1 // SPDX-License-Identifier: GPL-2.0 2 #include <errno.h> 3 #include <inttypes.h> 4 #include "string2.h" 5 #include <sys/param.h> 6 #include <sys/types.h> 7 #include <byteswap.h> 8 #include <unistd.h> 9 #include <stdio.h> 10 #include <stdlib.h> 11 #include <linux/compiler.h> 12 #include <linux/list.h> 13 #include <linux/kernel.h> 14 #include <linux/bitops.h> 15 #include <linux/string.h> 16 #include <linux/stringify.h> 17 #include <linux/zalloc.h> 18 #include <sys/stat.h> 19 #include <sys/utsname.h> 20 #include <linux/time64.h> 21 #include <dirent.h> 22 #include <bpf/libbpf.h> 23 #include <perf/cpumap.h> 24 25 #include "dso.h" 26 #include "evlist.h" 27 #include "evsel.h" 28 #include "util/evsel_fprintf.h" 29 #include "header.h" 30 #include "memswap.h" 31 #include "trace-event.h" 32 #include "session.h" 33 #include "symbol.h" 34 #include "debug.h" 35 #include "cpumap.h" 36 #include "pmu.h" 37 #include "vdso.h" 38 #include "strbuf.h" 39 #include "build-id.h" 40 #include "data.h" 41 #include <api/fs/fs.h> 42 #include "asm/bug.h" 43 #include "tool.h" 44 #include "time-utils.h" 45 #include "units.h" 46 #include "util/util.h" // perf_exe() 47 #include "cputopo.h" 48 #include "bpf-event.h" 49 50 #include <linux/ctype.h> 51 #include <internal/lib.h> 52 53 /* 54 * magic2 = "PERFILE2" 55 * must be a numerical value to let the endianness 56 * determine the memory layout. That way we are able 57 * to detect endianness when reading the perf.data file 58 * back. 59 * 60 * we check for legacy (PERFFILE) format. 61 */ 62 static const char *__perf_magic1 = "PERFFILE"; 63 static const u64 __perf_magic2 = 0x32454c4946524550ULL; 64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; 65 66 #define PERF_MAGIC __perf_magic2 67 68 const char perf_version_string[] = PERF_VERSION; 69 70 struct perf_file_attr { 71 struct perf_event_attr attr; 72 struct perf_file_section ids; 73 }; 74 75 void perf_header__set_feat(struct perf_header *header, int feat) 76 { 77 set_bit(feat, header->adds_features); 78 } 79 80 void perf_header__clear_feat(struct perf_header *header, int feat) 81 { 82 clear_bit(feat, header->adds_features); 83 } 84 85 bool perf_header__has_feat(const struct perf_header *header, int feat) 86 { 87 return test_bit(feat, header->adds_features); 88 } 89 90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size) 91 { 92 ssize_t ret = writen(ff->fd, buf, size); 93 94 if (ret != (ssize_t)size) 95 return ret < 0 ? (int)ret : -1; 96 return 0; 97 } 98 99 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size) 100 { 101 /* struct perf_event_header::size is u16 */ 102 const size_t max_size = 0xffff - sizeof(struct perf_event_header); 103 size_t new_size = ff->size; 104 void *addr; 105 106 if (size + ff->offset > max_size) 107 return -E2BIG; 108 109 while (size > (new_size - ff->offset)) 110 new_size <<= 1; 111 new_size = min(max_size, new_size); 112 113 if (ff->size < new_size) { 114 addr = realloc(ff->buf, new_size); 115 if (!addr) 116 return -ENOMEM; 117 ff->buf = addr; 118 ff->size = new_size; 119 } 120 121 memcpy(ff->buf + ff->offset, buf, size); 122 ff->offset += size; 123 124 return 0; 125 } 126 127 /* Return: 0 if succeded, -ERR if failed. */ 128 int do_write(struct feat_fd *ff, const void *buf, size_t size) 129 { 130 if (!ff->buf) 131 return __do_write_fd(ff, buf, size); 132 return __do_write_buf(ff, buf, size); 133 } 134 135 /* Return: 0 if succeded, -ERR if failed. */ 136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size) 137 { 138 u64 *p = (u64 *) set; 139 int i, ret; 140 141 ret = do_write(ff, &size, sizeof(size)); 142 if (ret < 0) 143 return ret; 144 145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 146 ret = do_write(ff, p + i, sizeof(*p)); 147 if (ret < 0) 148 return ret; 149 } 150 151 return 0; 152 } 153 154 /* Return: 0 if succeded, -ERR if failed. */ 155 int write_padded(struct feat_fd *ff, const void *bf, 156 size_t count, size_t count_aligned) 157 { 158 static const char zero_buf[NAME_ALIGN]; 159 int err = do_write(ff, bf, count); 160 161 if (!err) 162 err = do_write(ff, zero_buf, count_aligned - count); 163 164 return err; 165 } 166 167 #define string_size(str) \ 168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32)) 169 170 /* Return: 0 if succeded, -ERR if failed. */ 171 static int do_write_string(struct feat_fd *ff, const char *str) 172 { 173 u32 len, olen; 174 int ret; 175 176 olen = strlen(str) + 1; 177 len = PERF_ALIGN(olen, NAME_ALIGN); 178 179 /* write len, incl. \0 */ 180 ret = do_write(ff, &len, sizeof(len)); 181 if (ret < 0) 182 return ret; 183 184 return write_padded(ff, str, olen, len); 185 } 186 187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size) 188 { 189 ssize_t ret = readn(ff->fd, addr, size); 190 191 if (ret != size) 192 return ret < 0 ? (int)ret : -1; 193 return 0; 194 } 195 196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size) 197 { 198 if (size > (ssize_t)ff->size - ff->offset) 199 return -1; 200 201 memcpy(addr, ff->buf + ff->offset, size); 202 ff->offset += size; 203 204 return 0; 205 206 } 207 208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size) 209 { 210 if (!ff->buf) 211 return __do_read_fd(ff, addr, size); 212 return __do_read_buf(ff, addr, size); 213 } 214 215 static int do_read_u32(struct feat_fd *ff, u32 *addr) 216 { 217 int ret; 218 219 ret = __do_read(ff, addr, sizeof(*addr)); 220 if (ret) 221 return ret; 222 223 if (ff->ph->needs_swap) 224 *addr = bswap_32(*addr); 225 return 0; 226 } 227 228 static int do_read_u64(struct feat_fd *ff, u64 *addr) 229 { 230 int ret; 231 232 ret = __do_read(ff, addr, sizeof(*addr)); 233 if (ret) 234 return ret; 235 236 if (ff->ph->needs_swap) 237 *addr = bswap_64(*addr); 238 return 0; 239 } 240 241 static char *do_read_string(struct feat_fd *ff) 242 { 243 u32 len; 244 char *buf; 245 246 if (do_read_u32(ff, &len)) 247 return NULL; 248 249 buf = malloc(len); 250 if (!buf) 251 return NULL; 252 253 if (!__do_read(ff, buf, len)) { 254 /* 255 * strings are padded by zeroes 256 * thus the actual strlen of buf 257 * may be less than len 258 */ 259 return buf; 260 } 261 262 free(buf); 263 return NULL; 264 } 265 266 /* Return: 0 if succeded, -ERR if failed. */ 267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize) 268 { 269 unsigned long *set; 270 u64 size, *p; 271 int i, ret; 272 273 ret = do_read_u64(ff, &size); 274 if (ret) 275 return ret; 276 277 set = bitmap_alloc(size); 278 if (!set) 279 return -ENOMEM; 280 281 p = (u64 *) set; 282 283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) { 284 ret = do_read_u64(ff, p + i); 285 if (ret < 0) { 286 free(set); 287 return ret; 288 } 289 } 290 291 *pset = set; 292 *psize = size; 293 return 0; 294 } 295 296 static int write_tracing_data(struct feat_fd *ff, 297 struct evlist *evlist) 298 { 299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 300 return -1; 301 302 return read_tracing_data(ff->fd, &evlist->core.entries); 303 } 304 305 static int write_build_id(struct feat_fd *ff, 306 struct evlist *evlist __maybe_unused) 307 { 308 struct perf_session *session; 309 int err; 310 311 session = container_of(ff->ph, struct perf_session, header); 312 313 if (!perf_session__read_build_ids(session, true)) 314 return -1; 315 316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 317 return -1; 318 319 err = perf_session__write_buildid_table(session, ff); 320 if (err < 0) { 321 pr_debug("failed to write buildid table\n"); 322 return err; 323 } 324 perf_session__cache_build_ids(session); 325 326 return 0; 327 } 328 329 static int write_hostname(struct feat_fd *ff, 330 struct evlist *evlist __maybe_unused) 331 { 332 struct utsname uts; 333 int ret; 334 335 ret = uname(&uts); 336 if (ret < 0) 337 return -1; 338 339 return do_write_string(ff, uts.nodename); 340 } 341 342 static int write_osrelease(struct feat_fd *ff, 343 struct evlist *evlist __maybe_unused) 344 { 345 struct utsname uts; 346 int ret; 347 348 ret = uname(&uts); 349 if (ret < 0) 350 return -1; 351 352 return do_write_string(ff, uts.release); 353 } 354 355 static int write_arch(struct feat_fd *ff, 356 struct evlist *evlist __maybe_unused) 357 { 358 struct utsname uts; 359 int ret; 360 361 ret = uname(&uts); 362 if (ret < 0) 363 return -1; 364 365 return do_write_string(ff, uts.machine); 366 } 367 368 static int write_version(struct feat_fd *ff, 369 struct evlist *evlist __maybe_unused) 370 { 371 return do_write_string(ff, perf_version_string); 372 } 373 374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc) 375 { 376 FILE *file; 377 char *buf = NULL; 378 char *s, *p; 379 const char *search = cpuinfo_proc; 380 size_t len = 0; 381 int ret = -1; 382 383 if (!search) 384 return -1; 385 386 file = fopen("/proc/cpuinfo", "r"); 387 if (!file) 388 return -1; 389 390 while (getline(&buf, &len, file) > 0) { 391 ret = strncmp(buf, search, strlen(search)); 392 if (!ret) 393 break; 394 } 395 396 if (ret) { 397 ret = -1; 398 goto done; 399 } 400 401 s = buf; 402 403 p = strchr(buf, ':'); 404 if (p && *(p+1) == ' ' && *(p+2)) 405 s = p + 2; 406 p = strchr(s, '\n'); 407 if (p) 408 *p = '\0'; 409 410 /* squash extra space characters (branding string) */ 411 p = s; 412 while (*p) { 413 if (isspace(*p)) { 414 char *r = p + 1; 415 char *q = skip_spaces(r); 416 *p = ' '; 417 if (q != (p+1)) 418 while ((*r++ = *q++)); 419 } 420 p++; 421 } 422 ret = do_write_string(ff, s); 423 done: 424 free(buf); 425 fclose(file); 426 return ret; 427 } 428 429 static int write_cpudesc(struct feat_fd *ff, 430 struct evlist *evlist __maybe_unused) 431 { 432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__) 433 #define CPUINFO_PROC { "cpu", } 434 #elif defined(__s390__) 435 #define CPUINFO_PROC { "vendor_id", } 436 #elif defined(__sh__) 437 #define CPUINFO_PROC { "cpu type", } 438 #elif defined(__alpha__) || defined(__mips__) 439 #define CPUINFO_PROC { "cpu model", } 440 #elif defined(__arm__) 441 #define CPUINFO_PROC { "model name", "Processor", } 442 #elif defined(__arc__) 443 #define CPUINFO_PROC { "Processor", } 444 #elif defined(__xtensa__) 445 #define CPUINFO_PROC { "core ID", } 446 #else 447 #define CPUINFO_PROC { "model name", } 448 #endif 449 const char *cpuinfo_procs[] = CPUINFO_PROC; 450 #undef CPUINFO_PROC 451 unsigned int i; 452 453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) { 454 int ret; 455 ret = __write_cpudesc(ff, cpuinfo_procs[i]); 456 if (ret >= 0) 457 return ret; 458 } 459 return -1; 460 } 461 462 463 static int write_nrcpus(struct feat_fd *ff, 464 struct evlist *evlist __maybe_unused) 465 { 466 long nr; 467 u32 nrc, nra; 468 int ret; 469 470 nrc = cpu__max_present_cpu(); 471 472 nr = sysconf(_SC_NPROCESSORS_ONLN); 473 if (nr < 0) 474 return -1; 475 476 nra = (u32)(nr & UINT_MAX); 477 478 ret = do_write(ff, &nrc, sizeof(nrc)); 479 if (ret < 0) 480 return ret; 481 482 return do_write(ff, &nra, sizeof(nra)); 483 } 484 485 static int write_event_desc(struct feat_fd *ff, 486 struct evlist *evlist) 487 { 488 struct evsel *evsel; 489 u32 nre, nri, sz; 490 int ret; 491 492 nre = evlist->core.nr_entries; 493 494 /* 495 * write number of events 496 */ 497 ret = do_write(ff, &nre, sizeof(nre)); 498 if (ret < 0) 499 return ret; 500 501 /* 502 * size of perf_event_attr struct 503 */ 504 sz = (u32)sizeof(evsel->core.attr); 505 ret = do_write(ff, &sz, sizeof(sz)); 506 if (ret < 0) 507 return ret; 508 509 evlist__for_each_entry(evlist, evsel) { 510 ret = do_write(ff, &evsel->core.attr, sz); 511 if (ret < 0) 512 return ret; 513 /* 514 * write number of unique id per event 515 * there is one id per instance of an event 516 * 517 * copy into an nri to be independent of the 518 * type of ids, 519 */ 520 nri = evsel->core.ids; 521 ret = do_write(ff, &nri, sizeof(nri)); 522 if (ret < 0) 523 return ret; 524 525 /* 526 * write event string as passed on cmdline 527 */ 528 ret = do_write_string(ff, perf_evsel__name(evsel)); 529 if (ret < 0) 530 return ret; 531 /* 532 * write unique ids for this event 533 */ 534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 535 if (ret < 0) 536 return ret; 537 } 538 return 0; 539 } 540 541 static int write_cmdline(struct feat_fd *ff, 542 struct evlist *evlist __maybe_unused) 543 { 544 char pbuf[MAXPATHLEN], *buf; 545 int i, ret, n; 546 547 /* actual path to perf binary */ 548 buf = perf_exe(pbuf, MAXPATHLEN); 549 550 /* account for binary path */ 551 n = perf_env.nr_cmdline + 1; 552 553 ret = do_write(ff, &n, sizeof(n)); 554 if (ret < 0) 555 return ret; 556 557 ret = do_write_string(ff, buf); 558 if (ret < 0) 559 return ret; 560 561 for (i = 0 ; i < perf_env.nr_cmdline; i++) { 562 ret = do_write_string(ff, perf_env.cmdline_argv[i]); 563 if (ret < 0) 564 return ret; 565 } 566 return 0; 567 } 568 569 570 static int write_cpu_topology(struct feat_fd *ff, 571 struct evlist *evlist __maybe_unused) 572 { 573 struct cpu_topology *tp; 574 u32 i; 575 int ret, j; 576 577 tp = cpu_topology__new(); 578 if (!tp) 579 return -1; 580 581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib)); 582 if (ret < 0) 583 goto done; 584 585 for (i = 0; i < tp->core_sib; i++) { 586 ret = do_write_string(ff, tp->core_siblings[i]); 587 if (ret < 0) 588 goto done; 589 } 590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib)); 591 if (ret < 0) 592 goto done; 593 594 for (i = 0; i < tp->thread_sib; i++) { 595 ret = do_write_string(ff, tp->thread_siblings[i]); 596 if (ret < 0) 597 break; 598 } 599 600 ret = perf_env__read_cpu_topology_map(&perf_env); 601 if (ret < 0) 602 goto done; 603 604 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 605 ret = do_write(ff, &perf_env.cpu[j].core_id, 606 sizeof(perf_env.cpu[j].core_id)); 607 if (ret < 0) 608 return ret; 609 ret = do_write(ff, &perf_env.cpu[j].socket_id, 610 sizeof(perf_env.cpu[j].socket_id)); 611 if (ret < 0) 612 return ret; 613 } 614 615 if (!tp->die_sib) 616 goto done; 617 618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib)); 619 if (ret < 0) 620 goto done; 621 622 for (i = 0; i < tp->die_sib; i++) { 623 ret = do_write_string(ff, tp->die_siblings[i]); 624 if (ret < 0) 625 goto done; 626 } 627 628 for (j = 0; j < perf_env.nr_cpus_avail; j++) { 629 ret = do_write(ff, &perf_env.cpu[j].die_id, 630 sizeof(perf_env.cpu[j].die_id)); 631 if (ret < 0) 632 return ret; 633 } 634 635 done: 636 cpu_topology__delete(tp); 637 return ret; 638 } 639 640 641 642 static int write_total_mem(struct feat_fd *ff, 643 struct evlist *evlist __maybe_unused) 644 { 645 char *buf = NULL; 646 FILE *fp; 647 size_t len = 0; 648 int ret = -1, n; 649 uint64_t mem; 650 651 fp = fopen("/proc/meminfo", "r"); 652 if (!fp) 653 return -1; 654 655 while (getline(&buf, &len, fp) > 0) { 656 ret = strncmp(buf, "MemTotal:", 9); 657 if (!ret) 658 break; 659 } 660 if (!ret) { 661 n = sscanf(buf, "%*s %"PRIu64, &mem); 662 if (n == 1) 663 ret = do_write(ff, &mem, sizeof(mem)); 664 } else 665 ret = -1; 666 free(buf); 667 fclose(fp); 668 return ret; 669 } 670 671 static int write_numa_topology(struct feat_fd *ff, 672 struct evlist *evlist __maybe_unused) 673 { 674 struct numa_topology *tp; 675 int ret = -1; 676 u32 i; 677 678 tp = numa_topology__new(); 679 if (!tp) 680 return -ENOMEM; 681 682 ret = do_write(ff, &tp->nr, sizeof(u32)); 683 if (ret < 0) 684 goto err; 685 686 for (i = 0; i < tp->nr; i++) { 687 struct numa_topology_node *n = &tp->nodes[i]; 688 689 ret = do_write(ff, &n->node, sizeof(u32)); 690 if (ret < 0) 691 goto err; 692 693 ret = do_write(ff, &n->mem_total, sizeof(u64)); 694 if (ret) 695 goto err; 696 697 ret = do_write(ff, &n->mem_free, sizeof(u64)); 698 if (ret) 699 goto err; 700 701 ret = do_write_string(ff, n->cpus); 702 if (ret < 0) 703 goto err; 704 } 705 706 ret = 0; 707 708 err: 709 numa_topology__delete(tp); 710 return ret; 711 } 712 713 /* 714 * File format: 715 * 716 * struct pmu_mappings { 717 * u32 pmu_num; 718 * struct pmu_map { 719 * u32 type; 720 * char name[]; 721 * }[pmu_num]; 722 * }; 723 */ 724 725 static int write_pmu_mappings(struct feat_fd *ff, 726 struct evlist *evlist __maybe_unused) 727 { 728 struct perf_pmu *pmu = NULL; 729 u32 pmu_num = 0; 730 int ret; 731 732 /* 733 * Do a first pass to count number of pmu to avoid lseek so this 734 * works in pipe mode as well. 735 */ 736 while ((pmu = perf_pmu__scan(pmu))) { 737 if (!pmu->name) 738 continue; 739 pmu_num++; 740 } 741 742 ret = do_write(ff, &pmu_num, sizeof(pmu_num)); 743 if (ret < 0) 744 return ret; 745 746 while ((pmu = perf_pmu__scan(pmu))) { 747 if (!pmu->name) 748 continue; 749 750 ret = do_write(ff, &pmu->type, sizeof(pmu->type)); 751 if (ret < 0) 752 return ret; 753 754 ret = do_write_string(ff, pmu->name); 755 if (ret < 0) 756 return ret; 757 } 758 759 return 0; 760 } 761 762 /* 763 * File format: 764 * 765 * struct group_descs { 766 * u32 nr_groups; 767 * struct group_desc { 768 * char name[]; 769 * u32 leader_idx; 770 * u32 nr_members; 771 * }[nr_groups]; 772 * }; 773 */ 774 static int write_group_desc(struct feat_fd *ff, 775 struct evlist *evlist) 776 { 777 u32 nr_groups = evlist->nr_groups; 778 struct evsel *evsel; 779 int ret; 780 781 ret = do_write(ff, &nr_groups, sizeof(nr_groups)); 782 if (ret < 0) 783 return ret; 784 785 evlist__for_each_entry(evlist, evsel) { 786 if (perf_evsel__is_group_leader(evsel) && 787 evsel->core.nr_members > 1) { 788 const char *name = evsel->group_name ?: "{anon_group}"; 789 u32 leader_idx = evsel->idx; 790 u32 nr_members = evsel->core.nr_members; 791 792 ret = do_write_string(ff, name); 793 if (ret < 0) 794 return ret; 795 796 ret = do_write(ff, &leader_idx, sizeof(leader_idx)); 797 if (ret < 0) 798 return ret; 799 800 ret = do_write(ff, &nr_members, sizeof(nr_members)); 801 if (ret < 0) 802 return ret; 803 } 804 } 805 return 0; 806 } 807 808 /* 809 * Return the CPU id as a raw string. 810 * 811 * Each architecture should provide a more precise id string that 812 * can be use to match the architecture's "mapfile". 813 */ 814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused) 815 { 816 return NULL; 817 } 818 819 /* Return zero when the cpuid from the mapfile.csv matches the 820 * cpuid string generated on this platform. 821 * Otherwise return non-zero. 822 */ 823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid) 824 { 825 regex_t re; 826 regmatch_t pmatch[1]; 827 int match; 828 829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) { 830 /* Warn unable to generate match particular string. */ 831 pr_info("Invalid regular expression %s\n", mapcpuid); 832 return 1; 833 } 834 835 match = !regexec(&re, cpuid, 1, pmatch, 0); 836 regfree(&re); 837 if (match) { 838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so); 839 840 /* Verify the entire string matched. */ 841 if (match_len == strlen(cpuid)) 842 return 0; 843 } 844 return 1; 845 } 846 847 /* 848 * default get_cpuid(): nothing gets recorded 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c 850 */ 851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) 852 { 853 return -1; 854 } 855 856 static int write_cpuid(struct feat_fd *ff, 857 struct evlist *evlist __maybe_unused) 858 { 859 char buffer[64]; 860 int ret; 861 862 ret = get_cpuid(buffer, sizeof(buffer)); 863 if (ret) 864 return -1; 865 866 return do_write_string(ff, buffer); 867 } 868 869 static int write_branch_stack(struct feat_fd *ff __maybe_unused, 870 struct evlist *evlist __maybe_unused) 871 { 872 return 0; 873 } 874 875 static int write_auxtrace(struct feat_fd *ff, 876 struct evlist *evlist __maybe_unused) 877 { 878 struct perf_session *session; 879 int err; 880 881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 882 return -1; 883 884 session = container_of(ff->ph, struct perf_session, header); 885 886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index); 887 if (err < 0) 888 pr_err("Failed to write auxtrace index\n"); 889 return err; 890 } 891 892 static int write_clockid(struct feat_fd *ff, 893 struct evlist *evlist __maybe_unused) 894 { 895 return do_write(ff, &ff->ph->env.clockid_res_ns, 896 sizeof(ff->ph->env.clockid_res_ns)); 897 } 898 899 static int write_dir_format(struct feat_fd *ff, 900 struct evlist *evlist __maybe_unused) 901 { 902 struct perf_session *session; 903 struct perf_data *data; 904 905 session = container_of(ff->ph, struct perf_session, header); 906 data = session->data; 907 908 if (WARN_ON(!perf_data__is_dir(data))) 909 return -1; 910 911 return do_write(ff, &data->dir.version, sizeof(data->dir.version)); 912 } 913 914 #ifdef HAVE_LIBBPF_SUPPORT 915 static int write_bpf_prog_info(struct feat_fd *ff, 916 struct evlist *evlist __maybe_unused) 917 { 918 struct perf_env *env = &ff->ph->env; 919 struct rb_root *root; 920 struct rb_node *next; 921 int ret; 922 923 down_read(&env->bpf_progs.lock); 924 925 ret = do_write(ff, &env->bpf_progs.infos_cnt, 926 sizeof(env->bpf_progs.infos_cnt)); 927 if (ret < 0) 928 goto out; 929 930 root = &env->bpf_progs.infos; 931 next = rb_first(root); 932 while (next) { 933 struct bpf_prog_info_node *node; 934 size_t len; 935 936 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 937 next = rb_next(&node->rb_node); 938 len = sizeof(struct bpf_prog_info_linear) + 939 node->info_linear->data_len; 940 941 /* before writing to file, translate address to offset */ 942 bpf_program__bpil_addr_to_offs(node->info_linear); 943 ret = do_write(ff, node->info_linear, len); 944 /* 945 * translate back to address even when do_write() fails, 946 * so that this function never changes the data. 947 */ 948 bpf_program__bpil_offs_to_addr(node->info_linear); 949 if (ret < 0) 950 goto out; 951 } 952 out: 953 up_read(&env->bpf_progs.lock); 954 return ret; 955 } 956 #else // HAVE_LIBBPF_SUPPORT 957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused, 958 struct evlist *evlist __maybe_unused) 959 { 960 return 0; 961 } 962 #endif // HAVE_LIBBPF_SUPPORT 963 964 static int write_bpf_btf(struct feat_fd *ff, 965 struct evlist *evlist __maybe_unused) 966 { 967 struct perf_env *env = &ff->ph->env; 968 struct rb_root *root; 969 struct rb_node *next; 970 int ret; 971 972 down_read(&env->bpf_progs.lock); 973 974 ret = do_write(ff, &env->bpf_progs.btfs_cnt, 975 sizeof(env->bpf_progs.btfs_cnt)); 976 977 if (ret < 0) 978 goto out; 979 980 root = &env->bpf_progs.btfs; 981 next = rb_first(root); 982 while (next) { 983 struct btf_node *node; 984 985 node = rb_entry(next, struct btf_node, rb_node); 986 next = rb_next(&node->rb_node); 987 ret = do_write(ff, &node->id, 988 sizeof(u32) * 2 + node->data_size); 989 if (ret < 0) 990 goto out; 991 } 992 out: 993 up_read(&env->bpf_progs.lock); 994 return ret; 995 } 996 997 static int cpu_cache_level__sort(const void *a, const void *b) 998 { 999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a; 1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b; 1001 1002 return cache_a->level - cache_b->level; 1003 } 1004 1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b) 1006 { 1007 if (a->level != b->level) 1008 return false; 1009 1010 if (a->line_size != b->line_size) 1011 return false; 1012 1013 if (a->sets != b->sets) 1014 return false; 1015 1016 if (a->ways != b->ways) 1017 return false; 1018 1019 if (strcmp(a->type, b->type)) 1020 return false; 1021 1022 if (strcmp(a->size, b->size)) 1023 return false; 1024 1025 if (strcmp(a->map, b->map)) 1026 return false; 1027 1028 return true; 1029 } 1030 1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level) 1032 { 1033 char path[PATH_MAX], file[PATH_MAX]; 1034 struct stat st; 1035 size_t len; 1036 1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level); 1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path); 1039 1040 if (stat(file, &st)) 1041 return 1; 1042 1043 scnprintf(file, PATH_MAX, "%s/level", path); 1044 if (sysfs__read_int(file, (int *) &cache->level)) 1045 return -1; 1046 1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path); 1048 if (sysfs__read_int(file, (int *) &cache->line_size)) 1049 return -1; 1050 1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path); 1052 if (sysfs__read_int(file, (int *) &cache->sets)) 1053 return -1; 1054 1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path); 1056 if (sysfs__read_int(file, (int *) &cache->ways)) 1057 return -1; 1058 1059 scnprintf(file, PATH_MAX, "%s/type", path); 1060 if (sysfs__read_str(file, &cache->type, &len)) 1061 return -1; 1062 1063 cache->type[len] = 0; 1064 cache->type = strim(cache->type); 1065 1066 scnprintf(file, PATH_MAX, "%s/size", path); 1067 if (sysfs__read_str(file, &cache->size, &len)) { 1068 zfree(&cache->type); 1069 return -1; 1070 } 1071 1072 cache->size[len] = 0; 1073 cache->size = strim(cache->size); 1074 1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path); 1076 if (sysfs__read_str(file, &cache->map, &len)) { 1077 zfree(&cache->size); 1078 zfree(&cache->type); 1079 return -1; 1080 } 1081 1082 cache->map[len] = 0; 1083 cache->map = strim(cache->map); 1084 return 0; 1085 } 1086 1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c) 1088 { 1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map); 1090 } 1091 1092 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp) 1093 { 1094 u32 i, cnt = 0; 1095 long ncpus; 1096 u32 nr, cpu; 1097 u16 level; 1098 1099 ncpus = sysconf(_SC_NPROCESSORS_CONF); 1100 if (ncpus < 0) 1101 return -1; 1102 1103 nr = (u32)(ncpus & UINT_MAX); 1104 1105 for (cpu = 0; cpu < nr; cpu++) { 1106 for (level = 0; level < 10; level++) { 1107 struct cpu_cache_level c; 1108 int err; 1109 1110 err = cpu_cache_level__read(&c, cpu, level); 1111 if (err < 0) 1112 return err; 1113 1114 if (err == 1) 1115 break; 1116 1117 for (i = 0; i < cnt; i++) { 1118 if (cpu_cache_level__cmp(&c, &caches[i])) 1119 break; 1120 } 1121 1122 if (i == cnt) 1123 caches[cnt++] = c; 1124 else 1125 cpu_cache_level__free(&c); 1126 1127 if (WARN_ONCE(cnt == size, "way too many cpu caches..")) 1128 goto out; 1129 } 1130 } 1131 out: 1132 *cntp = cnt; 1133 return 0; 1134 } 1135 1136 #define MAX_CACHE_LVL 4 1137 1138 static int write_cache(struct feat_fd *ff, 1139 struct evlist *evlist __maybe_unused) 1140 { 1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL; 1142 struct cpu_cache_level caches[max_caches]; 1143 u32 cnt = 0, i, version = 1; 1144 int ret; 1145 1146 ret = build_caches(caches, max_caches, &cnt); 1147 if (ret) 1148 goto out; 1149 1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort); 1151 1152 ret = do_write(ff, &version, sizeof(u32)); 1153 if (ret < 0) 1154 goto out; 1155 1156 ret = do_write(ff, &cnt, sizeof(u32)); 1157 if (ret < 0) 1158 goto out; 1159 1160 for (i = 0; i < cnt; i++) { 1161 struct cpu_cache_level *c = &caches[i]; 1162 1163 #define _W(v) \ 1164 ret = do_write(ff, &c->v, sizeof(u32)); \ 1165 if (ret < 0) \ 1166 goto out; 1167 1168 _W(level) 1169 _W(line_size) 1170 _W(sets) 1171 _W(ways) 1172 #undef _W 1173 1174 #define _W(v) \ 1175 ret = do_write_string(ff, (const char *) c->v); \ 1176 if (ret < 0) \ 1177 goto out; 1178 1179 _W(type) 1180 _W(size) 1181 _W(map) 1182 #undef _W 1183 } 1184 1185 out: 1186 for (i = 0; i < cnt; i++) 1187 cpu_cache_level__free(&caches[i]); 1188 return ret; 1189 } 1190 1191 static int write_stat(struct feat_fd *ff __maybe_unused, 1192 struct evlist *evlist __maybe_unused) 1193 { 1194 return 0; 1195 } 1196 1197 static int write_sample_time(struct feat_fd *ff, 1198 struct evlist *evlist) 1199 { 1200 int ret; 1201 1202 ret = do_write(ff, &evlist->first_sample_time, 1203 sizeof(evlist->first_sample_time)); 1204 if (ret < 0) 1205 return ret; 1206 1207 return do_write(ff, &evlist->last_sample_time, 1208 sizeof(evlist->last_sample_time)); 1209 } 1210 1211 1212 static int memory_node__read(struct memory_node *n, unsigned long idx) 1213 { 1214 unsigned int phys, size = 0; 1215 char path[PATH_MAX]; 1216 struct dirent *ent; 1217 DIR *dir; 1218 1219 #define for_each_memory(mem, dir) \ 1220 while ((ent = readdir(dir))) \ 1221 if (strcmp(ent->d_name, ".") && \ 1222 strcmp(ent->d_name, "..") && \ 1223 sscanf(ent->d_name, "memory%u", &mem) == 1) 1224 1225 scnprintf(path, PATH_MAX, 1226 "%s/devices/system/node/node%lu", 1227 sysfs__mountpoint(), idx); 1228 1229 dir = opendir(path); 1230 if (!dir) { 1231 pr_warning("failed: cant' open memory sysfs data\n"); 1232 return -1; 1233 } 1234 1235 for_each_memory(phys, dir) { 1236 size = max(phys, size); 1237 } 1238 1239 size++; 1240 1241 n->set = bitmap_alloc(size); 1242 if (!n->set) { 1243 closedir(dir); 1244 return -ENOMEM; 1245 } 1246 1247 n->node = idx; 1248 n->size = size; 1249 1250 rewinddir(dir); 1251 1252 for_each_memory(phys, dir) { 1253 set_bit(phys, n->set); 1254 } 1255 1256 closedir(dir); 1257 return 0; 1258 } 1259 1260 static int memory_node__sort(const void *a, const void *b) 1261 { 1262 const struct memory_node *na = a; 1263 const struct memory_node *nb = b; 1264 1265 return na->node - nb->node; 1266 } 1267 1268 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp) 1269 { 1270 char path[PATH_MAX]; 1271 struct dirent *ent; 1272 DIR *dir; 1273 u64 cnt = 0; 1274 int ret = 0; 1275 1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/", 1277 sysfs__mountpoint()); 1278 1279 dir = opendir(path); 1280 if (!dir) { 1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n", 1282 __func__, path); 1283 return -1; 1284 } 1285 1286 while (!ret && (ent = readdir(dir))) { 1287 unsigned int idx; 1288 int r; 1289 1290 if (!strcmp(ent->d_name, ".") || 1291 !strcmp(ent->d_name, "..")) 1292 continue; 1293 1294 r = sscanf(ent->d_name, "node%u", &idx); 1295 if (r != 1) 1296 continue; 1297 1298 if (WARN_ONCE(cnt >= size, 1299 "failed to write MEM_TOPOLOGY, way too many nodes\n")) 1300 return -1; 1301 1302 ret = memory_node__read(&nodes[cnt++], idx); 1303 } 1304 1305 *cntp = cnt; 1306 closedir(dir); 1307 1308 if (!ret) 1309 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort); 1310 1311 return ret; 1312 } 1313 1314 #define MAX_MEMORY_NODES 2000 1315 1316 /* 1317 * The MEM_TOPOLOGY holds physical memory map for every 1318 * node in system. The format of data is as follows: 1319 * 1320 * 0 - version | for future changes 1321 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes 1322 * 16 - count | number of nodes 1323 * 1324 * For each node we store map of physical indexes for 1325 * each node: 1326 * 1327 * 32 - node id | node index 1328 * 40 - size | size of bitmap 1329 * 48 - bitmap | bitmap of memory indexes that belongs to node 1330 */ 1331 static int write_mem_topology(struct feat_fd *ff __maybe_unused, 1332 struct evlist *evlist __maybe_unused) 1333 { 1334 static struct memory_node nodes[MAX_MEMORY_NODES]; 1335 u64 bsize, version = 1, i, nr; 1336 int ret; 1337 1338 ret = sysfs__read_xll("devices/system/memory/block_size_bytes", 1339 (unsigned long long *) &bsize); 1340 if (ret) 1341 return ret; 1342 1343 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr); 1344 if (ret) 1345 return ret; 1346 1347 ret = do_write(ff, &version, sizeof(version)); 1348 if (ret < 0) 1349 goto out; 1350 1351 ret = do_write(ff, &bsize, sizeof(bsize)); 1352 if (ret < 0) 1353 goto out; 1354 1355 ret = do_write(ff, &nr, sizeof(nr)); 1356 if (ret < 0) 1357 goto out; 1358 1359 for (i = 0; i < nr; i++) { 1360 struct memory_node *n = &nodes[i]; 1361 1362 #define _W(v) \ 1363 ret = do_write(ff, &n->v, sizeof(n->v)); \ 1364 if (ret < 0) \ 1365 goto out; 1366 1367 _W(node) 1368 _W(size) 1369 1370 #undef _W 1371 1372 ret = do_write_bitmap(ff, n->set, n->size); 1373 if (ret < 0) 1374 goto out; 1375 } 1376 1377 out: 1378 return ret; 1379 } 1380 1381 static int write_compressed(struct feat_fd *ff __maybe_unused, 1382 struct evlist *evlist __maybe_unused) 1383 { 1384 int ret; 1385 1386 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver)); 1387 if (ret) 1388 return ret; 1389 1390 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type)); 1391 if (ret) 1392 return ret; 1393 1394 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level)); 1395 if (ret) 1396 return ret; 1397 1398 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio)); 1399 if (ret) 1400 return ret; 1401 1402 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len)); 1403 } 1404 1405 static void print_hostname(struct feat_fd *ff, FILE *fp) 1406 { 1407 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname); 1408 } 1409 1410 static void print_osrelease(struct feat_fd *ff, FILE *fp) 1411 { 1412 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release); 1413 } 1414 1415 static void print_arch(struct feat_fd *ff, FILE *fp) 1416 { 1417 fprintf(fp, "# arch : %s\n", ff->ph->env.arch); 1418 } 1419 1420 static void print_cpudesc(struct feat_fd *ff, FILE *fp) 1421 { 1422 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc); 1423 } 1424 1425 static void print_nrcpus(struct feat_fd *ff, FILE *fp) 1426 { 1427 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online); 1428 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail); 1429 } 1430 1431 static void print_version(struct feat_fd *ff, FILE *fp) 1432 { 1433 fprintf(fp, "# perf version : %s\n", ff->ph->env.version); 1434 } 1435 1436 static void print_cmdline(struct feat_fd *ff, FILE *fp) 1437 { 1438 int nr, i; 1439 1440 nr = ff->ph->env.nr_cmdline; 1441 1442 fprintf(fp, "# cmdline : "); 1443 1444 for (i = 0; i < nr; i++) { 1445 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]); 1446 if (!argv_i) { 1447 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]); 1448 } else { 1449 char *mem = argv_i; 1450 do { 1451 char *quote = strchr(argv_i, '\''); 1452 if (!quote) 1453 break; 1454 *quote++ = '\0'; 1455 fprintf(fp, "%s\\\'", argv_i); 1456 argv_i = quote; 1457 } while (1); 1458 fprintf(fp, "%s ", argv_i); 1459 free(mem); 1460 } 1461 } 1462 fputc('\n', fp); 1463 } 1464 1465 static void print_cpu_topology(struct feat_fd *ff, FILE *fp) 1466 { 1467 struct perf_header *ph = ff->ph; 1468 int cpu_nr = ph->env.nr_cpus_avail; 1469 int nr, i; 1470 char *str; 1471 1472 nr = ph->env.nr_sibling_cores; 1473 str = ph->env.sibling_cores; 1474 1475 for (i = 0; i < nr; i++) { 1476 fprintf(fp, "# sibling sockets : %s\n", str); 1477 str += strlen(str) + 1; 1478 } 1479 1480 if (ph->env.nr_sibling_dies) { 1481 nr = ph->env.nr_sibling_dies; 1482 str = ph->env.sibling_dies; 1483 1484 for (i = 0; i < nr; i++) { 1485 fprintf(fp, "# sibling dies : %s\n", str); 1486 str += strlen(str) + 1; 1487 } 1488 } 1489 1490 nr = ph->env.nr_sibling_threads; 1491 str = ph->env.sibling_threads; 1492 1493 for (i = 0; i < nr; i++) { 1494 fprintf(fp, "# sibling threads : %s\n", str); 1495 str += strlen(str) + 1; 1496 } 1497 1498 if (ph->env.nr_sibling_dies) { 1499 if (ph->env.cpu != NULL) { 1500 for (i = 0; i < cpu_nr; i++) 1501 fprintf(fp, "# CPU %d: Core ID %d, " 1502 "Die ID %d, Socket ID %d\n", 1503 i, ph->env.cpu[i].core_id, 1504 ph->env.cpu[i].die_id, 1505 ph->env.cpu[i].socket_id); 1506 } else 1507 fprintf(fp, "# Core ID, Die ID and Socket ID " 1508 "information is not available\n"); 1509 } else { 1510 if (ph->env.cpu != NULL) { 1511 for (i = 0; i < cpu_nr; i++) 1512 fprintf(fp, "# CPU %d: Core ID %d, " 1513 "Socket ID %d\n", 1514 i, ph->env.cpu[i].core_id, 1515 ph->env.cpu[i].socket_id); 1516 } else 1517 fprintf(fp, "# Core ID and Socket ID " 1518 "information is not available\n"); 1519 } 1520 } 1521 1522 static void print_clockid(struct feat_fd *ff, FILE *fp) 1523 { 1524 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n", 1525 ff->ph->env.clockid_res_ns * 1000); 1526 } 1527 1528 static void print_dir_format(struct feat_fd *ff, FILE *fp) 1529 { 1530 struct perf_session *session; 1531 struct perf_data *data; 1532 1533 session = container_of(ff->ph, struct perf_session, header); 1534 data = session->data; 1535 1536 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version); 1537 } 1538 1539 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp) 1540 { 1541 struct perf_env *env = &ff->ph->env; 1542 struct rb_root *root; 1543 struct rb_node *next; 1544 1545 down_read(&env->bpf_progs.lock); 1546 1547 root = &env->bpf_progs.infos; 1548 next = rb_first(root); 1549 1550 while (next) { 1551 struct bpf_prog_info_node *node; 1552 1553 node = rb_entry(next, struct bpf_prog_info_node, rb_node); 1554 next = rb_next(&node->rb_node); 1555 1556 bpf_event__print_bpf_prog_info(&node->info_linear->info, 1557 env, fp); 1558 } 1559 1560 up_read(&env->bpf_progs.lock); 1561 } 1562 1563 static void print_bpf_btf(struct feat_fd *ff, FILE *fp) 1564 { 1565 struct perf_env *env = &ff->ph->env; 1566 struct rb_root *root; 1567 struct rb_node *next; 1568 1569 down_read(&env->bpf_progs.lock); 1570 1571 root = &env->bpf_progs.btfs; 1572 next = rb_first(root); 1573 1574 while (next) { 1575 struct btf_node *node; 1576 1577 node = rb_entry(next, struct btf_node, rb_node); 1578 next = rb_next(&node->rb_node); 1579 fprintf(fp, "# btf info of id %u\n", node->id); 1580 } 1581 1582 up_read(&env->bpf_progs.lock); 1583 } 1584 1585 static void free_event_desc(struct evsel *events) 1586 { 1587 struct evsel *evsel; 1588 1589 if (!events) 1590 return; 1591 1592 for (evsel = events; evsel->core.attr.size; evsel++) { 1593 zfree(&evsel->name); 1594 zfree(&evsel->core.id); 1595 } 1596 1597 free(events); 1598 } 1599 1600 static struct evsel *read_event_desc(struct feat_fd *ff) 1601 { 1602 struct evsel *evsel, *events = NULL; 1603 u64 *id; 1604 void *buf = NULL; 1605 u32 nre, sz, nr, i, j; 1606 size_t msz; 1607 1608 /* number of events */ 1609 if (do_read_u32(ff, &nre)) 1610 goto error; 1611 1612 if (do_read_u32(ff, &sz)) 1613 goto error; 1614 1615 /* buffer to hold on file attr struct */ 1616 buf = malloc(sz); 1617 if (!buf) 1618 goto error; 1619 1620 /* the last event terminates with evsel->core.attr.size == 0: */ 1621 events = calloc(nre + 1, sizeof(*events)); 1622 if (!events) 1623 goto error; 1624 1625 msz = sizeof(evsel->core.attr); 1626 if (sz < msz) 1627 msz = sz; 1628 1629 for (i = 0, evsel = events; i < nre; evsel++, i++) { 1630 evsel->idx = i; 1631 1632 /* 1633 * must read entire on-file attr struct to 1634 * sync up with layout. 1635 */ 1636 if (__do_read(ff, buf, sz)) 1637 goto error; 1638 1639 if (ff->ph->needs_swap) 1640 perf_event__attr_swap(buf); 1641 1642 memcpy(&evsel->core.attr, buf, msz); 1643 1644 if (do_read_u32(ff, &nr)) 1645 goto error; 1646 1647 if (ff->ph->needs_swap) 1648 evsel->needs_swap = true; 1649 1650 evsel->name = do_read_string(ff); 1651 if (!evsel->name) 1652 goto error; 1653 1654 if (!nr) 1655 continue; 1656 1657 id = calloc(nr, sizeof(*id)); 1658 if (!id) 1659 goto error; 1660 evsel->core.ids = nr; 1661 evsel->core.id = id; 1662 1663 for (j = 0 ; j < nr; j++) { 1664 if (do_read_u64(ff, id)) 1665 goto error; 1666 id++; 1667 } 1668 } 1669 out: 1670 free(buf); 1671 return events; 1672 error: 1673 free_event_desc(events); 1674 events = NULL; 1675 goto out; 1676 } 1677 1678 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val, 1679 void *priv __maybe_unused) 1680 { 1681 return fprintf(fp, ", %s = %s", name, val); 1682 } 1683 1684 static void print_event_desc(struct feat_fd *ff, FILE *fp) 1685 { 1686 struct evsel *evsel, *events; 1687 u32 j; 1688 u64 *id; 1689 1690 if (ff->events) 1691 events = ff->events; 1692 else 1693 events = read_event_desc(ff); 1694 1695 if (!events) { 1696 fprintf(fp, "# event desc: not available or unable to read\n"); 1697 return; 1698 } 1699 1700 for (evsel = events; evsel->core.attr.size; evsel++) { 1701 fprintf(fp, "# event : name = %s, ", evsel->name); 1702 1703 if (evsel->core.ids) { 1704 fprintf(fp, ", id = {"); 1705 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) { 1706 if (j) 1707 fputc(',', fp); 1708 fprintf(fp, " %"PRIu64, *id); 1709 } 1710 fprintf(fp, " }"); 1711 } 1712 1713 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL); 1714 1715 fputc('\n', fp); 1716 } 1717 1718 free_event_desc(events); 1719 ff->events = NULL; 1720 } 1721 1722 static void print_total_mem(struct feat_fd *ff, FILE *fp) 1723 { 1724 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem); 1725 } 1726 1727 static void print_numa_topology(struct feat_fd *ff, FILE *fp) 1728 { 1729 int i; 1730 struct numa_node *n; 1731 1732 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) { 1733 n = &ff->ph->env.numa_nodes[i]; 1734 1735 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," 1736 " free = %"PRIu64" kB\n", 1737 n->node, n->mem_total, n->mem_free); 1738 1739 fprintf(fp, "# node%u cpu list : ", n->node); 1740 cpu_map__fprintf(n->map, fp); 1741 } 1742 } 1743 1744 static void print_cpuid(struct feat_fd *ff, FILE *fp) 1745 { 1746 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid); 1747 } 1748 1749 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp) 1750 { 1751 fprintf(fp, "# contains samples with branch stack\n"); 1752 } 1753 1754 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp) 1755 { 1756 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n"); 1757 } 1758 1759 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp) 1760 { 1761 fprintf(fp, "# contains stat data\n"); 1762 } 1763 1764 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused) 1765 { 1766 int i; 1767 1768 fprintf(fp, "# CPU cache info:\n"); 1769 for (i = 0; i < ff->ph->env.caches_cnt; i++) { 1770 fprintf(fp, "# "); 1771 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]); 1772 } 1773 } 1774 1775 static void print_compressed(struct feat_fd *ff, FILE *fp) 1776 { 1777 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n", 1778 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown", 1779 ff->ph->env.comp_level, ff->ph->env.comp_ratio); 1780 } 1781 1782 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp) 1783 { 1784 const char *delimiter = "# pmu mappings: "; 1785 char *str, *tmp; 1786 u32 pmu_num; 1787 u32 type; 1788 1789 pmu_num = ff->ph->env.nr_pmu_mappings; 1790 if (!pmu_num) { 1791 fprintf(fp, "# pmu mappings: not available\n"); 1792 return; 1793 } 1794 1795 str = ff->ph->env.pmu_mappings; 1796 1797 while (pmu_num) { 1798 type = strtoul(str, &tmp, 0); 1799 if (*tmp != ':') 1800 goto error; 1801 1802 str = tmp + 1; 1803 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); 1804 1805 delimiter = ", "; 1806 str += strlen(str) + 1; 1807 pmu_num--; 1808 } 1809 1810 fprintf(fp, "\n"); 1811 1812 if (!pmu_num) 1813 return; 1814 error: 1815 fprintf(fp, "# pmu mappings: unable to read\n"); 1816 } 1817 1818 static void print_group_desc(struct feat_fd *ff, FILE *fp) 1819 { 1820 struct perf_session *session; 1821 struct evsel *evsel; 1822 u32 nr = 0; 1823 1824 session = container_of(ff->ph, struct perf_session, header); 1825 1826 evlist__for_each_entry(session->evlist, evsel) { 1827 if (perf_evsel__is_group_leader(evsel) && 1828 evsel->core.nr_members > 1) { 1829 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", 1830 perf_evsel__name(evsel)); 1831 1832 nr = evsel->core.nr_members - 1; 1833 } else if (nr) { 1834 fprintf(fp, ",%s", perf_evsel__name(evsel)); 1835 1836 if (--nr == 0) 1837 fprintf(fp, "}\n"); 1838 } 1839 } 1840 } 1841 1842 static void print_sample_time(struct feat_fd *ff, FILE *fp) 1843 { 1844 struct perf_session *session; 1845 char time_buf[32]; 1846 double d; 1847 1848 session = container_of(ff->ph, struct perf_session, header); 1849 1850 timestamp__scnprintf_usec(session->evlist->first_sample_time, 1851 time_buf, sizeof(time_buf)); 1852 fprintf(fp, "# time of first sample : %s\n", time_buf); 1853 1854 timestamp__scnprintf_usec(session->evlist->last_sample_time, 1855 time_buf, sizeof(time_buf)); 1856 fprintf(fp, "# time of last sample : %s\n", time_buf); 1857 1858 d = (double)(session->evlist->last_sample_time - 1859 session->evlist->first_sample_time) / NSEC_PER_MSEC; 1860 1861 fprintf(fp, "# sample duration : %10.3f ms\n", d); 1862 } 1863 1864 static void memory_node__fprintf(struct memory_node *n, 1865 unsigned long long bsize, FILE *fp) 1866 { 1867 char buf_map[100], buf_size[50]; 1868 unsigned long long size; 1869 1870 size = bsize * bitmap_weight(n->set, n->size); 1871 unit_number__scnprintf(buf_size, 50, size); 1872 1873 bitmap_scnprintf(n->set, n->size, buf_map, 100); 1874 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map); 1875 } 1876 1877 static void print_mem_topology(struct feat_fd *ff, FILE *fp) 1878 { 1879 struct memory_node *nodes; 1880 int i, nr; 1881 1882 nodes = ff->ph->env.memory_nodes; 1883 nr = ff->ph->env.nr_memory_nodes; 1884 1885 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n", 1886 nr, ff->ph->env.memory_bsize); 1887 1888 for (i = 0; i < nr; i++) { 1889 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp); 1890 } 1891 } 1892 1893 static int __event_process_build_id(struct perf_record_header_build_id *bev, 1894 char *filename, 1895 struct perf_session *session) 1896 { 1897 int err = -1; 1898 struct machine *machine; 1899 u16 cpumode; 1900 struct dso *dso; 1901 enum dso_kernel_type dso_type; 1902 1903 machine = perf_session__findnew_machine(session, bev->pid); 1904 if (!machine) 1905 goto out; 1906 1907 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; 1908 1909 switch (cpumode) { 1910 case PERF_RECORD_MISC_KERNEL: 1911 dso_type = DSO_TYPE_KERNEL; 1912 break; 1913 case PERF_RECORD_MISC_GUEST_KERNEL: 1914 dso_type = DSO_TYPE_GUEST_KERNEL; 1915 break; 1916 case PERF_RECORD_MISC_USER: 1917 case PERF_RECORD_MISC_GUEST_USER: 1918 dso_type = DSO_TYPE_USER; 1919 break; 1920 default: 1921 goto out; 1922 } 1923 1924 dso = machine__findnew_dso(machine, filename); 1925 if (dso != NULL) { 1926 char sbuild_id[SBUILD_ID_SIZE]; 1927 1928 dso__set_build_id(dso, &bev->build_id); 1929 1930 if (dso_type != DSO_TYPE_USER) { 1931 struct kmod_path m = { .name = NULL, }; 1932 1933 if (!kmod_path__parse_name(&m, filename) && m.kmod) 1934 dso__set_module_info(dso, &m, machine); 1935 else 1936 dso->kernel = dso_type; 1937 1938 free(m.name); 1939 } 1940 1941 build_id__sprintf(dso->build_id, sizeof(dso->build_id), 1942 sbuild_id); 1943 pr_debug("build id event received for %s: %s\n", 1944 dso->long_name, sbuild_id); 1945 dso__put(dso); 1946 } 1947 1948 err = 0; 1949 out: 1950 return err; 1951 } 1952 1953 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, 1954 int input, u64 offset, u64 size) 1955 { 1956 struct perf_session *session = container_of(header, struct perf_session, header); 1957 struct { 1958 struct perf_event_header header; 1959 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; 1960 char filename[0]; 1961 } old_bev; 1962 struct perf_record_header_build_id bev; 1963 char filename[PATH_MAX]; 1964 u64 limit = offset + size; 1965 1966 while (offset < limit) { 1967 ssize_t len; 1968 1969 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) 1970 return -1; 1971 1972 if (header->needs_swap) 1973 perf_event_header__bswap(&old_bev.header); 1974 1975 len = old_bev.header.size - sizeof(old_bev); 1976 if (readn(input, filename, len) != len) 1977 return -1; 1978 1979 bev.header = old_bev.header; 1980 1981 /* 1982 * As the pid is the missing value, we need to fill 1983 * it properly. The header.misc value give us nice hint. 1984 */ 1985 bev.pid = HOST_KERNEL_ID; 1986 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || 1987 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) 1988 bev.pid = DEFAULT_GUEST_KERNEL_ID; 1989 1990 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); 1991 __event_process_build_id(&bev, filename, session); 1992 1993 offset += bev.header.size; 1994 } 1995 1996 return 0; 1997 } 1998 1999 static int perf_header__read_build_ids(struct perf_header *header, 2000 int input, u64 offset, u64 size) 2001 { 2002 struct perf_session *session = container_of(header, struct perf_session, header); 2003 struct perf_record_header_build_id bev; 2004 char filename[PATH_MAX]; 2005 u64 limit = offset + size, orig_offset = offset; 2006 int err = -1; 2007 2008 while (offset < limit) { 2009 ssize_t len; 2010 2011 if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) 2012 goto out; 2013 2014 if (header->needs_swap) 2015 perf_event_header__bswap(&bev.header); 2016 2017 len = bev.header.size - sizeof(bev); 2018 if (readn(input, filename, len) != len) 2019 goto out; 2020 /* 2021 * The a1645ce1 changeset: 2022 * 2023 * "perf: 'perf kvm' tool for monitoring guest performance from host" 2024 * 2025 * Added a field to struct perf_record_header_build_id that broke the file 2026 * format. 2027 * 2028 * Since the kernel build-id is the first entry, process the 2029 * table using the old format if the well known 2030 * '[kernel.kallsyms]' string for the kernel build-id has the 2031 * first 4 characters chopped off (where the pid_t sits). 2032 */ 2033 if (memcmp(filename, "nel.kallsyms]", 13) == 0) { 2034 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) 2035 return -1; 2036 return perf_header__read_build_ids_abi_quirk(header, input, offset, size); 2037 } 2038 2039 __event_process_build_id(&bev, filename, session); 2040 2041 offset += bev.header.size; 2042 } 2043 err = 0; 2044 out: 2045 return err; 2046 } 2047 2048 /* Macro for features that simply need to read and store a string. */ 2049 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \ 2050 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \ 2051 {\ 2052 ff->ph->env.__feat_env = do_read_string(ff); \ 2053 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \ 2054 } 2055 2056 FEAT_PROCESS_STR_FUN(hostname, hostname); 2057 FEAT_PROCESS_STR_FUN(osrelease, os_release); 2058 FEAT_PROCESS_STR_FUN(version, version); 2059 FEAT_PROCESS_STR_FUN(arch, arch); 2060 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc); 2061 FEAT_PROCESS_STR_FUN(cpuid, cpuid); 2062 2063 static int process_tracing_data(struct feat_fd *ff, void *data) 2064 { 2065 ssize_t ret = trace_report(ff->fd, data, false); 2066 2067 return ret < 0 ? -1 : 0; 2068 } 2069 2070 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused) 2071 { 2072 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size)) 2073 pr_debug("Failed to read buildids, continuing...\n"); 2074 return 0; 2075 } 2076 2077 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused) 2078 { 2079 int ret; 2080 u32 nr_cpus_avail, nr_cpus_online; 2081 2082 ret = do_read_u32(ff, &nr_cpus_avail); 2083 if (ret) 2084 return ret; 2085 2086 ret = do_read_u32(ff, &nr_cpus_online); 2087 if (ret) 2088 return ret; 2089 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail; 2090 ff->ph->env.nr_cpus_online = (int)nr_cpus_online; 2091 return 0; 2092 } 2093 2094 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused) 2095 { 2096 u64 total_mem; 2097 int ret; 2098 2099 ret = do_read_u64(ff, &total_mem); 2100 if (ret) 2101 return -1; 2102 ff->ph->env.total_mem = (unsigned long long)total_mem; 2103 return 0; 2104 } 2105 2106 static struct evsel * 2107 perf_evlist__find_by_index(struct evlist *evlist, int idx) 2108 { 2109 struct evsel *evsel; 2110 2111 evlist__for_each_entry(evlist, evsel) { 2112 if (evsel->idx == idx) 2113 return evsel; 2114 } 2115 2116 return NULL; 2117 } 2118 2119 static void 2120 perf_evlist__set_event_name(struct evlist *evlist, 2121 struct evsel *event) 2122 { 2123 struct evsel *evsel; 2124 2125 if (!event->name) 2126 return; 2127 2128 evsel = perf_evlist__find_by_index(evlist, event->idx); 2129 if (!evsel) 2130 return; 2131 2132 if (evsel->name) 2133 return; 2134 2135 evsel->name = strdup(event->name); 2136 } 2137 2138 static int 2139 process_event_desc(struct feat_fd *ff, void *data __maybe_unused) 2140 { 2141 struct perf_session *session; 2142 struct evsel *evsel, *events = read_event_desc(ff); 2143 2144 if (!events) 2145 return 0; 2146 2147 session = container_of(ff->ph, struct perf_session, header); 2148 2149 if (session->data->is_pipe) { 2150 /* Save events for reading later by print_event_desc, 2151 * since they can't be read again in pipe mode. */ 2152 ff->events = events; 2153 } 2154 2155 for (evsel = events; evsel->core.attr.size; evsel++) 2156 perf_evlist__set_event_name(session->evlist, evsel); 2157 2158 if (!session->data->is_pipe) 2159 free_event_desc(events); 2160 2161 return 0; 2162 } 2163 2164 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused) 2165 { 2166 char *str, *cmdline = NULL, **argv = NULL; 2167 u32 nr, i, len = 0; 2168 2169 if (do_read_u32(ff, &nr)) 2170 return -1; 2171 2172 ff->ph->env.nr_cmdline = nr; 2173 2174 cmdline = zalloc(ff->size + nr + 1); 2175 if (!cmdline) 2176 return -1; 2177 2178 argv = zalloc(sizeof(char *) * (nr + 1)); 2179 if (!argv) 2180 goto error; 2181 2182 for (i = 0; i < nr; i++) { 2183 str = do_read_string(ff); 2184 if (!str) 2185 goto error; 2186 2187 argv[i] = cmdline + len; 2188 memcpy(argv[i], str, strlen(str) + 1); 2189 len += strlen(str) + 1; 2190 free(str); 2191 } 2192 ff->ph->env.cmdline = cmdline; 2193 ff->ph->env.cmdline_argv = (const char **) argv; 2194 return 0; 2195 2196 error: 2197 free(argv); 2198 free(cmdline); 2199 return -1; 2200 } 2201 2202 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused) 2203 { 2204 u32 nr, i; 2205 char *str; 2206 struct strbuf sb; 2207 int cpu_nr = ff->ph->env.nr_cpus_avail; 2208 u64 size = 0; 2209 struct perf_header *ph = ff->ph; 2210 bool do_core_id_test = true; 2211 2212 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu)); 2213 if (!ph->env.cpu) 2214 return -1; 2215 2216 if (do_read_u32(ff, &nr)) 2217 goto free_cpu; 2218 2219 ph->env.nr_sibling_cores = nr; 2220 size += sizeof(u32); 2221 if (strbuf_init(&sb, 128) < 0) 2222 goto free_cpu; 2223 2224 for (i = 0; i < nr; i++) { 2225 str = do_read_string(ff); 2226 if (!str) 2227 goto error; 2228 2229 /* include a NULL character at the end */ 2230 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2231 goto error; 2232 size += string_size(str); 2233 free(str); 2234 } 2235 ph->env.sibling_cores = strbuf_detach(&sb, NULL); 2236 2237 if (do_read_u32(ff, &nr)) 2238 return -1; 2239 2240 ph->env.nr_sibling_threads = nr; 2241 size += sizeof(u32); 2242 2243 for (i = 0; i < nr; i++) { 2244 str = do_read_string(ff); 2245 if (!str) 2246 goto error; 2247 2248 /* include a NULL character at the end */ 2249 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2250 goto error; 2251 size += string_size(str); 2252 free(str); 2253 } 2254 ph->env.sibling_threads = strbuf_detach(&sb, NULL); 2255 2256 /* 2257 * The header may be from old perf, 2258 * which doesn't include core id and socket id information. 2259 */ 2260 if (ff->size <= size) { 2261 zfree(&ph->env.cpu); 2262 return 0; 2263 } 2264 2265 /* On s390 the socket_id number is not related to the numbers of cpus. 2266 * The socket_id number might be higher than the numbers of cpus. 2267 * This depends on the configuration. 2268 * AArch64 is the same. 2269 */ 2270 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4) 2271 || !strncmp(ph->env.arch, "aarch64", 7))) 2272 do_core_id_test = false; 2273 2274 for (i = 0; i < (u32)cpu_nr; i++) { 2275 if (do_read_u32(ff, &nr)) 2276 goto free_cpu; 2277 2278 ph->env.cpu[i].core_id = nr; 2279 size += sizeof(u32); 2280 2281 if (do_read_u32(ff, &nr)) 2282 goto free_cpu; 2283 2284 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) { 2285 pr_debug("socket_id number is too big." 2286 "You may need to upgrade the perf tool.\n"); 2287 goto free_cpu; 2288 } 2289 2290 ph->env.cpu[i].socket_id = nr; 2291 size += sizeof(u32); 2292 } 2293 2294 /* 2295 * The header may be from old perf, 2296 * which doesn't include die information. 2297 */ 2298 if (ff->size <= size) 2299 return 0; 2300 2301 if (do_read_u32(ff, &nr)) 2302 return -1; 2303 2304 ph->env.nr_sibling_dies = nr; 2305 size += sizeof(u32); 2306 2307 for (i = 0; i < nr; i++) { 2308 str = do_read_string(ff); 2309 if (!str) 2310 goto error; 2311 2312 /* include a NULL character at the end */ 2313 if (strbuf_add(&sb, str, strlen(str) + 1) < 0) 2314 goto error; 2315 size += string_size(str); 2316 free(str); 2317 } 2318 ph->env.sibling_dies = strbuf_detach(&sb, NULL); 2319 2320 for (i = 0; i < (u32)cpu_nr; i++) { 2321 if (do_read_u32(ff, &nr)) 2322 goto free_cpu; 2323 2324 ph->env.cpu[i].die_id = nr; 2325 } 2326 2327 return 0; 2328 2329 error: 2330 strbuf_release(&sb); 2331 free_cpu: 2332 zfree(&ph->env.cpu); 2333 return -1; 2334 } 2335 2336 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused) 2337 { 2338 struct numa_node *nodes, *n; 2339 u32 nr, i; 2340 char *str; 2341 2342 /* nr nodes */ 2343 if (do_read_u32(ff, &nr)) 2344 return -1; 2345 2346 nodes = zalloc(sizeof(*nodes) * nr); 2347 if (!nodes) 2348 return -ENOMEM; 2349 2350 for (i = 0; i < nr; i++) { 2351 n = &nodes[i]; 2352 2353 /* node number */ 2354 if (do_read_u32(ff, &n->node)) 2355 goto error; 2356 2357 if (do_read_u64(ff, &n->mem_total)) 2358 goto error; 2359 2360 if (do_read_u64(ff, &n->mem_free)) 2361 goto error; 2362 2363 str = do_read_string(ff); 2364 if (!str) 2365 goto error; 2366 2367 n->map = perf_cpu_map__new(str); 2368 if (!n->map) 2369 goto error; 2370 2371 free(str); 2372 } 2373 ff->ph->env.nr_numa_nodes = nr; 2374 ff->ph->env.numa_nodes = nodes; 2375 return 0; 2376 2377 error: 2378 free(nodes); 2379 return -1; 2380 } 2381 2382 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused) 2383 { 2384 char *name; 2385 u32 pmu_num; 2386 u32 type; 2387 struct strbuf sb; 2388 2389 if (do_read_u32(ff, &pmu_num)) 2390 return -1; 2391 2392 if (!pmu_num) { 2393 pr_debug("pmu mappings not available\n"); 2394 return 0; 2395 } 2396 2397 ff->ph->env.nr_pmu_mappings = pmu_num; 2398 if (strbuf_init(&sb, 128) < 0) 2399 return -1; 2400 2401 while (pmu_num) { 2402 if (do_read_u32(ff, &type)) 2403 goto error; 2404 2405 name = do_read_string(ff); 2406 if (!name) 2407 goto error; 2408 2409 if (strbuf_addf(&sb, "%u:%s", type, name) < 0) 2410 goto error; 2411 /* include a NULL character at the end */ 2412 if (strbuf_add(&sb, "", 1) < 0) 2413 goto error; 2414 2415 if (!strcmp(name, "msr")) 2416 ff->ph->env.msr_pmu_type = type; 2417 2418 free(name); 2419 pmu_num--; 2420 } 2421 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL); 2422 return 0; 2423 2424 error: 2425 strbuf_release(&sb); 2426 return -1; 2427 } 2428 2429 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused) 2430 { 2431 size_t ret = -1; 2432 u32 i, nr, nr_groups; 2433 struct perf_session *session; 2434 struct evsel *evsel, *leader = NULL; 2435 struct group_desc { 2436 char *name; 2437 u32 leader_idx; 2438 u32 nr_members; 2439 } *desc; 2440 2441 if (do_read_u32(ff, &nr_groups)) 2442 return -1; 2443 2444 ff->ph->env.nr_groups = nr_groups; 2445 if (!nr_groups) { 2446 pr_debug("group desc not available\n"); 2447 return 0; 2448 } 2449 2450 desc = calloc(nr_groups, sizeof(*desc)); 2451 if (!desc) 2452 return -1; 2453 2454 for (i = 0; i < nr_groups; i++) { 2455 desc[i].name = do_read_string(ff); 2456 if (!desc[i].name) 2457 goto out_free; 2458 2459 if (do_read_u32(ff, &desc[i].leader_idx)) 2460 goto out_free; 2461 2462 if (do_read_u32(ff, &desc[i].nr_members)) 2463 goto out_free; 2464 } 2465 2466 /* 2467 * Rebuild group relationship based on the group_desc 2468 */ 2469 session = container_of(ff->ph, struct perf_session, header); 2470 session->evlist->nr_groups = nr_groups; 2471 2472 i = nr = 0; 2473 evlist__for_each_entry(session->evlist, evsel) { 2474 if (evsel->idx == (int) desc[i].leader_idx) { 2475 evsel->leader = evsel; 2476 /* {anon_group} is a dummy name */ 2477 if (strcmp(desc[i].name, "{anon_group}")) { 2478 evsel->group_name = desc[i].name; 2479 desc[i].name = NULL; 2480 } 2481 evsel->core.nr_members = desc[i].nr_members; 2482 2483 if (i >= nr_groups || nr > 0) { 2484 pr_debug("invalid group desc\n"); 2485 goto out_free; 2486 } 2487 2488 leader = evsel; 2489 nr = evsel->core.nr_members - 1; 2490 i++; 2491 } else if (nr) { 2492 /* This is a group member */ 2493 evsel->leader = leader; 2494 2495 nr--; 2496 } 2497 } 2498 2499 if (i != nr_groups || nr != 0) { 2500 pr_debug("invalid group desc\n"); 2501 goto out_free; 2502 } 2503 2504 ret = 0; 2505 out_free: 2506 for (i = 0; i < nr_groups; i++) 2507 zfree(&desc[i].name); 2508 free(desc); 2509 2510 return ret; 2511 } 2512 2513 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused) 2514 { 2515 struct perf_session *session; 2516 int err; 2517 2518 session = container_of(ff->ph, struct perf_session, header); 2519 2520 err = auxtrace_index__process(ff->fd, ff->size, session, 2521 ff->ph->needs_swap); 2522 if (err < 0) 2523 pr_err("Failed to process auxtrace index\n"); 2524 return err; 2525 } 2526 2527 static int process_cache(struct feat_fd *ff, void *data __maybe_unused) 2528 { 2529 struct cpu_cache_level *caches; 2530 u32 cnt, i, version; 2531 2532 if (do_read_u32(ff, &version)) 2533 return -1; 2534 2535 if (version != 1) 2536 return -1; 2537 2538 if (do_read_u32(ff, &cnt)) 2539 return -1; 2540 2541 caches = zalloc(sizeof(*caches) * cnt); 2542 if (!caches) 2543 return -1; 2544 2545 for (i = 0; i < cnt; i++) { 2546 struct cpu_cache_level c; 2547 2548 #define _R(v) \ 2549 if (do_read_u32(ff, &c.v))\ 2550 goto out_free_caches; \ 2551 2552 _R(level) 2553 _R(line_size) 2554 _R(sets) 2555 _R(ways) 2556 #undef _R 2557 2558 #define _R(v) \ 2559 c.v = do_read_string(ff); \ 2560 if (!c.v) \ 2561 goto out_free_caches; 2562 2563 _R(type) 2564 _R(size) 2565 _R(map) 2566 #undef _R 2567 2568 caches[i] = c; 2569 } 2570 2571 ff->ph->env.caches = caches; 2572 ff->ph->env.caches_cnt = cnt; 2573 return 0; 2574 out_free_caches: 2575 free(caches); 2576 return -1; 2577 } 2578 2579 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused) 2580 { 2581 struct perf_session *session; 2582 u64 first_sample_time, last_sample_time; 2583 int ret; 2584 2585 session = container_of(ff->ph, struct perf_session, header); 2586 2587 ret = do_read_u64(ff, &first_sample_time); 2588 if (ret) 2589 return -1; 2590 2591 ret = do_read_u64(ff, &last_sample_time); 2592 if (ret) 2593 return -1; 2594 2595 session->evlist->first_sample_time = first_sample_time; 2596 session->evlist->last_sample_time = last_sample_time; 2597 return 0; 2598 } 2599 2600 static int process_mem_topology(struct feat_fd *ff, 2601 void *data __maybe_unused) 2602 { 2603 struct memory_node *nodes; 2604 u64 version, i, nr, bsize; 2605 int ret = -1; 2606 2607 if (do_read_u64(ff, &version)) 2608 return -1; 2609 2610 if (version != 1) 2611 return -1; 2612 2613 if (do_read_u64(ff, &bsize)) 2614 return -1; 2615 2616 if (do_read_u64(ff, &nr)) 2617 return -1; 2618 2619 nodes = zalloc(sizeof(*nodes) * nr); 2620 if (!nodes) 2621 return -1; 2622 2623 for (i = 0; i < nr; i++) { 2624 struct memory_node n; 2625 2626 #define _R(v) \ 2627 if (do_read_u64(ff, &n.v)) \ 2628 goto out; \ 2629 2630 _R(node) 2631 _R(size) 2632 2633 #undef _R 2634 2635 if (do_read_bitmap(ff, &n.set, &n.size)) 2636 goto out; 2637 2638 nodes[i] = n; 2639 } 2640 2641 ff->ph->env.memory_bsize = bsize; 2642 ff->ph->env.memory_nodes = nodes; 2643 ff->ph->env.nr_memory_nodes = nr; 2644 ret = 0; 2645 2646 out: 2647 if (ret) 2648 free(nodes); 2649 return ret; 2650 } 2651 2652 static int process_clockid(struct feat_fd *ff, 2653 void *data __maybe_unused) 2654 { 2655 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns)) 2656 return -1; 2657 2658 return 0; 2659 } 2660 2661 static int process_dir_format(struct feat_fd *ff, 2662 void *_data __maybe_unused) 2663 { 2664 struct perf_session *session; 2665 struct perf_data *data; 2666 2667 session = container_of(ff->ph, struct perf_session, header); 2668 data = session->data; 2669 2670 if (WARN_ON(!perf_data__is_dir(data))) 2671 return -1; 2672 2673 return do_read_u64(ff, &data->dir.version); 2674 } 2675 2676 #ifdef HAVE_LIBBPF_SUPPORT 2677 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused) 2678 { 2679 struct bpf_prog_info_linear *info_linear; 2680 struct bpf_prog_info_node *info_node; 2681 struct perf_env *env = &ff->ph->env; 2682 u32 count, i; 2683 int err = -1; 2684 2685 if (ff->ph->needs_swap) { 2686 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n"); 2687 return 0; 2688 } 2689 2690 if (do_read_u32(ff, &count)) 2691 return -1; 2692 2693 down_write(&env->bpf_progs.lock); 2694 2695 for (i = 0; i < count; ++i) { 2696 u32 info_len, data_len; 2697 2698 info_linear = NULL; 2699 info_node = NULL; 2700 if (do_read_u32(ff, &info_len)) 2701 goto out; 2702 if (do_read_u32(ff, &data_len)) 2703 goto out; 2704 2705 if (info_len > sizeof(struct bpf_prog_info)) { 2706 pr_warning("detected invalid bpf_prog_info\n"); 2707 goto out; 2708 } 2709 2710 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + 2711 data_len); 2712 if (!info_linear) 2713 goto out; 2714 info_linear->info_len = sizeof(struct bpf_prog_info); 2715 info_linear->data_len = data_len; 2716 if (do_read_u64(ff, (u64 *)(&info_linear->arrays))) 2717 goto out; 2718 if (__do_read(ff, &info_linear->info, info_len)) 2719 goto out; 2720 if (info_len < sizeof(struct bpf_prog_info)) 2721 memset(((void *)(&info_linear->info)) + info_len, 0, 2722 sizeof(struct bpf_prog_info) - info_len); 2723 2724 if (__do_read(ff, info_linear->data, data_len)) 2725 goto out; 2726 2727 info_node = malloc(sizeof(struct bpf_prog_info_node)); 2728 if (!info_node) 2729 goto out; 2730 2731 /* after reading from file, translate offset to address */ 2732 bpf_program__bpil_offs_to_addr(info_linear); 2733 info_node->info_linear = info_linear; 2734 perf_env__insert_bpf_prog_info(env, info_node); 2735 } 2736 2737 up_write(&env->bpf_progs.lock); 2738 return 0; 2739 out: 2740 free(info_linear); 2741 free(info_node); 2742 up_write(&env->bpf_progs.lock); 2743 return err; 2744 } 2745 #else // HAVE_LIBBPF_SUPPORT 2746 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused) 2747 { 2748 return 0; 2749 } 2750 #endif // HAVE_LIBBPF_SUPPORT 2751 2752 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused) 2753 { 2754 struct perf_env *env = &ff->ph->env; 2755 struct btf_node *node = NULL; 2756 u32 count, i; 2757 int err = -1; 2758 2759 if (ff->ph->needs_swap) { 2760 pr_warning("interpreting btf from systems with endianity is not yet supported\n"); 2761 return 0; 2762 } 2763 2764 if (do_read_u32(ff, &count)) 2765 return -1; 2766 2767 down_write(&env->bpf_progs.lock); 2768 2769 for (i = 0; i < count; ++i) { 2770 u32 id, data_size; 2771 2772 if (do_read_u32(ff, &id)) 2773 goto out; 2774 if (do_read_u32(ff, &data_size)) 2775 goto out; 2776 2777 node = malloc(sizeof(struct btf_node) + data_size); 2778 if (!node) 2779 goto out; 2780 2781 node->id = id; 2782 node->data_size = data_size; 2783 2784 if (__do_read(ff, node->data, data_size)) 2785 goto out; 2786 2787 perf_env__insert_btf(env, node); 2788 node = NULL; 2789 } 2790 2791 err = 0; 2792 out: 2793 up_write(&env->bpf_progs.lock); 2794 free(node); 2795 return err; 2796 } 2797 2798 static int process_compressed(struct feat_fd *ff, 2799 void *data __maybe_unused) 2800 { 2801 if (do_read_u32(ff, &(ff->ph->env.comp_ver))) 2802 return -1; 2803 2804 if (do_read_u32(ff, &(ff->ph->env.comp_type))) 2805 return -1; 2806 2807 if (do_read_u32(ff, &(ff->ph->env.comp_level))) 2808 return -1; 2809 2810 if (do_read_u32(ff, &(ff->ph->env.comp_ratio))) 2811 return -1; 2812 2813 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len))) 2814 return -1; 2815 2816 return 0; 2817 } 2818 2819 #define FEAT_OPR(n, func, __full_only) \ 2820 [HEADER_##n] = { \ 2821 .name = __stringify(n), \ 2822 .write = write_##func, \ 2823 .print = print_##func, \ 2824 .full_only = __full_only, \ 2825 .process = process_##func, \ 2826 .synthesize = true \ 2827 } 2828 2829 #define FEAT_OPN(n, func, __full_only) \ 2830 [HEADER_##n] = { \ 2831 .name = __stringify(n), \ 2832 .write = write_##func, \ 2833 .print = print_##func, \ 2834 .full_only = __full_only, \ 2835 .process = process_##func \ 2836 } 2837 2838 /* feature_ops not implemented: */ 2839 #define print_tracing_data NULL 2840 #define print_build_id NULL 2841 2842 #define process_branch_stack NULL 2843 #define process_stat NULL 2844 2845 // Only used in util/synthetic-events.c 2846 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE]; 2847 2848 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = { 2849 FEAT_OPN(TRACING_DATA, tracing_data, false), 2850 FEAT_OPN(BUILD_ID, build_id, false), 2851 FEAT_OPR(HOSTNAME, hostname, false), 2852 FEAT_OPR(OSRELEASE, osrelease, false), 2853 FEAT_OPR(VERSION, version, false), 2854 FEAT_OPR(ARCH, arch, false), 2855 FEAT_OPR(NRCPUS, nrcpus, false), 2856 FEAT_OPR(CPUDESC, cpudesc, false), 2857 FEAT_OPR(CPUID, cpuid, false), 2858 FEAT_OPR(TOTAL_MEM, total_mem, false), 2859 FEAT_OPR(EVENT_DESC, event_desc, false), 2860 FEAT_OPR(CMDLINE, cmdline, false), 2861 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true), 2862 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true), 2863 FEAT_OPN(BRANCH_STACK, branch_stack, false), 2864 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false), 2865 FEAT_OPR(GROUP_DESC, group_desc, false), 2866 FEAT_OPN(AUXTRACE, auxtrace, false), 2867 FEAT_OPN(STAT, stat, false), 2868 FEAT_OPN(CACHE, cache, true), 2869 FEAT_OPR(SAMPLE_TIME, sample_time, false), 2870 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true), 2871 FEAT_OPR(CLOCKID, clockid, false), 2872 FEAT_OPN(DIR_FORMAT, dir_format, false), 2873 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false), 2874 FEAT_OPR(BPF_BTF, bpf_btf, false), 2875 FEAT_OPR(COMPRESSED, compressed, false), 2876 }; 2877 2878 struct header_print_data { 2879 FILE *fp; 2880 bool full; /* extended list of headers */ 2881 }; 2882 2883 static int perf_file_section__fprintf_info(struct perf_file_section *section, 2884 struct perf_header *ph, 2885 int feat, int fd, void *data) 2886 { 2887 struct header_print_data *hd = data; 2888 struct feat_fd ff; 2889 2890 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 2891 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 2892 "%d, continuing...\n", section->offset, feat); 2893 return 0; 2894 } 2895 if (feat >= HEADER_LAST_FEATURE) { 2896 pr_warning("unknown feature %d\n", feat); 2897 return 0; 2898 } 2899 if (!feat_ops[feat].print) 2900 return 0; 2901 2902 ff = (struct feat_fd) { 2903 .fd = fd, 2904 .ph = ph, 2905 }; 2906 2907 if (!feat_ops[feat].full_only || hd->full) 2908 feat_ops[feat].print(&ff, hd->fp); 2909 else 2910 fprintf(hd->fp, "# %s info available, use -I to display\n", 2911 feat_ops[feat].name); 2912 2913 return 0; 2914 } 2915 2916 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) 2917 { 2918 struct header_print_data hd; 2919 struct perf_header *header = &session->header; 2920 int fd = perf_data__fd(session->data); 2921 struct stat st; 2922 time_t stctime; 2923 int ret, bit; 2924 2925 hd.fp = fp; 2926 hd.full = full; 2927 2928 ret = fstat(fd, &st); 2929 if (ret == -1) 2930 return -1; 2931 2932 stctime = st.st_ctime; 2933 fprintf(fp, "# captured on : %s", ctime(&stctime)); 2934 2935 fprintf(fp, "# header version : %u\n", header->version); 2936 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset); 2937 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size); 2938 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset); 2939 2940 perf_header__process_sections(header, fd, &hd, 2941 perf_file_section__fprintf_info); 2942 2943 if (session->data->is_pipe) 2944 return 0; 2945 2946 fprintf(fp, "# missing features: "); 2947 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) { 2948 if (bit) 2949 fprintf(fp, "%s ", feat_ops[bit].name); 2950 } 2951 2952 fprintf(fp, "\n"); 2953 return 0; 2954 } 2955 2956 static int do_write_feat(struct feat_fd *ff, int type, 2957 struct perf_file_section **p, 2958 struct evlist *evlist) 2959 { 2960 int err; 2961 int ret = 0; 2962 2963 if (perf_header__has_feat(ff->ph, type)) { 2964 if (!feat_ops[type].write) 2965 return -1; 2966 2967 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__)) 2968 return -1; 2969 2970 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR); 2971 2972 err = feat_ops[type].write(ff, evlist); 2973 if (err < 0) { 2974 pr_debug("failed to write feature %s\n", feat_ops[type].name); 2975 2976 /* undo anything written */ 2977 lseek(ff->fd, (*p)->offset, SEEK_SET); 2978 2979 return -1; 2980 } 2981 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset; 2982 (*p)++; 2983 } 2984 return ret; 2985 } 2986 2987 static int perf_header__adds_write(struct perf_header *header, 2988 struct evlist *evlist, int fd) 2989 { 2990 int nr_sections; 2991 struct feat_fd ff; 2992 struct perf_file_section *feat_sec, *p; 2993 int sec_size; 2994 u64 sec_start; 2995 int feat; 2996 int err; 2997 2998 ff = (struct feat_fd){ 2999 .fd = fd, 3000 .ph = header, 3001 }; 3002 3003 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3004 if (!nr_sections) 3005 return 0; 3006 3007 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); 3008 if (feat_sec == NULL) 3009 return -ENOMEM; 3010 3011 sec_size = sizeof(*feat_sec) * nr_sections; 3012 3013 sec_start = header->feat_offset; 3014 lseek(fd, sec_start + sec_size, SEEK_SET); 3015 3016 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { 3017 if (do_write_feat(&ff, feat, &p, evlist)) 3018 perf_header__clear_feat(header, feat); 3019 } 3020 3021 lseek(fd, sec_start, SEEK_SET); 3022 /* 3023 * may write more than needed due to dropped feature, but 3024 * this is okay, reader will skip the missing entries 3025 */ 3026 err = do_write(&ff, feat_sec, sec_size); 3027 if (err < 0) 3028 pr_debug("failed to write feature section\n"); 3029 free(feat_sec); 3030 return err; 3031 } 3032 3033 int perf_header__write_pipe(int fd) 3034 { 3035 struct perf_pipe_file_header f_header; 3036 struct feat_fd ff; 3037 int err; 3038 3039 ff = (struct feat_fd){ .fd = fd }; 3040 3041 f_header = (struct perf_pipe_file_header){ 3042 .magic = PERF_MAGIC, 3043 .size = sizeof(f_header), 3044 }; 3045 3046 err = do_write(&ff, &f_header, sizeof(f_header)); 3047 if (err < 0) { 3048 pr_debug("failed to write perf pipe header\n"); 3049 return err; 3050 } 3051 3052 return 0; 3053 } 3054 3055 int perf_session__write_header(struct perf_session *session, 3056 struct evlist *evlist, 3057 int fd, bool at_exit) 3058 { 3059 struct perf_file_header f_header; 3060 struct perf_file_attr f_attr; 3061 struct perf_header *header = &session->header; 3062 struct evsel *evsel; 3063 struct feat_fd ff; 3064 u64 attr_offset; 3065 int err; 3066 3067 ff = (struct feat_fd){ .fd = fd}; 3068 lseek(fd, sizeof(f_header), SEEK_SET); 3069 3070 evlist__for_each_entry(session->evlist, evsel) { 3071 evsel->id_offset = lseek(fd, 0, SEEK_CUR); 3072 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64)); 3073 if (err < 0) { 3074 pr_debug("failed to write perf header\n"); 3075 return err; 3076 } 3077 } 3078 3079 attr_offset = lseek(ff.fd, 0, SEEK_CUR); 3080 3081 evlist__for_each_entry(evlist, evsel) { 3082 f_attr = (struct perf_file_attr){ 3083 .attr = evsel->core.attr, 3084 .ids = { 3085 .offset = evsel->id_offset, 3086 .size = evsel->core.ids * sizeof(u64), 3087 } 3088 }; 3089 err = do_write(&ff, &f_attr, sizeof(f_attr)); 3090 if (err < 0) { 3091 pr_debug("failed to write perf header attribute\n"); 3092 return err; 3093 } 3094 } 3095 3096 if (!header->data_offset) 3097 header->data_offset = lseek(fd, 0, SEEK_CUR); 3098 header->feat_offset = header->data_offset + header->data_size; 3099 3100 if (at_exit) { 3101 err = perf_header__adds_write(header, evlist, fd); 3102 if (err < 0) 3103 return err; 3104 } 3105 3106 f_header = (struct perf_file_header){ 3107 .magic = PERF_MAGIC, 3108 .size = sizeof(f_header), 3109 .attr_size = sizeof(f_attr), 3110 .attrs = { 3111 .offset = attr_offset, 3112 .size = evlist->core.nr_entries * sizeof(f_attr), 3113 }, 3114 .data = { 3115 .offset = header->data_offset, 3116 .size = header->data_size, 3117 }, 3118 /* event_types is ignored, store zeros */ 3119 }; 3120 3121 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); 3122 3123 lseek(fd, 0, SEEK_SET); 3124 err = do_write(&ff, &f_header, sizeof(f_header)); 3125 if (err < 0) { 3126 pr_debug("failed to write perf header\n"); 3127 return err; 3128 } 3129 lseek(fd, header->data_offset + header->data_size, SEEK_SET); 3130 3131 return 0; 3132 } 3133 3134 static int perf_header__getbuffer64(struct perf_header *header, 3135 int fd, void *buf, size_t size) 3136 { 3137 if (readn(fd, buf, size) <= 0) 3138 return -1; 3139 3140 if (header->needs_swap) 3141 mem_bswap_64(buf, size); 3142 3143 return 0; 3144 } 3145 3146 int perf_header__process_sections(struct perf_header *header, int fd, 3147 void *data, 3148 int (*process)(struct perf_file_section *section, 3149 struct perf_header *ph, 3150 int feat, int fd, void *data)) 3151 { 3152 struct perf_file_section *feat_sec, *sec; 3153 int nr_sections; 3154 int sec_size; 3155 int feat; 3156 int err; 3157 3158 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); 3159 if (!nr_sections) 3160 return 0; 3161 3162 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); 3163 if (!feat_sec) 3164 return -1; 3165 3166 sec_size = sizeof(*feat_sec) * nr_sections; 3167 3168 lseek(fd, header->feat_offset, SEEK_SET); 3169 3170 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); 3171 if (err < 0) 3172 goto out_free; 3173 3174 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { 3175 err = process(sec++, header, feat, fd, data); 3176 if (err < 0) 3177 goto out_free; 3178 } 3179 err = 0; 3180 out_free: 3181 free(feat_sec); 3182 return err; 3183 } 3184 3185 static const int attr_file_abi_sizes[] = { 3186 [0] = PERF_ATTR_SIZE_VER0, 3187 [1] = PERF_ATTR_SIZE_VER1, 3188 [2] = PERF_ATTR_SIZE_VER2, 3189 [3] = PERF_ATTR_SIZE_VER3, 3190 [4] = PERF_ATTR_SIZE_VER4, 3191 0, 3192 }; 3193 3194 /* 3195 * In the legacy file format, the magic number is not used to encode endianness. 3196 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based 3197 * on ABI revisions, we need to try all combinations for all endianness to 3198 * detect the endianness. 3199 */ 3200 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) 3201 { 3202 uint64_t ref_size, attr_size; 3203 int i; 3204 3205 for (i = 0 ; attr_file_abi_sizes[i]; i++) { 3206 ref_size = attr_file_abi_sizes[i] 3207 + sizeof(struct perf_file_section); 3208 if (hdr_sz != ref_size) { 3209 attr_size = bswap_64(hdr_sz); 3210 if (attr_size != ref_size) 3211 continue; 3212 3213 ph->needs_swap = true; 3214 } 3215 pr_debug("ABI%d perf.data file detected, need_swap=%d\n", 3216 i, 3217 ph->needs_swap); 3218 return 0; 3219 } 3220 /* could not determine endianness */ 3221 return -1; 3222 } 3223 3224 #define PERF_PIPE_HDR_VER0 16 3225 3226 static const size_t attr_pipe_abi_sizes[] = { 3227 [0] = PERF_PIPE_HDR_VER0, 3228 0, 3229 }; 3230 3231 /* 3232 * In the legacy pipe format, there is an implicit assumption that endiannesss 3233 * between host recording the samples, and host parsing the samples is the 3234 * same. This is not always the case given that the pipe output may always be 3235 * redirected into a file and analyzed on a different machine with possibly a 3236 * different endianness and perf_event ABI revsions in the perf tool itself. 3237 */ 3238 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) 3239 { 3240 u64 attr_size; 3241 int i; 3242 3243 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { 3244 if (hdr_sz != attr_pipe_abi_sizes[i]) { 3245 attr_size = bswap_64(hdr_sz); 3246 if (attr_size != hdr_sz) 3247 continue; 3248 3249 ph->needs_swap = true; 3250 } 3251 pr_debug("Pipe ABI%d perf.data file detected\n", i); 3252 return 0; 3253 } 3254 return -1; 3255 } 3256 3257 bool is_perf_magic(u64 magic) 3258 { 3259 if (!memcmp(&magic, __perf_magic1, sizeof(magic)) 3260 || magic == __perf_magic2 3261 || magic == __perf_magic2_sw) 3262 return true; 3263 3264 return false; 3265 } 3266 3267 static int check_magic_endian(u64 magic, uint64_t hdr_sz, 3268 bool is_pipe, struct perf_header *ph) 3269 { 3270 int ret; 3271 3272 /* check for legacy format */ 3273 ret = memcmp(&magic, __perf_magic1, sizeof(magic)); 3274 if (ret == 0) { 3275 ph->version = PERF_HEADER_VERSION_1; 3276 pr_debug("legacy perf.data format\n"); 3277 if (is_pipe) 3278 return try_all_pipe_abis(hdr_sz, ph); 3279 3280 return try_all_file_abis(hdr_sz, ph); 3281 } 3282 /* 3283 * the new magic number serves two purposes: 3284 * - unique number to identify actual perf.data files 3285 * - encode endianness of file 3286 */ 3287 ph->version = PERF_HEADER_VERSION_2; 3288 3289 /* check magic number with one endianness */ 3290 if (magic == __perf_magic2) 3291 return 0; 3292 3293 /* check magic number with opposite endianness */ 3294 if (magic != __perf_magic2_sw) 3295 return -1; 3296 3297 ph->needs_swap = true; 3298 3299 return 0; 3300 } 3301 3302 int perf_file_header__read(struct perf_file_header *header, 3303 struct perf_header *ph, int fd) 3304 { 3305 ssize_t ret; 3306 3307 lseek(fd, 0, SEEK_SET); 3308 3309 ret = readn(fd, header, sizeof(*header)); 3310 if (ret <= 0) 3311 return -1; 3312 3313 if (check_magic_endian(header->magic, 3314 header->attr_size, false, ph) < 0) { 3315 pr_debug("magic/endian check failed\n"); 3316 return -1; 3317 } 3318 3319 if (ph->needs_swap) { 3320 mem_bswap_64(header, offsetof(struct perf_file_header, 3321 adds_features)); 3322 } 3323 3324 if (header->size != sizeof(*header)) { 3325 /* Support the previous format */ 3326 if (header->size == offsetof(typeof(*header), adds_features)) 3327 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3328 else 3329 return -1; 3330 } else if (ph->needs_swap) { 3331 /* 3332 * feature bitmap is declared as an array of unsigned longs -- 3333 * not good since its size can differ between the host that 3334 * generated the data file and the host analyzing the file. 3335 * 3336 * We need to handle endianness, but we don't know the size of 3337 * the unsigned long where the file was generated. Take a best 3338 * guess at determining it: try 64-bit swap first (ie., file 3339 * created on a 64-bit host), and check if the hostname feature 3340 * bit is set (this feature bit is forced on as of fbe96f2). 3341 * If the bit is not, undo the 64-bit swap and try a 32-bit 3342 * swap. If the hostname bit is still not set (e.g., older data 3343 * file), punt and fallback to the original behavior -- 3344 * clearing all feature bits and setting buildid. 3345 */ 3346 mem_bswap_64(&header->adds_features, 3347 BITS_TO_U64(HEADER_FEAT_BITS)); 3348 3349 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3350 /* unswap as u64 */ 3351 mem_bswap_64(&header->adds_features, 3352 BITS_TO_U64(HEADER_FEAT_BITS)); 3353 3354 /* unswap as u32 */ 3355 mem_bswap_32(&header->adds_features, 3356 BITS_TO_U32(HEADER_FEAT_BITS)); 3357 } 3358 3359 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { 3360 bitmap_zero(header->adds_features, HEADER_FEAT_BITS); 3361 set_bit(HEADER_BUILD_ID, header->adds_features); 3362 } 3363 } 3364 3365 memcpy(&ph->adds_features, &header->adds_features, 3366 sizeof(ph->adds_features)); 3367 3368 ph->data_offset = header->data.offset; 3369 ph->data_size = header->data.size; 3370 ph->feat_offset = header->data.offset + header->data.size; 3371 return 0; 3372 } 3373 3374 static int perf_file_section__process(struct perf_file_section *section, 3375 struct perf_header *ph, 3376 int feat, int fd, void *data) 3377 { 3378 struct feat_fd fdd = { 3379 .fd = fd, 3380 .ph = ph, 3381 .size = section->size, 3382 .offset = section->offset, 3383 }; 3384 3385 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { 3386 pr_debug("Failed to lseek to %" PRIu64 " offset for feature " 3387 "%d, continuing...\n", section->offset, feat); 3388 return 0; 3389 } 3390 3391 if (feat >= HEADER_LAST_FEATURE) { 3392 pr_debug("unknown feature %d, continuing...\n", feat); 3393 return 0; 3394 } 3395 3396 if (!feat_ops[feat].process) 3397 return 0; 3398 3399 return feat_ops[feat].process(&fdd, data); 3400 } 3401 3402 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, 3403 struct perf_header *ph, int fd, 3404 bool repipe) 3405 { 3406 struct feat_fd ff = { 3407 .fd = STDOUT_FILENO, 3408 .ph = ph, 3409 }; 3410 ssize_t ret; 3411 3412 ret = readn(fd, header, sizeof(*header)); 3413 if (ret <= 0) 3414 return -1; 3415 3416 if (check_magic_endian(header->magic, header->size, true, ph) < 0) { 3417 pr_debug("endian/magic failed\n"); 3418 return -1; 3419 } 3420 3421 if (ph->needs_swap) 3422 header->size = bswap_64(header->size); 3423 3424 if (repipe && do_write(&ff, header, sizeof(*header)) < 0) 3425 return -1; 3426 3427 return 0; 3428 } 3429 3430 static int perf_header__read_pipe(struct perf_session *session) 3431 { 3432 struct perf_header *header = &session->header; 3433 struct perf_pipe_file_header f_header; 3434 3435 if (perf_file_header__read_pipe(&f_header, header, 3436 perf_data__fd(session->data), 3437 session->repipe) < 0) { 3438 pr_debug("incompatible file format\n"); 3439 return -EINVAL; 3440 } 3441 3442 return 0; 3443 } 3444 3445 static int read_attr(int fd, struct perf_header *ph, 3446 struct perf_file_attr *f_attr) 3447 { 3448 struct perf_event_attr *attr = &f_attr->attr; 3449 size_t sz, left; 3450 size_t our_sz = sizeof(f_attr->attr); 3451 ssize_t ret; 3452 3453 memset(f_attr, 0, sizeof(*f_attr)); 3454 3455 /* read minimal guaranteed structure */ 3456 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); 3457 if (ret <= 0) { 3458 pr_debug("cannot read %d bytes of header attr\n", 3459 PERF_ATTR_SIZE_VER0); 3460 return -1; 3461 } 3462 3463 /* on file perf_event_attr size */ 3464 sz = attr->size; 3465 3466 if (ph->needs_swap) 3467 sz = bswap_32(sz); 3468 3469 if (sz == 0) { 3470 /* assume ABI0 */ 3471 sz = PERF_ATTR_SIZE_VER0; 3472 } else if (sz > our_sz) { 3473 pr_debug("file uses a more recent and unsupported ABI" 3474 " (%zu bytes extra)\n", sz - our_sz); 3475 return -1; 3476 } 3477 /* what we have not yet read and that we know about */ 3478 left = sz - PERF_ATTR_SIZE_VER0; 3479 if (left) { 3480 void *ptr = attr; 3481 ptr += PERF_ATTR_SIZE_VER0; 3482 3483 ret = readn(fd, ptr, left); 3484 } 3485 /* read perf_file_section, ids are read in caller */ 3486 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); 3487 3488 return ret <= 0 ? -1 : 0; 3489 } 3490 3491 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel, 3492 struct tep_handle *pevent) 3493 { 3494 struct tep_event *event; 3495 char bf[128]; 3496 3497 /* already prepared */ 3498 if (evsel->tp_format) 3499 return 0; 3500 3501 if (pevent == NULL) { 3502 pr_debug("broken or missing trace data\n"); 3503 return -1; 3504 } 3505 3506 event = tep_find_event(pevent, evsel->core.attr.config); 3507 if (event == NULL) { 3508 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config); 3509 return -1; 3510 } 3511 3512 if (!evsel->name) { 3513 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); 3514 evsel->name = strdup(bf); 3515 if (evsel->name == NULL) 3516 return -1; 3517 } 3518 3519 evsel->tp_format = event; 3520 return 0; 3521 } 3522 3523 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist, 3524 struct tep_handle *pevent) 3525 { 3526 struct evsel *pos; 3527 3528 evlist__for_each_entry(evlist, pos) { 3529 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT && 3530 perf_evsel__prepare_tracepoint_event(pos, pevent)) 3531 return -1; 3532 } 3533 3534 return 0; 3535 } 3536 3537 int perf_session__read_header(struct perf_session *session) 3538 { 3539 struct perf_data *data = session->data; 3540 struct perf_header *header = &session->header; 3541 struct perf_file_header f_header; 3542 struct perf_file_attr f_attr; 3543 u64 f_id; 3544 int nr_attrs, nr_ids, i, j; 3545 int fd = perf_data__fd(data); 3546 3547 session->evlist = evlist__new(); 3548 if (session->evlist == NULL) 3549 return -ENOMEM; 3550 3551 session->evlist->env = &header->env; 3552 session->machines.host.env = &header->env; 3553 if (perf_data__is_pipe(data)) 3554 return perf_header__read_pipe(session); 3555 3556 if (perf_file_header__read(&f_header, header, fd) < 0) 3557 return -EINVAL; 3558 3559 /* 3560 * Sanity check that perf.data was written cleanly; data size is 3561 * initialized to 0 and updated only if the on_exit function is run. 3562 * If data size is still 0 then the file contains only partial 3563 * information. Just warn user and process it as much as it can. 3564 */ 3565 if (f_header.data.size == 0) { 3566 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" 3567 "Was the 'perf record' command properly terminated?\n", 3568 data->file.path); 3569 } 3570 3571 if (f_header.attr_size == 0) { 3572 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n" 3573 "Was the 'perf record' command properly terminated?\n", 3574 data->file.path); 3575 return -EINVAL; 3576 } 3577 3578 nr_attrs = f_header.attrs.size / f_header.attr_size; 3579 lseek(fd, f_header.attrs.offset, SEEK_SET); 3580 3581 for (i = 0; i < nr_attrs; i++) { 3582 struct evsel *evsel; 3583 off_t tmp; 3584 3585 if (read_attr(fd, header, &f_attr) < 0) 3586 goto out_errno; 3587 3588 if (header->needs_swap) { 3589 f_attr.ids.size = bswap_64(f_attr.ids.size); 3590 f_attr.ids.offset = bswap_64(f_attr.ids.offset); 3591 perf_event__attr_swap(&f_attr.attr); 3592 } 3593 3594 tmp = lseek(fd, 0, SEEK_CUR); 3595 evsel = evsel__new(&f_attr.attr); 3596 3597 if (evsel == NULL) 3598 goto out_delete_evlist; 3599 3600 evsel->needs_swap = header->needs_swap; 3601 /* 3602 * Do it before so that if perf_evsel__alloc_id fails, this 3603 * entry gets purged too at evlist__delete(). 3604 */ 3605 evlist__add(session->evlist, evsel); 3606 3607 nr_ids = f_attr.ids.size / sizeof(u64); 3608 /* 3609 * We don't have the cpu and thread maps on the header, so 3610 * for allocating the perf_sample_id table we fake 1 cpu and 3611 * hattr->ids threads. 3612 */ 3613 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids)) 3614 goto out_delete_evlist; 3615 3616 lseek(fd, f_attr.ids.offset, SEEK_SET); 3617 3618 for (j = 0; j < nr_ids; j++) { 3619 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) 3620 goto out_errno; 3621 3622 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id); 3623 } 3624 3625 lseek(fd, tmp, SEEK_SET); 3626 } 3627 3628 perf_header__process_sections(header, fd, &session->tevent, 3629 perf_file_section__process); 3630 3631 if (perf_evlist__prepare_tracepoint_events(session->evlist, 3632 session->tevent.pevent)) 3633 goto out_delete_evlist; 3634 3635 return 0; 3636 out_errno: 3637 return -errno; 3638 3639 out_delete_evlist: 3640 evlist__delete(session->evlist); 3641 session->evlist = NULL; 3642 return -ENOMEM; 3643 } 3644 3645 int perf_event__process_feature(struct perf_session *session, 3646 union perf_event *event) 3647 { 3648 struct perf_tool *tool = session->tool; 3649 struct feat_fd ff = { .fd = 0 }; 3650 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event; 3651 int type = fe->header.type; 3652 u64 feat = fe->feat_id; 3653 3654 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) { 3655 pr_warning("invalid record type %d in pipe-mode\n", type); 3656 return 0; 3657 } 3658 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) { 3659 pr_warning("invalid record type %d in pipe-mode\n", type); 3660 return -1; 3661 } 3662 3663 if (!feat_ops[feat].process) 3664 return 0; 3665 3666 ff.buf = (void *)fe->data; 3667 ff.size = event->header.size - sizeof(*fe); 3668 ff.ph = &session->header; 3669 3670 if (feat_ops[feat].process(&ff, NULL)) 3671 return -1; 3672 3673 if (!feat_ops[feat].print || !tool->show_feat_hdr) 3674 return 0; 3675 3676 if (!feat_ops[feat].full_only || 3677 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) { 3678 feat_ops[feat].print(&ff, stdout); 3679 } else { 3680 fprintf(stdout, "# %s info available, use -I to display\n", 3681 feat_ops[feat].name); 3682 } 3683 3684 return 0; 3685 } 3686 3687 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp) 3688 { 3689 struct perf_record_event_update *ev = &event->event_update; 3690 struct perf_record_event_update_scale *ev_scale; 3691 struct perf_record_event_update_cpus *ev_cpus; 3692 struct perf_cpu_map *map; 3693 size_t ret; 3694 3695 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id); 3696 3697 switch (ev->type) { 3698 case PERF_EVENT_UPDATE__SCALE: 3699 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3700 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale); 3701 break; 3702 case PERF_EVENT_UPDATE__UNIT: 3703 ret += fprintf(fp, "... unit: %s\n", ev->data); 3704 break; 3705 case PERF_EVENT_UPDATE__NAME: 3706 ret += fprintf(fp, "... name: %s\n", ev->data); 3707 break; 3708 case PERF_EVENT_UPDATE__CPUS: 3709 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3710 ret += fprintf(fp, "... "); 3711 3712 map = cpu_map__new_data(&ev_cpus->cpus); 3713 if (map) 3714 ret += cpu_map__fprintf(map, fp); 3715 else 3716 ret += fprintf(fp, "failed to get cpus\n"); 3717 break; 3718 default: 3719 ret += fprintf(fp, "... unknown type\n"); 3720 break; 3721 } 3722 3723 return ret; 3724 } 3725 3726 int perf_event__process_attr(struct perf_tool *tool __maybe_unused, 3727 union perf_event *event, 3728 struct evlist **pevlist) 3729 { 3730 u32 i, ids, n_ids; 3731 struct evsel *evsel; 3732 struct evlist *evlist = *pevlist; 3733 3734 if (evlist == NULL) { 3735 *pevlist = evlist = evlist__new(); 3736 if (evlist == NULL) 3737 return -ENOMEM; 3738 } 3739 3740 evsel = evsel__new(&event->attr.attr); 3741 if (evsel == NULL) 3742 return -ENOMEM; 3743 3744 evlist__add(evlist, evsel); 3745 3746 ids = event->header.size; 3747 ids -= (void *)&event->attr.id - (void *)event; 3748 n_ids = ids / sizeof(u64); 3749 /* 3750 * We don't have the cpu and thread maps on the header, so 3751 * for allocating the perf_sample_id table we fake 1 cpu and 3752 * hattr->ids threads. 3753 */ 3754 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids)) 3755 return -ENOMEM; 3756 3757 for (i = 0; i < n_ids; i++) { 3758 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]); 3759 } 3760 3761 return 0; 3762 } 3763 3764 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused, 3765 union perf_event *event, 3766 struct evlist **pevlist) 3767 { 3768 struct perf_record_event_update *ev = &event->event_update; 3769 struct perf_record_event_update_scale *ev_scale; 3770 struct perf_record_event_update_cpus *ev_cpus; 3771 struct evlist *evlist; 3772 struct evsel *evsel; 3773 struct perf_cpu_map *map; 3774 3775 if (!pevlist || *pevlist == NULL) 3776 return -EINVAL; 3777 3778 evlist = *pevlist; 3779 3780 evsel = perf_evlist__id2evsel(evlist, ev->id); 3781 if (evsel == NULL) 3782 return -EINVAL; 3783 3784 switch (ev->type) { 3785 case PERF_EVENT_UPDATE__UNIT: 3786 evsel->unit = strdup(ev->data); 3787 break; 3788 case PERF_EVENT_UPDATE__NAME: 3789 evsel->name = strdup(ev->data); 3790 break; 3791 case PERF_EVENT_UPDATE__SCALE: 3792 ev_scale = (struct perf_record_event_update_scale *)ev->data; 3793 evsel->scale = ev_scale->scale; 3794 break; 3795 case PERF_EVENT_UPDATE__CPUS: 3796 ev_cpus = (struct perf_record_event_update_cpus *)ev->data; 3797 3798 map = cpu_map__new_data(&ev_cpus->cpus); 3799 if (map) 3800 evsel->core.own_cpus = map; 3801 else 3802 pr_err("failed to get event_update cpus\n"); 3803 default: 3804 break; 3805 } 3806 3807 return 0; 3808 } 3809 3810 int perf_event__process_tracing_data(struct perf_session *session, 3811 union perf_event *event) 3812 { 3813 ssize_t size_read, padding, size = event->tracing_data.size; 3814 int fd = perf_data__fd(session->data); 3815 off_t offset = lseek(fd, 0, SEEK_CUR); 3816 char buf[BUFSIZ]; 3817 3818 /* setup for reading amidst mmap */ 3819 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data), 3820 SEEK_SET); 3821 3822 size_read = trace_report(fd, &session->tevent, 3823 session->repipe); 3824 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; 3825 3826 if (readn(fd, buf, padding) < 0) { 3827 pr_err("%s: reading input file", __func__); 3828 return -1; 3829 } 3830 if (session->repipe) { 3831 int retw = write(STDOUT_FILENO, buf, padding); 3832 if (retw <= 0 || retw != padding) { 3833 pr_err("%s: repiping tracing data padding", __func__); 3834 return -1; 3835 } 3836 } 3837 3838 if (size_read + padding != size) { 3839 pr_err("%s: tracing data size mismatch", __func__); 3840 return -1; 3841 } 3842 3843 perf_evlist__prepare_tracepoint_events(session->evlist, 3844 session->tevent.pevent); 3845 3846 return size_read + padding; 3847 } 3848 3849 int perf_event__process_build_id(struct perf_session *session, 3850 union perf_event *event) 3851 { 3852 __event_process_build_id(&event->build_id, 3853 event->build_id.filename, 3854 session); 3855 return 0; 3856 } 3857