2861 	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2862 	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2863 	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2864 	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2865 	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2866 	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2867 	FEAT_OPN(STAT,		stat,		false),
2868 	FEAT_OPN(CACHE,		cache,		true),
2869 	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2870 	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2871 	FEAT_OPR(CLOCKID,	clockid,	false),
2872 	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
2873 	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2874 	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2875 	FEAT_OPR(COMPRESSED,	compressed,	false),
2876 };
2877 
2878 struct header_print_data {
2879 	FILE *fp;
2880 	bool full; /* extended list of headers */
2881 };
2882 
2883 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2884 					   struct perf_header *ph,
2885 					   int feat, int fd, void *data)
2886 {
2887 	struct header_print_data *hd = data;
2888 	struct feat_fd ff;
2889 
2890 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2891 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2892 				"%d, continuing...\n", section->offset, feat);
2893 		return 0;
2894 	}
2895 	if (feat >= HEADER_LAST_FEATURE) {
2896 		pr_warning("unknown feature %d\n", feat);
2897 		return 0;
2898 	}
2899 	if (!feat_ops[feat].print)
2900 		return 0;
2901 
2902 	ff = (struct  feat_fd) {
2903 		.fd = fd,
2904 		.ph = ph,
2905 	};
2906 
2907 	if (!feat_ops[feat].full_only || hd->full)
2908 		feat_ops[feat].print(&ff, hd->fp);
2909 	else
2910 		fprintf(hd->fp, "# %s info available, use -I to display\n",
2911 			feat_ops[feat].name);
2912 
2913 	return 0;
2914 }
2915 
2916 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2917 {
2918 	struct header_print_data hd;
2919 	struct perf_header *header = &session->header;
2920 	int fd = perf_data__fd(session->data);
2921 	struct stat st;
2922 	time_t stctime;
2923 	int ret, bit;
2924 
2925 	hd.fp = fp;
2926 	hd.full = full;
2927 
2928 	ret = fstat(fd, &st);
2929 	if (ret == -1)
2930 		return -1;
2931 
2932 	stctime = st.st_ctime;
2933 	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2934 
2935 	fprintf(fp, "# header version : %u\n", header->version);
2936 	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2937 	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2938 	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2939 
2940 	perf_header__process_sections(header, fd, &hd,
2941 				      perf_file_section__fprintf_info);
2942 
2943 	if (session->data->is_pipe)
2944 		return 0;
2945 
2946 	fprintf(fp, "# missing features: ");
2947 	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2948 		if (bit)
2949 			fprintf(fp, "%s ", feat_ops[bit].name);
2950 	}
2951 
2952 	fprintf(fp, "\n");
2953 	return 0;
2954 }
2955 
2956 static int do_write_feat(struct feat_fd *ff, int type,
2957 			 struct perf_file_section **p,
2958 			 struct evlist *evlist)
2959 {
2960 	int err;
2961 	int ret = 0;
2962 
2963 	if (perf_header__has_feat(ff->ph, type)) {
2964 		if (!feat_ops[type].write)
2965 			return -1;
2966 
2967 		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2968 			return -1;
2969 
2970 		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2971 
2972 		err = feat_ops[type].write(ff, evlist);
2973 		if (err < 0) {
2974 			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2975 
2976 			/* undo anything written */
2977 			lseek(ff->fd, (*p)->offset, SEEK_SET);
2978 
2979 			return -1;
2980 		}
2981 		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2982 		(*p)++;
2983 	}
2984 	return ret;
2985 }
2986 
2987 static int perf_header__adds_write(struct perf_header *header,
2988 				   struct evlist *evlist, int fd)
2989 {
2990 	int nr_sections;
2991 	struct feat_fd ff;
2992 	struct perf_file_section *feat_sec, *p;
2993 	int sec_size;
2994 	u64 sec_start;
2995 	int feat;
2996 	int err;
2997 
2998 	ff = (struct feat_fd){
2999 		.fd  = fd,
3000 		.ph = header,
3001 	};
3002 
3003 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3004 	if (!nr_sections)
3005 		return 0;
3006 
3007 	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3008 	if (feat_sec == NULL)
3009 		return -ENOMEM;
3010 
3011 	sec_size = sizeof(*feat_sec) * nr_sections;
3012 
3013 	sec_start = header->feat_offset;
3014 	lseek(fd, sec_start + sec_size, SEEK_SET);
3015 
3016 	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3017 		if (do_write_feat(&ff, feat, &p, evlist))
3018 			perf_header__clear_feat(header, feat);
3019 	}
3020 
3021 	lseek(fd, sec_start, SEEK_SET);
3022 	/*
3023 	 * may write more than needed due to dropped feature, but
3024 	 * this is okay, reader will skip the missing entries
3025 	 */
3026 	err = do_write(&ff, feat_sec, sec_size);
3027 	if (err < 0)
3028 		pr_debug("failed to write feature section\n");
3029 	free(feat_sec);
3030 	return err;
3031 }
3032 
3033 int perf_header__write_pipe(int fd)
3034 {
3035 	struct perf_pipe_file_header f_header;
3036 	struct feat_fd ff;
3037 	int err;
3038 
3039 	ff = (struct feat_fd){ .fd = fd };
3040 
3041 	f_header = (struct perf_pipe_file_header){
3042 		.magic	   = PERF_MAGIC,
3043 		.size	   = sizeof(f_header),
3044 	};
3045 
3046 	err = do_write(&ff, &f_header, sizeof(f_header));
3047 	if (err < 0) {
3048 		pr_debug("failed to write perf pipe header\n");
3049 		return err;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 int perf_session__write_header(struct perf_session *session,
3056 			       struct evlist *evlist,
3057 			       int fd, bool at_exit)
3058 {
3059 	struct perf_file_header f_header;
3060 	struct perf_file_attr   f_attr;
3061 	struct perf_header *header = &session->header;
3062 	struct evsel *evsel;
3063 	struct feat_fd ff;
3064 	u64 attr_offset;
3065 	int err;
3066 
3067 	ff = (struct feat_fd){ .fd = fd};
3068 	lseek(fd, sizeof(f_header), SEEK_SET);
3069 
3070 	evlist__for_each_entry(session->evlist, evsel) {
3071 		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3072 		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3073 		if (err < 0) {
3074 			pr_debug("failed to write perf header\n");
3075 			return err;
3076 		}
3077 	}
3078 
3079 	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3080 
3081 	evlist__for_each_entry(evlist, evsel) {
3082 		f_attr = (struct perf_file_attr){
3083 			.attr = evsel->core.attr,
3084 			.ids  = {
3085 				.offset = evsel->id_offset,
3086 				.size   = evsel->core.ids * sizeof(u64),
3087 			}
3088 		};
3089 		err = do_write(&ff, &f_attr, sizeof(f_attr));
3090 		if (err < 0) {
3091 			pr_debug("failed to write perf header attribute\n");
3092 			return err;
3093 		}
3094 	}
3095 
3096 	if (!header->data_offset)
3097 		header->data_offset = lseek(fd, 0, SEEK_CUR);
3098 	header->feat_offset = header->data_offset + header->data_size;
3099 
3100 	if (at_exit) {
3101 		err = perf_header__adds_write(header, evlist, fd);
3102 		if (err < 0)
3103 			return err;
3104 	}
3105 
3106 	f_header = (struct perf_file_header){
3107 		.magic	   = PERF_MAGIC,
3108 		.size	   = sizeof(f_header),
3109 		.attr_size = sizeof(f_attr),
3110 		.attrs = {
3111 			.offset = attr_offset,
3112 			.size   = evlist->core.nr_entries * sizeof(f_attr),
3113 		},
3114 		.data = {
3115 			.offset = header->data_offset,
3116 			.size	= header->data_size,
3117 		},
3118 		/* event_types is ignored, store zeros */
3119 	};
3120 
3121 	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3122 
3123 	lseek(fd, 0, SEEK_SET);
3124 	err = do_write(&ff, &f_header, sizeof(f_header));
3125 	if (err < 0) {
3126 		pr_debug("failed to write perf header\n");
3127 		return err;
3128 	}
3129 	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3130 
3131 	return 0;
3132 }
3133 
3134 static int perf_header__getbuffer64(struct perf_header *header,
3135 				    int fd, void *buf, size_t size)
3136 {
3137 	if (readn(fd, buf, size) <= 0)
3138 		return -1;
3139 
3140 	if (header->needs_swap)
3141 		mem_bswap_64(buf, size);
3142 
3143 	return 0;
3144 }
3145 
3146 int perf_header__process_sections(struct perf_header *header, int fd,
3147 				  void *data,
3148 				  int (*process)(struct perf_file_section *section,
3149 						 struct perf_header *ph,
3150 						 int feat, int fd, void *data))
3151 {
3152 	struct perf_file_section *feat_sec, *sec;
3153 	int nr_sections;
3154 	int sec_size;
3155 	int feat;
3156 	int err;
3157 
3158 	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3159 	if (!nr_sections)
3160 		return 0;
3161 
3162 	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3163 	if (!feat_sec)
3164 		return -1;
3165 
3166 	sec_size = sizeof(*feat_sec) * nr_sections;
3167 
3168 	lseek(fd, header->feat_offset, SEEK_SET);
3169 
3170 	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3171 	if (err < 0)
3172 		goto out_free;
3173 
3174 	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3175 		err = process(sec++, header, feat, fd, data);
3176 		if (err < 0)
3177 			goto out_free;
3178 	}
3179 	err = 0;
3180 out_free:
3181 	free(feat_sec);
3182 	return err;
3183 }
3184 
3185 static const int attr_file_abi_sizes[] = {
3186 	[0] = PERF_ATTR_SIZE_VER0,
3187 	[1] = PERF_ATTR_SIZE_VER1,
3188 	[2] = PERF_ATTR_SIZE_VER2,
3189 	[3] = PERF_ATTR_SIZE_VER3,
3190 	[4] = PERF_ATTR_SIZE_VER4,
3191 	0,
3192 };
3193 
3194 /*
3195  * In the legacy file format, the magic number is not used to encode endianness.
3196  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3197  * on ABI revisions, we need to try all combinations for all endianness to
3198  * detect the endianness.
3199  */
3200 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3201 {
3202 	uint64_t ref_size, attr_size;
3203 	int i;
3204 
3205 	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3206 		ref_size = attr_file_abi_sizes[i]
3207 			 + sizeof(struct perf_file_section);
3208 		if (hdr_sz != ref_size) {
3209 			attr_size = bswap_64(hdr_sz);
3210 			if (attr_size != ref_size)
3211 				continue;
3212 
3213 			ph->needs_swap = true;
3214 		}
3215 		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3216 			 i,
3217 			 ph->needs_swap);
3218 		return 0;
3219 	}
3220 	/* could not determine endianness */
3221 	return -1;
3222 }
3223 
3224 #define PERF_PIPE_HDR_VER0	16
3225 
3226 static const size_t attr_pipe_abi_sizes[] = {
3227 	[0] = PERF_PIPE_HDR_VER0,
3228 	0,
3229 };
3230 
3231 /*
3232  * In the legacy pipe format, there is an implicit assumption that endiannesss
3233  * between host recording the samples, and host parsing the samples is the
3234  * same. This is not always the case given that the pipe output may always be
3235  * redirected into a file and analyzed on a different machine with possibly a
3236  * different endianness and perf_event ABI revsions in the perf tool itself.
3237  */
3238 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3239 {
3240 	u64 attr_size;
3241 	int i;
3242 
3243 	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3244 		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3245 			attr_size = bswap_64(hdr_sz);
3246 			if (attr_size != hdr_sz)
3247 				continue;
3248 
3249 			ph->needs_swap = true;
3250 		}
3251 		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3252 		return 0;
3253 	}
3254 	return -1;
3255 }
3256 
3257 bool is_perf_magic(u64 magic)
3258 {
3259 	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3260 		|| magic == __perf_magic2
3261 		|| magic == __perf_magic2_sw)
3262 		return true;
3263 
3264 	return false;
3265 }
3266 
3267 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3268 			      bool is_pipe, struct perf_header *ph)
3269 {
3270 	int ret;
3271 
3272 	/* check for legacy format */
3273 	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3274 	if (ret == 0) {
3275 		ph->version = PERF_HEADER_VERSION_1;
3276 		pr_debug("legacy perf.data format\n");
3277 		if (is_pipe)
3278 			return try_all_pipe_abis(hdr_sz, ph);
3279 
3280 		return try_all_file_abis(hdr_sz, ph);
3281 	}
3282 	/*
3283 	 * the new magic number serves two purposes:
3284 	 * - unique number to identify actual perf.data files
3285 	 * - encode endianness of file
3286 	 */
3287 	ph->version = PERF_HEADER_VERSION_2;
3288 
3289 	/* check magic number with one endianness */
3290 	if (magic == __perf_magic2)
3291 		return 0;
3292 
3293 	/* check magic number with opposite endianness */
3294 	if (magic != __perf_magic2_sw)
3295 		return -1;
3296 
3297 	ph->needs_swap = true;
3298 
3299 	return 0;
3300 }
3301 
3302 int perf_file_header__read(struct perf_file_header *header,
3303 			   struct perf_header *ph, int fd)
3304 {
3305 	ssize_t ret;
3306 
3307 	lseek(fd, 0, SEEK_SET);
3308 
3309 	ret = readn(fd, header, sizeof(*header));
3310 	if (ret <= 0)
3311 		return -1;
3312 
3313 	if (check_magic_endian(header->magic,
3314 			       header->attr_size, false, ph) < 0) {
3315 		pr_debug("magic/endian check failed\n");
3316 		return -1;
3317 	}
3318 
3319 	if (ph->needs_swap) {
3320 		mem_bswap_64(header, offsetof(struct perf_file_header,
3321 			     adds_features));
3322 	}
3323 
3324 	if (header->size != sizeof(*header)) {
3325 		/* Support the previous format */
3326 		if (header->size == offsetof(typeof(*header), adds_features))
3327 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3328 		else
3329 			return -1;
3330 	} else if (ph->needs_swap) {
3331 		/*
3332 		 * feature bitmap is declared as an array of unsigned longs --
3333 		 * not good since its size can differ between the host that
3334 		 * generated the data file and the host analyzing the file.
3335 		 *
3336 		 * We need to handle endianness, but we don't know the size of
3337 		 * the unsigned long where the file was generated. Take a best
3338 		 * guess at determining it: try 64-bit swap first (ie., file
3339 		 * created on a 64-bit host), and check if the hostname feature
3340 		 * bit is set (this feature bit is forced on as of fbe96f2).
3341 		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3342 		 * swap. If the hostname bit is still not set (e.g., older data
3343 		 * file), punt and fallback to the original behavior --
3344 		 * clearing all feature bits and setting buildid.
3345 		 */
3346 		mem_bswap_64(&header->adds_features,
3347 			    BITS_TO_U64(HEADER_FEAT_BITS));
3348 
3349 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3350 			/* unswap as u64 */
3351 			mem_bswap_64(&header->adds_features,
3352 				    BITS_TO_U64(HEADER_FEAT_BITS));
3353 
3354 			/* unswap as u32 */
3355 			mem_bswap_32(&header->adds_features,
3356 				    BITS_TO_U32(HEADER_FEAT_BITS));
3357 		}
3358 
3359 		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3360 			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3361 			set_bit(HEADER_BUILD_ID, header->adds_features);
3362 		}
3363 	}
3364 
3365 	memcpy(&ph->adds_features, &header->adds_features,
3366 	       sizeof(ph->adds_features));
3367 
3368 	ph->data_offset  = header->data.offset;
3369 	ph->data_size	 = header->data.size;
3370 	ph->feat_offset  = header->data.offset + header->data.size;
3371 	return 0;
3372 }
3373 
3374 static int perf_file_section__process(struct perf_file_section *section,
3375 				      struct perf_header *ph,
3376 				      int feat, int fd, void *data)
3377 {
3378 	struct feat_fd fdd = {
3379 		.fd	= fd,
3380 		.ph	= ph,
3381 		.size	= section->size,
3382 		.offset	= section->offset,
3383 	};
3384 
3385 	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3386 		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3387 			  "%d, continuing...\n", section->offset, feat);
3388 		return 0;
3389 	}
3390 
3391 	if (feat >= HEADER_LAST_FEATURE) {
3392 		pr_debug("unknown feature %d, continuing...\n", feat);
3393 		return 0;
3394 	}
3395 
3396 	if (!feat_ops[feat].process)
3397 		return 0;
3398 
3399 	return feat_ops[feat].process(&fdd, data);
3400 }
3401 
3402 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3403 				       struct perf_header *ph, int fd,
3404 				       bool repipe)
3405 {
3406 	struct feat_fd ff = {
3407 		.fd = STDOUT_FILENO,
3408 		.ph = ph,
3409 	};
3410 	ssize_t ret;
3411 
3412 	ret = readn(fd, header, sizeof(*header));
3413 	if (ret <= 0)
3414 		return -1;
3415 
3416 	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3417 		pr_debug("endian/magic failed\n");
3418 		return -1;
3419 	}
3420 
3421 	if (ph->needs_swap)
3422 		header->size = bswap_64(header->size);
3423 
3424 	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3425 		return -1;
3426 
3427 	return 0;
3428 }
3429 
3430 static int perf_header__read_pipe(struct perf_session *session)
3431 {
3432 	struct perf_header *header = &session->header;
3433 	struct perf_pipe_file_header f_header;
3434 
3435 	if (perf_file_header__read_pipe(&f_header, header,
3436 					perf_data__fd(session->data),
3437 					session->repipe) < 0) {
3438 		pr_debug("incompatible file format\n");
3439 		return -EINVAL;
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 static int read_attr(int fd, struct perf_header *ph,
3446 		     struct perf_file_attr *f_attr)
3447 {
3448 	struct perf_event_attr *attr = &f_attr->attr;
3449 	size_t sz, left;
3450 	size_t our_sz = sizeof(f_attr->attr);
3451 	ssize_t ret;
3452 
3453 	memset(f_attr, 0, sizeof(*f_attr));
3454 
3455 	/* read minimal guaranteed structure */
3456 	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3457 	if (ret <= 0) {
3458 		pr_debug("cannot read %d bytes of header attr\n",
3459 			 PERF_ATTR_SIZE_VER0);
3460 		return -1;
3461 	}
3462 
3463 	/* on file perf_event_attr size */
3464 	sz = attr->size;
3465 
3466 	if (ph->needs_swap)
3467 		sz = bswap_32(sz);
3468 
3469 	if (sz == 0) {
3470 		/* assume ABI0 */
3471 		sz =  PERF_ATTR_SIZE_VER0;
3472 	} else if (sz > our_sz) {
3473 		pr_debug("file uses a more recent and unsupported ABI"
3474 			 " (%zu bytes extra)\n", sz - our_sz);
3475 		return -1;
3476 	}
3477 	/* what we have not yet read and that we know about */
3478 	left = sz - PERF_ATTR_SIZE_VER0;
3479 	if (left) {
3480 		void *ptr = attr;
3481 		ptr += PERF_ATTR_SIZE_VER0;
3482 
3483 		ret = readn(fd, ptr, left);
3484 	}
3485 	/* read perf_file_section, ids are read in caller */
3486 	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3487 
3488 	return ret <= 0 ? -1 : 0;
3489 }
3490 
3491 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3492 						struct tep_handle *pevent)
3493 {
3494 	struct tep_event *event;
3495 	char bf[128];
3496 
3497 	/* already prepared */
3498 	if (evsel->tp_format)
3499 		return 0;
3500 
3501 	if (pevent == NULL) {
3502 		pr_debug("broken or missing trace data\n");
3503 		return -1;
3504 	}
3505 
3506 	event = tep_find_event(pevent, evsel->core.attr.config);
3507 	if (event == NULL) {
3508 		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3509 		return -1;
3510 	}
3511 
3512 	if (!evsel->name) {
3513 		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3514 		evsel->name = strdup(bf);
3515 		if (evsel->name == NULL)
3516 			return -1;
3517 	}
3518 
3519 	evsel->tp_format = event;
3520 	return 0;
3521 }
3522 
3523 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3524 						  struct tep_handle *pevent)
3525 {
3526 	struct evsel *pos;
3527 
3528 	evlist__for_each_entry(evlist, pos) {
3529 		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3530 		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3531 			return -1;
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 int perf_session__read_header(struct perf_session *session)
3538 {
3539 	struct perf_data *data = session->data;
3540 	struct perf_header *header = &session->header;
3541 	struct perf_file_header	f_header;
3542 	struct perf_file_attr	f_attr;
3543 	u64			f_id;
3544 	int nr_attrs, nr_ids, i, j;
3545 	int fd = perf_data__fd(data);
3546 
3547 	session->evlist = evlist__new();
3548 	if (session->evlist == NULL)
3549 		return -ENOMEM;
3550 
3551 	session->evlist->env = &header->env;
3552 	session->machines.host.env = &header->env;
3553 	if (perf_data__is_pipe(data))
3554 		return perf_header__read_pipe(session);
3555 
3556 	if (perf_file_header__read(&f_header, header, fd) < 0)
3557 		return -EINVAL;
3558 
3559 	/*
3560 	 * Sanity check that perf.data was written cleanly; data size is
3561 	 * initialized to 0 and updated only if the on_exit function is run.
3562 	 * If data size is still 0 then the file contains only partial
3563 	 * information.  Just warn user and process it as much as it can.
3564 	 */
3565 	if (f_header.data.size == 0) {
3566 		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3567 			   "Was the 'perf record' command properly terminated?\n",
3568 			   data->file.path);
3569 	}
3570 
3571 	if (f_header.attr_size == 0) {
3572 		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3573 		       "Was the 'perf record' command properly terminated?\n",
3574 		       data->file.path);
3575 		return -EINVAL;
3576 	}
3577 
3578 	nr_attrs = f_header.attrs.size / f_header.attr_size;
3579 	lseek(fd, f_header.attrs.offset, SEEK_SET);
3580 
3581 	for (i = 0; i < nr_attrs; i++) {
3582 		struct evsel *evsel;
3583 		off_t tmp;
3584 
3585 		if (read_attr(fd, header, &f_attr) < 0)
3586 			goto out_errno;
3587 
3588 		if (header->needs_swap) {
3589 			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3590 			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3591 			perf_event__attr_swap(&f_attr.attr);
3592 		}
3593 
3594 		tmp = lseek(fd, 0, SEEK_CUR);
3595 		evsel = evsel__new(&f_attr.attr);
3596 
3597 		if (evsel == NULL)
3598 			goto out_delete_evlist;
3599 
3600 		evsel->needs_swap = header->needs_swap;
3601 		/*
3602 		 * Do it before so that if perf_evsel__alloc_id fails, this
3603 		 * entry gets purged too at evlist__delete().
3604 		 */
3605 		evlist__add(session->evlist, evsel);
3606 
3607 		nr_ids = f_attr.ids.size / sizeof(u64);
3608 		/*
3609 		 * We don't have the cpu and thread maps on the header, so
3610 		 * for allocating the perf_sample_id table we fake 1 cpu and
3611 		 * hattr->ids threads.
3612 		 */
3613 		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3614 			goto out_delete_evlist;
3615 
3616 		lseek(fd, f_attr.ids.offset, SEEK_SET);
3617 
3618 		for (j = 0; j < nr_ids; j++) {
3619 			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3620 				goto out_errno;
3621 
3622 			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3623 		}
3624 
3625 		lseek(fd, tmp, SEEK_SET);
3626 	}
3627 
3628 	perf_header__process_sections(header, fd, &session->tevent,
3629 				      perf_file_section__process);
3630 
3631 	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3632 						   session->tevent.pevent))
3633 		goto out_delete_evlist;
3634 
3635 	return 0;
3636 out_errno:
3637 	return -errno;
3638 
3639 out_delete_evlist:
3640 	evlist__delete(session->evlist);
3641 	session->evlist = NULL;
3642 	return -ENOMEM;
3643 }
3644 
3645 int perf_event__process_feature(struct perf_session *session,
3646 				union perf_event *event)
3647 {
3648 	struct perf_tool *tool = session->tool;
3649 	struct feat_fd ff = { .fd = 0 };
3650 	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3651 	int type = fe->header.type;
3652 	u64 feat = fe->feat_id;
3653 
3654 	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3655 		pr_warning("invalid record type %d in pipe-mode\n", type);
3656 		return 0;
3657 	}
3658 	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3659 		pr_warning("invalid record type %d in pipe-mode\n", type);
3660 		return -1;
3661 	}
3662 
3663 	if (!feat_ops[feat].process)
3664 		return 0;
3665 
3666 	ff.buf  = (void *)fe->data;
3667 	ff.size = event->header.size - sizeof(*fe);
3668 	ff.ph = &session->header;
3669 
3670 	if (feat_ops[feat].process(&ff, NULL))
3671 		return -1;
3672 
3673 	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3674 		return 0;
3675 
3676 	if (!feat_ops[feat].full_only ||
3677 	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3678 		feat_ops[feat].print(&ff, stdout);
3679 	} else {
3680 		fprintf(stdout, "# %s info available, use -I to display\n",
3681 			feat_ops[feat].name);
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3688 {
3689 	struct perf_record_event_update *ev = &event->event_update;
3690 	struct perf_record_event_update_scale *ev_scale;
3691 	struct perf_record_event_update_cpus *ev_cpus;
3692 	struct perf_cpu_map *map;
3693 	size_t ret;
3694 
3695 	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3696 
3697 	switch (ev->type) {
3698 	case PERF_EVENT_UPDATE__SCALE:
3699 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3700 		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3701 		break;
3702 	case PERF_EVENT_UPDATE__UNIT:
3703 		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3704 		break;
3705 	case PERF_EVENT_UPDATE__NAME:
3706 		ret += fprintf(fp, "... name:  %s\n", ev->data);
3707 		break;
3708 	case PERF_EVENT_UPDATE__CPUS:
3709 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3710 		ret += fprintf(fp, "... ");
3711 
3712 		map = cpu_map__new_data(&ev_cpus->cpus);
3713 		if (map)
3714 			ret += cpu_map__fprintf(map, fp);
3715 		else
3716 			ret += fprintf(fp, "failed to get cpus\n");
3717 		break;
3718 	default:
3719 		ret += fprintf(fp, "... unknown type\n");
3720 		break;
3721 	}
3722 
3723 	return ret;
3724 }
3725 
3726 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3727 			     union perf_event *event,
3728 			     struct evlist **pevlist)
3729 {
3730 	u32 i, ids, n_ids;
3731 	struct evsel *evsel;
3732 	struct evlist *evlist = *pevlist;
3733 
3734 	if (evlist == NULL) {
3735 		*pevlist = evlist = evlist__new();
3736 		if (evlist == NULL)
3737 			return -ENOMEM;
3738 	}
3739 
3740 	evsel = evsel__new(&event->attr.attr);
3741 	if (evsel == NULL)
3742 		return -ENOMEM;
3743 
3744 	evlist__add(evlist, evsel);
3745 
3746 	ids = event->header.size;
3747 	ids -= (void *)&event->attr.id - (void *)event;
3748 	n_ids = ids / sizeof(u64);
3749 	/*
3750 	 * We don't have the cpu and thread maps on the header, so
3751 	 * for allocating the perf_sample_id table we fake 1 cpu and
3752 	 * hattr->ids threads.
3753 	 */
3754 	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3755 		return -ENOMEM;
3756 
3757 	for (i = 0; i < n_ids; i++) {
3758 		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3759 	}
3760 
3761 	return 0;
3762 }
3763 
3764 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3765 				     union perf_event *event,
3766 				     struct evlist **pevlist)
3767 {
3768 	struct perf_record_event_update *ev = &event->event_update;
3769 	struct perf_record_event_update_scale *ev_scale;
3770 	struct perf_record_event_update_cpus *ev_cpus;
3771 	struct evlist *evlist;
3772 	struct evsel *evsel;
3773 	struct perf_cpu_map *map;
3774 
3775 	if (!pevlist || *pevlist == NULL)
3776 		return -EINVAL;
3777 
3778 	evlist = *pevlist;
3779 
3780 	evsel = perf_evlist__id2evsel(evlist, ev->id);
3781 	if (evsel == NULL)
3782 		return -EINVAL;
3783 
3784 	switch (ev->type) {
3785 	case PERF_EVENT_UPDATE__UNIT:
3786 		evsel->unit = strdup(ev->data);
3787 		break;
3788 	case PERF_EVENT_UPDATE__NAME:
3789 		evsel->name = strdup(ev->data);
3790 		break;
3791 	case PERF_EVENT_UPDATE__SCALE:
3792 		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3793 		evsel->scale = ev_scale->scale;
3794 		break;
3795 	case PERF_EVENT_UPDATE__CPUS:
3796 		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3797 
3798 		map = cpu_map__new_data(&ev_cpus->cpus);
3799 		if (map)
3800 			evsel->core.own_cpus = map;
3801 		else
3802 			pr_err("failed to get event_update cpus\n");
3803 	default:
3804 		break;
3805 	}
3806 
3807 	return 0;
3808 }
3809 
3810 int perf_event__process_tracing_data(struct perf_session *session,
3811 				     union perf_event *event)
3812 {
3813 	ssize_t size_read, padding, size = event->tracing_data.size;
3814 	int fd = perf_data__fd(session->data);
3815 	off_t offset = lseek(fd, 0, SEEK_CUR);
3816 	char buf[BUFSIZ];
3817 
3818 	/* setup for reading amidst mmap */
3819 	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3820 	      SEEK_SET);
3821 
3822 	size_read = trace_report(fd, &session->tevent,
3823 				 session->repipe);
3824 	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3825 
3826 	if (readn(fd, buf, padding) < 0) {
3827 		pr_err("%s: reading input file", __func__);
3828 		return -1;
3829 	}
3830 	if (session->repipe) {
3831 		int retw = write(STDOUT_FILENO, buf, padding);
3832 		if (retw <= 0 || retw != padding) {
3833 			pr_err("%s: repiping tracing data padding", __func__);
3834 			return -1;
3835 		}
3836 	}
3837 
3838 	if (size_read + padding != size) {
3839 		pr_err("%s: tracing data size mismatch", __func__);
3840 		return -1;
3841 	}
3842 
3843 	perf_evlist__prepare_tracepoint_events(session->evlist,
3844 					       session->tevent.pevent);
3845 
3846 	return size_read + padding;
3847 }
3848 
3849 int perf_event__process_build_id(struct perf_session *session,
3850 				 union perf_event *event)
3851 {
3852 	__event_process_build_id(&event->build_id,
3853 				 event->build_id.filename,
3854 				 session);
3855 	return 0;
3856 }
3857